Follow us
Publications Commentary Research People Events News Resources and Videos About IFS
Home Publications The Wild Bootstrap with a Small Number of Large Clusters

The Wild Bootstrap with a Small Number of Large Clusters

Cemmap Working Paper CWP40/19

This paper studies the properties of the wild bootstrap-based test proposed in Cameron et al. (2008) for testing hypotheses about the coefficients in a linear regression model with clustered data. Cameron et al. (2008) provide simulations that suggest this test works well even in settings with as few as fi ve clusters, but existing theoretical analyses of its properties all rely on an asymptotic framework in which the number of clusters is "large." In contrast to these analyses, we employ an asymptotic framework in which the number of clusters is "small," but the number of observations per cluster is "large." In this framework, we provide conditions under which an unstudentized version of the test is valid in the sense that it has limiting rejection probability under the null hypothesis that does not exceed the nominal level. Importantly, these conditions require, among other things, certain homogeneity restrictions on the distribution of covariates. In contrast, we establish that a studentized version of the test may only over-reject the null hypothesis by a "small" amount in the sense that it has limiting rejection probability under the null hypothesis that does not exceed the nominal level by more than an amount that decreases exponentially with the number of clusters. We obtain results qualitatively similar to those for the studentized version of the test for closely related "score" bootstrap-based tests, which permit testing hypotheses about parameters in nonlinear models. We illustrate the relevance of our theoretical or applied work via a simulation study and empirical application.

More on this topic

Cemmap Working Paper CWP9/20
Models of simultaneous discrete choice may be incomplete, delivering multiple values of outcomes at certain values of the latent variables and co-variates, and incoherent, delivering no values.
Cemmap Working Paper CWP8/20
This paper studies identification and inference in transformation models with endogenous censoring.
Cemmap Working Paper CWP6/20
We provide a general framework for investigating partial identification of structural dynamic discrete choice models and their counterfactuals, along with uniformly valid inference procedures.
Cemmap Working Paper CWP7/20
This paper examines the case for randomized controlled trials in economics. I revisit my previous paper “Randomization and Social Policy Evaluation” and update its message.
Cemmap Working Paper CWP5/20
Which housing characteristics are important for understanding homeownership rates?