
Dynamic economics in Practice
Numerical methods with Matlab

Monica Costa Dias and Cormac O'Dea

Introduction

Matlab

I Matlab is a software package and programming language

I Widely used in Dynamic Programming and in economics in general

I Proprietary and expensive
I Though most universities have it and a substantially discounted

student version can be obtained

I Has a number of additional `toolboxes' that supplement standard
features
I Optimisation toolbox is essential for work in dynamic programming

Alternatives to Matlab

I Fortran, C++, C
I Much much faster, which can be very important

I R
I Free, increasingly popular in economics

I Mata (Stata's programming language)
I Newer, less widely used

Code developed for this course

I The code we will go through is designed to be easy to understand,
not to be as fast as possible

I It does not come with a warranty!

I There may be parameter sets that deliver an error or an odd result

I You may not understand it all completely as we zoom through it

I It is annotated
I To properly understand it, it will be necessary to go through it more

meticulously than we will have time to do here

I The existing code does not work as a black box � you need to
understand it to edit/change

I But then it can be generalised/specialised to di�erent problems

I And it is simple to transpose to other more e�cient languages

Code for this course

We have six versions of the code, that follow the increasingly more
sophisticated models that will be discussed

1. Finite consumption saving endowment problem (solved by
maximising the Value function)

2. Adds to (1) option to solve using the Euler equation

3. Adds to (2) deterministic stream of income and capacity to borrow

4. Adds to (3) simple uncertainty in income

5. Adds to (4) a conventional stochastic income process

6. Solves in�nite horizon version of the model in (5)

Matlab basics

Functions

We can create a simple function by creating a �le with the following text:

function [output] = myFunction(input)
% This function outputs the twice the square of the input

output = 2 * (input^2);
end

and saving it by the name myFunction.m.

When we place this �le in our working directory, we can then call the
function from Matlab:

[y] = myFunction(2);

This returns y = 8.

Scripts

I Scripts are also organise in �les

I They contain a lists of commands

I Unlike functions they don't start with a header . . .
I function [output] = myFunction(input)

I . . . and they don't �nish with:
I end

I A key di�erence between scripts and functions concerns which parts
of memory they have access to

I Functions accept inputs and return outputs; other variables are
internal to the function

I Scripts do not accept arguments and operate on data in the
workspace

Locals and Globals I

Local and global variables

I Local variables are those that can only be accessed by the �le in
which they are introduced

I Global variables are those that can be accessed (and changed) by
any �le

Key di�erence between scripts and functions:

I If script or function a.m calls script b.m, then b.m can access any
variable that a.m has access to (in the workspace of a.m)

I If script or function a.m calls function b.m, then b.m has a separate
worspace and can only access global variables declared in b.m

Locals and Globals II

To declare a variable (myvar) as a global, in the �le where it is �rst
initialised include the line:

global myvar

We can access this variable in any other script or function called by this
�le by also including the line:

global myvar

Setup of a project

I In a particular folder you will need a `master' script (called perhaps
main.m) and all the scripts and functions that will be called

I Set the working directory in Matlab as this folder

I Run the script main.m by typing main at the Matlab prompt or by
clicking the green `run' button in the Matlab text editor

Some basic commands

I + - * / ^ basic operators

I .* ./ .^ elementwise operators

I ; suppress output

I A = 1; and A = 1 both store scalar 1 in A
I The latter also prints A=1 to screen
I You'll want to terminate most commands with ;

I tic, toc starts and �nishes a stopwatch and prints time taken

Creating a matrix

I A=[1 2 3; 3 5 6] creates the matrix

A =

[
1 2 3
4 5 6

]

I B=zeros(1,3) creates a 1× 3 vector of zeros

I C=NaN(2,1) creates a 2× 1 vector of missing values

I X=[A;B] concatenates vertically matrices A and B
I X has dimension 3× 3

I X=[A,C] concatenates horizontally matrices A and C
I X has dimension 2× 4

I X=repmat(A, (n, m)) replicates matrix A n by m times
I If matrix A has dimension j × k, X will have dimension nj ×mk

Selecting out elements of a matrix

Say we want a vector that contains the row t of matrix V

Vt = V(t , :) ;

Say we want elements in columns 3 to 5 of row t of V

Vt = V(t , 3:5) ;

Loops

A `for' loop:

squares = NaN(10, 1);
for ix = 1:1:10

squares(ix) = ix ^ 2;
end

A `while' loop producing the same result:

squares = NaN(10, 1);
ix = 1;
while ix ≤10

squares(ix) = ix ^ 2;
ix = ix + 1;

end

If blocks

A simple `if' block:

if x1 < 0
fprintf('x1 is negative')

elseif x1 == 0
fprintf('x1 is zero')

else
fprintf('x1 is positive')

end

Generating a grid of equally spaced values in Matlab

grid = linspace(0, 1, 4)

Generates and stores in a vector a grid with minimum 0, maximum 1 and
four points such that the space between the points is equal

grid = 0 0.3333 0.6667 1.0000

Generating a grid of values more concentrated towards lower

values

Do this by equalising the log-distance between 0 and some upper bound
(call it top) for the grid:

top = 1;
loggrid = linspace(log(1),log(1 + top), 4);
grid = exp(loggrid)-1;

Returns a grid with minimum 0, maximum top and four points at
increasing distance:

grid = 0 0.2599 0.5874 1.0000

First Matlab program � folder 'code\v1'

Set up Matlab folder and program to solve and simulate simple cake
eating problem without uncertainty

Optimisation

Optimisation in Matlab I

I Problem: Find x such that f (x) is minimised

I Matlab has many commands as part of its optimisation toolbox.

I We will discuss fminbnd

[Y, fval] = fminbnd(@(x) f(x), lowerbound, upperbound);

This returns the value of the argument that minimises the function in Y

and the minimised value of the function in fval

[Y, fval] = fminbnd(@(x) (2*(x^2) - x), -100, 100);

This returns Y = 0.25 and fval = -0.125

Optimisation in Matlab II

I What would we do if we wanted to maximise a function rather than
minimise it?

I We could minimise the negative of that function

[Y, fval] = fminbnd(@(x) -(2*(x^2) - x), -100, 100);

I The algorithm used by fminbnd alternates between the Golden
Section Search and Successive Parabolic Interpolation

I Optimiser for one-dimensional continuous functions

I As other numerical optimisers: returns local solutions

I Does not return a minimum on the boundary of the optimising
interval � will return a close approximation

I Slow convergence if solution is on the boundary

Optimisation in Matlab III

I Instead of writing the function directly in the fminbnd command
line, we can write it in a separate �le

I The function may include arguments other than the one we are
maximising with respect to

First de�ne the function and save the �le as myFunction.m

function [z] = myFunction(x, a)
z = a*(x^2) - x;

end

Then �nd its minimum for a given value of a

a = 5;
[Y, fval] = fminbnd(@(x) myFunction(x, a), -100, 100);

This returns Y = 0.1 and fval = -0.05

Approximation

Representing a function numerically

How can we store a function that is de�ned numerically?

I Take a simple function f (x) = ln(x)

I Closed-form representation exists but say we wanted to store it
numerically?

I We would de�ne two vectors (say x and f)

I x will contain a number of points in the domain of the function, at
which we decide to evaluate f (x) . . .

I and f will contain the value of the function at those points
0.1
0.2
0.5
1
2

−2.3
−1.6
−0.7
0.0
0.7

Approximation of a function using Matlab

I Suppose we only know the value of a function on a discrete subset
of its domain

I And we want to know the value of the function at a point x0 on the
domain but not in that subset

I Matlab has a tool (interp1) that allows us to approximate the
value of the function at that point

approx = interp1(x, f, x0, method);

where:

I x is the vector containing the points at which we know f (x)

I f is the vector containing the value of f at each point in x

I x0 is the point at which we want to approximate f

I method speci�es which algorithm to use

Linear interpolation

Plot of f (x) = ln(x) in interval (0, 2]

��

����

�

���

�

� ��� � ��� �

��
��
�

�

����

��

����

Linear interpolation

Suppose we only know the value of f (x) on 5 points

��

����

�

���

�

� ��� � ��� �

��
��
�

�

����

��

����

Linear interpolation

Interpolate linearly between 2 subsequent points

��

����

�

���

�

� ��� � ��� �

��
��
�

�

����

��

����

Linear interpolation

Approximate ln(x) by linear interpolation in the space de�ned by the grid

��

����

�

���

�

� ��� � ��� �

��
��
�

�

����

��

����
�����

�����	
���
�

Linear interpolation

Let's approximate the value of f (x) = ln(x) at x = 1.5 given the values
of f (x) at the 5 points we previously de�ned:

0.1
0.2
0.5
1
2

−2.3
−1.6
−0.7
0.0
0.7

x = [0.1, 0.2, 0.5, 1, 2];
f = [-2.3, -1.6, -0.7, 0.0, 0.7];
approx = interp1(x, f, 1.5, 'linear');

This returns approx = 0.35 (the truth is ln(1.5) = 0.405)

How good will the approximation be?

I Approximating a function using linear interpolation will be better:

I The closer together are the `grid points', at which we know the true
function value

I The closer the underlying true function to linear

I It helps to concentrate grid points where the function is more
non-linear

I Alternative approximation techniques are generally more appropriate
to deal with non-linearities:

I Local polynomials (splines), can be shape preserving
I But they increase computation time

First Matlab program � folder 'code\v1'

Back to the code to solve and simulate simple cake eating problem
without uncertainty

I Use fminbnd to maximise the value function

I Use interp1 to interpolate the solution on grid

Root-�nding

Root-�nding in Matlab I

I Problem: Find x such that f (x) = 0

I For many functions f (x), there is no closed form solution for x such
that f (x) = 0

I Matlab has a command (fzero) to do this:

[Y, fval] = fzero(@(x) f(x), StartingValue)

I This returns the value of the argument that minimises the function
in Y and the value of the function f at Y in fval.

I fval should be very close to 0 if the function has worked correctly

[Y, fval] = fzero(@(x) (2*x - 1), 0.2);

returns Y = 0.5 and fval = 0

Root-�nding using Matlab II

Instead of giving Matlab a starting value, it is better, if you can, to give
it a bound within which you know the zero lies:

boundforzero = [0, 1];
[Y] = fzero(@(x) 2*x - 1, boundforzero);

This returns Y = 0.5

The algorithm uses bisection, secant, and inverse quadratic interpolation
methods and was developed by Dekker (1969) and Brent (1973).

Root-�nding using Matlab III

Instead of writing the function directly when fzero is called, we can
write the function separately and include other arguments

First write the function and save it in �le myFunction.m

function [z] = myFunction(x, a)
z = a*x - 1;

end

Then call it after de�ning the parameter a and the starting interval

a = 3
boundforzero = [0, 1];
[Y] = fzero(@(x) myFunction(x, a), boundforzero);

This returns Y = 0.333

Second Matlab program � folder 'code\v2'

Solve cake eating problem without uncertainty using fzero to �nd the
root of the Euler equation

More on function approximation

Improving linear approximation with other known

information about the function: quasi-linearisation

I Revisit the problem of approximating a non-linear function f

I Linear interpolation is fast but not very accurate

I Suppose however that we know another function g such that
g(f (x)) = (g ◦ f)(x) is close to linear in x and that g is invertible

I We can use g to do the following:

1. At each point for which we know f (x), calculate (g ◦ f)(x)
2. Approximate (g ◦ f)(x) using linear interpolation and store this

(̂g ◦ f)(x)
3. Calculate g−1

(
(̂g ◦ f)(x)

)
which is our approximation f̂ (x) to f (x)

I As long as (g ◦ f) is closer to linear than is f , then this should
deliver a better approximation than directly interpolating on f

Quasi-linearisation example

Suppose we want to approximate marginal utility (with a CRRA utility
function) using linear interpolation

f (c) = c−γ

There exists an invertible function:

g(x) = x−
1

γ

such that (g ◦ f)(c) = c is linear and so can accurately be interpolated
linearly

We can then recover f (c) by applying the inverse of g to (g ◦ f)(c) where

g−1(y) = f (y) = y−γ

Quasi-linearisation example

Consider three vectors � c , f (c), g(f (c)) where (f , g) are functions as
above with γ = 2

0.1
0.2
0.5
1
2

100
25
4
1

0.25

0.1
0.2
0.5
1
2

I The true marginal utility at c = 1.5 is f (1.5) = 1.5−2 = 0.444

I Approximating f at c = 1.5 by linear interpolation yields
f̂ (1.5) = 0.625

I Approximating (g ◦ f)(c) at c = 1.5 by linear interpolation yields

(̂g ◦ f)(1.5) = 1.5

I Inverting (̂g ◦ f) to recover f at c = 1.5 yields

f̂ (1.5) = (1.5)−2 = 0.444

Alternatives to linear interpolation

Alternative to linear approximation that Matlab provides include:

I `nearest': nearest neighbour matching

I `spline': piecewise cubic spline

I `pchip': shape-preserving piecewise cubic interpolation

Recall our attempt to approximate the value of ln(1.5):

approx1 = interp1(x, f, 1.5, 'linear'); (0.34)
approx2 = interp1(x, f, 1.5, 'nearest'); (0.7)
approx3 = interp1(x, f, 1.5, 'spline'); (0.467)
approx4 = interp1(x, f, 1.5, 'pchip'); (0.442)

The truth is ln(1.5) = 0.405.

Approximation error I

To see how approximation error can lead to serious misleading results
consider the following example:

I A consumer lives for 2 periods and has endowment of 0.2 units of
consumption to split between those two periods

I Utility is CRRA with γ = 0.5

I The interest rate and discount rate are equal to zero

I The true optimal is C1 = C2 = 0.1

Approximation error II

Plot utilities at t = 1, 2 and value at t = 1 for consumption at t = 1
varying in the interval (0, 0.2)

����

����

����

����

����

����

����

�
�
��
�

�	
�
	�	����

�	
�
	�	��������	����

����

����

����

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
	

 �
��
�

 �
��

 �
��
�

 �
��
�

 �
��

6
 �
��
�

 �
��
	

�������

������	����

Approximation error III

To see how approximation error can lead to serious misleading results
consider the following example:

I A consumer lives for 2 periods and has endowment of 0.2 units of
consumption to split between those two periods

I Utility is CRRA with γ = 0.5

I The interest rate and discount rate are equal to zero

I The true optimal is C1 = C2 = 0.1

I Now suppose we only knew the value of savings (utility of savings
tomorrow) at C1 = 0.001 and C1 = 0.019 and had to interpolate the
utilities between these points

Approximation error

����

����

����

����

����

����

����

�
�
��
�

�	
�
	�	����

�	
�
	�	��������	����

�	
�
	�	�������

�
�	����

����

����

����

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

 �
��
�

�������

������	����

������
�	����

Approximated optimal consumption would be C1 = 0.065;C2 = 0.135

Back to second Matlab program � folder 'code\v2'

Solve cake eating problem without uncertainty using fzero to �nd the
root of the Euler equation and inverse marginal utility to reduce
approximation error

Conclusion

Conclusion

I When solving things numerically, one does not know what the true
answer is

I It is di�cult to absolutely verify that there is no mistake

I Calls for disciplined coding practices:
I Write many many many checks and warnings into your code
I Once you think your program works - try to break it by stress-testing

- select extreme parameters - may help you �nd bugs

