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1. Introduction1

The attraction of revealed preference (RP) theory is that it allows an assess-

ment of the empirical validity of the usual integrability conditions without the

need to impose particular functional forms on preferences. Although developed

to describe individual demands by Afriat (1973) and Diewert (1973) following the

seminal work of Samuelson (1938) and Houthakker (1950), it has usually been

applied to aggregate data but this presents a number of problems2. First, on

aggregate data, ‘outward’ movements of the budget line are often large enough,

and relative price changes are typically small enough, that budget lines rarely

cross (see Varian (1982), Bronars (1987) and Russell (1992)). This means that

aggregate data may lack power to reject RP conditions. Second, if we do re-

ject RP conditions on aggregate data we have no way of assessing whether this

is due to a failure at the micro level or to the inappropriate aggregation across

households that do satisfy the integrability conditions but who have different non-

homothetic preferences. By combining nonparametric statistical methods with a

revealed preference analysis of micro data we can overcome the problems we have

described.

We also have a number of other motivations for this study. First, paramet-

ric demand studies on micro data often reject Slutsky symmetry which is one

of the implications of utility maximisation subject to a linear budget constraint.

Amongst the many possible explanations for this rejection are that either we have

the ‘wrong’ functional form or that there exists no well-behaved form of prefer-

1We are grateful to James Banks, Laura Blow, Tom Crossley, Alan Duncan, Jin Hahn,
Hide Ichimura, Arthur Lewbel, Ian Preston, the co-editor and three anonymous referees as well
as seminar participants in Berkeley, Bonn, Bristol, Chicago, CREST, Copenhagen, Havard-
MIT, Northwestern, Iowa, Univeristy of British Columbia and University College Dublin for
helpful comments. This study is part of the program of research of the ESRC Centre for the
Microeconomic Analysis of Fiscal Policy at IFS. The financial support of the ESRC and the
Danish SSF is gratefully acknowledged. Material from the FES made available by the ONS
through the ESRC Data Archive has been used by permission of the controller of HMSO. Neither
the ONS nor the ESRC Data Archive bear responsibility for the analysis or the interpretation
of the data reported here. The usual disclaimer applies.

2See Manser and McDonald (1988), and references therein.
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ences which can rationalise the data. Nonparametric analysis allows us to check

this. Second, it has proven difficult to test for (global) negative semi-definiteness

of the Slutsky matrix in parametric demand models. Using nonparametric re-

vealed preference analysis we can simultaneously test for both symmetry and

negative semi-definiteness. Third, if the integrability conditions are not rejected,

we often wish to go on and use demand estimates for policy analysis. Using

parametric analysis there is always some uncertainty as to how much the welfare

conclusions are driven by functional form. If we employ nonparametric techniques

then we can obtain bounds on welfare effects and use these bounds to judge the

importance of the choice of functional form on welfare conclusions. Fourth, the

nonparametric analysis can aid in the development of new and parsimonious para-

metric demand systems. Finally, we can extend the nonparametric analysis to

investigate revealed preference for conditional demands.

The layout of the paper is as follows. In Section 2 we present the specifics of

testing the Generalised Axiom of Revealed Preference (GARP). We then develop

a method for choosing a sequence of total expenditures that maximise the power

of tests of GARP with respect to a given preference ordering. We term this the

sequential maximum power (SMP) path. We present some simulation evidence

that shows that our GARP tests have considerable power against some alterna-

tives, but not others. We then develop a method of bounding true cost of living

indices. Algorithms are presented which give ‘tightest’ upper and lower bounds

for indifference curves passing through any chosen point in the commodity space.

We also show how these methods can be used to calculate tight bounds on annual

inflation rates without making parametric assumptions.

Section 3 presents a framework for implementing our procedures by using

nonparametric Engel curves for each commodity. To do this we assume that

households in the same time period and location face the same relative prices.

Under this assumption, the nonparametric Engel curves correspond to expansion

paths for each price regime. In estimation we address two key issues that arise
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when placing local average demands in a structural economic context. First, we

consider the problem of pooling nonparametric Engel curves across households

of different demographic composition. We show that a partially linear model

that allows for demographic variation (see, for example, Robinson (1988)) has

the very unattractive property that it reduces to Piglog demands (budget shares

are linear in log total outlay) under homogeneity and symmetry. We then show

that the shape invariant model of Härdle and Marron (1990) provides a theory

consistent generalisation to the partially linear semiparametric method of pooling

nonparametric Engel curves across households of different composition. Second,

we allow for the endogeneity of log total expenditure in the nonparametric budget

share equations. This section concludes with a discussion of the issues surrounding

unobservable preference heterogeneity3. We evaluate the use of local average

demands in the presence of unobserved heterogeneity and derive a measure of the

bias that results in measuring the welfare cost of finite price changes.

In Section 4 we present an empirical investigation of revealed preference using

British Family Expenditure Survey data from 1974 to 1993. This long time series

of cross-sections is used to estimate the associated nonparametric Engel curves

for 22 goods, adjusted for endogeneity and demographic composition. We then

examine whether revealed preference theory can be rejected for particular sub-

periods of the data. From the asymptotic distribution theory for nonparametric

regression we are able to provide a statistical structure within which to examine

the consistency of data with revealed preference theory without imposing a global

parametric structure to preferences. The approach we adopt provides an alter-

native to the Afriat inefficiency measure explored in Famulari (1995) and Mattei

(1994). We find that GARP is not rejected for long periods of our data for most

income groups. We also compute bounds for a true cost of living index over the

period and annual inflation rates. We compare these bounds to popular price

3Even taking a small number of households in different price regimes usually leads to a
rejection of the nonparametric conditions (see Koo (1963), Mossin (1972) and Mattei (1994), for
example, and the recent paper by Sippel (1997) on the use of experimental data).
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index numbers and to other nonparametric bounds. The new bounds we derive

are shown to provide considerable improvements on classical revealed preference

bounds. Section 6 concludes with a summary of our results and a consideration

of future directions.

2. Individual Data and Revealed Preference

2.1. Revealed Preference and Observed Demands

Suppose we wished to test experimentally whether a particular agent had

‘rational’ and stable preferences. In the context of demand, we could do this by

facing the agent with a series of prices and total expenditures and testing whether

their demand responses satisfy the Slutsky conditions. Specifically, suppose we

have T periods, t = 1...T , and we choose J-vectors of (positive) prices pt and

(positive) total expenditures xt for each period. We assume that every agent

responds with a unique positive demand for each price vector and outlay:

Assumption 1. For each agent there exists a set of demand functions q(p, x) :

<J+1++ → <J++ which satisfy adding-up: p0q(p, x) = x for all prices p and total

outlays x.

Thus we are implicitly assuming that preferences are strictly convex and lo-

cally non-satiated (but not necessarily transitive). For a given price vector pt we

denote the corresponding J-valued function of x as qt (x) (with q
j
t (x) for good

j) which we shall refer to as an expansion path for the given prices. We shall also

have need of the following assumption:

Assumption 2. Weak normality: if x > x0 then qjt (x) ≥ qjt (x0) for all j and all
pt.

Thus increasing total outlay does not lead to a reduced demand for any good.

Adding up and weak normality imply that at least one of the inequalities in this

assumption is strict and that expansion paths are continuous.

For our hypothetical experiment we could observe the demands for the given

prices and total outlays and test whether the resulting series of prices and de-
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mands satisfy revealed preference tests. To do this we need to define a variety of

revealed preference relationships. We say that qt (xt) is directly revealed weakly

preferred to q∗ if the latter is affordable at period t prices and total expenditure

xt: pt
0qt (xt) ≥ p0tq∗ which we write as qt (xt) R0 q∗. An alternative characteri-

sation is that q∗ is within the budget set defined by (pt, xt). If the inequality in

this condition is strict then we say that qt(xt) is directly revealed strictly preferred

to q∗ (qt (xt)P 0q∗) since the agent could have obtained the latter more cheaply

(at the prices pt) but chose not to. In this case, of course, q∗ is in the interior of

the budget set defined by (pt, xt).

Now consider any sequence of prices and total outlays {ps,pt,pu, ...pv,pw;
xs, xt, xu, ...xv, xw}.4 We say that the sequence of associated demand vectors

{qs(xs),qt(xt),qu(xu), ... qv(xv),qw(xw)} is preference ordered if qs (xs) R0
qt (xt), qt (xt) R0 qu (xu), ... qv (xv) R0 qw (xw). Thus a sequence of demands

is preference ordered if each demand is directly revealed at least as good as

the next one. Given this, we say that qs (xs) is revealed weakly preferred to

qw (xw) if there is a preference ordered sequence starting at the former and

ending at the latter; we denote this by qs (xs)Rqw (xw). Suppose now that

we have qs (xs)Rqw (xw) and that we also have that the final demand in the

sub-sequence, qw (xw), is directly revealed strictly preferred to the first demand

vector qs (xs) (that is, qw (xw)P
0qs (xs)). In this case we say that this sub-

sequence fails GARP, the general axiom of revealed preference. We shall say

that a set of prices and demands fails GARP if any sub-sequence drawn from the

set fails GARP. To illustrate, suppose that we have five time periods and that

q4 (x4)R
0q2 (x2), q2 (x2)R

0q1 (x1) and q1 (x1)P
0q4 (x4). Thus the sub-sequence

{q4 (x4) ,q2 (x2) ,q1 (x1)} fails GARP5 and consequently the set (q1 (x1) ,q2 (x2),
q3 (x3) ,q4 (x4) ,q5 (x5)) fails GARP.

4We remind the reader that the order matters for a sequence (so that {1, 2, 3} is different
from {3, 1, 2}) but not for sets (so that the sets (1, 2, 3) and (2, 3, 1) are the same).

5Note that this does not necesarily imply that the sub-sequence {q1 (x1) ,q4 (x4) ,q2 (x2)}
fails GARP.
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2.2. Choosing a Path for Comparison Points

Below we take the sequence of (absolute) prices {p1,p2, ...pT} that is
given by our data set but we are free to choose the sequence of total expenditures

used in the comparisons above. When considering how to do this, there is a

well known problem with applying GARP tests to data to which Varian (1982)

refers in his applied work. This problem arises since, particularly with time series

data, income growth over time can swamp variations in relative prices (which are

what we are interested in). This is because real income growth induces outward

movements of the budget constraint and, combined with typically small period-to-

period relative price movements, this means that budget lines may seldom cross.

As a result, data often lacks power to reject GARP. Indeed, if we choose the xt’s

so that budget lines never cross then we can never violate the GARP conditions.

Clearly then, with a given set of relative prices the power of a revealed preference

test will depend critically on the choice of the outlay path (x1, x2, ...xT ).

One possible solution is to choose a sequence of constant ‘real’ total expen-

ditures. Thus given x1 and a set of price indices (P1(p1), P2(p2), ...PT (pT )) we

could choose xt = x1Pt/P1. Although superficially attractive this begs the ques-

tion of what price index to use. More importantly, even if the series of demands

generated in this way did satisfy GARP, we cannot be sure that any other series

of total expenditures ‘starting’ from x1 would also satisfy GARP. Instead of this,

we present an algorithm for determining a sequence of demands which maximises

the chance of finding a rejection given a particular preference ordering of the data.

Consider any sub-sequence (taken to be of length 5 for illustrative purposes)

of prices {ps,pt,pu,pv,pw}. Now take an outlay xu in period u with associated
demand qu(xu). We can construct a preference ordered sequence through qu(xu)

for this sequence of prices by using two recursive schemes, one forwards and the

other backwards. For the backwards part (the set of demands that are at least

as good as qu(xu)) we set total outlay in period t so that the period u quantity

bundle is just affordable: x̃t = p
0
tqu(xu). Thus q̃t = qt(x̃t) is the ‘lowest’ point
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Figure 2.1: Testing GARP with expansion paths
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on the period t expansion path which is directly revealed at least as good as

qu(xu). Then set q̃s = qs(p
0
sq̃t). Thus the sequence {q̃s, q̃t,qu(xu)} is preference

ordered.

To construct the path of quantities to which qu(xu) is weakly preferred, we

first solve for the value of outlay in period v that satisfies xu = p
0
uqv(xv), which

we denote x̃v, with demand q̃v = qv(x̃v).
6 This is constructed so that q̃v is the

‘highest’ demand on the period v expansion path to which qu(xu) is directly re-

vealed weakly preferred. Then construct q̃w = qw(x̃w) by setting x̃v = p
0
vqw(x̃w).

By construction, the entire path — {q̃s, q̃t,qu(xu), q̃v, q̃w} — is preference ordered.
We term the path created in this way a sequential maximum power (SMP) path

through qu(xu). An SMP path is said to start (respectively, finish) at qu(xu) if

the latter is the first (respectively, the last) element in the sequence. Although we

do not denote it explicitly it is important to recognise that an SMP path is always

defined relative to a sequence of time indices (in this illustration {s, t, u, v,w})
6Given continuity and weak normality of the expansion paths there always exists a unique

outlay and demand that satisfies this condition.
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and a point on an expansion path for one of these time periods (in this case,

qu(xu)). For example, {q̃s, q̃t,qu(xu)} is an SMP path finishing at qu(xu).
To illustrate why this gives maximal power for a particular sequence, consider

the three period, two good example in figure 2.1. Here the order of the sequence

is {3, 2, 1} finishing at q1(x1) so that {q3(x̃3)R0q2(x̃2)R0q1(x1)}. In this figure
the shaded part of the period 3 budget line gives the demands which result in

a rejection of GARP. One can see that if we took any other preference ordered

path of demands with the same sequence (q3 (x3)R0q2(x2)R0q1(x1)) this would

reduce the length of this segment. This is because any such path pushes out the

period 3 budget line which reduces the chance of observing a GARP rejecting

demand in period 3 (if demands are weakly normal).7 More formally, we have:

Proposition 1. Suppose that the demand sequence

{qs (xs) ,qt (xt) ,qu (xu) ...,qv (xv) ,qw (xw)}
rejects GARP. If demands are weakly normal then the SMP path for the same
sequence of periods ending at qw (xw):

{qs (x̃s) ,qt (x̃t) ,qu (x̃u) ...,qv (x̃v) ,qw (xw)}
also rejects GARP.

Proof. See Appendix A.

Thus, if we test for GARP along a given SMP path finishing at qw(xw) and

we do not reject, then we can be confident that we would not reject for any other

preference ordered path which finishes at the same demand and maintains the

preference ordering implied by the SMP path. It is important to note that there

may be other preference orderings that finish at qw(xw) that do reject GARP so

that our maximal power is always with respect to a particular sequencing of time

periods. In our empirical work below we always take the chronological sequence

finishing in period 1. It is important also to note that maintaining the ordering

of demands but choosing a different end point — qw(x
0
w) instead of qw(xw) — will

7This is valid for the true expansion path. In our empirical work below we use estimated
expansion paths. For these, there is the possibility that the precision of the estimated path is
such that although the length is reduced the probablility of rejection is not.
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result in a different SMP path which may violate GARP, even if the SMP path

finishing at qw(xw) does not. This is easiest to see in the two good, two expansion

path case. Suppose, for example, expansion paths are such that GARP is not

rejected if we take an SMP path finishing at a low level of expenditure for one of

the demands. If the expansion paths cross and we consider an SMP path finishing

at an expenditure level above the crossing point, then we will reject GARP on

that path. To check this we take a number of quantile points in the x distribution

and apply the SMP procedure to demand sequences ending at qw(x) where qw(x)

is evaluated at each of these outlays.

2.3. The Power of Parametric and Revealed Preference Tests of Inte-
grability.

When considering tests of integrability, whether parametric or nonparamet-

ric, we must be careful to recognise that there are some alternatives against which

both modes of test will have low power. To illustrate with a well known example,

suppose we draw a large independent sample each period from a large population

of agents. If each agent in each period chooses demands on their budget surface

by drawing from a uniform distribution on the budget surface then in general no

individual path of demands will be integrable. However the (population and sam-

ple) mean data will appear to be generated by a Cobb-Douglas utility function

with weights equal to the inverse of the number of commodities (see Becker (1962)

and Grandmont (1992)). Parametric and revealed preference tests are unlikely to

reject the integrability conditions for such data but it is not clear that we would

wish to characterise them as the outcome of a ‘rational’ procedure. Equally there

will be paths of relative prices which lead to low power tests of the integrability

conditions under certain alternatives. The extreme case is if we have no variation

in relative prices in which case, of course, we cannot estimate price effects for

parametric models and we have only one expansion path for our GARP tests.

Thus many of the concerns with the power of tests of the integrability condi-

tions are common to both parametric and revealed preference tests. There is also
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a concern, however, that revealed preference tests are inherently lacking in power

(as compared with parametric tests) and will fail to reject ‘too often’. However,

we know from the discussion of the previous sub-sections that the nonparametric

approach can be used to test Revealed Preference conditions without recourse to

any parametric specification of preferences. In the event that they do not reject,

parametric models will be able to improve on the bounds that we derive for cost

of living and welfare measurement using revealed preference alone. One possible

strategy for future work is to go on to consider flexible parametric models over

regions where the nonparametric tests do not fail. We emphasise again that one

of our concerns regarding currently used parametric models is that they may be

too inflexible and in particular they may unduly restrict differences in price effects

between rich and poor.

To investigate this issue further we consider three alternative generating pro-

cesses that produce non-integrable demands: a random procedure, an integrable

path with measurement error and a path generated by a slow adjustment model.

All of the calculations below use the actual sequence of relative prices observed in

our data which is the relevant set of relative prices. For the random alternative

we suppose that the demand at any price/income configuration is a draw from

a uniform distribution on the budget surface (just as we assumed for individual

agents in the illustration above but without the averaging). The SMP procedure

with a given sequence of prices is: choose x1 and draw the vector q1 from a uni-

form distribution on the budget surface given by (p1, x1). Then set x̂2 = p02q1

and draw q̂2 from a uniform distribution on the new budget surface. Continue

for all T periods. We can show analytically that if we have only two periods and

two goods then GARP will only reject half of the time. This indicates low power.

On the other hand, as the number of periods grows the probability of rejecting

grows. The actual rejection probability depends on the number of periods and

the relative price variability. To illustrate this we take the actual sequence of rel-

ative prices we have in our data (for 22 goods over 20 years; details are given in
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the empirical section below) and generate demands according to this alternative.

We found that in 10, 000 random simulated SMP paths we reject GARP every

time. This indicates that our procedure does have considerable power against

this particular alternative. However, a sceptic might argue that any procedure

that failed to reject the rationality of such an unstructured alternative would be

very poor indeed. Thus we also consider two other alternatives which are ‘close’

to integrable.

Our second procedure is to take a set of demands that are integrable and to

incorporate a multiplicative measurement error.8 Specifically, in each period we

draw a (22 × 1) vector of budget shares from a joint distribution in which each

budget share has a fixed mean approximately9 equal to the average budget shares

in 1974; see Appendix C for details. This is equivalent to taking a Cobb-Douglas

utility function over 22 goods with fixed budget shares and then multiplying by a

unit mean measurement error. Clearly, if we set the variance of the budget share

draws in this procedure to zero then we have a path of Cobb-Douglas demands

which satisfy GARP. Conversely, if we allow for a great deal of measurement

error then we shall almost certainly reject GARP. The critical issue, then is

how much measurement error is it reasonable to allow for? We calibrate this

to the variance of the budget shares in our data which gives an upper bound

on measurement error. We then take different proportions of these variances

and simulate 10, 000 times and record the proportion of rejections. We find that

even very modest amounts of noise cause rejection. For example, if we allow for

only 0.5% (respectively 1% and 2%) of the total variance to be due to noise and

use these in our simulations then we reject 61%, (respectively, 87% and 97%) of

the time. Thus the GARP/SMP procedure has considerable power against this

alternative.

8An alternative interpretation is that for each price regime we generate a sample which is an
independent draw from the same population with a given distribution of heterogeneity over the
preference parameters.

9Adding-up implies that we need to normalise by the sum of random variables across all
shares. Consequently, the mean of the simulated errors on the budget shares will involve the
mean of the ratio of random varaibles. In our simulations this ratio has a mean close to unity.
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The third demand generating process we consider is a ‘naive’ adjustment

model. In this we assume that households adjust slowly to the optimum for the

prices in that period. Specifically, if we take (integrable) demands q(p, x), we set

the period t demand q̃(pt, xt) to:

q̃(pt, xt) = λq(pt, xt) + (1− λ)q̃(pt−1, xt−1) for t = 2, ...T

Thus the sequence of demands will be integrable if we set λ = 1 but as adjustment

becomes slower, the likelihood of rejecting GARP increases. Note that this system

satisfies ‘long run’ integrability. For the demand functions we use a Quadratic

Almost Ideal System (QUAIDS) (see Banks et al (1997)) with parameters esti-

mated on our sample and the homogeneity and symmetry conditions imposed10.

For the first period demands at a given outlay x1 we set q1 = q(p1, x1) and, as

before, subsequent total expenditures are chosen using the SMP path for our price

data. Doing this, we find that for the path starting at median first period total

outlay, we reject GARP if and only if λ < 0.26. Such a low figure suggests that

our testing procedure is unlikely to have good power against an alternative that

satisfies the integrability conditions in the long run. Once again, we emphasise

that the same may be true of alternative parametric procedures.

2.4. Computing Tight Bounds on Welfare Measures

Afriat (1977) showed how revealed preference restrictions can be used to

provide information on the curvature of indifference surfaces in commodity space

and then used to set bounds on the welfare effects of a price change. This is further

developed in Varian (1982) and Manser and McDonald (1988). One problem

with applying this procedure to the aggregate data that the latter use is that

budget surfaces rarely cross so that the bounds from such data tend to be wide11.

10We do not impose the negativity conditions on our parameter estimates but we note that
the ‘full adjustment’ paths generated by our simulations starting at median total expenditure
do pass GARP.
11Varian (1983) and Manser and McDonald (1988) tighten the bounds using a maintained

hypothesis of homotheticity, but this is problematic since much empirical evidence suggests that
budget shares are not constant with respect to the total budget.
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Knowledge of expansion paths can greatly improve these bounds. Without loss of

generality we consider an indifference surface passing through some base bundle

q1 on the first expansion path q1 (x). If GARP and weak normality hold then we

shall show that we can partition each expansion path, qt (x), into three distinct

segments. First, on any expansion path, there are the demands that can be shown

to be weakly revealed preferred to q1. Second, we have the demands that we can

show are weakly revealed dominated by q1. Finally there is an intermediate

segment with demands that cannot be revealed preference ordered with respect

to q1. We then show how knowledge of these segments for each expansion paths

allows us to construct tight bounds on the welfare costs of arbitrary price changes

from the base price p1.

We first present an algorithm that we claim finds the ‘lowest’ point on each

expansion path such that we can show qtRq1; we term this the weakly preferred

set. We then show that if GARP and weak normality hold then this algorithm

converges in a finite number of steps and the weakly preferred set has the claimed

property.

Algorithm A.1 Input: a base bundle q1, price vectors pt and expansion paths
qt (x) for t = 2, .., T . Output: QB (q1).

1) Set W = {q1,q2 (p02q1) , ....,qT (p0Tq1)}
2) Set F = {q1,q2(minqt∈W {p02qt}), ...,qT (minqt∈W {p0Tqt})}.
3) If F ≡W then set QB (q1) =W and stop. Else set W = F and go to (2).

The set QB (q1) has T elements, one for each expansion path; we denote the tth

element of QB (q1) by q
B
t . A discussion of this algorithm and the one following

and an illustration can be found in Appendix B. We have:

Proposition 2. If GARP and weak normality hold then:
A. algorithm A.1 converges in a finite number of steps.

B.
³
qt ≥ qBt

´
⇔ (qtRq1).

Proof. See Appendix A.

The first part of the proposition assures that the algorithm is feasible (it in fact

converges quite quickly in practice). The second part of the proposition verifies
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that the algorithm identifies the largest set of points on expansion paths that can

be shown to be revealed preferred to q1 with the data to hand.
12

We also have an algorithm that finds the ‘highest’ point on each expansion

path such that q1 can be shown to be revealed preferred to these points.

Algorithm A.2 Input: a base bundle q1 and price vectors pt and expansion
paths qt (x) for t = 1, 2, .., T . Output: QW (q1) .

1) Set W = {q1,q2 (x|p01q2 (x) = p01q1) , ....,qT (x|p01qT (x) = p01q1)}
2) Set F = {q1,maxqt∈W (q2 : p0tqt = p0tq2) , ...maxqt∈W (qT : p0tqt = p0tqT )}.
3) If F ≡W then set QW (q1) =W and stop. Else set W = F and go to (2).

Denoting the t th element of QW (q1) by q
W
t we have the following results for

this algorithm:

Proposition 3. If GARP and weak normality hold then:
A. algorithm A.2 converges in a finite number of steps.

B. for any x we have
³
qWt ≥ qt

´
⇔ (q1Rqt)

Proof. See Appendix A.

Finally we can show that for any t we have qBt ≥ qWt so that the two points

divide any expansion path into three connected segments (given weak normality).

Given the sets QW (q1) and QB (q1) we can derive bounds on the welfare ef-

fects of a price change. For example, suppose that we have a reference commodity

level q1 (on the expansion path q1 (x)) and an arbitrary absolute price vector pz.

The true cost-of-living index based at q1 is given by:

c (pz,q1)

c (p1,q1)
(2.1)

where c (pz,q1) is the expenditure function giving the cost of attaining a bundle

indifferent to q1 at prices pz. Bounds can be placed on this index using the two

12We could extend the weakly revealed preferred set to the whole commodity space by taking
the convex hull of the points in QB (q1) but this is not necessary for the welfare bounds we
derive below.
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sets derived above13:

minq {p0zq|q ∈ QW (q1)}
p01q1

≤ c (pz,q1)

c (p1,q1)
≤ minq {p0zq|q ∈ QB (q1)}

p01q1
. (2.2)

In section 5 we use these results together with nonparametric estimates of Engel

curves to compute upper and lower bounds on the true fixed welfare base cost-of-

living index over the period 1974 to 1993 using British household budget survey

data. These are then compared to standard cost-of-living index formulae and to

alternative nonparametric and revealed preference bounds.

As well as being interested in fixed welfare base cost-of-living indices which

span a period of, perhaps, several years, we are often even more interested in an-

nual inflation rates and with these it is typical to update the welfare base in each

period rather than let it get too out of date. For example the inflation rate be-

tween the adjacent years t and t+1may be calculated as (c (pt+1,qt) /c (pt,qt))−
1. Bounds can easily be derived by finding the bounds on the indifference curve

through qt — i.e. QW (qt) and QB (qt) — , and by applying

minq
©
p0t+1q|q ∈ QW (qt)

ª
p0tqt

≤ c (pt+1,qt)

c (pt,qt)
≤ minq

©
p0t+1q|q ∈ QB (qt)

ª
p0tqt

.

The inflation rate between t + 1 and t + 2 can be measured as (c (pt+2,qt+1)/

c (pt+1,qt+1))−1 and a bound derived in an identical manner. In section 5 we
present annual inflation bounds for 1975 to 1993 derived in this way.

3. Nonparametric Engel Curves

3.1. Kernel Estimation of the Budget Share System

To estimate the expansion paths for each price regime we employ nonpara-

metric regression methods. Let {(lnxi, wij)}ni=1 represent a sequence of n house-
hold observations on the log of total expenditure lnxi and on the jth budget share

13Note that there is the possibility of corner solutions with respect to the lower bound whereby
the new price vector may cause one or more demands to fall to zero. To allow for this in the
calculation of the cost-of-living index the lower bound set QW (q1) needs to be augmented in
the following way

QW (q1) = max
j

©
p0wqw/p

j
w : ∀ qw ∈ QW (q1)

ª
∪QW (q1)

See Appendix B for an illustration.
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wij , for each household i facing the same relative prices. For each commodity j,

budget shares and total outlay are related by the stochastic Engel curve

wij = gj(lnxi) + εij (3.1)

where we assume that, for each household i, the unobservable term εij satisfies

E(εij | lnx) = 0and V ar(εij| lnx) = σ2j (lnx) ∀ goods j = 1, ..J (3.2)

so that the nonparametric regression of budget shares on log total expenditure

estimates gj(lnx).
14 In (3.1), if preferences are Piglog15, gj is linear in lnx for all

goods j = 1, ..., J.

In our empirical application we use the following unrestricted Nadaraya-

Watson kernel regression estimator

bgj(lnx) = brhj (lnx)bfh(lnx) ≡ bwj(lnx) (3.3)

in which

brhj (lnx) = 1

n

nX
l=1

Kh (lnx− lnxl)wlj, (3.4)

and bfh(lnx) = 1

n

nX
l=1

Kh (lnx− lnxl) , (3.5)

where h is the bandwidth and Kh(·) = h−1K(·/h) for some symmetric kernel
weight function K(.) which integrates to one. We assume the bandwidth h sat-

isfies h → 0 and nh → ∞ as n → ∞. Under standard conditions the estimator
(3.3) is consistent and asymptotically normal, see Härdle (1990) and Härdle and

Linton (1994). Additionally, provided the same bandwidth and kernel are used to

estimate each gj(lnx), adding-up across the share equations will be automatically

satisfied for each lnx and there is no efficiency gain from combining equations.

This mirrors the invariance result for SURE systems with identical regressors (see

Deaton (1983), for example).

14Below we discuss how we allow for the endogeneity of lnx in the Engel curve regression
equation.
15See Muellbauer (1975) and the empirical investigations by Working (1943) and Leser (1963).

These are the preferences that underly the popular Translog and Almost Ideal demand systems.
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3.2. Demographic Composition and Semiparametric Estimation

Household expenditures typically display variation according to demographic

composition. A fully nonparametric approach would be to stratify by each distinct

household demographic type and estimate each Engel curve by nonparametric

regression within each cell. Given that this would result in relatively small sample

sizes within each cell, we choose to use a semiparametric specification to pool

across household types.

Let zi represent a vector of discrete household composition variables for each

household observation i. A simple semiparametric specification would be to as-

sume partial linearity (see Robinson (1988) and Powell (1987))

wij = gj(lnxi) + z
0
iγj + εij (3.6)

with

E(εij|zi, lnxi) = 0 and V ar(εij |zi, lnxi) = σ2j( zi, lnxi). (3.7)

in which γj represents a finite parameter vector of household composition effects

for commodity j and gj(lnxi) is some unknown function as in (3.1).

Although the partially linear model (3.6) motivates the approach taken in this

paper, consideration of the integrability conditions indicate that some modifica-

tion is required. This is because the additive structure underlying (3.6) together

with the Slutsky symmetry conditions

∂wj
∂ ln pk

+wk
∂wj
∂ lnx

=
∂wk
∂ ln pj

+wj
∂wk
∂ lnx

, (3.8)

requires that g (.) be linear.

Proposition 4. Suppose that budget shares have a form that is additive in func-
tions of lnx and demographics

wj (lnp, lnx, z) = mj (lnp, z) + gj (lnp, lnx) (3.9)

If (i) Slutsky symmetry (3.8) holds and (ii) the effects of demographics on budget
shares are unrestricted in the sense that mj can vary in any way with z then
gj (.) is linear in lnx:

Proof. See Appendix A.
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This proposition demonstrates that the additive form given in (3.9) will only be

consistent with utility maximisation if we restrict the way in which demographics

affect budget shares, or if preferences are Piglog. That is gj(lnx) is linear in lnx

for all j.

An alternative specification that we adopt which does not impose restrictions

on the form of gj, is the following extension of the partially linear model

wij = gj(lnxi − φ(z0iθ)) + z0iαj + εij (3.10)

in which φ(z0iθ) is some known function of a finite set of parameters θ.16 This

function is common across share equations and can be interpreted as the log of a

general equivalence scale for household i17. Interestingly, the extended partially

linear model (3.10) is precisely the shape invariant specification considered in the

work on pooling nonparametric regression curves by Härdle and Marron (1990)

and Pinske and Robinson (1995).

To examine the shape invariant restrictions implicit in (3.10) we define s =

0, 1, .., S distinct household types of group size ns and let zs represent the corre-

sponding demographic structure for each group normalised such that for the base

group s = 0, φ(z00i θ) = z00i αj = 0. The share equation for the base group (e.g. a

couple with no children) becomes18

w0ij = g
0
j (lnxi) + ε

0
ij. (3.11)

while for the remaining for s = 1, .., S groups (e.g. couples with different numbers

of children) the share equations become

wsij = g
s
j (lnxi − φ(zs0i θ)) + zs0i αj + εsij . (3.12)

16Blundell, Duncan and Pendakar (1998) compare the semiparametric specification used here
with this more general alternative and find that it provides a good representation of demand
behavior for households in the British FES used in this study.
17For example, we may choose φ(z0iθ) = ln(z

0
iθ) where θ is the vector of corresponding equiv-

alence scales. See Pendakur (1998), for example.
18In the remainder of this subsection we suppress the bandwidth parameter and use super-

scripts to represent the different demographic groups.
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For any distinct household type zsi the shape invariance restrictions relative to

the base group may be written

gsj (lnxi) = g
0
j (lnxi − φ(zs0i θ)) + zs0i αj . (3.13)

If the αj and θ parameters for j = 1, ....J − 1 were known then the shape
restricted gj could be estimated by kernel regression on the transformed data

lnxi−φ(zs0θ) and wsij−zs0αj , pooled across the household types s = 0, 1, ..., S.We
replace the αj and θ by

√
n consistent estimators and note that the asymptotic

properties of the kernel regression estimates of gj on the transformed data are

unaffected. The choice of estimator for αj and θ extends a method developed in

the Härdle and Marron (1990) and Pinske and Robinson (1995) papers. The idea

is to replace each gsj (lnxi) by its unrestricted Nadaraya-Watson kernel regression

estimator and choose αj and θ so as to minimise some weighted quadratic loss.
19

Define (bαj , bθ) as the value of (αj,θ)) that minimises the integrated squared
loss function

L(θ,α) =
SX
s=1

J−1X
j=1

Z x

x
(Λjs(lnx;θ,αj))

2 πs$j(lnx)d lnx (3.14)

where α0= (α01, ...,α
0
J−1) and where x and x are integration limits on the log of

expenditure. The Λjs term is given by

Λjs(lnx;θ,αj) = r
s
jf
0 − fsr0j (lnx− φ(zs0bθ))− zs0αjfsf0(lnx− φ(zs0bθ))

where πs is a group specific weight (ns/n in our specification) and $j(lnx)

is an equation-specific weighting function.20 This choice is equivalent to using

19In order to estimate these parameters there is no particular reason to use a kernel estimator
for this shape invariant model. An attractive alternative semi-parametric estimator would be to
adapt the sieve procedure in Ai and Chen (2000), for example.
20Note

gsj (ln x) = zs0i αj + g
0
j (lnx− φ(zs0i θ))⇐⇒bf0(lnx− φ(zs0i θ))brsj (ln x) = bfs(lnx)br0j (ln x− φ(zs0i θ))

+bfs(lnx)bf0(lnx− φ(zs0i θ))zs0i αj (3.15)

for all x.To eliminate the random denominators in the kernel regression terms gsj and g
0
j , the

expression (3.13) can be weighted by the product of densities fsf0 where fs is evaluated at ln xi

and f0 at (ln x− φ(zs0bθ)).
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(fsf0(lnx − φ(zs0bθ))2 as a weighting scheme for the Härdle and Marron (1990)
estimator (3.14), and is precisely the estimator for random designs as suggested

by Pinske and Robinson (1995).

For the case where there are just two distinct groups S = 1 and one equation

J − 1 = 1, Pinske and Robinson show √n−consistency and asymptotic normal-
ity of this estimator of (θ,α). They also show that the first order asymptotic

properties of the kernel regression estimator of bg under the shape invariant re-
strictions are unaffected by the use of bα0, bθ in place of α,θ.21 As noted above
the latter result is particularly useful in our case as we are not directly inter-

ested in α0,θ but rather in gj. Proposition 5 below extends their conditions for
√
n−consistency of (bα0, bθ) to the more general case of many groups and many

equations. Given this result we can then proceed to estimate the nonparamet-

ric Engel curves pooled across household types using the transformed variables

(wij − z0i bαj) and (lnxi − φ(z0ibθ)).
Proposition 5 Let (bα0, bθ0) be the values of (αj,θ)) that minimise the integrated
squared loss function (3.14). Under assumptions A1 - A8 (see Appendix A),

(bα0, bθ0) is a √n−consistent estimator for (α00, θ00).
Proof. See Appendix A.

One important requirement for this proposition to hold (Assumption A6 in

Appendix A) is that fsf0(lnx− φ(zs0θ)) is bounded away from zero at the true

parameter value for θ. In our application we distinguish household types by fam-

ily size with the base group being a couple without children and choose the log

transformation for the equivalence scale function φ. Since the scale for children

relative to a childless couple is assumed to be bounded between zero and one half

for each child, condition A6 is preserved. In estimation we search in a neighbour-

hood of some reasonable starting values for θ drawn from the OECD child scales

and our final estimator is close to these values.22

21In proving this result Pinske and Robinson (1995) allow for a different bandwidth, nh3 −→∞
and h → 0 as n → ∞, which is more than satisfied by our choice of bandwidth which is
proportional to n

1
5 .

22See Blundell, Duncan and Pendakur (1988) for a further discussion of the estimation of this
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3.3. Endogeneity of Total Expenditure

To adjust for endogeneity we adapt the control function or augmented regres-

sion technique (see Holly and Sargan (1982), for example) to the semiparametric

Engel curve framework. Consider first the nonparametric Engel curve (3.1). Sup-

pose lnx is endogenous in the sense that for each commodity j

E(εij| lnxi) 6= 0 or E(wij | lnxi) 6= gj(lnxi). (3.16)

In this case the nonparametric estimator will not be consistent for the function

of interest. To be precise, it will not provide the appropriate counterfactual: how

will expenditure share patterns change for some ceteris paribus change in total

expenditure?

Suppose there exist instrumental variables ζi such that

lnxi = π
0ζi + vi with E(vi|ζi) = 0. (3.17)

In the application below we take the log of disposable income as the excluded in-

strumental variable for log total expenditure, lnx. Further, we make the following

key assumptions

E(wij | lnxi, ζi) = E(wij| lnxi, vi) (3.18)

= gj(lnxi) + ρjvi ∀ j. (3.19)

This implies the augmented regression model

wij = gj(lnxi) + ρjvi + εij ∀ j (3.20)

with

E(εij| lnxi) = 0 ∀ j. (3.21)

Note that gj (lnxi) = E (wij | lnxi) − E (vi| lnxi) eliminating gj(lnxi) using
(3.20) yields

wij −E(wij| lnxi) = (vi −E(vi| lnxi))ρj + εij (3.22)

equivalence scale parameter.
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which suggests a weighted instrumental variable estimator for ρj by replacing the

conditional means E(wij| lnxi) and E(vi| lnxi) by their Nadaraya-Watson ker-
nel regression estimators bw(lnxi) and bv(lnxi) respectively. Suitable instruments
would be I[ bf(lnxi) > b].vi.

The resulting estimator of g(lnxi) is given by

bg(lnxi) = bw(lnxi)− bv(lnxi)bρj. (3.23)

Note that the unobservable error component v in (3.22) is unknown. In estimation

v is replaced with the first stage reduced form residuals

evi = lnxi − bπ0ζi (3.24)

where bπ is the least squares estimator of π. Since bπ and bρ converge at √n the
asymptotic distribution for bg(lnxi) follows the distribution of bw(lnxi)−bv(lnxi)ρj.
Moreover, a test of the exogeneity null H0 : ρj = 0, can be constructed from this

least squares regression.23 In application we apply this procedure by augmenting

the semiparametric model (3.10).

3.4. Unobserved Heterogeneity

We turn now to the relationship between nonparametric Engel curves and

the average demands for a set of heterogeneous agents. For this discussion we

omit dependence on observed characteristics z. There are two alternative ways of

interpreting the impact of heterogeneity on the average demands estimated from

nonparametric Engel curve regression. We could assume individual demands are

rational and then ask for conditions on preferences and/or heterogeneity that

imply rationality for average demands. This is the approach of McElroy (1987),

23This method can be viewed as a special case of the method proposed in Newey, Powell and
Vella (1999). They adopt a series estimator for the regression of w on lnx and v. This generalises
the form of (3.17) and (3.20). We chose not to follow the fully nonparametric control function
approach here for two reasons. First in Blundell, Duncan and Pendakur (1998) it is shown that
adding additional terms makes little difference for estimating Engel curves on a sample from a
single year of British Family Expenditure Survey data. Second, for the computations in this
study we would also have to make this adjustment for each share equation in each time period
and also to adjust the asymptotics accordingly.
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Brown and Walker (1991) and Lewbel (1996). Alternatively, we could make no

rationality assumptions on individual demands and simply ask what conditions

enable average demands to satisfy rationality properties. This is the approach of

Becker (1962), Grandmont (1992) and Hildenbrand (1994).

Suppose for each good j we write average budget shares as

E[wj| lnx,p] = gj (lnx,p) (3.25)

then, if we let ε represent a vector of unobserved heterogeneity terms with

E[ε| lnx,p] = 0, a necessary condition for the average budget shares recovered by
the nonparametric analysis discussed above to be equal to average budget shares

is that

wj = gj (lnx,p) + φj (lnx,p)
0 ε. (3.26)

Notice this allows for quite different tastes across agents. In particular, the first-

order price and income responses for agents can vary in any way. Thus a good

may be a luxury for one person and a necessity for another.

The function gj (lnx,p) gives mean responses to changes in prices conditional

on a given level of total expenditure. Thus we can use this function for posi-

tive analysis, for example to recover the revenue implications from a change in

taxes. Additionally, the utility function that is associated with an integrable set

of demands gj (lnx,p) is a prime candidate for use in equilibrium models that

assume a representative agent. In our analysis below we apply the GARP tests

to the mean function gj (lnx,p). This averaging is very different to the stan-

dard aggregation structure in consumer theory developed by Gorman (1954) and

Muellbauer (1976). In particular, we are not aggregating across different total

budgets (incomes). Additionally, we are not assuming that individual demands

are necessarily integrable; that is, for given ε we can have that the Slutsky condi-

tions may fail for wj (lnx,p, ε). In this respect, our structure is closer to that of

Hildenbrand (1994) and Grandmont (1992). However, their analysis shows con-

ditions for average demands to satisfy the Weak Axiom of Revealed Preference

(WARP, see Varian (1982)) but GARP requires more. GARP implies the Slutsky
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symmetry conditions. If we wish to impose integrability at the individual level

then there are restrictions on the φj (x,p) and the distribution of the heterogene-

ity terms (see McElroy (1987), Brown and Walker (1989) and Brown and Matzkin

(1995)).24 Indeed, Brown and Walker (1989) show that for Slutsky symmetry to

hold φj (x,p) must be either a function of x or p.

The reason that we are interested in testing for GARP using these mean

responses is that without such a rationality condition holding, it is difficult to

see how we would ever conduct coherent welfare analysis of non-marginal price

changes. The heterogeneity conditions for using the mean function for the welfare

analysis for consumers of a non-marginal price change are, however, stronger than

the conditions given in (3.26) which suffice for positive analysis. In an important

paper McElroy (1987) considers the case of estimating cost function and share

equation parameters for production analysis. For consumer welfare measures

these results need to be extended. Consider the welfare measure based on the

second-order approximation25 of the log cost function for a non-marginal price

change ∆ ln pj

E

"
∆ ln c

∆ ln pj
|x,p

#
= [wj|x,p] + 1

2
E [Sjj|x,p]∆ ln pj. (3.27)

where Sjj is the Slutsky substitution term

Sjj =
∂wj
∂ lnpj

+
∂wj
∂ lnx

wj .

Consequently in addition to the direct price effect on the share (3.27) includes

the compensating income effect
∂wj
∂ lnxwj. This introduces a bias term additional

to that considered in McElroy (1987). Using (3.26) the mean welfare measure

(3.27) has the form

E

"
∆ ln c

∆ lnpj
|x,p

#
= gj +

1

2

Ã
∂gj
∂ ln pj

+
∂gj
∂ lnx

gj

!
∆ ln pj +

1

2

∂φ0j
∂ lnx

Ωεφj∆ ln pj .

(3.28)

24If all preference parameters are to be heterogeneous then preferences are essentially restricted
to the class of Piglog demands (see Lewbel (1996), for example).
25See Banks, Blundell and Lewbel (1996), for example.
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where E{εε0|x, p} = Ωε. The first two terms on the right hand side of this

expression can be computed using the mean function gj (.) so that our mean

function gives an exact first-order welfare effect. It also gives second order effects

if the final bias term is zero. This will be the case if, for example, the heterogeneity

term φ(lnx,p) is independent of total expenditure so that all households have

the same marginal income effects.26

In general the error term in (3.26) will represent measurement and optimisa-

tion error as well as preference heterogeneity so it would seem natural to work with

local average demands. Averaging locally to each x eliminates unobserved hetero-

geneity, measurement error and (zero mean) optimisation errors in demands but

preserves any nonlinearities in the Engel curve relationship for each price regime.

4. An Empirical Investigation on Repeated Cross-Sections

4.1. Data

The data were drawn from the repeated cross-sections of household-level data

in the British Family Expenditure Survey (1974 to 1993). The FES is a random

sample of around 7,000 households per year. From this we used a sub-sample of

all the two-adult households both those with and those without children27. The

first and last percentiles of the within-year total expenditure distribution in this

sub-sample was then trimmed out. This selection resulted in a sample size of

75,753 households (between 3,386 and 4,086 in each year). Expenditures on non-

durable goods by these households were aggregated into 22 commodity groups

and chained Laspeyres price indices for these groups were calculated from the

sub-indices of the UK Retail Price Index giving 20 annual price points for each

of our 22 commodity groups.

The commodity groups are non-durable expenditures grouped into: beer,

wine, spirits, tobacco, meat, dairy, vegetables, bread, other foods, food con-

26Note, however, that this condition is sufficient and not necessary; weaker assumptions suffice
to make the bias term zero or small.
27A further selection of households with cars was made in order to allow us to include motoring

expenditures and, in particular, petrol as commodity groups.
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sumed outside the home, electricity, gas, adult clothing, children’s clothing and

footwear, household services, personal goods and services, leisure goods, enter-

tainment, leisure services, fares, motoring and petrol28. Descriptive statistics for

total nominal expenditure are given in Table D.1 of appendix D.

4.2. Estimated Engel Curves and Normal Goods

The nonparametric regression results are based on a Gaussian Nadaraya-

Watson kernel estimation under the shape invariance restrictions (3.13). Adaptive

kernel bandwidths29 were used throughout with the first round bandwidth chosen

by cross-validation [cf . Härdle (1990)].

The three figures (4.1 to 4.3) below show the estimated Working-Leser En-

gel curves (budget share against log total nominal expenditure) for 3 of our 22

commodities, for 3 of our 20 periods (1975 (circles), 1980 (squares), 1985 (tri-

angles)). These represent a typical necessity (bread), a luxury (entertainment)

and beer which roughly displays a quadratic logarithmic Engel curve behaviour.

On each Engel curve we plot the points on the chronological SMP paths which

correspond to the 1st, 10th, 25th, 50th, 75th, 90th and 99th percentile points in

the base year (1974). Pointwise 95% confidence bands at these points are also

drawn. Note that, as we would expect, the precision is much lower at the tails

of the outlay distribution. The left to right drift of the Engel curves apparent

in these figure illustrates the growth in nominal expenditure which took place

between these periods.30

28More precise descriptions of components of the commodity groups are available from the
authors.

29The adaptive bandwidth is h = hλ where h is the pilot bandwidth and λi =
h bfh(lnxi)

η

i− 1
5

where η = exp
h
n−1

P
i
ln bfh (ln xi)i see Blundell and Duncan (1998).

30A full set of non-parametric regression results are available from the authors on request.
These results confirm the normal goods assumption used in the discussion above.
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Figure 4.1: The Engel curve for Bread

Figure 4.2: The Engel curve for Entertainment

Figure 4.3: The Engel curve for Beer
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4.3. Testing GARP

At each stage in the empirical analysis of the GARP conditions we will

be comparing weighted sums of kernel regressions. The pairwise comparison

p0tqt > p0tqscan be written

xt >
JX
j=1

pjt

pjs
bgjs(xs)xs for s 6= t. (4.1)

where bgjs(xs) is the estimated budget share in equation (3.1). Noting that adding-
up implies

PJ
j=1 bgjt (xt) ≡ 1 for all t, condition (4.1) conveniently reduces to the

comparison

δts >
J−1X
j=1

γjtsbgjs(xs), (4.2)

where γjts =

µ
pjt
pjs
− pJt

pJs

¶
and δts =

³
xt
xs
− pJt

pJs

´
are known constant weights in each

price regime.

To test GARP we will need to evaluate the inequality (4.2) at particular

points on an SMP path. Since the nonparametric Engel curve has a pointwise

asymptotic normal distribution we can evaluate the distribution of each bgjt (x) at
any point x.31 For (4.2) we need to find the distribution of the weighted sum of

correlated kernel regression estimates
PJ−1
j=1 γ

j
tsbgjs(x). However, since on any SMP

path in any period the bgj(x) kernel estimates for each good j are to be evaluated
31Briefly, for bandwidth choice h and sample size n the variance can be well approximated at

point x for large samples by

var(gj(x)) ' σ2j (x)cK

nhfh(x)

where cK is a known constant and fh(x) is an (estimate) of the density of x

σ2j (x) = n
−1

nX
j=1

ωjh(x)(wij − gj(x))2

with weights from the kernel function

ωjh(x) = Kh(x− xj)/fh(x)
see Härdle (1990).
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using the same kernel smoother and the same bandwidth, the expression for the

asymptotic variance of the weighted sum simplifies. In particular, the constants

associated with the kernel function and the density fh(x) itself will be common

to all variance and covariance terms. Pointwise standard errors and confidence

bands for expression (4.2) are therefore tractable and are used extensively in the

empirical application below.

When calculating demands on SMP paths we allow for the fact that the total

expenditure levels in all periods except for the first are chosen on the basis of the

estimated demands in the previous periods. For example, a SMP path constructed

such that ext = p0tqt = p0tqt−1 (xt−1), the expenditure level ext is set such that ext =PJ
j=1

pjt
pjt−1

bgjt−1(xt−1)xt−1and therefore ext depends on the estimate of bgt−1 (xt−1)
from the previous period. The test of qt−1 P 0 qt requires that we have an estimate

of V ar
³
δt−1,t − γ0t−1,tbgt´ and that this takes into account that ext is set according

to estimates of gt−1 (xt−1) (and likewise that exs is set according to estimates ofbgr (exr) etc.). This is derived using the standard delta-method approach applied
sequentially.

Table 4.1: Number of rejections of GARP, by size of test.

Starting point for α
each comparison path 1.0 0.30 0.20 0.10 0.05

SMP paths:
1st percentile 1 0 0 0 0
1st decile 1 1 0 0 0
1st quartile 1 0 0 0 0
Median 1 1 1 1 0
3rd quartile 2 2 0 0 0
9th decile 11 6 3 1 0
99th percentile 28 21 1 0 0

Median path 0 0 0 0 0
Mean path 0 0 0 0 0
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To implement our procedure we need to choose a set of SMP paths along

which to evaluate GARP. To do this we select the starting points for each path to

be at the 1st percentile, 1st decile, 1st quartile, median, 3rd quartile, 9th decile

and 99th percentile points in the x distribution for 1974, the first year in our data

set. The comparison points for the following years are chosen along the SMP path

as described in section 2.2. By Proposition 1 we know that if this path passes

GARP then no path which preserves the same preference ordering will violate

GARP. The annual median and mean (non-SMP) paths are also computed for

comparison.

Table 4.1 shows the number and pattern of rejections for the system of 22

goods. Each column provides a count of the total number of rejections according

to inequality (4.2). In each case a one sided test of size α is used, based on the

pointwise asymptotic distribution of
PJ−1
j=1 γ

j
tsg

j
s(xs). The column headed α = 1

counts the number of rejects using inequality (4.2) directly without adjustment for

estimation error in gjs(xs). In the remaining columns each inequality is adjusted

by a one sided interval. From the first of these columns GARP can be seen to

be rejected for a large number of points, especially in the upper tail of the outlay

distribution.32 However, these rejections are not statistically significant. Very

little adjustment is needed to dramatically reduce the number of rejections.33

It is also interesting to observe that there are no rejections, even in the raw

data, for the median or mean (non-SMP) paths. This is consistent with the

observation which arises in tests of GARP on aggregate data that if the budget

constraint is allowed to shift much either way between comparison points, as it

does for median or mean total expenditure, then there is little chance of being

able to find demands that cannot be rationalised.

32Our interest is primarily in the points commonly used in the analysis of income distributions,
i.e. interdecile points, interquartile points and the median. We include the 1st and the 99th
percentile points for completeness.
33We have not attempted to compute the size of the implicit joint test.
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4.4. Continuous Sub-Periods Which Satisfy GARP

Using the same set of SMP comparison points as in table 4.1, table 4.2

presents the continuous sub-periods of the data that satisfy GARP. For example,

the chronological SMP path which starts at median total budget in 1974 runs

into a violation of GARP when 1986 is added to the sequence. In this case it

is the pair of years 1985 and 1986 which fail to satisfy GARP: the SMP path is

constructed to reflect the ordering q86R
0q85 but we find that q85P

0q86, giving

the violation.

Table 4.2: Continuous periods that satisfy GARP.

Periods
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93

1st

10th

25th

50th

75th

90th

99th

Interestingly, the table also shows the largest continuous sub-period in which

we are able to bound the indifference curve. For example, using the reference de-

mand bundle at median total outlay in 1974 we are able to bound a curve using

the expansion paths and price data for 1974 to 1985 inclusive (we are also able

to bound curves using reference demands at any within-year median total expen-

diture level or reference demands at any point on the on the chronological SMP

path between 1974 and 1985). However, if we add 1986 to the set of admissible

periods the algorithm fails to converge. We then start again using the 1986 point

on the median SMP path as our starting point. In all, for the median we find

the entire period separates down into two sub-periods within which we are able

to bound an indifference curve. Similarly the 1st and 9th decile paths break into
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two and four sub-periods respectively, while the 99th percentile breaks down into

five.

We can use this knowledge of periods in which GARP is satisfied in a number

of ways. To illustrate two of them we present bounds on the base-period reference

cost-of-living index, and bounds on year-to-year inflation rates.

4.5. Bounds on the True Cost-of-living Index

Table 4.2 shows that preferences on the SMP paths starting at the 10th

and 90th percentile points, the quartiles and the median of the base period total

budget distribution all satisfy integrability at least up until 1985. We use the data

for this period and the algorithms described in section 2.4 to bound the true cost-

of-living index c (p85,q74) /c (p75,q74) for a reference demand bundle at each of

these points in the 1974 total budget distribution. Figure 4.4 shows the bounds for

each reference budget in 1985, with 1974=1000. It is interesting to note that the

bounds for 10th and 90th percentile points do not overlap and indicate greater

rise on the cost of living for poorer, compared to richer, households over this

period.

We also compare the performance of the GARP bounds for the true index

with other nonparametric bounds and other popular price index formulae over a

longer period. This is shown in table 4.3. The first panel shows the price index

numbers for the Paasche, Laspeyres and the chained Törnqvist. These indices

can also be thought of as corresponding exactly to true indices under various

assumptions regarding the precise form of preferences34. The second panel in

table 4.3 shows various nonparametric bounds on the true index referenced at

q74 where q74 = q74 (x) evaluated at 1974 median total budget. The bounds

provided by Lerner (1935-36) are simply a reflection of the idea that the true

index (being a weighted average of price changes) must lie somewhere between

34The Paasche and Laspeyres, for example, are exact for Leontief preferences, the Törnqvist
is exact for translog.

32



Figure 4.4: GARP Cost of living index bounds 1985 by percentile point
(1974=1000).

the maximum and the minimum ratio of the price changes of all goods: i.e.

min
j

(
pjt

pj74
: j = 1, ..., J

)
≤ c (pt,q74)

c (p74,q74)
≤ max

j

(
pjt

pj74
: j = 1, ..., J

)
.

Pollak (1971) improves this by linking Lerner’s result with the original Konüs

(1924) result that the Laspeyres index approximates the true base-referenced

cost of living index from above, i.e.

min
j

(
pjt

pj74
: j = 1, ..., J

)
≤ c (pt,q74)

c (p74,q74)
≤ p0tq74
p074q74

.

The bounds from classical revealed preference restrictions of the type used by

Varian (1982) and calculated using the demands in each period at median within-

period total budget are also reported (labelled classical RP). None of these non-

parametric solutions have any trouble in providing bounds for the entire period.

The classical bounds for example, do not violate GARP for the reasons explained

above. However, the bounds derived by our method must take account of the

break between 1985 and 1986. This is because when we seek to derive the bounds

using the data from both 1985 and 1986 the algorithms do not converge (conver-

gence requires GARP as shown in propositions 2 and 3). Instead we bound the

33



indifference curves using prices and expansion paths from all periods excluding

1986. We then use these to bound the cost-of-living index using all of the price

data (including 1986) as described in 2.2.

Table 4.3: Popular price indices, nonparametric and GARP bounds, 1974 to 1993.

Price Indices Nonparametric/RP bounds
Year P L T Lerner Pollak Classical RP GARP

74 1000 1000 1000 1000 1000 1000 1000
75 1215 1232 1223 [1025,1721] [1025,1232] [1206,1232] [1214, 1228]
76 1516 1530 1528 [1182,1985] [1182,1530] [1431,1530] [1514, 1530]
77 1762 1787 1783 [1239,2590] [1239,1787] [1700,1787] [1761, 1781]
78 1931 1957 1960 [1385,2513] ][1385,1957] [1894,1957 [1936, 1957]
79 2086 2119 2121 [1461,2636] [1461,2119] [2058,2119] [2093, 2119]
80 2463 2514 2514 [1734,3142] [1734,2514] [2442,2514] [2478, 2509]
81 2780 2841 2841 [1770,4077] [1770,2841] [2687,2841] [2801, 2838]
82 3093 3189 3178 [1821,4287] [1821,3189] [2983,3189] [3123, 3172]
83 3260 3381 3371 [1828,4924] [1828,3381] [3197,3381] [3314, 3369]
84 3408 3558 3534 [1790,4921] [1790,3558] [3335,3558] [3473, 3530]
85 3551 3733 3700 [1836,5086] [1836,3733] [3546,3733] [3634, 3696]
86 3700 3911 3876 [1900,5463] [1900,3911] [3595,3911] [3808, 3873]
87 3825 4035 3991 [1920,6049] [1920,4035] [3626,4035] [3918, 3989]
88 3922 4163 4113 [1923,6143] [1923,4163] [3702,4163] [4036, 4110]
89 4130 4379 4322 [1996,6397] [1996,4379] [3688,4379] [4240, 4319]
90 4406 4669 4608 [2079,6637] [2079,4669] [3739,4669] [4521, 4604]
91 4723 5044 4967 [2109,7507] [2109,5044] [4073,5044] [4871, 4963]
92 4996 5437 5323 [2091,8353] [2091,5437] [4038,5437] [5214, 5318]
93 5177 5650 5499 [2066,9098] [2066,5650] [3990,5650] [5382, 5493]

Notes: P = Paasche. L = Laspeyres, T = Chained Törnqvist/Divisa

We find, confirming the results in Varian (1982) and Manser and McDonald

(1988), that classical non-parametric/revealed preference bounds based on the

median demand data gives little additional information on the curvature of the

indifference curve through commodity space and hence the bounds on the true

index are wide. However, by the use of expansion paths we can dramatically

improve these bounds. This is illustrate in figure 4.5 in which the GARP bounds
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Figure 4.5: GARP bounds and classical RP bounds, 1974 to 1993.

are represented by the solid lines and the classical RP bounds by the dashed line.

Comparing the GARP bounds on the true, fixed base cost of living index

to the three price index number formulae we see that the chained Törnqvist.

performs the best as an empirical approximation to the true index35. This is

despite the fact that, as an index in which reference utility is updated in each

period, the Törnqvist. cannot strictly be compared to a fixed base true index.

The Laspeyres, which is a first order approximation to the true index in question,

understates the true increase in the cost of living by between about 3% and 5%

by the end of the period.

4.6. Bounds on Annual Inflation Rates

As well as deriving bounds on fixed base cost-of-living indices, revealed pref-

erence restrictions can also be calculated on annual inflation rates in which the

reference demand bundle is updated in each period. The 1990 annual inflation

bound rate for example is calculated from the bound on the 1989-based cost-of-

living index c (p90,q89) /c (p89,q89) . The results are shown in Table 4.4 where

35Comparisons with other price indices are available from the authors.
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the improvement afforded by the GARP bounds over the previously available

nonparametric bounds is apparent. Indeed the tightness of the GARP bounds is

remarkable. Again the Törnqvist performs the best of the index number formulae

followed by the Laspeyres which is often close to the top of the GARP bounds.

Note that the inflation rate for the year to 1986 is missing from the GARP bounds

because of the GARP violation between these two years.

Table 4.4: Annual inflation rates for popular price indices, nonparametric and
GARP bounds, 1975 to 1993 .

Price Indices Nonparametric/RP bounds
Year P L T Lerner Pollak Classical RP GARP

75 21.48 23.16 22.28 [2.50,72.10] [2.50,23.16] [20.59,23.16] [21.47,22.85]
76 24.60 25.27 24.93 [5.00,54.13] [5.00,25.27] [17.86,25.27] [24.57,25.27]
77 16.54 16.89 16.71 [4.82,30.51] [4.82,16.89] [13.82,16.89] [16.50,16.80]
78 9.85 10.05 9.95 [-12.93,20.17] [-12.93,10.05] [-12.93,10.05] [9.83,10.05]
79 8.13 8.31 8.22 [0.17,15.39] [0.17,8.31] [0.17,8.31] [8.13,8.31]
80 18.29 18.74 18.51 [7.75,49.92] [7.75,18.74] [8.00,18.74] [18.56,18.55]
81 12.92 13.11 13.02 [2.08,29.76] [2.08,13.11] [9.22,13.11] [13.11,13.11]
82 11.53 12.18 11.85 [-0.93,32.21] [-0.93,12.18] [8.69,12.18] [11.51,12.02]
83 5.95 6.18 6.06 [-6.97,25.32] [-6.97,6.18] [-6.97,6.18] [6.05,6.14]
84 4.80 4.91 4.86 [-2.06,21.00] [-2.06,4.91] [-2.06,4.91] [4.88,4.91]
85 4.65 4.72 4.69 [-3.18,12.77] [-3.18,4.72] [-3.18,4.72] [4.72,4.72]
86 4.77 4.73 4.75 [0.70,8.64] [0.70,4.73] [1.36,4.73] —
87 2.89 3.04 2.97 [-10.30,10.73] [-10.30,3.04] [-0.22, 3.04] [2.88,3.04]
88 3.06 3.04 3.05 [-4.50,8.87] [-4.50,3.04] [-0.60,3.04] [3.04,3.04]
89 5.07 5.11 5.09 [-0.39,10.48] [-0.39,5.11] [-0.39,5.11] [5.06,5.10]
90 6.59 6.65 6.62 [1.38,10.50] [1.38,6.65] [1.38,6.65] [6.63,6.63]
91 7.78 7.81 7.80 [1.45,14.94] [1.45,7.81] [8.04,7.81] [7.81,7.81]
92 7.07 7.24 7.16 [-0.85,18.90] [-0.85,7.24] [6.59,7.24] [7.09,7.24]
93 3.28 3.34 3.31 [-8.03,9.58] [-8.03,3.34] [-7.69,3.34] [3.34,3.34]

Notes: P = Paasche. L = Laspeyres, T = Törnqvist/Divisa

5. Summary and Conclusions

In this paper we have applied nonparametric statistical methods to the non-

parametric theory of consumer demand. We exploit the idea that price taking

individuals in the same market at the same time face the same relative prices, in
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order to smooth across the demands of individuals for each common price regime.

We first show that knowledge of budget expansion paths can improve the power of

nonparametric tests of revealed preference theory. In cases in which revealed pref-

erence conditions are violated we could use an Afriat-Varian conditional demand

approach but we leave that for future work. We also show how budget expansion

paths can be used to place tight bounds on level sets of utility in commodity space

and hence to provide tight nonparametric bounds on true cost-of—living indices.

We present algorithms for the computation of these bounds.

Expansion paths can be estimated by nonparametric Engel curves and this

is shown to provide a useful stochastic structure within which to examine the

consistency of individual data and revealed preference theory. The implications

for pooling across households with different demographic composition are also

examined and an appropriate semiparametric estimator is derived.

Using a long time series of repeated cross-sections from the 1974-1993 British

Family Expenditure Surveys we estimate semiparametric Engel curves and ex-

amine whether revealed preference theory is rejected. We show that GARP is

not rejected for long periods, particularly when we allow for sampling/stochastic

variation. We derive bounds on cost-of-living indices from our analysis which are

much tighter than those based on the revealed preference restrictions implied by

demands at, say, annual mean total expenditure. We also note that the chained

Törnqvist (approximate Divisia) cost-of-living index performs well as a empirical

approximation to the true base-period referenced index.
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Appendices

A. Proofs of Lemmas and Propositions

Proof of Proposition 1

Without loss of generality we take the GARP rejecting preference ordered sub-
sequence to be {qs(x̂s),qt(x̂t),qu(x̂u)}. We have:
(1) x̂s = p

0
sqs(x̂s) ≥ p0sqt(x̂t) and

(2) x̂t = p
0
tqt(x̂t) ≥ p0tqu(x̂u) and

(3) x̂u = p
0
uqu(x̂u) > p

0
uqs(x̂s).

We consider the SMP path for this preference ordered sub-sequence and show
that it too rejects GARP. The SMP path {qs(x̃s),qt(x̃t),qu(x̂u)} has:
(4) x̃t = p

0
tqt(x̃t) = p

0
tqu(x̂u) and

(5) x̃s = p
0
sqs(x̃s) = p

0
sqt(x̃t).

By construction this is a preference ordered sub-sequence (qt(x̃t)R
0qu(x̂u) and

qs(x̃s)R
0qt(x̃t)) so that this sub-sequence rejects GARP if qu(x̂u)P

0qs(x̃s); that
is, if:
(6) p0uqu(x̂u) > p0uqs(x̃s).

Conditions (2) and (4) imply p0tqt(x̂t) ≥ p0tqt(x̃t) which implies x̂t ≥ x̃t.
This and conditions (1) and (5) give:

p0sqs(x̂s) ≥ p0sqt(x̂t) ≥ p0sqt(x̃t) = p0sqs(x̃s)
which implies x̂s ≥ x̃s. Finally, condition (3) and normality imply p

0
uqu(x̂u) >

p0uqs(x̂s) ≥ p0uqs(x̃s) which is condition (6); hence GARP is rejected for this
sub-sequence.

Proof of Proposition 2.

PART A. We denote the sets F and W at the end of iteration s by F (s) and

W (s) respectively, with elements
n
q1,q

(s)
2 , ...q

(s)
T

o
.

The first step is to show that as we iterate we never move ‘up’ an expansion path.
Formally, at iteration s+ 1 we have:

q
(s+1)
t ≤ q(s)t

To see this, consider q
(s+1)
t ∈ F (s+1). At iteration s+ 1 step (2) of the algorithm

takes the min over all qw ∈W (s) so that p0tq
(s+1)
t ≤ p0tqw for all qw ∈W (s) = F (s).

Since the latter contains q
(s)
t we have the claimed inequality.

The next step is to show that if GARP and weak normality hold then for any
pair (t, u) and k ≥ 0 we have:

q
(s+1)
t = qt

³
p0tq

(s)
u

´
< q

(s)
t ⇒ q(s)u < qu

³
p0uq

(s−k)
t

´
This is a ‘no swapping’ condition which states that if we change qt to be just

revealed preferred to q
(s)
u then we never have that q

(s)
u is revealed preferred to
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q
(s)
t . To show this, note that the equality on the left hand side of the implication

implies that q
(s+1)
t Rq

(s)
u . GARP and the inequality on the lhs of the implication

give:

p0uq
(s)
u ≤ p0uq(s+1)t < p0uq

(s)
t

With the monotonicity result above and noting that k ≥ 0 this implies:
q(s)u = qu

³
p0uq

(s)
u

´
< qu

³
p0uq

(s)
t

´
≤ qu

³
p0uq

(s−k)
t

´
as claimed.
Now define the set:

Q̄ (q1) = {q : q is on some SMP path that finishes at q1}
Thus we take all the sub-sequences of {2, 3...T} (for example, {4, 2, 7}), construct
the SMP paths that finish at q1 and include all the points on these paths in Q̄ (q1).
Since there are only a finite number of permutations of subsets of {2, 3...T} this
is a finite set. We now show that if a demand ever enters F then it is in this set;
formally:

q
(s)
t ∈ Q̄ (q1)

We prove this by induction. Consider first F (1) and q
(1)
t . Step 2 of the algorithm

gives for some u we have q
(1)
t = qt (p

0
tqu (p

0
uq1)). Thus

n
q
(1)
t ,qu (p

0
uq1) ,q1

o
is

an SMP path (with no second element if u = t). Thus all the elements of F (1)

are contained in Q̄ (q1). To continue with the induction proof, suppose that all
of the elements of F (s) are on SMP paths. To show that all of the elements of
F (s+1) are on SMP paths, we need only consider an element that changes between
iterations s and s+ 1:

q
(s+1)
t = qt

³
p0tq

(s)
u

´
< q

(s)
t

Since q
(s)
u is in F (s) it is on an SMP path ending at q1. Denote the part of

the path that begins at q
(s)
u by

n
q
(s)
u , ...q1

o
. The no swapping condition above

(which requires GARP) ensures that this path does not contain a demand on the

tth expansion path. Thus we put q
(s+1)
t at the start of this SMP path to create

a new SMP path. Thus q
(s)
t ∈ Q̄ (q1) for all t implies q(s+1)t ∈ Q̄ (q1) for all t.

Since q
(1)
t ∈ Q̄ (q1) for all t, this establishes the result.

The final part of the proof is to simply note that since our algorithm chooses
points from a finite set Q̄ (q1) and discards a finite number of points at each
iteration (the ‘monotonicity’ condition), we terminate in a finite number of steps.

PART B.
³
qt ≥ qBt

´
⇒ (qtRq1) follows from the construction of Q̄ (q1) in part

A. To prove the converse let qtRq1. This requires that there be a preference
ordered path that starts at qt and ends at q1. Without loss of generality let this
path be {qt,qu,qv,q1} so that:

p0tqt ≥ p0tqu (A.1)

p0uqu ≥ p0uqv (A.2)

p0vqv ≥ p0vq1 (A.3)
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Recalling that we denote the tth element of QB (q1) by q
B
t , by step 2 of the

algorithm we have:

p0tq
B
u ≥ p0tq

B
t (A.4)

p0uq
B
v ≥ p0uq

B
u (A.5)

p0vq1 ≥ p0vq
B
v (A.6)

From (A.6) and (A.3) and weak monotonicity we have qv ≥ qBv . This and
(A.2) and (A.5) gives qu ≥ qBu . From (A.4) and (A.1) we thus have qt ≥ qBt .

Proof of Proposition 3.

The proof is analogous to that for Proposition 2.

Proof of Proposition 4.

Given the budget share form of the Slutsky equation (3.8) and the additive struc-
ture in (3.9) we have by differentiating both side of (3.8) with respect to lnx then
with respect to z gives

mk
zg
j
xx =m

j
zg
k
xx.

If mk
z and m

j
z are unrestricted this must hold for any values of m

k
z and m

j
z. If

either mk
z or m

j
z are allowed to be zero then this implies g

j
xx = g

k
xx = 0.

Proof of Proposition 5.

Assumptions:
A1: εsji are assumed mutually independent and have finite second moments
A2: E(εsji| lnx, zs) = 0
A3: lnxi is independently distributed with density bfs(·) that is two times bound-
edly differentiable.
A4: bfs(·)(brs(·))2 are two times boundedly differentiable functions.
A5: (α0,θ0) is in a bounded and open set.
A6: The twice boundedly differentiable weight function $, is non-negative and
positive only on the interior of a compact interval Ξx. For all points x ∈ Ξx we have
that fs(lnx) > 0 and that for all (α0,θ0), x, z ∈ Θ×Ξ that f0(lnx−φ(zs0θ)) > 0.
A7: No parameter vector (α0,θ0) 6= (α00,θ00) exists such that for some j, gsj (lnx) =
zs0αj + g0j (lnx− φ(zs0θ)) almost all x ∈ Ξx.
A8: The same kernel is used for all s = 0, 1, .., S groups with bandwidth nsh

5 −→
∞, nsh6 −→ 0 as ns −→∞.
With assumptions A1 - A8 in place, Proposition 5 follows directly from Lemmas
1-6 and Theorem 1 in Pinske and Robinson (1995).

Discussion of assumptions in Proposition 5:
A1-A4 are standard assumptions and follow from the model specification in

sections 3.1 and 3.2. A5 relates to the adult equivalence scale parameters for chil-
dren (relative to the base case of a couple with no children). As pointed out in
the text, these are bounded between the adult scale and zero. Given the bound-
edness of θ, f0(lnx − φ(zs0θ)) > 0 follows. A7 is guaranteed by assuming that
at least one good has strictly nonlinear Engel curves (actually nonlinear relation-
ship between the share and log total expenditure). This has been established in
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many empirical applications to UK data (see Banks, Blundell and Lewbel (1997),
for example). A8 follows from our common choice of kernel and the bandwidth
condition is satisfied under cross validation.

B. Welfare Bound Algorithms

B.1. Illustration of Algorithm A.1

Figure B.1 illustrates the algorithm36. We denote the sets W and F in the
n’th iteration by Wn, Fn. In the first iteration step (1) begins with W1 =
{q1,q2 (x02) ,q3 (x03) ,q4}, where x02 = p02q1 and x03 = p03q1. Clearly q4P 0q2 and
hence q4Pq1. In step (2) F1 = {q1,q2 (x02) ,q3 (x03) ,q4 (x04)} since q4P 04q (x04).
Because W1 6= F1 we set W2 = F1 and go to step (2) at the second iteration.
Now F2 = {q1,q2 (x02) ,q3 (x03) ,q4 (x04)} and in step (3) the iteration ends defin-
ing QB (q1) = {q1,q2 (x02) ,q3 (x03) ,q4 (x04)}. Algorithm A.2 proceeds in a similar
way giving QW =

©
q1,q2 (x2) ,q2 (x3) ,q4 (x4) , x4/p

1
4, x1/p

2
1

ª
but A.2 has the ad-

ditional step which identifies the final two points on the q1 = 0 and q2 = 0 axes.
The dashed lines marked ‘upper’ and ‘lower’ shows the bounds on c (pz, u (q1))
given by min{p0zqt|qt ∈ QW (q1)} and min {p0zqt|qt ∈ QP (q1)} for some new set
of relative prices pz.

Figure B.1: Bounds on the cost-of-living index using expansion paths
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36We subscript the sets defined at each stage by the current iteration of the algorithms.
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C. Simulating measurement error

Given a period t total outlay xt we set expenditure on good j in that period equal
to γjtxt for j = 1, 2..., J . We choose the γjt weights in the following way. First, we
draw γ̃jt from a Beta distribution with parameters (aj, bj) (where the distribution
parameters are kept constant over time). To do this, we first have to calibrate the
two parameters for each good. To fix one parameter we set E(γ̃jt) = ωj where
the latter is a given budget share (see below). Given the usual expression for the
mean of Beta distributed variable this implies that we must set:

bj =
(1− ωj)aj

ωj
(C.1)

for each good j. It only remains to calibrate the aj parameters. The variance of
a Beta distributed random variable is given by:

σ2j =
ajbj

(1+ aj + bj)(aj + bi)2
=
(1− ωj)ωj
aj + ωj

(C.2)

so that if we take a value for the variance the associated value of aj is given by:

aj =

Ã
(1− ωj)ωj

σ2j
− 1

!
ωj (C.3)

Thus we first choose (ωj ,σ
2
j ) for each good and then calculate (aj, bj) for j =

1, 2..., J . Given these parameters we can simulate a set of budget weights for
each period t, (γ̃1t, γ̃2t, ..., γ̃Jt). Since these will not normally sum to unity we
set:

γjt =
γ̃jtPJ
j=1 γ̃jt

(C.4)

Although the marginals of the joint distribution of the γjt’s are now no longer
a Beta distribution and the weights do not have the desirable property that
E(γjt) = ωj we do have that the mean is approximately equal to the data mean
(using conventional expansion arguments on the mean of a ratio) and bounded
between zero and unity, which suffices for our purposes. It only remains to choose
the mean and variances discussed above. We use data from one representative
year (1974) and set the budget shares ωj’s equal to the mean budget shares.
For the variance, we first take the variance of each budget share, denoted σ̄2j for
good j. We take this to be an upper bound for noise in the measurement and
then choose an attenuation factor ρ to give the calibrating variance σ2j = ρσ̄

2
j for

each good. Thus an attenuation factor of unity gives the maximum noise and an
attenuation factor of zero gives no noise.
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D. Data

Table D.1: Total nondurable nominal expenditure: Annual descriptive statistics.

Year No. of Obs Mean Std Dev. 10% 50% 90%

1974 3386 39.11 17.95 20.41 35.19 62.93

1975 3696 47.17 21.17 24.83 42.36 75.92

1976 3553 52.79 24.20 27.75 47.23 84.15

1977 3683 60.94 27.71 31.87 54.83 98.65

1978 3583 67.84 31.33 35.34 60.78 108.76

1979 3476 79.18 37.04 40.36 71.42 127.72

1980 3717 92.84 43.07 47.67 82.77 152.70

1981 4072 102.63 47.94 52.78 91.29 169.21

1982 3974 108.89 50.10 56.83 98.15 175.15

1983 3749 117.11 54.40 60.33 105.69 190.41

1984 3755 124.71 59.71 62.81 110.22 206.58

1985 3775 132.56 64.68 64.94 117.65 219.00

1986 3826 143.35 71.64 69.35 126.01 240.79

1987 3962 150.49 74.20 72.42 134.40 249.69

1988 4003 163.01 83.09 75.71 145.68 274.40

1989 4086 173.93 86.57 83.38 155.14 292.80

1990 3772 191.01 95.95 91.15 169.15 320.19

1991 3886 199.59 99.41 96.19 177.71 332.81

1992 3999 205.58 97.29 101.02 185.86 339.20

1993 3800 219.84 111.99 105.47 192.97 363.91
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