Follow us
Publications Commentary Research People Events News Resources and Videos About IFS
Home Publications Monte Carlo confidence sets for identified sets

Monte Carlo confidence sets for identified sets

Xiaohong Chen, Timothy M. Christensen and Elie Tamer
Cemmap Working Paper CWP43/17

In complicated/nonlinear parametric models, it is generally hard to know whether the model parameters are point identified. We provide computationally attractive procedures to construct confidence sets (CSs) for identified sets of full parameters and of subvectors in models defined through a likelihood or a vector of moment equalities or inequalities. These CSs are based on level sets of optimal sample criterion functions (such as likelihood or optimally-weighted or continuously-updated GMM criterions). The level sets are constructed using cutoffs that are computed via Monte Carlo (MC) simulations directly from the quasi-posterior distributions of the criterions. We establish new Bernstein-von Mises (or Bayesian Wilks) type theorems for the quasi-posterior distributions of the quasi-likelihood ratio (QLR) and profile QLR in partially-identified regular models and some non-regular models. These results imply that our MC CSs have exact asymptotic frequentist coverage for identified sets of full parameters and of subvectors in partially-identified regular models, and have valid but potentially conservative coverage in models with reduced-form parameters on the boundary. Our MC CSs for identified sets of subvectors are shown to have exact asymptotic coverage in models with singularities. We also provide results on uniform validity of our CSs over classes of DGPs that include point and partially identified models. We demonstrate good finite-sample coverage properties of our procedures in two simulation experiments. Finally, our procedures are applied to two non-trivial empirical examples: an airline entry game and a model of trade flows.

More on this topic

Cemmap Working Paper CWP28/20
This paper is concerned with learning decision makers’ preferences using data on observed choices from a finite set of risky alternatives.
Cemmap Working Paper CWP29/20
We investigate state-dependent effects of fiscal multipliers and allow for endogenous sample splitting to determine whether the US economy is in a slack state.
Cemmap Working Paper CWP27/20
This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables.
Cemmap Working Paper CWP25/20
This paper demonstrates the use of bounds analysis for empirical models of market structure that allow for multiple equilibria.
Cemmap Working Paper CWP24/20
This paper evaluates the dynamic impact of various policies, such as school, business, and restaurant closures, adopted by the US states on the growth rates of confirmed Covid-19 cases and social distancing behavior measured by Google Mobility Reports, where we take into consideration of ...