The Goal

Help simplify estimation of a class of models that integrate over unobserved heterogeneity including the standard models of empirical IO that only use information on market shares:

macro BLP.

Several questions:

1. How much information is there really in the data? (practical identification)
2. Can we diagnose/anticipate problems and alleviate them? (specification)
3. Are there simpler ways than GMM or MLE to estimate the parameters? (estimation)
The answers are **Yes, yes, and yes**

We use **approximate models**, leading to

- **Fast 2SLS estimates of the parameters**
- that are **Approximately Correct**
- and (approximately) **Robust to misspecification of higher moments**
- and provide simple diagnoses of underidentification.
Start with a structural *parametric* model $G(y, \eta, \theta_0)$ (omitting covariates)
with a (unique) inverse $\eta = F(y, \theta_0)$
and we assume moment conditions $E(\eta Z) = 0$.
Usually estimated by GMM, minimizing

$$\left\| \sum_i F(y_i, \theta)Z_i \right\| \hat{W}.$$

Often tricky: model overspecified, badly identified, numerical difficulties...
The Idea

If the underlying model integrates over unobserved heterogeneity with unknown parameters s_0, split

$$\theta_0 = (\beta_0, s_0)$$

and take Taylor expansions around $s = 0$ for fixed β: small-σ analysis

stop at a reasonable order and estimate the resulting (hopefully) simple approximate model.

Empirical IO: the standard model

Since Berry–Levinsohn–Pakes 1995: demand and loosely specified supply

- demand = mixed multinomial logit: the classic demand side in many empirical investigations (IO, transport, demand systems . . .)
 circumvents well-known limitations of unmixed logit
- (typically) aggregate version: we observe choice probabilities for groups of consumers (markets)
- supply: product effects are orthogonal to well-chosen instruments.

Gives a GMM estimator.
Utility of variety $j = 1, \ldots, J$ for consumer i in market $t = 1, \ldots, T$ is

$$X_{jt} (\beta_0 + \epsilon_i) + \xi_{jt} + u_{ij}$$

with

- u_i a vector of iid standard type I EV (parameter-free)
- ϵ_i iid across consumers, distribution known up to parameters Σ_0.

ξ_t is a vector of **product effects** that shift the demand of all consumers in market t,

and we assume

$$E(\xi_{jt}|Z_{jt}) = 0.$$

We observe the **market shares**

$$S_{jt} = E_{\epsilon} \frac{\exp \left(X_{jt} (\beta + \epsilon) + \xi_{jt} \right)}{1 + \sum_{k=1}^{J} \exp \left(X_{kt} (\beta + \epsilon) + \xi_{kt} \right)}.$$
Define $y_{jt} = \log(S_{jt}/S_{0t})$

and artificial regressors (m, n index components of the covariate vectors)

$$ K_{mn}^{jt} = \left(\frac{X_{jtm}}{2} - e_{tm} \right) X_{jtn} $$

with $e_{tm} = \sum_{j=1}^{J} X_{jtm} / J$.

Estimate the optimal instruments

$$ \hat{Z}_{jt} = E \left(X_{jt}, K_{jt} | Z_{jt} \right). $$
Run a Fast two-stage least squares regression of y_{jt} on X_{jt}, K_{jt} with instruments \hat{Z}_{jt}

The estimators $\hat{\beta}, \hat{\Sigma}$ are Approximately Correct.
More precisely: the error is $O_P(\|\Sigma\|^{3/2})$, and in fact $O_P(\|\Sigma\|^{2})$ if the randomness in the coefficients is symmetric.

The 2SLS estimators are also Robust in that they are equally Approximately Correct independently of other features of the distribution of ϵ.

They can also be adapted to different specifications of the idiosyncratic u (e.g. nested logit—then we need NL2SLS.)
Suppose the structural form of the model $G(y, \eta, \theta) = 0$ is

$$G(y, \eta, \beta, s) \equiv G^*(y, E\varepsilon A^*(y, \eta - f_1(y)\beta, s\varepsilon))$$

Here ε is the unobserved heterogeneity, with $E\varepsilon = 0$; and y has all observables (or functions of).

E.g. for macro-BLP: $y = (S_j, X_j)_{j}$ and $\eta = \xi$ and $s = \Sigma^{1/2}$ gives

$$G_j = S_j - E\varepsilon A_j^*(X, \xi + X\beta, s\varepsilon)$$

with

$$A_j^*(a, b, c) = \frac{\exp(b_j + c_j)}{1 + \sum_{k=1}^{J} \exp(b_k + c_k)}.$$
Why it Works

With this form, the inverse $\eta = F(y, \beta, s)$ given by $G(y, F(y, \beta, s), \beta, s) = 0$ has three properties:

1. $F_s(y, \beta, 0) \equiv 0$
2. $F(y, \beta, 0) - f_1(y)\beta$ does not depend on β; call it $f_0(y)$
3. $F_{ss}(y, \beta, 0)$ does not depend on β; call it $-f_2(y)$.

Then $F(y, \beta, s) \simeq f_0(y) - f_1(y)\beta - f_2(y)s^2/2$ and writing $E(\eta Z) = 0$ gives

$$E(f_0(y)Z) \simeq E(f_1(y)Z)\beta + \frac{E(f_2(y)Z)}{2}s^2$$

nicely linear in (β, s^2).
f_1(y) is from the structural form (e.g. it is X in macro BLP)

for f_0(y), need to solve

G^*(y, E_\varepsilon A^*(y, f_0(y), 0)) = 0

e.g. in macro BLP:

S_j = \frac{\exp(f_{0j})}{1 + \sum_{k=1}^{J} \exp(f_{0k})}

gives f_{0j} = \log(S_j / S_0)
The hardest part:

\[f_2(y) \equiv \left((A_{33}^*)^{-1} A_2^* \right) (y, f_0(y), 0) \]

It generates the artificial regressors \(K^i \) in macro BLP; in general it depends on the properties of \(A^* \) and on \(f_0 \) not those of \(\varepsilon \); (again, Robustness) and only via \(f_0 \) for \(G^* \).
In BLP, we need to compute

\[W = E \left(\frac{\partial \xi}{\partial \theta} \mid Z \right) \]

which requires a prior estimate of \(\theta \), including the distribution of the random coefficients.

Here, at order 2

\[\frac{\partial \xi}{\partial \beta, \Sigma} = (X, K) \]

makes it very easy:

\[\hat{Z} = (E(X \mid Z), E(K \mid Z)) \].
How are the parameters identified?

Much easier to answer in the approximate 2SLS framework, say at order 2:

The identification of \((\beta, \Sigma)\) relies on the variance covariance of

\[
\begin{pmatrix}
E(X|Z) \\
E(K|Z)
\end{pmatrix}
\]

being well-conditioned.

Easy to compute with standard software. Can suggest how hard it will be to identify a given parameter of interest, even without running any estimation.
higher order expansions: give better approximations
(within a radius) and
- third order s^3 allow to recover the skewness of ϵ; still 2SLS
- fourth order gives kurtosis, with NL2SLS

models with more complex A^* (e.g. some nested logits
give rise to NL2SLS)
Teaser: for the mixed normal logit \((J = 1)\) with one covariate, define \(d = \sigma X\); then

\[
\log \frac{S}{1 - S} = \beta_0 + \beta_1 X + \sum_{i=1}^{\infty} t_i(S)d^{2i}
\]
We did not use much of the properties of the logistic cdf L and normal cdf Φ: only

- the fact that $L^{-1}(S) = \log(S/(1 - S))$
- the form of the P_k in $L^{(k)}(t) = P_k(L(t))$
- $E\varepsilon = 0$ and $V\varepsilon = 1$
- and $E\varepsilon^3 = 0$ and $E\varepsilon^4 = 3$ (for t_2 and above)
- and $E\varepsilon^5 = 0$ and $E\varepsilon^6 = 15$ (for t_3 and above), etc
For any L and Φ,
if we normalize $E\varepsilon = 0$ and $V\varepsilon = 1$:

$$
\xi = L^{-1}(S) - (\beta_0 + \beta_1 X)
+ \frac{P_2(S)}{2P_1(S)} E(X\varepsilon)^2
+ \frac{P_3(S)}{6P_1(S)} E(X\varepsilon)^3 + \ldots
$$

A third order 2SLS method would regress $\log(S/(1 - S))$ on

$$
\chi \equiv \left(1, X, X^2 \frac{P_2(S)}{2P_1(S)}, X^3 \frac{P_3(S)}{6P_1(S)}\right)
$$

with instruments = the projections $E(\chi|Z)$.
Using higher order approximations makes things a tiny bit harder:

1. successive powers of σ^2_{ε} make it nonlinear IV
2. optimal instruments depend on value of σ^2_{ε}

But we can build on lower order approximations.
How good are the approximations?

Define a function $u(S, \beta)$ by

$$\int L(u(S, \beta) - \beta \varepsilon)\phi(\varepsilon)d\varepsilon \equiv S.$$

We have $\xi = u(S, \sigma_\varepsilon p) - (a + bp)$ with

1. $u_1(S, \beta) = \log S/(1 - S)$
2. $u_2 = u_1 + (S - 1/2)\beta^2$
3. $u_3 = u_2 - S(1 - S)(S - 1/2)\beta^4$
4. $u_I = \text{from Berry inversion.}$
Comparing the u_k's: $\beta = 1$
Comparing the errors $u_k - u_i$: $\beta = 1$
Comparing the errors $u_k - u_I$: $\beta = 2$

![Graph showing comparisons of errors $u_k - u_I$ for different values of β.](image)

- $\beta = 2$

Bernard Salanié, Frank Wolak
Monte Carlo on Standard Macro BLP

Dubé, Fox and Su (2012) design.

\[T = 50 \text{ markets and } J = 25 \text{ products in each market} \]

3 observed product characteristics; one (price) is endogenous.

42 instruments (including also covariates and prices in other markets.)

We compare:

- MPEC (Su and Judd, Dubé–Fox–Su) starting from the true values of the parameters
- the “control function” aproach of Petrin–Train 2010 same
- our 2SLS estimators no need for starting values.

for various values of \(V \xi, V \beta \)
estimators of the means $E\beta$ of the random coefficients:

$2SLS \simeq MPEC \gg PT$

PT has a large bias that grows with $V\xi$

estimators of the variances $V\beta$:

$MPEC > 2SLS >> PT$

2SLS has a downward bias that increases with $V\beta$ and decreases with $V\xi$

PT has less bias but more variance
Mean of price coefficient

<table>
<thead>
<tr>
<th>(\text{var}(\xi) = 0.1)</th>
<th>(\text{var}(\xi) = 0.1)</th>
<th>(\text{var}(\xi) = 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{var}(\beta) = (0.0.1,0.1,0.1,0.05))</td>
<td>(\text{var}(\beta) = (0.0.2,0.2,0.2.0.1))</td>
<td>(\text{var}(\beta) = (0.0.5,0.5,0.5,0.2))</td>
</tr>
<tr>
<td>(\text{var}(\xi) = 0.5)</td>
<td>(\text{var}(\xi) = 0.5)</td>
<td>(\text{var}(\xi) = 0.5)</td>
</tr>
<tr>
<td>(\text{var}(\beta) = (0.0.1,0.1,0.1,0.05))</td>
<td>(\text{var}(\beta) = (0.0.2,0.2,0.2.0.1))</td>
<td>(\text{var}(\beta) = (0.0.5,0.5,0.5,0.2))</td>
</tr>
<tr>
<td>(\text{var}(\xi) = 1.0)</td>
<td>(\text{var}(\xi) = 1.0)</td>
<td>(\text{var}(\xi) = 1.0)</td>
</tr>
<tr>
<td>(\text{var}(\beta) = (0.0.1,0.1,0.1,0.05))</td>
<td>(\text{var}(\beta) = (0.0.2,0.2,0.2.0.1))</td>
<td>(\text{var}(\beta) = (0.0.5,0.5,0.5,0.2))</td>
</tr>
</tbody>
</table>

Control Function
- **MPEC**
- **2SLS**

Bernard Salanié, Frank Wolak

FRAC
Variance of price coefficient

<table>
<thead>
<tr>
<th>(\text{var}(\xi) = 0.1)</th>
<th>(\text{var}(\xi) = 0.1)</th>
<th>(\text{var}(\xi) = 0.1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{var}(\beta) = (0.01,0.1,0.1,0.1,0.05))</td>
<td>(\text{var}(\beta) = (0.02,0.2,0.2,0.1,0.1))</td>
<td>(\text{var}(\beta) = (0.05,0.5,0.5,0.5,0.2))</td>
</tr>
<tr>
<td>(\text{var}(\xi) = 0.5)</td>
<td>(\text{var}(\xi) = 0.5)</td>
<td>(\text{var}(\xi) = 0.5)</td>
</tr>
<tr>
<td>(\text{var}(\beta) = (0.01,0.1,0.1,0.1,0.05))</td>
<td>(\text{var}(\beta) = (0.02,0.2,0.2,0.1,0.1))</td>
<td>(\text{var}(\beta) = (0.05,0.5,0.5,0.5,0.2))</td>
</tr>
<tr>
<td>(\text{var}(\xi) = 1.0)</td>
<td>(\text{var}(\xi) = 1.0)</td>
<td>(\text{var}(\xi) = 1.0)</td>
</tr>
<tr>
<td>(\text{var}(\beta) = (0.01,0.1,0.1,0.1,0.05))</td>
<td>(\text{var}(\beta) = (0.02,0.2,0.2,0.1,0.1))</td>
<td>(\text{var}(\beta) = (0.05,0.5,0.5,0.5,0.2))</td>
</tr>
</tbody>
</table>

Control Function:
- MPEC
- 2SLS

Findings
experiments with lognormal ϵ show that

- the second order approach is quite robust to skewness in ϵ
- using the third order expansion does not help (not enough information to estimate skewness)

2SLS provides great starting values for MPEC:

- convergence to the same estimates
- at a very minimal cost, +10% over (infeasible) true values.