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IDENTIFICATION OF TREATMENT EFFECTS USING CONTROL
FUNCTIONS IN MODELS WITH CONTINUOUS, ENDOGENOUS

TREATMENT AND HETEROGENEOUS EFFECTS

BY J. P. FLORENS, J. J. HECKMAN, C. MEGHIR, AND E. VYTLACIL1

We use the control function approach to identify the average treatment effect and
the effect of treatment on the treated in models with a continuous endogenous regres-
sor whose impact is heterogeneous. We assume a stochastic polynomial restriction on
the form of the heterogeneity, but unlike alternative nonparametric control function
approaches, our approach does not require large support assumptions.

KEYWORDS: Continuous treatments, endogenous treatments, heterogeneous treat-
ment effects, identification, nonseparable models, control function.

1. INTRODUCTION

THERE IS A LARGE AND GROWING theoretical and empirical literature on mod-
els where the impacts of discrete (usually binary) treatments are heteroge-
neous in the population.2 The objective of this paper is to analyze nonparamet-
ric identification of treatment effect models with continuous treatments when
the treatment intensity is not randomly assigned. This generally leads to mod-
els that are nonseparable in the unobservables and produces heterogeneous
treatment intensity effects. Imposing a stochastic polynomial assumption on
the heterogeneous effects, we use a control function approach to obtain iden-
tification without large support assumptions. Our approach has applications in
a wide variety of problems, including demand analysis, where price elasticities
may differ across individuals; labor supply, where wage effects may be hetero-
geneous; or production functions, where the technology may vary across firms.

Other recent papers on semiparametric and nonparametric models with
nonseparable error terms and an endogenous, possibly continuous, covari-
ate include papers using quantile instrumental variable methods such as
Chernozhukov and Hansen (2005) and Chernozhukov, Imbens, and Newey

1We thank two anonymous referees and Whitney Newey for their comments. We also thank
participants at the Berkeley–Stanford (March 2001) workshop on nonparametric models with
endogenous regressors as well as participants at the University College London empirical mi-
croeconomics workshop for useful comments. J. Heckman would like to thank the NIH (Grant
R01-HD043411) and the NSF (Grant SES-024158) for research support. C. Meghir would like to
thank the Centre for Economics of Education and the ESRC for funding through the Centre for
Fiscal policy at the IFS and his ESRC Professorial Fellowship. E. Vytlacil would like to thank the
NSF for financial support (Grant SES-05-51089). The views expressed in this paper are those of
the authors and not necessarily those of the funders listed here. All errors are our own.

2See, for example, Roy (1951), Heckman and Robb (1985, 1986), Björklund and Moffitt (1987),
Imbens and Angrist (1994), Heckman (1997), Heckman, Smith, and Clements (1997), Heckman
and Honoré (1990), Card (1999, 2001), and Heckman and Vytlacil (2001, 2005, 2007a, 2007b),
who discussed heterogeneous response models.
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(2007), and papers using a control variate technique such as Altonji and
Matzkin (2005), Blundell and Powell (2004), Chesher (2003), and Imbens and
Newey (2002, 2007). Chesher (2007) surveyed this literature. The analysis of
Imbens and Newey (2002, 2007) is perhaps the most relevant to our analy-
sis, with the key distinction between our approach and their approach being a
trade-off between making a stochastic polynomial assumption on the outcome
equation versus assuming large support. We discuss the differences between
our approach and their approach further in Section 3.2.

2. THE MODEL, PARAMETERS OF INTEREST, AND THE OBSERVABLES

Let Yd denote the potential outcome corresponding to level of treatment in-
tensity d. When the treatments are discrete, this notation represents the two
possible outcomes for a particular individual in the treated and nontreated
state. In this paper, there is a continuum of alternatives as the treatment inten-
sity varies. Define ϕ(d)=E(Yd) and Ud = Yd −ϕ(d), so that, by construction,

Yd = ϕ(d)+Ud�(1)

We restrict attention to the case where the stochastic process Ud takes the
polynomial form

Ud =
K∑
j=0

djεj� with E(εj)= 0� j = 0� � � � �K�(2)

where K <∞ is known.3
LetD denote the realized treatment, so that the realized outcome Y is given

by Y = YD. We do not explicitly denote observable regressors that directly af-
fect Yd . All of our analysis implicitly conditions on such regressors. We make
the following assumption.

A-1: ϕ(D) is K times differentiable inD (almost surely (a.s.)) and the support
of D does not contain any isolated points (a.s.).

This allows for heterogeneity of a finite set of derivatives of Yd . This spec-
ification can be seen as a nonparametric, higher order generalization of the
random coefficient model analyzed by Heckman and Vytlacil (1998) and
Wooldridge (1997, 2003, 2007). The normalization E(εj) = 0� j = 0� � � � �K,
implies that (∂j/∂dj)E(Yj)= (∂j/∂dj)ϕ(d).4

3As discussed later, we can test for the order of the polynomial as long as a finite upper bound
on K is known. The question of identification with K infinite is left for future work.

4To see that E(εj) = 0� j = 0� � � � �K, is only a normalization, note that ϕ(d) + ∑K
j=0 d

jεj =
[ϕ(d)+ ∑K

j=0 d
jE(εj)] + ∑K

j=0 d
j(εj −E(εj))= ϕ̃(d)+ ∑K

j=0 d
jε̃j .
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Equations (1) and (2) can be restated as follows to emphasize that we ana-
lyze a nonseparable model:

Y = h(D�ε)= ϕ(D)+
K∑
j=0

Djhj(ε)�(3)

where ε need not be a scalar random variable. The notation of equation (3)
can be mapped into the notation of equations (1) and (2) by setting εj = hj(ε).
Notice that we do not assume that ε is a scalar random variable, and h need
not be monotonic in ε.

One parameter of interest in this paper is the average treatment effect
(ATE),

�ATE(d)= lim
�d→0

E(Yd+�d −Yd)
�d

≡ ∂

∂d
E(Yd)= ∂

∂d
ϕ(d)�(4)

which is the average effect of a marginal increase in treatment if individuals
were randomly assigned to base treatment level d. Note that the average treat-
ment effect depends on the base treatment level, and for any of the continuum
of possible base treatment levels we have a different average treatment effect.
The average treatment effect is the derivative of the average structural func-
tion of Blundell and Powell (2004).

We also consider the effect of treatment on the treated (TT), given by

�TT(d)= lim
�d→0

E(Yd+�d −Yd|D= d)
�d

≡ E

(
∂

∂d1
Yd1

∣∣∣D= d2

)∣∣∣∣
d=d1=d2

= ∂

∂d
ϕ(d)+

K∑
j=1

jdj−1E(εj|D= d)�

which is the average effect of treatment for those currently choosing treatment
level d of an incremental increase in the treatment holding their unobserv-
ables fixed at baseline values. This parameter corresponds to the local average
response parameter considered by Altonji and Matzkin (2001, 2005).

We denote the choice equation (the assignment mechanism to treatment
intensity) as

D= g(Z�V )�(5)

where Z are observed covariates that enter the treatment choice equation but
are excluded from the equation forYd and V is a scalar unobservable. We make
the following assumption:
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A-2: V is absolutely continuous with respect to Lebesgue measure; g is strictly
monotonically increasing in V ; and Z ⊥⊥ (V �ε0� � � � � εK).

As long as D is a continuous random variable (conditional on Z), we can
always represent D as a function of Z and a continuous scalar error term, with
the function increasing in the error term and the error term independent of Z.
To see this, set V = FD|Z(D|Z) and g(Z�V )= F−1

D|Z(V |Z). Thus, D= g(Z�V ),
where g is strictly increasing in the scalar V which is distributed unit uniform
and independent of Z. However, the assumption that g(Z�V ) is monotonic in
a scalar unobservable V with Z ⊥⊥ (V �ε0� � � � � εK) is restrictive. The construc-
tions V = FD|Z(D|Z) and D = F−1

D|Z(V |Z) = g(Z�V ) do not guarantee Z ⊥⊥
(V �ε0� � � � � εK).

Given assignment mechanism (5) and assumption A-2, without loss of gen-
erality we can impose the normalization that V is distributed unit uniform.
Given these assumptions and the normalization of V , we can follow Imbens
and Newey (2002, 2007) and recover V from V = FD|Z(D|Z) and the func-
tion g from g(Z�V ) = F−1

D|Z(V |Z). Assignment mechanism (5) and assump-
tion A-2 will not be directly used to prove identification. However, we use them
to clarify the primitives underlying our identification assumptions.

2.1. Education and Wages: A Simple Illustration

To illustrate the type of problem we analyze in this paper, consider a simple
model of educational choice. Suppose that the agent receives wages Yd at di-
rect cost Cd if schooling choice d is made. We work with discounted annualized
earnings flows. We write wages for schooling level d, Yd , as

Yd = ϕ0 + (ϕ1 + ε1)d+ 1
2ϕ2d

2 + ε0

and the cost function for schooling as

Cd = C0(Z)+ (C1(Z)+ v1)d+ 1
2C2(Z)d

2 + v0�(6)

where εs and vs (s = 0�1) are, respectively, unobserved heterogeneity in the
wage level and in the cost of schooling. These unobserved heterogeneity terms
are the source of the identification problem considered in this paper. We im-
pose the normalizations that E(εs)= 0 andE(vs)= 0 for s = 0�1. We implicitly
condition on variables such as human capital characteristics that affect both
wages and the costs of schooling. The Z are factors that only affect the cost of
schooling, such as the price of education.

Assume that agents choose their level of education to maximize wages minus
costs. LetD denote the resulting optimal choice of education.D solves the first
order condition

(ϕ1 −C1(Z))+ (ϕ2 −C2(Z))D+ ε1 − v1 = 0�
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Assuming that ϕ2 −C2(Z) < 0 for all Z, the second order condition for a max-
imum will be satisfied. This leads to an education choice equation (assignment
to treatment intensity rule)

D= ϕ1 −C1(Z)+ ε1 − v1

C2(Z)−ϕ2
�

This choice equation is produced as a special case of the model given by equa-
tions (1), (2), and (5) with

ϕ(d)= ϕ0 +ϕ1d+ 1
2
ϕ2d

2�

Ud = ε0 + ε1d�

g(z� v)= ϕ1 −C1(z)+ F−1
ε1−v1

(v)

C2(z)−ϕ2
�

where V = Fε1−v1(ε1 − v1) with Fε1−v1 the cumulative distribution func-
tion of ε1 − v1. The goal is to identify the average return to education
�ATE(d)= ϕ1 +ϕ2d or TT, which is �TT(d)= (ϕ1 +E(ε1|D= d))+ϕ2d.

In this example, the treatment intensity is given by equation (5) with g strictly
increasing in a scalar error term V = Fε1−v1(ε1 −v1). The structure of the treat-
ment intensity mechanism is sensitive to alternative specifications. Consider
the same example as before, except now the second derivative of Yd is also
stochastic: Yd = ϕ0 + (ϕ1 + ε1)d+ 1

2(ϕ2 + ε2)d
2 + ε0. The choice equation be-

comes

D= ϕ1 −C1(Z)+ ε1 − v1

C2(Z)−ϕ2 − ε2
�

In this case, the structural model makes D a function of V = (ε1 − v1� ε2),
which satisfies Z ⊥⊥ (V �ε0� ε1� ε2), but V is not a scalar error. We can still
define Ṽ = FD|Z(D|Z) and the function g̃ by g̃(Z� Ṽ )= F−1

D|Z(Ṽ |Z). With this
construction, D is strictly increasing in a scalar error term Ṽ that is indepen-
dent of Z. However, Z is not independent of (Ṽ � ε0� ε1� ε2). To see why, note
that

Pr(Ṽ ≤ v|Z�ε0� ε1� ε2)

= Pr
[
v1 :

ϕ1 −C1(Z)+ ε1 − v1

C2(Z)−ϕ2 − ε2
≤ F−1

D|Z(v)
∣∣∣Z�ε0� ε1� ε2

]

�= Pr(Ṽ ≤ v|ε0� ε1� ε2)�

This is a case where assumption A-2 does not hold. The fragility of the spec-
ification of equation (5), where g is strictly increasing in a scalar error term,
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arises in part because, under rational behavior, heterogeneity in response to
treatment (heterogeneity in the Yd model) generates heterogeneity in selec-
tion into treatment intensity. This heterogeneity is absent if agents do not know
their own treatment effect heterogeneity, which can happen if agents are un-
certain at the time they make participation decisions (see Abbring and Heck-
man (2007)).

3. IDENTIFICATION ANALYSIS

An instrumental variable estimator (IV) does not identify ATE in the case
of binary treatment with heterogeneous impacts (Heckman (1997), Heckman
and Robb (1986)) unless one imposes covariance restrictions between the er-
rors in the assignment rule and the errors in the structural model. Following
Newey and Powell (2003) and Darolles, Florens, and Renault (2002), con-
sider a nonparametric IV strategy based on the identifying assumption that
E(Y −ϕ(D)|Z)= 0. Suppose K = 0, which is the special case of no treatment
effect heterogeneity. In this case, UD = ε0 so that YD = ϕ(D)+ ε0. We obtain
the standard additive-in-unobservables model considered in the cited papers.
The identification condition is E(ε0|Z) = 0. However, in the general case of
treatment effect heterogeneity (K > 0), the IV identification restriction im-
plies special covariance restrictions between the error terms. For example,
suppose K = 1 and that D = g(Z) + V . Then E(Y − ϕ(D)|Z) = 0 requires
E(ε0|Z) = 0 and E(ε1D|Z) = 0, with the latter restriction generically equiv-
alent to E(ε1|Z) = 0 and E(ε1V |Z) = 0. In other words, in addition to the
more standard type of condition that ε0 be mean independent of the instru-
ment, we now have a new restriction in the heterogeneous case that the covari-
ance between the heterogeneous effect and the unobservables in the choice
equation conditional on the instrument does not depend on the instrument.5

Instead of following an instrumental variables approach, we explore identifi-
cation through a control function.6 We assume the existence of a (known or
identifiable) control function Ṽ that satisfies the following conditions:

A-3 —Control Function Condition: E(εj |D�Z)=E(εj|Ṽ )= rj(Ṽ ).7

5See Heckman and Vytlacil (1998) and Wooldridge (1997, 2003, 2007).
6See Newey, Powell, and Vella (1999) for a control function approach for the case of separable

models (K = 0). See Heckman and Vytlacil (2007b) for a discussion of the distinction between
control functions and control variables. Technically “control function” is a more general concept.
We adopt the recent nomenclature even though it is inaccurate. See the Matzkin (2007) paper
for additional discussion.

7Note that our normalization E(εj) = 0, j = 0� � � � �K, implies the normalization that
E(rj(Ṽ ))= 0, j = 0� � � � �K.
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A-4—Rank Condition: D and Ṽ are measurably separated, that is, any func-
tion of D almost surely equal to a function of Ṽ must be almost surely equal to a
constant.

A necessary condition for assumption A-4 to hold is that the instruments Z
affect D.8 We return later in this section to consider sufficient conditions on
the underlying model that implies the existence of such a control variate Ṽ .
Under these assumptions, ATE and TT are identified.

THEOREM 1: Assume equations (1) and (2) hold with finite K ≥ 1. Under
assumptions A-3 (control function condition), A-4 (rank condition), and the
smoothness and support condition A-1, ATE and TT are identified.

See the Appendix for the proof.
The control function assumption gives the basis for an empirical determina-

tion of the relevant degree of the polynomial in (2). If the true model is defined
by a polynomial of degree 	, we have that for any k> 	,

∂k

∂dk
E(Y |D= d� Ṽ = v)= ∂kϕ(d)

∂dk
�

which does not depend on v and thus is only a function of d. This property can
be verified by checking whether the following equality holds almost surely:

∂kE(Y |D� Ṽ )
∂Dk

a�s�= E

[
∂k

∂Dk
E(Y |D� Ṽ )

∣∣∣D]
� k > 	�

3.1. Primitive Conditions Justifying the Control Function Assumption

In the previous section a control function is assumed to exist and satisfy cer-
tain properties. The analysis in the previous section did not use assignment
rule (5) or condition A-2. In this section, we use assignment rule (5) and condi-
tion A-2 along with the normalization that V is distributed unit uniform. Under
these conditions, consider using V = FD|Z(D|Z) as the control function. This
leads to the following corollary to Theorem 1:

COROLLARY 3.1: Assume equations (1) and (2) hold with finite K ≥ 1, and
assume smoothness and support condition A-1. If D is generated by assignment
equation (5) and condition A-2 holds, and if V and D are measurably separa-
ble A-4, then ATE and TT are identified.

8Measurable separability, which we maintain in this paper, is just one way to achieve identifica-
tion. Alternatively, one could restrict the space of functions ϕ(D) not to contain rj(Ṽ ) functions;
this in turn can be achieved, for example, by assuming that ϕ(D) is linear in D and rj is nonlin-
ear as in the Heckman (1979) selection model. See also Heckman and Robb (1985, 1986), who
discussed this condition.



1198 FLORENS, HECKMAN, MEGHIR, AND VYTLACIL

For the conditions of Theorem 1 to be satisfied, it is sufficient to verify that
under the conditions in the corollary the control function assumption A-3 is
satisfied. Given that D satisfies assignment equation (5) and condition A-2,
from Imbens and Newey (2002, 2007) we obtain that V = FD|Z(D|Z) is a con-
trol variate satisfying assumption A-3.

Next consider measurable separability condition A-4. Measurable separabil-
ity is a relatively weak condition, as illustrated by the following theorem.

THEOREM 2: Assume that (D�V ) has a density with respect to Lebesgue mea-
sure in R

2 and denote its support by S, and let S0 be the interior of the support.
Further, assume that (i) any point in S0 has a neighborhood such that the density
is strictly positive within it and (ii) any two points within S0 can be connected by a
continuous curve that lies strictly in S0. Then measurable separability between D
and V (A-4) holds.

For the proof, see the Appendix.
Measurable separability is a type of rank condition. To see this, consider the

following heuristic argument. Consider a case where the condition is violated at
some point in the interior of the support of (D�V ), that is, h(D)= l(V ). Hence
h(g(Z�V )) = l(V ). Differentiating both sides of this expression with respect
to Z, we obtain ∂h

∂g

∂g

∂Z
= 0. If measurable separability fails, ∂h

∂g
�= 0 and hence

∂g

∂Z
= 0, which means that g does not vary with Z. Note that the conditions in

Theorem 2 are not very restrictive. For example, the conditional support of D
can depend on V and vice versa.

Assignment rule (5) and condition A-2 do not imply measurable separa-
bility (A-4). To show this, we consider two examples where equation (5) and
condition A-2 hold, but D and V are not measurably separable. In the first
example, Z is a discrete random variable. In the second example, g(z� v) is a
discontinuous function of v.

First, suppose Z = 0�1 and suppose that D = g(z� v) = z + v, with V
Unif[0�1]. Then A-4 fails, that is, D and V are not measurably separable.
To see this, let m1(t) = t and let m2(t) = 1[t ≤ 1]t + 1[t > 1](t − 1). Then
m1(V ) = m2(D), but m1 and m2 are not a.s. equal to a constant. Now con-
sider a second example. Suppose that D= g1(z)+ g2(v), where g2(t)= 1[t ≤
0�5]t + 1[t > 0�5](1 + t). Let gmax

1 and gmin
1 denote the maximum and minimum

of the support of the distribution of g1(Z), and suppose that gmax
1 − gmin

1 < 1.
Then A-4 fails, that is, D and V are not measurably separable. To see this, let
m1(t)= 1[t ≤ 0�5], let m2(t)= 1[t ≤ 0�5 + gmax

1 ], and note that m1(V )=m2(D)
but that m1 and m2 do not (a.s.) equal a constant.

Assignment rule (5), condition A-2, and regularity conditions that require Z
to contain a continuous element and that g be continuous in v are sufficient to
imply that measurable separability (A-4) holds. We prove the following theo-
rem.
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THEOREM 3: Suppose that D is determined by equation (5). Suppose that
g(z� v) is a continuous function of v. Suppose that, for any fixed v, the support
of the distribution of g(Z�v) contains an open interval. Then, under assump-
tion A-2, D and V are measurably separated (A-4 holds).

For the proof, see the Appendix.
Note that, for any fixed v, for the support of the distribution of g(Z�v) to

contain an open interval requires that Z contains a continuous element. A suf-
ficient condition for the support of the distribution of g(Z�v) to contain an
open interval is that (a) Z contains an element whose distribution conditional
on the other elements of Z contains an open interval and (b) g is a continuous
monotonic function of that element. Thus, under the conditions of Theorem 3,
V is identified by V = F(D|Z) and both the control function condition A-3
and the rank condition A-4 hold with Ṽ = V .

3.2. Alternative Identification Analyses

A general analysis of identification using the control function assumption
without the polynomial structure is related to the work of Heckman and Vyt-
lacil (2001) on identifying the marginal treatment effect (MTE). That pa-
per considers a binary treatment model, but the analysis may be extended to
the continuous treatment case. Similar approaches for semiparametric models
with a continuous treatment D that is strictly monotonic in V was pursued for
the average structural function (ASF) by Blundell and Powell (2004) and for
the local average response (LAR) by Altonji and Matzkin (2001, 2005). The
derivative of the ASF corresponds to our ATE, and the LAR corresponds to
treatment on the treated.

Most relevant to this note is the analysis of Imbens and Newey (2002, 2007).
They invoked the same structure as we do on the first stage equation for the
endogenous regressor as our assignment mechanism (5) and they also invoked
assumption A-2. The control variate is V , with V identified and with a distri-
bution that can be normalized to be unit uniform. By the same reasoning, we
have E(Yd|D= d�V = v) a�s�= E(Yd|V = v). Furthermore, they assumed that the
support of (D�V ) is the product of the support of the two marginal distribu-
tions, that is, they assumed rectangular support. Their assumption implies that
the conditional support of D given V does not depend on V (and vice versa).
It is stronger than the measurable separability assumption we previously used
to establish identification. From these assumptions it follows that

E(Y |D= d�V = v)=E(Yd|D= d�V = v)=E(Yd|V = v)
and

E(Yd)=
∫
E(Yd|V = v)dF(v)�



1200 FLORENS, HECKMAN, MEGHIR, AND VYTLACIL

Then ϕ(d) = ∫
E(Y |D = d�V = v)dF(v) and is identified. Identification of

ϕ(d) in turn implies identification of �ATE = ∂
∂d
ϕ(d). The rectangular support

condition is needed to replace E(Yd|V = v) by E(Y |D = d�V = v) for all v
in the unconditional support of V in the previous integral. The rectangular
support condition may not be satisfied and, in general, requires a large support
assumption as illustrated by the following example. Suppose D = g1(Z)+ V .
Let G1 denote the support (Supp) of the distribution of g1(Z). If Z and V are
independent, then

Supp(V |D= d)= Supp(V |g1(Z)+ V = d)
= Supp(V |V = d− g1(Z))= {d− g :g ∈ G1}�

where the last equality uses the condition that Z ⊥⊥ V . {d−g :g ∈ G1} does not
depend on d if and only if G1 = 
. For example, if G1 = [a�b], then {d− g :g ∈
G1} = {d − g :g ∈ [a�b]} = [d − b�d − a], which does not depend on d if and
only if a= −∞ and b= ∞, that is, if and only if G1 = 
.

Instead of imposing E(Yd|D= d�V = v)= E(Yd|V = v), one could instead
impose

∂

∂d
E(Y |D= d�V = v)= E

(
∂

∂d
Yd

∣∣∣D= d�V = v
)

(7)

= E

(
∂

∂d
Yd

∣∣∣V = v
)
�

E( ∂
∂d
Yd|V = v) is the marginal treatment effect of Heckman and Vytlacil

(2001), adapted to the case of a continuous treatment. Instead of integrating
E(Yd|V = v) to obtain ϕ(d), one could instead integrate E( ∂

∂d
Yd|V = v) to

obtain ATE or TT:∫
∂

∂d
E(Y |D= d�V = v)dF(v)

=
∫

∂

∂d
E(Yd|V = v)dF(v)= �ATE(d)�

∫
∂

∂d1
E

(
Yd1 |D= d2� V = v)dF(v|D= d2)

∣∣∣∣
d=d1=d2

=E
(
∂

∂d1
Yd1

∣∣∣D= d2

)∣∣∣∣
d=d1=d2

= ∂

∂d1
E

(
Yd1 |D= d2

)∣∣∣∣
d=d1=d2

= �TT(d)�

This is the identification strategy followed in Heckman and Vytlacil (2001),
adapted to the case where D is a continuous treatment. As discussed in
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Heckman and Vytlacil (2001), a rectangular support condition is required to
integrate up MTE to obtain ATE. Note that one does not require the rectan-
gular support condition to integrate up ∂

∂d
E(Y |D = d�V = v) to obtain TT.

For TT, one only needs to evaluate ∂
∂d
E(Y |D= d�V = v) for v in the support

of V conditional on D= d, not in the unconditional support of V .
While a rectangular support condition is not required to integrate MTE to

recover TT, a support condition is required for equation (7) to hold. That equa-
tion requires that E(Y |D = d�V = v) can be differentiated with respect to d
while keeping v fixed. This property is closely related to measurable separa-
bility between D and V . Assume that there exists a (differentiable) function
of D, h(D) equal (a.s.) to a function of V � m(V ), which is not constant. Then
we obtain

E(Y |D= d�V = v) a�s�= E(Yd|V = v)+ h(d)−m(V )
and

∂

∂d
E(Y |D= d�V = v) a�s�= ∂

∂d
E(Yd|V = v)+ ∂

∂d
h(d)�

which implies that equation (7) is violated. Thus, for TT, we still need measur-
able separability between D and V for equation (7) to hold.

There are trade-offs between the approach presented in this note versus an
approach that identifies MTE/MTE-like objects and then integrates them to
obtain the object of interest. The approach developed here requires a stochas-
tic polynomial structure on UD of equation (2) and higher order differentiabil-
ity. These conditions are not required by Imbens and Newey (2002, 2007) or
Heckman and Vytlacil (2001). The approach of this note does not require the
large support assumption required to implement these alternative approaches.
As shown by Theorem 2, measurable separability between D and V is a rela-
tively mild restriction on the support of (D�V ). As shown by Theorem 3, mea-
surable separability between D and V follows from assignment mechanism (5)
and assumption A-2 combined with a relatively mild regularity condition.

4. ESTIMATION

Under the control function assumption we have

E(Y |D= d�Z = z)= E(Y |D= d�V = v)

= ϕ(d)+
K∑
j=0

djhj(v)�

The method we propose is an extension of Newey, Powell, and Vella (1999)
and may also be viewed as an extension of estimation of additive models in
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a nonparametric context. The estimation is carried out in two steps: first es-
timate the residual vi from the nonparametric regression D = E(D|Z) + V ;
then estimate ϕ and the hj ’s.

Define the estimation criterion

min
ϕ�h0�����hK

E[Y −ϕ− D̃′h(v)]2�(8)

where D̃= [1�D�D2� � � � �DK]′ and h= [h0�h1� � � � �hK]′. The first order condi-
tions for the minimization are

E(Y |D= d)= ϕ(d)+ d̃′E(h(V )|D= d)(9)

E(D̃Y |V = v)=E(D̃ϕ(D)|V = v)+E(D̃D̃′|V = v)h�
where d̃ = [1� d� � � � � dK]′.

This linear system in ϕ and h can easily be solved if the conditional expec-
tations are replaced by their estimators (by kernels for example). In that case
it is easily seen that (9) generates a linear system with respect to the ϕ(di) and
the hj(vi) (i = 1� � � � � n; j = 0� � � � �K), and this system may be solved by usual
methods of linear equations. The equations in (9) are then used to compute
ϕ(d) and hj(v) at any point of evaluation. If we only wish to focus attention
on ϕ, the vector h may be eliminated from (9) and we obtain

ϕ(d)− d̃′E
[
E(D̃D̃′−1)E(ϕ(D)|V = v)|D= d]

=E(Y |D= d)− d̃′E
[
E(D̃D̃′−1)E(D̃Y |V = v)|D= d]�

This equation has the form (I − T)ϕ=ψ, where T is, under very general con-
ditions, a compact operator and ψmay be estimated. It is a Fredholm equation
of type II which may be analyzed using the methods in Carrasco, Florens, and
Renault (2007, Sec. 7). The original system (9) is also a Fredholm equation of
type II and both systems generate well posed inverse problems. The asymptotic
theory developed in Carrasco, Florens, and Renault (2007) applies with the ex-
ception that the vi are now estimated. A precise analysis of this approach and
some applications will be developed in future work.

5. CONCLUSIONS

This paper considers the identification and estimation of models with a con-
tinuous endogenous regressor and nonseparable errors when continuous in-
struments are available. We present an identification result using a control
function technique. Our analysis imposes a stochastic, finite order polynomial
restriction on the outcome model, but does not impose a large support assump-
tion.
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APPENDIX: PROOFS OF THEOREMS

PROOF OF THEOREM 1: Suppose that there are two sets of parameters
(ϕ1� r1

K� � � � � r
1
0) and (ϕ2� r2

K� � � � � r
2
0) such that

E(Y |D= d� Ṽ = v)= ϕi(d)+
K∑
k=0

dkrik(v)� i= 1�2�

where the conditional expectation on the left-hand side takes this form as a
result of the control function assumption A-3. Then

[ϕ1(d)−ϕ2(d)] +
K∑
k=0

dk[r1
k(v)− r2

k(v)] = 0�(10)

Given smoothness assumption A-1, this implies

∂K

∂dK
ϕ1(d)− ∂K

∂dK
ϕ2(d)+ (K!)(r1

K(v)− r2
K(v))= 0�

Measurable separability assumption A-4 implies that if any function of d is
equal to a function of v (a.s.) then this must be a constant (a.s.). Hence, r1

K(v)−
r2
K(v) is a constant a.s. Hence,

r1
K(v)− r2

K(v)=E[r1
K(Ṽ )− r2

K(Ṽ )]�
This expression equals zero given our normalization that E(εK)= 0. Hence,

r1
K(v)− r2

K(v)
a�s�= 0�

Considering the (K − 1)st derivative of equation (10), we find that

∂K−1

∂dK−1
ϕ1(d)− ∂K−1

∂dK−1
ϕ2(d)+ (K!)d[r1

K(v)− r2
K(v)]

+ ((K − 1)!)[r1
K−1(v)− r2

K−1(v)] = 0�

We have already shown that r1
K(v)= r2

K(v) and thus

∂(K−1)

∂d(K−1)
ϕ1(d)− ∂(K−1)

∂d(K−1)

∂

∂d
ϕ2(d)+ ((K − 1)!)(r1

K−1(v)− r2
K−1(v))

= 0�

Using the logic of the previous analysis, we can show that r1
K−1(v)−r2

K−1(v)
a�s�= 0.

Iterating this procedure for k = K − 2� � � � �0, it follows that r1
k(v) − r2

k(v)
a�s�=
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0 for all k = 0� � � � �K. Again appealing to equation (10), it follows that
ϕ1(d) − ϕ2(d)

a�s�= 0 and thus ATE is identified. Using the fact that ϕ1(d) −
ϕ2(d)

a�s�= 0 and r1
k(v) − r2

k(v)
a�s�= 0 for all k = 0� � � � �K, we also have that

∂
∂d
ϕ1 + ∑K

k=1 kd
k−1E[r1

k(v)|d] = ∂
∂d
ϕ2 + ∑K

k=1 kd
k−1E[r2

k(v)|d] = 0 and thus TT
is identified. Q.E.D.

PROOF OF THEOREM 2: Let (d� v) be a point of the interior of the sup-
port S0. LetNd denote a neighborhood of d and letNv denote a neighborhood
of v such that Nd ×Nv is included in S0. The distribution of (D�V ) restricted
to Nd × Nv is equivalent to Lebesgue measure (i.e., has the same null sets).
Then using Theorem 5.2.7 of Florens, Mouchart, and Rolin (1990), (D�V ) re-
stricted to Nd ×Nv are measurably separated. This implies that if within that
neighborhood h(D) a�s�= l(V ), then h(D) and l(V ) are a.s. constants. We need
to show that this is true everywhere in the interior of the support. Consider any
two points (d� v) and (d′� v′) in S0. The theorem will be true if h(d) = h(d′).
As S0 satisfies the property (ii) in the theorem and is open by definition, there
exists a finite number of overlapping open sets with nonempty overlaps, that
is, there exists a finite sequence of neighborhoods Nd

j ×Nv
j , j = 1� � � � � J, such

that each Nd
j × Nv

j ⊂ S0 and Nd
j ∩ Nd

j+1 �= ∅, and similarly for Nv
j . The first

point (d� v) is in Nd
1 × Nv

1 and the second point (d′� v′) is in Nd
J × Nv

J . Take
d1 ∈Nd

1 and in the next overlapping neighborhood d2 ∈Nd
2 . From the previous

result, (D�V ) are measurably separated on Nd
1 ×Nv

1 and on Nd
2 ×Nv

2 . Thus
h(di), i = 1�2, is constant on each and thus constant on the union, implying
h(d1)= h(d2). Iterating in this way along the sequence of neighborhoods until
Nd
J ×Nv

J , it follows that h(d)= h(d′). Hence h(D) is a.s. constant and, because
h(D)

a�s�= l(V ), l(v) is a.s. constant. Q.E.D.

PROOF OF THEOREM 3: Let Z denote the support of the distribution of Z.
Consider any two functions m1 and m2 such that m1(D)=m2(V ) a.s. For (al-
most every (a.e.) FV ) fixed v0, using the assumption that Z and V are inde-
pendent, it follows that m1(g(z� v0))=m2(v0) for a.e. z conditional on V = v0

implies that m1 is (a.s. FZ) constant on {g(z� v0) :z ∈ Z}. Likewise, for a v1

close to v0, we have m1 is constant on {g(z� v1) :z ∈ Z}. Using the fact that
g(z� v) is continuous in v and that {g(z� v) :z ∈ Z} contains an open interval
for any v, we can pick v1 sufficiently close to v0 so that {g(z� v0) :z ∈ Z} and
{g(z� v1) :z ∈ Z} have a nonnegligible intersection, and we thus conclude that
m1 is constant on {g(z� v) :z ∈ Z� v = v0� v1}. Proceeding in this fashion, we
conclude that m1 is (a.s.) constant on {g(z� v) :z ∈ Z� v ∈ [0�1]}, and thus that
m1 is a.s. equal to a constant. Q.E.D.
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