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Abstract

Moment restriction semiparametric models, where both the dimension of parameter

and the number of restrictions are divergent and an unknown function is involved, are s-

tudied using the generalized method of moments (GMM) and sieve method dealing with

the nonparametric parameter. The consistency and normality for the GMM estimators

are established. Meanwhile, a new test statistic is proposed for over-identification is-

sue, which also is workable for the traditional moment restriction models. In addition,

the potential sparsity under our setting is investigated via the combination of GMM

methodology and penalty function approach. Numerical examples are used to verify

the established theory.

Key works: Generalized method of moments, high dimensional models, moment

restriction, over-identification, sieve method, sparsity

JEL classification: C12, C14, C22, C30

1 Introduction and examples

We consider a class of moment restriction models where there are many Euclidean valued pa-

rameters as well as unknown infinite dimensional functional parameters. The setting includes
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as a special case the partial linear regression model, Robinson [33], except in our case the

number of covariates in the linear part may be large, i.e., increase to infinity with sample size.

For example, there are often many binary covariates whose effect can be restricted to be lin-

ear without a great loss of generality. Our model framework specifies which variables affect

the outcome in a linear fashion and which variables affect the outcome nonlinearly. Non-

parametric and “parametric” components can both be of interest in applications but present

different statistical issues. Efficiency bounds and their achievability are quite different be-

tween the two cases. Inference procedures also differ substantially. In our framework, the

model components are known beforehand and are clearly demarcated, and we can compare

our results for the two different components with existing results in the relevant literatures.

However, the parametric component itself is growing in complexity, which raises some new

issues. We will use the Generalized Method of Moments (GMM) to deliver simultaneous

estimation of all unknown quantities from a large dimensional moment vector. There is a

considerable literature on GMM in parametric cases and recent work has mainly focussed on

the extension to either many moment conditions (Newey and Windmeijer [28], for example)

or to the case where the number of Euclidean parameters is finite but there are unknown

function-valued parameters (see, for example, Chen and Liao [11]; Chen et al. [12]). We will

provide inference techniques for the parametric and nonparametric components of our model.

Suppose that

E[m(Vi, α
ᵀ
Xi, g(Zi))] = 0, (1.1)

for i = 1, . . . , n, where m is a known vector of functions whose dimension q is large, i.e., q =

q(n)→∞ as n→∞. Here, α is an unknown Euclidean valued parameter whose dimension

p = p(n) → ∞ as n → ∞, while g is an unknown smooth function. The observed vector

variable Vi typically represents a dependent variable and possible instrumental variables,

while the observed vectors Xi and Zi are explanatory variables, where Zi, Vi are of finite

dimension, but the dimension of Xi may diverge. We will consider the case where the

parameter dimension p grows to infinity but is smaller than n, similar to Portnoy [30], Portnoy

[31] and Mammen [25]. This is the case in many applications. The moment restriction model

(1.1) features high dimensionality in two folds: a high dimensional Euclidean parameter (α)

that shows up in a single-index form, and a zero-mean function m(·) with divergent dimension

that usually represents an error term. In addition, it includes an infinite dimensional unknown

function g(·). Together this represents a new framework in the literature.

We suppose that a sample (Vi, X
ᵀ

i , Z
ᵀ

i )ni=1 is observed. We shall simultaneously estimate

α and g in parameter spaces defined below. As the function g can be regarded as an element

in some function space, which is infinite dimensional, all parameters are of high dimension.

Moreover, we are also interested in transformations of α and functionals of g for which we
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have plug-in estimators once we obtain the estimates of α and g. Chen et al. [12] study a

fixed-dimensional moment restriction model containing an unknown function. The estimation

strategy can be two step or profiled two-steps depending on the context. A similar approach

is used again in Chen and Liao [11]. Kernel estimation techniques generally require an

additional (albeit related) estimating equation and either two-step or profile methods are

common, see, for example, Powell [32].

To illustrate the proposal of model (1.1), we give the following examples.

Example 1.1 (Conditional moment restrictions): LetWi be a sub-vector of (X
ᵀ

i , Z
ᵀ

i )
ᵀ

and

ρ(Yi, α
ᵀ
Xi, g(Zi)) be a known J-dimensional vector of generalized residual function. Then,

(α, g) is determined by a conditional moment restriction

E[ρ(Yi, α
ᵀ
Xi, g(Zi))|Wi] = 0, almost surely.

Let Φk(w) = (h1(w), . . . , hk(w)) be a vector of functions that can approximate any square

integrable function ofW in some sense arbitrarily as k →∞. Then, the conditional restriction

implies

E[ρ(Yi, α
ᵀ
Xi, g(Zi))⊗ Φk(Wi)] = 0.

Denote m(Vi, α
ᵀ
Xi, g(Zi)) = ρ(Yi, α

ᵀ
Xi, g(Zi)) ⊗ Φk(Wi) where Vi = (Yi,W

ᵀ

i )
ᵀ
. Notice

that the dimension of m function is Jk which increases with k. Therefore, the pair (α, g) can

be solved from the unconditional moment equation E[m(Vi, α
ᵀ
Xi, g(Zi))] = 0. For example,

suppose that Λ(Zi) = α
ᵀ
Xi + εi, where Λ(·) is an unknown monotone function and (Vi, Xi)

are observed. Under the conditional moment restriction E(ε|W ) = 0 for some vector of

instrumental variables W we may obtain unconditional moment restrictions like (1.1) with

Λ being the unknown function of interest.

Example 1.2 (High dimensional partially linear endogenous model): Let Yi = α
ᵀ
Xi +

g(Zi) + ei, i = 1, . . . , n, where α ∈ Rp and ei is an error term such that E[ei] = 0 for

all i. Here, (Xi, Zi) is endogenous in the sense that E[ei|Xi, Zi] 6= 0. In the case where

the dimensionality of α is fixed, there are various results available in the literature (see, for

example, Robinson [33]; Gao and Liang [19]; Gao and Shi [20]; Härdle et al. [24]). To deal

with the endogeneity, let Wi be instrumental variable and define a set of valid instruments

λi = λ(Wi) with dimension q and q > p.

Denote m(Vi, α
ᵀ
Xi, g(Zi)) = (Yi − α

ᵀ
Xi − g(Zi))λi(Wi) with Vi = (Yi,W

ᵀ

i )
ᵀ
. Then, we

have the moment condition E[m(Yi,Wi, α
ᵀ
Xi, g(Zi))] = 0, which can be used to identify the

parameter α and nonparametric function g(·).

Example 1.3 (Discrete maximum likelihood): Suppose that Yi assumes either 0 or 1,

and

P (Yi = 1|Xi, Zi) = F (α
ᵀ
Xi + g(Zi)),
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for i = 1, . . . , n, where α,Xi ∈ Rp and Zi ∈ R. The log likelihood function is

ln
n∏
i=1

F Yi(α
ᵀ
Xi + g(Zi))[1− F (α

ᵀ
Xi + g(Zi))]

1−Yi .

A sieve method can be used to estimate the unknown g(·), along with the estimate of α.

Suppose that the function g(·) can be approximated arbitrarily in some sense by a linear

combination of k known functions wrapped into a column vector Φk(·), i.e. g(z) − βᵀ
Φk(z)

is approaching zero in some sense as k → ∞. Thus, the estimate of (α, g) can be obtained

through maximizing

Qn(α, β) := ln
n∏
i=1

F Yi(α
ᵀ
Xi + β

ᵀ
Φk(Zi))[1− F (α

ᵀ
Xi + β

ᵀ
Φk(Zi))]

1−Yi ,

to have α̂ and β̂ (hence naturally ĝ(z) = β̂
ᵀ
Φk(z)). The first order condition gives

∂Qn

∂α
=

n∑
i=1

[Yi − F (α
ᵀ
Xi + β

ᵀ
Φk(Zi))]F (α

ᵀ
Xi + β

ᵀ
Φk(Zi))

F (αᵀXi + βᵀΦk(Zi))[1− F (αᵀXi + βᵀΦk(Zi))]
Xi = 0,

∂Qn

∂β
=

n∑
i=1

[Yi − F (α
ᵀ
Xi + β

ᵀ
Φk(Zi))]F (α

ᵀ
Xi + β

ᵀ
Φk(Zi))

F (αᵀXi + βᵀΦk(Zi))[1− F (αᵀXi + βᵀΦk(Zi))]
Φk(Zi) = 0,

for i = 1, . . . , n, which can be viewed as a sample version of moment condition, with m(·)
defined properly, E[m(Yi, Xi,Φk(Zi), α

ᵀ
Xi, β

ᵀ
Φk(Zi))] = 0.

Our strategy for dealing with the specification of model (1.1) is simple. Suppose that

g(·) belongs to a suitable Hilbert space. We then expand the function g(·) into an infinite

orthogonal series in terms of a basis in the Hilbert space, {ϕj(z)}, say. As a result, g(z) can

be approximated by the partial sum
∑k−1

j=0 βjϕj(z) in the norm of the space. In this way, the

unknown function is completely parameterized, which enables us to estimate the parameter

vector α and the function g(·) in model (1.1) simultaneously. This procedure also avoids

high level assumptions in our study. By contrast, some high level conditions are engaged in

the relevant literature, such as Chen et al. [12] and Han and Phillips [22]. In addition, our

approach can be classified as a one-step GMM method, in contrast with the two-step GMM

study in the literature that engages an initial estimator. See, for example, Chen and Liao

[11].

In addition to the estimation of model (1.1), we also propose a new test statistic, to

the best of our knowledge, in order to tackle over-identification issue. Moreover, given the

divergence of the number of both regressors and moment restriction, it is desirable to consider

the situation for model (1.1) that possesses sparsity. That is, p > n but α contains plenty

of zeros except that some so-called important coefficients are nonzero. To estimate the

parameters of interest under sparsity, often a penalty function should be combined with the
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objective function. It can be seen in the sequel that the variable selection and estimation

can be done simultaneously.

The rest of the paper is organized as follows. Section 2 gives the estimation procedure;

Section 3 provides the asymptotic theory for the estimator proposed in the preceding section;

Section 4 studies the over-identification issue. The sparsity in our model is investigated in

Section 5, followed by numerical evidence in Section 6; and the last section then concludes.

Throughout, ‖ · ‖ can be either Euclidean norm for vector or Frobenius norm for matrix,

or the norm of functions in function space that would not arise any ambiguity in the context;

⊗ denotes Kronecker product for matrices or vectors; := means equal by definition; Ir is the

identity matrix of dimension r.

2 Estimation procedure

The unknown function g(z) can be a vector of functions or a multivariate function. Both of

these contexts are useful in practice and they may be dealt with similarly using sieve method.

For the sake of easy exposition, however, we suppose in this paper that g(z) is a single

multivariate function defined on Z ⊂ Rd. Let g(z) ∈ L2(Z, π(z)) = {f(z) :
∫
Z f

2(z)π(z)dz <

∞} a Hilbert function space, where π(z) is a user-chosen density function on Z. The choice

of the density π(z) relates to how large the Hilbert space should be, since the thinner the tail

of the density is, the larger the space is. For example, L2(R, 1/(1 + z2)) ⊂ L2(R, exp(−z2)).

An inner product in the Hilbert space is given by 〈f1, f2〉 =
∫
Z f1(z)f2(z)π(z)dz, and hence

the induced norm ‖f‖ =
√
〈f, f〉 for any f1(z), f2(z), f(z) ∈ L2(Z, π(z)). Two functions

f1(z), f2(z) ∈ L2(Z, π(z)) are called orthogonal if 〈f1, f2〉 = 0, and further are orthonormal

if ‖f1‖ = 1 and ‖f2‖ = 1.

The parameter space for model (1.1) is defined as, Θ = {(a, f) : a ∈ Rp, f ∈ L2(Z, π(z))},
which contains the true parameter (α, g) as an interior point.

Assumption 2.1 Suppose that {ϕj(·)} is a complete orthonormal function sequence in

L2(Z, π(·)), that is, 〈ϕi(·), ϕj(·)〉 = δij the Kronecker delta.

Recall that any Hilbert space has a complete orthogonal sequence [see Theorem 5.4.7 in

15, p. 169]. In our setting, although g(·) is multivariate, the orthonormal sequence {ϕj(·)}
can be constructed from the tensor product of univariate orthogonal sequences. Thus, we

hereby briefly introduce some existing univariate orthonormal sequences only.

Generally speaking, an orthonormal sequence depends on its support on which it is defined

and the density by which the orthogonality is defined. Hermite polynomials form a complete

orthogonal sequence on R with respect to the density e−u
2
; Laguerre polynomials are a

complete orthogonal sequence on [0,∞) with density e−u; Legendre polynomials and also
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orthogonal trigonometric polynomials are complete orthogonal sequence on [0, 1] with the

uniform density; Chebyshev polynomials are complete orthogonal on [−1, 1] with density

1/
√

1− u2. See, e.g. Chapter One of Gautschi [21].

For the function g(z) ∈ L2(Z, π(z)), we may have an infinite orthogonal series expansion:

g(z) =
∞∑
j=0

βjϕj(z), where βj = 〈g, ϕj〉. (2.1)

The convergence of (2.1) normally can be understood in the sense of the norm in the space,

whereas in the situation where g(z) is smooth, the pointwise sense may hold. For positive

integer k, define gk(z) =
∑k−1

j=0 βjϕj(z) as a truncated series and γk(z) =
∑∞

j=k βjϕj(z) the

residue after truncation. Then, gk(z) → g(z) as k → ∞ in some sense. Note that gk(z)

is a parameterized version of g(z) in terms of the basis {ϕj(z)} where only the coefficients

remain unknown. This is the main advantage of the sieve method. In addition, the Parseval

equality gives
∑∞

j=0 β
2
j = ‖g‖2 <∞, implying the attenuation of the coefficients. For better

exposition, denote Φk(z) = (ϕ0(z), . . . , ϕk−1(z))
ᵀ

and β = (β0, . . . , βk−1)
ᵀ

two k-vectors.

Thus, gk(z) = β
ᵀ
Φk(z).

Our primary goal is to estimate (α, g(·)), and the consistency studied below will be defined

in terms of a norm given by

‖(a, f(·))‖ =
(
‖a‖2

E + ‖f‖2
L2

)1/2
, (2.2)

where ‖ · ‖E denotes the Euclidean norm on Rp and ‖f‖L2 signifies the norm on the Hilbert

space, of which the subscript may be suppressed whenever there is no ambiguity incurred.

As usual, in order to facilitate an implementation of nonlinear optimization, α should be

confined in a compact subset of Rp and the truncated series gk(z) = β
ᵀ
Φk(z) of g function

should be included in an expanding finite dimensional bounded subsets of L2(Z, π(z)). It

is noteworthy that in an infinite dimensional space, a bounded subset may not necessarily

be a compact set. A detailed discussion on the relationship for the compactness in infinite

dimensional space can be found in Chen and Pouzo [13]. Nevertheless, in the case that the

function m is linear in the second and the third arguments, such restrictions are not necessary

(we shall discuss this in Section 5 using an example).

Assumption 2.2 Suppose that B1n and B2n are positive reals diverging with n such that α

in model (1.1) is included in Θ1n := {a ∈ Rp : ‖a‖ ≤ B1n} and for sufficient large n, gk(z)

is included in Θ2n := {bᵀ
Φk(z) : ‖b‖ ≤ B2n}.

Here, unlike in a general single-index model, we do not require ‖α‖ = 1 for identification.

This is because the function m(·) is known and hence we are able to identify any scaling for

α. It is also a convention on computation that the true parameter is assumed to be contained
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within a bounded set [see 27, p. 1569], whereas the difference is that in this paper we allow

the bounds of α to diverge with the sample size since the dimensionality of α grows to infinity.

Meanwhile, since ‖gk(z)‖ = ‖β‖ ≤ ‖g‖ it is clear that there exists an integer n0 such

that gk(z) ∈ Θ2n for all n ≥ n0. Similar to the orthogonal expansion in (2.1), for any

f(z) ∈ L2(Z, π(z)), f(z) can be approximated by
∑k−1

j=0 bjϕj(z) = b
ᵀ
Φk(z) arbitrarily in the

sense of norm, where bj and b are defined similarly to βj and β, respectively. This means

that Θ2n is approximating the function space with the increase of the sample size. Thus, the

parametric space can be approximated by Θn = Θ1n ⊗ Θ2n as n → ∞. In the literature,

Θ2n is the so-called linear sieve space. More importantly, Θn is bounded and compact. The

above setting is similar to but broader than that in Newey and Powell [27].

We rewrite the moment condition (1.1) as

E[m(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi) + γk(Zi))] = 0. (2.3)

where γk(·) is negligible for large k. We estimate α and β by

(α̂, β̂) = argmin
a∈Rp,b∈Rk

‖Mn(a,b)‖2, subject to ‖a‖ ≤ B1n and ‖b‖ ≤ B2n,

where Mn(a,b) =
1
√
q

1

n

n∑
i=1

m(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi)).

(2.4)

Here, the involvement of q in Mn(a,b) takes into account the divergence of the dimension

of the m function in order to avoid that ‖Mn(a,b)‖ could be large even if each element is

small when we had not put q into Mn(a,b). However, this issue does not matter when the

vector–valued m function has a fixed dimension. In addition, from the proof of the theorems

below, the term
√
q in Mn(a,b) can be replaced by some appropriately chosen function of q,

which normalizes the divergence of the norm of Mn(a,b). For the sake of simplicity, we take
√
q in this paper. Then, naturally define

ĝ(z) = β̂
ᵀ
Φk(z) (2.5)

for any z ∈ Z as an estimator of g(z). In the next section we establish consistency of this

estimator in the sense that ‖(θ̂− θ, ĝ(z)− g(z))‖ →P 0 as n→∞ where the norm is defined

in (2.2).

3 Asymptotic theory

3.1 Consistency

Before starting our asymptotic theory, we need to state some necessary assumptions.

7



Assumption 3.1 Suppose that: (a) for each n, {Vi, X
ᵀ

i , Z
ᵀ

i }n1 is an independent and iden-

tically distributed sequence; (b) for the density fZ(z) of Z1, fZ(z) ≤ Cπ(z) on the support

Z of Z1 for some constant C; (c) the function m(·, ·, ·) is continuous in the second and third

arguments; (d) q(n)− p(n) ≥ k.

The i.i.d. property in Assumption 3.1.a simplifies the presentation and some of the

calculations, although it is possible to relax it a dependent data setting. About Assumption

3.1.b, the relation between the densities of the variable Z1 and the function space is widely

used in the literature. See, e.g. Condition A.2 and Proposition 2.1 of Belloni et al. [4, p.

347]. For Assumption 3.1.c, the continuity of the m function in the arguments where the

parameters are involved is weak and typically used functions satisfy it. In Assumption 3.1.d

we allow for possible overidentification of the parameter vector in the moment conditions,

and we shall discuss this issue further in the next section.

Assumption 3.2 Suppose that there is a unique function g(·) ∈ L2(Z, π(z)) and for each

n there is a unique vector α ∈ Rp such that model (1.1) is satisfied. In other words, for any

δ > 0, there is an ε > 0 such that

inf
(a,f)∈Θ

‖(a−α,f−g)‖≥δ

q−1‖Em(Vi, a
ᵀ
Xi, f(Zi))‖2 > ε.

It is quite standard in the literature to assume such a uniqueness condition. Here again,

the squared norm is scaled down by its dimension due to the same reason as in the formulation

of Mn in the last section, for which we do not mention repeatedly in what follows whenever

the norm is scaled.

Assumption 3.3 Suppose that for each n, there is a measurable positive function A(V,X,Z)

such that

q−1/2‖m(V, a
ᵀ

1X, f1(Z))−m(V, a
ᵀ

2X, f2(Z))‖ ≤ A(V,X,Z)[‖a1 − a2‖+ |f1(Z)− f2(Z)|]

for any (a1, f1), (a2, f2) ∈ Θ, where (V,X,Z) is any realization of (Vi, Xi, Zi) and the func-

tion A satisfies that maxi≥1 E[A2(Vi, Xi, Zi)] <∞ uniformly in n.

This assumption is a kind of Lipschitz condition. The positive function A(V,X,Z) may

be viewed as the upper bound of the norm of the partial derivatives of q−1/2m(V, a
ᵀ
X,w)

with respect to vector a and scalar w, respectively, and thus the condition is fulfilled if the

second moment of A(V,X,Z) is bounded. The assumption guarantees the approximation

m(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi)) to m(Vi, α

ᵀ
Xi, g(Zi)), because

‖m(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))‖
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≤A(Vi, Xi, Zi)‖g(Zi)− β
ᵀ
Φk(Zi)‖ = OP (1)‖γk(z)‖ = oP (1)

by virtue of Assumption 3.1(b). Also, it ensures that ‖Em(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))‖ = o(1) since

Em(Vi, α
ᵀ
Xi, g(Zi)) = 0. More importantly,

q−1E‖m(Vi, a
ᵀ
Xi, f(Zi))‖2

≤2q−1E‖m(Vi, 0, 0)‖+ 2E[A(Vi, Xi, Zi)
2][‖a‖2 + Ef(Zi)

2] = O(B2
1n +B2

2n)

uniformly on (a, f) ∈ Θn.

Theorem 3.1 (Consistency). In addition to Assumptions 2.1-2.2 and 3.1-3.3, suppose that

B2
1n +B2

2n = o(n). Then, we have ‖(α̂− α, ĝ(z)− g(z))‖ →P 0 as n→∞.

The proof is given in Appendix B.

3.2 Limit distributions of the estimator

As the dimension of α diverges, we may not be able to establish a limit distribution for α̂−α.

Instead, we shall aim at some finite dimensional transformations of α and functionals of g(z),

for which plug-in estimators are used.

Let L be a linear transformation from Rp 7→ Rr with r ≥ 1 fixed, and F = (F1, . . . ,Fs)
ᵀ

with fixed s be a vector of functionals on L2(Z, π(z)). Normally, the transformation L can

be understood as an r×p matrix with rank r, while in the literature one usually takes r = 1.

See, e.g. Theorem 4.2 in Belloni et al. [4, p. 352] and several results such as Theorems

2 and 6 in Chang et al. [9]. Moreover, the elements of F can be, as described in Newey

[26, p.151], the integral of ln[g(z)] on some interval which stands for consumer’s surplus in

microeconomics, for example. Other examples include partial derivative function, average

partial derivative function and conditional partial derivative.

Thus, we shall consider the limit distributions of L (α̂)−L (α) and F (ĝ)−F (g).

Assumption 3.4 Suppose that the m function is differentiable with respect to its second

and third arguments up to the third order. Let the g function be smooth such that Assumption

A.2 in Appendix A is satisfied.

The differentiability of the m function up to the third order makes the derivation of the

asymptotic distribution below much simpler than in some papers in the literature since it

enables us to expand the score function where the terms with higher order than the Hessian

matrix can be ignored. Certainly, this condition can be relaxed to have the derivatives of up

to the second order but for simplicity we retain it. It is well known that certain smoothness

order of the g function is required to get rid of the truncation residues. Such a requirement

is implicitly spelt out by Assumption A.2.

9



To investigate the asymptotics, denote the Score and Hessian functions

Sn(a,b) :=

 ∂
∂a

∂
∂b

 ‖Mn(a,b)‖2, Hn(a,b) :=

 ∂2

∂a∂a
ᵀ

∂2

∂a∂b
ᵀ

∂2

∂b∂a
ᵀ

∂2

∂b∂b
ᵀ

 ‖Mn(a,b)‖2.

Under certain conditions, the asymptotic behavior of Hn(α, β) and Sn(α, β) is given by

Lemmas A.2 and A.3 in Appendix A.

Recall the Fréchet derivative operator for an operator from one Banach space to another.

Note that it is a bounded linear operator. In the current case, the Fréchet derivative of F

at g(·) is an s-vector of functionals, denoted by F ′(g), such that

F (ĝ)−F (g) = F ′(g)(ĝ − g) + λ(g, ĝ − g),

where λ(g, ĝ − g) = o(‖ĝ − g‖).

Theorem 3.2 (Normality). Let Assumptions 2.1-2.2, 3.1-3.4 and A.1-A.3 (given in Ap-

pendix A) hold. Then

√
nΣ−1

n

L (α̂)−L (α)

F (ĝ)−F (g)

 d→ N(0, Ir+s)

as n → ∞ provided that
√
nΣ−1

n (0
ᵀ

r ,F
′(g)γk(z)

ᵀ
)
ᵀ

= o(1), where Σn is given by the square

root of

Σ2
n :=Γn[ΨnΨ

ᵀ

n]−1ΨnΞnΨ
ᵀ

n[ΨnΨ
ᵀ

n]−1Γ
ᵀ

n, in which

Γn :=

L 0

0 F ′(g)Φk(·)
ᵀ


(r+s)×(p+k)

,

Ξn :=E[m(V1, α
ᵀ
X1, g(Z1))m(V1, α

ᵀ
X1, g(Z1))

ᵀ
]q×q,

Ψn :=E

 ∂
∂u
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗X1

∂
∂w
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗ Φk(Z1)


(p+k)×q

,

provided that ΨnΨ
ᵀ

n is invertible, in which u and w stand for the second and the third argu-

ments of the vector function m(v, u, w), respectively.

The proof is given in Appendix B. Apart from the diverging dimensions of Ψn and Ξn and

the use of the transformation L and the functional F , the form of the covariance matrices

Σ2
n is exactly the same as in the literature such as Hansen [23], Pakes and Pollard [29] and

Chen et al. [12].

The requirement of
√
nΣ−1

n (0
ᵀ

r ,F
′(g)γk(z)

ᵀ
)
ᵀ

= o(1) is an undersmoothing condition,

playing a similar role to its counterpart in the literature, see, for example, the condition

10



√
nV −1

K K−p/d = o(1) in Corollary 3.1 of Chen and Christensen [10, p. 454] and Comment 4.3

of Belloni et al. [4]. If r = 1, the transformation L will transform the vector α into a scalar,

L (α) = a
ᵀ

0α, for some a0 ∈ Rp and a0 6= 0. This is the case commonly encountered in the

literature. See, e.g. Chang et al. [9] and Belloni et al. [4].

It is clear that the convergence order of L (α̂ − α) is n−1/2, while that of F (ĝ) −F (g)

is proportional to (F ′(g)Φk(z)
ᵀ
F ′ᵀΦk(z))1/2n−1/2, which is similar to the result in Theorem

2 of Newey [26]. Here, the matrix in the front of n−1/2 is of dimension s× s associated with

the derivative of functional F . To understand how it affects the rate, consider a special case

that s = 1 and F (g) = g(z) for some particular z, implying F (ĝ)−F (g) = ĝ(z)− g(z) and

F ′(g) ≡ 1. Then, the matrix is a scalar and the rate becomes ‖Φk(z)‖n−1/2, which coincides

with the rates of convergence in the literature. See, for example, Dong and Linton [14].

The result in above theorem does not rule out the weak instrument case where the matrix

Σn is close to singular, i.e. |Σn| 6= 0 but |Σn| → 0 with n at a certain rate. However, this

would reduce the convergence rate.

The limiting normal distribution involves unknown parameters in the matrix Σn. In

practice one would need a consistent estimator for this matrix. It is easily seen that the

consistent estimator, Σ̂n, of Σn can be obtained if we replace α and g(·) in Σn by α̂ and ĝ(·),
as well as the expectations in Ξn and Ψn by their sample versions. More precisely, let

Σ̂2
n = Γ̂n[Ψ̂nΨ̂

ᵀ

n]−1Ψ̂nΞ̂nΨ̂
ᵀ

n[Ψ̂nΨ̂
ᵀ

n]−1Γ̂
ᵀ

n,

where Γ̂n is Γn with replacement of F ′(g) by F ′(ĝ) and

Ξ̂n :=
1

n

n∑
i=1

[m(Vi, α̂
ᵀ
Xi, ĝ(Zi))m(Vi, α̂

ᵀ
Xi, ĝ(Zi))

ᵀ
], (3.1)

Ψ̂n :=
1

n

n∑
i=1

 ∂
∂u
m(Vi, α̂

ᵀ
Xi, ĝ(Zi))

ᵀ ⊗Xi

∂
∂w
m(Vi, α̂

ᵀ
Xi, ĝ(Zi))

ᵀ ⊗ Φk(Zi)

 . (3.2)

It is readily seen that Σ̂n − Σn →P 0 as n→∞.

If a weight matrix is used in the minimization, the efficiency of the limit theorem may

be improved. Let Wn = Wn(α, β) be a q × q positive definite matrix depending on the

parameter and the data used in Mn. Then, ‖Mn(a,b)‖2, which measures the metric of

Mn(a,b) from zero, can be substituted by Mn(a,b)
ᵀ
Wn(a,b)Mn(a,b) in the minimization

of (2.4), which is also a measure of the metric for the vector Mn(a,b) from zero but in terms

of the weight matrix Wn. Meanwhile, ‖Mn(a,b)‖2 can be viewed as a special case that Wn

is the identity matrix. Definitely, Wn can not be close to singular to eschew the possibility

that Mn(a,b)
ᵀ
Wn(a,b)Mn(a,b) may be close to zero when (a,b) is far from (α, β).

11



Proposition 3.1. Suppose that the eigenvalues of Wn are bounded away from zero and above

from infinity uniformly in n, and that sup‖(a−α,b−β)‖<δn ‖Wn(a,b)−Wn‖ = oP (1) with δn =

o(1) when n large. Let (α̃, β̃) be the minimizer of Mn(a,b)
ᵀ
Wn(a,b)Mn(a,b) and define

g̃(z) = Φk(z)
ᵀ
β̃.

Then, (1) Under the same conditions in Theorem 3.1, the consistency of the weighted

estimator holds; (2) Under the same conditions the normality for the weighted estimator in

Theorem 3.2 holds with Σ2
n replaced by

Γn[ΨnWnΨ
ᵀ

n]−1ΨnWnΞnWnΨ
ᵀ

n[ΨnWnΨ
ᵀ

n]−1Γ
ᵀ

n.

(3) If Wn = Ξ−1
n , the optimal covariance matrices is obtained, Γn[ΨnΞ−1

n Ψ
ᵀ

n]−1Γ
ᵀ

n.

The proof is given in Appendix B. Here, the optimal covariance is in the sense that

Γn[ΨnWΨ
ᵀ

n]−1ΨnWΞnWΨ
ᵀ

n[ΨnWΨ
ᵀ

n]−1Γ
ᵀ

n ≥ Γn[ΨnΞ−1
n Ψ

ᵀ

n]−1Γ
ᵀ

n,

for all W satisfying the conditions in the proposition. In practice, both Ξn and Ψn can be

replaced by their sample versions of (3.1) and (3.2), so that the optimal covariance matrices

are easily estimable. Nonetheless, in order to obtain an optimal estimator one will need to

implement a two-step estimation method, as has normally been done in the literature, that

is, at the first step minimizing ‖Mn(a,b)‖2 to have α̂ and ĝ(·) that are used to construct Ŵn;

then at the second step one may minimize Mn(a,b)
ᵀ
ŴnMn(a,b) to have a pair of optimal

estimators, (α̃, g̃(·)).
In addition to their earlier work by Cattaneo et al. [7] on a partially linear model, Cat-

taneo et al. [8] recently develop heteroskedasticity robust inference methods for the finite

dimensional parameters of a linear model in the presence of a large number of linearly es-

timated nuisance parameters in the case where essentially p is fixed but K(n) ∝ n. In this

case, the function g(·) is not consistently estimated. We interpret the differencing approach

proposed by Yatchew [34] and Yatchew [35] for the partially linear model as being similar to

this, except that Cattaneo et al. [8] allow for heteroskedasticity and for a more complex type

of nuisance component. In our methodology we pay equal attention to the function g, which

itself can be of interest, see for example, Engle et al. [16]; Robinson [33]; Gao and Liang

[19]; Gao and Shi [20] and Härdle et al. [24]. Our methodology is also robust to conditional

heteroskedasticity.

4 Statistical inference

4.1 Test of over-identification

Hansen [23] proposes the J-test for over-identification in the situation where both p and q

12



are fixed but q > p . This J-test has an asymptotic χ2
q−p distribution. In the case where

an unknown infinite dimensional parameter is involved but both p and q are still fixed with

q > p, Chen and Liao [11] establish a statistic for over-identification testing that has an

F -distribution in large samples. As far as we are aware, the test statistic proposed below

seems a new one in the literature.

Because we also face an over-identification situation where q(n)− p(n)→∞, it is crucial

to test whether the moment restrictions are valid by investigating the following hypotheses:

H0 : E[m(Vi, α
ᵀ
Xi, g(Zi))] = 0 for some (α, g) ∈ Θ,

versus

H1 : E[m(Vi, a
ᵀ
Xi, h(Zi))] 6= 0 for any (a, h) ∈ Θ,

where Θ is defined in Section 2.

Define, for a ∈ Rp,b ∈ Rk and any κ ∈ Rq such that ‖κ‖ = 1,

Ln(a,b;κ) =
1

Dn(a,b;κ)

n∑
i=1

κ
ᵀ
m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi)),

where Dn(a,b;κ) =
(∑n

i=1[κ
ᵀ
m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))]

2
)1/2

.

Under the null, by the procedure in Section 2 and Assumptions in Theorem 3.1, we have

the consistent estimator (α̂, ĝ). The statistic Ln(α̂, β̂;κ) can be used to detect H0 against H1,

as shown in Theorems 4.1 and 4.2 below. It is noteworthy that this test, as clearly indicated

from the proof, is also workable for the conventional moment restriction models with fixed p

and q. Before showing the asymptotic distribution under the null and the consistency under

the alternative for the test statistic, we introduce some necessary assumptions.

Assumption 4.1 Let m∗n(α̂, ĝ;κ) = oP (1) when n→∞, where we denote m∗n(a, f ;κ) =

n−1/2
∑n

i=1 E[κ
ᵀ
m(Vi, a

ᵀ
Xi, f(Zi))] for (a, f) ∈ Θ and κ such that ‖κ‖ = 1.

Assumption 4.2 Suppose that (i) q2p = o(n) and q2k = o(n); and (ii) supz γ
2
k(z) =

o(q−1) as, along with n→∞, k, p, q →∞.

These are technical requirements. Noting E[m(Vi, α
ᵀ
Xi, g(Zi))] = 0, Assumption 4.1

requires that E[m(Vi, a
ᵀ
Xi, f(Zi))] drops to zero very quickly when (a, f) approaches (α, g).

This in spirit is the same as Assumption 3.2 but here it is a sample version and the decay

of the expectation needs a certain rate. Similar assumption is also imposed by equation

(4.9) of Andrews [1, p. 58] and equation (5.2) of Belloni et al. [5, p. 774]. Assumption 4.2

(i) stipulates the relationships for p, q, k with n when they are diverging, while Assumption

4.2(ii) imposes a decay rate for the residue γ2
k(z) uniformly for all z not slower than o(q−1).

13



This particularly is satisfied for the case where z is located in some compact set in many

situations given that the g function is sufficiently smooth.

Theorem 4.1. Suppose that there is no zero function in the vector m of functions. Let

Assumptions 4.1-4.2 hold, under H0 and the conditions in Theorems 3.1 and 3.2 remain

true. For any κ ∈ Rq such that ‖κ‖ = 1,

Ln(α̂, β̂;κ)→D N(0, 1),

as n→∞, where (α̂, β̂) is the estimator given by (2.4).

Notice that if there is a zero function in m, κ
ᵀ
m can be a zero function for some particular

κ. Thus, the requirement on the nonzero function is trivial. The theorem shows the normality

of the proposed statistic that enables us to make statistical inference.

Theorem 4.2. Suppose that the eigenvalues of E[m(V1, a
ᵀ
X1, h(Z1))m(V1, a

ᵀ
X1, h(Z1))

ᵀ
] are

uniformly bounded away from zero and infinity in n and (a, h) ∈ Θ. Under H1, suppose

further that there exists a positive sequence δn such that inf(a,h)∈Θ ‖E[m(Vi, a
ᵀ
Xi, h(Zi))]‖ ≥

δn and lim infn→∞
√
nδn =∞. Then, for any vector a and b, there exists some κ∗ ∈ Rq such

that ‖κ∗‖ = 1 and Ln(a,b;κ∗)→P ∞, as n→∞.

The condition on the eigenvalues is broadly adopted in the literature, see, e.g. Chang

et al. [9] and Belloni et al. [4]. In the special case where δn = δ, the condition that

lim infn→∞
√
nδn = ∞ is satisfied automatically, and this is the most commonly used as-

sumption in the literature, see, equation (24) of Chang et al. [9, p. 290]. However, we allow

for δn → 0 with a rate slower than n−1/2. This means that the strongest signal (δn = δ) can

be weakened (δn → 0) when our test statistic is used.

4.2 Wald test

The normality in Theorem 3.2 may be used for Wald test to detect, for example, H10 :

L α = R against H11 : L α 6= R for some transformation L of r × p matrix and r-vector R;

H20 : F (g) = S against H21 : F (g) 6= S for some s-vector functional F and s-vector S.

Let Σ̂2
1n = (Ir 0r×s)Σ̂

2
n(Ir 0r×s)

ᵀ
and Σ̂2

2n = (0s×r Is)Σ̂
2
n(0s×r Is)

ᵀ
. Then, Theorem 3.2

implies that, under H10 and H20, respectively, we have

n(L α̂−R)
ᵀ
Σ̂−1

1n (L α̂−R)
d→ χ2(r), and n(F (ĝ)− S)

ᵀ
Σ̂−1

2n (F (ĝ)− S)
d→ χ2(s),

respectively, when n→∞.
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5 Penalised GMM for model selection

In the high dimensional situation, the parameter α most likely have sparsity, particularly in

the ultra high dimensional case (i.e. p = en
a

with 0 < a < 1). That is, there are plenty of

zeros in α while only a number of elements are nonzero. In addition, the coefficient vector β

may also possess sparsity, since some of them may be zero, as argued in Belloni et al. [5, p.

761], let alone the fact of their attenuation such that coefficients are negligible statistically

when complexity is increasing. Hence, this section is devoted to the estimate of (α, g) under

the sparsity.

In the literature, there are some studies on the variable selection in the frame work of

GMM and sparsity. Belloni et al. [5] propose the combination of least squares and L1 type

lasso approach to select variables. While in a high dimensional conditional moment restriction

model, Fan and Liao [18] propose to use folded concave penalty function combined with

instrument variables. Caner [6] uses the same approach but a particular class of penalty

functions to select variables. As Caner [6, p. 271] argued, Lasso-type GMM estimator selects

correct model much more often compared with GMM-BIC and “downward testing” method

proposed by Andrews and Lu [2], we shall tackle the selection issue by the penalty function

in our GMM framework.

For convenience in this section, denote v0 = (α
ᵀ
, β

ᵀ
)
ᵀ ∈ Rp+k the true parameter whose

dimension varies with the sample size. Trivially, we may write α = (α
ᵀ

0S, α
ᵀ

0N)
ᵀ

and β =

(β
ᵀ

0S, β
ᵀ

0N)
ᵀ
, where the vectors α0S and β0S contain all “important coefficients” from α and

β, respectively, as referred in the literature such as Fan and Liao [18], while α0N and β0N

are identical to zero. In addition, v0S = (α
ᵀ

0S, β
ᵀ

0S)
ᵀ

is referred to as an oracle model. Define

t = |v0S| the dimension of v0S which may diverge with n.

Let v̂ ∈ Rp+k be the estimated parameter of v0 by the penalized GMM,

v̂ = (α̂
ᵀ
, β̂

ᵀ
)
ᵀ

= argmin
v=(a

ᵀ
,b

ᵀ
)
ᵀ∈Rp+k

Qn(v) := ‖Mn(v)‖2 +

p+k∑
j=1

Pn(|vj|),

subject to ‖a‖ ≤ B1n and ‖b‖ ≤ B2n.

(5.1)

where Mn(v) = Mn(a,b), B1n and B2n are the same as in Section 2 and Pn(·) is a penalty

function discussed later.

5.1 Oracle Property

Let T be the support of v0, i.e. T = {j : 1 ≤ j ≤ p+k, v0j 6= 0}. We may equivalently say T

is the oracle model. Moreover, for a generic vector v ∈ Rp+k, denote by vT the vector in Rp+k

whose j-th element is that of v for j ∈ T and zero otherwise. Also, define vS as the short
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version of vT after eliminating all zeros in the position T c (complement set of T ) from vT . In

the literature, the subspace V = {vT , v ∈ Rp+k} is called “oracle space” of Rp+k. Certainly,

v0 ∈ V .

Recall that the score vector Sn(·) denotes the partial derivative of ‖Mn(·)‖2 defined in

Section 3. Now, denote SnT (vS) the partial derivative of ‖Mn(v)‖2 with respect to vj for

j ∈ T , at vT (bearing in mind that vS is the vector consisting of all nonzero elements in vT ).

Hence, the vector SnT (vS) has dimension t = |T | = |vS|. Also, define in a similar fashion

HnT (vS) the Hessian matrix of t× t for ‖Mn(v)‖2.

Suppose that Pn(·) belongs to the class of folded concave penalty functions in Fan and Li

[17]. For any v = (v1, · · · , vt)
ᵀ ∈ Rt with vj 6= 0, ∀j, define

φ(v) = lim sup
ε→0+

max
j≤t

sup
(u1,u2)∈O(|vj |,ε)

−P
′
n(u2)− P ′n(u1)

u2 − u1

,

where O(·, ·) is the neighbourhood with specified center and radius, respectively, implying

that φ(v) = maxj≤t−P ′′n (|vj|) if P ′′n is continuous. Also, for the true parameter v0, let

dn =
1

2
min{|v0j| : v0j 6= 0, j = 0, · · · , p+ k},

represent the strength of the signal. The following assumption is about the penalty function.

Assumption 5.1 The penalty function Pn(u) satisfies (i) Pn(0) = 0; (ii) Pn(u) is concave,

nondecreasing on [0,∞), and has a continuous derivative P ′n(u) for u > 0; (iii)
√
t P ′n(dn) =

o(dn); (iv) There exists c > 0 such that supv∈O(v0S ,cdn) φ(v) = o(1).

There are many classes of functions that satisfy these conditions. For example, with

properly chosen tuning parameter, the Lr penalty (0 < r ≤ 1), hard-thresholding (Antoniadis

[3]), SCAD (Fan and Li [17]) and MCP (Zhang [36]) satisfy the requirements.

Denote the oracle model T = T1 ∪T2 where T1 is the set of indices of nonzero elements in

α and T2 that of β; accordingly, we have the decomposition t = p1 +k1 for their cardinalities.

Assumption 5.2 Suppose that Assumptions A.1-A.3 hold with p being replaced by p1 and k

by k1.

The assumption is the counterpart of Assumptions A.1-A.3 under sparsity. We first show

an oracle asympotic property about v̂ in the minimization of (5.1).

Lemma 5.1. In addition to Assumptions 5.1-5.2, suppose that (i) There exists a positive

sequence an = o(dn) such that ‖SnT (v0S)‖ = OP (an); (ii) For any ε > 0, there exists a

constant C = C(ε) > 0 such that for all large n, P (λmin(HnT (v0S)) > C) > 1 − ε; (iii) For

any ε > 0, δ > 0 and any nonnegative sequence ηn = o(dn), there is an N > 0 such that
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whenever n > N ,

P

(
sup

‖vT−v0‖≤ηn
‖HnT (vT )−HnT (v0)‖ ≤ δ

)
> 1− ε.

Then there exists a local minimizer v̂ ∈ V of

Qn(vT ) = ‖Mn(vT )‖2 +
∑
j∈T

Pn(|vj|),

such that ‖v̂ − v0‖ = OP (an +
√
t P ′n(dn)). Moreover, for any arbitrary ε > 0, the local

minimizer v̂ is strict with probability at least 1− ε for all large n.

The proof and the verification on the conditions of the lemma are relegated to Appendix

B. It is worth noting that, under additional condition stated below, we show in Appendix B

that ‖SnT (v0S)‖ = OP (
√
t log(q)/n) and therefore we have ‖v̂ − v0‖ = OP (

√
t log(q)/n +

√
t P ′n(dn)).

The oracle consistency in Lemma 5.1 is derived based on the knowledge of T , the support

of v0. To make the result useful, it is desirable to show that the local minimizer of Qn

restricted on V is also a minimizer of Qn on Rp+k.

Lemma 5.2. Addition to the conditions in Lemma 5.1, suppose that with probability ap-

proaching one, for v̂ ∈ V in Lemma 5.1, there exists a neighbourhood O1 ⊂ Rp+k of v̂ such

that for all v ∈ O1 but v 6∈ V, we have

‖Mn(vT )‖2 − ‖Mn(v)‖2 <
∑
j 6∈T

Pn(|vj|). (5.2)

Then, (i) With probability close to unity arbitrarily, the v̂ ∈ V is a local minimizer in Rp+k

of Qn(v) = ‖Mn(v)‖2 +
∑p+k

j=1 Pn(|vj|); (ii) For ∀ε > 0, the local minimizer v̂ ∈ V is strict

with probability at least 1− ε for all large n.

The proof and the verification on the conditions of the lemma are relegated to Appendix

B.

Assumption 5.3 There exist b1, b2 > 0 such that (i) for any ` ≤ q and u > 0,

P (|m`(V, α
ᵀ
X, β

ᵀ
Φk(Z))| > u) ≤ exp(−(u/b1)−b2);

and (ii) V ar(m`(V, α
ᵀ
X, β

ᵀ
Φk(Z))) are uniformly bounded away from zero and above from

infinity for all `.

This assumption is often encountered in the literature such as Assumption 4.3 in Fan and

Liao [18]. It is known that there are many classes of distributions satisfying this condition,

e.g. normal distribution and exponential distribution and so on.
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For simplicity, denote ∂m the partial derivative of m; and FiS = diag(XiS,ΦkS(Zi)) a

t× 2 matrix where XiS is the sub-vector of Xi consisting of all Xij for j ∈ T1; ΦkS(Zi) is the

sub-vector of Φk(Zi) consisting of all ϕj(Zi) for j ∈ T2.

Assumption 5.4 (i) There are constants C1, C2 > 0 such that λmin(E∂m
ᵀ
(Vi, v

ᵀ

0SFiS) ⊗
FiS)(E∂m

ᵀ
(Vi, v

ᵀ

0SFiS)⊗ FiS)
ᵀ
) > C1 and λmax(E∂m

ᵀ
(Vi, v

ᵀ

0SFiS)⊗ FiS)(E∂m
ᵀ
(Vi, v

ᵀ

0SFiS)⊗
FiS)

ᵀ
) < C2; (ii) P ′n(dn) = o(n−1/2) and max‖vS−v0S‖<dn/4 φ(vS) = o((t log(q))−1/2); (iii)

t3/2 log(q) = o(n), t3/2P ′n(dn)2 = o(1), tmaxj∈T Pn(|v0j|) = o(1).

All these are technical requirements on the Hessian matrix, the penalty function, the

relationship among the dimensions of important coefficients, the sparsity and the sample

size. There are several penalty functions that satisfy these conditions, for example, SCAD

and MCP with tuning parameter λn = o(dn). Thence, the conditions (ii) and (iii) are satisfied

if t
√

log(q)/n+ t3/2 log(q)/n� λn � dn.

Theorem 5.1. Under Assumptions 2.1, 2.2, 3.1, 3.3 and 5.1-5.4, there exists a local mini-

mizer v̂ = ((α̂
ᵀ

S, α̂
ᵀ

N)
ᵀ
, (β̂

ᵀ

S, β̂
ᵀ

N)
ᵀ
), for which we have (i)

lim
n→∞

P (α̂N = 0, β̂N = 0) = 1.

In addition, the local minimizer v̂ is strict with probability arbitrarily close to one for all large

n.

(ii) Let T̂ = {j : 1 ≤ j ≤ p+ k, v̂j 6= 0}. Then,

lim
n→∞

P (T̂ = T ) = 1.

(iii) Meanwhile, for the transformation Lr×p1 and s-vector functional F ,

√
nΣ−1

nT

 L (α̂S)−L (α0S)

F (ĝ(z))−F (g(z))

 d→ N(0, Ir+s),

as n → ∞ provided that
√
nΣ−1

nT (0
ᵀ

r ,F
′(g)γk(z)

ᵀ
)
ᵀ

= o(1), where ΣnT is given by the square

root of

Σ2
nT :=Γn[ΨnTΨ

ᵀ

nT ]−1ΨnTΞnTΨ
ᵀ

nT [ΨnTΨ
ᵀ

nT ]−1Γ
ᵀ

n, in which

Γn :=

L 0

0 F ′(g)ΦkT (·)ᵀ


(r+s)×(p1+k1)

,

ΞnT :=E[m(V1, α
ᵀ

0SX1S, g(Z1))m(V1, α
ᵀ

0SX1S, g(Z1))
ᵀ
]q×q,

ΨnT :=E

 ∂
∂u
m(V1, α

ᵀ

0SX1S, g(Z1))
ᵀ ⊗X1S

∂
∂w
m(V1, α

ᵀ

0SX1S, g(Z1))
ᵀ ⊗ ΦkT (Z1)


(p1+k1)×q

,
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provided that ΨnTΨ
ᵀ

nT is invertible, in which u and w stand for the second and the third

arguments of the vector function m(v, u, w), respectively.

The results (i) and (ii) indicate that under these conditions in the theorem we are able to

recover the sparsity in the model; meanwhile, the discussion on the result (iii) of the theorem

is similar to Theorem 3.2.

5.2 Global Property

In this section we shall show that under Assumption 3.2, the local minimizer in Theorem 5.1

is nearly global. Recall that Assumption 3.2 is an identification condition which excludes all

the other points to the minimizer of the objective function in population sense.

Theorem 5.2. Under Assumption 3.2 and those of Theorem 5.1, the local minimizer v̂

satisfies that, for any δ > 0, there exists η > 0 such that

lim
n→∞

P

(
Qn(v̂) + η < inf

‖v−v0‖≥δ
Qn(v)

)
= 1.

Therefore, as indicated by Theorems 5.1 and 5.2, the minimization of (5.1) enables to

recover the sparsity in ultra high dimensional moment restriction models since q > p + k

where q can be as large as en
ε

for some ε > 0. This is a bit different from Fan and Liao [18]

where there is no nonparametric function involved and q = p (the number of IV is the same

as that of regressors). The consistency of the sparsity is given, and more importantly, the

inference can be done similar to the relative lower dimensional models (Theorem 3.2).

6 Simulation experiments

In this section, we are about to investigate the performance of the proposed estimators in

finite sample situation.

Example 6.1. This experiment uses the model in Example 1.1 of Section 1. Let vector

Xi = (X1i, X
ᵀ

2i)
ᵀ

where X1i assumes 1 and −1 with probability 1/2, respectively, X2i ∼
N(0,Σp−1), where Σp−1 = (σi,j)(p−1)×(p−1) with σi,i = 1, σi,j = 0.3 for |i− j| = 1 and σi,j = 0

for |i− j| > 1. Here, the first component of Xi is a discrete variable with which we intend to

show that our theoretical results do not confine in continuous variables. Let Zi be uniformly

distributed on (0, 1).

Suppose that E[Yi − α
ᵀ
Xi − g(Zi)|Wi] = 0 with Wi = Zi, and g(·) ∈ L2[0, 1] = {u(r) :∫ 1

0
u2(r)dr <∞}. Let ϕ0(r) ≡ 1, and for j ≥ 1, ϕj(r) =

√
2 cos(πjr). Then, {ϕj(r)} is an or-

thonormal basis in the Hilbert space L2[0, 1]. In the experiment, put α = (0.4, 0.1, 0, · · · , 0)
ᵀ ∈

Rp and g(z) = z2 + sin(z).
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Denote m(Vi, α
ᵀ
Xi, g(Zi)) = (Yi−α

ᵀ
Xi− g(Zi))Φq(Zi) where Vi = (Yi,Wi), Wi = Zi and

Φq(·) = (ϕ0(·), · · · , ϕq−1(·))ᵀ
. Notice that the dimension of m function is q which increases

with the sample size n. Thus, the parameter (α, g) can be solved from unconditional moment

equations E[m(Vi, α
ᵀ
Xi, g(Zi))] = 0 for i = 1, · · · , n.

According to the estimation procedure in Section 2, define (α̂, β̂) = argmin
a∈Rp,b∈Rk

‖Mn(a,b)‖2

where Mn(a,b) = 1√
q

1
n

∑n
i=1m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi)). Thus, α̂ and ĝ(·) := β̂

ᵀ
Φk(·) are the

estimates of (α, g(·)).
Here, we emphasize that since the m function is linear in both α

ᵀ
Xi and g(Zi), Mn(a,b)

actually has a linear relationship with a and b,

Mn(a,b) =
1
√
q

1

n

n∑
i=1

(Yi − a
ᵀ
Xi − b

ᵀ
Φk(Zi))Φq(Zi)

=
1
√
q

1

n

n∑
i=1

YiΦq(Zi)−

(
1
√
q

1

n

n∑
i=1

Φq(Zi)X
ᵀ

i

)
a−

(
1
√
q

1

n

n∑
i=1

Φq(Zi)Φk(Zi)
ᵀ

)
b.

Accordingly, (α̂, β̂) has an explicit expression simply by OLS. This means that in any similar

situation the optimization in Section 2 does not need the compact restrictions.

For n = 200, 500 and 1000, let k = [C1n
τ1 ] with C1 = 1 and τ1 = 1/4, and p = [C2n

τ2 ]

with C2 = 1 and τ2 = 1/5. Also, let q = p+k+ν (ν ≥ 0 specified in the experiments) satisfy

Assumption 3.1. The replication number of the experiment is M = 1000. We shall report

for the estimate of the g function the bias (denoted by Bg(n)), standard deviation (denoted

by πg(n)) and RMSE (denoted by Πg(n)), that is,

Bg(n) :=
1

Mn

M∑
`=1

n∑
i=1

[g`(Zi)− g`(Zi)],

πg(n) :=

(
1

Mn

M∑
`=1

n∑
i=1

[ĝ`(Zi)− ĝ(Zi)]
2

)1/2

,

Πg(n) :=

(
1

Mn

M∑
`=1

n∑
i=1

[ĝ`(Zi)− g`(Zi)]2
)1/2

,

where the superscript ` indicates the `-th replication, ĝ(·) = Φk(·)
ᵀ
β̂ is the average of ĝ`(·)

over Monto Carlo replications ` = 1, · · · ,M , g`(Zi) means the value of g evaluated for the

Zi in the `-th replication.

Regarding of parameter α, we report the following quantities, Bα(n) := ‖α − α̂‖ and

Mα(n) := median(‖α − α̂‖), where α̂ is the average of α̂` and median(· · · ) is the median

of the sequence over Monto Carlo replications. Notice that, due to the divergence of the

dimension, it might not make any sense to compare the estimated results for different sample

sizes.
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Table 1: Simulation of Example 5.1, q = p+ k + ν

ν = 2 ν = 4

n 300 600 1000 n 300 600 1000

Bg(n) 0.0046 -0.0040 -0.0026 Bg(n) -0.0023 -0.0019 0.0006

πg(n) 0.3533 0.1965 0.1948 πg(n) 0.1660 0.1530 0.1520

Πg(n) 0.3401 0.1700 0.1682 Πg(n) 0.1356 0.1217 0.1176

Bα(n) 0.0700 0.0410 0.0684 Bα(n) 0.0281 0.0271 0.0501

Mα(n) 0.0355 0.0282 0.0665 Mα(n) 0.0259 0.0244 0.0319

ν = 6 ν = 8

n 300 600 1000 n 300 600 1000

Bg(n) 0.0023 0.0019 -0.0000 Bg(n) 0.0009 0.0011 -0.0000

πg(n) 0.1544 0.1445 0.1444 πg(n) 0.1482 0.1370 0.1359

Πg(n) 0.1218 0.1092 0.1031 Πg(n) 0.1176 0.1015 0.0945

Bα(n) 0.0124 0.0267 0.0265 Bα(n) 0.0078 0.0048 0.0250

Mα(n) 0.0254 0.0154 0.0464 Mα(n) 0.0117 0.0098 0.0306

It can be seen that all of the statistical quantities about the estimator of g are reasonably

attenuated with the increase of both the sample size and ν that provides more information

for the parameters to be estimated. For the quantities about the estimator of α, we observe

that they normally do not decrease with the sample size. This is because, as mentioned

before, the dimension of α is increasing with the sample size; and hence it does not make

sense to compare them among different sample sizes. However, we find that both quantities

decrease with the increase of ν that gives more moment restrictions.

This is understandable. Because the conditional moment E[Yi − α
ᵀ
Xi − g(Zi)|Zi] deter-

mines a function U(z) := E[Yi−α
ᵀ
Xi−g(Zi)|Zi = z] and {ϕj(z)} is an orthornomal sequence

in the space that contains U(z), the greater the ν is, the more axes in the space we use to

explain the unknown function U(z).

Example 6.2. This experiment uses the model in Example 1.3 in Section 1. Let the

distribution function F (u) = exp(u)/[1 + exp(u)]. Yi assumes either 0 or 1, and

P (Yi = 1|Xi, Zi) = F (α
ᵀ
Xi + g(Zi)),

for i = 1, · · · , n, where α,Xi ∈ Rp and Zi ∈ R. Here, let Xi ∼ N(0,Σx), where Σx = (σi,j)p×p

21



with σi,i = 1, σi,j = 0.5 for |i− j| = 1 and σi,j = 0 for |i− j| > 1, and Zi ∼ N(0, 1). In this

experiment, put α = (0.5, 0.3, 0, · · · , 0)
ᵀ ∈ Rp and g(z) = z2 + sin(z). The Hilbert space that

contains g(·) is L2(R, exp(−z2)). Let {pj(z), j ≥ 0} be the sequence of Hermite polynomials

that forms an orthonormal basis in L2(R, exp(−z2)).

Denote Φk(z) = (p0(z), · · · , pk−1(z))
ᵀ

and similarly to Example 1.3, define

Qn(α, β) := ln
n∏
i=1

F Yi(α
ᵀ
Xi + β

ᵀ
Φk(Zi))[1− F (α

ᵀ
Xi + β

ᵀ
Φk(Zi))]

1−Yi ,

Mn(α, β) :=

(
∂Qn

∂αᵀ ,
∂Qn

∂βᵀ

)ᵀ

and we have (α̂, β̂) = argmin
a∈Rp,b∈Rk

‖Mn(a,b)‖2 and naturally ĝ(·) := β̂
ᵀ
Φk(·) is the estimate of

g(·).
For n = 200, 500 and 1000, let k = [C1n

τ1 ] and p = [C2n
τ2 ] where Ci and τi, i = 1, 2, take

the same values as in the preceding example. The replication number of the experiment is

M = 1000. We shall report the bias Bg(n), standard deviation πg(n) and RMSE Πg(n) for

the estimator of g and Bα(n) and Mα(n) for the estimator of α defined in the above example.

Table 2: Simulation results for Example 5.2

n 300 600 1000 n 300 600 1000

Bα(n) 0.0130 0.0105 0.0065 Bg(n) -0.0100 0.0059 0.0037

Mα(n) 0.0125 0.0103 0.0075 πg(n) 0.3608 0.3128 0.2315

Πg(n) 0.3320 0.2323 0.1732

The moment restriction model is exactly identified, since it is formulated from the partial

derivatives that imply q = p + k. All results in Table 2 converge satisfactorily, though it

seems in this example the estimator of the g function converge a bit slower than the last

example. This might be because in the last example there is an explicit solution while this

example needs a minimization of the nonlinear distribution function to have the estimators.

7 Conclusion

A class of high dimensional semiparametric moment restriction models have been studied us-

ing the GMM and sieve method. The consistency and normality of the proposed estimators
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have obtained. A new test statistic has been proposed for over-identification testing where

the strong signal can be weakened when our test statistic is used. In addition, the poten-

tial sparsity of the model has been dealt with via the combination of GMM methodology

and penalty function approach. The theoretical results are verified through finite sample

experiments. We find that the more the number of the moment restrictions, the accurate

the estimates, although it may not be interesting to compare the estimates of the high–

dimensional parameters for different sample sizes.
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A Lemmas

Lemma A.1. Under Assumptions 2.1-2.2, 3.1-3.3 we have

1. ‖Mn(α, β)‖2 = OP (‖γk(z)‖2) +OP (n−1).

2. Given B2
1n+B2

2n = o(n), sup‖a‖≤B1n,‖b‖≤B2

‖(a−α,b−β)‖>δ
‖Mn(a,b)‖−2 = OP (1) for each δ > 0, when

n is large.

Proof. 1. Observe that

‖Mn(α, β)‖2 =

∥∥∥∥∥ 1
√
q

1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

∥∥∥∥∥
2

=
1

q

q∑
`=1

[
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

]2

,

where we denote m(· · · ) = (m1(· · · ), · · · ,mq(· · · ))
ᵀ
. Moreover,

1

q

q∑
`=1

E

[
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

]2

=
1

q

q∑
`=1

[
1

n

n∑
i=1

Em`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

]2

+
1

q

q∑
`=1

Var

[
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

]

=
1

q

q∑
`=1

[
Em`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))

]2
+

1

q

1

n2

q∑
`=1

n∑
i=1

Var
[
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))

]
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=
1

q

∥∥Em(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))

∥∥2
+

1

q

1

n

q∑
`=1

Var(m`(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1)))

≤1

q

∥∥Em(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))

∥∥2
+

1

n

1

q

q∑
`=1

E(m2
`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1)))

=
1

q

∥∥Em(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))

∥∥2
+

1

n

1

q
E‖m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))‖2

due to the property of the i.i.d. sequence.

Since E[m(V1, α
ᵀ
X1, g(Z1)) = 0, it follows from Assumption 3.3 that

1

q

∥∥Em(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))

∥∥2

=
1

q

∥∥E[m(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))−m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1) + γk(Z1))]

∥∥2

≤{E[A(V1, X1, Z1)]|γk(Z1)|}2 ≤ E[A(V1, X1, Z1)]2E|γk(Z1)|2

≤C‖γk(z)‖2 = o(1),

by virtue of Assumption 3.1(b), and for the second term,

1

q
E‖m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))‖2

≤2
1

q
E‖m(V1, α

ᵀ
X1, g(Z1))‖2 + 2

1

q
E‖m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))−m(V1, α

ᵀ
X1, g(Z1))‖2

=O(1) + E[A2(V1, X1, Z1)|γk(Z1)|2] = O(1)

by the dominated convergence theorem, implying the second term is O(n−1).

2. First, note that

Mn(a,b)− 1
√
q
Em(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))

=
1
√
q

1

n

n∑
i=1

[m(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi))− Em(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))].

It follows from the property of i.i.d. sequence and Assumption 3.3 that

E
∥∥∥∥Mn(a,b)− 1

√
q
Em(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))

∥∥∥∥2

=
1

n2

n∑
i=1

1

q
E‖m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))− Em(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))‖2

≤ 1

n

1

q
E‖m(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))‖2 = O(n−1(B2

1n +B2
2n)),

uniformly in (a,b
ᵀ
Φk(z)) ∈ Θn by Assumption 3.3, which implies by the triangle inequality

that ∣∣∣‖Mn(a,b)‖ − 1
√
q
‖Em(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))‖

∣∣∣
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≤
∥∥∥∥Mn(a,b)− 1

√
q
Em(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))

∥∥∥∥ = OP (n−1/2(B1n +B2n)),

that is, ‖Mn(a,b)‖ = 1√
q
‖Em(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))‖+OP (n−1/2(B1n+B2n)) where the last ter-

m is independent of (a,b). This is equivalent to ‖Mn(a,b)‖2 = 1
q
‖Em(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))‖2+

OP (n−1(B2
1n +B2

2n)) by basic algebra.

Second, for any ‖b‖2 ≤ B2n, we have b
ᵀ
Φk(z) ∈ Θ2n. Also, ‖bᵀ

Φk(z) − g(z)‖2 = ‖b −
β‖2 + ‖γk(z)‖2 by the orthogonality of the basis sequence.

For any δ > 0, let n be large (so k large) such that δ > ‖γk(z)‖. Moreover, by Assumption

3.2, regarding of this δ > 0 there exists an ε > 0 such that

inf
(a,f)∈Θ

‖(a−α,f−g)‖≥δ

1

q
‖Em(Vi, a

ᵀ
Xi, f(Zi))‖2 > ε.

Notice further that

inf
‖a‖≤B1n,‖b‖≤B2n

‖(a−α,b−β)‖≥δ

1

q
‖Em(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))‖2

= inf
‖a‖≤B1n,‖b‖≤B2n

‖a−α‖2+‖b−β‖2≥δ2

1

q
‖Em(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))‖2

≥ inf
‖a‖≤B1n,‖b‖≤B2n

‖a−α‖2+‖b−β‖2≥δ2−‖γk(z)‖2

1

q
‖Em(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))‖2

≥ inf
(a,b

ᵀ
Φk(z))∈Θn

‖a−α‖2+‖bᵀ
Φk(z)−g(z)‖2≥δ2

1

q
‖Em(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))‖2

≥ inf
(a,f)∈Θ

‖a−α‖2+‖f−g‖2≥δ2

1

q
‖Em(Vi, a

ᵀ
Xi, f(Zi))‖2

≥ inf
(a,f)∈Θ

‖(a−α,f−g)‖≥δ

1

q
‖Em(Vi, a

ᵀ
Xi, f(Zi))‖2 > ε,

due to Θn ⊂ Θ, which, along with the approximation in the first part, is tantamount to the

assertion.

Denote m(v, u, w) = (m1(v, u, w), · · · ,mq(v, u, w))
ᵀ
.

Since ‖Mn(a,b)‖2 = 1
qn2

∑q
`=1

(∑n
i=1 m`(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))

)2
we have

∂

∂a
‖Mn(a,b)‖2 =2

1

qn2

q∑
`=1

n∑
i=1

m`(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi))

×
n∑
j=1

∂

∂u
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))Xj
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∂

∂b
‖Mn(a,b)‖2 =2

1

qn2

q∑
`=1

n∑
i=1

m`(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi))

×
n∑
j=1

∂

∂w
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))Φk(Zj),

and

∂2

∂a∂aᵀ ‖Mn(a,b)‖2 =2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

∂

∂u
m`(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))

× ∂

∂u
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))XjX

ᵀ

i

+ 2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

m`(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi))

× ∂2

∂u2
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))XjX

ᵀ

j

∂2

∂a∂bᵀ ‖Mn(a,b)‖2 =2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

∂

∂w
m`(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))

× ∂

∂u
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))XjΦk(Zi)

ᵀ

+ 2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

m`(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi))

× ∂2

∂u∂w
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))XjΦk(Zj)

ᵀ

∂2

∂b∂bᵀ ‖Mn(a,b)‖2 =2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

∂

∂w
m`(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))

× ∂

∂w
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))Φk(Zj)Φk(Zi)

ᵀ

+ 2
1

qn2

q∑
`=1

n∑
i=1

n∑
j=1

m`(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi))

× ∂2

∂w2
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))Φk(Zj)Φk(Zj)

ᵀ
.

The unimportant constant shall be ignored in what follows.

Denote each block of Hn(a,b) by

H11(a,b) :=
∂2

∂a∂aᵀ ‖Mn(a,b)‖2, H12(a,b) :=
∂2

∂a∂bᵀ ‖Mn(a,b)‖2

H22(a,b) :=
∂2

∂b∂bᵀ ‖Mn(a,b)‖2 H21(a,b) =H12(a,b)
ᵀ
,

and define

h11(α, g) :=
1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)ᵀ

,
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=
1

q

[
E
(
∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗X1

][
E
(
∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗X1

]ᵀ

h12(α, g) :=
1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)ᵀ

,

=
1

q

[
E
(
∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗X1

][
E
(
∂

∂w
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗ Φk(Z1)

]ᵀ

h21(α, g) :=h12(α, g)
ᵀ
,

h22(α, g) :=
1

q

q∑
`=1

(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)ᵀ

=
1

q

[
E
(
∂

∂w
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗ Φk(Z1)

][
E
(
∂

∂w
m(V1, α

ᵀ
X1, g(Z1))

)ᵀ

⊗ Φk(Z1)

]ᵀ

.

Denote

hn(α, g) =

h11(α, g) h12(α, g)

h21(α, g) h22(α, g)

 =
1

q
ΨnΨ

ᵀ

n, (A.1)

where

Ψn =E

 ∂
∂u
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗X1

∂
∂w
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗ Φk(Z1)


(p+k)×q

.

Assumption A.1. When sample size is n, suppose that

(i) E
∥∥m(V1, α

ᵀ
X1, g(Z1))

∥∥2
= O(q), E‖X1‖2 = O(p) and E‖Φk(Z1)‖2 = O(k);

(ii) E
∥∥ ∂
∂u
m(V1, α

ᵀ
X1, g(Z1))

∥∥2
= O(q), and E

∥∥ ∂
∂w
m(V1, α

ᵀ
X1, g(Z1))

∥∥2
= O(q);

(iii) E
∥∥ ∂
∂u
m(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥2
= O(pq), and

E
∥∥ ∂
∂w
m(V1, α

ᵀ
X1, g(Z1))⊗ Φk(Z1)

∥∥2
= O(kq);

(iv) E
∥∥∥ ∂2

∂u2
m(V1, α

ᵀ
X1, g(Z1))⊗X1X

ᵀ

1

∥∥∥2

= O(p2q), and

E
∥∥∥ ∂2

∂w2m(V1, α
ᵀ
X1, g(Z1))⊗ Φk(Z1)Φk(Z1)

ᵀ
∥∥∥2

= O(k2q).

We have the following comments on the assumption. It is nature to alow that each

element ofm function has the same second moment that suffices the first supposition in A.1(i).

Because the dimension p of X1 diverges with n, in A.1(i) we allow the second moment E‖X1‖2

diverges too, but, as can be seen in the proof of the following lemma, E‖X1‖2 = O(p) may be

substituted with some appropriate increasing function of p; moreover, E‖Φk(Z1)‖2 = O(k)
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can be true for many orthogonal sequences given the relation between the densities of Z1

and the L2 space. In A.1(ii) we impose similar condition for the norm of the function’s first

partial derivatives. A.1(iii) and (iv) stipulate moment conditions for the norms of the tensor

product for regressor and the partial derivatives (the first and second, respectively) of the m

function.

Assumption A.2.

(i) ‖γk(z)‖2p2 = o(1), n−1p2 = o(1);

(ii) ‖γk(z)‖2k2 = o(1), n−1k2 = o(1).

Assumption A.2 stipulates the relations among truncation parameter k, the diverging

dimension p of the regressor and the sample size. Normally, ‖γk(z)‖2 = O(k−τ ) where τ is

related with the smoothness order of the function g. See, for example, Newey [26]. Thus, the

assumption implicitly puts some conditions on the smoothness. Notice that the combination

of A.2(i) and (ii) implies ‖γk(z)‖2pk = o(1) and n−1pk = o(1) which are used in the proof of

the following lemma.

Assumption A.3 The partial derivatives of m(v, u, w) satisfy

(i) q−1/2
∥∥ ∂
∂u
m(V, a

ᵀ

1X, f1(Z))− ∂
∂u
m(V, a

ᵀ

2X, f2(Z))
∥∥ ≤ A1(V,X,Z)[‖a1 − a2‖ + |f1(Z) −

f2(Z)|] where E[A1(V,X,Z)2] <∞ and E[A1(V,X,Z)2‖X‖2] = O(p).

(ii) q−1/2
∥∥ ∂
∂w
m(V, a

ᵀ

1X, f1(Z))− ∂
∂w
m(V, a

ᵀ

2X, f2(Z))
∥∥ ≤ A2(V,X,Z)[‖a1 − a2‖+ |f1(Z)−

f2(Z)|] where E[A2(V,X,Z)2] <∞ and E[A2(V,X,Z)2‖Φk(Z)‖2] = O(k).

The assumption is similar to Assumption 3.3 but stipulated for the partial derivatives with

additional requirements that E[A1(V,X,Z)2‖X‖2] = O(p) and E[A2(V,X,Z)2‖Φk(Z)‖2] =

O(k). This is the consequence of the partial derivatives and is reasonably diverging with the

related dimensions.

Lemma A.2. Under Assumptions 2.1-2.2 and A.1-A.3, (1) Hn(α, β) is asymptotically almost

surely positive definite; (2) let hn(α, g) be defined in (A.1), and we then have ‖Hn(α, β) −
hn(α, g)‖ = oP (1) as n→∞.

Proof of Lemma A.2. (1) Split the matrix Hn(α, β) := H̃n(α, β) + ∆n(α, β) where H̃n(α, β)

is a symmetric 2-by-2 block matrix with blocks

H̃11(α, β) =
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj

)
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×

(
1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Xi

)ᵀ

,

H̃12(α, β) =
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj

)

×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Φk(Zi)

)ᵀ

,

H̃22(α, β) =
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂w
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))Φk(Zj)

)
(

1

n

n∑
i=1

∂

∂w
m`(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))Φk(Zi)

)ᵀ

,

and H̃21(α, β) = H̃12(α, β)
ᵀ
, and ∆n(α, β) has blocks

∆11(α, β) =
1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

)

×

(
1

n

n∑
j=1

∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j

)
,

∆12(α, β) =
1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

)

×

(
1

n

n∑
j=1

∂2

∂u∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjΦk(Zj)

ᵀ

)
,

∆22(α, β) =
1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

)

×

(
1

n

n∑
j=1

∂2

∂w2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Φk(Zj)Φk(Zj)

ᵀ

)
,

and ∆21(α, β) = ∆12(α, β)
ᵀ
. To fulfill the assertion, we shall show

(i) H̃n(α, β) is almost surely positive definite and

(ii) ‖∆n(α, β)‖ = oP (1).

Firstly, for any vectors a ∈ Rp and b ∈ Rk where either a 6= 0 or b 6= 0, we have

(a
ᵀ
,b

ᵀ
)H̃n(α, β)(a

ᵀ
,b

ᵀ
)
ᵀ

=
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))a

ᵀ
Xj

)2

+ 2
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))a

ᵀ
Xj

)
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×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))b

ᵀ
Φk(Zi)

)

+
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂w
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))b

ᵀ
Φk(Zj)

)2

=
1

q

q∑
`=1

[
1

n

n∑
j=1

(
∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))a

ᵀ
Xj +

∂

∂w
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))b

ᵀ
Φk(Zj)

)]2

,

which is almost surely positive. Hence, H̃n(α, β) is almost surely positive definite.

Secondly, to show ‖∆n(α, β)‖ = oP (1), it suffices to prove the result for each block.

Indeed, appealing to the triangle inequality and Cauchy-Schwarz inequality,

‖∆11(α, β)‖2 ≤1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

)2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j

∥∥∥∥∥
2

=‖Mn(α, β)‖2 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j

∥∥∥∥∥
2

.

Because ‖Mn(α, β)‖2 = OP (‖γk(z)‖2) + OP (n−1) by Lemma A.1, we only need to deal with

the second factor. Note that

1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j

∥∥∥∥∥
2

≤2

q

q∑
`=1

∥∥∥∥E ∂2

∂u2
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))X1X

ᵀ

1

∥∥∥∥2

+
2

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

(
∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j

−E ∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j

)∥∥∥∥2

where by Assumption A.1 the first term is O(p2), while by the iid property for the second we

have

1

q

q∑
`=1

E

∥∥∥∥∥ 1

n

n∑
j=1

(
∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j

−E ∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j

)∥∥∥∥2

=
1

n2

1

q

q∑
`=1

n∑
j=1

E
∥∥∥∥ ∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j − E
∂2

∂u2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjX

ᵀ

j

∥∥∥∥2
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=
1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂2

∂u2
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))X1X

ᵀ

1 − E
∂2

∂u2
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))X1X

ᵀ

1

∥∥∥∥2

≤ 1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂2

∂u2
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))X1X

ᵀ

1

∥∥∥∥2

=
1

n

1

q
E
∥∥∥∥ ∂2

∂u2
m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))⊗X1X

ᵀ

1

∥∥∥∥2

=O(n−1p2),

by Assumption A.1, from which ‖∆11(α, β)‖2 = OP (‖γk(z)‖2p2) +OP (n−1p2) = oP (1).

Similarly,

‖∆12(α, β)‖2 ≤‖Mn(α, β)‖2 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

∂2

∂u∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjΦk(Zj)

∥∥∥∥∥
2

and for the second factor using again the iid property, we have

1

q

q∑
`=1

E

∥∥∥∥∥ 1

n

n∑
j=1

∂2

∂u∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))XjΦk(Zj)

ᵀ

∥∥∥∥∥
2

≤2
1

q

q∑
`=1

∥∥∥∥E ∂2

∂u∂w
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))X1Φk(Z1)

ᵀ

∥∥∥∥2

+ 2
1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂2

∂u∂w
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))X1Φk(Z1)

ᵀ

−E ∂2

∂u∂w
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))X1Φk(Z1)

ᵀ

∥∥∥∥2

≤2
1

q

q∑
`=1

∥∥∥∥E ∂2

∂u∂w
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))X1Φk(Z1)

ᵀ

∥∥∥∥2

+ 2
1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂2

∂u∂w
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))X1Φk(Z1)

ᵀ

∥∥∥∥2

=2
1

q

∥∥∥∥E ∂2

∂u∂w
m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))⊗X1Φk(Z1)

ᵀ

∥∥∥∥2

+ 2
1

n

1

q
E
∥∥∥∥ ∂2

∂u∂w
m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))⊗X1Φk(Z1)

ᵀ

∥∥∥∥2

=O(pk) +O(n−1pk),

which implies ‖∆12(α, β)‖2 = OP (‖γk(z)‖2pk) +OP (n−1pk) = oP (1).

Furthermore,

‖∆22(α, β)‖2 ≤‖Mn(α, β)‖2 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

∂2

∂w2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Φk(Zj)Φk(Zj)

ᵀ

∥∥∥∥∥
2
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where the second factor can be derived similarly

1

q

q∑
`=1

E

∥∥∥∥∥ 1

n

n∑
j=1

∂2

∂w2
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Φk(Zj)Φk(Zj)

ᵀ

∥∥∥∥∥
2

≤2
1

q

∥∥∥∥E ∂2

∂w2
m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))⊗ Φk(Z1)Φk(Z1)

ᵀ

∥∥∥∥2

+ 2
1

n

1

q
E
∥∥∥∥ ∂2

∂w2
m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))⊗ Φk(Z1)Φk(Z1)

ᵀ

∥∥∥∥2

=O(k2) +O(n−1k2),

giving that ‖∆22(α, β)‖2 = OP (‖γk(z)‖2k2) +OP (n−1k2) = oP (1). This finishes the assertion

(i).

Now, we show (ii). Because ‖Hn(α, β)−hn(α, g)‖ ≤ ‖∆n(α, β)‖+‖H̃n(α, β)−hn(α, g)‖ =

oP (1) + ‖H̃n(α, β)− hn(α, g)‖, what we need to show is ‖H̃n(α, β)− hn(α, g)‖ = oP (1). It is

sufficient to show the result in block-sense. Indeed,

H̃11(α, β)− h11(α, g)

=
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj

)(
1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Xi

)ᵀ

− 1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)ᵀ

=
1

q

q∑
`=1

1

n

n∑
j=1

(
∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj − E

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj

)

×

(
1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Xi

)ᵀ

+
1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)
× 1

n

n∑
i=1

(
∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Xi − E

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

)ᵀ

:=I1 + I2, say.

Notice further that

I1 =
1

q

q∑
`=1

1

n

n∑
j=1

(
∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj −

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj

)

×

(
1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Xi

)ᵀ

+
1

q

q∑
`=1

1

n

n∑
j=1

(
∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj − E

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj

)
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×

(
1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Xi

)ᵀ

.

Hence, using Cauchy-Schwarz inequality,

‖I1‖2 ≤1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

(
∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))−

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))

)
Xj

∥∥∥∥∥
2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Xi

∥∥∥∥∥
2

+
1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

(
∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj − E

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj

)∥∥∥∥∥
2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Xi

∥∥∥∥∥
2

:=I11 × I13 + I12 × I13, say.

Due to the i.i.d. property and the Law of Large Number (LLN, hereafter), I11 has the

same order in probability as

1

q

q∑
`=1

∥∥∥∥E( ∂

∂u
m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))− ∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))

)
X1

∥∥∥∥2

=
1

q

∥∥∥∥E( ∂

∂u
m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))− ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)
⊗X1

∥∥∥∥2

≤E[A1(V1, X1, Z1)2‖X1‖2]E[γk(Z1)2] = O(‖γk(z)‖2p),

while for I12, by the iid property,

E[I12] =
1

n2

1

q

q∑
`=1

n∑
j=1

E
∥∥∥∥ ∂∂um`(Vj, α

ᵀ
Xj, g(Zj))Xj − E

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj

∥∥∥∥2

=
1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂∂um`(V1, α

ᵀ
X1, g(Z1))X1 − E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

≤ 1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂∂um`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

≤ 1

n

1

q
E
∥∥∥∥ ∂∂um(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

= O(n−1p)

by Assumption A.1. Moreover, by virtue of the iid property and the LLN, I13 has the same

order in probability as

1

q

q∑
`=1

∥∥∥∥E ∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

∥∥∥∥2
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+
1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

[
∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))−

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))

]
Xi

∥∥∥∥∥
2

=
1

q

∥∥∥∥E ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

+
1

q

q∑
`=1

∥∥∥∥E [ ∂∂um`(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))− ∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))

]
X1

∥∥∥∥2

=O(p) +
1

q

∥∥∥∥E [ ∂∂um(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))− ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

]
⊗X1

∥∥∥∥2

≤O(p) + (E[A1(V1, X1, Z1)|γk(Z1)|‖X1‖])2 ≤ O(p) +O(‖γk(z)‖2p)

due to Assumptions A.1 and A.3, implying that ‖I1‖2 = OP (n−1p2)+OP (‖γk(z)‖2p2) = oP (1)

by Assumption A.2.

Now, we consider I2. Note that

‖I2‖2 ≤1

q

q∑
`=1

∥∥∥∥E ∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

(
∂

∂u
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Xi − E

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

)∥∥∥∥∥
2

≤2
1

q

∥∥∥∥E ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

× 1

q

∥∥∥∥∥ 1

n

n∑
i=1

(
∂

∂u
m(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))−

∂

∂u
m(Vi, α

ᵀ
Xi, g(Zi))

)
⊗Xj

∥∥∥∥∥
2

+ 2
1

q

∥∥∥∥E ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
i=1

(
∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi − E

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

)∥∥∥∥∥
2

:=2I21(I22 + I23), say.

By Assumption A.1, I21 = O(p). In addition, by the LLN I22 has the same order in

probability as

1

q

∥∥∥∥E( ∂

∂u
m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))− ∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

)
⊗X1

∥∥∥∥2

≤(E[A1(V1, X1, Z1)|γk(Z1)|‖X1‖])2 ≤ O(p)‖γk(z)‖2

using Assumption A.3; meanwhile, by the iid property,

E[I23] =
1

n2

1

q

q∑
`=1

n∑
i=1

E
∥∥∥∥ ∂∂um`(Vi, α

ᵀ
Xi, g(Zi))Xi − E

∂

∂u
m`(Vi, α

ᵀ
Xi, g(Zi))Xi

∥∥∥∥2
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=
1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂∂um`(V1, α

ᵀ
X1, g(Z1))X1 − E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

≤ 1

n

1

q

q∑
`=1

E
∥∥∥∥ ∂∂um`(V1, α

ᵀ
X1, g(Z1))X1

∥∥∥∥2

=
1

n

1

q
E
∥∥∥∥ ∂∂um(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

= O(n−1p)

by Assumption A.1. Hence, ‖I2‖2 = OP (n−1p2)+OP (‖γk(z)‖2p2) = oP (1). Thus, ‖H̃11(α, β)−
h11(α, β)‖2 = OP (1).

Moreover,

H̃12(α, β)− h12(α, g)

=
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj

)(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Φk(Zi)

)ᵀ

− 1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)ᵀ

=
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj − E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)

×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Φk(Zi)

)ᵀ

+
1

q

q∑
`=1

(
E
∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

)

×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Φk(Zi)− E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)ᵀ

:=I3 + I4, say.

Similar to I1, ‖I3‖2 = OP (n−1pk) + OP (‖γk(z)‖2pk) = oP (1) by Assumption A.2; and

similar to I2, we may have ‖I4‖2 = OP (n−1pk) + OP (‖γk(z)‖2pk) = oP (1). We then have

‖H̃12(α, β)− h12(α, β)‖2 = oP (1).

Finally, we derive similarly for H̃22(α, β)− h22(α, β),

H̃22(α, β)− h22(α, g)

=
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Φk(Zj)

)(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Φk(Zi)

)ᵀ

− 1

q

q∑
`=1

(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)ᵀ

=
1

q

q∑
`=1

(
1

n

n∑
j=1

∂

∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Φk(Zj)− E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)
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×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Φk(Zi)

)ᵀ

+
1

q

q∑
`=1

(
E
∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)

×

(
1

n

n∑
i=1

∂

∂w
m`(Vi, α

ᵀ
Xi, β

ᵀ
Φk(Zi))Φk(Zi)− E

∂

∂w
m`(V1, α

ᵀ
X1, g)Φk(Z1)

)ᵀ

:=I5 + I6, say.

Using the same approach we have ‖I5‖2 = OP (n−1k2) + OP (‖γk(z)‖2k2) = oP (1) and

‖I6‖2 = OP (n−1k2) + OP (‖γk(z)‖2k2) = oP (1) by Assumption A.2. The whole proof is

complete.

Denote Sn(a,b) = (S1n(a,b)
ᵀ
, S2n(a,b)

ᵀ
)
ᵀ
, where

S1n(a,b) =
∂

∂a
‖Mn(a,b)‖2 =

1

qn2

q∑
`=1

n∑
i=1

m`(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi))

×
n∑
j=1

∂

∂u
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))Xj

S2n(a,b) =
∂

∂b
‖Mn(a,b)‖2 =

1

qn2

q∑
`=1

n∑
i=1

m`(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi))

×
n∑
j=1

∂

∂w
m`(Vj, a

ᵀ
Xj,b

ᵀ
Φk(Zj))Φk(Zj).

We now focus on Sn(α, β) with sub-vectors S1n(α, β) and S2n(α, β). Define

s1n(α, g) =
1

qn

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))E

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1,

=

[
1

q
E
(
∂

∂u
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗X1

)]
1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, g(Zi)),

s2n(α, g) =
1

qn

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

=

[
1

q
E
(
∂

∂w
m(V1, α

ᵀ
X1, g(Z1))

ᵀ ⊗ Φk(Z1)

)]
1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, g(Zi)),

and hence

sn(α, g) = (s1n(α, g)
ᵀ
, s2n(α, g)

ᵀ
)
ᵀ

=
1

q
Ψn

1

n

n∑
i=1

m(Vi, α
ᵀ
Xi, g(Zi)), (A.2)

where Ψn is given by (A.1).
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Lemma A.3. Under Assumptions 2.1-2.2, 3.1, 3.3, A.1-A.3, as n→∞ we have

‖Sn(α, β)− sn(α, g)‖ = oP (1).

Proof. It is sufficient to show that ‖S1n(α, β)−s1n(α, g)‖ = oP (1) and ‖S2n(α, β)−s2n(α, g)‖ =

oP (1). Observe that

S1n(α, β)− s1n(α, g)

=
1

q

q∑
`=1

1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

× 1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj

+
1

q

q∑
`=1

1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

× 1

n

n∑
j=1

(
∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))−

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))

)
Xj

+
1

q

q∑
`=1

1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

× 1

n

n∑
j=1

(
∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj − E

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj

)
:=I1 + I2 + I3, say.

Then, using Cauchy-Schwarz inequality gives

‖I1‖2 ≤1

q

q∑
`=1

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj

∥∥∥∥∥
2

:=I11 × I12, say.

Observe further that

E[I11] =
1

q

q∑
`=1

E

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

=
1

q

q∑
`=1

Var

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)

+
1

q

q∑
`=1

(
1

n

n∑
i=1

E[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

37



=
1

q

q∑
`=1

1

n2

n∑
i=1

Var[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

+
1

q

q∑
`=1

(
Em`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))

)2

≤ 1

n

1

q

q∑
`=1

Var[m`(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))−m`(V1, α

ᵀ
X1, g(Z1))]

+
1

q

∥∥Em(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))

∥∥2

≤ 1

n

1

q

q∑
`=1

E[m`(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))−m`(V1, α

ᵀ
X1, g(Z1))]2

+
1

q

∥∥Em(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))

∥∥2

≤ 1

n

1

q
E‖m(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))−m(V1, α

ᵀ
X1, g(Z1))‖2

+
1

q

∥∥E[m(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))−m(V1, α

ᵀ
X1, g(Z1))]

∥∥2

≤ 1

n
E|A(V1, X1, Z1)γk(Z1)|2 + E|A(V1, X1, Z1)|2)‖γk(z)‖2

=o(n−1) +O(‖γk(z)‖2)

by Assumptions 3.1 and 3.3, the dominated convergence theorem and Cauchy-Schwarz in-

equality. Moreover, it is clear by Assumptions 3.3 and A.1 that

E[I12] ≤ 1

q
E
∥∥∥∥ ∂∂um(V1, α

ᵀ
X1, g(Z1))⊗X1

∥∥∥∥2

= O(p).

Hence, I1 = oP (1) by Assumption A.2.

For I2, by Cauchy-Schwarz inequality again,

‖I2‖2 ≤1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

)2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

∂

∂u
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Xj −

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj

∥∥∥∥∥
2

:=I21 × I22, say.

By virtue of the iid property and Assumption A.1,

E[I21] =
1

n2

1

q

q∑
`=1

n∑
i=1

Em`(Vi, α
ᵀ
Xi, g(Zi))

2

=
1

n

1

q

q∑
`=1

Em`(V1, α
ᵀ
X1, g(Z1))2 =

1

n

1

q
E‖m(V1, α

ᵀ
X1, g(Z1))‖2

=O(n−1).
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Meanwhile, invoking of the LLN I22 has the same order in probability as

1

q

q∑
`=1

∥∥∥∥E [ ∂∂um`(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))X1 −

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))X1

]∥∥∥∥2

=
1

q

∥∥∥∥E [ ∂∂um(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))⊗X1 −

∂

∂u
m`(V1, α

ᵀ
X1, g(Z1))⊗X1

]∥∥∥∥2

≤ |E[A1(V1, X1, Z1)|γk(Z1)|‖X1‖]|2 ≤ O(‖γk(z)‖2p)

=o(1)

due to Assumption A.3 and Cauchy-Schwarz inequality, implying I2 = oP (1).

Again, using Cauchy-Schwarz inequality gives

‖I3‖2 ≤1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

)2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

(
∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj − E

∂

∂u
m`(Vj, α

ᵀ
Xj, g(Zj))Xj

)∥∥∥∥∥
2

=OP (n−1)OP (p) = OP (n−1p) = oP (1)

due to the iid property and Assumption A.1. This finishes the proof of ‖S1n(α, β)−s1n(α, g)‖ =

oP (1).

Now, we are to show ‖S2n(α, β)− s2n(α, g)‖ = oP (1). Note that

S2n(α, β)− s2n(α, g)

=
1

qn2

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))

×
n∑
j=1

∂

∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Φk(Zj)

− 1

qn

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

=
1

qn2

q∑
`=1

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

×
n∑
j=1

∂

∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Φk(Zj)

+
1

qn2

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

×
n∑
j=1

(
∂

∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))−

∂

∂w
m`(Vj, α

ᵀ
Xj, g(Zj))

)
Φk(Zj)

+
1

qn

q∑
`=1

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))
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×

(
1

n

n∑
j=1

∂

∂w
m`(Vj, α

ᵀ
Xj, g(Zj))Φk(Zj)− E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

)
:=I4 + I5 + I6, say.

Note further by Cauchy-Schwarz inequality that

‖I4‖2 ≤1

q

q∑
`=1

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

∂

∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))Φk(Zj)

∥∥∥∥∥
2

≤2
1

q

q∑
`=1

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

[
∂

∂w
m`(Vj, α

ᵀ
Xj, β

ᵀ
Φk(Zj))−

∂

∂w
m`(Vj, α

ᵀ
Xj, g(Zj))

]
Φk(Zj)

∥∥∥∥∥
2

+ 2
1

q

q∑
`=1

(
1

n

n∑
i=1

[m`(Vi, α
ᵀ
Xi, β

ᵀ
Φk(Zi))−m`(Vi, α

ᵀ
Xi, g(Zi))]

)2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

∂

∂w
m`(Vj, α

ᵀ
Xj, g(Zj))Φk(Zj)

∥∥∥∥∥
2

,

where due to Assumption A.3 the second term is the leading one, which by the LLN has the

same order as

1

q

q∑
`=1

(
E[m`(V1, α

ᵀ
X1, β

ᵀ
Φk(Z1))−m`(V1, α

ᵀ
X1, g(Z1))]

)2

× 1

q

q∑
`=1

∥∥∥∥E ∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

∥∥∥∥2

=
1

q

∥∥E[m(V1, α
ᵀ
X1, β

ᵀ
Φk(Z1))−m(V1, α

ᵀ
X1, g(Z1))]

∥∥2

× 1

q

∥∥∥∥E ∂

∂w
m(V1, α

ᵀ
X1, g(Z1))⊗ Φk(Z1)

∥∥∥∥2

≤ |E[A(V1, X1, Z1)γk(Z1)]|2O(k) ≤ O(‖γk(z)‖2k) = o(1)

in probability by Assumption A.2 as n→∞.

Moreover, invoking Assumptions A.2-A.3, I5 = oP (1). Finally,

‖I6‖2 ≤1

q

q∑
`=1

(
1

n

n∑
i=1

m`(Vi, α
ᵀ
Xi, g(Zi))

)2

× 1

q

q∑
`=1

∥∥∥∥∥ 1

n

n∑
j=1

[
∂

∂w
m`(Vj, α

ᵀ
Xj, g(Zj))Φk(Zj)− E

∂

∂w
m`(Vi, α

ᵀ
Xi, g(Zi))Φk(Zi)

]∥∥∥∥∥
2
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:=I61 × I62, say.

Here, I61 = I21 and thus E[I61] = O(n−1). Meanwhile,

E[I62] =
1

q

1

n2

q∑
`=1

n∑
j=1

E
∥∥∥∥ ∂

∂w
m`(Vj, α

ᵀ
Xj, g(Zj))Φk(Zj)− E

∂

∂w
m`(Vi, α

ᵀ
Xi, g(Zi))Φk(Zi)

∥∥∥∥2

=
1

q

1

n

q∑
`=1

E
∥∥∥∥ ∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)− E

∂

∂w
m`(V1, α

ᵀ
X1, g(Z1))Φk(Z1)

∥∥∥∥2

=
1

q

1

n
E
∥∥∥∥ ∂

∂w
m(V1, α

ᵀ
X1, g(Z1))⊗ Φk(Z1)− E

∂

∂w
m(V1, α

ᵀ
X1, g(Z1))⊗ Φk(Z1)

∥∥∥∥2

≤1

q

1

n
E
∥∥∥∥ ∂

∂w
m(V1, α

ᵀ
X1, g(Z1))⊗ Φk(Z1)

∥∥∥∥2

= O(n−1k) = o(1)

appealing to Assumptions A.1-A.2, implying ‖I6‖2 = oP (n−1k) = oP (1). The proof is com-

plete.

B Proofs of the main results

Proof of Theorem 3.1. In Lemma A.1, we have shown that

(i) ‖Mn(α, β)‖2 = oP (1),

(ii) sup‖a‖≤B1n,‖b‖≤B2n

‖(a−α,b−β)‖>δ
‖Mn(a,b)‖−2 = OP (1) for each δ > 0.

Fix ε > 0 and δ > 0. Assertion (ii) means that there exists a large but fixed M for which

lim supP

 sup
‖a‖≤B1n,‖b‖≤B2n

‖(a−α,b−β)‖>δ

‖Mn(a,b)‖−2 > M

 < ε.

Meanwhile, by the definition of the estimator and (i) we have

‖Mn(α̂, β̂)‖2 = inf
‖a‖≤B1n,‖b‖≤B2n

‖Mn(a,b)‖2 ≤ ‖Mn(α, β)‖2 = oP (1),

which gives

P
(
‖Mn(α̂, β̂)‖−2 > M

)
→ 1.

It follows that, with probability of at least 1− 2ε for all n large enough,

‖Mn(α̂, β̂)‖−2 > M ≥ sup
‖a‖≤B1n,‖b‖≤B2n

‖(a−α,b−β)‖>δ

‖Mn(a,b)‖−2.
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Hence, the inclusion (α̂, β̂) ∈ {(a,b) : ‖a‖ ≤ B1n, ‖b‖ ≤ B2n, ‖(a − α,b − β)‖ > δ} holds

with probability at most 2ε,

lim supP
(
‖(α̂− α, β̂ − β)‖ > δ

)
≤ 2ε.

As ε and δ are arbitrarily chosen, we have ‖(α̂− α, β̂ − β)‖ →P 0. Notice further that

‖(α̂− α, ĝ(z)− g(z))‖2 =‖α̂− α‖2 +

∫
[ĝ(z)− g(z)]2π(z)dz

=‖α̂− α‖2 +

∫
[(β̂ − β)

ᵀ
Φk(z)− γk(z)]2π(z)dz

=‖α̂− α‖2 + ‖β̂ − β‖2 + ‖γk(z)‖2

=‖(α̂− α, β̂ − β)‖2 + ‖γk(z)‖2 →P 0,

as n, k →∞, by the orthogonality of the basis sequence, which then completes the proof.

Proof of Theorem 3.2. By the first order condition Sn(α̂, β̂) = 0, consistency and Taylor

expansion, we have expansion

0 = Sn(α̂, β̂) = Sn(α, β) +Hn(α, β)

α̂− α
β̂ − β

 ,

where higher order term is omitted. As shown in Lemmas A.2-A.3, under Assumptions

2.1-2.2, 3.1, 3.3 and A.1-A.3 in Appendix A, Hn(α, β) is asymptotically positive definite

and Hn(α, β) and Sn(α, β) are approximated by hn(α, g) and sn(α, g) (defined in (A.1) and

(A.2)), respectively, that is, ‖Hn(α, β)−hn(α, g)‖ = oP (1) and ‖Sn(α, β)−sn(α, g)‖ = oP (1).

Thence, α̂− α
β̂ − β

 = −Hn(α, β)−1Sn(α, β) = −hn(α, g)−1sn(α, g)(1 + oP (1)). (B.1)

Noting that ĝ(z)− g(z) = Φk(z)
ᵀ
(β̂ − β)− γk(z), the linearity of Fréchet derivative and

ignoring the higher order term in the definition of Fréchet derivative,L (α̂)−L (α)

F (ĝ)−F (g)

 =

 L (α̂− α)

F ′(g)(ĝ(z)− g(z))


=

 L (α̂− α)

F ′(g)Φk(z)
ᵀ
(β̂ − β)

−
 0

F ′(g)γk(z)


=

L 0

0 F ′(g)Φk(z)
ᵀ

α̂− α
β̂ − β

−
 0

F ′(g)γk(z)


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=−

L 0

0 F ′(g)Φk(z)
ᵀ

hn(α, g)−1sn(α, g)−

 0

F ′(g)γk(z)


:=Λ1n + Λ2n, say.

Recall hn(α, g) = 1
q
ΨnΨ

ᵀ

n and sn(α, g) = 1
q
Ψn

1
n

∑n
i=1 m(Vi, α

ᵀ
Xi, g(Zi)) by (A.1) and

(A.2). Hence, Λ1n = 1
n
Γn(ΨnΨ

ᵀ

n)−1Ψn

∑n
i=1m(Vi, α

ᵀ
Xi, g(Zi)) where

Γn =−

L 0

0 F ′(g(z))Φk(z)
ᵀ

 .

Then, the covariance matrix of
√
nΛ1n is

Σ2
n := Γn(ΨnΨ

ᵀ

n)−1ΨnΞnΨ
ᵀ

n(ΨnΨ
ᵀ

n)−1Γ
ᵀ

n,

in which Ξn := E[m(V1, α
ᵀ
X1, g(Z1))m(V1, α

ᵀ
X1, g(Z1))

ᵀ
]. It follows from the standard cen-

tral limit theorem that
√
nΣ−1

n Λ1n →D N(0, Ir+s) as n → ∞. Then the assertion follows

because of
√
nΣ−1

n (0
ᵀ

r ,F
′(g)γk(z)

ᵀ
)
ᵀ

= o(1), yielding
√
nΛ2n = o(1).

Proof of Proposition 3.1. The assertions (1) and (2) can be shown similarly to Lemmas 3.4

and 3.5 in Pakes and Pollard [29]. For brevity we omit the proof. For (3), factor Ξn = CnC
ᵀ

n

and denote Ωn = [ΨnWΨ
ᵀ

n]−1ΨnWCn and Tn = Ωn − [ΨnΞ−1
n Ψ

ᵀ

n]−1Ψn(C−1
n )

ᵀ
. It follows that

TnT
ᵀ

n = ΩnΩ
ᵀ

n − [ΨnΞ−1
n Ψ

ᵀ

n]−1,

from which

Γn[ΨnWΨ
ᵀ

n]−1ΨnWΞnWΨ
ᵀ

n[ΨnWΨ
ᵀ

n]−1Γ
ᵀ

n ≥ Γn[ΨnΞ−1
n Ψ

ᵀ

n]−1Γ
ᵀ

n,

for all W satisfying the conditions, in view of the nonnegative definiteness of TnT
ᵀ

n .

Proof of Theorem 4.1. By the conventional central limit theorem(
n∑
i=1

[κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2

)−1/2 n∑
i=1

κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))→D N(0, 1),

as n→∞ for any κ ∈ Rq such that ‖κ‖ = 1.

Thus, the result follows immediately if we show

Ln(α̂, β̂;κ) =

(
n∑
i=1

[κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2

)−1/2 n∑
i=1

κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi)) + oP (1).

Toward this end, we shall show

(1).
1

n
Dn(α̂, β̂;κ)2 − 1

n

n∑
i=1

[κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2 = oP (1); and
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(2).
1√
n

n∑
i=1

κ
ᵀ
m(Vi, α̂

ᵀ
Xi, β̂

ᵀ
Φk(Zi))−

1√
n

n∑
i=1

κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi)) = oP (1).

(1). Notice that

1

n
Dn(α̂, β̂;κ)2 =

1

n

n∑
i=1

[κ
ᵀ
m(Vi, α̂

ᵀ
Xi, β̂

ᵀ
Φk(Zi))]

2

=
1

n

n∑
i=1

[κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2

+
1

n

n∑
i=1

{[κᵀ
m(Vi, α̂

ᵀ
Xi, ĝ(Zi))]

2 − [κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2}

and we shall show that the second term is oP (1). First of all, we need the convergence

rate of ‖α̂ − α‖2 and ‖β̂ − β‖2. It follows from (B.1) in the proof of Theorem 3.2 that

((α̂−α)
ᵀ
, (β̂−β)

ᵀ
) has leading term hn(α, g)−1sn(α, g). Then, by the expressions of hn(α, g)

and sn(α, g) it is readily seen that ‖α̂− α‖2 = OP (q/n) and ‖β̂ − β‖2 = OP (q/n).

Moreover, by the first order Taylor expansion,

1

n

n∑
i=1

|[κᵀ
m(Vi, α̂

ᵀ
Xi, ĝ(Zi))]

2 − [κ
ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))]

2|

≤ 1

n

n∑
i=1

|κᵀ
[m(Vi, α̂

ᵀ
Xi, ĝ(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))]|2

+ 2
1

n

n∑
i=1

|κᵀ
[m(Vi, α̂

ᵀ
Xi, ĝ(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))]||κ

ᵀ
m(Vi, α

ᵀ
Xi, g(Zi))|

≤ 2

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂u
(α̂− α)

ᵀ
Xi

∣∣∣∣2
+

2

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w
(ĝ(Zi)− g(Zi))

∣∣∣∣2
+

2

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂u
(α̂− α)

ᵀ
Xi

∣∣∣∣ |κᵀ
m(Vi, α

ᵀ
Xi, g(Zi))|

+
2

n

n∑
i=1

∣∣∣∣κᵀ ∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w
(ĝ(Zi)− g(Zi))

∣∣∣∣ |κᵀ
m(Vi, α

ᵀ
Xi, g(Zi))|

≤‖α̂− α‖2 2

n

n∑
i=1

∥∥∥∥∂m(Vi, α
ᵀ
Xi, g(Zi))

∂u
⊗Xi

∥∥∥∥2

+ ‖β̂ − β‖2 4

n

n∑
i=1

∥∥∥∥∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w
⊗ Φk(Zi)

∥∥∥∥2

+
4

n

n∑
i=1

∥∥∥∥∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w

∥∥∥∥2

γ2
k(Zi)

+ ‖α̂− α‖ 2

n

(
n∑
i=1

∥∥∥∥∂m(Vi, α
ᵀ
Xi, g(Zi))

∂u
⊗Xi

∥∥∥∥2
)1/2( n∑

i=1

‖m(Vi, α
ᵀ
Xi, g(Zi))‖2

)1/2
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+
2

n

(
n∑
i=1

∥∥∥∥∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w
(ĝ(Zi)− g(Zi))

∥∥∥∥2
)1/2( n∑

i=1

‖m(Vi, α
ᵀ
Xi, g(Zi))‖2

)1/2

=‖α̂− α‖2OP (qp) + ‖β̂ − β‖2OP (qk) + sup
z
γ2
k(z)OP (q) = oP (1)

by Assumptions A.1 and 4.2, where Cauchy-Schwarz inequality is used to show the last two

sums are of smaller order. Thus, the assertion of (1) holds.

(2). We first consider

νn(a, f ;κ) =
1√
n

n∑
i=1

κ
ᵀ
(m(Vi, a

ᵀ
Xi, f(Zi))− E[m(Vi, a

ᵀ
Xi, f(Zi))]), (B.2)

for any κ ∈ Rq such that ‖κ‖ = 1 and (a, f) ∈ Θ. Because of the convergence in Theorem

3.2, we eventually will show νn(α̂, ĝ;κ)− νn(α, g;κ) = oP (1).

Notice by the first order Taylor expansion that

m(Vi, a
ᵀ
Xi, f(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))

=
∂m(Vi, α

ᵀ
Xi, g(Zi))

∂u
(a− α)

ᵀ
Xi +

∂m(Vi, α
ᵀ
Xi, g(Zi))

∂w
(f(Zi)− g(Zi)),

for all (a, f) in the neighbourhood of (α, g), where f has the form b
ᵀ
Φk(·). Thus,

P

(
sup

‖(a,f)−(α,g)‖<δ
|νn(a, f ;κ)− νn(α, g;κ)| > η

)

≤P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

κ
ᵀ
[
∂m

∂u
(a− α)

ᵀ
Xi − E

∂m

∂u
(a− α)

ᵀ
Xi]

∣∣∣∣∣ > η/2

)

+ P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

κ
ᵀ
[
∂m

∂w
(f(Zi)− g(Zi))− E

∂m

∂w
(f(Zi)− g(Zi))]

∣∣∣∣∣ > η/2

)

≤P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

[
κ

ᵀ ∂m

∂u
Xi − Eκ

ᵀ ∂m

∂u
Xi

]ᵀ

(a− α)

∣∣∣∣∣ > η/2

)

+ P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

[
κ

ᵀ ∂m

∂w
Φk(Zi)− Eκ

ᵀ ∂m

∂w
Φk(Zi)

]ᵀ

(b− β)

∣∣∣∣∣ > η/4

)

+ P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

[
κ

ᵀ ∂m

∂w
γk(Zi)− Eκ

ᵀ ∂m

∂w
γk(Zi)

]∣∣∣∣∣ > η/4

)

≤P

(
sup

‖(a,f)−(α,g)‖<δ

∥∥∥∥∥ 1
√
np

n∑
i=1

[
κ

ᵀ ∂m

∂u
Xi − Eκ

ᵀ ∂m

∂u
Xi

]∥∥∥∥∥ ‖√p(a− α)‖ > η/2

)

+ P

(
sup

‖(a,f)−(α,g)‖<δ

∥∥∥∥∥ 1√
nk

n∑
i=1

[
κ

ᵀ ∂m

∂w
Φk(Zi)− Eκ

ᵀ ∂m

∂w
Φk(Zi)

]∥∥∥∥∥ ‖√k(b− β)‖ > η/4

)

+ P

(
sup

‖(a,f)−(α,g)‖<δ

∣∣∣∣∣ 1√
n

n∑
i=1

[
κ

ᵀ ∂m

∂w
γk(Zi)− Eκ

ᵀ ∂m

∂w
γk(Zi)

]∣∣∣∣∣ > η/4

)
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:=I1n + I2n + I3n, say.

Observe by the classical CLT that

1
√
np

n∑
i=1

[
κ

ᵀ ∂m

∂u
Xi − Eκ

ᵀ ∂m

∂u
Xi

]
= OP (1),

1√
nk

n∑
i=1

[
κ

ᵀ ∂m

∂w
Φk(Zi)− Eκ

ᵀ ∂m

∂w
Φk(Zi)

]
= OP (1).

It follows that if ‖√p(a−α)‖ and ‖
√
k(b−β)‖ are sufficient small, I1n < ε/3 and I2n < ε/3.

Meanwhile, using the condition that
√
n supz ‖γk(z)‖ = o(1) we have I3n < ε/3. This shows

that, in view of Theorem 3.2, when n is large, P (|νn(α̂, ĝ;κ)− νn(α, g;κ)| > η) < ε for any

given ε, η > 0.

Furthermore, since

1√
n

n∑
i=1

κ
ᵀ
[m(Vi, α̂

ᵀ
Xi, β̂

ᵀ
Φk(Zi))−m(Vi, α

ᵀ
Xi, g(Zi))]

= νn(α̂, ĝ;κ)− νn(α, g;κ) +
√
nm∗n(α̂, ĝ;κ),

the assertion of (2) holds by virtue of Assumption 4.1. This finishes the proof.

Proof of Theorem 4.2. Because for any (a,b) and κ with ‖κ‖ = 1,

1√
n
Dn(a,b;κ) =

(
E[κ

ᵀ
m(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))]2

)1/2
+ oP (1)

=
(
κ

ᵀ
E[m(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))m(V1, a

ᵀ
X1,b

ᵀ
Φk(Z1))

ᵀ
]κ
)1/2

+ oP (1),

which is bounded away from zero and infinity in probability, it suffices to show that there is

some κ∗ with ‖κ∗‖ = 1 such that

1√
n

n∑
i=1

κ∗
ᵀ
m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))→P ∞

as n→∞ for any (a,b) ∈ Rp+k.

Note by the Law of Large Number that

1√
n

n∑
i=1

κ
ᵀ
m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi)) =

√
n

1

n

n∑
i=1

κ
ᵀ
m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))

=
√
n{E[κ

ᵀ
m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))] + oP (1)}.

Let κ∗ = E[m(Vi, a
ᵀ
Xi,b

ᵀ
Φk(Zi))]/‖E[m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))]‖. Then,

1√
n

n∑
i=1

κ∗
ᵀ
m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi)) =

√
n{‖E[m(Vi, a

ᵀ
Xi,b

ᵀ
Φk(Zi))]‖+ oP (1)}

≥
√
n{ inf

(a,h)∈Θ
‖E[m(Vi, a

ᵀ
Xi, h(Zi))]‖+ oP (1)} ≥

√
n(δn + oP (1))→P ∞,

as n→∞, which finishes the proof.

46



Proof of Lemma 5.1. Define ρn = an +
√
t P ′n(dn) and then ρn = o(1) by Assumption 5.1.

Denote Nτ = {v ∈ Rp+k : ‖vT − v0‖ ≤ ρnτ} for τ > 0. Let ∂Nτ be the boundary of Nτ .
Also, define an event

An(τ) =

{
Qn(v0) < inf

v∈∂Nτ
Qn(vT )

}
.

On the event An(τ), by the continuity of Qn(v) with respect to vj for j ∈ T , there exists a

local minimizer of Qn(vT ) inside Nτ . That is, there exists a local minimizer v̂ ∈ V of Qn(vT )

such that ‖v̂ − v0‖ < τρn. Therefore, it suffices to show that for ∀ε > 0, there exists a τ > 0

such that P (An(τ)) ≥ 1− ε for all large n.

For any v ∈ ∂Nτ , viz. ‖vT − v0‖ = τρn, there is an v∗ lying on the segment joining v and

v0 such that by the mean value theorem,

Qn(vT )−Qn(v0) =(vS − v0S)
ᵀ
SnT (v0S) +

1

2
(vS − v0S)

ᵀ
HnT (v∗S)(vS − v0S)

+
∑
j∈T

[Pn(|vSj|)− Pn(|v0S,j|)],

where v0S and vS are defined before, so is v∗S.

Invoking the condition ‖SnT (v0S)‖ = OP (an), for ∀ε > 0, there exists a C1 > 0 such that

the event A1 given below satisfies P (A1) > 1− ε/4 for all large n, where

A1 = {(vS − v0S)
ᵀ
SnT (v0S) ≥ −C1an‖vS − v0S‖}.

Also, by Condition (ii) and for this ε, there exists a C2 such that P (A2) > 1 − ε/4 for all

large n, where

A2 = {(vS − v0S)
ᵀ
HnT (v0S)(vS − v0S) ≥ C2‖vS − v0S‖2}.

Meanwhile, define event A3 = {‖HnT (v0S) − HnT (v∗S)‖ ≥ C2/4}. By Condition (iii) and

‖vT −v0‖ = ‖vS−v0S‖ = τρn, for any τ , P (A3) ≥ 1−ε/4 for all large n. Hence, A4 ⊂ A2∩A3

where

A4 = {(vS − v0S)
ᵀ
HnT (v∗S)(vS − v0S) >

3

4
C2‖vS − v0S‖2}.

On the other hand, it follows from Lemma B.1 in Fan and Liao [18] that
∑

j∈T [Pn(|vSj|)−
Pn(|v0S,j|)] ≥ −

√
t P ′n(dn)‖vS − v0S‖. Whence, for any v ∈ ∂Nτ , on A1 ∩ A4,

Qn(vT )−Qn(v0) ≥ρnτ
(

3

8
ρnτC2 − C1an −

√
t P ′n(dn)

)
.

For ρn = an +
√
t P ′n(dn), C1an +

√
t P ′n(dn) ≤ (C1 + 1)ρn. Thus, choosing τ > 8(C1 + 1)/3C2

yields that Qn(vT ) − Qn(v0) > 0 uniformly on v ∈ ∂Nτ . It follows that for all large n, with

τ > 8(C1 + 1)/3C2, P (An(τ)) > P (A1 ∩ A4) ≥ 1− ε.
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We next show that the local minimizer, denoted by v̂ ∈ V , is strict with a probability

arbitrarily close to one. For each h 6= 0, define

ψ(h) = lim sup
ε→0+

sup
(u1,u2)∈O(|h|,ε)

−P
′
n(u2)− P ′n(u1)

u2 − u1

.

By the concavity, ψ(·) ≥ 0. For any v ∈ Nτ , let Ω(v) = HnT (vS)− diag(ψ(vS1), · · · , ψ(vSt)).

It suffices to show that Ω(v̂) is positive definite with probability arbitrarily close to unity. On

the event A5 = {φ(v̂S) ≤ supvS∈O(v0S ,cdn) φ(vS)} where v̂S is the t-vector consisting of nonzero

elements of v̂, and c is the same in (iv) of Assumption 5.1, we have

max
j≤t

ψ(v̂Sj) ≤ φ(v̂S) ≤ sup
vS∈O(v0S ,cdn)

φ(vS).

Let A6 = {‖HnT (v̂S)−HnT (v0S)‖ < C2/4} and A7 = {λmin(HnT (v0S)) > C2}. Then, for any

u ∈ Rt with ‖u‖ = 1, it follows from (iv) of Assumption 5.1 that

u
ᵀ
Ω(v̂)u =u

ᵀ
HnT (v̂S)u− uᵀ

diag(ψ(v̂S1), · · · , ψ(v̂St))u

≥uᵀ
HnT (v0S)u− |uᵀ

[HnT (v̂S)−HnT (v0S)]u| −max
j≤s

ψ(v̂Sj)

≥3C2/4− sup
vS∈O(v0S ,cdn)

φ(vS) ≥ C2/4

on the event A5 ∩ A6 ∩ A7 for all large n.

Finally, we are about to show that P (A5 ∩ A6 ∩ A7) ≥ 1 − ε. As P (A7) ≥ 1 − ε, it

suffices to show P (A5 ∩ A6) ≥ 1− ε for ∀ε > 0. Indeed, due to ρn = o(dn), P (A5) ≥ P (v̂S ∈
O(v0S, cdn)) ≥ 1− ε/2 for all large n. Also,

P (Ac6) ≤P (Ac6, ‖v̂ − v0‖ ≤ ρn) + P (‖v̂ − v0‖ > ρn)

≤P

(
sup

vS∈O(v0S ,cdn)

‖HnT (vS)−HnT (v0S)‖ ≥ C2/4

)
+ ε/4 ≤ ε/2.

Proof of Lemma 5.2. Recall that v̂ ∈ V is a local minimizer of Qn(vT ). Hence, there is a

small neighbourhood O1 of v̂ such that for any v ∈ O1 with v 6∈ V we have Qn(v̂) ≤ Qn(vT ).

However, by the condition of (5.2),

Qn(vT )−Qn(v) = ‖Mn(vT )‖2 − ‖Mn(v)‖2 −
∑
j 6∈T

Pn(|vj|) < 0. (B.3)

This means Qn(v̂) < Qn(v), yielding the first assertion, while, from which and the last

statement of Lemma 5.1, the second assertion is also implied.
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Verification of Conditions in Lemma 5.1 Condition (i): Notice that SnT (v0S) =

∂v0S‖Mn(v0)‖2 = 2An(v0S)Mn(v0), where

An(v0S) =
1
√
qn

n∑
i=1

∂m
ᵀ
(Vi, v

ᵀ

0SFiS)⊗ FiS.

By Assumption 5.2, ‖An(v0S)‖ = OP (
√
t). Meanwhile, due to Em(·) = 0 at the true

parameter, by virtue of Assumption 5.3, Bernstein inequality and Bonferroni inequality,

there exist C > 0, for any u > 0,

P

(
max
`≤q

∣∣∣∣∣ 1n
n∑
i=1

m`(Vi, v
ᵀ

0SFiS)

∣∣∣∣∣ > u

)

≤qmax
`≤q

P

(∣∣∣∣∣ 1n
n∑
i=1

m`(Vi, v
ᵀ

0SFiS)

∣∣∣∣∣ > u

)
≤ exp(log q − Cu2/n).

Hence, max`≤q
∣∣ 1
n

∑n
i=1 m`(Vi, α

ᵀ

0SXiS, β
ᵀ

0SΦkS(Zi))
∣∣ = OP (

√
log(q)/n), which then gives

‖Mn(v0)‖ =

∥∥∥∥∥ 1
√
qn

n∑
i=1

m(Vi, α
ᵀ

0SXiS, β
ᵀ

0SΦkS(Zi))

∥∥∥∥∥ = OP (
√

log(q)/n). (B.4)

Accordingly, ‖SnT (v0S)‖ = OP (
√
t log(q)/n).

Condition (ii): It is clear that HnT (vS) = 2An(vS)An(vS)
ᵀ

+ 2A1n(vS)Mn(vT ) where

A1n(vS) =
1
√
qn

n∑
i=1

∂2m(Vi, v
ᵀ

0SFiS)⊗ FiSF
ᵀ

iS.

Here, ∂2m stands for the second order partial derivative of m with respect to its arguments

where the parameter is involved.

As shown in Lemma A.2 that An(vS)An(vS)
ᵀ

is almost surely positive definite, while

similar to the verification of Condition (i), the second term is oP (1). Thus, using Assumption

5.4, the condition can be verified using arguments similar to Fan and Liao [18].

Condition (iii): Observe that

HnT (vS)−HnT (v0S)

=2[An(vS)An(vS)
ᵀ − An(v0S)An(v0S)

ᵀ
] + 2A1n(vS)Mn(vT ) + 2A1n(v0S)Mn(v0)

=2[An(vS)− An(v0S)]An(vS)
ᵀ
] + 2An(v0S)[An(vS)− An(v0S)]

ᵀ
]

+ 2A1n(vS)Mn(vT ) + 2A1n(v0S)Mn(v0),

and each term is oP (1), from which the condition follows.

Verification of the condition in Lemma 5.2: Let v̂ ∈ V be the minimizer of Qn.

We shall show that there is a neighbourhood of v̂ in which for any v 6∈ V , the condition of
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(5.2) holds, that is, ‖Mn(vT )‖2 − ‖Mn(v)‖2 <
∑

j 6∈T Pn(|vj|). This is tantamount to showing

Qn(vT ) < Qn(v).

Using the mean value theorem, there exists a v∗ on the segment joining vT and v such

that

‖Mn(vT )‖2 − ‖Mn(v)‖2 =Sn(v∗)
ᵀ
(vT − v) = Sn(v∗)

ᵀ
vT c ,

where T c is the complement set of T w.r.t. {1, · · · , p+ k} and noting v = vT + vT c for any v.

Here, we know ‖Sn(v0S)‖ = OP (
√
t log(q)/n), ‖v̂ − v0‖ = OP (

√
t log(q)/n +

√
t P ′n(dn)).

In a small neighbourhood of v̂, O(v̂, rn/(p + k)) say, where rn is a sufficient small number,

‖Sn(v)‖ = OP (
√
t log(q)/n) uniformly holds in v and supv∈O ‖v − v̂‖1 ≤ rn.

On the other hand, for some µ ∈ (0, 1),
∑

j 6∈T Pn(|vj|) =
∑

j 6∈T,vj 6=0 |vj|P ′n(µ|vj|) ≥∑
j 6∈T,vj 6=0 |vj|P ′n(rn) by the nonincreasingness of P ′n(u). Let rn so small that P ′n(rn) ≥

P ′n(0+)/2. Hence,
∑

j 6∈S Pn(|βj|) ≥ Crn in probability.

Then, by virtue of Assumption 5.4 and following a similar argument as Fan and Liao [18],

the condition is verified.

Proof of Theorem 5.1. (i) and (ii). As shown in Lemma 5.2, if Qn(v) has a local minimizer

v̂ = (v̂
ᵀ

S, v̂
ᵀ

N)
ᵀ
, then v̂N = 0 with probability arbitrarily close to one for large n, which implies

the assertion (i) and P (T̂ ⊂ T )→ 1.

On the other hand,

P (T 6⊂ T̂ ) =P (∃j ∈ T, v̂j = 0) ≤ P (∃j ∈ T, |v0j − v̂j| ≥ |v0j|)

≤P (max
j
|v0j − v̂j| ≥ dn) ≤ P (‖v̂ − v0‖ ≥ dn) = o(1),

implying P (T ⊂ T̂ )→ 1. Accordingly, P (T = T̂ )→ 1.

(iii). Let v̂ = (v̂
ᵀ

S, v̂
ᵀ

N)
ᵀ

be the local minimizer of Qn(v) where v̂N = 0 with probabil-

ity arbitrarily close to one. Define P ′n(|v̂S|) := (P ′n(|v̂S1|), · · · , P ′n(|v̂St|))
ᵀ

and sgn(v̂S) :=

(sgn(v̂S1), · · · , sgn(v̂St))
ᵀ
.

By the Karush-Kuhn-Tucker (KKT) condition,

SnT (v̂S) = −P ′n(|v̂S|) � sgn(v̂S),

where the operator � is the product in elementwise.

It follows from Taylor theorem that

SnT (v̂S) = SnT (v0S) +HnT (v0S)(v̂S − v0S),

where a higher order term is ignored, which further implies

v̂S − v0S =HnT (v0S)−1[SnT (v̂S)− SnT (v0S)]
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=−HnT (v0S)−1[SnT (v0S) + P ′n(|v̂S|) � sgn(v̂S)]

=− hnT (α0S, g)−1[snT (α0S, g) + P ′n(|v̂S|) � sgn(v̂S)](1 + oP (1))

under the condition for t = p1 +k1 by Lemmas A.2 and A.3 where hnT (α0S, g) and snT (α0S, g)

are the counterparts of hn(α, g) and sn(α, g), respectively, under the oracle model T .

Similar to the proof of Theorem 3.2, by ĝ(z) := ΦkT (z)
ᵀ
β̂S, L (α̂S)−L (α0S)

F (ĝ(z))−F (g(z))

 = Γn(v̂S − v0S) +

 0

F ′(g)γk(z)


=− ΓnhnT (α0S, g)−1[snT (α0S, g) + P ′n(|v̂S|) � sgn(v̂S)] +

 0

F ′(g)γk(z)

 .

Notice that the structure

ΓnhnTα0S, g)−1snT (α0S, g) =
1

n
Γn(ΨnTΨ

ᵀ

nT )−1ΨnT

n∑
i=1

m(Vi, α
ᵀ

0SXiS, g(Zi))

is standard, so that invoking classical central limit theorem gives

√
nΣ−1

nTΓnhnTα0S, g)−1snT (α0S, g)
d→ N(0, Ir+s)

as n → ∞. It remains to show
√
nΣ−1

nTP
′
n(|v̂S|) � sgn(v̂S) = oP (1). Similar to Lemma C.2 of

Fan and Liao [18] we may show that

‖P ′n(|v̂S|) � sgn(v̂S)‖ = OP ( max
‖vS−v0S‖≤dn/4

φ(vS)
√
t log(q)/n+ P ′n(dn)).

Note also that ΣnT has fixed dimension and its eigenvalues are bounded from zero and above.

Thus, the assertion holds under Assumption 5.4. This finishes the proof.

Proof of Theorem 5.2. Recall that v̂ = (v̂
ᵀ

S, v̂
ᵀ

N)
ᵀ

and P (v̂N = 0) → 1. Also, recall the

notation v̂T = (α̂
ᵀ

S, 0
ᵀ
, β̂

ᵀ

S, 0
ᵀ
)
ᵀ
.

First, we shall show that ‖Mn(v̂T )‖2 = OP (t3/2 log(q)/n+t3/2P ′n(dn)2+t
√

log(q)/nP ′n(dn)).

Notice that ‖Mn(v̂T )‖2 = ‖Mn(v0)‖2 + ‖Mn(v̂T )‖2−‖Mn(v0)‖2 and by the mean value theo-

rem,

‖Mn(v̂T )‖2 − ‖Mn(v0)‖2 =SnT (v∗S)
ᵀ
(v̂S − v0S)

=SnT (v0S)
ᵀ
(v̂S − v0S) + [SnT (v∗S)− SnT (v0S)]

ᵀ
(v̂S − v0S).

where v∗S is a point on the segment joining v̂S and v0S.

Notice further,

|SnT (v0S)
ᵀ
(v̂S − v0S)| ≤ ‖SnT (v0S)‖‖v̂S − v0S‖ = OP (t log(q)/n+ t

√
log(q)/nP ′n(dn))
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due to ‖SnT (v0S)‖ = OP (
√
t log(q)/n) and ‖v̂S − v0S‖ = OP (

√
t log(q)/n +

√
tP ′n(dn)).

Meanwhile, it follows from Assumption 5.2 that

|[SnT (v∗S)− SnT (v0S)]
ᵀ
(v̂S − v0S)| ≤ ‖SnT (v∗S)− SnT (v0S‖‖v̂S − v0S‖

≤OP (
√
t)‖v∗S − v0S‖‖v̂S − v0S‖ ≤ OP (

√
t)‖v̂S − v0S‖2

=OP (t3/2 log(q)/n+ t3/2P ′n(dn)2).

The assertion then follows by noting from (B.4) that ‖Mn(v0)‖2 = log(q)/n.

Second, we shall show that Qn(v̂T ) = OP (t3/2 log(q)/n+t3/2P ′n(dn)2+t
√

log(q)/nP ′n(dn)+

tmaxj∈T Pn(|v0j|)). Indeed, using the mean value theorem again∑
j∈T

Pn(|v̂j|) ≤
∑
j∈T

Pn(|v0j|) +
∑
j∈T

P ′n(|v∗0j|)|v̂j − v0j|

≤tmax
j∈T

Pn(|v0j|) +
∑
j∈T

P ′n(dn)|v̂j − v0j|

≤tmax
j∈T

Pn(|v0j|) +
√
tP ′n(dn)‖v̂ − v0‖,

from which the assertion follows.

Now, for any δ > 0,

inf
‖v−v0‖≥δ

Qn(v) ≥ inf
‖v−v0‖≥δ

‖Mn(v)‖2

= inf
‖v−v0‖≥δ

1

q

∥∥∥∥∥ 1

n

n∑
i=1

m(Vi, v
ᵀ
Fi)

∥∥∥∥∥
2

≥ inf
‖v−v0‖≥δ

1

2q
‖Em(V1, v

ᵀ
F1)‖2 − inf

‖v−v0‖≥δ

1

q

∥∥∥∥∥ 1

n

n∑
i=1

m(Vi, v
ᵀ
Fi)− Em(V1, v

ᵀ
F1)

∥∥∥∥∥
2

= inf
‖v−v0‖≥δ

1

2q
‖Em(V1, v

ᵀ
F1)‖+ oP (n−1/2)

= inf
‖(a−α,f−g)‖≥δ+‖γk(z)‖

1

q
‖Em(V1, a

ᵀ
X1, f(Z1))‖+ oP (n−1/2),

due to the relation ‖v− v0‖ = ‖a−α‖+ ‖b−β‖ = ‖a−α‖+ ‖f − g‖−‖γk(z)‖. As a result,

by Assumption 3.2, there exists ε > 0 such that inf‖v−v0‖≥δ Qn(v) ≥ ε for sufficient large n.

Taking 0 < η < ε,

P (Qn(v̂) + η > inf
‖v−v0‖≥δ

Qn(v))

=P (Qn(v̂T ) + η > inf
‖v−v0‖≥δ

Qn(v)) + o(1)

≤P (Qn(v̂T ) + η > ε) + P ( inf
‖v−v0‖≥δ

Qn(v) < ε) + o(1)

≤P (Qn(v̂T ) > ε− η) + o(1) = o(1)

because Qn(v̂T ) = oP (1).
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