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Abstract

This paper studies the properties of the wild bootstrap-based test proposed in

Cameron et al. (2008) for testing hypotheses about the coefficients in a linear regression

model with clustered data. Cameron et al. (2008) provide simulations that suggest this

test works well even in settings with as few as five clusters, but existing theoretical

analyses of its properties all rely on an asymptotic framework in which the number of

clusters is “large.” In contrast to these analyses, we employ an asymptotic framework

in which the number of clusters is “small,” but the number of observations per cluster

is “large.” In this framework, we provide conditions under which an unstudentized

version of the test is valid in the sense that it has limiting rejection probability under the

null hypothesis that does not exceed the nominal level. Importantly, these conditions

require, among other things, certain homogeneity restrictions on the distribution of

covariates. In contrast, we establish that a studentized version of the test may only

over-reject the null hypothesis by a “small” amount in the sense that it has limiting

rejection probability under the null hypothesis that does not exceed the nominal level

by more than an amount that decreases exponentially with the number of clusters. We

obtain results qualitatively similar to those for the studentized version of the test for

closely related “score” bootstrap-based tests, which permit testing hypotheses about

parameters in nonlinear models. We illustrate the relevance of our theoretical results

for applied work via a simulation study and empirical application.
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1 Introduction

It is common in the empirical analysis of clustered data to be agnostic about the dependence

structure within a cluster (Wooldridge, 2003; Bertrand et al., 2004). The robustness afforded

by such agnosticism, however, may unfortunately result in many commonly used inferential

methods behaving poorly in applications where the number of clusters is “small” (Donald and

Lang, 2007). In response to this concern, Cameron et al. (2008) introduced a procedure based

on the wild bootstrap of Liu (1988) and found in simulations that it led to tests that behaved

remarkably well even in settings with as few as five clusters. This procedure is sometimes

referred to as the “cluster” wild bootstrap, but we henceforth refer to it more compactly as

the wild bootstrap. Due at least in part to these simulations, the wild bootstrap has emerged

as arguably the most popular method for conducting inference in settings with few clusters.

Recent examples of its use as either the leading inferential method or as a robustness check

for conclusions drawn under other procedures include Acemoglu et al. (2011), Giuliano and

Spilimbergo (2014), Kosfeld and Rustagi (2015), and Meng et al. (2015). The number of

clusters in these empirical applications ranges from as few as five to as many as nineteen.

The use of the wild bootstrap in applications with such a small number of clusters

contrasts sharply with existing analyses of its theoretical properties, which, to the best of

our knowledge, all employ an asymptotic framework where the number of clusters tends to

infinity. See, for example, Carter et al. (2017), Djogbenou et al. (2019), and MacKinnon et al.

(2019). In this paper, we address this discrepancy by studying its properties in an asymptotic

framework in which the number of clusters is fixed, but the number of observations per

cluster tends to infinity. In this way, our asymptotic framework captures a setting in which

the number of clusters is “small,” but the number of observations per cluster is “large.”

Our main results concern the use of the wild bootstrap to test hypotheses about a linear

combination of the coefficients in a linear regression model with clustered data. For this

testing problem, we first provide conditions under which using the wild bootstrap with an

unstudentized test statistic leads to a test that is valid in the sense that it has limiting

rejection probability under the null hypothesis no greater than the nominal level. Our

results require, among other things, certain homogeneity restrictions on the distribution of
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covariates. These homogeneity conditions are satisfied in particular if the distribution of

covariates is the same across clusters, but, as explained in Section 2.1, are also satisfied in

other circumstances. While our conditions are not necessary, we believe our results also help

shed some light on the poor behavior of the wild bootstrap in simulation studies that violate

our homogeneity requirements; see, e.g., Ibragimov and Müller (2016) and Section 4 below.

Establishing the properties of a wild bootstrap-based test in an asymptotic framework in

which the number of clusters is fixed requires fundamentally different arguments than those

employed when the number of clusters diverges to infinity. Importantly, when the number

of clusters is fixed, the wild bootstrap distribution is no longer a consistent estimator for

the asymptotic distribution of the test statistic and hence “standard” arguments do not

apply. Our analysis instead relies on a resemblance of the wild bootstrap-based test to a

randomization test based on the group of sign changes with some key differences that, as

explained in Section 3, prevent the use of existing results on the large-sample properties of

randomization tests, including those in Canay et al. (2017). Despite these differences, we

are able to show under our assumptions that the limiting rejection probability of the wild

bootstrap-based test equals that of a suitable level-α randomization test.

We emphasize, however, that the asymptotic equivalence described above is delicate in

that it relies crucially on the specific implementation of the wild bootstrap recommended

by Cameron et al. (2008), which uses Rademacher weights and the restricted least squares

estimator. Furthermore, it does not extend to the case where we studentize the test statistic

in the usual way. In that setting, our analysis only establishes that the test that employs a

studentized test statistic may only over-reject the null hypothesis by a “small” amount in the

sense that it has limiting rejection probability under the null hypothesis that does not exceed

the nominal level by more than a quantity that decreases exponentially with the number of

clusters. In particular, when the number of clusters is eight (or more), this quantity is no

greater than approximately 0.008.

The arguments used in establishing these properties for the studentized wild bootstrap-

based test permit us to establish qualitatively similar results for wild bootstrap-based tests

of nonlinear null hypotheses and closely related “score” bootstrap-based tests in nonlinear

models. In particular, under conditions that include suitable “homogeneity” restrictions, we
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show that the limiting rejection probability of these tests under the null hypothesis does

not exceed the nominal level by more than an amount that decreases exponentially with the

number of clusters. We defer a formal statement of these results to Appendix C, but briefly

discuss “score” bootstrap-based tests of linear null hypotheses in the generalized method of

moments (GMM) framework of Hansen (1982) in the main text. Due to the differences with

the wild bootstrap-based tests described previously, our discussion focuses on implementation

and the homogeneity requirements needed in our formal result.

This paper is part of a growing literature studying inference in settings where the num-

ber of clusters is “small,” but the number of observations per cluster is “large.” Ibragimov

and Müller (2010) and Canay et al. (2017), for instance, develop procedures based on the

cluster-level estimators of the coefficients. Importantly, these approaches do not require the

homogeneity restriction described above. Canay et al. (2017) is related to our theoretical

analysis in that it also employs a connection with randomization tests, but, as mentioned

previously, the results in Canay et al. (2017) are not applicable to our setting. Bester et al.

(2011) derives the asymptotic distribution of the full-sample estimator of the coefficients

under assumptions similar to our own. Finally, there is a large literature studying the prop-

erties of variations of the wild bootstrap, including, in addition to some of the aforementioned

references, Webb (2013) and MacKinnon and Webb (2017).

The remainder of the paper is organized as follows. In Section 2, we formally introduce

the test we study and the assumptions that will underlie our analysis. Our theoretical results

are contained in Section 3. In Sections 4 and 5 , we illustrate the relevance of our asymptotic

analysis for applied work via a simulation study and empirical application. We conclude in

Section 6 with a summary of the main implications of our results for empirical work. The

proofs of all results and a number of extensions can be found in the Appendix.

2 Setup

We index clusters by j ∈ J ≡ {1, . . . , q} and units in the jth cluster by i ∈ In,j ≡ {1, . . . , nj}.

The observed data consists of an outcome of interest, Yi,j, and two random vectors, Wi,j ∈
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Rdw and Zi,j ∈ Rdz , that are related through the equation

Yi,j = Z ′i,jβ +W ′
i,jγ + εi,j , (1)

where β ∈ Rdz and γ ∈ Rdw are unknown parameters and our requirements on εi,j are

explained below in Section 2.1. In what follows, we consider β to be the parameter of

primary interest and view γ as a nuisance parameter. For example, in the context of a

randomized controlled trial, Zi,j may be an indicator for treatment status and Wi,j may be a

vector of “controls” such as additional unit-level characteristics or cluster-level fixed effects.

Our hypothesis of interest therefore concerns only β. Specifically, we aim to test

H0 : c′β = λ vs. H1 : c′β 6= λ , (2)

for given values of c ∈ Rdz and λ ∈ R, at level α ∈ (0, 1). An important special case of this

framework is a test of the null hypothesis that a particular component of β equals a given

value.

In order to test (2), we first consider tests that reject for large values of the statistic

Tn ≡ |
√
n(c′β̂n − λ)| , (3)

where β̂n and γ̂n are the ordinary least squares estimator of β and γ in (1). We also consider

tests that reject for large values of a studentized version of Tn, but postpone a more detailed

description of such tests to Section 3.2. For a critical value with which to compare Tn, we

employ a version of the one proposed by Cameron et al. (2008). Specifically, we obtain a

critical value through the following construction:

Step 1: Compute β̂r
n and γ̂rn, the restricted least squares estimators of β and γ in (1)

obtained under the constraint that c′β = λ. Note that c′β̂r
n = λ by construction.

Step 2: Let G = {−1, 1}q and for any g = (g1, . . . , gq) ∈ G define

Y ∗i,j(g) ≡ Z ′i,jβ̂
r
n +W ′

i,j γ̂
r
n + gj ε̂

r
i,j , (4)
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where ε̂ri,j = Yi,j − Z ′i,jβ̂r
n −W ′

i,j γ̂
r
n. For each g = (g1, . . . , gq) ∈ G then compute β̂∗n(g)

and γ̂∗n(g), the ordinary least squares estimators of γ and β in (1) obtained using Y ∗i,j(g)

in place of Yi,j and the same regressors (Z ′i,j,W
′
i,j)
′.

Step 3: Compute the 1− α quantile of {|
√
nc′(β̂∗n(g)− β̂r

n)| : g ∈ G}, denoted by

ĉn(1− α) ≡ inf

{
u ∈ R :

1

|G|
∑
g∈G

I{|
√
nc′(β̂∗n(g)− β̂r

n)| ≤ u} ≥ 1− α

}
, (5)

where I{A} equals one whenever the event A is true and equals zero otherwise.

In what follows, we study the properties of the test φn of (2) that rejects whenever Tn

exceeds the critical value ĉn(1− α), i.e.,

φn ≡ I{Tn > ĉn(1− α)} . (6)

It is worth noting that the critical value ĉn(1− α) defined in (5) may also be written as

inf{u ∈ R : P{|c′
√
n(β̂∗n(ω)− β̂r

n)| ≤ u|X(n)} ≥ 1− α} ,

where X(n) denotes the full sample of observed data and ω is uniformly distributed on G

independently of X(n). This way of writing ĉn(1 − α) coincides with the existing literature

on the wild bootstrap that sets ω = (ω1, . . . , ωq) to be i.i.d. Rademacher random variables –

i.e., ωj equals ±1 with equal probability. Furthermore, this representation suggests a natural

way of approximating ĉn(1− α) using simulation, which is useful when |G| is large.

2.1 Assumptions

We next introduce the assumptions that will underlie our analysis of the properties of the test

φn defined in (6) as well as its studentized counterpart. In order to state these assumptions

formally, we require some additional notation. In particular, it is useful to introduce a

dw × dz-dimensional matrix Π̂n satisfying the orthogonality conditions

∑
j∈J

∑
i∈In,j

(Zi,j − Π̂′nWi,j)W
′
i,j = 0 . (7)
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Our assumptions will guarantee that, with probability tending to one, Π̂n is the unique

dw×dz matrix satisfying (7). Thus, Π̂n corresponds to the coefficients obtained from linearly

regressing Zi,j on Wi,j employing the entire sample. The residuals from this regression,

Z̃i,j ≡ Zi,j − Π̂′nWi,j , (8)

will play an important role in our analysis as well. Finally, for every j ∈ J , let Π̂c
n,j be a

dw × dz-dimensional matrix satisfying the orthogonality conditions

∑
i∈In,j

(Zi,j − (Π̂c
n,j)
′Wi,j)W

′
i,j = 0 . (9)

Because the restrictions in (9) involve only data from cluster j, there may be multiple

matrices Π̂c
n,j satisfying (9) even asymptotically. Non-uniqueness occurs, for instance, when

Wi,j includes cluster-level fixed effects. For our purposes, however, we only require that for

each j ∈ J the quantities (Π̂c
n,j)
′Wi,j with i ∈ In,j, i.e., the fitted values obtained from a

linear regression of Zi,j on Wi,j using only data from cluster j, are uniquely defined, which

is satisfied by construction.

Using this notation, we may now introduce our assumptions. Before doing so, we note

that all limits are understood to be as n→∞ and it is assumed for all j ∈ J that nj →∞

as n→∞. Importantly, the number of clusters, q, is fixed in our asymptotic framework.

Assumption 2.1. The following statements hold:

(i) The quantity

1√
n

∑
j∈J

∑
i∈In,j

 Zi,jεi,j

Wi,jεi,j


converges in distribution.

(ii) The quantity

1

n

∑
j∈J

∑
i∈In,j

 Zi,jZ
′
i,j Zi,jW

′
i,j

Wi,jZ
′
i,j Wi,jW

′
i,j


converges in probability to a positive-definite matrix.

Assumption 2.1 imposes sufficient conditions to ensure that the ordinary least squares
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estimators of β and γ in (1) are well behaved. It further implies that the least squares

estimators of β and γ subject to the restriction that c′β = λ are well behaved under the null

hypothesis in (2). Assumption 2.1 in addition guarantees Π̂n converges in probability to a

well-defined limit. The requirements of Assumption 2.1 are satisfied, for example, whenever

the within-cluster dependence is sufficiently weak to permit application of suitable laws of

large numbers and central limit theorems and there is no perfect colinearity in (Z ′i,j,W
′
i,j)
′.

Whereas Assumption 2.1 governs the asymptotic properties of the restricted and unre-

stricted least squares estimators, our next assumption imposes additional conditions that

are employed in our analysis of the wild bootstrap.

Assumption 2.2. The following statements hold:

(i) There exists a collection of independent random variables {Zj : j ∈ J}, where Zj ∈ Rdz

and Zj ∼ N(0,Σj) with Σj positive definite for all j ∈ J , such that 1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J

 d→ {Zj : j ∈ J} .

(ii) For each j ∈ J , nj/n→ ξj > 0.

(iii) For each j ∈ J ,
1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,j

P→ ajΩZ̃ , (10)

where aj > 0 and ΩZ̃ is positive definite.

(iv) For each j ∈ J ,
1

nj

∑
i∈In,j

‖W ′
i,j(Π̂n − Π̂c

n,j)‖2
P→ 0 .

The distributional convergence in Assumption 2.2(i) is satisfied, for example, whenever

the within-cluster dependence is sufficiently weak to permit application of a suitable central

limit theorem and the data are independent across clusters or, as explained in Bester et al.

(2011), the “boundaries” of the clusters are “small.” The additional requirement that Zj have

full rank covariance matrices requires that Zi,j can not be expressed as a linear combination

of Wi,j within each cluster. Assumption 2.2(ii) governs the relative sizes of the clusters. It
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permits clusters to have different sizes, but not dramatically so. Assumptions 2.2(iii)-(iv) are

the main homogeneity assumptions required for our analysis of the wild bootstrap. These

two assumptions are satisfied, for example, whenever the distributions of (Z ′i,j,W
′
i,j)
′ are the

same across clusters, but may also hold when that is not the case. For example, if Zi,j is

a scalar, then Assumption 2.2(iii) reduces to the weak requirement that the average of Z̃2
i,j

within each cluster converges in probability to a non-zero constant. Similarly, if Wi,j includes

only cluster-level fixed effects, then Assumption 2.2(iv) is trivially satisfied; see Example 2.1.

In contrast, Assumption 2.2 is violated by the simulation design in Ibragimov and Müller

(2016), in which the size of the wild bootstrap-based test exceeds its nominal level. Finally,

we note that under additional conditions it is possible to test Assumptions 2.2(iii)-(iv) by,

for example, comparing the sample second moments matrices of (Z ′i,j,W
′
i,j)
′ across clusters.

We conclude with three examples that illustrate the content of our assumptions.

Example 2.1. (Cluster-Level Fixed Effects) In certain applications, adding additional re-

gressors Wi,j can aid in verifying Assumptions 2.2(iii)-(iv). For example, suppose that

Yi,j = γ + Z ′i,jβ + εi,j

with E[εi,j] = 0, and E[Zi,jεi,j] = 0. If the researcher specifies that Wi,j is simply a constant,

then Assumption 2.2(iv) demands that the cluster-level sample means of Zi,j all tend in

probability to the same constant, while Assumption 2.2(iii) implies the cluster-level sample

covariance matrices of Zi,j all tend in probability to the same, positive-definite matrix up to

scale. On the other hand, if the researcher specifies that Wi,j includes only cluster-level fixed

effects, then Assumption 2.2(iv) is immediately satisfied, while Assumption 2.2(iii) is again

satisfied whenever the cluster-level sample covariance matrices of Zi,j all tend in probability

to the same, positive-definite matrix up to scale. We also note that including cluster-level

fixed effects is important for accommodating the model in Moulton (1986), where the error

term is assumed to be of the form vj + εi,j.

Example 2.2. (Cluster-Level Parameter Heterogeneity) It is common in empirical work to
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consider models in which the parameters vary across clusters. As a stylized example, let

Yi,j = γ + Zi,jβj + ηi,j , (11)

where Zi,j ∈ R, E[ηi,j] = 0, and E[Zi,jηi,j] = 0. For β equal to a suitable weighted average

of the βj, we may write (11) in the form of (1) by setting εi,j = Zi,j(βj − β) + ηi,j. By doing

so, we see that unless βj = β for all j ∈ J , Assumption 2.2(i) is violated, as it requires that

1
√
nj

∑
i∈In,j

Z̃i,jεi,j =
1
√
nj

∑
i∈In,j

(Zi,j − Z̄n)(Zi,j(βj − β) + ηi,j)

converge in distribution for all j ∈ J . A direct application of other methods that are valid

with a “small” number of “large” clusters, such as Ibragimov and Müller (2010, 2016), and

Canay et al. (2017), for this problem would also require that βj = β for all j ∈ J . We

emphasize, however, that these methods would not require such an assumption for inference

about (βj : j ∈ J).

Example 2.3. (Differences-in-Differences) It is difficult to satisfy our Assumptions 2.2(iii)-

(iv) in settings where Zi,j is constant within cluster, i.e., Zi,j does not vary with i ∈ In,j.

A popular setting in which this occurs and the wild bootstrap is commonly employed is

differences-in-differences where treatment status is assigned at the level of the cluster. We

illustrate this point in Appendix B with a stylized differences-in-differences example.

3 Main Results

In this section, we first analyze the properties of the test φn defined in (6) under Assumptions

2.1 and 2.2. We then proceed to analyze the properties of a studentized version of this test

under the same assumptions and discuss extensions to non-linear models and hypotheses.

3.1 Unstudentized Test

Our first result shows that the unstudentized wild bootstrap-based test φn is indeed valid in

the sense that its limiting rejection probability under the null hypothesis is no greater than
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the nominal level α. In addition we show the test is not too conservative by establishing a

lower bound on its limiting rejection probability under the null hypothesis.

Theorem 3.1. If Assumptions 2.1 and 2.2 hold and c′β = λ, then

α− 1

2q−1
≤ lim inf

n→∞
P{Tn > ĉn(1− α)} ≤ lim sup

n→∞
P{Tn > ĉn(1− α)} ≤ α .

In the proof of Theorem 3.1, we show under Assumptions 2.1 and 2.2 that the limiting

rejection probability of φn equals that of a level-α randomization test, from which the conclu-

sion of the theorem follows immediately. Despite the resemblance described above, relating

the limiting rejection probability of φn to that of a level-α randomization test is delicate. In

fact, the conclusion of Theorem 3.1 is not robust to wild bootstrap variants that construct

outcomes Y ∗i,j(g) in other ways, such as the weighting schemes in Mammen (1993) and Webb

(2013). We explore this in our simulation study in Section 4. The conclusion of Theorem

3.1 is also not robust to the use of the ordinary least squares estimators of β and γ instead

of the restricted estimators β̂r
n and γ̂rn. Notably, the use of the restricted estimators and

Rademacher weights has been encouraged by Davidson and MacKinnon (1999), Cameron

et al. (2008), and Davidson and Flachaire (2008).

While we focus on the ordinary least square setting of Section 2, we emphasize the conclu-

sion of Theorem 3.1 can be easily extended to linear models with endogeneity. In particular,

one may consider the test obtained by replacing the ordinary least squares estimator and the

least squares estimator restricted to satisfy c′β = λ with instrumental variable counterparts.

Under assumptions that parallel Assumptions 2.1 and 2.2, it is straightforward to show using

arguments similar to those in the proof of Theorem 3.1 that the conclusion of Theorem 3.1

holds for the test obtained in this way.

We next examine the power of the wild bootstrap-based test against n−1/2-local alterna-

tives. To this end, suppose

Yi,j = Z ′i,jβn +W ′
i,jγn + εi,j

with βn satisfying c′βn = λ + δ/
√
n. Below, we denote by Pδ,n the distribution of the data

in order to emphasize its dependence on both n and the local parameter δ. Our next result

shows that the limiting rejection probability of φn along such sequences of local alternatives
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exceeds the nominal level (at least for sufficiently large values of |δ|). While we do not present

it as a part of the result, the proof in fact provides a lower bound on the limiting rejection

probability of φn along such sequences of local alternatives for any value of δ. In addition

to Assumptions 2.1 and 2.2, we impose that d|G|(1− α)e < |G| − 1, where dxe denotes the

smallest integer greater than or equal to x, in order to ensure that the critical value is not

simply equal to the largest possible value of |
√
nc′(β̂∗n(g)− β̂r

n)|. This requirement will always

be satisfied unless either α or q is too small.

Theorem 3.2. If Assumptions 2.1 and 2.2 hold under {Pδ,n} and d|G|(1 − α)e < |G| − 1,

then

lim
|δ|→∞

lim inf
n→∞

Pδ,n{Tn > ĉn(1− α)} = 1 .

Remark 3.1. In order to appreciate why Theorem 3.1 does not follow from results in Canay

et al. (2017), note that Tn = Fn(sn) for some function Fn : Rq → R and

sn ≡

 1√
n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J

 , (12)

while, for any g ∈ G, |
√
nc′(β̂∗n(g)− β̂r

n)| = Fn(gŝn), where

ŝn ≡

 1√
n

∑
i∈In,j

Z̃i,j ε̂
r
i,j : j ∈ J

 (13)

and ga = (g1a1, . . . , gqaq) for any a ∈ Rq. These observations and the definition of φn in (6)

reveals a resemblance to a randomization test, but also highlights an important difference:

the critical value is computed by applying g to a different statistic (i.e., ŝn) than the one

defining the test statistic (i.e., sn). This distinction prevents the application of results in

Canay et al. (2017), as sn and ŝn do not even converge in distribution to the same limit.

Remark 3.2. For testing certain null hypotheses, it is possible to provide conditions under

which wild bootstrap-based tests are valid in finite samples. In particular, suppose that Wi,j

is empty and the goal is to test a null hypothesis that specifies all values of β. For such a

problem, ε̂ri,j = εi,j and as a result the wild bootstrap-based test is numerically equivalent to
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a randomization test. Using this observation, it is then straightforward to provide conditions

under which a wild bootstrap-based test of such null hypotheses is level α in finite samples.

For example, sufficient conditions are that {(εi,j, Zi,j) : i ∈ In,j} be independent across

clusters and {εi,j : i ∈ In,j}|{Zi,j : i ∈ In,j}
d
= {−εi,j : i ∈ In,j}|{Zi,j : i ∈ In,j} for all j ∈ J .

Davidson and Flachaire (2008) present related results under independence between εi,j and

Zi.j. In contrast, because we are focused on tests of (2), which only specify the value of a

linear combination of the coefficients in (1), wild bootstrap-based tests are not guaranteed

finite-sample validity even under such strong conditions.

3.2 Studentized Test

We now analyze a studentized version of φn. Before proceeding, we require some additional

notation in order to define formally the variance estimators that we employ. To this end, let

Ω̂Z̃,n ≡
1

n

∑
j∈J

∑
i∈In,j

Z̃i,jZ̃
′
i,j , (14)

where Z̃i,j is defined as in (8). For β̂n and γ̂n the ordinary least squares estimators of β and

γ in (1) and ε̂i,j ≡ Yi,j − Z ′i,jβ̂n −W ′
i,j γ̂n, define

V̂n ≡
1

n

∑
j∈J

∑
i∈In,j

∑
k∈In,j

Z̃i,jZ̃
′
k,j ε̂i,j ε̂k,j .

Using this notation, we define our studentized test statistic to be Tn/σ̂n, where

σ̂2
n ≡ c′Ω̂−1

Z̃,n
V̂nΩ̂−1

Z̃,n
c . (15)

Next, for any g ∈ G ≡ {−1, 1}q, recall that (β̂∗n(g)′, γ̂∗n(g)′)′ denotes the unconstrained

ordinary least squares estimator of (β′, γ′)′ obtained from regressing Y ∗i,j(g) (as defined in

(4)) on Zi,j and Wi,j. We therefore define the dz × dz covariance matrix

V̂ ∗n (g) ≡ 1

n

∑
j∈J

∑
i∈In,j

∑
k∈In,j

Z̃i,jZ̃
′
k,j ε̂
∗
i,j(g)ε̂∗k,j(g) ,
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with ε̂∗i,j(g) = Y ∗i,j(g)− Z ′i,jβ̂∗n(g)−W ′
i,j γ̂
∗
n(g), as the wild bootstrap-analogue to V̂n, and

σ̂∗n(g)2 ≡ c′Ω̂−1
Z̃,n
V̂ ∗n (g)Ω̂−1

Z̃,n
c (16)

to be the wild bootstrap-analogue to σ̂2
n. Notice that since the regressors are not re-sampled

when implementing the wild bootstrap, the matrix Ω̂Z̃,n is employed in computing both σ̂n

and σ̂∗n(g). Finally, we set as our critical value

ĉsn(1− α) ≡ inf

{
u ∈ R :

1

|G|
∑
g∈G

I

{
|
√
n
c′(β̂∗n(g)− β̂r

n)

σ̂∗n(g)
| ≤ u

}
≥ 1− α

}
. (17)

As in Section 2, we can employ simulation to approximate ĉsn(1 − α) by generating q-

dimensional vectors of i.i.d. Rademacher random variables independently of the data.

Using this notation, the studentized version of φn that we consider is the test φsn of (2)

that rejects whenever Tn/σ̂n exceeds the critical value ĉsn(1− α), i.e.,

φsn ≡ I{Tn/σ̂n > ĉsn(1− α)} . (18)

Our next result bounds the limiting rejection probability of φsn under the null hypothesis.

Theorem 3.3. If Assumptions 2.1 and 2.2 hold and c′β = λ, then

α− 1

2q−1
≤ lim inf

n→∞
P

{
Tn
σ̂n

> ĉsn(1− α)

}
≤ lim sup

n→∞
P

{
Tn
σ̂n

> ĉsn(1− α)

}
≤ α +

1

2q−1
.

Theorem 3.3 indicates that studentizing the test-statistic Tn may lead to the test over-

rejecting the null hypothesis in the sense that the limiting rejection probability of the test

exceeds its nominal level, but by a “small” amount that decreases exponentially with the

number of clusters. The reason for this possible over-rejection is that studentizing Tn results

in a test whose limiting rejection probability no longer equals that of a level-α randomization

test. Its limiting rejection probability, however, can still be bounded by that of a level-

(α + 21−q) randomization test, from which the theorem follows. This implies, for example,

that in applications with eight or more clusters, the limiting amount by which the test over-

rejects the null hypothesis will be no greater than 0.008. These results also imply that it is

13



possible to “size correct” the test simply by replacing α with α− 21−q.

It is important to emphasize that there are compelling reasons for studentizing Tn in an

asymptotic framework in which the number of clusters tends to infinity. In such a setting,

the asymptotic distribution of Tn/σ̂n is pivotal, while that of Tn is not. As a result, the

analysis in Djogbenou et al. (2019) implies that the rejection probability of φsn under the

null hypothesis converges to the nominal level α at a faster rate than the rejection probability

of φn under the null hypothesis. Combined with Theorem 3.3, these results suggest that it

may be preferable to employ the studentized test φsn unless the number of clusters q is

sufficiently small for the difference between the upper bound in Theorem 3.3 and α to be of

concern for the application at hand.

3.3 Discussion of Extensions

The arguments used in establishing Theorem 3.3 can be used to establish qualitatively similar

results in a variety of other settings, such as tests of nonlinear null hypotheses and tests in

nonlinear models, under suitable homogeneity requirements. We reserve the statement of

formal results to Appendix C, but briefly discuss in this section tests of linear null hypotheses

in a GMM framework. Given that there are no natural “residuals” in this framework, we do

not employ the wild bootstrap to obtain a critical value. Instead, we rely on a specific variant

of the “score” bootstrap as studied by Kline and Santos (2012). Our discussion therefore

emphasizes computation of the critical value and the homogeneity assumptions needed in

our formal result.

Denote by Xi,j ∈ Rdx the observed data corresponding to ith unit in the jth cluster. Let

β̂n ≡ arg min
b∈Rdβ

 1

n

∑
j∈J

∑
i∈In,j

m(Xi,j, b)

′ Σ̂n

 1

n

∑
j∈J

∑
i∈In,j

m(Xi,j, b)

 , (19)

where m(Xi,j, ·) : Rdβ → Rdm is a moment function and Σ̂n is a dm × dm weighting matrix.

Under suitable conditions, β̂n is consistent for its estimand, which we denote by β. As in

14



Section 3.1, we consider testing

H0 : c′β = λ vs. H1 : c′β 6= λ , (20)

at level α ∈ (0, 1) by employing the test statistic T gmm
n ≡ |

√
n(c′β̂n − λ)|. The critical value

with which we compare T gmm
n is computed as follows:

Step 1: Compute β̂r
n, the restricted GMM estimator obtained by minimizing the criterion

in (19) under the constraint c′b = λ. Note that c′β̂r
n = λ by construction.

Step 2: For any b ∈ Rdβ , let Γ̂n(b) ≡ (D̂n(b)′Σ̂nD̂n(b))−1D̂n(b)Σ̂n, where we define

D̂n(b) ≡ 1

n

∑
j∈J

∑
i∈In,j

∇m(Xi,j, b) (21)

for ∇m(Xi,j, b) the Jacobian of m(Xi,j, ·) : Rdβ → Rdm evaluated at b. For G = {−1, 1}q

and writing an element g ∈ G as g = (g1, . . . , gq), we set as our critical value

ĉgmm
n (1− α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I

∑
j∈J

gj√
n

∑
i∈In,j

c′Γ̂n(β̂r
n)m(Xi,j, β̂

r
n)

 ≥ 1− α

 .

We then obtain a test of (19) by rejecting whenever T gmm
n is larger than ĉgmm

n (1− α), i.e.,

φgmm
n ≡ I{T gmm

n > ĉgmm
n (1− α)} .

It is instructive to examine how φgmm
n simplifies in the context of Section 3.1. To this end,

suppose Wi,j is empty in (1), and set Xi,j = (Yi,j, Z
′
i,j)
′ and m(Xi,j, b) = (Yi,j − Z ′i,jb)Zi,j. It

is straightforward to show that in this case

Z̃i,j = Zi,j, m(Xi,j, β̂
r
n) = ε̂ri,jZi,j, and D̂n(β̂r

n) = Ω̂Z̃,n .

As a result, the test φgmm
n is numerically equivalent to the test φn defined in (6). In this

sense, φgmm
n may be viewed as a natural generalization of φn to the GMM setting. Moreover,

the observation that D̂n(β̂r
n) = Ω̂Z̃,n suggests that the appropriate generalization of the
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“homogeneity” requirement imposed in Assumption 2.2(iii) is to require for all j ∈ J that

1

nj

∑
i∈In,j

∇m(Xi,j, β)
P→ ajD(β) (22)

for some aj > 0 and dm× dβ matrix D(β) independent of j ∈ J . Indeed, in Appendix C, we

show that under conditions including (22), the test φgmm
n has limiting rejection probability

under the null hypothesis that is bounded by α + 21−q. We thus find that nonlinearities,

similar to studentiziation, may cause φgmm
n to over-reject by a “small” amount, in the sense

that its limiting rejection probability under the null hypothesis exceeds the nominal level by

an amount that decreases exponentially with q.

4 Simulation Study

In this section, we illustrate the results in Section 3 with a simulation study. In all cases,

data is generated as

Yi,j = γ + Z ′i,jβ + σ(Zi,j)(ηj + εi,j) , (23)

for i = 1, . . . , n and j = 1, . . . , q, where ηj, Zi,j, σ(Zi,j) and εi,j are specified as follows.

Model 1: We set γ = 1; dz = 1; Zi,j = Aj + ζi,j where Aj ⊥⊥ ζi,j, Aj ∼ N(0, 1),

ζi,j ∼ N(0, 1); σ(Zi,j) = Z2
i,j; and ηj ⊥⊥ εi,j with ηj ∼ N(0, 1) and εi,j ∼ N(0, 1).

Model 2: As in Model 1, but we set Zi,j =
√
j(Aj + ζi,j).

Model 3: As in Model 1, but dz = 3; β = (β1, 1, 1); Zi,j = Aj + ζi,j with Aj ∼ N(0, I3)

and ζi,j ∼ N(0,Σj), where I3 is a 3×3 identity matrix and Σj, j = 1, . . . , q, is randomly

generated following Marsaglia and Olkin (1984).

Model 4: As in Model 1, but dz = 2, Zi,j ∼ N(µ1,Σ1) for j > q/2 and Zi,j ∼ N(µ2,Σ2)

for j ≤ q/2, where µ1 = (−4,−2), µ2 = (2, 4), Σ1 = I2,

Σ2 =

 10 0.8

0.8 1

 ,

σ(Zi,j) = (Z1,i,j + Z2,i,j)
2, and β = (β1, 2).
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For each of the above specifications, we test the null hypothesis H0 : β1 = 1 against the

unrestricted alternative at level α = 10%. We further consider different values of (n, q) with

n ∈ {50, 300} and q ∈ {4, 5, 6, 8} as well as both β1 = 1 (i.e., under the null hypothesis) and

β1 = 0 (i.e., under the alternative hypothesis).

The results of our simulations are presented in Tables 1–4 below. Rejection probabilities

are computed using 5000 replications. Rows are labeled in the following way:

Unstud: Corresponds to the unstudentized test studied in Theorem 3.1.

Stud: Corresponds to the studentized test studied in Theorem 3.3.

ET-US: Corresponds to the equi-tailed analog of the unstudentized test. This test

rejects when the unstudentized test statistic Tn =
√
n(c′β̂n−λ) is either below ĉn(α/2)

or above ĉn(1− α/2), where ĉn(1− α) is defined in (5).

ET-S: Corresponds to the equi-tailed analog of the studentized test. This test rejects

when the studentized test statistic Tn/σ̂n is either below ĉsn(α/2) or above ĉsn(1−α/2),

where σ̂n and ĉsn(1− α) are defined in (15) and (17) respectively.

Each of the tests may be implemented with or without fixed effects (see Example 2.1), and

with Rademacher weights or the alternative weighting scheme described in Mammen (1993).

Tables 1 and 2 display the results for Models 1 and 2 under the null and alternative

hypotheses respectively. These two models satisfy Assumptions 2.2(iii)–(iv) when the re-

gression includes cluster-level fixed effects but not when only a constant term is included;

see Example 2.1. Table 3 displays the results for Models 3 and 4 under the null hypothesis.

These two models violate Assumptions 2.2(iii)–(iv) and are included to explore sensitivity to

violations of these conditions. Finally, Table 4 displays results for Model 1 with α = 12.5%

to study the possible over-rejection under the null hypothesis of the studentized test, as

described in Theorem 3.3.

We organize our discussion of the results by test.

Unstud: As expected in light of Theorem 3.1 and Example 2.1, Table 1 shows the unstu-

dentized test has rejection probability under the null hypothesis very close to the nominal

level when the regression includes cluster-level fixed effects and the number of clusters is

larger than four. When q = 4, however, the test is conservative in the sense that the rejec-

17



Rade - with Fixed effects Rade - without Fixed effects Mammen - with Fixed effects
q q q

Test 4 5 6 8 4 5 6 8 4 5 6 8

Unstud 6.48 9.90 9.34 9.42 9.24 14.48 13.80 12.48 15.40 14.42 13.06 12.16
Model 1 Stud 7.36 10.42 9.54 9.76 7.74 10.80 10.04 9.86 6.10 6.26 5.16 4.58
n = 50 ET-US 1.48 7.40 9.64 9.26 1.50 11.42 14.00 12.16 2.32 3.14 3.30 4.74

ET-S 4.24 8.64 9.90 9.52 3.08 8.34 10.32 9.46 24.98 25.72 24.32 22.04

Unstud 9.02 5.96 9.70 9.98 10.58 15.84 15.60 15.42 14.26 13.62 13.78 13.72
Model 2 Stud 9.44 7.74 9.72 10.08 8.18 10.38 10.06 11.04 5.56 5.92 4.60 4.10
n = 50 ET-US 6.68 1.58 9.88 9.72 1.34 12.44 15.68 15.00 1.16 1.54 2.22 3.58

ET-S 7.60 4.02 10.34 9.88 2.48 8.30 10.24 10.80 26.86 25.42 25.26 25.40

Unstud 7.24 9.72 9.46 10.16 10.54 15.48 14.32 14.24 15.58 14.78 13.48 12.88
Model 1 Stud 8.42 10.22 9.64 10.16 8.62 11.24 10.42 10.86 6.62 6.88 5.30 4.58
n = 300 ET-US 2.10 7.14 9.66 9.84 1.10 12.00 14.42 13.82 1.82 2.66 3.62 4.70

ET-S 4.18 8.12 10.12 9.92 2.80 8.78 10.74 10.56 26.06 25.08 24.38 24.14

Unstud 6.96 9.68 9.74 10.12 12.30 17.74 16.20 15.26 15.50 14.86 14.08 13.34
Model 2 Stud 8.26 10.16 9.86 10.16 8.88 10.96 10.28 10.66 6.64 6.18 4.80 4.34
n = 300 ET-US 2.00 7.26 10.00 9.96 1.30 13.60 16.24 14.74 0.98 1.80 2.36 3.40

ET-S 4.36 8.16 10.42 9.88 3.02 8.00 10.44 10.40 27.14 26.80 26.66 25.42

Table 1: Rejection probability under the null hypothesis β1 = 1 with α = 10%.

tion probability under the null hypothesis may be strictly below its nominal level. In fact,

when α = 5% (not reported), the test rarely rejects when q = 4 and is somewhat conservative

for q = 5. Table 1 also illustrates the importance of including cluster-level fixed effects in the

regression: when the test does not employ cluster-level fixed effects, the rejection probability

often exceeds the nominal level. In addition, Table 1 shows that the Rademacher weights

play an important role in our results, and may not extended to other weighting schemes

such as those proposed by Mammen (1993). Indeed, the rejection probability under the null

hypothesis exceeds the nominal level for all values of q and n when we use these alternative

weights; see the last four columns in Tables 1 and 2. We therefore do not consider these

alternative weights in Tables 3 and 4.

Models 3 and 4 are heterogeneous, in the sense that Assumption 2.2(iii) is always violated

and Assumption 2.2(iv) is violated if cluster-level fixed effects are not included. Table 3 shows

that the rejection probability of the unstudentized test under the null hypothesis exceeds

the nominal level in nearly all specifications, including those employing cluster-level fixed

effects. These results highlight the importance of Assumptions 2.2(iii)–(iv) for our results

and for the reliability of the wild bootstrap when the number of clusters is small. Our
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Rade - with Fixed effects Rade - without Fixed effects Mammen - with Fixed effects
q q q

Test 4 5 6 8 4 5 6 8 4 5 6 8

unstud 19.80 33.14 39.34 42.28 20.42 34.94 39.54 40.74 35.46 37.86 40.84 42.50
Model 1 Stud 22.44 33.72 39.22 42.40 20.76 31.84 34.94 35.90 18.08 18.68 20.78 28.88
n = 50 ET-US 5.64 28.80 39.70 41.62 4.60 30.32 39.90 40.16 10.14 15.84 22.06 29.26

ET-S 11.08 30.10 39.76 41.72 9.58 28.40 35.66 35.44 51.16 51.94 54.50 55.76

unstud 13.34 20.28 20.04 18.88 15.56 25.16 23.38 21.58 22.68 22.28 20.94 20.34
Model 2 Stud 16.00 20.66 19.66 18.40 13.94 19.24 17.86 16.68 12.42 11.74 10.12 10.50
n = 50 ET-US 3.88 17.56 20.32 18.58 3.00 21.68 23.50 21.08 3.02 4.58 5.74 6.88

ET-S 8.86 18.50 20.08 18.18 6.26 16.50 18.24 16.34 37.70 36.42 35.40 33.26

unstud 22.22 39.20 42.46 48.32 21.80 39.72 40.84 44.80 38.30 42.10 43.38 48.08
Model 1 Stud 25.26 40.04 42.64 48.26 22.68 36.18 37.02 39.58 19.90 22.30 22.08 34.52
n = 300 ET-US 6.12 33.78 42.88 47.80 4.70 34.16 41.14 44.20 11.80 20.16 25.78 35.68

ET-S 11.98 35.82 43.26 47.90 10.70 31.94 37.62 39.20 54.10 55.86 56.40 59.96

unstud 15.60 23.98 24.72 20.86 17.46 27.72 26.92 22.88 24.58 23.98 24.52 21.08
Model 2 Stud 17.90 24.24 24.72 20.64 15.70 21.30 20.72 17.80 14.40 13.10 13.16 12.90
n = 300 ET-US 4.88 20.44 25.06 20.40 3.22 23.60 27.16 22.28 3.66 5.52 7.38 8.06

ET-S 9.36 21.50 25.24 20.30 6.78 18.46 21.00 17.46 42.04 39.88 39.32 34.92

Table 2: Rejection probability under the alternative hypothesis β1 = 0 with α = 10%.

Rade - with Fixed effects Rade - without Fixed effects
q q

Test 4 5 6 8 4 5 6 8

unstud 11.58 13.90 13.32 13.24 26.68 37.16 32.38 26.12
Model 3 Stud 11.14 12.74 11.94 11.44 19.98 18.62 14.54 12.66
n = 50 ET-US 5.62 10.82 12.78 12.92 8.66 31.40 33.18 25.62

ET-S 7.06 10.24 11.34 11.38 13.52 16.08 15.10 12.46

unstud 12.96 17.70 16.30 12.96 12.44 22.64 18.00 14.22
Model 4 Stud 13.00 16.34 14.62 10.88 15.24 22.68 17.22 12.84
n = 50 ET-US 5.52 14.68 16.56 12.72 3.60 19.08 18.20 14.02

ET-S 7.62 14.30 15.10 10.76 9.60 20.70 17.66 12.74

unstud 12.26 15.10 13.52 12.66 30.10 39.08 33.26 26.06
Model 3 Stud 12.32 13.52 11.40 10.96 22.00 19.38 15.44 12.96
n = 300 ET-US 5.88 12.20 14.14 12.38 14.20 32.34 16.14 12.74

ET-S 8.20 11.86 11.94 10.74 17.80 16.70 13.00 11.98

unstud 13.54 17.18 15.94 12.84 14.72 24.38 17.56 13.78
Model 4 Stud 13.40 15.78 14.94 11.72 17.12 25.10 17.66 12.58
n = 300 ET-US 5.60 13.98 16.36 12.68 4.32 19.66 17.80 13.60

ET-S 7.88 13.38 15.46 11.56 10.42 22.16 18.14 12.36

Table 3: Rejection probability under the null hypothesis β1 = 1 with α = 10%.

findings are consistent with our theoretical results in Section 3 and simulations in Ibragimov

and Müller (2016), who find that the wild bootstrap may have rejection probability under

the null hypothesis greater than the nominal level whenever the dimension of the regressors
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Rade - with Fixed effects Rade - without Fixed effects
q q

Test 4 5 6 8 4 5 6 8

Model 1 - n = 50 Stud 14.76 14.26 12.96 11.26 16.60 15.28 13.80 12.42

Model 1 - n = 300 Stud 14.56 13.54 13.10 11.76 16.30 14.34 13.94 12.10

Table 4: Rejection probability under the null hypothesis β1 = 1 with α = 12.5%.

is larger than two.

Stud: The studentized test studied in Theorem 3.3 has rejection probability under the

null hypothesis very close to the nominal level in Table 1 across the different specifications.

Remarkably, this test seems to be less sensitive to whether cluster level fixed effects are

included in the regression or not. Nonetheless, when cluster-level fixed effects are included

the rejection probability under the null hypothesis is closer to the nominal level of α = 10%.

In the heterogeneous models of Table 3, however, the rejection probability of the studentized

test under the null hypothesis exceeds the nominal level in many of the specifications, es-

pecially when q < 8. Here, the inclusion of cluster-level fixed effects attenuates the amount

of over-rejection. Finally, Table 2 shows that the rejection probability under the alterna-

tive hypothesis is similar to that of the unstudentized test, except when q = 4 where the

studentized test exhibits higher power.

Theorem 3.3 establishes that the asymptotic size of the studentized test does not exceed

its nominal level by more than 21−q. Table 4 examines this conclusion by considering stu-

dentized tests with nominal level α = 12.5%. Our simulation results shows that the rejection

probability under the null hypothesis indeed exceeds the nominal level, but by an amount

that is in fact smaller than 21−q. This conclusion suggests that the upper bound in Theorem

3.3 can be conservative.

ET-US/ET-S: The equi-tailed versions of the unstudentized and studentized tests be-

have similar to their symmetric counterparts when q is not too small. When q ≥ 6, the

rejection probability under the null and alternative hypotheses are very close to those of the

unstudentized and studentized tests; see Tables 1-3. When q < 6, however, the equi-tailed

versions of these tests have rejection probability under the null hypothesis below those of

Unstud and Stud. These differences in turn translate into lower power under the alternative

hypothesis; see Table 2.
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5 Empirical Application

In their investigation into the causes of the Chinese Great Famine between 1958 and 1960,

Meng et al. (2015) study the relationship between province-level mortality and agricultural

productivity during both famine years and non-famine years. To this end, in their baseline

specification, Meng et al. (2015) estimate by ordinary least squares the equation

Yj,t+1 = Z
(1)
j,t β1 + Z

(2)
j,t β2 +W ′

j,tγ + εj,t (24)

using data from 19 provinces between 1953 and 1982, where

Yj,t+1 = log(number of deaths in province j during year t+ 1)

Z
(1)
j,t = log(predicted grain production in province j during year t)

Z
(2)
j,t = Z

(1)
j,t × I{t is a famine year}

and Wj,t is vector of year-level fixed effects and other covariates. We henceforth refer to this

as Analysis #1. As robustness checks, Meng et al. (2015) additionally consider the following:

Analysis #2: Repeating Analysis #1 using only data between 1953 and 1965.

Analysis #3: Repeating Analysis #1 using four additional provinces.

Analysis #4: Repeating Analysis #2 using four additional provinces.

Analysis #5: Repeating Analysis #1 using actual rather than predicted grain production.

Analysis #6: Repeating Analysis #2 using actual rather than predicted grain production.

The results of these six analyses can be found in Table 2 of Meng et al. (2015). Among other

things, for each analysis, Meng et al. (2015) report the ordinary least squares estimate of β1

as well as its heteroskedasticity-consistent standard errors, and the ordinary least squares

estimate of β1 + β2 as well as a p-value for testing the null hypothesis that β1 + β2 = 0

computed using heteroskedasticity-consistent standard errors. In unreported results, they

write in footnote 33 that conclusions computed using the wild bootstrap are similar.

In Table 5, we consider for each of these six analyses different ways of testing the null

hypotheses that β1 = 0 and β1 + β2 = 0. For each analysis and for each null hypothe-
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Analysis H0 FE Coef Tn Tn/σ̂n
Wild
p-value

Wild S.
p-value

Cluster
p-value

Robust
p-value

#1
β1 = 0

No 0.148 3.532 3.195 0.019 0.029 0.005 0.000
Yes 0.141 3.363 2.899 0.026 0.028 0.010 0.000

β1 + β2 = 0
No 0.141 3.371 2.368 0.054 0.061 0.029 0.001
Yes 0.145 3.470 2.937 0.046 0.081 0.009 0.001

#2
β1 = 0

No 0.103 1.614 2.473 0.041 0.047 0.024 0.013
Yes 0.088 1.374 1.900 0.037 0.052 0.074 0.023

β1 + β2 = 0
No 0.098 1.533 1.829 0.070 0.072 0.084 0.025
Yes 0.050 0.790 0.893 0.321 0.353 0.383 0.270

#3
β1 = 0

No 0.156 4.097 3.877 0.013 0.014 0.001 0.000
Yes 0.140 3.676 3.182 0.027 0.027 0.004 0.001

β1 + β2 = 0
No 0.115 3.023 3.140 0.049 0.029 0.005 0.007
Yes 0.174 4.577 4.245 0.017 0.032 0.000 0.000

#4
β1 = 0

No 0.120 2.071 3.245 0.029 0.026 0.004 0.005
Yes 0.084 1.445 1.818 0.082 0.080 0.083 0.047

β1 + β2 = 0
No 0.094 1.628 2.576 0.056 0.030 0.017 0.033
Yes 0.057 0.975 1.010 0.297 0.281 0.323 0.248

#5
β1 = 0

No 0.137 3.262 3.885 0.015 0.008 0.001 0.000
Yes 0.135 3.227 3.322 0.015 0.011 0.004 0.000

β1 + β2 = 0
No 0.113 2.689 1.784 0.168 0.141 0.091 0.004
Yes 0.024 0.576 0.394 0.803 0.692 0.699 0.739

#6
β1 = 0

No 0.090 1.419 3.215 0.031 0.021 0.005 0.015
Yes 0.087 1.371 2.380 0.012 0.011 0.029 0.008

β1 + β2 = 0
No 0.089 1.402 1.528 0.160 0.171 0.144 0.045
Yes -0.124 1.943 1.303 0.227 0.180 0.209 0.340

Table 5: Results for model (24) for each of the six analyses in Table 2 of Meng et al. (2015). ‘Coef’ denotes
the estimated value of β1 or β1 + β2. Tn denotes the corresponding value of the statistic in (3). Tn/σ̂n
denotes the corresponding value of the Studentized statistic in (18). ‘Wild p-value’ is the corresponding
p-value using the un-Studentized wild bootstrap. ‘Wild S. p-value’ is the corresponding p-value using the
Studentized wild bootstrap. ‘Cluster p-value’ is the corresponding p-value using cluster-robust standard
errors. ‘Robust p-value’ is the corresponding p-value using heteroskedasticity-consistent standard errors

sis, we report the ordinary least squares estimate of the quantity of interest; the value of

the unstudentized test statistic Tn defined in (3); the value of the studentized test statistic

Tn/σ̂n, where σ̂2
n is defined in (15); the wild bootstrap p-value corresponding to Tn; the wild

bootstrap p-value corresponding to Tn/σ̂n; the p-value computed using cluster-robust stan-

dard errors; and, finally, the p-value computed using heteroskedasticity-consistent standard

errors. We also repeat each of these exercises after adding cluster-level fixed effects.

Our results permit the following observations:

1. The inclusion or exclusion of cluster-level fixed effects may have a significant impact on the

wild bootstrap p-values (both unstudentized and studentized). For an extreme example
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of this phenomenon, see the p-values for testing the null hypothesis that β1 + β2 = 0 in

Analyses #2 and #4, where, the wild bootstrap p-values with cluster-level fixed effects

are far above any conventional significance level whereas those without cluster-level fixed

effects are quite small. We note that in light of our discussion in Example 2.1 we would

expect the results with cluster-level fixed effects included to be more reliable.

2. The unstudentized wild bootstrap p-values may be both smaller or larger than the stu-

dentized wild bootstrap p-values. Importantly, in some cases, these differences may be

meaningful in that they may lead tests based on these p-values to reach different conclu-

sions. In order to illustrate this point, see the p-values for testing the null hypothesis that

β1 +β2 = 0 in Analyses #1 and #4. Given that in this application 21−q ≤ 2−18, Theorem

3.3 and the benefits of studentizing as the number of clusters diverges to infinity (Djog-

benou et al., 2019) suggest that test based on the studentized wild bootstrap p-values are

preferable to those based on unstudentized wild bootstrap p-values in this application.

3. The wild bootstrap p-values (both unstudentized and studentized) may be both smaller

or larger than the p-values computed using cluster-robust standard errors. As in our

preceding point, in some cases these differences may be meaningful in that they may lead

tests based on these p-values to reach different conclusions. In order to illustrate this

point, see the p-values for testing the null hypothesis that β1 = 0 in Analyses #2 and #3.

Since p-values based on cluster-robust standard errors are only theoretically justified in

a framework where the number of clusters tend to infinity, our analysis suggests that in

this setting it is preferable to employ wild bootstrap-based p-values.

Recall that both Theorems 3.1 and 3.3 rely on the homogeneity requirements described

in Assumption 2.2(iii). We therefore conclude our empirical application with a brief exam-

ination of the plausibility of this assumption in this example. We pursue this exercise only

in the context of Analysis #1, i.e., using predicted versus actual grain production and using

data on 19 provinces between 1953 and 1982. To this end, we compute below the matrix on

the left-hand side of (10) for several different provinces. If Assumption 2.2(iii) held, then we

would expect these matrices to be approximately proportional to one another. This property

does not appear to hold in this application. To see this, consider the values of these matrices
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for Beijing (corresponding to j = 1) and Tianjin (corresponding to j = 2):

Ω1,n =

 0.302 0.066

0.066 0.987

 and Ω2,n =

 0.228 0.021

0.021 0.012

 .

The lower diagonal elements of these matrices differ by a factor of > 80, whereas the other

elements differ by a factor that is at least an order of magnitude smaller. Similar results hold

for other pairs of provinces and other analyses. These observations suggest that Assumption

2.2(iii) does not hold in this application. In light of the simulation study in Section 4, we

may therefore wish to be cautious when applying the wild bootstrap in this setting.

6 Recommendations for Empirical Practice

This paper has studied the properties of the wild bootstrap-based test proposed in Cameron

et al. (2008) for use in settings with clustered data. Our results have a number of important

implications for applied work that we summarize below:

• Wild bootstrap-based tests can be valid even if the number of clusters is “small.” This

conclusion, however, applies to a specific variant of the wild bootstrap-based test pro-

posed in Cameron et al. (2008). Practitioners should, in particular, use Rademacher

weights and avoid other weights such those in Mammen (1993) in such settings. Practi-

tioners should also avoid reporting wild bootstrap-based standard errors because t-tests

based on such standard errors are not asymptotically valid in an asymptotic framework

in which the number of clusters is fixed.

• The studentized version of the wild bootstrap-based test has a limiting rejection prob-

ability that exceeds the nominal level by an amount of at most 21−q. In an asymptotic

framework in which the number clusters diverges to infinity, however, the studentized

test exhibits advantages over its unstudentized counterpart. Therefore, we recommend

employing studentized wild bootstrap-based test unless the number of clusters is suf-

ficiently small for the factor 21−q to be of concern.
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• Our results rely on certain “homogeneity” assumptions on the distribution of covari-

ates across clusters. These “homogeneity” requirements can sometimes be weakened

by including cluster-level fixed effects. Whenever the number of clusters is small and

the “homogeneity” assumptions are implausible, however, we recommend instead em-

ploying an inference procedure that does not rely on these types of “homogeneity”

conditions, such as those developed in Canay et al. (2017).
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A Proof of Theorems

Proof of Theorem 3.1: We first introduce notation that will help streamline our argument. Let

S ≡ Rdz×dz ×
⊗

j∈J R
dz and write any s ∈ S as s = (s1, {s2,j : j ∈ J}) where s1 ∈ Rdz×dz is a

(real) dz × dz matrix, and s2,j ∈ Rdz for all j ∈ J . Further let T : S→ R satisfy

T (s) ≡ |c′(s1)−1(
∑
j∈J

s2,j)| (A-1)

for any s ∈ S such that s1 is invertible, and let T (s) = 0 whenever s1 is not invertible. We also

identify any (g1, . . . , gq) = g ∈ G = {−1, 1}q with an action on s ∈ S given by gs = (s1, {gjs2,j :

j ∈ J}). For any s ∈ S and G′ ⊆ G, denote the ordered values of {T (gs) : g ∈ G′} by

T (1)(s|G′) ≤ · · · ≤ T (|G′|)(s|G′) .

Next, let (γ̂′n, β̂
′
n)′ be the least squares estimators of (γ′, β′)′ in (1) and recall that ε̂ri,j ≡

(Yi,j − Z ′i,j β̂rn −W ′i,j γ̂rn), where (γ̂r′n , β̂
r′
n )′ are the constrained least squares estimators of the same

parameters restricted to satisfy c′β̂rn = λ. By the Frisch-Waugh-Lovell theorem, β̂n can be obtained

by regressing Yi,j on Z̃i,j , where Z̃i,j is the residual from the projection of Zi,j on Wi,j defined in

(8). Using this notation we can define the statistics Sn, S
∗
n ∈ S to be given by

Sn ≡
(

Ω̂Z̃,n, {
1√
n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J}
)

(A-2)

S∗n ≡
(

Ω̂Z̃,n, {
1√
n

∑
i∈In,j

Z̃i,j ε̂
r
i,j : j ∈ J}

)
, (A-3)

where

Ω̂Z̃,n ≡
1

n

∑
j∈J

∑
i∈In,j

Z̃i,jZ̃
′
i,j . (A-4)

Next, let En denote the event En ≡ I{Ω̂Z̃,n is invertible}, and note that whenever En = 1 and

c′β = λ, the Frisch-Waugh-Lovell theorem implies that

|
√
n(c′β̂n − λ)| = |

√
nc′(β̂n − β)| =

∣∣∣c′Ω̂−1
Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

Z̃i,jεi,j

∣∣∣ = T (Sn) . (A-5)

Moreover, by identical arguments it also follows that for any action g ∈ G we similarly have

|
√
nc′(β̂∗n(g)− β̂rn)| =

∣∣∣c′Ω̂−1
Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

∣∣∣ = T (gS∗n) (A-6)

whenever En = 1. Therefore, for any x ∈ R letting dxe denote the smallest integer larger than x

and k∗ ≡ d|G|(1− α)e, we obtain from (A-5) and (A-6) that

I{Tn > ĉn(1− α); En = 1} = I{T (Sn) > T (k∗)(S∗n|G); En = 1} . (A-7)
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In addition, it follows from Assumptions 2.2(ii)-(iii) that Ω̂Z̃,n
P→ āΩZ̃ , where ā ≡

∑
j∈J ξjaj > 0

and ΩZ̃ is a dz × dz invertible matrix. Hence, we may conclude that

lim inf
n→∞

P{En = 1} = 1 . (A-8)

Further let ι ∈ G correspond to the identity action, i.e., ι ≡ (1, . . . , 1) ∈ Rq, and similarly define

−ι ≡ (−1, . . . ,−1) ∈ Rq. Then note that since T (−ιS∗n) = T (ιS∗n), we can conclude from (A-3)

and ε̂ri,j = (Yi,j − Z ′i,j β̂rn −W ′i,j γ̂rn) that whenever En = 1 we obtain

T (−ιS∗n) = T (ιS∗n) =
∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j(Yi,j − Z ′i,j β̂rn −W ′i,j γ̂rn)
∣∣∣

=
∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

Z̃i,j(Yi,j − Z̃ ′i,j β̂rn)
∣∣∣ = |
√
nc′(β̂n − β̂rn)| = T (Sn) , (A-9)

where the third equality follows from
∑

j∈J
∑

i∈In,j Z̃i,jW
′
i,j = 0 due to Z̃i,j ≡ (Zi,j − Π̂′nWi,j) and

the definition of Π̂n (see (7)). In turn, the fourth equality in (A-9) follows from (A-4) and the

Frisch-Waugh-Lovell theorem as in (A-5), while the final result in (A-9) is implied by c′β̂rn = λ

and (A-5). In particular, (A-9) implies that if k∗ ≡ d|G|(1 − α)e > |G| − 2, then I{T (Sn) >

T (k∗)(S∗n|G);En = 1} = 0, which establishes the upper bound in Theorem 3.1 due to (A-7) and

(A-8). We therefore assume that k∗ ≡ d|G|(1− α)e ≤ |G| − 2, in which case

lim sup
n→∞

E[φn] = lim sup
n→∞

P{T (Sn) > T (k∗)(S∗n|G); En = 1}

= lim sup
n→∞

P{T (Sn) > T (k∗)(S∗n|G \ {±ι}); En = 1}

≤ lim sup
n→∞

P{T (Sn) ≥ T (k∗)(S∗n|G \ {±ι}); En = 1} , (A-10)

where the first equality follows from (A-7) and (A-8), the second equality is implied by (A-9) and

k∗ ≤ |G| − 2, and the final inequality follows by set inclusion.

To examine the right hand side of (A-10), we first note that Assumptions 2.2(i)-(ii) and the

continuous mapping theorem imply that{√nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J
}

d→ {
√
ξjZj : j ∈ J} . (A-11)

Since ξj > 0 for all j ∈ J by Assumption 2.1(ii), and the variables {Zj : j ∈ J} have full rank

covariance matrices by Assumption 2.1(i), it follows that {
√
ξjZj : j ∈ J} have full rank covariance

matrices as well. Combining (A-11) together with the definition of Sn in (A-2) and the previously

shown result Ω̂Z̃,n
P→ āΩZ̃ then allows us to establish

Sn
d→ S ≡

(
āΩZ̃ , {

√
ξjZj : j ∈ J}

)
. (A-12)

We further note that whenever En = 1, the definition of Sn and S∗n in (A-2) and (A-3), together
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with the triangle inequality, yield for every g ∈ G an upper bound of the form

|T (gSn)− T (gS∗n)| ≤
∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jZ
′
i,j

√
n(β − β̂rn)

∣∣∣
+ |c′Ω̂−1

Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jW
′
i,j

√
n(γ − γ̂rn)| . (A-13)

In what follows, we aim to employ (A-13) to establish that T (gSn) = T (gS∗n) + oP (1). To this end,

note that whenever c′β = λ it follows from Assumption 2.1 and Amemiya (1985, Eq. (1.4.5)) that√
n(β̂rn − β) and

√
n(γ̂rn − γ) are bounded in probability. Thus, Lemma A.2 yields

lim sup
n→∞

P
{∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jW
′
i,j

√
n(γ − γ̂rn)

∣∣∣ > ε; En = 1
}

= 0 (A-14)

for any ε > 0. Moreover, Lemma A.2 and Assumptions 2.2(ii)-(iii) establish for any ε > 0 that

lim sup
n→∞

P
{
|c′Ω̂−1

Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jZ
′
i,j

√
n(β − β̂rn)| > ε; En = 1

}
= lim sup

n→∞
P
{
|c′Ω̂−1

Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jZ̃
′
i,j

√
n(β − β̂rn)| > ε; En = 1

}
= lim sup

n→∞
P
{
|c′Ω−1

Z̃

∑
j∈J

ξjgjaj
ā

ΩZ̃

√
n(β − β̂rn)| > ε; En = 1

}
, (A-15)

where recall ā ≡
∑

j∈J ξjaj . Hence, if c′β = λ, then (A-15) and c′β̂rn = λ yield for any ε > 0

lim sup
n→∞

P
{
|c′Ω̂−1

Z̃,n

∑
j∈J

nj
n

1

nj

∑
i∈In,j

gjZ̃i,jZ
′
i,j

√
n(β − β̂rn)| > ε; En = 1

}
= lim sup

n→∞
P
{
|
∑
j∈J

ξjgjaj
ā

√
n(c′β − c′β̂rn)| > ε;En = 1

}
= 0 . (A-16)

Since we had defined T (s) = 0 for any s = (s1, {s2,j : j ∈ J}) whenever s1 is not invertible,

it follows that T (gS∗n) = T (gSn) whenever En = 0. Therefore, results (A-13), (A-14), and (A-16)

imply T (gS∗n) = T (gSn) + oP (1) for any g ∈ G. We thus obtain from result (A-12) that

(T (Sn), {T (gS∗n) : g ∈ G}) d→ (T (S), {T (gS) : g ∈ G}) (A-17)

due to the continuous mapping theorem. Moreover, since En
P→ 1 by result (A-8), it follows that

(T (Sn), En, {T (gS∗n) : g ∈ G}) converge jointly as well. Hence, Portmanteau’s theorem, see e.g.

Theorem 1.3.4(iii) in van der Vaart and Wellner (1996), implies

lim sup
n→∞

P{T (Sn) ≥ T (k∗)(S∗n|G \ {±ι}); En = 1}

≤ P{T (S) ≥ T (k∗)(S|G \ {±ι})} = P{T (S) > T (k∗)(S|G \ {±ι})} , (A-18)
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where in the equality we exploited that P{T (S) = T (gS)} = 0 for all g ∈ G \ {±ι} since the

covariance matrix of Zj is full rank for all j ∈ J and ΩZ̃ is non-singular by Assumption 2.2(iii).

Finally, noting that T (ιS) = T (−ιS) = T (S), we can conclude T (S) > T (k∗)(S|G \ {±ι}) if and

only if T (S) > T (k∗)(S|G), which together with (A-10) and (A-18) yields

lim sup
n→∞

E[φn] ≤ P{T (S) > T (k∗)(S|G \ {±ι})} = P{T (S) > T (k∗)(S|G)} ≤ α , (A-19)

where the final inequality follows by gS
d
= S for all g ∈ G and the properties of randomization tests

(see, e.g., Lehmann and Romano, 2005, Theorem 15.2.1). This completes the proof of the upper

bound in the statement of the theorem.

For the lower bound, first note that k∗ ≡ d|G|(1− α)e > |G| − 2 implies that α− 1
2q−1 ≤ 0, in

which case the result trivially follows. Assume k∗ ≡ d|G|(1− α)e ≤ |G| − 2 and note that

lim sup
n→∞

E[φn] ≥ lim inf
n→∞

P{T (Sn) > T (k∗)(S∗n|G); En = 1}

≥ P{T (S) > T (k∗)(S|G)}

≥ P{T (S) > T (k∗+2)(S|G)}+ P{T (S) = T (k∗+2)(S|G)}

≥ α− 1

2q−1
, (A-20)

where the first inequality follows from result (A-7), the second inequality follows from Portman-

teau’s theorem (see, e.g., van der Vaart and Wellner, 1996, Theorem 1.3.4(iii)), the third inequality

holds because P{T (z+2)(S|G) > T (z)(S|G)} = 1 for any integer z ≤ |G| − 2 by (A-1) and Assump-

tion 2.2(i)-(ii), and the last equality follows from noticing that k∗ + 2 = d|G|((1− α) + 2/|G|)e =

d|G|(1−α′)e with α′ = α− 1
2q−1 and the properties of randomization tests (see, e.g., Lehmann and

Romano, 2005, Theorem 15.2.1). Thus, the lower bound holds and the theorem follows.

Proof of Theorem 3.2: Throughout the proof, all convergence in distribution and probability

statements are understood to be along the sequence {Pδ,n}. Following the notation in the proof of

Theorem 3.1, we first let S ≡ Rdz×dz ×
⊗

j∈J R
dz and write an element of s ∈ S by s = (s1, {s2,j :

j ∈ J}) where s1 ∈ Rdz×dz is a (real) dz × dz matrix, and s2,j ∈ Rdz for any j ∈ J . We then define

the map T : S→ R to be given by

T (s) ≡ |c′(s1)−1(
∑
j∈J

s2,j)|

for any s ∈ S such that s1 is invertible, and set T (s) = 0 whenever s1 is not invertible. We again

identify any (g1, . . . , gq) = g ∈ G = {−1, 1}q with an action s ∈ S defined by gs = (s1, {gjs2,j : j ∈
J}). We finally define En ∈ R and Sn ∈ S to equal

En ≡ I{Ω̂Z̃,n is invertible}

Sn ≡
(

Ω̂Z̃,n,
{ ∑
i∈In,j

Z̃i,jεi,j√
n

+
Z̃i,jZ̃

′
i,j

n

√
n(βn − β̂rn)

})
,
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where

Ω̂Z̃,n ≡
1

n

∑
j∈J

∑
i∈In,j

Z̃i,jZ̃
′
i,j .

Since c′β̂rn = λ, the Frisch-Waugh-Lovell theorem implies, whenever En = 1, that

|
√
n(c′β̂n − λ)| = |

√
nc′(β̂n − βn) +

√
nc′(βn − β̂rn)|

=
∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

∑
i∈In,j

Z̃i,jεi,j√
n

+
√
nc′(βn − β̂rn)

∣∣∣
=
∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

∑
i∈In,j

( Z̃i,jεi,j√
n

+
Z̃i,jZ̃

′
i,j

n

√
n(βn − β̂rn)

)∣∣∣
= T (Sn) , (A-21)

where the final equality follows from the definition of T : S → R. Also note that Amemiya

(1985, Eq. (1.4.5)), Assumption 2.1, and
√
nc′(βn − λ) = δ imply that

√
n(β̂rn − βn) = OP (1)

and
√
n(γ̂rn − γn) = OP (1). Therefore, manipulations similar to those in (A-21), Lemma A.2 and

nj/n→ ξj > 0 by Assumption 2.2(ii) imply, whenever En = 1, that for any g ∈ G

|
√
nc′(β̂∗n(g)− β̂rn)| =

∣∣∣c′Ω̂−1
Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

∣∣∣
=
∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

1√
n

∑
i∈In,j

gj

(
Z̃i,jZ

′
i,j(βn − β̂rn) + Z̃i,jW

′
i,j(γn − γ̂rn) + Z̃i,jεi,j

)∣∣∣
=
∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

∑
i∈In,j

gj

( Z̃i,jεi,j√
n

+
Z̃i,jZ̃

′
i,j

n

√
n(βn − β̂rn)

)∣∣∣+ oP (1) .

We next study the asymptotic behavior of T (gSn). To this end, we first note that Amemiya

(1985, Eq. (1.4.5)) and the partitioned inverse formula imply, whenever En = 1, that

β̂rn = β̂n − Ω̂−1
Z̃,n

c
c′β̂n − λ
c′Ω̂−1

Z̃,n
c

= β̂n − Ω̂−1
Z̃,n

c

c′(β̂n − βn)

c′Ω̂−1
Z̃,n

c
+
c′βn − λ
c′Ω̂−1

Z̃,n
c

 . (A-22)

Therefore, employing that
√
n(c′βn − λ) = δ by hypothesis, we conclude whenever En = 1 that

∑
i∈In,j

Z̃i,jZ̃
′
i,j

n

√
n(βn− β̂rn) =

∑
i∈In,j

Z̃i,jZ̃
′
i,j

n

{(
Idz−Ω̂−1

Z̃,n

cc′

c′Ω̂−1
Z̃,n

c

)√
n(βn− β̂n)+

Ω̂−1
Z̃,n

c

c′Ω̂Z̃,nc
δ
}
, (A-23)

where Idz denotes the dz × dz identity matrix. Since Assumptions 2.2(ii)-(iii) imply Ω̂Z̃,n
P→ āΩZ̃

where ā ≡
∑

j∈J ξjaj > 0 and ΩZ̃ is a dz × dz invertible matrix, it follows En = 1 with probability
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tending to one. Hence, results (A-22), (A-23), and Assumptions 2.2(ii)-(iii) yield

lim sup
n→∞

Pδ,n

{∣∣∣√nc′(β̂∗n(g)− β̂rn)− c′Ω̂−1
Z̃,n

∑
j∈J

∑
i∈In,j

gj

( Z̃i,jεi,j√
n

+ c
ξjajδ

c′Ω̂−1
Z̃,n

c

)∣∣∣ > ε; En = 1
}

= 0 .

(A-24)

In particular, results (A-21) and (A-24), Ω̂Z̃,n
P→ āΩZ̃ , and Assumption 2.2(i) establish that

(Tn, {
√
nc′(β̂∗n(g)− β̂rn) : g ∈ G}) d→ (T (Sδ), {T (gSδ) : g ∈ G})

where

Sδ ≡
(
āΩZ̃ ,

{√
ξjZj + c

āξjajδ

c′Ω−1
Z̃
c

: j ∈ J
})

.

By definition of ĉn(1− α) and Portmanteau’s theorem (see, e.g., van der Vaart and Wellner, 1996,

Theorem 1.3.4(ii)), it then follows that

lim inf
n→∞

Pδ,n{Tn > ĉn(1− α)}

≥ P
{
T (Sδ) > inf

{
u ∈ R :

1

|G|
∑
g∈G

I{T (gSδ) ≤ u} ≥ 1− α
}}

. (A-25)

To conclude the proof, we denote the ordered values of {T (gs) : g ∈ G} according to

T (1)(s|G) ≤ · · · ≤ T (|G|)(s|G) .

Then observe that since d|G|(1− α)e < |G| − 1 by hypothesis, result (A-25) implies that

lim inf
|δ|→∞

lim inf
n→∞

Pδ,n

{
Tn > ĉn(1− α)

}
≥ lim inf
|δ|→∞

P
{
T (Sδ) = T (|G|)(Sδ|G)

}
.

Let ι = (1, · · · , 1) ∈ Rq, and note that since T (ιS) = T (−ιS), the triangle inequality yields

P{T (Sδ) = T (|G|)(Sδ|G)}

≥ P
{∣∣∣∑

j∈J
(

√
ξj

ā
c′Ω−1

Z̃
Zj + ξjajδ)

∣∣∣ ≥ max
g∈G\{±ι}

∣∣∣∑
j∈J

gj(

√
ξj

ā
c′Ω−1

Z̃
Zj + ξjajδ)

∣∣∣}
≥ P

{
|δ|
(∑
j∈J

ξjaj − max
g∈G\{±ι}

|
∑
j∈J

ξjajgj |
)
≥ 2

∑
j∈J

∣∣∣√ξj
ā
c′Ω−1

Z̃
Zj
∣∣∣} .

Since ajξj > 0 for all 1 ≤ j ≤ J and every g ∈ G \ {±ι} must have at least one coordinate equal

to 1 and at least one coordinate equal to −1, it follows that∑
j∈J

ξjaj − max
g∈G\{±ι}

∣∣∣∑
j∈J

ξjajgj

∣∣∣ > 0 .
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Hence, since
∑

j∈J |
√
ξjc
′Ω−1
Z̃
Zj | = OP (1) by Assumption 2.2(i), we finally obtain that

lim inf
|δ|→∞

lim inf
n→∞

Pδ,n{Tn > ĉn(1− α)}

≥ lim inf
|δ|→∞

P
{
|δ|
(∑
j∈J

ξjaj − max
g∈G\{±ι}

∣∣∣∑
j∈J

ξjajgj

∣∣∣) ≥ 2
∑
j∈J

∣∣∣√ξj
ā
c′Ω−1

Z̃
Zj
∣∣∣} = 1 ,

which establishes the claim of the theorem.

Proof of Theorem 3.3: The proof follows similar arguments as those employed in establishing

Theorem 3.1, and thus we keep exposition more concise. We again start by introducing notation

that will streamline our arguments. Let S ≡ Rdz×dz ×
⊗

j∈J R
dz and write an element s ∈ S by

s = (s1, {s2,j : j ∈ J}) where s1 ∈ Rdz×dz is a (real) dz × dz matrix, and s2,j ∈ Rdz for any j ∈ J .

Further define the functions T : S→ R and W : S→ R to be pointwise given by

T (s) ≡ |c′(s1)−1(
∑
j∈J

s2,j)− λ| (A-26)

W (s) ≡
(
c′(s1)

−1
∑
j∈J

(
s2,j −

ξjaj
ā

∑
j̃∈J

s2,j̃

)(
s2,j −

ξjaj
ā

∑
j̃∈J

s2,j̃

)′
(s1)

−1c
)1/2

, (A-27)

for any s ∈ S such that s1 is invertible, and set T (s) = 0 and W (s) = 1 whenever s1 is not

invertible. We further identify any (g1, . . . , gq) = g ∈ G = {−1, 1}q with an action on s ∈ S defined

by gs = (s1, {gjs2,j : j ∈ J}). Finally, we set An ∈ R and Sn ∈ S to equal

An ≡ I{Ω̂Z̃,n is invertible, σ̂n > 0, and σ̂∗n(g) > 0 for all g ∈ G} (A-28)

Sn ≡
(

Ω̂Z̃,n,
{ 1√

n

∑
i∈In,j

Z̃i,jεi,j : j ∈ J
})

(A-29)

where recall Ω̂Z̃,n was defined in (14) and Z̃i,j was defined in (8).

First, note that by Assumptions 2.2(i)-(ii) and the continuous mapping theorem we obtain{√nj√
n

1
√
nj

∑
i∈In,j

Z̃i,jεi,j : j ∈ J
}

d→ {
√
ξjZj : j ∈ J} . (A-30)

Since ξj > 0 for all j ∈ J by Assumption 2.2(ii), and the variables {Zj : j ∈ J} have full rank

covariance matrices by Assumption 2.2(i), it follows that {
√
ξjZj : j ∈ J} have full rank covariance

matrices as well. Combining (A-30) together with the definition of Sn in (A-29), Assumption

2.2(ii)-(iii), and the continuous mapping theorem then allows us to establish

Sn
d→ S ≡

(
āΩZ̃ , {

√
ξjZj : j ∈ J}

)
, (A-31)

where ā ≡
∑

j∈J ξjaj > 0. Since ΩZ̃ is invertible by Assumption 2.2(iii) and ā > 0, it follows that
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Ω̂Z̃,n is invertible with probability tending to one. Hence, we can conclude that

σ̂n = W (Sn) + oP (1) σ̂∗n(g) = W (gSn) + oP (1) (A-32)

due to the definition of W : S → R in (A-27) and Lemma A.1. Moreover, Ω̂Z̃,n being invertible

with probability tending to one additionally allows us to conclude that

lim inf
n→∞

P{An = 1} = lim inf
n→∞

P{σ̂n > 0 and σ̂∗n(g) > 0 for all g ∈ G}

≥ P{W (gS) > 0 for all g ∈ G} = 1 , (A-33)

where the inequality in (A-33) holds by (A-31), (A-32), the continuous mapping theorem, and

Portmanteau’s Theorem (see, e.g., van der Vaart and Wellner, 1996, Theorem 1.3.4(ii)). In turn,

the final equality in (A-33) follows from {
√
ξjZj : j ∈ J} being independent and continuously

distributed with covariance matrices that are full rank.

Next, recall that ε̂ri,j = (Yi,j − Z ′i,j β̂rn −W ′i,j γ̂rn) and note that whenever An = 1 we obtain

√
nc′(β̂∗n(g)− β̂rn) = c′Ω̂−1

Z̃,n

1√
n

∑
j∈J

∑
i∈In,j

gjZ̃i,j ε̂
r
i,j

= c′Ω̂−1
Z̃,n

1√
n

∑
j∈J

∑
i∈In,j

gjZ̃i,j(εi,j − Z ′i,j(β̂rn − β)−W ′i,j(γ̂rn − γ)) . (A-34)

Further note that c′β = λ, Assumption 2.1, and Amemiya (1985, Eq. (1.4.5)) together imply that√
n(β̂rn − β) and

√
n(γ̂rn − γ) are bounded in probability. Therefore, Lemma A.2 implies

lim sup
n→∞

P
{
|c′Ω̂−1

Z̃,n

∑
j∈J

gj
n

∑
i∈In,j

Z̃i,jW
′
i,j

√
n(γ̂rn − γ)| > ε; An = 1

}
= 0 (A-35)

for any ε > 0. Similarly, since
√
n(β̂rn − β) is bounded in probability and ΩZ̃ is invertible by

Assumption 2.2(iii), Lemma A.2 together with Assumptions 2.2(ii)-(iii) imply for any ε > 0

lim sup
n→∞

P
{∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

nj
n

1

nj
gj
∑
i∈In,j

Z̃i,jZ
′
i,j

√
n(β̂rn − β)

∣∣∣ > ε; An = 1
}

= lim sup
n→∞

P
{∣∣∣c′Ω̂−1

Z̃,n

∑
j∈J

nj
n

1

nj
gj
∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂rn − β)

∣∣∣ > ε; An = 1
}

= lim sup
n→∞

P
{∣∣∣c′Ω−1

Z̃

∑
j∈J

ξjajgj
ā

ΩZ̃

√
n(β̂rn − β)

∣∣∣ > ε; An = 1
}

= 0 . (A-36)

It follows from results (A-32)-(A-36) together with T (Sn) = Tn whenever Ω̂Z̃,n is invertible, that

((|
√
n(c′β̂n − λ)|, σ̂n), {(|c′

√
n(β̂∗n(g)− β̂rn)|, σ̂∗n(g)) : g ∈ G})
= ((T (Sn),W (Sn)), {(T (gSn),W (gSn)) : g ∈ G}) + oP (1) . (A-37)

To conclude, we define a function t : S → R to be given by t(s) = T (s)/W (s). Then note
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that, for any g ∈ G, gS assigns probability one to the continuity points of t : S → R since ΩZ̃ is

invertible and P{W (gS) > 0 for all g ∈ G} = 1 as argued in (A-33). In what follows, for any s ∈ S
it will prove helpful to employ the ordered values of {t(gs) : g ∈ G}, which we denote by

t(1)(s|G) ≤ . . . ≤ t(|G|)(s|G) . (A-38)

Next, we observe that result (A-33) and a set inclusion inequality allow us to conclude that

lim sup
n→∞

P
{Tn
σ̂n

> ĉsn(1− α)
}
≤ lim sup

n→∞
P
{Tn
σ̂n
≥ ĉsn(1− α); An = 1

}
≤ P

{
t(S) ≥ inf

{
u ∈ R :

1

|G|
∑
g∈G

I{t(gS) ≤ u} ≥ 1− α
}}

, (A-39)

where the final inequality follows by results (A-31), (A-37), and the continuous mapping and

Portmanteau theorems (see, e.g., van der Vaart and Wellner, 1996, Theorem 1.3.4(iii)). Therefore,

setting k∗ ≡ d|G|(1− α)e, we can then obtain from result (A-39) that

lim sup
n→∞

P
{Tn
σ̂n

> ĉsn(1− α)
}

≤ P{t(S) > t(k
∗)(S)}+ P{t(S) = t(k

∗)(S)} ≤ α+ P{t(S) = t(k
∗)(S)} , (A-40)

where in the final inequality we exploited that gS
d
= S for all g ∈ G and the basic properties of

randomization tests (see, e.g., Lehmann and Romano, 2005, Theorem 15.2.1). Moreover, applying

Lehmann and Romano (2005, Theorem 15.2.2) yields

P{t(S) = t(k
∗)(S)}

= E[P{t(S) = tk
∗
(S)|S ∈ {gS : g ∈ G}}] = E

 1

|G|
∑
g∈G

I{t(gS) = t(k
∗)(S)}

 . (A-41)

For any g = (g1, . . . , gq) ∈ G then let −g = (−g1, . . . ,−gq) ∈ G and note that t(gS) = t(−gS)

with probability one. However, if g̃, g ∈ G are such that g̃ /∈ {g,−g}, then

P{t(gS) = t(g̃S)} = 0 (A-42)

since, by Assumption 2.2, S = (āΩZ̃ , {
√
ξjZj : j ∈ J}) is such that ΩZ̃ is invertible, ξj > 0 for all

j ∈ J , and {Zj : j ∈ J} are independent with full rank covariance matrices. Hence,

1

|G|
∑
g∈G

I{t(gS) = t(k
∗)(S)} =

1

|G|
× 2 =

1

2q−1
(A-43)

with probability one, and where in the final equality we exploited that |G| = 2q. The claim of the

upper bound in the theorem therefore follows from results (A-40) and (A-43). Finally, the lower

bound follows from similar arguments to those in (A-20) and so we omit them here.

Lemma A.1. Let Assumptions 2.1 and 2.2 hold, Ω̂−
Z̃,n

denote the pseudo-inverse of Ω̂Z̃,n, and set
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ā ≡
∑

j∈J ξjaj and Un,j ≡ 1√
n

∑
i∈In,j Z̃i,jεi,j. If c′β = λ, then for any (g1, . . . , gq) = g ∈ G

σ̂2n = c′Ω̂−
Z̃,n

∑
j∈J

(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)′
Ω̂−
Z̃,n

c+ oP (1)

(σ̂∗n(g))2 = c′Ω̂−
Z̃,n

∑
j∈J

(
gjUn,j −

ξjaj
ā

∑
j̃∈J

gj̃Un,j̃

)(
gjUn,j −

ξjaj
ā

∑
j̃∈J

gj̃Un,j̃

)′
Ω̂−
Z̃,n

c+ oP (1) .

Proof: Recall that (β̂′n, γ̂
′
n)′ denotes the least squares estimator of (β′, γ′)′ in (1) and denote the

corresponding residuals by ε̂i,j ≡ (Yi,j − Z ′i,j β̂n −W ′i,j γ̂n). Since
√
n(β̂n − β) and

√
n(γ̂n − γ) are

bounded in probability by Assumption 2.1, Lemma A.2 and the definition of Un,j yield

1√
n

∑
i∈In,j

Z̃i,j ε̂i,j =
1√
n

∑
i∈In,j

Z̃i,jεi,j −
1

n

∑
i∈In,j

Z̃i,jZ
′
i,j

√
n(β̂n − β)− 1

n

∑
i∈In,j

Z̃i,jW
′
i,j

√
n(γ̂n − γ)

= Un,j −
1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂n − β) + oP (1) . (A-44)

Next, note that Ω̂Z̃,n is invertible with probability tending to one by Assumption 2.2(iii). Since

Ω̂−
Z̃,n

= Ω̂−1
Z̃,n

when Ω̂Z̃,n is invertible, we obtain from Assumptions 2.2(ii)-(iii) that

1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂n − β)

=
nj
n

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,jΩ̂

−
Z̃,n

1√
n

∑
j̃∈J

∑
k∈In,j̃

Z̃k,j̃εk,j̃ + oP (1) =
ξjaj
ā

∑
j̃∈J

Un,j̃ + oP (1) . (A-45)

Therefore, (A-44), (A-45), and the continuous mapping theorem yield

V̂n =
∑
j∈J

( 1√
n

∑
i∈In,j

Z̃i,j ε̂i,j

)( 1√
n

∑
k∈In,j

Z̃ ′k,j ε̂k,j

)
=
∑
j∈J

(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)(
Un,j −

ξjaj
ā

∑
j̃∈J

Un,j̃

)′
+ oP (1) . (A-46)

The first part of the lemma thus follows by the definition of σ̂2n in (15).

For the second claim of the lemma, note that when c′β = λ, it follows from Assumption 2.1 and

Amemiya (1985, Eq. (1.4.5)) that
√
n(β̂rn−β) and

√
n(γ̂rn−γ) are bounded in probability. Together

with Assumption 2.1 such result in turn also implies that
√
n(β̂∗n(g)− β̂rn) and

√
n(γ̂∗n(g)− γ̂rn) are

bounded in probability for all g ∈ G. Next, recall that the residuals from the bootstrap regression

in (4) equal ε̂∗i,j(g) = gj ε̂
r
i,j − Z ′i,j(β̂

∗
n(g) − β̂rn) − W ′i,j(γ̂

∗
n(g) − γ̂rn) for all (g1, . . . , gq) = g ∈ G.
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Therefore, we are able to conclude for any g ∈ G and j ∈ J that

1√
n

∑
i∈In,j

Z̃i,j ε̂
∗
i,j(g)

=
1√
n

∑
i∈In,j

Z̃i,jgj ε̂
r
i,j −

1

n

∑
i∈In,j

Z̃i,jZ
′
i,j

√
n(β̂∗n(g)− β̂rn)− 1

n

∑
i∈In,j

Z̃i,jW
′
i,j

√
n(γ̂∗n(g)− γ̂rn)

=
1√
n

∑
i∈In,j

Z̃i,jgj ε̂
r
i,j −

1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂∗n(g)− β̂rn) + oP (1) , (A-47)

where in the final equality we employed Lemma A.2. Next, recall ε̂ri,j ≡ εi,j−Z ′i,j(β̂rn−β)−W ′i,j(γ̂rn−
γ) and note

c′Ω̂−
Z̃,n

1√
n

∑
i∈In,j

Z̃i,jgj ε̂
r
i,j = c′Ω̂−

Z̃,n

1

n

∑
i∈In,j

Z̃i,jgj(εi,j − Z ′i,j
√
n(β̂rn − β)−W ′i,j

√
n(γ̂rn − γ))

= c′Ω̂−
Z̃,n

gjUn,j − c′Ω̂−Z̃,n
1

n

∑
i∈In,j

gjZ̃i,jZ̃
′
i,j

√
n(β̂rn − β) + oP (1) , (A-48)

where the second equality follows from Lemma A.2 and Ω̂−
Z̃,n

,
√
n(β̂rn − β), and

√
n(γ̂rn − γ) being

bounded in probability. Moreover, Assumptions 2.2(ii)-(iii) imply

c′Ω̂−
Z̃,n

1

n

∑
i∈In,j

gjZ̃i,jZ̃
′
i,j

√
n(β̂rn − β) = c′Ω−1

Z̃

gjξjaj
ā

ΩZ̃

√
n(β̂rn − β) + oP (1) = oP (1) , (A-49)

where the final result follows from c′β̂r = λ by construction and c′β = λ by hypothesis. Next, we

note that since Ω̂−
Z̃,n

= Ω̂−1
Z̃,n

whenever Ω̂Z̃,n is invertible, and Ω̂Z̃,n is invertible with probability

tending to one by Assumption 2.2(iii), we can conclude that

c′Ω̂−
Z̃,n

1

n

∑
i∈In,j

Z̃i,jZ̃
′
i,j

√
n(β̂∗n(g)− β̂rn) = c′Ω̂−

Z̃,n

nj
n

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,jΩ̂

−
Z̃,n

∑
j̃∈J

1√
n

∑
k∈In,j̃

Z̃k,jgj̃ ε̂
r
k,j̃

+ oP (1)

= c′Ω̂−
Z̃,n

ξjaj
ā

∑
j̃∈J

gj̃Un,j̃ + oP (1) , (A-50)

where in the final equality we applied (A-48), (A-49), and ā ≡
∑

j∈J ξjaj . The second part of the

lemma then follows from the definition of (σ̂∗n(g))2 in (16) and results (A-47)-(A-50).

Lemma A.2. Let Assumptions 2.1(ii) and 2.2(iv) hold. It follows that for any j ∈ J we have

1

nj

∑
i∈In,j

Z̃i,jW
′
i,j = oP (1) and

1

nj

∑
i∈In,j

Z̃i,jZ
′
i,j =

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,j + oP (1) .

Proof: Let ‖ · ‖F denote the Frobenius matrix norm, which recall equals ‖M‖2F ≡ trace{M ′M}
for any matrix M . By the definition of Z̃i,j in (8),

∑
i∈In,j (Zi,j − (Π̂c

n,j)
′Wi,j)W

′
i,j = 0 by definition
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of Π̂c
n,j (see (9)), and the triangle inequality applied to ‖ · ‖F , we then obtain

‖ 1

nj

∑
i∈In,j

Z̃i,jW
′
i,j‖F = ‖ 1

nj

∑
i∈In,j

(Zi,j − Π̂′nWi,j)W
′
i,j‖F

= ‖ 1

nj

∑
i∈In,j

(Π̂c
n,j − Π̂n)′Wi,jW

′
i,j‖F ≤

1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,jW

′
i,j‖F . (A-51)

Moreover, applying a second triangle inequality and the properties of the trace we get

1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,jW

′
i,j‖F =

1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,j‖ × ‖W ′i,jWi,j‖

≤
{ 1

nj

∑
i∈In,j

‖(Π̂c
n,j − Π̂n)′Wi,j‖2

}1/2
×
{ 1

nj

∑
i∈In,j

‖Wi,j‖2
}1/2

= oP (1) , (A-52)

where the inequality follows from the Cauchy-Schwarz inequality, and the final result by Assumption

2.1(ii) and 2.2(iv). Since Π̂n is bounded in probability by Assumption 2.1(ii) and

1

nj

∑
i∈In,j

Z̃i,jZ
′
i,j =

1

nj

∑
i∈In,j

Z̃i,jZ̃
′
i,j +

1

nj

∑
i∈In,j

Z̃i,jW
′
i,jΠ̂n (A-53)

by (8), the second part of the lemma follows.

B Further Details for Remark 2.3

Consider a differences-in-differences application in which, for simplicity, we assume there are only

two time periods. Treatment is assigned in the second time period, and for each individual i in

group j we let Yi,j denote an outcome of interest, Ti,j ∈ {1, 2} be the time period at which Yi,j was

observed, and Zi,j ∈ {0, 1} indicate treatment status. In the canonical differences-in-differences

model (Angrist and Pischke, 2008), these variables are assumed to be related by

Yi,j = I{Ti,j = 2}δ +
∑
j̃∈J

I{j̃ = j}ζj̃ + Zi,jβ + εi,j ,

which we may accommodate in our framework by letting Wi,j be cluster-level fixed effects and

I{Ti,j = 2}. Typically, the groups are such that treatment status is common among all i ∈ In,j
with Ti,j = 2. This structure implies that J can be partitioned into sets J(0) and J(1) such that

Zi,j = I{Ti,j = 2, j ∈ J(1)}. In order to examine the content of Assumptions 2.2(iii)-(iv) in this

setting, define

τ ≡
∑

j∈J(1) nj(1)pj∑
j∈J nj(1)pj

, (B-54)
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where nj(t) ≡
∑

i∈In,j I{Ti,j = t} and pj ≡ nj(2)/nj . By direct calculation, it is then possible to

verify that (Π̂c
n)′Wi,j = Zi,j , while

Π̂′nWi,j =


−pjτ if Ti,j = 1 and j ∈ J(0)

(1− τ)pjτ if Ti,j = 1 and j ∈ J(1)

(1− pj)τ if Ti,j = 2 and j ∈ J(0)

τ + (1− τ)pj if Ti,j = 2 and j ∈ J(1)

, (B-55)

which implies Assumption 2.2(iv) is violated. On the other hand, these derivations also imply that

it may be possible to satisfy Assumption 2.2(iii) by clustering more coarsely. In particular, if we

instead group elements of J into larger clusters {Sk : k ∈ K} (K < q) such that∑
j∈J(1)∩Sk nj(1)pj∑
j∈Sk nj(1)pj

converges to τ , then Assumption 2.2(iv) is satisfied. In this way, Assumption 2.2(iv) thereby

requires the clusters to be “balanced” in the proportion of treated units.

C A General Result

In this section, we present a result that generalizes Theorem 3.3 and, as explained below, permits

us to establish qualitatively similar results for nonlinear null hypotheses and nonlinear models. In

what follows, there is no longer a need to distinguish between Yi,j , Wi,j , and Zi,j , so we denote by

Xi,j ∈ Rdx the observed data corresponding to the ith unit in the jth cluster. We consider tests

that reject for large values of a test statistic T F
n , whose limiting behavior we will assume below is

the same as the limiting behavior of F (Sn), where Sn is the cluster-level “scores” given by

Sn ≡

 1√
n

∑
i∈In,j

ψ(Xi,j) : j ∈ J


and F : Rq → R is a known, continuous function. Here, ψ : Rdx → Rdψ is an unknown function

that may depend on the distribution of the data, so, in order to describe a critical value with which

to compare T F
n , we assume that there are estimators ψ̂n of ψ and define

Ŝn ≡

 1√
n

∑
i∈In,j

ψ̂n(Xi,j) : j ∈ J

 .

Using this notation, the critical value we employ is obtained through the following construction:

Step 1: Let G = {−1, 1}q and for any g = (g1, . . . , gq) ∈ G define

gŜn ≡

 1√
n

∑
i∈In,j

gjψ̂n(Xi,j) : j ∈ J

 .
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Step 2: Compute the 1− α quantile of {F (gŜn)}g∈G, denoted by

ĉFn(1− α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I{F (gŜn) ≤ u} ≥ 1− α

 .

Below we develop properties of the test φFn that rejects whenever T F
n exceeds ĉFn(1− α)}, i.e.,

φFn ≡ I{T F
n > ĉFn(1− α)} .

In the context of the linear model studied in the main paper, under appropriate choices of F , ψ,

and ψ̂n, the test φFn is in fact numerically equivalent to the test φn defined in (6). More generally,

however, the test φFn can be interpreted as relying on the “score” bootstrap studied by Kline and

Santos (2012). In particular, note that ĉFn(1− α) may alternatively be written as

inf

u ∈ R : P

F
∑
j∈J

ωj√
n

∑
i∈In,j

ψ̂n(Xi,j)

 ≤ u|X(n)

 ≥ 1− α

 (C-56)

where X(n) denotes the data and {ωj}qj=1 are i.i.d. Rademacher random variables independent of

X(n). Whenever |G| is large, one may therefore approximate ĉFn(1− α) by simulating (C-56).

Our analysis will require the following high-level assumption:

Assumption C.1. The following statements hold:

(i) The test statistic TF
n satisfies

TF
n = F (Sn) + oP (1) .

(ii) The estimator ψ̂n satisfies

1√
n

∑
i∈In,j

ψ̂n(Xi,j) =
1√
n

∑
i∈In,j

ψ(Xi,j) + oP (1)

for all j ∈ J .

(iii) There exists a collection of independent random variables {Zj}j∈J , where Zj ∈ Rdψ and

Zj ∼ N(0,Σj), such that 1√
n

∑
i∈In,j

ψ(Xi,j) : j ∈ J

 d→ {Zj : j ∈ J} .

(iv) For any g ∈ G and g̃ ∈ G,

P{F ({gjZj : j ∈ J}) = F ({g̃jZj : j ∈ J})} ∈ {0, 1} .

(v) There is an integer κ such that |A(g)| = κ for any g ∈ G, where

A(g) ≡ {g̃ ∈ G : P{F ({gjZj : j ∈ J}) = F ({g̃jZj : j ∈ J})} = 1} .

40



Assumption C.1(i) formalizes the aforementioned requirement that the limiting behavior of T F
n

is the same as the limiting behavior of F (Sn). Assumption C.1(ii) encodes homogeneity restrictions

qualitatively similar to those in Assumption 2.2; see our discussion of nonlinear restrictions and

GMM below. Assumption C.1(iii) essentially requires that the dependence within clusters be weak

enough to permit application of a suitable central limit theorem to the cluster “scores.” Finally,

Assumptions C.1(iv)-(v) are typically satisfied with κ = 2 for two-sided tests and κ = 1 for one-

sided tests. By allowing for other values of κ, however, we can also accommodate settings in which

nj/n→ 0 for some j or Σj in Assumption C.1(iii) is positive semi-definite.

We are now prepared to state our result about the properties of φFn. While we are agnostic

about the exact form of the null hypothesis, we emphasize that we only expect Assumption C.1 to

hold under the null hypothesis, so the following result should be interpreted as a statement about

the limiting rejection probability of φFn under the null hypothesis, whatever it may be.

Theorem C.1. If Assumption C.1 holds, then

α− κ

2q
≤ lim inf

n→∞
P
{
TF
n > ĉFn(1− α)

}
≤ lim sup

n→∞
P
{
TF
n > ĉFn(1− α)

}
≤ α+

κ

2q
.

Proof of Theorem C.1: The proof follows arguments similar to those employed in establishing

Theorem 3.1. We again start by introducing notation that will streamline our arguments. Let

S ≡
⊗

j∈J R
dψ and write an element of s ∈ S by {sj : j ∈ J}. We further identify any (g1, . . . , gq) =

g ∈ G with an action on s ∈ S by gs = {gjsj : j ∈ J}. Since F is continuous by hypothesis, note

that Assumptions C.1(ii)-(iii) and the continuous mapping theorem imply

(F (Sn), {F (gŜn) : g ∈ G}) d→ (F (S), {F (gS) : g ∈ G}) . (C-57)

Hence, by Assumption C.1(i), a set inclusion restriction, and the Portmanteau theorem (see, e.g.,

Theorem 1.3.4(iii) in van der Vaart and Wellner (1996)), we obtain

lim sup
n→∞

P{T F
n > ĉFn(1− α)} ≤ lim sup

n→∞
P{T F

n ≥ ĉFn(1− α)}

≤ P

F (S) ≥ inf
{
u ∈ R :

1

|G|
∑
g∈G

I{F (gS) ≤ u} ≥ 1− α
} . (C-58)

In what follows, for any s ∈ S, we denote the ordered values of {F (gs) : g ∈ G} according to

F (1)(s|G) ≤ · · · ≤ F (|G|)(s|G) .

Setting k∗ ≡ d|G|(1− α)e, we then obtain from (C-58) and Assumption C.1(iii) that

lim sup
n→∞

P{T F
n > ĉFn(1− α)} ≤ P{F (S) > F (k∗)(S|G)}+ P{F (S) = F (k∗)(S|G)}

≤ α+ P{F (S) = F (k∗)(S|G)} , (C-59)

where in the final inequality we employed that gS
d
= S for all g ∈ G and the basic properties of

randomization tests; see, e.g., Theorem 15.2.1 in Lehmann and Romano (2005). Moreover, applying
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Theorem 15.2.2 in Lehmann and Romano (2005) yields

P{F (S) = F (k∗)(S|G)} = E[P{F (S) = F (k∗)(S|G)|S ∈ {gS}g∈G}

= E

 1

|G|
∑
g∈G

I{F (gS) = F (k∗)(gS|G)}

 =
κ

2q
, (C-60)

where the final equality follows from Assumptions C.1(iv)-(v). The claim of the upper bound in

the theorem therefore follows from results (C-59) and (C-60).

For the lower bound, note that k∗ ≡ d|G|(1 − α)e > |G| + κ implies α − κ/|G| ≤ 0, in which

case the lower bound is immediate. Assume k∗ ≤ |G| − κ and note that result (C-57) and the

Portmanteau Theorem, see, e.g., Theorem 1.3.4(ii) in van der Vaart and Wellner (1996) yield

lim inf
n→∞

P{T F
n > ĉFn(1− α)} ≥ P{F (S) > F (k∗)(S|G)} ≥ P{F (S) ≥ F (k∗+κ)(S|G)} , (C-61)

where the last inequality holds because P{F (z+κ)(S|G) > F (z)(S|G)} = 1 for any integer z ≤
|G| − κ by Assumptions C.1(iv)-(v). Next note k∗ + κ = d|G|((1 − α) + κ/|G|)e = d|G|(1 − α′)e
with α′ = α− κ/2q and so the properties of randomization tests (see Lehmann and Romano, 2005,

Theorem 15.2.1) imply

P{F (S) ≥ F (k∗+κ)(S|G)} ≥ α− κ

2q
. (C-62)

Thus, the lower bound holds by (C-61) and (C-62), and the claim of the theorem follows.

C.1 Applications of the General Result

Below, we apply Theorem C.1 to establish results qualitatively similar to Theorem 3.3 for tests of

nonlinear null hypotheses in both the linear model of Section 2 and the GMM framework of Hansen

(1982).

C.1.1 Nonlinear Null Hypotheses

Recall the setup introduced in Section 2, including Assumptions 2.1 and 2.2. For h : Rdβ → Rdh

with dh ≤ dβ and h continuously differentiable at β, consider testing

H0 : h(β) = 0 vs. H1 : h(β) 6= 0 . (C-63)

We employ T F
n = ‖

√
nh(β̂n)‖2, where ‖ · ‖ is the Euclidean norm, as our test statistic. For our

critical value, we use

ĉFn(1−α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I
{
‖∇h(β̂rn)

∑
j∈J

gj√
n

∑
i∈In,j

Ω̂−1
Z̃,n

Z̃i,j ε̂
r
i,j‖2 ≤ u

}
≥ 1− α

 , (C-64)

where ∇h(β̂rn) denotes the Jacobian of h : Rdβ → Rdh , and (γ̂rn, β̂
r
n) are understood to be computed

subject to the restriction that h(β) = 0 rather than c′β = λ. The following theorem bounds the
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limiting rejection probability of the test

φFn ≡ I{T F
n > ĉFn(1− α)}

under the null hypothesis.

Theorem C.2. If Assumptions 2.1 and 2.2 hold and h(β) = 0 for h : Rdβ → Rdh with dh ≤ dβ
and h continuously differentiable at β, then

α− 1

2q−1
≤ lim inf

n→∞
P
{
TF
n > ĉFn(1− α)

}
≤ lim sup

n→∞
P
{
TF
n > ĉFn(1− α)

}
≤ α+

1

2q−1
.

Sketch of Proof: Theorem C.2 follows from an application of Theorem C.1. To map φFn into

the context of Theorem C.1, we let Xi,j = (Yi,j , Z
′
i,j ,W

′
i,j)
′ and define

ψ(Xi,j) = ∇h(β)(āΩZ̃)−1Z̃i,jεi,j , (C-65)

where recall ā =
∑

j∈J ajξj . It then follows by standard arguments and Ω̂Z̃,n
P→ āΩZ̃ by Assump-

tions 2.2(ii)-(iii), that T F
n satisfies Assumption C.1(i) with F : Rq → R given by F (c) = ‖

∑
j∈J cj‖2

for any c = (c1, . . . , cq) and ψ(Xi,j) as in (C-65). Moreover, by setting

ψ̂n(Xi,j) = ∇h(β̂rn)Ω̂−1
Z̃,n

Z̃i,j ε̂
r
i,j , (C-66)

we verify the critical value in (C-64) has the exact structure required by Theorem C.1. Further

note that arguments similar to those leading to (A-37) in the proof of Theorem 3.3 yield

1√
n

∑
i∈In,j

ψ̂n(Xi,j) =
1√
n

∑
i∈In,j

∇h(β)(āΩZ̃)−1Z̃i,j(εi,j + Z̃ ′i,j(β − β̂rn)) + oP (1)

=
1√
n

∑
i∈In,j

ψ(Xi,j) +∇h(β)
ajξj
ā

√
n(β − β̂rn) + oP (1) =

1√
n

∑
i∈In,j

ψ(Xi,j) + oP (1) ,

where the second equality follows from Assumption 2.2(iii), and the final equality follows from

∇h(β)
√
n(β − β̂rn) = oP (1) due to h(β̂rn) = h(β) = 0. Hence, Assumption C.1(ii) is satisfied.

Finally, Assumptions C.1(iii)-(v) hold immediately with κ = 2 by Assumptions 2.2(i)-(ii).

Remark C.1. In this application it is also natural to consider employing the critical value

c̃Fn(1− α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I{‖
√
nh(β̂∗n(g))‖2 ≤ u} ≥ 1− α

 (C-67)

where, again, β̂∗n(g) is understood to be computed as in Section 2 but by using (γ̂rn, β̂
r
n) corresponding

to the restriction h(β) = 0 rather than c′β = λ. By the mean value theorem we then obtain

√
nh(β̂∗n(g)) = ∇h(β̄n(g))

√
n(β̂∗n(g)− β̂rn) =

∑
j∈J

gj√
n

∑
i∈In,j

∇h(β̄n(g))Ω̂−1
Z̃,n

Z̃i,j ε̂
r
i,j

43



for some β̄n(g) satisfying β̄n(g)
P→ β̂rn. Hence, the continuity of the the Jacobian ∇h implies that

√
nh(β̂∗n(g)) =

∑
j∈J

gj√
n

∑
i∈In,j

ψ̂n(Xi,j) + oP (1) ,

which reveals a close relation between ĉFn(1−α) as in (C-64) and c̃Fn(1−α) as in (C-67). Inspecting

the proof of Theorem C.1 (see, in particular, (C-57), (C-58), and (C-61)), then reveals the conclusion

of Theorem C.1 continues to apply if we employ c̃Fn(1− α) in place of ĉFn(1− α); i.e.

α− 1

2q−1
≤ lim inf

n→∞
P
{
TF
n > c̃Fn(1− α)

}
≤ lim sup

n→∞
P
{
TF
n > c̃Fn(1− α)

}
≤ α+

1

2q−1
.

We note that if h is linear, then ĉFn(1− α) and c̃Fn(1− α) are numerically equivalent and the upper

bound on the limiting rejection probability can be shown to equal α (instead of α+ 1/2q−1).

C.1.2 Generalized Method of Moments

In this section, we apply Theorem C.1 to study the properties of “score” bootstrap-based tests

of nonlinear null hypotheses in a GMM setting with a “small” number of “large” clusters. As

mentioned previously, the reason for relying on the “score” bootstrap instead of the wild bootstrap

stems from there being no natural “residuals” in this setting.

To this end, let

β̂n ≡ arg min
b

 1

n

∑
j∈J

∑
i∈In,j

m(Xi,j , b)

′ Σ̂n

 1

n

∑
j∈J

∑
i∈In,j

m(Xi,j , b)

 , (C-68)

where m(Xi,j , ·) : Rdβ → Rdm is a moment function Σ̂n is a dm × dm weighting matrix. Under

suitable conditions, see, e.g., Newey and McFadden (1994), β̂n is consistent for its estimand, which

we denote by β. For h : Rdβ → Rdh with dβ ≤ dh and h continuously differentiable at β, we

consider testing

H0 : h(β) = 0 vs. H1 : h(β) 6= 0 .

We again employ T F
n = ‖

√
nh(β̂n)‖2, where ‖ · ‖ is the Euclidean norm, as our test statistic. In

order to describe a critical value with which to compare T F
n , define, for any b ∈ Rdβ , the matrix

D̂n(b) ≡ 1

n

∑
j∈J

∑
i∈In,j

∇m(Xi,j , b) (C-69)

where ∇m(Xi,j , b) denotes the Jacobian of m(Xi,j , ·) : Rdβ → Rdm at b. Further define, for β̂rn the

GMM estimator computed subject to the restriction h(β̂rn) = 0,

ψ̂n(Xi,j) = ∇h(β̂rn)(D̂n(β̂rn)′Σ̂nD̂n(β̂rn))−1D̂n(β̂rn)′Σ̂nm(Xi,j , β̂
r
n) .
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Using this notation, our critical value is given by

ĉFn(1− α) ≡ inf

u ∈ R :
1

|G|
∑
g∈G

I
{
‖
∑
j∈J

gj√
n

∑
i∈In,j

ψ̂n(Xi,j)‖2 ≤ u
}
≥ 1− α

 .

The test we study is therefore given by

φFn ≡ I{T F
n > ĉFn(1− α)} .

In order to apply Theorem C.1 to establish properties of φFn, we impose the following assumption:

Assumption C.2. The following statements hold:

(i) h : Rdβ → Rdh is continuously differentiable at β.

(ii) There are full rank matrices Σ and D(β) such that Σ̂n
P→ Σ and D̂n(bn)

P→ D(β) for any

random variable bn ∈ Rdβ satisfying bn
P→ β.

(iii) The restricted and unrestricted estimators satisfy
√
n(β̂rn − β) = OP (1) and

√
nh(β̂n) = ∇h(β)(D(β)′ΣD(β))−1D(β)′Σ

1√
n

∑
j∈J

∑
i∈In,j

m(Xi,j , β) + oP (1) .

(iv) There exists a collection of independent random variables {Nj}j∈J , where Nj ∈ Rdm and

Nj ∼ N(0,Σj) with Σj positive definite, such that 1√
n

∑
i∈In,j

m(Xi,j , β) : j ∈ J

 d→ {Nj : j ∈ J} .

(v) For each j ∈ J there is an aj > 0 such that

1

n

∑
i∈In,j

∇m(Xi,j , bn)
P→ ajD(β)

for any random variable bn ∈ Rdβ satisfying bn
P→ β.

The following theorem bounds the limiting rejection probability of φFn under the null hypothesis.

Theorem C.3. If Assumption C.2 holds and h(β) = 0, then

α− 1

2q−1
≤ lim inf

n→∞
P{TF

n > ĉFn(1− α)} ≤ lim sup
n→∞

P{TF
n > ĉFn(1− α)} ≤ α− 1

2q−1

Sketch of Proof: Theorem C.3 follows from an application of Theorem C.1. Let F : Rq → R

be given by F (c) = ‖
∑

j∈J cj‖2 for any c = (c1, . . . , cq) ∈ Rq and set ψ : Rdx → Rdβ to equal

ψ(Xi,j) = ∇h(β)(D(β)′ΣD(β))−1D(β)′Σm(Xi,j , β) . (C-70)
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Assumption C.2(iii), continuity of || · ||2, and the continuous mapping theorem imply Assumption

C.1(i). Assumption C.1(iii) follows from C.2(iv) with

Zj = ∇h(β)(D(β)′ΣD(β))−1D(β)′ΣNj .

Assumptions C.1(iv) and C.1(v) are then immediate with κ = 2. We are then left with Assumption

C.1(ii). By the mean value theorem and the definition of ψ̂n(Xi,j), we obtain

1√
n

∑
i∈In,j

ψ̂n(Xi,j) = ∇h(β̂rn)(D̂n(β̂rn)′Σ̂nD̂n(β̂rn))−1D̂n(β̂rn)′Σ̂n
1√
n

∑
i∈In,j

m(Xi,j , β)

+∇h(β̂rn)(D̂n(β̂rn)′Σ̂nD̂n(β̂rn))−1D̂n(β̂rn)′Σ̂n
1

n

∑
i∈In,j

∇m(Xi,j , β̄n)
√
n(β̂rn − β) , (C-71)

where β̄n lies between β̂rn and β. Assumptions C.2(i), C.2(ii), and C.2(iv) imply that the first term

satisfies

∇h(β̂rn)(D̂n(β̂rn)′Σ̂nD̂n(β̂rn))−1D̂n(β̂rn)′Σ̂n
1√
n

∑
i∈In,j

m(Xi,j , β) =
1√
n

∑
i∈In,j

ψ(Xi,j) + oP (1) .

Assumptions C.2(i) and C.2(ii)-(iv), imply that the second term equals

∇h(β)(D(β)′ΣD(β))−1D(β)′Σ(ajD(β))
√
n(β̂rn − β) + oP (1) = aj∇h(β)

√
n(β̂rn − β) + oP (1)

= oP (1) ,

where final equality follows from 0 = h(β̂rn)−h(β) = ∇h(β̄n)
√
n(β̂rn−β) = ∇h(β)

√
n(β̂rn−β)+oP (1)

for β̄n between β̂rn and β by Assumptions C.2(i)-(iii). This completes the argument.
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