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Introduction

Highly incomplete and fragmented introduction to regression
analysis.

Have data on y and x (x is high dimensional vector) and would like
to:

Study correlation between y and elements of x .
Use x to forecast, predict or impute y .
Understand how much of variation in y is "explained" by x .
Estimate causal impact of x on y after controlling for confounding
factors
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Introduction (2)

Elements of X .

Can be continuous or discrete.
May be measured with error (this causes problems).

Elements of Y .

Can be continuous.
Can be discrete.

Usually requires a non-linear model.
However, researchers often use the linear probability model.
It is much better to use a discrete outcome model.

May be measured with error (this is less of a problem).
May be censored or truncated.

Usually requires use of non-linear model.
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Main methods

1 Parametric methods
1 Ordinary least squares
2 Maximum likelihood
3 Method of moments
4 Quantile regression
5 Bayesian methods

2 Semi- and Non-parametric methods

Allow "parameters" to be in�nite dimensional.
Estimate E [Y jX ] = f (X ) to be an unknown function instead of a
known one like xβ.
Estimate probability density function of x rather than estimate mean
and variance.
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Basic linear model (notation)

Data on (yi , xi ) for i = 1, ...,N where yi 2 R and xi 2 Rk .
Let Y = (y1, ..., yN )

T be a (N � 1) vector of outcomes and let X be
an (N �K ) matrix of regressors. That is,

X =

264 x1 (1) � � � x1 (K )
...

...
xN (1) � � � xN (K )

375 .
Let ε = (ε1, ..., εN ) be an (N � 1) vector of errors or unobserved
variables.
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Basic linear model

The linear model is
Y = X β+ ε

where β is a (K � 1) vector of parameters to be estimated.
Usually the model includes a constant so that xi (1) = 1 for all i .
Key restriction is that the model is linear in β (can allow for example x
and x2 or log (x) .)
X may include "dummy" variables that indicate membership in a
group. For, example xi (2) = 1 if i is female and xi (2) = 0 otherwise.
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Basic linear model (goals)

Goals:

Unbiased or consistent estimates of β.
Prediction of Y .
Analysis of variance of Y .
Test of hypotheses about β.
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Basic linear model (problems)

1 Mis-speci�cation. Suppose the correct model is not linear?
1 Non-linear models or discrete outcomes.
2 Censoring or truncation of of outcomes

2 Endogeneity. What if X is correlated with ε?
1 Omitted variables.
2 Measurement error.
3 Joint causation.

3 High dimensional data. What can one do if K is large?
4 Robustness. How to reduce in�uence of outliers in data?
5 Correlation in errors. How do you correct for correlation in errors?
6 Non-random sample. How does one weight the data?
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Estimation in linear models

Ordinary least squares. Choose β to solve the least squares problem

min
fβg

n
0.5 (Y � X β)T (Y � X β)

o
First order conditions are

XTX β� XTY = 0.

Estimator of β is bβ = �XTX��1 XTY
Requires that XTX has rank K .
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Properties of estimator (unbiased)

Assume that
E [ε jX ] = 0.

Then

E
hbβ jX i = E

��
XTX

��1
XTY jX

�
= E

��
XTX

��1
XT (X β+ ε) jX

�
= E

��
XTX

��1 �
XTX

�
jX
�

β+ E [ε jX ]

= β.
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Asymptotic normality

Further, assume that
V (ε jX ) = σ2I .

Then
V
�bβ� = bσ2 �XTX��1

where bσ2 = 1
n
beTbe

is estimate of variance of error.and where

be = Y � Xbβ.
In a large sample, (under very general conditions), the central limit
theorem can be used to show that

p
N
�bβ� β

�
A�! N

�
0, bΣ� .
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Con�dence intervals and hypothesis tests

These results can be used to construct con�dence intervals for β and
to conduct hypothesis tests.

When β is a scalar, a 95% con�dence interval for β is

bβ� 1.96bσβ.

Test the hypothesis that β1 + β2 = 0.
1 Let s = β1 + β2.
2 Then bs = bβ1 + bβ2 converges in distribution to a normal random
variable with mean s = β1 + β2 and variance σ2s = σ11 + σ22 + 2σ12.

3 Reject the hypothesis if bsbσs � 1.96.
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Prediction

Best predictor of Y is

E [Y jX ] = Xbβ.
Minimises the sum of squared prediction errors.
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Goodness of �t

Coe¢ cient of determination or R2 measures the fraction of
variance of the outcome that is explained by the model. It is

R2 = 1� eT e

(y � y)T (y � y)
.

A measure of "Goodness-of-�t".
When R2 is near zero, then most of variance is explained by errors.
When near one, most of variance is explained by model.

When variables are added to model, R2 increases. So, researchers
often used "adjusted R2

R2 = 1�
�
1�R2

� n� 1
n� k � 2

which adjusts R2 for the number of variables in the model.
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Other topics

1 Maximum likelihood estimation.

Linear models.
Nonlinear models.
Discrete outcomes.

2 Instrumental variables methods.
3 Systems of equations.
4 Penalized methods.
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