Workplace pensions and remuneration in the private and public sectors in the UK

Jonathan Cribb and Carl Emmerson

Work and Pensions Economics Group Conference
University of Sheffield, Monday 27th July 2015

Background

• Defined benefit pensions schemes become much less common in the private sector, but not in the public sector
• There have been a series of reforms to public service pensions under Labour and Coalition governments
• Recent (and ongoing) debate on the level of public sector pay
 – Typically ignores remuneration in the form of pensions

• Our contribution:
 – Estimate the changing value of workplace pensions in the public and private sector from 1997 to 2012
 – We incorporate changing pension coverage, life expectancy, annuity rates, workforce composition and public service pension reforms
 – Include workplace pensions into a comparison of remuneration of public and private sector workers
Motivation

Membership of employer-provided pension schemes, 1997 to 2012

Source: Authors’ calculations using the Annual Survey of Hours and Earnings
Measuring the value of workplace pensions

• We aim to measure the value to the employee of the change in their pension rights between one year and the next
 – Accrued pension rights = PDV of stream of pension income from retirement to death
 – Calculate this if left scheme now and if left in one year’s time
 – The difference is one-period pension accrual
 – Then subtract the employee’s own contributions to the pension

• This measure is known as “one-period net pension accrual”
 – Express as a fraction of salary
Methodology: DB and DC pensions

- Annual income from **DB pension**: \(B_t = \alpha TY_t \)
 - \(\alpha \) is accrual fraction, \(T \) is tenure, and \(Y_t \) is a measure of earnings (e.g. final or career average salary)

- **DB pension** accrual will depend upon:
 - Scheme rules (e.g. accrual fraction, normal pension age)
 - Number of years tenure in scheme
 - Increase in pensionable pay as a result of working another year

- Annual income from **DC pension**: annual annuity that could be purchased at age 65 given current fund value and annual real return of assets is 2%

- **DC pension** accrual will depend upon:
 - Size of employer pension contribution
 - Annuity rates
Methodology: Assumptions

- For all schemes:
 - Real discount rate: 2% (i.e. 2% higher than CPI inflation)
 - Life expectancy: ONS age/sex specific cohort life expectancies for each year, adjusted for differential mortality gradient by social class

- For DB schemes:
 - Use example scheme rules for typical (final salary) DB schemes
 - Private: NPA= 65, $\alpha=1/60^{th}$
 - Public Final Salary (pre-reform): NPA= 60, $\alpha=1/80^{th} + 3/80^{th}$ lump sum
 - Public Career Average: NPA= SPA, $\alpha=1/54^{th}$, accrued benefits revalued by CPI +1.5ppt (new NHS Pension scheme rules)
 - Pay growth: estimate average hourly wage growth (by sex/ sector/ education) observed at different ages from 1994 to 2006 in the LFS
Estimated earnings profiles (men)

Hourly wage profiles – men

Source: Authors’ calculations using data from the Labour Force Survey.
Assumed real growth in earnings (men)

Hourly wage growth – men

Source: Authors’ calculations using data from the Labour Force Survey.
Methodology: Assumptions

- **For all schemes:**
 - Real discount rate: 2% (i.e. 2% higher than CPI inflation)
 - Life expectancy: ONS age/sex specific cohort life expectancies for each year, adjusted for differential mortality gradient by social class

- **For DB schemes:**
 - Use example scheme rules for typical (final salary) DB schemes
 - Private: NPA= 65, $\alpha = \frac{1}{60^{th}}$ Public: NPA= 65, $\alpha = \frac{1}{80^{th}} + \frac{3}{80^{th}}$ lump sum
 - Pay growth: estimate average hourly wage growth (by sex/ sector/ education) observed at different ages from 1994 to 2006 in the LFS

- **For DC schemes:**
 - Use mean sex-specific age-65 RPI-linked annuity rates in each year
Data

• Use employees aged 20 to 59 in Labour Force Survey
 – Allows us to measure earnings and characteristics of employees
 – Does not contain: pension coverage, employee or employer contributions, pension scheme tenure or scheme rules

• Impute the type of pension scheme (DB/DC/none) based on year-sex-sector-occupation-age specific coverage rates in ASHE
 – Randomly allocate same % of employees in LFS in each “cell” a DB or DC pension as have one in ASHE

• Impute mean contribution rates from ASHE using same “cells”

• Impute pension tenure for DB schemes from 2005 and 2001 BHPS
 – Define cells based on sex, sector and 5-year age bands
 – Use “hotdecking” procedure by which each person in LFS is randomly allocated pension tenure of someone in same cell in BHPS
Average value of private and public pensions

Mean one-period net pension accrual in 2012 under different example scheme rules

- NPA 60, RPI, employee cont 2010: 41.3%
- NPA 65, RPI, employee cont 2010: 34.3%
- NPA 65, RPI, employee cont from 2012: 33.6%
- NPA 65, CPI, employee cont from 2012: 18.3%
- Post Hutton, employee cont from 2012: 17.7%
- Public sector DC: 12.6%
- Private sector DB (NPA 65, RPI): 33.7%
- Private sector DC: 5.4%

Source: Authors’ calculations using the Labour Force Survey, Annual Survey of Hours and Earnings, and British Household Panel Study
Estimating the public sector pay differential

- Using LFS data we run regressions of \(\log(\text{hourly wage}) \) on:
 - Public sector
 - Age – quadratic
 - Education – detailed qualifications (6 categories)
 - Experience – different quadratic profiles by 3 large education groups
 - Region of work – 12 government office regions
 - Sex – either run separate regressions or interact all variables with sex
 - Time (in quarters) – generally pool one year of data or more

- To include value of workplace pensions, change the dependent variable to: \(\log(\text{wage + net pension accrual}) \)
 - e.g. If an individual has net pension accrual of 15%, we increase her wage by 15%

- **Percentage differential** calculated from estimated coefficient on public sector (following Halverson and Palmquist, AER 1979)
Public-private pay differential including pensions

Source: Authors’ calculations using the LFS, ASHE and BHPS.
Conclusion

• Throughout the 2000s, average value of pensions to public sector workers increased, while it decreased for the private sector
 – Due to declining coverage in private sector, and shift from DB to DC
• CPI indexation of pensions in deferral and payment significantly reduced value of workplace pensions to public sector workers
 – Public service pensions still much more generous, on average, than in private sector
• Incorporating pensions into an estimate of the public-private pay differential:
 – Significantly increases the size of the pay differential
 – Increases the variation in the differential over time
• Future trends in pay and pensions:
 – Pay: Public sector pay set to fall significantly relative to private sector
 – Pensions: Auto-enrolment boost coverage in private sector (but low contributions), implementation of Hutton reforms in 2015