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Abstract

This paper studies identification and estimation of the distribution of bidder valuations in

an incomplete model of English auctions. As in Haile and Tamer (2003) bidders are assumed

to (i) bid no more than their valuations and (ii) never let an opponent win at a price they

are willing to beat. Unlike the model studied by Haile and Tamer (2003), the requirement of

independent private values is dropped, enabling the use of these restrictions on bidder behavior

with affi liated private values, for example through the presence of auction specific unobservable

heterogeneity. In addition, a semiparametric index restriction on the effect of auction-specific

observable heterogeneity is incorporated, which, relative to nonparametric methods, can be help-

ful in alleviating the curse of dimensionality with a moderate or large number of covariates. The

identification analysis employs results from Chesher and Rosen (2017) to characterize identified

sets for bidder valuation distributions and functionals thereof.

1 Introduction

The path breaking paper Haile and Tamer (2003) (HT) develops bounds on the common distribution

of valuations in an incomplete model of an open outcry English ascending auction in a symmetric

independent private values (IPV) setting.

One innovation in the paper was the use of an incomplete model based on weak plausible

restrictions on bidder behavior, namely that a bidder never bids more than her valuation and never
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allows an opponent to win at a price she is willing to beat. An advantage of an incomplete model is

that it does not require specification of the mechanism relating bids to valuations. Results obtained

using the incomplete model are robust to misspecification of such a mechanism. The incomplete

model may be a better basis for empirical work than the button auction model of Milgrom and

Weber (1982) sometimes used to approximate the process delivering bids in an English open outcry

auction.

On the down side the incomplete model is partially, not point, identifying for the primitive

of interest, namely the common conditional probability distribution of valuations given auction

characteristics. HT derive bounds on this distribution and show how to use these bounds to

perform inference on the distribution and interesting functionals such as the optimal reserve price.

The question of the sharpness of those bounds was left open in HT.

The HT auction model was previously shown to fall in the class of Generalized Instrumental

Variable (GIV) models introduced in Chesher and Rosen (2017), henceforth CR.1 The results in

that paper were applied to obtain a characterization of the identified set (sharp bounds) for the

auction model as a leading example, and it was shown that there are observable implications

additional to those given in HT that refine the bounds previously obtained.2 The characterization

of sharp bounds on valuation distributions was shown to comprise a dense system of infinitely many

inequalities restricting not just the value of the distribution function via pointwise bounds on its

level, but also restricting its shape as it passes between the pointwise bounds.

In this paper we expand the application of the intuitively appealing restrictions on bidder

behavior invoked by HT to non-IPV settings. Theorems 1 and 2 in Section 3 provide general

characterizations that do not require IPV. These results provide a framework for identification

analysis incorporating further restrictions that appear in econometric models of auctions. Section

4 illustrates how the analysis can be applied to models that feature unobservable auction specific

heterogeneity, a special and important class of models in which the IPV restriction does not hold.

Partial identification has been usefully applied to address other issues in auction models since

HT. Tang (2011) and Armstrong (2013) both study first-price sealed bid auctions. Tang (2011)

assumes equilibrium behavior but allows for a general affi liated values model that nests private

and common value models. Without parametric distributional assumptions model primitives are

generally partially identified, and bounds on seller revenue under counterfactual reserve prices and

auction format are derived. Armstrong (2013) studies a model in which bidders play equilibrium

strategies but have symmetric independent private values conditional on unobservable heterogene-

ity, and derives bounds on the mean of the bid and valuation distribution, and other interesting

functionals. Aradillas-Lopez, Gandhi, and Quint (2013) study second price auctions that allow for

1The first analysis of the identifying power of the HT model using the GIV framework is in Chesher and Rosen
(2015)

2 In this paper we use the expression identified set to refer to sharp bounds throughout. Non-sharp bounds are
referred to simply as bounds or outer regions.
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correlated private values. Theorem 4 of Athey and Haile (2002) previously showed non-identification

of the valuation distribution in such models, even if bidder behavior follows the button auction

model equilibrium. Aradillas-Lopez, Gandhi, and Quint (2013) impose a slight relaxation of the

button auction equilibrium, assuming that transaction prices are determined by the second highest

bidder valuation. They combine restrictions on the joint distribution of the number of bidders and

the valuation distribution with variation in the number of bidders to bound seller profit and bidder

surplus.

The restrictions of the auction models we study are set out in Section 2. In Section 3 GIV models

are introduced and the auction model is placed in the GIV context, and the identified set for such

models is characterized. The identified set for an auction model with additive unobservable auction

specific heterogeneity is characterized in Section 4. In Section 5 identification analysis is carried

out in the presence of an index restriction on the effect of auction-specific observable heterogeneity.

Relative to nonparametric methods, this can be helpful in alleviating the curse of dimensionality

with a moderate or large number of covariates. Section 6 provides numerical illustrations of bounds

on the effect of auction covariates on bidder valuations in such models. Section 7 concludes.

2 Model

We study open outcry English ascending auctions with a finite number of bidders, M , which may

vary from auction to auction. The model imposes the slight simplifications that there is no reserve

price and the minimum bid increment is zero. These conditions simplify the exposition and are

easily relaxed.3

Auctions are characterized by a vector of observed final bids B, a vector of valuations V , and

Z = (X,M) comprising a vector of auction characteristics X and number of bidders M . B, V, Z

are presumed to be realized on a probability space (Ω,A,P) with sigma algebra A endowed with
the Borel sets on Ω. Valuations V are not observed. Final bids of those who place no bid are taken

to be recorded at the lower bound of the support of bids, typically zero. Throughout the paper

reference to “bids”should be taken to indicate final bids unless it is indicated otherwise. The way in

which realizations of (B,Z) are observed across auctions renders their joint distribution identified.

The goal of our identification analysis is to determine what the joint distribution of (B,Z) reveals

about the joint distribution of valuations conditional on Z. The notation GV |Z (S|z) is used to
denote the conditional probability that V is an element of S, P [V ∈ S|Z = z], while GV |Z is used to
denote the collection of such functions over all possible values of Z, GV |Z ≡

{
GV |Z (S|z) : z ∈ RZ

}
,

where RZ denotes the support of Z. Inequalities involving random variables, such as those in

Restrictions 1 and 2 below, and those stated in Lemma 1, are to be understood to mean these

3These conditions are also imposed in Appendix D of HT in which the sharpness of identified sets is discussed. As
is the case in HT, with a reserve price r our analysis applies to the distribution of valuations truncated below at r.
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inequalities hold P almost surely. For any random vector W = (W1, . . . ,WM ), the notation Wm:M

denotes the mth order statistic of W , so for example WM :M = max(W ) and W1:M = min (W ). The

notation W̃ indicates the vector of ordered components of W , W̃ ≡ (W1:M , . . . ,WM :M ).

Restriction 1. In an auction with M bidders, the final bids and valuations are realizations of

random vectors B = (B1, . . . , BM ) and V = (V1, . . . , VM ) such that for all m = 1, ...,M , Bm ≤ Vm
almost surely.

Restriction 2. In every auction the second highest valuation, VM−1:M , is no larger than the

highest final bid, BM :M . That is, VM−1:M ≤ BM :M almost surely.

Restrictions 1 and 2 are the HT restrictions on bidder behavior. They admit the standard button

auction equilibrium, but also allow for much more general bidder behavior, including departures

from equilibrium. These restrictions place no requirements on the bidders’knowledge or beliefs

about other bidders’valuations or strategies. Jump bids, often observed in ascending oral auctions

—but ruled out in the standard button auction model —are allowed.

HT study the identifying power of Restrictions 1 and 2 when in addition bidder valuations are

restricted to the independent private values paradigm, stated here as Restriction IPV.4

Restriction IPV (Independent Private Values). There are independent private values conditional
on auction characteristics Z = z such that for all z ∈ RZ , the valuations of bidders are identically
and independently continuously distributed conditional on Z = z.

The approach taken here applies identification analysis from CR, which automatically delivers

sharp bounds for model primitives without need for a constructive proof of sharpness. Moreover,

the analysis is applicable in the absence of the IPV restriction, and thereby establishes how the

intuitively appealing restrictions 1-2 of HT can be much more broadly applied. We additionally

consider the following exchangeability restrictions on unobserved valuations and observed bids,

respectively.

Restriction EX-V (Exchangeability of Valuations). Conditional on auction characteristics Z = z,

bidder valuations V = (V1, ..., VM ) are exchangeable.

Restriction EX-B (Exchangeability of Bids). Conditional on auction characteristics Z = z,

observed final bids B = (B1, . . . , BM ) are exchangeable.

Restrictions EX-V and EX-B impose that valuations and bids, respectively, are exchangeable

given auction characteristics z. Restriction EX-V places us within in the context of a model with

symmetric bidders. It is less restrictive than Restriction IPV, in the sense that it is implied by

Restriction IPV but does not imply it. Restriction EX-B imposes that bids are exchangeable,

which is necessary to distinguish from Restriction EX-V in light of the incomplete model for bidder

4Restriction IPV as stated stipulates that valuations are continuously distributed, as is typically assumed in
auction models. This is used in the ensuing derivations, but it is not essential for identification analysis and could
be relaxed.
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behavior mapping from valuations to bids. It is possible for example that Restriction EX-V holds so

that valuations are symmetric, but that bids are not exchangeable due to heterogeneity in bidding

strategies.

Exchangeability seems an appealing assumption when there is no observable information about

specific bidder identities. It is an implication of restrictions that have been used in many ap-

plications, although it does rule out some interesting cases, such as when bidders have different

observable types or when bidders form collusive bidding rings. Nonetheless, if bidder labels are

randomly assigned in auction data, then exchangeability from the perspective of the econometri-

cian is preserved. If bidder identities are observed, one might not want to impose these restrictions.

In such cases the general approach to identification analysis put forward here remains applicable,

albeit at the cost of added notation to distinguish bidder identities or types. In this paper we shall

impose Restriction EX-V throughout, and impose Restriction EX-B in only some of our results.

Restrictions 1-2 and IPV (and therefore EX-V) were imposed by HT. Restriction EX-B was not,

and it is not required for their bounds to be valid.

3 Generalized Instrumental Variable models

This auction model falls in the class of Generalized Instrumental Variable (GIV) models introduced

in Chesher and Rosen (2017). We use the results in CR to characterize the identified set (i.e. sharp

bounds) for valuation distributions delivered by a joint distribution of M final bids.

A GIV model places restrictions on a process that generates values of observed endogenous

variables, Y , given exogenous variables Z and U , where Z is observed and U is unobserved. The

variables (Y, Z, U) take values on RY ZU which is a subset of a suitably dimensioned Euclidean

space.

GIV models place restrictions on a structural function h : RY ZU → R which defines the admis-
sible combinations of values of Y and U that can occur at each value z of Z which has support RZ .
Admissible combinations of values of (Y, U) at Z = z are zero level sets of this function, as follows.

L(z;h) = {(y, u) : h(y, z, u) = 0}

For each value of U and Z we can define a Y -level set

Y(u, z;h) ≡ {y : h(y, z, u) = 0}

which is singleton for all u and z in complete models, but not in incomplete models such as those

studied here. Likewise, for each value of Y and Z we can define a U -level set

U(u, z;h) ≡ {u : h(y, z, u) = 0}. (3.1)
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GIV models place restrictions on such structural functions and also on a collection of conditional

distributions

GU |Z ≡ {GU |Z(·|z) : z ∈ RZ}

whose elements are conditional distributions of U given Z = z obtained as z varies across the

support of Z, where GU |Z(S|z) denotes the probability that U ∈ S conditional on Z = z.

3.1 Unordered Final Bids

In an auction of M bidders each bidder is characterized by an observed final bid Bm and private

valuation Vm for the object at auction. The vector (B1, . . . , BM ) denotes observed final bids for

each of the M bidders in the auction, and the vector V = (V1, . . . , VM ) denotes the corresponding

unobserved private valuations. Neither vector B nor V need be ordered from smallest to largest or

vice-versa. Bm and Vm correspond to the bid and valuation of the same bidder, but the order of

the bids and valuation in B and V is otherwise arbitrary.

Valuations Vm are each restricted to have strictly increasing common marginal cumulative dis-

tribution function Fz (·) on their support conditional on auction characteristics Z = z. Valuations

need not be independent. The support of each Vm is a subset of the extended real line.

For each m = 1, ...,M , define Um ≡ Fz (Vm), such that each variable Um is marginally uniformly

distributed on the unit interval. The vector U ≡ (U1, . . . , UM ) plays the role of unobservable vector

U for GIV analysis when considering unordered final bids. Statements predicated by ∀m are to be

understood to hold for all m = 1, ...,M .

The GIV level set of unobservable U corresponding to that in (3.1) given the HT assumptions

from observed bids B is

U (B,Fz) ≡
{
u ∈ [0, 1]M : ∀m, Fz (Bm) ≤ um ∧ Fz

(
Bm∗(B)

)
≥ max

m6=m∗(B)
um

}
, (3.2)

where m∗ (B) denotes the index of the winning bidder.

A GIV structural function which expresses these restrictions, with bid vector B taking the role

of Y , is

h(B, z, U) =
M∑
m=1

max((Fz(Bm)− Um) , 0) + max( max
m 6=m∗(B)

Um − Fz
(
Bm∗(B)

)
, 0). (3.3)

The auction model may thus be cast as a GIV model in which the structural function h is a

known functional of the collection of conditional valuation distributions {Fz (·) : z ∈ RZ}. We use
the notation F to denote a collection of such conditional distribution functions, and F to denote

those F permitted by the model, and which embody the researcher’s prior information on the
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distribution functions Fz (·).5

The conditional distribution of U given Z = z, denoted Gz, is the joint distribution of M

marginally uniform variates, i.e. a copula, and may vary with z. If however Restriction IPV is

imposed, then the components of U are mutually independent conditional on Z and, for any set

S ⊆ RU , Gz (S) is the probability that a random M -vector of independent uniform(0, 1) variates

takes a value in the set S. In the absence of restriction IPV, the marginal distribution of each
component of U given Z is uniform(0, 1), but the components of U may be correlated. We use the

notation G to denote a collection of copulas {Gz (·) : z ∈ RZ}, and G to denote those collections G
which are admitted by the model specification. For example, the conditional distributions Gz could

each be left unrestricted across different values of z, their dependence on z could be parameterized

through an index function, or they could be explicitly parameterized by an M -dimensional copula.

Applying Theorem 2 and Lemma 1 of CR, the identified set for the pair Fz (·) and Gz (·) are
those such that for all sets S in a collection of test sets Q(h, z) the following inequality is satisfied

almost surely

Gz(S) ≥ P [U(Y,Z;h) ⊆ S|Z = z] . (3.4)

The collection of test sets Q(h, z) is defined in Theorem 3 of CR. It comprises certain unions of the

members of the collection of U -level sets U(y, z;h) obtained as y takes values in the conditional

support of Y given Z = z.6 The following theorem provides the formal result for the auction model

where U (B,Fz) takes the place of U(Y,Z;h).

Theorem 1 Let F ∈ F, G ∈ G, and Restrictions 1-2 and EX-V hold. The identified set for

{(Fz (·) , Gz (·)) : z ∈ RZ}

are those collections of conditional distributions admitted by F and G such that for almost every

z ∈ RZ , for all S that are unions of sets of the form U (b, Fz), b ∈ RB:

P [U (B,Fz) ⊆ S|Z = z] ≤ Gz (S) . (3.5)

Theorem 1 directly applies results from CR to characterize the identified set for the marginal

distribution of valuations Fz (·) and their copula Gz (·) across values of z. It imposes Restrictions
1 and 2 on bidder behavior and Restriction EX-V, without recourse to independence of bidder

valuations or exchangeability of observed bids. A feature of the Theorem is thus its generality.

Auction models employed in empirical work typically impose additional restrictions, which will

5For example, a model could restrict each Fz (·), z ∈ RZ to a parametric family, or it could restrict Fz (·) to be
invariant with respect to certain components of z.

6 In general the collection Q(h, z) contains all sets that can be constructed as unions of sets, (3.1), on the support
of the random set U(Y,Z;h). In particular models some unions can be neglected because the inequalities they deliver
are satisfied if inequalities associated with other unions are satisfied. There is more detail and discussion in CR.

7



further refine the set given by (3.5), and which, thinking of implementation, may facilitate estima-

tion and inference. The remainder of the paper studies models with additional restrictions, and

develops characterizations of the resulting identified sets that refine those obtained using Theorem

1. To do this we turn to bounds on valuation distributions derived from knowledge of only the

distribution of ordered final bids, that is using order statistics of the bid distribution, as were also

employed in HT.

We show in the next section that when bids are exchangeable so that Restriction EX-B holds,

then there is no loss of information in having knowledge of only the distribution of ordered final

bids, in the sense that the identified set obtained using the distribution of ordered final bids is

sharp and is the same as that obtained using the distribution of unordered final bids. If Restriction

EX-B does not hold, then the bounds derived from information in the distribution of ordered bids

still apply, but they may not be sharp relative to the bounds obtained from the distribution of

unordered final bids.

3.2 Ordered Final Bids

Let Y = (Y1, ..., YM ) denote ordered final bids, so that

Ym ≡ Bm:M , m ∈ {1, . . . ,M} .

It is convenient to write the ordered valuations as functions of uniform order statistics. Define

Ṽ ≡ (V1:M , . . . , VM :M ) , Ũ ≡ (U1:M , . . . , UM :M ) = (Fz(Ṽ1), . . . , Fz(ṼM )),

to be ordered versions of V and U , respectively. The components of Ṽ and Ũ order those of V and

U from smallest to largest, so the mth component of each, Ṽm and Ũm, respectively, are the mth

order statistics of V and U . The distribution of Ũ is therefore that of the order statistics of M

uniform(0, 1) but possibly dependent random variables. Without placing restrictions on the joint

distribution of valuations, many such distributions of Ũ are possible, depending on the copula of V ,

Gz (·). The notation G̃z (S) is used to denote the probability placed on the event Ũ ∈ S when this
copula is Gz (·). The admissible collection of joint distributions for U conveyed by Gz (·) restricts
the collection of admissible G̃z (·).7

The following inequalities involving the order statistics of final bids B and latent valuations V

set out in Lemma 1 are a consequence of Restrictions 1 and 2. The proof of the lemma, like all

other proofs, is provided in Appendix A.

7Thus the notation Gz (S) and G̃z (S) distinguises between a joint distribution of M marginally uniform(0, 1)
random variables, and the joint distribution of the order statistics of M marginally uniform(0, 1) random variables,
respectively. The dependence structure among the M marginally uniform(0, 1) components need not be known.
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Lemma 1 Let Restrictions 1-2 hold. Then for all m and M

Bm:M ≤ Vm:M (3.6)

BM :M ≥ VM−1:M . (3.7)

In similar manner to HT, we can base identification analysis on the restrictions (3.6) and (3.7)

on bid and valuation order statistics. We show that in fact when final bids are exchangeable,

application of the GIV analysis to ordered bids and valuations delivers the same sharp bounds as

are obtained using the information in the distribution of unordered final bids. The result appears

in Theorem 2.

The restrictions (3.6) and (3.7) of Lemma 1 can be written as

∀m, Ym ≤ Ṽm = F−1z (Ũm) and YM ≥ ṼM−1 = F−1z (ŨM−1)

and, on applying the increasing function Fz(·), they are as follows:

∀m, Fz(Ym) ≤ Ũm and Fz(YM ) ≥ ŨM−1. (3.8)

A GIV structural function which expresses these restrictions is

h(Y, z, Ũ) =

M∑
m=1

max((Fz(Ym)− Ũm), 0) + max((ŨM−1 − Fz(YM )), 0). (3.9)

The structural function h is known up to the collection of distributions F ≡ {Fz(·) : z ∈ RZ}, so
we replace h in the definition of random sets Ũ(Y, z;h), instead expressing Ũ -level sets as:

Ũ(Y, Fz) =

{
ũ :

(
M∧
m=1

(ũm ≥ Fz(Ym))

)
∧ (Fz(YM ) ≥ ũM−1)

}
, (3.10)

it being understood that for all m, ũm ≥ ũm−1.8 These are not singleton sets.
Figure 2 illustrates for the 2 bidder case. The Ũ -level set Ũ((y1, y2), Fz) is the shaded rectangle

below the 45◦ line. In Figure 2 all of, and only, the values (ũ1, ũ2) in the shaded rectangle are

capable of delivering ordered final bids such that Fz(y1) = 0.2 and Fz(y2) = 0.6.

With the auction model cast as a GIV model involving ordered bids Y and latent variables

Ũ such that Ũ and Z are independently distributed, application of Theorem 4 of CR gives the

following result.

8 If there was a minimum bid increment ∆, then (3.10) would have Fz(yM + ∆) in place of Fz(yM ).
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Theorem 2 Let F ∈ F, G ∈ G, and Restrictions 1-2, EX-V, and EX-B hold. The identified set for
(Fz (·) , Gz (·) : z ∈ RZ) are those collections of conditional distributions admitted by F and G such

that for almost every z ∈ RZ , for all S that are unions of sets of the form Ũ(y, Fz) for y ∈ RY .

P
[
Ũ(Y, Fz) ⊆ S|z

]
≤ G̃z (S) , (3.11)

where G̃z (S) denotes the probability that Ũ ∈ S conditional on Z = z.

Relative to Theorem 1, Theorem 2 simplifies characterization of the identified set when Re-

striction 3 holds. The simplification lies in that the collection of inequalities defining the identified

set involves only probabilities featuring ordered bids. When considering test sets, one need only

consider unions of sets (3.10) in which ũ1 ≤ · · · ≤ ũM . This is an M ! fold reduction in the number

of sets whose unions must be considered when constructing test sets S.
In Chesher and Rosen (2017) the identified set for Fz (·), each z ∈ RZ , was characterized when

in addition Restriction IPV holds. With this restriction in place Gz (·) is known and G̃z (S) is

the probability that the order statistics of M i.i.d. uniform random variables belong to the set

S, which is easily computed. In that paper a numerical illustration was provided for a two-bidder
auction model in which the sharp characterization of the identified set for Fz (·) refined the bounds
previously available.

4 Auction Specific Unobservable Heterogeneity

In this section we consider a model in which auction specific unobserved heterogeneity affects

bidders’valuations. Allowing for such heterogeneity is important when the good being auctioned

has some features observed by bidders, but not observed by the researcher, that have a common

effect on each bidders’value. The unobserved variable could for example be a measure of quality

unavailable to the researcher.

Unobservable auction-specific heterogeneity has featured in a variety of auction models in the re-

cent literature, with examples including Krasnokutskaya (2011), Armstrong (2013), Roberts (2013),

and Quint (2015), where bidders exhibit behavior consistent with some definition of equilibrium.

This section examines the use of Restrictions 1 and 2, originally used by HT studying open out-

cry ascending auctions under the IPV restriction, to study identification when auction specific

unobservable heterogeneity is allowed.

Bidder valuations are now restricted to comprise the sum of a private value component V I
m and

an auction-specific component V + as follows.9

9Valuations may measured on a logarithmic or other scale defined on the extended real line through application
of any strictly monotone transformation as is done in Section 6.
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Restriction UAH (Unobservable Auction Heterogeneity). Valuations in anM bidder auction are

given by V = (V1, ..., VM ) where for each m, Vm = V I
m + V +, where V I

m ∼ Fz (·) and V + ∼ Fz+ (·).
Both Fz (·) and Fz+ (·) are strictly increasing on their supports.

Restriction UAH introduces auction-specific unobservable heterogeneity. Both distributions

Fz (·) and Fz+ (·) may vary with z. The joint distribution of V I ≡
(
V I
1 , . . . , V

I
M

)
and V + is left

unrestricted. The notation F+ is used to denote a particular collection {Fz+ (·) : z ∈ RZ} and F+
denotes those collections of F+ admitted by the model specification.10 The restriction that Fz+ (·)
be strictly increasing can be easily relaxed at the cost of some notational modification, but without

substantive change to the subsequent results.11

Define the random M + 1 vectors U and Ũ as

U ≡
(
Fz
(
V I
1

)
, ..., Fz

(
V I
M

)
, Fz+

(
V +
))
, Ũ ≡

(
Fz
(
V I
1:M

)
, ..., Fz

(
V I
M :M

)
, Fz+

(
V +
))
.

such that the first M components of Ũ have a joint distribution which is the joint distribution of

the order statistics of M (possibly dependent) marginally uniform(0, 1) variables. The (M + 1)th

component of both U and Ũ is marginally uniform(0, 1).

As in Section 3.2 we continue to work with bid order statistics, with each mth bid order statistic

denoted Ym = Bm:M . The notation Gz (S) is used to denote the probability that U ∈ S conditional
on Z = z, with G̃z (S) denoting the probability that Ũ ∈ S conditional on Z = z for any S ∈
[0, 1]M+1. G denotes a particular collection {Gz (·) : z ∈ RZ} and G denotes such collections which
are admitted by the model specification. G−z (S) is used to denote the probability that the first M

components of Ũ belong to any set S ⊆ [0, 1]M .

The set of feasible values of unobservable Ũ as a function of Y is given by

Ũ (Y ;Fz, Fz+) ≡
{
ũ ∈ RŨ :

∀m, Ym ≤ F−1z (ũm) + F−1z+ (ũM+1) ,

∧ YM ≥ F−1z (ũM−1) + F−1z+ (ũM+1)

}
, (4.1)

where RŨ denotes the collection of vectors ũ ∈ [0, 1]M+1 on which ũ1 ≤ · · · ≤ ũM . Equivalently

Ũ (Y ;Fz, Fz+) ≡
{
ũ ∈ RŨ : max

m=1,...,M
Ym − F−1z (ũm) ≤ F−1z+ (ũM+1) ≤ YM − F−1z (ũM−1)

}
.

With a slight abuse of notation, for any set Y ⊆ RY let

Ũ (Y;Fz, F+) ≡
⋃
y∈Y
Ũ (y;Fz, Fz+) , (4.2)

10For example, F+ could specify that Fz+ (·) does not vary with z.
11For example, the analysis could then be carried out subject to minor modification with the final component of

both U and Ũ simply defined as V +, and F−1z+ (ũM+1) in the inequalities below replaced with ũM+1.
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denote the union of level sets Ũ (y;Fz, Fz+) across y ∈ Y ⊆ RY .
From Theorem 2 it follows that under Restrictions 1-2 and UAH, for each z the identified set

for (Fz (·) , Fz+ (·) , Gz (·)) are those that satisfy

∀Y ⊆ RY , P [Y ∈ Y|z] ≤ G̃z
(
Ũ (Y;Fz, Fz+)

)
.

For any Y ⊆ RY the probability P [Y ∈ Y|z] is identified from knowledge of the joint distribution

of (Y,Z). The probability G̃z
(
Ũ (Y;Fz, Fz+)

)
is the conditional probability of the event that Ũ ∈

Ũ (Y;Fz, Fz+) for some y ∈ Y. That is

Ũ ∈ Ũ (Y;Fz, Fz+)⇔ ∃y ∈ Y s.t. Ũ ∈ Ũ (y;Fz, Fz+) ,

and consequently,

G̃z

(
Ũ (Y;Fz, Fz+)

)
= G̃z (E (Y)) ,

where

E (Y) ≡

ũ ∈ RŨ : min
y∈Y

min

 max
m=1,...,M

ym − F−1z (ũm)− F−1z+ (ũM+1) ,

F−1z+ (ũM+1)−
(
yM − F−1z (ũM−1)

)
 ≤ 0

 .
Since

max
m=1,...,M

ym − F−1z (ũm) ≤ F−1z+ (ũM+1) ≤ yM − F−1z (ũM−1)

=⇒ max
m=1,...,M

ym − F−1z (ũm) ≤ yM − F−1z (ũM−1) ,

it follows that

E (Y) ⊆ E (Y) ,

where

E (Y) ≡
{
ũ ∈ RŨ : min

y∈Y
max

m=1,...,M
ym − yM + F−1z (ũM−1)− F−1z (ũm) ≤ 0

}
.

Furthermore, when ũ ∈ E (Y) occurs, then there necessarily exists some v+ such that

max
m=1,...,M

ym − F−1z (ũm) ≤ v+ ≤ yM − F−1z (ũM−1) ,

and it likewise follows that there exists some strictly increasing CDF Fz+ (·) such that for ũM+1 =

Fz+ (v+)

max
m=1,...,M

ym − F−1z (ũm) ≤ F−1z+ (ũM+1) ≤ yM − F−1z (ũM−1) .
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TheM inequalities appearing in E (Y) can alternatively be obtained by differencing the inequal-

ities delivered by the HT restrictions 1-2 appearing in (4.1). By definition Ũ is an element of the

set defined in (4.1) if and only if

∀m, Ym ≤ F−1z
(
Ũm

)
+ F−1z+

(
ŨM+1

)
∧ YM ≥ F−1z

(
ŨM−1

)
+ F−1z+

(
ŨM+1

)
,

since the combination of any such pair of inequalities for a given m implies

Ym − YM ≤ F−1z
(
Ũm

)
− F−1z

(
ŨM−1

)
. (4.3)

Looked at in this way the inequality appearing in (4.3) is obtained in similar manner to the deriva-

tion of observable implications in which fixed effects do not appear in panel data models. Here

the auction-specific unobservable is akin to a fixed effect that appears in each of the inequalities

delivered by restrictions 1-2. Combining these inequalities appropriately produces further observ-

able implications from which the common unobservable term v+ = F−1z+ (ũM+1) is absent. The

development here produces collections of such inequalities.

Defining

D ≡ (YM − Y1, ..., YM − YM−2) , (4.4)

the inequalities (4.3) taken over all m can be written

∀m = 1, ...,M − 2: Dm ≥ F−1z
(
ŨM−1

)
− F−1z

(
Ũm

)
.

Note that D only has M − 2 components because (4.3) holds trivially for m ∈ {M − 1,M}.
Let D denote a set of vectors on the support of random vector D. It follows that for any set

D ⊆ RD,

D ∈ D ⇒
{
∃d ∈ D : max

m=1,...,M−2

{
F−1z

(
ŨM−1

)
− F−1z

(
Ũm

)
− dm

}
≤ 0

}
and consequently

P [D ∈ D|z] ≤ G−z
(
Ũ (D;Fz)

)
, (4.5)

where

Ũ (D;Fz) ≡
{
ũ ∈ RŨ : min

d∈D
max

m=1,...,M−2
F−1z (ũM−1)− F−1z (ũm)− dm ≤ 0

}
.

The development using CR from which (4.5) was obtained allows us to establish that without ad-

ditional restrictions placed on Fz+, these inequalities characterize sharp bounds on (Fz (·) , G−z (·)).
The following theorem collects the formal results.

Theorem 3 Let Restrictions 1-2, EX-V, EX-B, and UAH hold and let F ∈ F, F+ ∈ F+, and
G ∈ G. Then
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(i) The identified set for {Fz (·) , Fz+ (·) , Gz (·) : z ∈ Rz} are those admitted by F,F+,G that satisfy,
for almost every z ∈ Rz:

∀Y ⊆ RY , P [Y ∈ Y|z] ≤ Gz (E (Y)) .

(ii) With no restrictions placed on F+, the identified set for {Fz (·) , G−z (·) : z ∈ Rz} are those
admitted by F,G that satisfy, for almost every z ∈ Rz:

∀D ⊆ RD, P [D ∈ D|z] ≤ G−z
(
Ũ (D;Fz)

)
. (4.6)

(iii) With no restrictions placed on F+, the identified set for {Fz (·) : z ∈ Rz} are those admitted by
F such that for some G−z (·) admitted by G, (4.6) holds. If, in addition, Restriction IPV holds, then(
Ũ1, ..., ŨM

)
is distributed independently of Z such that G−z (·) corresponds to the joint distribution

of the order statistics ofM−1 independent uniform(0, 1) variables, and for any Fz (·) the probability
on the right of (4.6) is known.

In addition to characterizing identified sets under the stated restrictions, Theorem 3 provides

a starting point for examining further simplifications of these characterizations that may be at-

tainable under particular restrictions on F, F+, and G. For example, the theorem allows for, but

requires neither independence of observed characteristics Z and latent auction heterogeneity V +,

nor independence between V + and V I . Such restrictions may allow further simplification of these

characterizations.

5 Observable Auction Specific Heterogeneity

In this Section we show how information on the effect of observable auction characteristics on

valuations can be extracted from English auction data. There is good reason to be interested in the

impact of observable auction characteristics on bidders’valuations. The survivor function of the

distribution of valuations is effectively the demand function faced by the seller and the coeffi cients

β inform us about the sensitivity of demand to variations in the characteristics of the item for sale.

We now introduce an index restriction on the effect of observable auction heterogeneity on

individual valuations. The analysis of this Section delivers inequalities that define an outer region

for the index coeffi cients which apply under general forms of departure from IPV.

Restriction IR (Index Restriction). TheM bidder valuations are given by V = (V1, ..., VM ) where

for each j = 1, ...,M ,

Vj = Xβ + V I
j + V +.

Conditional on the number of bidders M = m, (V I
1 , ..., V

I
M , V

+) are independent of X with V I
j ∼

Fm (·), each j = 1, ...,m, and V + ∼ Fm+ (·), where Fm (·) and Fm+ (·) are both strictly increasing
on their supports.
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This restriction refines Restriction UAH by specifying how observable auction characteristics X

affect the distribution of bidder valuations, requiring that they do so only through the linear index

Xβ, conditional on the number of bidders. The joint distribution of the components of bidder

valuations may nonetheless be jointly dependent, and may vary with the number of bidders M .

Furthermore, the index restriction on bidder valuations in Restriction IR does not imply an

index restriction on the dependence on X of the joint distribution of bids. This is because bidding

strategies may depend on X in arbitrary ways — not just through the linear index Xβ — even

when valuations satisfy the single index Restriction IR. So the bounds below apply when bidding

strategies vary with auction characteristics, and in arbitrary ways subject to Restrictions 1-2 and

IR holding. Since X can affect the distribution of bids not only through the index Xβ conventional

single index estimation methods applied to final bid data would not be justified.

Let

V
+ ≡

(
V I
1 + V +, ..., V I

M + V +
)
,

and let Ṽ + denote the order statistics of V
+
, so that

Ṽ + ≡
(
V I
1:M + V +, ..., V I

M :M + V +
)
.

The HT restrictions on bidder behavior remain that for all j = 1, ...,M , Vj ≥ Bj and VM−1:M ≤
BM :M . The (unordered) set of V̄ + permissible given observed bids B and Z = (X,M) is

Vβ (B,Z) =
{
v+ : ∀j, v+j ≥ Bj −Xβ ∧ v

+
M−1:M ≤ BM :M −Xβ

}
. (5.1)

The (ordered) set of Ṽ + permissible given observed ordered bids Y = (B1:M , ..., BM :M ) and Z is

Ṽβ (Y,Z) =
{
ṽ+ : ∀j, ṽ+j ≥ Yj −Xβ ∧ ṽ

+
M−1 ≤ YM −Xβ

}
, (5.2)

it being understood that ṽ+1 ≤ · · · ≤ ṽ+M . From here on we work with Ṽβ (Y, Z) rather than

Vβ (B,Z).

For each m ∈ M ≡
{

2, ...,M
}
, let G̃V (S|m) denote the conditional probability that Ṽ + is in

S given M = m. The identified set for
(
β, G̃V

)
can be represented as those that satisfy

∀m ∈M, ∀S ∈ Qm, P
[
Ṽβ (Y,Z) ⊆ S|x,m

]
≤ G̃V (S|m) a.e. x ∈ RX|m, (5.3)

equivalently

∀m ∈M, ∀S ∈ Qm, sup
x∈RX|m

P
[
Ṽβ (Y,Z) ⊆ S|x,m

]
≤ G̃V (S|m) ,

where Qm denotes unions of sets of the form given in (5.2). A class of sets which is guaranteed
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to contain all such sets, and which depends neither on observed variables nor on β is given by the

collection Sm defined as

Sm ≡
{
S (Am) : Am ⊆ RṼ +|m

}
,

where RṼ +|m denotes the conditional support of Ṽ + given M = m and

S (Am) ≡
⋃

a∈Am

{
ṽ+ ∈ RṼ +|m : ∀k = 1, ...,m, ṽ+k ≥ ak ∧ ṽ

+
m−1 ≤ am

}
.

Thus we can write the identified set for
(
β, G̃V

)
as those that satisfy

∀m ∈M, ∀S ∈ Sm, P
[
Ṽβ (Y,Z) ⊆ S|x,m

]
≤ G̃V (S|m) a.e. x ∈ Rx|m. (5.4)

Note that we could remove from the collection of test sets Sm those which can be written as

unions of disjoint sets. Two sets S ({a}) and S ({a′}) are disjoint if either a′m−1 ≥ am or am−1 ≥ a′m.
Because the dimension of Ṽ + depends on M , the mapping G̃V (·|m) depends on m. This is

so even if valuations are additionally assumed independent of M . Nonetheless, for each fixed m

Corollary 3 of CR can be applied to produce bounds on the parameter β, since the distribution of

Ṽ + conditional on M = m and X = x does not vary with x. The resulting bounds are given by

the set of values of β that satisfy

∀m ∈M, ∀S ∈ Sm, sup
x∈RX|m

P
[
Ṽβ (Y,Z) ⊆ S|x,m

]
≤ inf

x∈RX|m

(
1− P

[
Ṽβ (Y,Z) ⊆ Sc|x,m

])
.

(5.5)

These bounds can be used to place limits on the relative impact of the components of observable

auction characteristics X on bidder valuations as we demonstrate in Section 6.

5.1 Containments and Capacities

In consideration of inequalities of the form (5.5), consider a test set S ≡ S (Am) for a given m.

The containment functional is

P
[
Ṽβ (Y,Z) ⊆ S (Am) |z

]
= P [∃a ∈ Am: ∀k ≤ m, Yk − xβ ≥ ak ∧ Ym−1 − xβ ≤ am|z]

= P
[

min
a∈Am

max

{
Ym−1 − xβ − am,max

k≤m
ak − Yk + xβ

}
≤ 0|z

]
.
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The capacity functional for a test set S = S (Am) is

1− P
[
Ṽβ (Y,Z) ⊆ S (Am)c |z

]
= P

[
Ṽβ (Y, Z) ∩ S (Am) 6= ∅|z

]
= P

[
min
a∈Am

{max {am−1, Ym−1 − xβ} −min {am, Ym − xβ}} ≤ 0|z
]

When bids are continuously distributed sets S (Am) will be required to comprise what we term

contiguous unions of level-sets Ṽβ (Y, Z) —or unions of such contiguous unions — in order for the

containment probability to be greater than zero. A contiguous union is characterized by a vector

a = (a1, ..., am, a
′
m) with a1 ≤ · · · ≤ am ≤ a′m, with the contiguous union given by the union of sets

Ṽβ (y, z) for all m-vectors y such that yj = aj for all j < m and ym takes all values in the interval

[am, a
′
m]. In other words, this is the union of level sets Ṽβ (y, z) taken as the first m−1 components

of y are held fixed and the highest is moved over the range [am, a
′
m].

Such a contiguous union may be represented as

S (a) ≡
{
ṽ+ : ∀j ṽ+j ≥ aj ∧ ṽ

+
m−1 ≤ a′m

}
,

for any vector a ∈ Rm+1 whose components are ordered from smallest to largest. Likewise, it is to

be understood that the components of ṽ+ ∈ Rm are ordered such that ṽ+1 ≤ · · · ≤ ṽ+m.
The conditional containment functional for such a contiguous union is

P
[
Ṽβ (Y,Z) ⊆ S (a) |x,m

]
= P

[
∧mj=1 {Yj −Xβ ≥ aj} ∧

{
Ym −Xβ ≤ a′m

}
|x,m

]
.

The corresponding conditional capacity functional is

1− P
[
Ṽβ (Y,Z) ⊆ S (a)c |z

]
= P

[{
Ym−1 −Xβ ≤ a′m

}
∧ {Ym −Xβ ≥ am−1} |x,m

]
.

And so (5.5) applied to such contiguous unions produce the inequalities

sup
x∈Rx|m

P
[
∧mj=1 {Yj −Xβ ≥ aj} ∧

{
Ym −Xβ ≤ a′m

}
|x,m

]
≤ inf

x∈Rx|m
P
[{
Ym−1 −Xβ ≤ a′m

}
∧ {Ym −Xβ ≥ am−1} |x,m

]
(5.6)

which must hold for possible numbers of bidders m ∈M and for all a1 ≤ · · · ≤ am ≤ a′m.

6 Illustrative calculations

In this section we specify a particular class of structures for generating final bids made by M = 3

bidders which embodies auction-specific observed heterogeneity X which enters via a linear index
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as set out in Restriction IR. Idiosyncratic elements of valuations are allowed to be correlated and

bidding strategies can be X-dependent.

We calculate outer regions for index coeffi cients using various selections of the inequalities

given in (5.6). The probabilities in those inequalities are calculated as relative frequencies of the

occurrence of the required events at each value of X observed in 10, 000 simulated auctions. We

take this approach because calculation by other means of probabilities in the complex auction

mechanism considered is infeasible. We find that the outer regions are quite informative and

respond as expected to changes in the choice of inequalities employed.

The specification of bidders’valuations is set out in Section 6.1 after which the auction mecha-

nism is described in Section 6.2. The calculation of outer regions using grid search is described in

Section 6.3.

6.1 Valuations

The log valuation of bidder j amongst M bidders is denoted Vj and determined as

Vj = Xβ + V I
j + V +,

where V I ≡ (V I
1 , . . . , V

I
M ), V +, and X ≡ (X1, X2) are mutually independently distributed. The

elements of V I are distributed N(0,Σ) where

Σ =

 1 0.2 0.5

0.2 1 0.4

0.5 0.4 1


and scalar V + is distributed N(0, 1). Consequently

(
V I
1 + V +, ..., V I

M + V +
)
is independent of X,

as required by Restriction IR, and is distributed N(0,Ω) where

Ω =

 2 1.2 1.5

1.2 2 1.4

1.5 1.4 2

 .
Each element of X has support on {−1, 0, 1}, each value (x1, x2) ∈ {−1, 0, 1} × {−1, 0, 1} occurs
with probability 1/9 and β = (−1, 1).

The distribution of Xβ is symmetric around zero with support {−2,−1, 0, 1, 2} and with prob-
ability 2/9 on |Xβ| = 2 and probability 4/9 on |Xβ| = 1. The variance of Xβ is 113 . The variance

of the unobserved elements of each log valuation is 2.
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Table 1: Quantiles of random bidding fractions at values of X

x1 x2 10th percentile median 90th percentile

−1 −1 .20 .50 .80

−1 0 .14 .39 .68

−1 1 .11 .31 .58

0 −1 .32 .61 .86

0 0 .25 .50 .75

0 1 .20 .42 .67

1 −1 .42 .69 .89

1 0 .33 .58 .80

1 1 .28 .50 .72

6.2 Auction mechanism

Each bidder j of the M bidders is assigned a valuation, Vj , as above and also the value λj of a

random bidding fraction, Λj . Bidding fractions vary across auctions in a manner determined by

the value of the auction specific characteristics X.

Bidding fractions are independent across bidders and independent of the components of valua-

tions and when X = x they are realizations of Beta(γ1(x), γ2(x)) random variables where

γ1(x) = 3 + x1

γ2(x) = 3 + x2.

These Beta distributed random variables have support on [0, 1], with median and 10th and 90th

percentiles given X = x as shown in Table 1.

At each round i, bidder j is chosen from the remaining eligible bidders. The eligible bidders are

those with valuations exceeding the bid on the table, b, zero in the first round, excluding the bidder

who placed the bid on the table. At round i the chosen bidder, j, bids the amount ΛjVj +(1−Λj)b.

The auction proceeds until there remains one bidder. The mechanism results in final bids that

satisfy the HT conditions.

6.3 Calculations using grid search

We simulate 10, 000 auctions and calculate the conditional onX = x probabilities in (5.6) as relative

frequencies of occurrence of the events indicated amongst the simulated auctions for each value x

under consideration.

Inequalities as given in (5.6) are determined by M + 1 ordered values on the extended real

line, (a1, . . . , aM , a
′
M ), which defines a contiguous union of U -level sets. In the calculation of a

particular outer region reported here the inequalities employed are obtained using the contiguous
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Table 2: Rounded values of log valuations in lists used to define contiguous unions

L(6) L(11)

−∞ −∞
−1.89 −3.20
−0.59 −1.89

+0.40 −1.16

+1.50 −0.59

+∞ −0.10

+0.40

+0.90

+1.50

+2.32

+∞

Table 3: Projections of identified sets obtained from grid search on a 50*50 grid

L(x) # inequalities βL1 βU1 βL2 βU2
L(6) 53 −1.263 −0.777 0.801 1.268

L(11) 253 −1.251 −0.812 0.833 1.226

unions delivered by all admissible selections from a list of x values L(x) containing at most d distinct

finite values with 1 ≤ d ≤M + 1. In all the calculations reported here d = 2.

Two lists are considered. One with 6 elements, L(6), comprises−∞ and+∞ and the (0.2, 0.4, 0.6, 0.8)

quantiles of the log of highest and second highest simulated final bids. The other, with 11 elements,

L(11) comprises −∞ and +∞ and the (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) quantiles of the log of

highest and second highest simulated final bids. The lists are shown in Table 2. The values in

list L(6) all appear in the list L(11) so the identified sets obtained using L(11) are subsets of the

identified sets obtained using L(6).

Grid search was conducted with each list of x values, L(6) and L(11). The resulting outer

regions are shown in Figure 1. Table 3 shows projections of the identified sets onto the β1 and β2
axes. Moving from 53 to 253 inequalities results in a significant reduction in the identified set.

7 Concluding remarks

The characterizations using the CR Generalized Instrumental Variable model development open

the door to the use of Restrictions 1-2 in auction models that do not require independent private

values. These restrictions on bidder behavior, introduced by HT, are intuitively appealing in open

outcry auctions where the usual button auction equilibrium may not be an appropriate model of

bidder behavior. HT showed that even though these restrictions may seem a strong relaxation of
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Figure 1: Identified sets obtained by search on a 50 × 50 grid. Points in the identified set using
L(11) shown in blue. Points in the identified set using L(6) shown in turquoise and blue. The value
of (β1, β2) in the structure generating final bids is (−1, 1), marked in yellow.
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the restriction that bidders play equilibrium strategies, and they render the model incomplete, they

can still be used to learn useful information about valuation distributions in a model with IPV.

In many auctions studied in empirical research, the IPV paradigm may be questionable, and this

has sometimes motivated the use of auction models that allow for private values. In Theorems 1,

2, and 3 characterizations of identified sets for model primitives were developed in model that do

not require IPV. Theorem 3 in particular applies to models that allow for affi liated private values

through auction-specific unobservable heterogeneity, which has been a focus of some recent papers

in the literature, see for example Krasnokutskaya (2011), Armstrong (2013), Roberts (2013), and

Quint (2015).

Bounds were additionally developed on the effect of observable auction characteristics on bidder

valuations in a model incorporating a familiar index restriction. Numerical illustrations of these

bounds based on simulated auction models were presented, illustrating the potential for the bounds

to be informative. In the case considered in which covariate coeffi cients were 1 and −1 the identified

set pinned down the values of these coeffi cients to within plus or minus 20%.

The bound characterizations and identified sets for these English auction models involve a dense

system of inequalities. In CR it was demonstrated in the IPV setting that these inequalities restrict

not only the level of the bidder valuation distribution function at each point on its support but also

the shape of the function as it passes between the pointwise bounds. The richness of the collection

of inequalities characterizing identified sets in non IPV setting is also potentially informative about

model primitives and functionals of these in models in which IPV is not assumed. The application

of these inequalities to perform inference using real world auction data is a direction in which we

are continuing to work.
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A Proofs of results stated in the main text

Proof of Lemma 1. Consider a realization (b, v) of (B, V ). Under Restriction 1 the number of

elements of b with values greater than vm:M is at most M − m. Therefore in all realizations of
(B, V ), bm:M ≤ vm:M for all m and M , from which (3.6) follows immediately. The second result,

(3.7), follows directly from Restriction 2. �

Proof of Theorem 1. The result follows from application of Corollary 1 of Theorem 2 and Lemma
1 in CR with U -sets U (B,Fz) as defined in (3.2). �

Proof of Theorem 2. From Theorem 1 we have that the identified set for {Fz (·) , Gz (·) : z ∈ RZ}
are those such that

P [U (B,Fz) ⊆ S|Z = z] ≤ Gz (S) (A.1)

for all S comprising unions of sets on the support of U (B,Fz), a.e. z ∈ RZ . From CR Lemma 1

this is equivalent to

∀S ∈ C (RW ) , P [U (B,Fz) ⊆ S|Z] ≤ Gz (S) (A.2)

where C (RW ) denotes the collection of closed sets S on [0, 1]M , the support of U .

For the purpose of the proof, fix z ∈ RZ at an arbitrary value. All probability statements below
are to be understood to be conditional on Z = z.

Let W be a random M vector defined on (Ω,A,P) distributed Gz (·) and independent of B.
Then (A.2) is equivalent to

∀S ∈ C (RW ) , P [U (B,Fz) ⊆ S] ≤ P [W ∈ S] . (A.3)

Let B0 denote that randomM -vector whose components are precisely those of B, reordered in such

a way that for each m = 1, ...,M , the mth lowest component has the same index as that of the

mth lowest component of W . B0 is therefore a random permutation of B, and since W and B are

independent, exchangeability of B implies that B0 has the same distribution as B.

We consequently have that (A.3) holds if and only if

∀S ∈ C (RU ) , P
[
U
(
B0, Fz

)
⊆ S

]
≤ P [W ∈ S] . (A.4)

Equivalently, by Artstein’s inequality we have that the distribution of W is selectionable with

respect to the distribution of U
(
B0, Fz

)
, such that there exist random vectors W ∗ d

= W ( d= Ũ)

and B∗ d
= B0 ( d= B) such that P [W ∗ ∈ U (B∗, Fz)] = 1.12 By definition of the set-valued mapping

12Artstein’s inequality is from Artstein (1983), see also Norberg (1992) and Molchanov (2005, Section 1.4.8).
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U (·, Fz), we therefore have that (A.4) is equivalent to the statement that with probability one

∀m, Fz (B∗m) ≤W ∗m ∧ Fz
(
B∗m(B∗)

)
≥ max

m 6=m(B∗)
W ∗m.

Because the elements of B∗ andW ∗ have the same ordering, this holds if and only if with probability

one

∀m, Fz (B∗m:M ) ≤W ∗m:M ∧ Fz (B∗M :M ) ≥W ∗M−1:M ,

or equivalently, since B∗ d
= B, Y = (B1:M , ..., BM :M ), and W ∗ ∼ Gz, if and only if the distribution

of Ũ = (U1:M , ..., UM :M ) is selectionable with respect to the distribution of

Ũ (Y, Fz) ≡
{
u ∈ [0, 1]M : u1 ≤ · · · ≤ uM ∧ ∀m, um ≥ Fz (Ym) ∧ uM−1 ≤ Fz (YM )

}
.

The distribution of Ũ is that of the order statistics of U , such that for any set S, P
[
Ũ ∈ S

]
=

G̃z (S), so that by application of Artstein’s (1983) inequality, the above selectionability condition

is equivalent to

∀S ∈ C (RU ) , P
[
Ũ (Y, Fz) ⊆ S|z

]
≤ G̃z (S) .

Since the choice of z was arbitrary, this concludes the proof. �

Proof of Theorem 3. Part (i) follows from application of Theorem 2 as described in the main

text. Part (ii) follows from first noticing that CR Corollary 1 and Lemma 1 in conjunction with

the definition of random vector D imply that the set of (Fz (·) , G−z (·)) satisfying (4.6) are precisely
those such that conditional on Z = z there exist random vectors Ỹ d

= Y |Z = z and Ū ∼ G−z (·)
satisfying (4.3) with each Ym replaced by Ỹm and Ũ replaced by Ū . This guarantees that for all m,

Ỹm − F−1z
(
Ūm
)
≤ ỸM − F−1z

(
ŪM−1

)
,

and so there exists a random variable Ṽ + such that with probability one

Ỹm − F−1z
(
Ūm
)
≤ Ṽ + ≤ ỸM − F−1z

(
ŪM−1

)
.

Thus we have established the existence of random vectors Ỹ d
= Y |Z = z and Ū ∼ G−z (·) such that

Restrictions 1-2 and UAH hold. Part(iii) follows from taking the implied set of feasible Fz from

part (ii) and that with Restriction IPV, G−z (·) is known. �
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Figure 2: Ũ level sets in a 2 bidder case. The level set Ũ((y1, y2), Fz), shaded in the Figure,
contains all values of uniform order statistics, ũ2 ≥ ũ1, that can give rise to order statistics of final
bids, y2 ≥ y1 such that, Fz(y1) = 0.2 and Fz(y2) = 0.6. Fz is a potential distribution function of
valuations. For fixed values y1 and y2 changing Fz would change the numerical values 0.2 and 0.6.
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