Using penalized likelihood to select parameters in a random coefficients multinomial logit model

Joel L. Horowitz
Lars Nesheim

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP29/18
USING PENALIZED LIKELIHOOD TO SELECT PARAMETERS IN A RANDOM COEFFICIENTS MULTINOMIAL LOGIT MODEL

by

Joel L. Horowitz
Department of Economics
Northwestern University
Evanston, IL 60201
U.S.A

and

Lars Nesheim
CeMMAP
University College London
Institute for Fiscal Studies
London, U.K.

April 2018

Abstract

The multinomial logit model with random coefficients is widely used in applied research. This paper is concerned with estimating a random coefficients logit model in which the distribution of each coefficient is characterized by finitely many parameters. Some of these parameters may be zero or close to zero in a sense that is defined. We call these parameters small. The paper gives conditions under which with probability approaching 1 as the sample size approaches infinity, penalized maximum likelihood estimation (PMLE) with the adaptive LASSO (AL) penalty function distinguishes correctly between large and small parameters in a random-coefficients logit model. If one or more parameters are small, then PMLE with the AL penalty function reduces the asymptotic mean-square estimation error of any continuously differentiable function of the model’s parameters, such as a market share, the value of travel time, or an elasticity. The paper describes a method for computing the PMLE of a random-coefficients logit model. It also presents the results of Monte Carlo experiments that illustrate the numerical performance of the PMLE. Finally, it presents the results of PMLE estimation of a random-coefficients logit model of choice among brands of butter and margarine in the British groceries market.

Research carried out in part while Joel L. Horowitz was a visitor to the Department of Economics, University College London. We gratefully acknowledge financial support from the Economic and Social Research Council (ESRC) through the ESRC Centre for Micodata Methods and Practice (CeMMAP) grant number ES/1034021/1. Data were provided by TNS UK Ltd. The use of TNS UK Ltd. data in this research does not imply endorsement by TNS UK Ltd. of the interpretation or analysis of the data. All errors and omissions are the responsibility of the authors.
USING PENALIZED LIKELIHOOD TO SELECT PARAMETERS IN A RANDOM COEFFICIENTS A MULTINOMIAL LOGIT MODEL

1. INTRODUCTION

The multinomial logit model with random coefficients is widely used in demand modeling, empirical industrial organization, marketing, and transport economics. See, for example, Train (2009); Keane and Wasi (2013); and Ackerberg, Benkard, Berry, and Pakes (2007). Random coefficients enable taste or utility function parameters to vary among individuals in ways that are not explained by the variables available in the data. Random coefficients also enable the model to approximate any discrete-choice model arbitrarily well (McFadden and Train 2000). This paper is concerned with estimating a random coefficients model in which the distribution of each coefficient is characterized by finitely many parameters, for example the mean and variance. Some of these parameters may be zero or close to zero in a sense that will be defined. The paper describes a penalized likelihood method for selecting and estimating the non-zero parameters.

In applied research, the objects of interest in a discrete-choice model, such as market shares, the value of travel time, and elasticities, are smooth functions of the parameters. Some parameters, such as the mean coefficient of a price, may also be objects of interest. The mean square estimation errors of objects of interest can be reduced by identifying and dropping from the model parameters whose values are close but not necessarily equal to zero. We call these parameters “small.” Thus, for example, if the mean and variance of the coefficient of a certain variable are both small, then the mean-square estimation errors of market shares and other objects of interest can be reduced by dropping that variable from the model. Parameters that are not small are called “large.” In applications, it is not known a priori which parameters are large and small. This paper gives conditions under which penalized maximum likelihood estimation (PMLE) with the adaptive LASSO (AL) penalty function distinguishes correctly between large and small parameters asymptotically, thereby reducing the asymptotic mean-square estimation errors of large parameters and other objects of interest in applied research. We also show that the PMLE estimates of large parameters are $n^{-1/2}$-consistent and asymptotically normally distributed, where n is the size of the estimation sample. The estimates of the large parameters have the same asymptotic normal distribution that they would have if it were known a priori which parameters are large and small, the small parameters were set equal to zero, and the large parameters were estimated by maximum likelihood. This property is called oracle efficiency. We illustrate the numerical performance of our PMLE method with the results of Monte Carlo experiments and an empirical application to choice among brands of butter and margarine in the British groceries market.
Penalization can also have computational advantages. Penalized estimation with a suitable penalty function can yield parameter estimates that are true zeroes, often within a few iterations of the numerical algorithm. This is especially important in high-dimensional random coefficients models. Estimation of these models requires high-dimensional numerical integration. Dropping variance parameters that are zero or close to zero and treating the associated coefficients as fixed reduces the dimension of the integral as well as the dimension of the parameter vector, thereby increasing the speed of computation and the numerical accuracy with which the non-zero parameters are estimated. Kittel and Metaxoglu (2014) explore the numerical accuracy and consequences of numerical inaccuracy in estimation of random coefficients logit models.

This paper makes the following main contributions.

1. It shows that with probability approaching 1 as \(n \to \infty \), PMLE with the AL penalty function distinguishes correctly between large and small parameters in a random-coefficients logit model. The estimates of the large parameters are oracle efficient.

2. It shows that if one or more parameters are small, then PMLE with the AL penalty function reduces the asymptotic mean-square estimation error of any continuously differentiable function of the model’s parameters, including predicted market shares and elasticities.

3. It describes a method for computing the PMLE of a random-coefficients logit model with the AL penalty function.

4. It presents the results of Monte Carlo experiments that illustrate the numerical performance of the PMLE of a random-coefficients logit model with the AL penalty function.

5. It presents the results of PMLE estimation of a random-coefficients logit model of choice among brands of butter and margarine in the British groceries market.

Contributions 1 and 2 above extend results of Fan and Li (2001), Zou (2006), and Horowitz and Huang (2013) as well as the very large literature on penalized estimation of high-dimensional models. Fan, Lv, and Qi (2011), Horowitz (2015), and Bülmann and van de Geer (2011) review and provide references to that literature. Contribution 3 provides a new method to carry out PMLE computation that avoids the need for maximizing a non-smooth objective function and permits the use of recent advances in algorithms for solving constrained optimization problems.

The remainder of this paper is organized as follows. Section 2 describes the random-coefficients logit model that we consider, PMLE with the AL penalty function, asymptotic properties of the parameter estimates, and asymptotic properties of smooth functions of the PMLE parameter estimates. Section 3 describes our method for computing the PMLE parameter estimates. Section 4 presents the results of the Monte Carlo experiments. Section 5 presents the application to choice among brands of butter and
margarine, and Section 6 presents conclusions. Section 7 presents the proofs of this paper’s theoretical results.

2. THE MODEL AND ADAPTIVE LASSO ESTIMATION

Section 2.1 describes the random-coefficients logit model and the penalized maximum likelihood estimation procedure that we use. Section 2.2 presents asymptotic distributional properties of the PMLE parameter estimates and functions of the estimates.

2.1 The Model and Estimation Procedure

Let each of \(n \) individuals choose among \(J \) exhaustive and mutually exclusive alternatives. Let \(X \in \mathbb{R}^K \) denote the vector of the model’s observed covariates, and let \(X_{ij} \) denote the value of \(X \) for individual \(i \) and alternative \(j \) \((j = 1, \ldots, J)\). The indirect utility of alternative \(j \) to individual \(i \) \((i = 1, \ldots, n)\) is

\[
U_{ij} = (\beta' + \epsilon_i)'X_{ij} + \nu_{ij},
\]

where \(\nu_{ij} \) is a random variable with the Type I extreme value distribution, \(\nu_{ij} \) and \(\nu_{ij'} \) are independent of one another if \(i \neq i' \) or \(j \neq j' \), \(\beta \) is a \(K \times 1 \) vector of constant coefficients, and \(\epsilon_i \) is a \(K \times 1 \) vector of unobserved random variables that have means of 0 and are independently and identically distributed among individuals. In this paper, we assume that \(\epsilon_i \sim N(0, \Sigma) \) for each \(i = 1, \ldots, n \), where \(\theta \) is a \(K \)-vector of zeroes and \(\Sigma \) is a positive-semidefinite \(K \times K \) matrix. However, the paper’s theoretical results hold with other distributions. Let \(\phi(\xi; \theta, \Sigma) \) denote the probability density function of the \(N(\theta, \Sigma) \) distribution evaluated at the point \(\xi \). Then the probability that individual \(i \) chooses alternative \(j \) is

\[
\pi_j(\beta, \Sigma; X_{i1}, \ldots, X_{iJ}) = \frac{\exp[(\beta' + \epsilon_i)'X_{ij}]}{\sum_{k=1}^{J} \exp[(\beta' + \epsilon_i)'X_{ik}]} \phi(\epsilon_i; 0, \Sigma) \, d\epsilon_i.
\]

Let \(\Sigma = CC' \) denote the Cholesky factorization of \(\Sigma \), \(\tilde{\epsilon} \sim N(0_{K \times K}, I_{K \times K}) \), and \(\phi_K \) denote the \(N(0_{K \times K}, I_{K \times K}) \) probability density function. The standard Cholesky factorization applies to full rank matrices. However, when \(rank(\Sigma) = r < K \), there is a unique Cholesky factorization with \(K - r \) zeroes along the diagonal of \(C \). Therefore (2.1) can be written as
The integral in (2.2) reduces to an \(r \) dimensional integral when \(r < K \).

Define the choice indicator

\[
d_{ij} = \begin{cases}
1 & \text{if individual } i \text{ chooses alternative } j \\
0 & \text{otherwise}
\end{cases}
\]

Let \(\{d_{ij}, X_{ij} : i = 1,\ldots,n; j = 1,\ldots,J\} \) be the observed choice indicators and covariates of an independent random sample of \(n \) individuals. Define \(\theta = \text{vec}(\beta, C) \) and \(L = \text{dim}(\theta) \). The log-likelihood function for estimating \(\theta \) is

\[
\log L(\theta) = \sum_{i=1}^{n} \sum_{j=1}^{J} d_{ij} \log \pi_{ij}(\theta; X_{i1},\ldots,X_{iJ}).
\]

Define the maximum likelihood estimator

\[
\tilde{\theta} = \arg\max_{\theta} \log L(\theta).
\]

The penalized log-likelihood function that we treat here is

\[
(2.3) \quad \log L_p(\theta) = \sum_{i=1}^{n} \sum_{j=1}^{J} d_{ij} \log \pi_{ij}(\theta; X_{i1},\ldots,X_{iJ}) - \lambda_n \sum_{l=1}^{L} w_l | \theta_l |,
\]

where \(\lambda_n > 0 \) is a constant whose value may depend on \(n \) and the \(w_l \)'s are non-negative weights. Penalized maximum likelihood estimation with the adaptive LASSO penalty function consists of the following two steps.

Step 1: Let \(\tilde{\theta} \) be a \(n^{-1/2} \)-consistent estimator of \(\theta_0 \), possibly but not necessarily \(\tilde{\theta} \). Depending on how \(\tilde{\theta} \) is obtained, some of its components may be zero. Define weights

\[
\hat{w}_l = \begin{cases}
1/|\tilde{\theta}_l| & \text{if } \tilde{\theta}_l \neq 0 \\
0 & \text{if } \tilde{\theta}_l = 0.
\end{cases}
\]

Step 2: Let \(\theta^* \) be a \(L \times 1 \) vector whose \(\ell \) component is zero if \(\tilde{\theta}_\ell = 0 \) and whose remaining components are unspecified. Let \(\pi_{ij}(\theta^*, X_{i1},\ldots,X_{iJ}) \) be the probability that individual \(i \) chooses alternative \(j \) when the parameter value is \(\theta^* \). The second-step penalized log-likelihood function is

\[
(2.4) \quad \log L_p(\theta^*) = \sum_{i=1}^{n} \sum_{j=1}^{J} d_{ij} \log \pi_{ij}(\theta^*; X_{i1},\ldots,X_{iJ}) - \lambda_n \sum_{l=1}^{L} \hat{w}_l | \theta^*_l |.
\]
The second-step parameter estimator is
\[\hat{\theta} = \arg\max_{\theta} \log L_P(\theta^*) , \]
where maximization is over the non-zero components of \(\theta^* \). Thus, \(\hat{\theta} \) is obtained by setting any parameters estimated to be 0 in the first stage equal to 0 in the \(\pi_{ij} \)'s and penalty function, and maximizing the penalized log-likelihood function (2.4) over the remaining parameters. Asymptotic distributional properties of \(\hat{\theta} \) and functions of \(\hat{\theta} \) are described in Section 2.2.

2.2 Asymptotic Properties \(\hat{\theta} \)

This section describes asymptotic distributional properties of the second-step PMLE estimator \(\hat{\theta} \) and smooth functions of \(\hat{\theta} \). Let \(\theta_0 \) denote the true but unknown value of \(\theta \). Make the high-level assumption

Assumption 1: (i) \(\theta_0 \) is uniquely identified and (ii) \(n^{1/2}(\hat{\theta} - \theta_0) \rightarrow^d N(0, \Omega) \) as \(n \rightarrow \infty \), where \(\Omega \) is non-singular and equal to the inverse of the (non-singular) information matrix. Amemiya (1985) among many others gives primitive conditions under which assumption 1 holds.

Let \(\theta_{0k} \) denote the \(k \)'th component of \(\theta_0 \). Any parameter \(\theta_{0k} \) may be larger or smaller than the random sampling errors of the unpenalized MLE, which are \(O_p(n^{-1/2}) \). We represent this mathematically by allowing the components of \(\theta_0 \) to depend on \(n \). Call \(\theta_{0k} \) small if \(n^{1/2} |\theta_{0k}| \rightarrow 0 \) as \(n \rightarrow \infty \). Call \(\theta_{0k} \) large if \(|\theta_{0k}| > 0 \).

Assumption 2: All components of \(\theta_0 \) are either large or small.

Assumption 2 precludes the possibility that some components of \(\theta_0 \) are proportional to \(n^{-1/2} \) asymptotically. Leeb and Pötscher (2005, 2006) explain why this is necessary. Let \(A_s \) denote the set of small parameters and \(A_0 \) denote the set of large parameters. Under assumption 2, \(A_0 \) is the complement of \(A_s \). Let \(\hat{\theta}_k \) denote the \(k \) component of \(\hat{\theta} \).

Assumption 3: As \(n \rightarrow \infty \), \(\lambda_n \rightarrow \infty \) and \(n^{-1/2} \lambda_n \rightarrow 0 \).

Define \(\theta_{A_s} = \{\theta_{k0} : \theta_{k0} \in A_0\} \), \(\theta_{A_s} = \{\theta_{k0} : \theta_{k0} \in A_s\} \), \(\hat{\theta}_{A_s} = \{\hat{\theta}_k : \theta_{k0} \in A_s\} \), and \(\hat{\theta}_{A_0} = \{\hat{\theta}_k : \theta_{k0} \in A_0\} \). Let \(\overline{\theta}_{A_s} \) be the unpenalized MLE of \(\theta_{A_s} \) when \(\theta_{A_s} = 0 \) in model (2.1).

\[^{1} \theta_0 \] does not depend on \(n \) in the sampled population. Allowing some components of \(\theta_0 \) to depend on \(n \) is a mathematical device that keeps these components smaller than random sampling error asymptotically as \(n \rightarrow \infty \).
Assumption 4: As $n \to \infty$, $n^{1/2} (\hat{\theta}_A - \theta_A) \to^d N(0, \Omega)$ for some covariance matrix Ω.

Primitive conditions for assumption 4 are the same as those for assumption 1.

For any function $g(\theta)$, let $AMSE[g(\hat{\theta})]$ and $AMSE[g(\bar{\theta})]$, respectively, denote the asymptotic mean-square errors of $g(\hat{\theta})$ and $g(\bar{\theta})$ as estimators of $g(\theta_0)$. The following theorem gives the main theoretical results of this paper.

Theorem 2.1: Let assumptions 1-4 hold. As $n \to \infty$

(i) $P(\hat{\theta}_k = 0 \forall k$ such that $\theta_k \in A_S) \to 1$

(ii) $n^{1/2} (\hat{\theta}_A - \theta_A) \to^d N(0, \Omega)$

(iii) Let $g(\theta)$ be a continuously differentiable function of $\theta \in \mathbb{R}^K$. If A_S is non-empty, then $AMSE[g(\hat{\theta})] < AMSE[g(\bar{\theta})]$.

Parts (i) and (ii) of Theorem 2.1 state that PMLE estimation with the AL penalty function distinguishes correctly between large and small parameters with probability approaching 1 as $n \to \infty$. Part (ii) states that the PMLE estimates of the large parameters are oracle efficient. That is, they have the same asymptotic normal distribution that they would have if it were known which parameters in model (2.1) are large and small, the small parameters were set equal to zero, and the large parameters were estimated by maximum likelihood. Part(iii) states that if one or more parameters are small, then PMLE with the AL penalty function reduces the asymptotic mean-square estimation error of any continuously differentiable function of the model’s parameters.

3. COMPUTATION

Maximizing $\log L_p(\theta)$ presents several computational problems. There may be more than one local maximum of $\log L_p(\theta)$, the penalty function in $\log L_p(\theta)$ is not differentiable at all values of θ, and $\log L_p(\theta)$ includes high-dimensional integrals that must be evaluated numerically. We deal with the first of these problems by maximizing $\log L_p(\theta)$ repeatedly using a different initial value of θ each time.

We deal with the second by reformulating the optimization problem to one of maximizing a differentiable objective function subject to linear constraints. To do this, write $\theta = \theta^+ - \theta^-$, where θ^+ and θ^- are $L \times 1$ vectors whose components are non-negative. Then maximizing $\log L_p(\theta)$ in (2.3) is equivalent to solving the problem

$$
\maximize_{\theta, \theta^+, \theta^-} \sum_{i=1}^n \sum_{j=1}^J d_{ij} \log \pi_{ij}(\theta; X_{i1}, \ldots, X_{ij}) - \lambda_n \sum_{l=1}^L w_l (\theta^+_l + \theta^-_l)
$$
subject to
\[\theta = \theta^+ - \theta^- \]
\[\theta^+, \theta^- \geq 0, \]
where the last inequality holds component by component. This formulation avoids the need to maximize a non-smooth objective function and permits exploitation of advances in methods for solution of constrained optimization problems.

There is a large econometric literature on numerical methods for evaluating high-dimensional integrals. See, for example, McFadden (1989); McFadden and Ruud (1994); Geweke, Keane, and Runkle (1994); Hajivassiliou, McFadden, and Ruud (1996); Geweke and Keane (2001), and Train (2009). Available methods include Gaussian integration procedures, pseudo Monte Carlo procedures, quasi Monte Carlo procedures, and Markov chain Monte Carlo (MCMC) methods. More recently, Heiss and Winschel (2008), Skrainka and Judd (2011), and Knittel and Metaxoglou (2014) have suggested that sparse grid integration methods produce accurate approximations at low cost. To focus on the performance of the PMLE method, we have used a simple pseudo Monte Carlo integration method based on either 500 or 1500 draws from a normal random number generator.

We computed the solution to problem (3.1) by using a sequential quadratic programming algorithm for constrained optimization from the NAG Fortran Library (The Numerical Algorithms Group, Oxford U.K., www.nag.com). The algorithm is based on NPOPT, which is part of the SNOPT package described by Gill, Murray, and Saunders (2005).

4. MONTE CARLO EXPERIMENTS

This section reports the results of a Monte Carlo investigation of the numerical performance of the PMLE method. We used two designs. One is based on a small, hypothetical model. The other is based on data from the U.K. market for butter and margarine.

4.1 Design 1: A Hypothetical Model

This design consists of a model with \(J = 5 \) alternatives in the choice set and \(K = 20 \) covariates. The random coefficients are independent of one another, so their covariance matrix is diagonal. The means and variances of the coefficients are as follows:

<table>
<thead>
<tr>
<th>(k)</th>
<th>Mean ((\beta_k))</th>
<th>Variance (Var(\varepsilon_k))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 \leq k \leq 2)</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(3 \leq k \leq 5)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(6 \leq k \leq 20)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Thus, there are two non-zero random coefficients, three non-zero coefficients that are not random, and 15 non-random coefficients whose values are zero. The covariates are independently distributed as $N(0,1)$. The sample size is $n = 1000$.

We carried out PMLE estimation with 300 simulated datasets and chose the penalty parameter λ_n to minimize the Bayes Information Criterion (BIC) using the computational procedure described in the next paragraph. Wang, Li, and Tsai (2007) and Wang, Li, and Leng (2009) have derived properties of the BIC for estimating the penalty parameter in penalized estimation of a linear model. The theoretical properties of the BIC for PMLE have not been studied. We used a pseudo Monte Carlo numerical integration procedure with antithetic variates with 500 draws from a 10-dimensional random number generator. We assumed that only 10 covariates, including the first 5, have potentially non-zero variances. Therefore, 30 parameters were estimated.

We chose λ_n by solving (2.3) for the two steps of the adaptive LASSO procedure using each point in a rectangular grid of λ_n values. There were 5 grid points for step one of the adaptive LASSO procedure, 10 points for step 2, and 50 points in total. The values of the step 1 points ranged from 10^{-4} to 10^{-3}. The values of the step 2 points ranged from 10^{-4} to 10^{-2}. The logarithms of the values in each dimension of the grid were equally spaced. We report results for the grid point of λ_n values that minimizes the BIC in step 2.

The results of the experiment are shown in Table 1. The average number of non-zero parameters in the model estimated by PMLE is 9.667, compared to 30 potentially non-zero parameters in the full model. With probability 1, unconstrained maximum likelihood estimation cannot yield estimates of zero, so unconstrained maximum likelihood estimation gives 30 non-zero parameter estimates. The mean-square errors (MSE’s) of the PMLE estimates of the means of the non-zero slope coefficients (the non-zero β_k’s) are less than half the MSE’s of unconstrained maximum likelihood estimates. The MSE’s of the PMLE estimates of the standard deviations are 90% of the MSE’s of the unconstrained maximum likelihood estimates. In summary, PMLE selects a smaller model and gives estimates of important parameters with much smaller mean-square errors than does unconstrained maximum likelihood estimation.

4.2 Design 2: Butter and Margarine

This design is based on data about the UK market for butter and margarine. The data were obtained by the research company Kantar and used by Griffith, Nesheim, and O’Connell (2015). The data contain information on 10,102 households that shopped at supermarkets in the U.K. The data
include demographic characteristics of each household (e.g., household size, age, employment status, and average weekly grocery expenditure), product characteristics (e.g., brand, package size, and saturated fat content), and consumer purchase choices. On each shopping trip, each consumer chose either not to buy any product or to buy one of 47 products available in the market. Thus, the number of options in each consumer’s choice set is $J = 48$.

The Kantar data contain $K = 50$ covariates, including product fixed effects. Thus, the choice model of equation (2.2) contains 99 parameters. There are 49 mean parameters (the components of β in (2.2)) and 50 variance parameters. The mean parameter for the outside option of no purchase is normalized to be zero. In the Monte Carlo experiment, we set the parameters equal to the penalized maximum likelihood estimates obtained from a random sample of 5000 observations from the Kantar data. The resulting model (the “true model”) has 37 non-zero mean parameters and four non-zero random coefficient variance parameters. The remaining 58 parameters of the true model are zero. We used this model to simulate the product choices of 5000 hypothetical households. We used the simulated choice data to estimate the choice model’s 99 parameters using unpenalized maximum likelihood (MLE), penalized maximum likelihood (PMLE), and the oracle MLE (maximum likelihood estimation of only the 41 non-zero parameters of the true model and the remaining parameters set equal to zero). We used 1500 antithetic variate draws from a multivariate normal random number generator to compute the numerical integral.

Table 2 summarizes results of 145 Monte Carlo replications of the foregoing simulation procedure. The number of replications was limited by the long computing time required for each replication. Columns 3-5 show the MSEs of the estimates of the non-zero parameters of the true model using each estimation method. The parameter β_1 is the mean price coefficient in the model. In all cases, the MSE of the PMLE is much smaller than that of the unpenalized MLE and close to the MSE of the oracle MLE. For example, the MSE of the PMLE of β_1 is 0.084 compared to 1.50 for the unpenalized MLE and 0.071 for the oracle MLE. The median number of non-zero parameters in the selected model is 37, and 80 percent of the replications select a model with 34-40 non-zero slope parameters. The slope of the price variable is non-zero in all replications.

We also computed the own-price elasticities of the 47 products (excluding no-purchase option) in each Monte Carlo replication. The MSE’s of 37 of the 47 elasticity estimates obtained by PMLE were less than the MSE’s of the corresponding elasticity estimates obtained by MLE. The median ratio of the MSEs of the MLE and PMLE elasticity estimates is 2.786. That is the median value of (MSE of MLE estimates)/(MSE of PMLE estimates) is 2.786. The median ratio of the MSEs of the PMLE and oracle MLE elasticity estimates is 1.021. Thus, the PMLE elasticity estimates, like the PMLE parameter
estimates, are more accurate than the estimates obtained from unpenalized MLE and close to the oracle estimates.

To illustrate the performance of PMLE in policy analysis, we used the PMLE, unpenalized MLE, and oracle estimates to evaluate effects of a 20% value added tax (VAT) on butter and margarine. Currently, food purchases in the UK are exempt from the VAT. The VAT increases the prices of butter and margarine, which reduces demand for these products, consumer welfare, and revenues from the sale of butter and margarine. We computed four resulting economic effects. The first is the reduction in consumer welfare as measured by the compensating income variation for the VAT. The second is the reduction in revenues to sellers of butter and margarine. The third is tax revenues resulting from the VAT. The fourth is the changes in the market shares of the products. We assumed that the pre-tax prices of butter, margarine, and any substitute products remain unchanged.

We now describe how we computed the foregoing effects. Let \(X_{ij}^{\text{notax}} \) denote the values of the explanatory variables for product \(j \) in model (2.2) before the VAT and \(X_{ij}^{\text{tax}} \) denote the values of the same variables after the prices of butter and margarine have been increased by 20%. Let \(p_j \) denote the before-VAT price of product \(j \), \(\tau \) denote the tax rate, and \(p_j^{\text{tax}} = (1 + \tau)p_j \) denote the price after the VAT has been imposed. Denote the mean and random component of the coefficient of price in (2.2) by \(\beta_1 \) and \(\tilde{\epsilon}_1C_{11} \), respectively. The consumer compensating variation for the tax increase is (Small and Rosen 1981)

\[
CV(\beta, C) = \sum_{i=1}^{5000} \int \left[\log \left(\sum_{j=0}^{47} \exp(\beta + \tilde{\epsilon}'C')X_{ij}^{\text{notax}} \right) - \log \left(\sum_{j=0}^{47} \exp(\beta + \tilde{\epsilon}'C')X_{ij}^{\text{tax}} \right) \right] \phi(\tilde{\epsilon})d\tilde{\epsilon}.
\]

The change in revenues is

\[
\Delta R = \sum_{j=1}^{47} \sum_{i=1}^{5000} p_j \left[\pi_j(\beta, \Sigma; X_j^{\text{tax}}) - \pi_j(\beta, \Sigma; X_j^{\text{notax}}) \right].
\]

The change in the market share of product \(j \) is

\[
\Delta S_j = \sum_{i=1}^{5000} \left[\pi_j(\beta, \Sigma; X_j^{\text{tax}}) - \pi_j(\beta, \Sigma; X_j^{\text{notax}}) \right].
\]

\(\Delta R \) is the change the revenues of sellers after remitting tax revenues of \(\tau R_{\text{tax}} \) to the government and, therefore, does not include the factor \(1 + \tau \). The sums are over the 47 products and 5000 individuals in the experiment.

Table 3 shows the MSEs of the estimated effects of the VAT. The table shows the median MSEs of the estimated changes in market shares, not the MSEs of the estimated changes in the shares of
individual products. The MSEs of the unpenalized MLE and PMLE estimates of the compensating variation are similar. The MSEs of the PMLE estimates of the change in revenues to sellers (in pounds per trip per individual) and tax revenues are smaller than the MSEs of the unpenalized MLE estimates and closer to the oracle estimates. The median MSE of the PMLE estimates of the changes in market shares is smaller than the median MSE of the unpenalized MLSE estimates and close to the median MSE of the oracle estimate.

5. EMPIRICAL APPLICATION

This section summarizes the results of applying the PMLE and unpenalized MLE methods to the full Kantar data set that is described in the first paragraph of Section 4.2. We compare the own price elasticities obtained with the two methods and the results of the tax experiment described in Section 4.2. As is explained in the second paragraph of Section 4.2, the model has 99 parameters, including 49 means of the random slope coefficients and 50 standard deviations. All of the unpenalized parameter estimates are non-zero, and the empirical Hessian matrix has full rank. Only 34 of the penalized estimates are non-zero, including 30 slope coefficients and 4 standard deviation parameters.

Table 4 shows summary statistics for own price elasticities. The PMLE elasticity estimates are smaller in magnitude on average and less dispersed than the unpenalized MLE estimates. Figure 1 shows a plot of the PMLE elasticity estimates against the unpenalized MLE estimates along with the regression line obtained by using ordinary least squares (OLS) to estimate the model

\[
PMLE \text{ Estimate } = a + b MLE \text{ Estimate } + U; \quad E(U) = 0.
\]

The relation between the two sets of estimates appears to be scatter around a straight line. The slope of the line is \(b = 0.4397 \).

Table 5 shows summary statistics for changes in market shares and product revenues in (in units of pounds per shopping trip per individual) the tax experiment. The mean change in market share is zero because the sum of the shares must equal one. The PMLE estimates of the changes in market shares and revenues are less dispersed than the unpenalized MSE estimates. Figure 2 shows a plot of the PMLE estimates of changes in market shares against the unpenalized MLE estimates along with the regression line obtained by applying OLS to (5.1). The slope of the line is \(b = 1.368 \). Figure 3 shows a similar plot for changes in revenues. The slope of the line is 1.723. The PMLE and unpenalized MLE estimates of the compensating variation for the tax increase are 0.3405 and 0.3452 pounds per shopping trip, respectively. The PMLE and MLE estimates of tax revenue, respectively, are 0.3234 and 0.3301 pounds per shopping trip. The two methods give similar estimates of the compensating variation and tax revenues.
6. CONCLUSIONS

This paper has been concerned with estimating a random coefficients logit model in which the distribution of each coefficient is characterized by finitely many parameters. Some of these parameters may be zero or close to zero. We call such parameters “small.” The paper has given conditions under which with probability approaching one as the sample size approaches infinity, penalized maximum likelihood estimation (PMLE) with the adaptive LASSO (AL) penalty function distinguishes correctly between large and small parameters in a random-coefficients logit model. The estimates of the large parameters are oracle efficient. If one or more parameters are small, then PMLE with the AL penalty function reduces the asymptotic mean-square estimation error of any continuously differentiable function of the model’s parameters, such as a predicted market share. The paper has described a method for computing the PMLE of a random-coefficients logit model. It has presented the results of Monte Carlo experiments that illustrate the numerical performance of the PMLE. The paper has also presented the results of PMLE estimation of a random-coefficients logit model of choice among brands of butter and margarine in a British grocery chain.

The Monte Carlo results show that PMLE estimates have lower mean-square errors than unpenalized MLE estimates with sample sizes similar to those used in marketing and empirical industrial organization. PMLE estimation is tractable computationally, and the PMLE method can be modified easily for use in generalized method of moments estimation.

7. PROOF OF THEOREM 2.1

Parts (i) and (ii): Let \(I_{\text{full}} \) denote the information matrix of model (2.2). Let \(\hat{\theta}_A \) and \(\hat{\theta}_sA \) denote the subvectors of \(\hat{\theta} \) corresponding to \(\theta_A \) and \(\theta_sA \). Define the vector \(u_0 \) by

\[
\hat{\theta} = \theta_0 + n^{-1/2}u.
\]

Let \(\theta_A \) be the first \(L_0 \) components of \(\theta_0 \) and \(\theta_sA \) be the remaining \(L - L_0 \) components. Order the components of \(u \) similarly. Define
\[D_n(u) = \log L_P(\theta_{\hat{A}_b} + n^{-1/2}u) - \log L_P(\theta_b) \]
\[+ \lambda_n \left[\sum_{\ell=1}^L |\hat{\theta}_{\ell}^{-1}| \left(|\theta_{0\ell} + n^{-1/2}u_{\ell} | - |\theta_{0\ell} | \right) + \sum_{\ell=L_b+1}^L w_{\ell} |n^{-1/2}u_{\ell} | \right] \]
\[\leq n^{-1/2} \frac{\partial \log L_P(\theta_0)}{\partial \theta'} u - (1/2)u'f_{\text{full}}u[1 + o_p(1)] \]
\[+ \lambda_n \left[\sum_{\ell=1}^L |\hat{\theta}_{\ell}^{-1}| \left(|\theta_{0\ell} + n^{-1/2}u_{\ell} | - |\theta_{0\ell} | \right) + \sum_{\ell=L_b+1}^L w_{\ell} |n^{-1/2}u_{\ell} | \right]. \]

Write the penalty term above as
\[n^{-1/2} \lambda_n \left[\sum_{\ell=1}^L |\hat{\theta}_{\ell}^{-1}| n^{-1/2} \left(|\theta_{0\ell} + n^{-1/2}u_{\ell} | - |\theta_{0\ell} | \right) + \sum_{\ell=L_b+1}^L w_{\ell} |u_{\ell} | \right] \]

Zou (2006, Theorem 2) shows that if \(\theta_{0\ell} \neq 0 \), then
\[|\hat{\theta}_{\ell}^{-1}| n^{1/2} \left(|\theta_{0\ell} + n^{-1/2}u_{\ell} | - |\theta_{0\ell} | \right) \rightarrow^p u_{\ell} \text{sgn}(\theta_{0\ell}) \],
where \(\text{sgn}(v) \) for any scalar \(v \) equals 1, -1, or 0 according to whether \(v \) is positive, negative, or zero. Therefore, the terms of the penalty function corresponding to components of \(\theta_{\hat{A}_b} \) converge in probability to 0. Zou (2006) also shows that the terms in the penalty function corresponding to \(\theta_{\hat{A}_b} \) diverge to \(\infty \). If the components of \(u \) corresponding to \(\theta_{\hat{A}_b} \) are non-zero, \(D_n \) is dominated by the penalty term, which increases without bound as \(n \rightarrow \infty \). If the components of \(u \) corresponding to \(\theta_{\hat{A}_b} \) are zero, \(D_n \) is dominated asymptotically by \(\log L_P(\theta_{\hat{A}_b} + n^{-1/2}u_0,0) - \log L(\theta_{\hat{A}_b},0) \), where \(u_0 \) denotes the components of \(u \) corresponding to components of \(\theta_{\hat{A}_b} \) and to argument 0 corresponds to \(\theta_{\hat{A}_b} \). Therefore, standard results for maximum likelihood estimates yield parts (i) and (ii). Q.E.D.

Part (iii): Let \(\Omega_0 \) and \(\Omega \), respectively, be the covariance matrices of the asymptotic normal distributions of \(n^{1/2}(\hat{\theta} - \theta_{\hat{A}_b}) \) and \(n^{1/2}(\theta - \theta_0) \). It follows from \(\theta_{\hat{A}_b} = o(n^{-1/2}) \) and an application of the delta method that
\[\text{AMSE}[g(\hat{\theta})] = \frac{\partial g(\theta_0)}{\partial \theta'} \Omega_0 \frac{\partial g(\theta_0)}{\partial \theta} \]
onlyx{AMSE}[g(\hat{\theta})] = \frac{\partial g(\theta_0)}{\partial \theta'} \Omega \frac{\partial g(\theta_0)}{\partial \theta}. \]
Therefore, it suffices to show that $\Omega - \Omega_0$ is positive definite. Partition I_{full} as

$$I_{\text{full}} = \begin{pmatrix} I_{11} & I_{12} \\ I_{12}' & I_{22} \end{pmatrix},$$

where I_{11} is the submatrix of I_{full} corresponding to θ_{A_r}, I_{22} is the submatrix of components of I_{full} corresponding to components of θ_{A_r}, and I_{12} is the submatrix corresponding to the covariance of the estimators of θ_{A_r} and θ_{A_r}. Then

$$\bar{\Omega} = I_{\text{full}}^{-1} = I_{11}^{-1} + I_{11}^{-1} I_{12} \left(I_{22} - I_{12}' I_{11}^{-1} I_{12} \right)^{-1} I_{12}' I_{11}^{-1} > I_{11}^{-1} = \Omega_0.$$

Q.E.D.
REFERENCES

Table 1: Results of Monte Carlo Experiments with Design 1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>MSE of PMLE Estimate</th>
<th>MSE of Unpenalized MLE Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>0.016</td>
<td>0.038</td>
</tr>
<tr>
<td>β_2</td>
<td>0.016</td>
<td>0.038</td>
</tr>
<tr>
<td>β_3</td>
<td>0.011</td>
<td>0.036</td>
</tr>
<tr>
<td>β_4</td>
<td>0.011</td>
<td>0.035</td>
</tr>
<tr>
<td>β_4</td>
<td>0.010</td>
<td>0.035</td>
</tr>
<tr>
<td>σ_1</td>
<td>1.722</td>
<td>1.926</td>
</tr>
<tr>
<td>σ_2</td>
<td>1.733</td>
<td>1.926</td>
</tr>
</tbody>
</table>

| Average number of non-zero parameters in the model selected by PMLE | 9.667 |
| Average value of λ in step 2 | 0.002 |

a. Based on 300 Monte Carlo replications. σ_1 and σ_2, respectively, are the standard deviations of ε_1 and ε_2. The correct model is the model specified in design 1 with the parameter values specified in that design. The model selected by PMLE contains the correct model if the PMLE estimates of the non-zero parameters of the correct model are not zero.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Definition of variable</th>
<th>MSE of PMLE Estimate</th>
<th>MSE of Unpenalized MLE Estimate</th>
<th>MSE of Oracle MLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>Price</td>
<td>0.08405</td>
<td>1.499</td>
<td>0.07094</td>
</tr>
<tr>
<td>β_2</td>
<td>Index of monthly advertising expenditure</td>
<td>0.002260</td>
<td>0.05067</td>
<td>0.003586</td>
</tr>
<tr>
<td>β_3</td>
<td>Square of index of monthly advertising expenditure</td>
<td>0.0006978</td>
<td>0.1094</td>
<td>0.00224</td>
</tr>
<tr>
<td>β_4</td>
<td>Dummy variable equal to 1 for 500 gram pack and 0 otherwise</td>
<td>0.7336</td>
<td>28.75</td>
<td>0.4579</td>
</tr>
<tr>
<td>β_5</td>
<td>Dummy variable equal to 1 for 1000 gram pack and 0 otherwise</td>
<td>4.314</td>
<td>48.92</td>
<td>3.111</td>
</tr>
<tr>
<td>β_6</td>
<td>Grams of saturated fat per pack</td>
<td>0.001699</td>
<td>0.02799</td>
<td>0.001329</td>
</tr>
<tr>
<td>β_7</td>
<td>Dummy variable equal to 1 if household size is 2 and makes no purchase and 0 otherwise</td>
<td>0.008787</td>
<td>1.576</td>
<td>0.06006</td>
</tr>
<tr>
<td>β_8</td>
<td>Dummy variable equal to 1 if household size is 3 and makes no purchase and 0 otherwise</td>
<td>0.1536</td>
<td>2.234</td>
<td>0.03704</td>
</tr>
<tr>
<td>β_9</td>
<td>Dummy variable equal to 1 if household size is 4 and makes no purchase and 0 otherwise</td>
<td>0.1535</td>
<td>0.9506</td>
<td>0.04824</td>
</tr>
<tr>
<td>β_{10}</td>
<td>Brand-specific constant</td>
<td>0.1350</td>
<td>1.241</td>
<td>0.07290</td>
</tr>
<tr>
<td>β_{11}</td>
<td>Brand-specific constant</td>
<td>0.3942</td>
<td>30.92</td>
<td>0.4635</td>
</tr>
<tr>
<td>β_{12}</td>
<td>Brand-specific constant</td>
<td>0.8753</td>
<td>79.88</td>
<td>0.6541</td>
</tr>
<tr>
<td>β_{13}</td>
<td>Brand-specific constant</td>
<td>2.527</td>
<td>130.4</td>
<td>1.554</td>
</tr>
<tr>
<td>β_{14}</td>
<td>Brand-specific constant</td>
<td>2.140</td>
<td>34.59</td>
<td>1.517</td>
</tr>
<tr>
<td>β_{15}</td>
<td>Brand-specific constant</td>
<td>0.7431</td>
<td>68.58</td>
<td>0.5094</td>
</tr>
<tr>
<td>β_{16}</td>
<td>Brand-specific constant</td>
<td>0.7388</td>
<td>13.89</td>
<td>0.3363</td>
</tr>
<tr>
<td>β_{17}</td>
<td>Brand-specific constant</td>
<td>0.2193</td>
<td>39.52</td>
<td>0.2519</td>
</tr>
<tr>
<td>β_{18}</td>
<td>Brand-specific constant</td>
<td>1.006</td>
<td>64.28</td>
<td>0.7423</td>
</tr>
<tr>
<td>β_{19}</td>
<td>Brand-specific constant</td>
<td>2.480</td>
<td>42.31</td>
<td>0.3746</td>
</tr>
<tr>
<td>β_{20}</td>
<td>Brand-specific constant</td>
<td>3.004</td>
<td>73.37</td>
<td>0.7231</td>
</tr>
<tr>
<td>β_{21}</td>
<td>Brand-specific constant</td>
<td>3.652</td>
<td>188.3</td>
<td>2.263</td>
</tr>
<tr>
<td>β_{22}</td>
<td>Brand-specific constant</td>
<td>2.966</td>
<td>79.01</td>
<td>1.533</td>
</tr>
<tr>
<td>β_{23}</td>
<td>Brand-specific constant</td>
<td>7.3899</td>
<td>122.5</td>
<td>3.946</td>
</tr>
<tr>
<td>β_{24}</td>
<td>Brand-specific constant</td>
<td>2.275</td>
<td>79.96</td>
<td>1.202</td>
</tr>
<tr>
<td>β_{25}</td>
<td>Brand-specific constant</td>
<td>0.8110</td>
<td>37.31</td>
<td>0.4154</td>
</tr>
<tr>
<td>β_{26}</td>
<td>Brand-specific constant</td>
<td>1.452</td>
<td>143.9</td>
<td>0.8864</td>
</tr>
<tr>
<td>β_{27}</td>
<td>Brand-specific constant</td>
<td>0.1767</td>
<td>53.87</td>
<td>0.1712</td>
</tr>
<tr>
<td>β_{28}</td>
<td>Brand-specific constant</td>
<td>0.1901</td>
<td>34.61</td>
<td>0.2385</td>
</tr>
<tr>
<td>β_{29}</td>
<td>Brand-specific constant</td>
<td>0.5416</td>
<td>20.20</td>
<td>0.5505</td>
</tr>
<tr>
<td>β_{30}</td>
<td>Brand-specific constant</td>
<td>0.2073</td>
<td>48.99</td>
<td>0.2453</td>
</tr>
<tr>
<td>β_{31}</td>
<td>Brand-specific constant</td>
<td>0.3410</td>
<td>58.10</td>
<td>0.3325</td>
</tr>
<tr>
<td>β_{32}</td>
<td>Brand-specific constant</td>
<td>1.184</td>
<td>70.28</td>
<td>0.6190</td>
</tr>
<tr>
<td>β_{33}</td>
<td>Brand-specific constant</td>
<td>0.1670</td>
<td>112.8</td>
<td>0.1521</td>
</tr>
<tr>
<td>β_{34}</td>
<td>Brand-specific constant</td>
<td>1.176</td>
<td>100.1</td>
<td>0.7542</td>
</tr>
<tr>
<td>β_{35}</td>
<td>Brand-specific constant</td>
<td>0.9511</td>
<td>151.8</td>
<td>0.6271</td>
</tr>
<tr>
<td>β_{36}</td>
<td>Brand-specific constant</td>
<td>1.331</td>
<td>132.0</td>
<td>0.8442</td>
</tr>
<tr>
<td>β_{37}</td>
<td>Brand-specific constant</td>
<td>0.2824</td>
<td>120.0</td>
<td>0.1681</td>
</tr>
<tr>
<td>σ_1</td>
<td>Standard deviation of coefficient of price</td>
<td>0.1537</td>
<td>1.258</td>
<td>0.1311</td>
</tr>
<tr>
<td>σ_6</td>
<td>Standard deviation of coefficient of saturated fat per pack</td>
<td>0.06436</td>
<td>1.968</td>
<td>0.005400</td>
</tr>
<tr>
<td>σ_{23}</td>
<td>Standard deviation of coefficient of a brand-specific constant</td>
<td>8.997</td>
<td>48.18</td>
<td>4.494</td>
</tr>
<tr>
<td>σ_{38}</td>
<td>Standard deviation of utility of no-purchase option for households of at least 5 persons</td>
<td>17.23</td>
<td>33.13</td>
<td>12.34</td>
</tr>
</tbody>
</table>

Average number of non-zero parameters in the model selected by PMLE: 36.90

Average value of λ in step 2: 0.002611

Based on 145 Monte Carlo replications.
Table 3: Mean Square Errors of Estimated Effects of the VAT in Monte Carlo Design 2

<table>
<thead>
<tr>
<th>Effect</th>
<th>MSE Using MLE</th>
<th>MSE Using PMLE</th>
<th>MSE Using Oracle Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compensating Variation</td>
<td>0.0147</td>
<td>0.0151</td>
<td>0.00980</td>
</tr>
<tr>
<td>Change in Revenues to Sellers</td>
<td>0.0281</td>
<td>0.00793</td>
<td>0.00595</td>
</tr>
<tr>
<td>Tax Revenues</td>
<td>0.0186</td>
<td>0.0171</td>
<td>0.0110</td>
</tr>
<tr>
<td>Median MSE of Changes Market Share</td>
<td>4.71×10⁻⁷</td>
<td>1.88×10⁻⁷</td>
<td>1.68×10⁻⁷</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean Elasticity</th>
<th>Standard Deviation of Elasticity</th>
<th>Maximum</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLE</td>
<td>-2.811</td>
<td>0.9816</td>
<td>-1.320</td>
<td>-4.611</td>
</tr>
<tr>
<td>PMLE</td>
<td>-2.450</td>
<td>0.6412</td>
<td>-0.851</td>
<td>-4.091</td>
</tr>
</tbody>
</table>

Table 4: SUMMARY STATISTICS FOR OWN PRICE ELASTICITIES

Table 5: SUMMARY STATISTICS FOR CHANGES IN MARKET SHARES AND PRODUCT REVENUE
Figure 1: PMLE and unpenalized MLE estimates of own price elasticities
Figure 2: PMLE and unpenalized MLE estimates of changes in market shares
Figure 3: PMLE and unpenalized MLE estimates of changes in revenue per trip per individual