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1 Introduction!

Common economic sense suggests that consumers stock products according to their durability. It is
difficult to imagine that consumers stock durable goods like furniture or cars in anticipation of price
increases while it would be very costly to stock sizeable quantities of perishable goods like butter
or yoghurt for long. This is why the most likely storable goods are semi-durables like beverages,
cans, cereals, office supplies and the like although their storage involves a cost.

Similarly, the rationale of firms for proposing sales or promotions seem to differ according to
the durability of the product. Sales aim at acting on renewal purchases for durable goods or sales
are related to supply side constraints for perishable goods and are likely to be explained by reasons
on the firms’ side (Aguirregabiria, 1999). In contrast, the mechanism on which sellers of semi-
durables may rely is that consumers, when facing promotions or sales, purchase more than usual
and stock the surplus that they would not consume in the current period. In other words, some
firms might poach future demand from other firms at the cost of low current prices. This is the
economic mechanism of intertemporal price discrimination that we model in this paper and that we
apply in an empirical model of long histories of purchases of semi-durables. Specifically, if prices
are low, purchases consist of consumption and stocks and if prices are high, purchases consist of
consumption net of destocking. This implies that own price elasticities estimated in static models
are downward biased (Hendel and Nevo, 2006a).

This paper makes three contributions. First, we aim at developing dynamic structural models
that dispense with the computer intensive dynamic mixed discrete and continuous choice models
(Erdem, Imai and Keane, 2003, Hendel and Nevo, 2006b). Second, following up on Hendel and Nevo
(2013), we seek to integrate demand and supply in a single tractable equilibrium setting. Third, we
estimate the parameters of such a model using purchases of semi-durables such as coca-cola or other
sodas using French scanner data of purchases over a period of two years. Specifically, we provide a
simple estimation method for price elasticities in those dynamic models.

We now return to these contributions in more detail.

The first building block is a structural dynamic model of decisions by (a continuum of) consumers

facing firms with which they interact randomly. The dynamics is generated by the accumulation of
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stocks whose costs are assumed to be iceberg costs. Purchasing one unit of the product delivers a
stock of 1—9 unit only next period. Preferences of consumers are assumed isoelastic and independent
and identically distributed preference shocks across consumers and time are multiplicative. Imposing
that these shocks are bounded from below leads to a very tractable model in which stocks, if any,
are depleted in a single period. We also provide an extension of our basic set-up in which consumers
might also have no taste for the product at some periods. This generates a low decay of stocks over
time. This framework enables us to write analytically consumption, purchases and stockpiling as
functions of current prices and of the marginal value of end-of-period stocks.

Moreover, we use an equilibrium framework which assumes stationarity, mainly because we
cannot observe the level of stocks. Our definition of equilibrium also imposes that at any period ¢,
consumers and firms believe that the support of the distribution of prices at the previous period,
was reduced to two prices, high and low, as in Salop and Stiglitz (1982), and that consumers and
firms expect that the support of prices in the future will also be reduced to these same two prices.
Furthermore, they also believe that the probability of facing a low price at past and future periods
is constant. We derive from these premises the stationary marginal value of stocks and the optimal
level of stocks.

Second, we show that the mixed price strategy consisting of two prices played randomly is indeed
a best response of firms to consumer behavior in period ¢, holding beliefs about the previous and
future periods constant. To keep the set-up simple, firms are assumed to maximize short-run profits
and consumers are assumed to meet them randomly. The two-price solution(s) that we derive is in
this sense, a stationary equilibrium of this game. We prove existence when the consumer discount
factor is close to 1 and when the iceberg cost is close to zero. The region in which equilibria exist is
enlarged if the price elasticity of the product increases and if the distribution of preferences becomes
less dispersed.

Third, we derive an estimable demand model by log-linearization, the equilibrium equations
providing two additional estimating equations. We estimate parameters using a method of moments
estimator under non linear constraints imposed by minimum distance.

We use scanner data on purchases of Coca-Cola of French consumers over 2005-2007. Coca-Cola
is by far the main brand for colas in France. In our sample, it represents almost 84% of sales value
(average over 3 years), more than 66% of quantity market shares and almost 70% of purchases.

Pepsi has only between 6% and 7% market share. We thus focus on Coca Cola sales and estimate



our model controlling for periods of no purchases by households. We show that using the demand
side given by household purchases per week results in a biased estimation of preference parameters.
Using the specification of our model and equilibrium supply conditions, we are able to identify those
preferences and estimate parameters by non linear GMM. Estimation results are quite precise and
show that stockpiling by consumers is significant in this market.

Literature review: Boizot, Robin and Visser (2001) analyze a continuous time model in which
a single good is consumed by a constant amount over time. They derive predictions on durations
since last sales and until next sales (see also Hendel and Nevo, 2006a). Specifically, during sales,
duration until next purchase is longer. Duration elapsed since previous purchase is shorter during
sales. The purchase probability in a non-sale period is smaller after a sale period than after a
non-sale period i.e. prices at t and t — 1 affect demand without any habit formation motive.

These reduced form results which are insightful are completed by several structural analyzes.

Erdem et al. (2003) develop also a mixed discrete and continuous dynamic model under the
assumption that brands are used proportionately to meet some exogenous usage requirement. They
show how to estimate their dynamic model of consumer brand and quantity choice dynamics under
price uncertainty and find that estimates of demand own and crossprice elasticities are very sensitive
to how households form expectations of future prices and to the stochastic price process.

Hendel and Nevo (2006b) develop a mixed discrete and continuous dynamic model in which
quantity and brand choices are separable. Hendel and Nevo (2006b) show that estimating static
demand functions overestimate elasticities by 30% and underestimate cross-price elasticities by a
factor of 5. They also show that the price-cost margin is underestimated and the effect of mergers is
mispredicted. Perrone (2010) also proposes a fully dynamic model with unobserved heterogeneity.
She uses the argument that high-price periods "break" the dynamics by making stocks equal to
zero and shows that price elasticities are overestimated by 10 to 200% using French data.

Hendel and Nevo (2013) were the first to link an empirical demand model in which there are sales
to the pricing policies of firms that justify the existence of sales. In their set-up in which there are
multiple goods, the number of storage periods is fixed arbitrarily with full depreciation after some
time. Consumers perfectly foresight prices either because firms play a two-price strategy or because
firms use pricing cycles. In contrast to our paper, there are no preference shocks although there
is discrimination between price insensitive consumers (non stockers) and price sensitive consumers

(stockers).



Section 2 sets up the consumer side, by deriving first the static conditions for purchases, stocks
and consumption and second the dynamic conditions leading to the determination of the marginal
value of stocks and optimal stockpiling. This leads to a tractable system of expected demands as a
function of previous and current prices. Section 3 derives firms’s strategies in the case profits are
short-run. We also prove that a stationary equilibrium in which all agents coordinate on the same
two-price distribution function exists under some conditions on the discount rate and the cost of
stocking. We also provide extensions to this basic result by allowing consumers to have no taste for
the product at some periods. Section 4 presents a descriptive analysis of our data, the empirical

strategy and the estimation method and the results. Section 5 concludes.

2 Demand Model

Consider a forward looking household or consumer, who can purchase and stockpile a single good
at each period. In this section, we do not index variables by household identity, h. The quantity
purchased at each period ¢ is denoted x; and ¢; denotes the consumption level during the same period.
We denote i;_; the level of stocks at the beginning of period ¢ and assume that the evolution of
stocks satisfies:

ip=(1—=0)it1+2— (1)

in which § is an iceberg cost for stocking (the more durable the good the lower §). The price of
purchases is equal to p;, and the period ¢ consumer utility, depending on consumption and purchases,
is given by

Uy (Ct) — QP

where the household marginal utility of income « is heterogenous across households. The utility
function u, is an increasing and strictly concave function of ¢; and is affected by preference shocks, 7,.
For making the algebra simpler, we assume that it is isoelastic and that heterogeneity in preferences

is multiplicative:

l1—0o
C

Ur (2)

ut(ct) - l1—0

in which o is the relative risk aversion parameter and 0 < o < 1. Preference shocks 7, are distributed
on [ﬂ, +00), where 7 > 0 and are supposed to be independently and identically distributed over

time. Because of the lower positive bound, marginal utility u;(c;) = ¢; 7n, is uniformly bounded



away from zero. Importantly, we shall analyze in an extension later on, the case in which households
can have no taste for the product, n, = 0, with a strictly positive probability.
The intertemporal consumer objective at time t consists in the following expected discounted
utility
EY 57 ur(er) — apray]

in which ( is the discount rate.

Within a period ¢, the timing of the game between consumers and firms is the following;:

1. The consumer starts with a stock of (1 — §)i;_; inherited from the previous period.
2. Stores (or firms) set prices, p;.
3. Consumer chooses store and discovers price p; in this store.

4. Consumer possibly purchases, x;.

(S8

. Given previous stocks and purchases, the household consumes, ¢; and stocks ;.

In this section, we take the price setting by firms as given and study the reaction function
of consumers to prices. We nonetheless have to be more precise about the dynamics of prices if
consumers (and firms) rationally expect price dynamics.

For simplicity, we assume first that each consumer chooses the store at which he does all his
purchases independently of the particular product we look at or that this product is "small" among
all products. His choice of store is thus independent of prices p;. Second, we assume that the store
choice is independent over time.? We further strengthen these conditions by assuming that they
are common knowledge.

The consequences are that prices that the consumer faces at each period are independent over
time. Indeed, denoting F; the store choice at time ¢ by the consumer, the conditional probability

distribution of prices that each consumer faces is equal to :

Pr(pp < plp) = fo, Pr(p <p, Fy=f, Fioa = [ | 1)
= fo, Prip <p|F =f Fii = f o) Pr(F = f | Fioy = /i p1) Pr(Fiea = ' | pi1)

= >, Pl <p| B= )P(F = ) Pr(Fia = £ o),

2This is a stronger assumption whose relaxation is left for future research.
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because (i) the store choice of consumers is independent over time, Pr(F, = f | F;_1 = f',pi1) =
Pr(F, = f) (#i) firm f knows that store choices by consumers are independent over time and set
prices independently of previous choices and prices Pr(p; < p | F, = f,Fi_1 = f',pi—1) = Pr(py <
p | Fy = f). This implies that:

Pr(pp < plp1) = Zf Pr(p, <p| Fy = f) Pr(F; = f) Zf, Pr(Fii = f| pi1),
= Zf Pr(p, <p| Fi = f)Pr(F; = f) = Pr(p: < p).

2.1 Bellman and optimality equations

As consumers believe that all future uncertainty related to prices, p;ix, and preferences, 7, is
independent over time, the only state variable is the level of stocks, (1 — §)i;—; inherited at the
beginning of each period ¢. The maximization of the expected discounted utility can thus be
written as the solution to the following Bellman equation:

Wi(ii—1) = max {u; (¢;) — apyry + PEWi1(3) } (3)

Ct,Tt

subject to equation (1) and positivity constraints, i; > 0, z; > 0, where we use the notation E; [.] for
the expectation operator with respect to future prices and preference shocks and conditional on the
information available at period t. Assume that W, (i) is an increasing and concave differentiable
function of its first argument. We shall prove in Appendix A.6 after deriving the necessary conditions
that our setting entails that W;(i;_;) is also an increasing and concave differentiable function.

Define the expected marginal value of stocks A; (i;) at the end of period t as:

WO LUO)

Jiy

It is a non-increasing function of i, because of the concavity of W, in its first argument.?®

The first order conditions of program (3) are:

{ uy (¢p) = At (i) + gy (4)
apy = A (Zt) + py + 0y,

3We will also assume that :
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in which g, (resp. 1,) is the Lagrange multiplier associated to constraint i; > 0 (resp. z; > 0).

Furthermore, dynamic optimality yields an Euler-type equation:

Ae(ie) = B(1 — 6)By [Agr (i) + fr41] - (5)

In order to solve this consumer problem, we will first study the static necessary conditions
of optimality and characterize optimal purchase and stock decisions of the consumer given the
endogenous marginal value \; (i;). We then turn to the dynamic optimality condition (5) and

impose stationarity on this dynamic decision process.

2.2 Static Necessary Conditions at Period ¢

Using the static necessary conditions of optimal consumer behavior expressed in equation (4), we
can derive optimal purchase and consumption behavior at each period, depending on price, stocks
and on the shape of the marginal value of stocks function. Denoting the inverse marginal utility

w7 (m) = (m/n,)"+, we summarize these results in the following proposition,

Proposition 1 At a given period t, optimal stocks i}, consumption c; and purchase xf will depend

on current stocks i;_1, the marginal value function of stocks, A\(i;) and price p; as follows:
o If N\(0) <apy <ujy((1—0)i_1) then

v =uy " (ap) — (1= 0)is

c; = u;" (ap) (La)
it =0
o If \(0) <wup((1—0)iz—1) < ap: then
x; =0
= (1— )i (ILa)
it =0

o If ap; < A\(0) and ap; < M(max {(1 — &) i,—1 — ui”' (ap;),0} then

x; =uy " (apy) + i — (1= 6)iy
¢ =u (apr) (Lb)
iy > 0 solution of A\(i}) = ap;



o If uj ((1—8)ir—1) < Ae(0) and A\ (0) > Ap(max {(1 — &)ir_1 —uy " (ap:),0}) then
x; =0
¢ = (1= 8)i1 — i (ILb)

iy > 0 solution of wy (1 — 8)iz—1 — 7)) = A\e(3f)

Proof. See Appendix A.1. Note that the solution i; might not be unique depending on the

strict monotonicity of A;(i;), itself an endogenous object. m
The different cases are summarized in Figure 1.

Figure 1: Choice space

A(0)
2t >0l 21 =0
Regime (I.b) /
/ Regime (/1.b)
Ty = u;_l,(cfpt)))—i_ if — (1 —6)ig /
¢ =uy ap; xy =0
iy >0: M\(3}) = ap / ;=1 —06)i—1— i}
[ O i ) = M)
1y >0 T /
WP =0 |
Regime (/.a) |
Regime (/1.a)
=t (apf) - (1 —10)it1 |
c; =uy (apy) | x; =0
i =0 =i
iy =0
‘ t
|

(1 —98)is
In regime (I.a), previous stocks are fully used for consumption and in addition purchases are
made so that the marginal utility of consumption equals its price (up to the marginal value of
money) although no stocks are constituted because their marginal value (A;(0)) is lower than the

marginal value of purchasing at the current product price. The absence of stocking is also true
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in regime (II.a) although purchases are now equal to zero and previous stocks are fully consumed
because the marginal value of stocks and prices are too high. In contrast, regime (I.b) exhibits
positive stocks and positive purchases because the marginal value of stocks is high and previous
stocks are low. Finally, Regime (IL.b) corresponds to another "autarkic" case as regime (Il.a) in
which consumers do not purchase and consume only out of their previous stocks. In a sense that
will be made precise later, previous stocks are too large in this regime.

We now turn to the determination of the marginal value of stocks, A (i;), which is determined

by the dynamic optimality equation (5).

2.3 Stationarity and Consumer Dynamic Choices
2.3.1 Firm decision process and stationarity conditions

For simplicity, we assume that firms maximize static conditions only and that firms’ marginal costs
in a period are constant over time and equal to x. Because we cannot observe stocks that consumers
make and only their purchases, we proceed by imposing stationary conditions on consumer and firm

decisions.

Definition 1 Consumer decisions are stationary if the distribution function of (¢, i, x;) conditional
on i;_1 and p; 1s independent of time and firm decisions are stationary if the distribution of prices

18 independent of time.

We further restrict the set of equilibria on which consumers and firms are coordinating. Since
profits should be non negative, this restricts the set of prices that firms choose to be such that
pi > k. Salop and Stiglitz (1982) show in a simpler but similar model that firms have never an
interest in using more than a two point distribution of prices. From now on, we will assume that
agents coordinate their expectations on the belief that the stationary price distribution is {pr, py}
in which p; < py and that the probability that p; is played is denoted 7.

We shall adopt the following definition of an equilibrium:

Definition 2 {p.,py, 7} is an equilibrium if decisions are stationary and:
(1) Given that {pr,py, 7} was played at period t — 1 and holding their expectations of future
prices fized and equal to {pr,pu, 7}, consumers play their best responses, xi(p:), ¢i(pt) and i*(p;)

to prices p; set by firms at period t.

10



(2) Given that {pr,py,7} was played at period t — 1 and holding their expectations of future
prices fixred and equal to {pr,pv, T}, mazimizing profit firms set their best response at period t as

equal to the mized strategy in {pr,pu} in which py, is played with probability .

We now derive the conditions that need to be satisfied and show that there exists a non empty
set of parameters such that the two-point price distribution is indeed an equilibrium. It does not
mean that other equilibria or types of equilibria do not exist.

In summary, in order to derive the out-of-equilibrium behavior of consumers, we derive demands
at period ¢ when consumers believe that {p;, py, 7} was played at period ¢ —1 and hold expectations

of future prices fixed and equal to {pr, py, 7}.

2.3.2 The existence of stocks

In the various period t regimes described in Section 2.2, a pivotal quantity at any given period ¢ is
the marginal value of stocks when stocks are zero, \;(0), the current price being p;. At a stationary

equilibrium, the marginal value of stocks function );(.) does not depend on time and we have:

The next Lemma relates this quantity to the expectation of future price which is also independent

of time.

Lemma 1 We have:

A0) = B(1 = 0)aE(p+1). (6)

Proof. We want to evaluate the marginal value \; = A(0) at the values 7; = 0. Static conditions
above imply that purchases at period ¢ + 1, x;, 1, are positive since stocks i; at the beginning of the
period are zero and thus the multiplier associated to positive purchase, 1,,; = 0. Therefore by the
second equation in (4):

At41 + 1 = QOPria

so that equation (6) holds because of the Euler equation (5). m
Lemma 1 says that at any given period, the marginal value of stocks when the consumer has
no stock is equal to the discounted expected future price times the marginal utility of income times

the rate of conservation of stocks.
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We will denote, p®, the expected price at the stationary equilibrium which is equal to the

weighted combination of low and high prices in which the weight is :

p" = E(p1) = mpr + (1 — 7)pu,

since consumers’ and firms’ beliefs are coordinated on this equilibrium.

Conditions in Proposition 1 show that if stocks i,_; are zero, whether case (I.a) in which no
stocks are made or case (I.b) in which some stocks are made applies, depends on the condition that
the marginal utility of one unit purchase at current price, ap,, is larger or smaller than the marginal
value of stocks when they are zero, A(0). Using the marginal value of zero stock given by Lemma

1, we obtain the following Lemma:

Lemma 2 We have the two following properties:

A0) < apy

bL

AO) < app iff 6 >1— .
(0) L iff B

Proof. Using Lemma 1 yields that:

A0) = B(1 = 0)aB(pi1) < B(1 = 6)apy < apy,

since (1 — §) < 1. In contrast, the difference between A(0) and ap; depends on the parameters
and using Lemma 1:
A0) —apr =61 —6)ap® —ap, <0

pL

-9 :
< (1 )<[5’pa

Lemma 2 states that when the price is at its upper bound, py, the marginal value of stocks
when the consumer holds no stocks is always lower than the marginal utility of buying one unit of
the good. This implies that the consumer never increases the level of stocks when prices are high.
When the price is at its lower bound py, the marginal value of stocks when the consumer holds no
stocks is always lower than the marginal utility of buying one unit of the good if and only if the

iceberg cost of stocks, ¢, is too high i.e. greater than a threshold which is a function of the discount

12



factor and the distribution of prices (which is endogenous). If this condition holds, this would imply
that the agent would always be in the static condition (I.a) if 4;_; is close to zero so that a no stock
stationary equilibrium arises.

This benchmark case is summarized in the next proposition:

Proposition 2 If§ € (1 — é’lfa, 1] then at the stationary equilibrium there are no stocks, purchase
equals consumption and:

Vt, iy =0, ¢ =z =u " (ap,).

Proof. See Appendix A.2 m

The economic interpretation of Proposition 2 is simple. In spite of fluctuation of prices, the cost
of stocking is too high or prices are not differentiated enough to make stocks valuable. In this case,
the consumer always prefers not to stock and purchases the optimal consumption level. It is true
this condition depends on endogenous prices p;, and py that are determined below but it anticipates
the result that the two-price equilibrium exists if the cost, §, is not too large or the discount rate,

3, is not too low.

2.3.3 The stationary distribution of stocks

We now continue with the more interesting case in which the cost of stocks is not too high so that
consumers may prefer to hold stocks. The optimal purchase and stock decisions of the consumer

will depend on the price process. We thus maintain the assumption from now on that:
Condition E(xistence of stocks): pr < B(1—9)p”.

and will check below that it holds given the deep parameters.
In the following, we will use a function that summarizes the distribution function of preference

shocks as:

f(a) =E([n,a — 1] 1{n,a — 1 < 0}) for a > 0,
whose properties are given by:

Lemma 3 Function f(.) is continuous, increasing, concave and such that:

fla) < 07liir[1]f(a) =—1 and f(a) =0 fora >

S| =

13



It is differentiable almost everywhere, its derivative is CADLAG* and f'(0) = 1. Furthermore, right

derivatives are such that:

Moreover, f~Y(a) exists everywhere for a < + and f~1(0) is the set [%, 00).

Proof. The first properties are straightforward by applying the definition of f(a). Differentia-
bility holds at all points at which the density of 7 is not a mass point. At all points the right

derivative is:

a) = Eln1{n, < ),

and this is why f’(a) inherits the CADLAG property from distribution functions. It is positive
whenever a < % At the points of differentiability, f”(a) < 0 and f is concave. =

In the follo;ving, we focus our analysis on the case in which stocks deplete quickly in a single
period.” It is interesting that this stems from a primitive condition on the distribution of preferences
and the bound, 7, described in the following Proposition. Denoting, i(p;), the stationary value of
stocks whose expression will be derived below, the following necessary conditions on the optimal

purchase, consumption and stockpiling decisions:

Proposition 3 Under Condition E that p;, < (1 — §)p®, and under the condition that:

n = B —=0)apa((1 —0)i(k))7, (7)

in which 1 1s the lower bound for preferences and r the marginal cost, we necessarily have, at a

stationary equilibrium indezed by p®, that:

(1) If pr > B(1 = 6)p" and n, > %,

Ct = U;_l (Oépt> 5 Ty = C — (]. — 5)2.15_1, Z.t =0.

.. . a A a
(ii) Else if p; > (1 — 6)p* and n, € [((175)5?31),0, e

Tty = 0, Ct = (]_ - 5)it—17 Z.t = 0.

4CADLAG or RCLL for Right Continuous with Left Limits.

’The general case is significantly more involved and although interesting, is left for future research. Insights
derived from this restricted case are already quite rich as further extensions of our set up to the case in which
consumers could have no taste for the product are proved below.
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(ii1) Else if k < py < (1 —0)p*:
Ty = u;_l (apy) +i(pe) — (L= 0)ig—1, ¢ = ui_l (ap), iy =1i(p) = A7t (apy) -

Furthermore, if p, = 5(1 — 0)p®, the consumer is indifferent between the strategies defined in

cases (i) and (iii) above.

Proof. See Appendix A.3

Proposition 3 shows that the condition E for consumers to stock is satisfied and preference
shocks have a lower bound that is not too small, the consumers will not hold stocks at the end of
the period if the current price is larger that the discounted expected future price and will purchase
if and only if the preference shock is large enough given current stocks and price. In this condition
of high price, the consumers will consume to equalize marginal utility of consumption with marginal
value of purchases if the preference shock is not too low, and will consume the stock if the preference
shocks is too low given current price and stocks. If the price is lower than the expected discounted
future price, the consumers will hold optimal stocks at the end of the period, consume to equalize
marginal utility of consumption with marginal value of purchases and purchase to replete optimal

stocks given the current price. m

2.3.4 The marginal value of stocks and the optimal stocks

Proposition 3 enables us to derive the marginal value of stocks, A(i;) using equation (5):

Lemma 4
((1—d)ir) "

A = M0) + B(1L = d)apy (=

),

Proof. See Appendix A4 m

Some characteristics of this marginal value function are worth noting. First, as f(a) = 0 for
any a > %, A(i¢) is constant and equal to A(0) over the range [0,i?) = ﬁ(a’%)_é]. Second,
as f(.) is; negative continuous function and strictly increasing when a < %, /\7(zt) is a strictly
decreasing continuous function when i, > (%), Finally, because f(0) = —1, and )?(O) = [B(1-0)ap” <
B(1 = §)apy, A(i;) is negative when i; tends to oo. Therefore, this function satisfies the postulated

conditions for the value function and solutions to equation A(i;) = ap; exist.

In particular, the optimal solution for i(p;) in Proposition 3 is obtained as:

15



Lemma 5

1—4 pu
= 0 when p, > (1 —0)p®

i) = #[amfl (u)] " when py < B(1— o) (8)

Moreover, if p, = B(1 — §)p®, the consumer is indifferent between any values belonging in the range

0, 15 (222)73)

Proof. See Appendix A.5. m

As f~1 is increasing, the optimal stock is decreasing in prices when p; < B(1 — 6)p® and a
continuous function of prices except at the value p, = S(1 — 0)p® at which it has a jump downward
towards i(p;) = 0 for p, < B(1 — §)p*. We delay the discussion of the variation of this function
as a function of § or prices, p* and py since the latter are endogenous and decided by the firm.
Before analyzing firm decisions, we finish this section by stating the purchase equations that are

anticipated and used by the firms to compute their optimal decisions.

2.3.5 Expected purchases

As the equilibrium played at the previous period ¢ — 1 is supposed to be a two-point distribution
function for prices, whose support is {pr, pr}, stocks inherited from the previous period, can only
take two values, 0 and i(py) , when p;, < 5(1—0)p® as defined by equation (8). When p;, = B(1-4)p?,
however, the consumer is indifferent between a range of values defined in Lemma 5 and can play
mixed strategies. We will assume that there exists a parameter p that indexes the mean optimal

stock in the population and therefore :6

1

000 = o) = 1 omo £ 0)] F = L5 [222) )

6 Another way to justify the existence of p is to assume that f~1(0) can take any value in [%}, +00) that is % for

any p € [0,1].
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Purchases at equilibrium and off-equilibrium, which matter for firms’ price strategies, are thus

given as a corollary to Proposition 3 by:

( Tt (pprt) = { U’;f_lgapf) - Oépt_%nt% lf be ~ ﬁ(l ) 5)])@,
ap; ;’77{1’ +i(py)  if py < B(1—9)p”
ap, "¢ — (1 =0)i(pr) i pe > B(1 = 8)p* and n, > =gry=s, (10)
¢ (pr,pe) = 0 if pr > Bl —8)p® and n, < rty7
\ ap, 0 +i(p) — (1= 0)i(pr)  if py < (1 —0)p*.

3 Supply and stationary equilibrium

We now turn to the study of firm pricing when consumers can stockpile as determined in Section 2.
The resulting firm price strategy has two points of support and choose {pr, pr} and the probability,
m, of playing pr. Salop and Stiglitz (1982) show in a simpler but similar model that firms have
never an interest in using more than a two points distribution of prices. We exhibit conditions

under which a two-point of support distribution is an equilibrium of the game.

3.1 Firm decisions and equilibrium

We assume that expectations are common across firms and consumers, and thus that the expected
price in the market at time ¢ + 1 is p*, the weighted combination of p; and py. We also have that
7 = Pr(p;—1 < (1 —0)p”) is the probability perceived by firms that the consumer was facing a low
price at the previous period.

As firms face many consumers, we suppose that firms integrate out the consumer specific para-
meters, «, their marginal value of money and 7,, their preference shocks, as if firms were facing a
continuum of consumers. This integration is summarized by new parameters, k = E(a’i)E(ni/ 7

1/c
and v= E(HTG) < 1 in which integration is supposed to be taken over the continuum of households.
Mt

The following necessary conditions on the reaction function by the firms are:

Lemma 6 When the firm chooses to set high prices, py, we have that:

K

(11)

T )
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and her expected profits is:

M(py) = k(1 — ) [py — &) (pv) "7 [1 — wpu],

When the firm chooses to set low prices, pr,, we have that:

pr =Bl —o)p* (12)

and:
1 1 1

M(pr) = k(pL — k) |pp” + (m — m)pupy”

Proof. See Appendix B.1. =

Some comments are in order. First the low price is the minimal price at which consumers stock.
This is due to the fact that a further lowering of prices would only affect stocks at the second
order while affecting profits by a first order term. Second, the upper price, py, is NOT the price

maximizing the corresponding profit function since there are dynamic externalities that imply that

K
the price is lower than the static monopoly price, . The second element of the low price profit
-0

1
function describes these dynamic externalities due to stocking behavior and the weighting of the
upper profit function by the factor (1 — 7) is another consequence.

In Definition 2, we defined a price dispersed stationary equilibrium as the set of (7, pr, pr) which

solve equations (11), (12) and equalize profits at the two prices:

(pr) = (p)- (13)

It is rather straightforward to show that all quantities are homogenous in prices and we can thus

redefine the equilibrium in terms of the two quantities (, 5_5)' We obtain the following proposition:

Proposition 4 There exists a neighborhood of (5,6) = (1,0) in which there exists a mized strategy
equilibrium (, 5—5). It is defined by the two supply equations:

(B — (1=t ampu)) | (B2)7 + (5 = mp| = o1 = mpf’ (14)
prL _ 7Tp_L .
P — B(1 = d)(rl + (1= m) (15)
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Proof. See Appendix B.2 =
Lemma 6 also leads to new expressions for demands. As prices in {py,py} only are played, we

have:
¢ 11

ry (pu,pu) = OépU;’m;’

z (pu,prL) = 041725771?71 ‘f‘li(pL)

apyng — (1 =20)i(pr) ifn, > W
0 ifn < Tty

(7t (pr,pL) = app 707 + 0i(pL).

zy (pr,pu) =

Furthermore, using:

al=

ipe) = 755007

and noting that the condition for the third equation writes 7, > pn which is true by construction,

the fourth equation never applies and we end up with:

( _1 1
z (pu,pu) = f:flgale) = apy Ny,
zi (pu,pL) = ap, 0 + 155(%54) 7,
11 oo L (16)
e (pr,pu) = apy”ni — p(554) "7,
1 = a1
& (pL,pr) = appny +5ﬁ(%) 7.

3.2 Extension

The previous results make the assumption that consumers purchase at any period and this is far
from true in the empirical application that we analyze below. This is why we now extend the set-up
above to the case in which we allow consumers to have no tastes for the product in period ¢ so that
n, = 0 with probability w while with probability 1 — w they have preferences 1, >n as above. The
derivations in this case are very close to what was obtained before and we summarize these results

as:

1

Proposition 5 Denote 0(7) = 75775

The upper price is now given by:

K
U= T o — nb(m)pr)”
and the two supply equations by:
br pr 1 . 2
(2= (1= +omf(m)pw)) |(1—w)(~2) 77 + (— — m(m)pr| = (1 - w)o(l - 7prd(r))
bu Pu 1—96



and

(1—B(1—d)w(l - 7r>>jj—§ — (1 - 6><7r§—§ +(1—m)(1-w)),

Proof. See Appendix B.3 =

This is this form of the model to which we now turn and estimate using purchase data.

4 Empirical analysis

4.1 Data and Descriptive Statistics

The data on purchases we are using, are from the Kantar World Panel in France over the period
January 2005 to December 2007. For each household we observe purchases of food items made
and brought into the home. Those purchases are by definition made for future consumption either
before the next purchase decision or after the next purchase in which case it means the consumer
is stockpiling. We observe neither consumption nor stockpiling but purchases only. Very detailed
information on each item purchased at the bar code level provides us with exact characteristics
such as price, brand, pack size and the retailer chain where the item was purchased. We also have
information on the demographic composition of households and their location. These data are
similar to the US data used by Hendel and Nevo (2006a, 2006b).

We analyze the household purchase behavior of Coca Cola ("Coke") only, as it is the most
popular soft drink in France. We first present descriptive statistics about the market for cola soft
drinks. As shown in Table 1 below, Coke is by far the main brand for colas in France. In our sample,
it represents almost 84% of sales value (averaged over 3 years), more than 66% of market shares in

volume and almost 70% of purchases. Pepsi’s market share is between 6% and 7% only.

Table 1: Cola Soft Drinks Market Shares

Manufacturer Value Quantity Purchase
Market Share Market Share Frequency
Coca-cola company 83.9% 66.2% 69.5%
Pepsico Inc. 6.3% 7.3% 6.0%
Lidl (Hard Discount Brand) 2.9% 9.7% 6.4%
Leclerc (Store Brand) 1.3% 2.8% 3.3%
Other brands 5.5% 14.0% 14.8%

During the three years of data, we observe the exhaustive purchases of soft drinks of 11 183

households. Looking at cola soft drinks purchases, as seen in Table 1, the two main brands are

20



Coca-Cola and Pepsi but Coca-Cola is much more dominant. Moreover, brand preference seems
quite strong and very few consumers seem to substitute one with another. Actually, among the
11,183 households surveyed in these home scan data, 9,509 never bought any Pepsi while only 541
never bought any Coke, and only 1,496 households bought at least once of each brand during the
three year period of study. If one considers shorter periods than the full three years of data, the
overlap between Coke and Pepsi consumers is even smaller.

We define in our model below the standard purchase period as a week as most households
purchase food items in supermarkets once a week. Looking at weekly purchases presented in Table
2, only 0.26% of households purchase both Coke and Pepsi during the same week while the purchase
frequency of Coke only is 12.45% and the one for Pepsi only is 0.77%. Moreover, the transition
probabilities between Coke and Pepsi in successive weeks reported in Table 2 show that very few
consumers switch from Coke to Pepsi (0.06%) or from Pepsi to Coke (0.05%). Substitution between

these two main brands of cola soft drinks seems very weak among French consumers.

Table 2: Brand Purchase Transition Matrix

Transitions Week ¢t

Week t — 1 None Pepsi Coke Coke&Pepsi Total
None 77.78% 0.60%  8.46% 0.11% 86.96%
Pepsi 0.62% 0.23%  0.05% 0.01% 0.91%
Coke 8.45% 0.06%  3.40% 0.04% 11.94%
Coke&Pepsi  0.12% 0.01%  0.04% 0.02%  0.19%
Total 86.97% 0.90% 11.95% 0.26% 100%

We thus consider purchases of Coke only as it seems a market by itself. Of course different
packages exist with different pack sizes and different pack types (mostly cans or bottles). Bottles
account for 78% of purchases and have quite a different average unit price. The mean price per liter
of cans is almost 20% higher than the mean price of bottles and the distributions of price per liter
of cans and bottles hardly overlap. The 75% percentile of the price of bottles of Coke is below the
5% percentile of the price of cans.

Table 3 reports the transition matrix between purchases of bottles or cans. The transition
between purchases in cans and in bottle is very low. For example, if a can of coke was bought in
week t, the probability to buy a bottle of Coke the following week is equal to 4.3% only while the
probability of buying a can again is equal to 15%. The odds ratio of buying a can versus a bottle

in ¢ while buying a bottle in ¢t — 1 is very low (0.05). These descriptive statistics led us to consider
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that the markets for bottles and cans are different enough and for simplicity we do not consider

cans in our demand model.

Table 3: Pack Type Transition Matrix of Coke weekly purchases

Transitions Week t

Week t — 1 None Bottle Can Bottle+Can Total
None 75.60%  7.51% 2.56% 0.26%  85.93%
Bottle 751%  2.75% 0.14% 0.07%  10.47%
Can 2.57%  0.14% 0.48% 0.04% 3.21%
Bottle+Can  0.26%  0.06% 0.04% 0.03% 0.39%
Total 85.93% 10.46% 3.22% 0.39% 100.00%

As bottles of 1.5 liters and 2 liters have similar price distributions while bottles of 0.5 liter have
much higher prices (even higher than cans) and a small market share, we also consider bottles of
1.5 liters and 2 liters only. They constitute the bulk of the market by accounting for 77% purchases
and almost 88% of total volume sold in bottles.

We can now turn to descriptive statistics about households weekly purchases of bottles of 1.5
and 2 liters. Table 4 below reports summaries of the distribution of weekly quantities purchased
(in liters) conditional on purchase among all households from 2005 to 2007. It shows that half of
the sample bought less than two bottles of 1.5 liters although the distribution is very skewed to the
right because the 75" percentile is equal to 6 liters and the 90 percentile to almost 10 liters. Given
that the frequency of purchase is equal to 15.7% over the period, it shows that purchases are very
far from constant. This empirical fact seems to indicate that consumers don’t buy for immediate

consumption only and steers us towards modelling the stockpiling behavior of households.

Table 4: Descriptive Statistics

Quantile 1% 5% 10% 25% 50% 75% 90% 95% 99%
Quantity purchased 1.5 15 1.5 1.65 3 6 9.72 11.5 20
(liters/week, if any purchase)

Price per liter 0.66 0.68 0.70 0.76 0.81 0.84 0.86 0.87 0.91
Price per liter” 0.66 0.73 0.75 0.78 0.81 0.83 0.85 0.86 0.88

As our data come from home scans, we exhaustively observe household purchases but of course,
we don’t observe prices when households do not purchase. From the model, we infer that prices are

likely to be high when households do not purchase. For the sake of roughly correcting the distortion

"Prices are imputed in week ¢ when the household does not purchase and the procedure is described in the text.
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in the price distribution because of missing prices, we first implement an approximate imputation
of unobserved prices although we will take into account this issue of unobservability, in a more
sophisticated way, in our econometric estimates.

The imputation procedure goes as follows. We consider the 90" percentile of observed transac-
tion prices by municipality and week and we do an analysis-of-variance having additive week and
municipality effects. Imputed prices when missing are equal to the resulting predicted prices. The
next graph displays the distribution of prices. It has several modes that are partly due to regional

variation.

Distribution of transaction prices

.65 a .85 9

75 8
price per liter

Graph 1: Distribution of prices per liter

Zooming in at the municipality, region or supermarket level, we find evidence of a discrete distri-
bution of prices that seems to have a two-point support. Graph 2, displaying the price distribution
in a given city, shows that the price distribution has several mass points that seem to change over
time. These mass points correspond to different supermarket chains. However, looking at Graph
3 in which the price distribution over time within a given supermarket chain but across a whole
region, there are less mass points but still more than two. This is evidence that supermarket chains
also change the distribution of prices across their stores in different cities. This can reflect different
demand characteristics but probably mainly different cost shifters correlated with the location of

stores.
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Graph 2: Transaction prices and imputed high prices within a city

Within a region - supermarket chain

= —
<4 — = -, —_—
[=3
= | .
P, LRI - S
= - . - EE
[ . . *
= . Py
=
(=g
01jan2005 01jan2006 01jan2007 01jan20C

Date

+ Transaction price - High price|

Graph 3: Transaction prices and imputed high prices within a region - supermarket chain

Finally, Graph 4 displays the distribution of prices for two supermarket chains and cities. It
shows that the distribution of prices has fewer mass points and restricting to few months periods,
gives evidence of a two point pattern. This evidence is consistent with our model showing that for

a given cost firms choose optimally two points of support for the price of Coke.
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Graph 4: Transaction prices and imputed high prices within a city - supermarket chain for two chains
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For our first descriptive purpose, we look at the transition matrix of prices between two successive
weeks and at the conditional purchase behavior of households. Table 5 reports the transition matrix
by deciles of deviations from the city-week average of prices. While the diagonal of the transition

matrix by deciles somewhat dominates off-diagonal cells, it is far from being a diagonal matrix.

Table 5: Transition matrix of price deciles

Price Decile Price Decile (week t)
(weekt—1) 1 2 3 4 5 6 7 8 9 10
1 225 1.11 081 0.68 0.75 0.67 0.71 0.92 0.92 1.05
2 1.16 2.07 1.00 0.63 0.60 0.64 0.61 1.07 1.20 1.07
3 079 093 133 1.06 1.03 1.01 1.04 1.16 0.90 0.79
4 069 066 1.02 156 140 1.43 145 0.56 0.56 0.68
5 0.72 067 097 146 154 1.44 1.45 0.60 0.53 0.64
6
7
8
9

0.68 0.68 1.03 1.43 142 156 143 0.60 0.56 0.65
0.70 0.61 1.04 143 148 142 153 0.63 0.51 0.69
0.88 1.13 1.15 0.60 0.58 0.63 0.61 2.10 1.43 0.90
097 1.15 090 0.52 0.57 0.54 0.53 1.35 2.09 1.37
10 1.04 1.02 0.80 0.66 0.67 0.68 0.67 1.02 1.30 2.09

Note: Each cell denotes the percentage probability of the transition between the row decile to the column decile

of deviations of prices from their city-week average.

We then analyze the purchase decisions of households depending on the level of prices in the
low and high states. For the sake of robustness, we use various definitions. First, we define the
high (respectively low) state as observing a price above (resp. below) the 90" percentile that the
household is ever paying during the three years of data (definition (i) in Table 6). Second, the
high state can be defined as when the price paid is higher than the 95" percentile of prices by city
(definition (77) in Table 6). Finally, we use a third definition where after regressing log prices on
week fixed effects, we define the high state as a price above the predicted average price plus 0.77%8
(definition (i77) in Table 6).

8This parameter denoted x is estimated by our econometric procedure presented below and leads to a 87%
probability that the price is high in a given week.
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Table 6: Transition matrix of prices and conditional purchases
(with two consecutive purchases)

Current state
State Lagged Low High
definition state Quantity  Obs.  Quantity Obs.

(7)

Low 514 27,800  4.12 9,697

High 529 2,657  3.74 2,715
(i)

Low 496 38482  3.57 2,762

High 4.93 586 3.36 1,129
(iid)

Low 473 25381  4.49 9,626

High 6.20 4,138  4.88 3,854

Notes: Quantity is in liters per week. The quantity column is the average quantity purchased in liters.

Table 6 is obtained on the selected sample of households-weeks where the household purchased
in two consecutive weeks. Interestingly, we can see that the quantity purchased in case of low state
is higher than in the case of high state whatever the past state and moreover that it is higher if the
past state was high than when the past state was low. This is consistent with the prediction that

households need to replete their stocks.

4.2 FEconometric estimation

We start by adding measurement errors, exp(§,), in the system of purchases described by equation
(16):

11
¢ (pu, pu) = OépUUm’ eXp(&:)

1

(pUapL (apL nt — ( n ) U) eXp(£t)7
(
(

Tt )
zy (pr,pL) = (OépL 77t +5
)=

()4 exp(e)

=’
| % (pr,pv) = (apy” n ol W)~z ) exp(£y).

We also log-linearize this system of equations and the result is described as:

1
no

1
Lemma 7 Setting v= , and & = =222 4 In(E(n7)), we obtain

1
o

E(Wt )
Inz; (py,pu) = & — Llnpy + "%,
I, (py,pr) =& — 2Inpy +In |1+ 25(2)7 pv| + €Y,
In; (pr,pr) = & — ;Inpy +1In |1+ 12%5(2- )ipz + e,
Inz; (pr,pr) =& — ; Inpy +In(1 - pV) +e ).
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in which eg') are defined in the proof.

Proof. See Appendix C.1. =

4.2.1 Using demand equations

We consider the extension of our model with zero taste shocks defined in Section 3.2. As determined
in equations (B.38) and (B.39) in the Appendix, it allows us to obtain the following log linearized

demand system for households purchases that we now index by h and ¢, and where arguments are

the history of prices from current week to the last previous week with purchase and observed price:’

~ 1 (vu)
m ap — =Inpy + € , wp. 1—w
, D 7pU) = { " 7 bu hi P

—00 wW.p. w

Inzp (po, p™, .

&, —<lnp, +1n [1—1— fj(%)épy] +e§f{L), w.p. 1 —w

Inzp (pu, p™, 0™\ pr) =

_1
ap +In [ﬁ;pU“pz] + &nes W.p. w
~ _(1_8S\ym+1
| o | @ imprtmn [1+%(%)%p4 e wp 1-w
N The (p[np sy D 7pL> - - 1 (1—(1—8)™m+1) _%
ap +In | —==—"py " pr| + &g W.p. w
~ 1 m (LU)
m m ap,—=Inpy +In(1 — (1 —6)"pv)+¢, ', wp. 1—w
hli[)ht(plnp y o P 7pU) = { " 7 bu <—O£) ) p_) h \I;p W

in which p™ denotes a period in which the consumer is not purchasing and in consequence in which
the price is missing. Variable m denotes the number of such missing weeks (i.e., m = 0 means
the consumer purchased two consecutive weeks). Moreover, denoting 7; at period t the duration in
weeks elapsed since consumer’s last purchase, we have 7, = m + 1 if there are m + 1 weeks since
when the consumer purchased and thus m weeks for which we have some missing price information

at period t — 1,..,t — m.

%in which w.p. is a shortcut for "with probability"
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Then, using that eng), eg{L), egjm, e%m are uncorrelated with prices and preference shocks as

shown in the proof of Lemma 7, the previous demand equations yield:

- 1
Enzplp—r, =pv, e =m+1,po=py,z, >0 = o — p In pys (17)
_ 1 —w)
Enzplp—r, =puv, e =m+1,pp=p1] = o +ayr— Inpy,
~ " (1—-w)
Elmzpylpi—r, =pr. e =m+1,p=p] = ap+aj,— Inpy,
- m 1
Enzplpr—r, =pr, 7o =m+1,p =pr, v, >0 = ap+afy — glnpU

in which

I pr1 |
ay, = (1-w)ln {14'1—_5(})7)”04 +w1n[1_5puop4

1—(1=0)™") pr.1 (1—-@Q—=mt) 1
1-5 (E)”W} +°‘”n{ T T

af, = (1—w)ln {1—1—

apy = In(1—(1-46)"pv)

In these demand functions, oy, represents the average excess purchase in case of low price versus
high price if the last purchase was made in the high price regime, whenever it was done. of
represents the average excess purchase, compared to the case when current and last purchases were
done in the high price regime, if the price is low and the last purchase was done m weeks before in
a low price regime. a7}, is negative and represents the average reduced purchase when the current
price if high, if the last purchase was done m weeks before in a low price regime rather than made
any time before under the high price regime.

Remark that this demand model allows to identify o, w and (over)identify ¢ and pv using
5 - 1 —exp (O/L"(}Ll)

1 —exp (o)

(1 — exp ()™
(1 —exp (afy "))

for all m.
Defining the high state as in the definition (i) in Table 6, that is when the price paid by the
household is larger than the 90" percentile of prices this household paid over the whole period,

we can estimate the above demand model by linear regression with household fixed effects and
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identify some of the parameters of the model. Results of this estimation are presented in Table
7 in Appendix C.2. Using definition (iz) or (iii) of Table 6 brings similar results. In column (1)
we estimate the model without taking into account missing prices in previous periods but only
conditional on the current and lagged states (as predicted by our model as if households were
purchasing at every period). In this Table 7, the estimated price coefficient in the low price regime
is larger in absolute value than the high price estimate while the model predicts that it should be
lower or equal. Moreover, agy, is negative while it should be positive and c;OL; is positive while it
should be negative. However, when we estimate the above demand model allowing for a maximum
of M periods at which households do not purchase so that using M maximum lags in purchase
history is sufficient, varying M in 1, 2, 5, 10, 20 as shown in columns (2) to (6), we then obtain
that the low price coefficient estimate is lower in absolute value than the high price one and that
Qg is positive.

While this first estimation procedure does not use supply side equilibrium conditions and also
uses a crude definition of high prices states, we obtain estimates of most parameters that do not
reject the model. Indeed we cannot reject that o € (0,1) with estimates between 0.3 and 0.5, as
well as w € (0,1) with estimates around 0.08-0.10 (meaning that consumers may have no taste for
the product in around 8-10% of weeks). Other parameters are not precisely estimated. However,
when significant, we still have positive coefficients 07Ln\U while the model predicts they should be
negative.

We now extend the estimation in order to take into account equilibrium conditions and imperfect

observability of price regimes.

4.2.2 Using demand and equilibrium conditions

We now use the equilibrium conditions on firms’ profits in addition to demand equations. We also
allow for imperfect observability of states as follows. We define a model of prices such that for each

household, the price is high or low according to the following regimes:

Regime L if logpn: < x + logx,,
Regime U if logpn: > x + log x,,

in which x is a threshold parameter common to all consumers and log x;, is simply the mean log

price paid by household A during the whole time period allowing variation in the environments faced
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by each household. Then, for any value of the threshold parameter, x, we can define high and low
states according to whether py; is below or above the threshold sp, (x) = x;, exp(x).

From the supply side, we know by Proposition 5 that the mixed strategy equilibrium of firms
implies that expected profits in case of low and high prices should be equal. Denoting ¢ = z%’ this
implies the following constraint

6 (1 =0+ o)) [(1 - w)o% + (- —7h)pu| = (1 ~w)o (1 — mpuh)’

in which

1
9:1—w(1—w)(1—5)

Moreover, we must also have that low prices are equal to marginal value of stocks such that

(1 =61 —=0)wd =m))¢ = B(1 —0)(mp + (1 —m)(1 —w))

or equivalently

_1—w+w¢—ﬁ
e l-w+twp—209

Finally, there is also a constraint on 7 that we do not use as it depends on the distribution of
preferences through function f(.).

Using notation 7, for the duration in weeks defined in the previous section, conditional on the
parameter Y, demand equations derived from equation (17) are

_ 1 1l—-w
Inzy, = ap— = I ppelip>sn 0y —

In phtl{pht<8h(><)} + aULl{pht>sh(X)vpht7-rht <Sh(X)}

+ Z 1L Y pne<sn () mne—m<sn()srm=m} + Z L Loy 0 00 ot —m<sn ()i =m} HERY)
m=1,...M m=1,...M

whose within estimation delivers the following estimates

& 00, @100, &3 00 T (), (ﬁ> ), (T)m

o o

We then estimate parameters (o, 9, 3, x, ¢, (pr) ,w) by GMM using the following moments conditions

30



1

7 00) T )
] G I e
B (afy (x) — In(1 = (1 = §)"pw)

B (1101 (0 p20)-6 (10407 (0 0 [(1=0)6F + (57 (00
B (A8l — 7 ()6 — A18)F (x) 6 + (1~ 7 () (1)

1
E(ﬁz Ligp=0y = (L =7 (x))w

(o) (o) o
((1—eXp(o/£LJl ))) /(1= exp (afy (00)) = (1= 9)
B (((1-ew (@ 00)) ")/ (- e (a7 ) ) (o)

for m = 1,.., M and in which:

¢0p1/) — wln(

E(@<x>—<1—w>ln<1 —
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o
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Moments (M1) to (M3) correspond to equilibrium conditions relating demand parameters to the
empirical mean price in the high price regime. Moment (M4) relates the mixed strategy equilibrium
condition to the empirical probability of low price regime. Moment (M5) relates the marginal value of
stocks that depends on the empirical probability of low price regime and other parameters. Moment
(M6) relates the empirical probability of low price regime and the probability of low preference
shock to the empirical probability of purchase. Moment (M7), (M8), (M9) imposes theoretical
restrictions across parameters of the demand function.

We perform the estimation with varying values of lags M from 1 to 3 in the demand function and
also use different moment conditions. We always use moments (M1) to (M6) and then add moments
(M7), (M8), (M9) as shown in Tables 8 and 9. The results show that the preference parameter
o is precisely estimated between 0.34 and 0.46 according to the number of lags allowed and the

moments used. Estimates of the parameter 3 are precise and show that (3 is between 0.89 and 1. The
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parameter w is also precisely estimated, always in the range of 0.18-0.51 meaning that consumers
have no taste for the product between 18% and 51% of weeks. The iceberg cost parameter § is
also precisely estimated, varying across specifications between 0.07 and 0.40. The parameter pv is
also precisely estimated as well as the threshold parameter x. Finally, the parameter ¢ that is the
ratio of the low price to the high price is a bit less well estimated and varies between 0.45 and 0.58
with standard errors that vary across specifications. Then, using the estimated parameters, one can

compute the equilibrium probability of sales (low price), which varies across specifications between

9% and 22%.

Table 8 GMM estimation results

Moments used M1 -M6 M1-M6 M1-M6 M1-M7T M1-M7T M1-—- M7
Lags M 1 2 3 1 2 3

Parameters

o 0.4667 0.4054 0.4305 0.4018 0.3433 0.3963
0.0000 0.0022 0.0007 0.0007 0.0019 0.0017

4] 0.2727 0.2065 0.2654 0.0708 0.1515 0.2742
0.0000 0.0020 0.0009 0.0013 0.0028 0.0025

pv 0.2118 0.2118 0.2194 0.1987 0.2101 0.1945
0.0000 0.0003 0.0003 0.0002 0.0012 0.0009

o= ;’—[LJ 0.4565 0.4961 0.4623 0.5437 0.5565 0.5018
0.0000 1.1538 5.6458 0.0221 0.6567 1.3014

B 0.9870 0.9975 0.9994 0.8907 0.9907 0.9910
0.0000 0.0015 0.0014 0.0015 0.0044 0.0044

X 0.0717 0.0377 0.0522 0.0485 0.0144 0.0276

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w 0.4703 0.5129 0.5003 0.4782 0.5043 0.4033
0.0000 0.0011 0.0008 0.0007 0.0033 0.0021

N 29,508 43,431 50,929 29,508 43,431 50,929
P(pue < 51(X)) 0.0908 0.1484 0.1181 0.1281 0.2242 0.1717
Pz = 0) 0.4718 0.5091 0.5091 0.4718 0.5091 0.5091

Note: Standard errors under parameters estimates.
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Table 9: GMM estimation results

GMM estimation results

Moments used M1-—- M8 M1- M8 M1-M8 M1-M9 M1-M9 M1- M9
Lags M 1 2 3 1 2 3
Parameters

o 0.4018 0.4170 0.3893 0.4018 0.4134 0.4121

0.0007 0.0014 0.0018 0.0007 0.0015 0.0021

o 0.0708 0.2191 0.3356 0.0708 0.2422 0.4017

0.0013 0.0029 0.0015 0.0013 0.0033 0.0016

pv 0.1987 0.1940 0.1655 0.1987 0.1842 0.1274
0.0002 0.0008 0.0014 0.0002 0.0008 0.0013

O = z% 0.5437 0.5144 0.5839 0.5437 0.4898 0.5423
0.0221 0.2504 0.0568 0.0221 0.2871 0.0781

B 0.8907 0.9646 1.0000 0.8907 0.9582 1.0000
0.0015 0.0040 0.0000 0.0015 0.0048 0.0000

X 0.0485 0.0374 0.0353 0.0485 0.0374 0.0381

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w 0.4782 0.4194 0.1885 0.4782 0.4132 0.1753
0.0007 0.0015 0.0016 0.0007 0.0016 0.0017

N 29,508 43,431 50,929 29,508 43,431 50,929
P(pu < 51(X)) 0.1281 0.1492 0.1517 0.1281 0.1492 0.1450
Pz, = 0) 0.4718 0.5091 0.5091 0.4718 0.5091 0.5091

Note: Standard errors under parameters estimates.

In appendix, Tables 10 and 11 provide the results of the same estimation on the demand for
"Orangina" soft drink, while tables 12 and 13 show the results on Pepsi. In both case, we can see
consistent estimates of the model parameters, showing that the model is not only fitting well the

demand for Coke.

5 Conclusion

We constructed a tractable structural dynamic model of consumption, purchase and stocks by con-
sumers for whom stockpiling is unobserved, preferences are isolastic and affected by independent
and identically distributed shocks. Consumers purchase in stores which they meet randomly and
which are supposed to maximize short run profits. We show that a two-price mixed strategy by
stores satisfies conditions for an equilibrium in which consumers and stores coordinate their expec-
tations on this stationary solution. We derive a simple and tractable estimation method using log
linearized demand equations and equilibrium conditions. We estimate parameters using scanner

data registering soda purchases by French consumers during 2005-2007.
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A Proofs of Section 2

A.1 Proof of Proposition 1

Whether multiplier v, is equal to zero or not defines two cases which are further subdivided into
two sub-cases according to whether the other multiplier p, is equal to zero or not :

1. Let ¢, = 0: then x; > 0, and by equation (4), u} (¢;) = apr = A+ + p,. Define two further
sub-cases:

(a) Let A\i(0) < ap; : as A\ is non-increasing in 4y, it implies that u, > 0 and i = 0. Therefore:
wF=c — (1 —6)i_1 = u, " (ap) — (1 — 6)ip_y.
Compliance with the condition v, = 0 applies if u; ' (ap;) — (1 — )i,y > 0 . This

condition implies (1 — 6)i,_; < u, * (ap;) and therefore u/((1 — 0)i,_1) > ap;. These
conditions and results are summarized in regime (L.a).

(b) Let A\;(0) > ap; : as p, > 0 and ), is non-increasing in i;, it implies that if > 0 and
p, = 0, and that ¢ is the (possibly non unique) solution to

Ai(iy) = ap,
which exists as \; is continuous and A;(+00) = 0. Thus, the solution is:
v =c +if — (1= 0)iy = u "t (apy) +if — (1 —6)ipq
To comply with the condition, ¢, = 0, we have z7 > 0 and therefore:
iy > (1= 0)is1 — uy " (apy) = apy < M(max {(1 — 8)ir—1 — uy~ ' (apy) ,0}).

These conditions and results are summarized in regime (L.b).

2. If ¢, > 0: therefore, x; = 0, and by equation (4), u; (¢;) = ap; — 1, < ap;. The problem to
solve is now single dimensional:

wp (67) = A7) +py 5 cf = (1= 0)if 4 — 4.

which implies
wy (1= 0)ie1 — 47) = Me(37) + gy

There are again two sub-cases:
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(a) Let \(0) < uj ((1 —0)is—1) : because A\ (i;) is non-increasing, u, > 0 and i = 0, ¢ =
(1 — 9)ig—1. The condition that ¢, > 0 is satisfied if w} ((1 —d)i;—1) < ap;. These
conditions and results are summarized in regime (I1.a)

(b) Let A:(0) > ) ((1 — 6)iz—q) : then p, = 0. Define i} < (1 — §)i;—; as the value satisfying:
i (1= 0)ir—1 — i) = A(37) (A.19)

which exists and is unique because, when i} increases from zero to (1 — d)i;_1, the left
hand side increases between u; ((1 — 6)i;—1) and u; (0) = +oo (if 5, >n> 0) and the right
hand side is non-increasing from A;(0) to zero. Then

¢t = (1= 8)ipy —ir.

The condition that ¢, > 0 is satisfied is u} (¢]) < ap;. This happens when i = (1 —
§)is1 — ¢t < (1 —08)i,1 —u, ' (ap;) and therefore when:

Ae(0) > N(i) > Ae(max { (1 — 8)ig—1 — u; " (apy),0}).

A.2 Proof of Proposition 2

Using the condition on ¢ and Lemma 2, we have:

MN0) < ap; if ps € {pr,pU}-

Assume first that (i) 4,_; is such that (1 — )i,y < u/ ' (ap;) = (apy/m,)">. Then we are
in the static case (La) and i, = 0, ¢, = u/ "' (apy) = (apy/n,) "7, 20 = (ap/n,) "7 — (1 — 6)ir_s.
Then, at period ¢ + 1, (1 — 8)i, = 0 < u} ' (apyy1), implying that i, = 0, ¢y = u) ' (apiy1),
Tep1 = u; ' (apiyq) and this also applies to every subsequent period.

Assume second that (i) u/ " (apy) = (apy/n,) "7 < (1 = 6)is—1 < uy~' (A(0)). This is static case
(IL.a) and 4 = 0, ¢; = (1 — §)it—1, & = 0. Therefore, at time ¢ + 1, we are in case (i) above and
1411 = 0 as well as for any period after t + 1.

Assume finally that (iii) (1 —68)i,_; > u/ " (A(0)) = (A(0)/n,)~=. This is static case (ILb). Then
i¢(i4—1) is defined by equation (A.19) and this implies that 4;(i;—1) < (1 — 9)i;—1. The probability of
this case (iii) is equal to 0 if 7,_; = 0 since A(0) > 0 and n, > 0 and if 4;_; # 0 :

(T —6)ig—1)"°
A(0)

Pr{(1 — &)1 > (\(0)/n,)"7} = Pr{ >}

As i, = 0 (cases (i) and (ii)) or 4; < (1 —6)i;—1, this last probability converges to zero when ¢ tends
to oo whatever the initial level of stocks is. Therefore, stocks #; converge in probability towards 0
and the unique stationary solution is given as in the Proposition.
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A.3 Proof of Proposition 3

The proof proceeds in several steps. As preliminaries, define i(p;) the non-increasing function such
that:

)\(i(]?t)) = QpPy,

and more generally, if A\() is constant over some range:
i(p) = AN "Hapy) € {i: i) = ap,} .

The selection of any particular value has no importance at the moment and this issue will be solved
later on.
As i(p;) is non increasing and the price is bounded from below by the marginal cost x, we have:

i(pr) < i(R). (A.20)
Asd<1— é%, we also have by Lemma 2 that:
A0) < apy and A(0) > ap, < pr < B(1 = 8)p* < py.

We first show that stocks are bounded from above at the stationary equilibrium:

Lemma 8
iy <max(i(k), (1 —0)i;_1)-

Proof. (a) Suppose p; > (1 — §)p*: As the marginal value of stocks A(0) is smaller than the
marginal utility of one unit purchase, ap;, stocks necessarily decline over time as in the proof of
Proposition 2 and we proceed likewise.

Assume first that (i) i,_1 is such that (1 — 6)i;_1 < uj '(ap;). Then we are in static case
(La) and i, = 0, ¢, = u, ' (ap;). This then also applies to t + 1 and every subsequent period.
Assume second that (ii) u} " (ap;) < (1 — 6)i;_1 < uj ' (A\(0)). This is static case (ILa) and i, = 0,
¢ = (1 = 98)i4_1, zy = 0. Therefore, at time ¢ + 1, we are in case (i) and i,,7 = 0 as well as for any
period after ¢ + 1. Assume finally that (i) (1 — )i;—1 > u} (A(0)). This is static case (IL.b). Then
i(i4—1) is defined by equation (A.19) and this implies that i;(i;—1) < (1 — 0)i;—1. In all cases:

i < (1= 6)ipy. (A.21)

(b) Suppose p; < (1 —§)p*: As the marginal value of stocks is higher than the marginal utility
of purchase, i.e. A(0) > apy, static conditions developed in the previous Section show that cases
(L.b) or (IL.b) apply.

In case (I.b) that is if (1 — &§)i,_y < i, + u, ' (apy), current stocks are not too large, purchases
are positive and we have i; = i(p;). Otherwise, if current stocks are large enough, (1 — §)i;—q >
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i(p;) +up "t (apy) then (1—08)i,_; > u, " (apy) and we are in case (ILb). In this case, i¥ < (1 —0)i;_;
and stocks are necessarily decreasing.!’
Summarizing both cases, using equation (A.21) when p;, > 3(1 — §)p®, we have that:

iy < max(i(py), (1 —6)iy_1) < max(i(k), (1 —8)is_1),

by equation (A.20). =
A consequence of this Lemma is that stocks cannot be greater than i(x) at the stationary
equilibrium since if they are larger, they would necessarily decrease in finite time to a lower value
than i(k) whatever the price is.
Thus at any time, i; 1 < i(k) :
(1= 0)ir—1) u((1 = 0)i(k)) = ((L = 0)i(k)) " my,
(1 =0)i(k))"n,
B(1 = d)apa = A0),

AVARAVARN AV

in which we have used the isoelastic utility specification and the bound condition (7) on preference
shocks.

This means that the probability of case (II.b) is zero at the stationary equilibrium since u}((1 —
0)it—1) > A(0). The other static cases are defined as a function of A(0), ap; and 1} = u;((1—0)i;—1) =
((1 = 0)ir—1)"7n, by:

(i) Regime La : ap; > nf > A(0).

(ii) Regime IL.a: n; > ap; > A(0)

(iii) Regime L.b: n; > A(0) > ap;.

These three cases correspond to the three lines of Proposition 3. Consumption, purchases and
stocks are then obtained as in Proposition 1.

Finally, when ap; = A\(0), the consumer is at the limit between Regimes II.a and Lb.

A.4 Proof of Lemma 4

By equation (5) we have:
Aie) = (L= ) B ir) + ).

We distinguish between the three cases of Proposition 3 and then combine cases.

10Note that by equation (A.19), the value i} is given by:
uy (1= 08)ig—1 —iy) = A(i}). (A.22)
Because we are in the case (1 — 8)i;_1 > i(p¢) +u, ' (a;p;) then:
uy (1= 0)ir—1 —i(pe)) < aipe = A(i(pr)),

by definition of i(p;). Therefore, stocks at t — 1 are very large i.e. (1 —9)iz—1 > if > i(p;) since the LHS of equation
(A.22) is strictly increasing in ¢} and the RHS is non-increasing in this value.
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(i) When pyy1 < B(1 — 6)p?, then A(4441) + 14,1 = api1 using the static conditions (Lb).

(i) When piyq > B(1 — 0)p® and 7, > ((15@%, then:

Aies1) + fypr = Uy (Cep1) = apegr.

(111) When Pt+1 > /6(1 - 6)pa and % S Nt S ((1%;# then:

Aliesr) + pepr =ty (Cg1) = (1= )i
Note that % < 1,,, is always satisfied under condition (7) as shown at the end of the proof
of Proposition 3.
Using this remark and combining cases, we have:

Mi) = B(1— OB opl{pn < A1 — o))
+apia{pis > 81— O)p, nyy > ﬁ)
H (1= 01 {pess > 801 = s < et
— (1 - 5)E(apis)
R N
— \0) + 81— (i)

Thus by definition:

V(i) = E([((l —0)iy)”"” L/ apt+1] 1 {pt+1 > f[(1— 5)pa,77t+1 < ﬁ#} <0.

Moreover, the stationary equilibrium of Definition 2 holds constant the expectations of consumers

concerning future prices. The distribution of prices has therefore a support with two points {pr, pr}
and by condition E, 3(1 — §)p® is in between these two points. Then:

OPri1 @pPu
X L 8o <P Ly = S T s
{pt—i—l > 6( 5)p M1 = ((1 _ 5)%)0} {pt+1 PUs M1 = ((1 - 6)it)g}
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so that:

. . \—0o apy
(i) = B = 00— o] 1 {n < R

- (=0 __ow
= apUE( Tnt-H 1} 1 {nt-i-l < ((1 _ 5)@5)‘7} ’
(A =0)i) "

apuy

).

= apuf(

by the definition of f(.).

A.5 Proof of Lemma 5

We seek the optimal solution for i(p;) which leads to the complete characterization of optimal
decisions by Proposition 3.
By definition A(i(p;)) = ap; when p, < B(1 — 0)p®. Therefore:

(1= 0)i(p) "

apy

A0) + (1 = 0)y(i(pr)) = B(1 = d)apa + (1 — d)apu f( ) = ap

and:
a

(= 0)ip)) ") _ Fiy) —
apy bu ‘

I

The reciprocal of this equation is the result reported in Lemma 5 when p; # 5(1 — 0)p®. Note that
it is well defined only if:

(pt ) _pa p

B(1=5 t a

— > 1l &= —F= > p" —py,
bu B(1—4)

which in the 2-point of support case, yields:

ﬁ > 7(pr — pu),

which is always true since the RHS is negative and the LHS positive.

When p; = 3(1 — 0)p?, the previous expression is ambiguous since as noted above f~1(0) is the
whole range [%, +00) and therefore i(5(1 — 6)p®) is the whole range :

The consumer is indifferent between all the values in this range. The two bounds correspond to the
limit of the cases (ii) and (iii) in Proposition 3.
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A.6 Proof

Assume that W;,1(7;) is an increasing and concave differentiable function of its argument. We shall
prove that Wy (i;_) is then also an increasing and concave differentiable function.
We have,
Wi(ti—1) = max {w; (¢;) — apxy + BEWi41 (i) }

Ct,Tt

subject to the constraints of accumulation of stocks and non-negativity of purchases.
We have shown in Lemma 4 that the marginal value of stocks:

oW, (i 1)

Mi) = =57

is a positive and non-increasing function of its argument so that W;(i;_1) is then also an increasing
and concave differentiable function. Furthermore, A(i;—1) < 0 when ;1 — oc.

B Proofs of Section 3

B.1 Proof of Lemma 6

B.1.1 High price profits

From the system of demand (10) and given that the expected probability that a consumer has faced
pr in the previous period is 7, we get that expected demands when a high price, p, > B(1 — 0)p®,
is played, are equal to :

(1— m)E(a—*)p, "By )+

Du(pe) = - (a*%pt_%n; - (1- (5)@'(2%))1{0“7%29;%77; — (1= 9)i(pr) > 0}

Recomposing, this yields:

B0, " E(nf) = 71~ 8)i(pn)

7B (= 7p, 7 = (1= 8)ilpe)){a 7, “n7 — (1= 0)ilpe) < 0}]
E(a~5)p; * B(7) = (1= )ilpr)

(1= 0)ilp)B | et - (1= 8 < 0)

Dy(p:) =

1

1
o opy 7

= B )p; " Bln?) — 71— )ilpe) — (1= 0)ipe) e gt

),
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in which we have generalized the definition of function f to:

fujola@) = B [(any —1)1{an7 —1<0}].

Note that the argument of this function using equation (8) is equal to:

_1 -1 _1 -1 P oa\17
aTp T a”7p, _ | P (B TP
(1= 0)ipr) { s (ﬁ(qg&)_pa)}i pi pu ’
apy f~H | H—

pPu

and therefore, setting ko = E(a™7):

1 1 —pL(S —pa’ _% p pL5 _pa -
o - — 1— _ 1—
m@o=m1wﬂmm—wkwl(ﬁ—L—>] 1+ fi/e Fﬁl(ﬂ—L—J] ,
bu Pt PU

|=

and the profit when the price is high is therefore

Hy(pe) = (pe — K)Du(py)-

Lemma 9 Dy (p;) is decreasing in prices.

Proof. As fy/, is concave, fi/, is twice differentiable almost everywhere. We have, setting
k, = 1 for simplicity in the proof, and

pPrL a
5 — P
bu

that the derivative of the demand function is:

al=

0Dy I (—in_ 1oy TOf1)6 0 (—1-1)
— ka o E . _ o 7
8]915 |: (nt ) + 9 aa O_pt

L_q) 1o f1/o
LI T Vo1 o W AT )
O'pt |: (nt ) ™ aa :| <0

since E(n;’") > 0, 7 < 1 and by definition:

afl/o'

0 8 )71 < 1/a}] € 0. B(/"))
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We can also compute the second derivative (almost everywhere) that will help us later to prove that
the maximizing argument of the profit function is unique:

0* Dy 1.1 (—1-2) 1/o Ofio] 1 (-1o1) Pfiyef (-1-1
2 = ko= (=+1 g E —r—= - =p, ° ———p, ° B.2
op? “ {a(a +Dp l () = da ot "0 ot  (B.23)
B 1 (~19[ 1 1/o Ofijo, 0 (-10f1)6
= kao_pt {(a +1)(EMm) -7 da ) e 90z |-

[ |
Call py an argument, possibly not unique, that maximizes the profit function with respect to p;

max

over a compact range of prices [k, p**| and that satisfies the first order condition:

0Dy
Opy

Dy(pt) + (pe — k) =0.

As a matter py is itself a function of p; and py. A solution in price py, possibly non unique,
thus satisfies the fixed point equation, py = py. Nonetheless, before solving this equation, we first
determine p;, as a function of py.

B.1.2 Low price profits

Using the system of demand (10) and assuming that a low price is played, we get that expected
demands are equal to:

1

Di(p) = (1—m)(Ba#)p; "By ) +i(py)) + w(Bla~7)p; "By ) +i(pe) — (1 — 0)ilpr)),
= B(a )p, "B(n7 ) +i(py) — w(1 — 8)i(pr),

L 1
11 1 s —pt\ | ° e AV
fr— ka pt UE(”;) + m [pr_l <%)] — T [pr—l (5(1 ]))U

Note that:

_1
b (42)
DL(pt) - DU(pt) =k,

L1 [ miks Pt K pu -1 [ FEs P -
+ |puf BT f1/o Ef e
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and the difference in profit is therefore:

Uz (pe) —My(p:) = (pr — K)(Dr(pe) — Du(pr)),

[ 1
t—K s\
et o (2225)
_ N :
+(pe — &) |puf B f w1 (EER ) |
! v pu 1/U Dt DU .
_ 1 1
—K st 7 e\ e
% { {pr 1 <%)1 _ {pr 1 (5(1 p&; )] }
1 (s K 1 pu -1 [ BOEH P ’
+<pt B K) puf T o 151 7Tf1/g p_tf pU .

As this is a regime in which p; < B(1 — §)p® < py, the concave function ITy(p;) is necessarily

Q|-

increasing in p, over this range of prices. The first term on the RHS is increasing in p, when p; < pr,
because f~1(.) is increasing and the second term is decreasing when p; > pr. The third term is

PL a
. . . _ B1i-8) P
increasing in p; because f~! <%> > 0 and:

1
1 s P\ |7
——wfye || 2 >0,
1-9 Dt Pu

since fi/, € [—1,0]. Thus, the derivative of profits when p; = py, is strictly positive and thus the

constraint B(ft— 5 p* < 0 binds at the optimum.
Therefore p;, = 5(1 — 0)p,. In this case, the expression of the profit above need to be slightly

modified to take into account that the optimal stock is given by equation (9) and therefore:

M) = Ko =) {y "Bl )+ 25 [~ 0] % = pr s ) F}.

= ka(pr — k)

B + (s - |2 ] ,

-

= kE(n7)(pL — k)

1
_1 1 ne  _1
P + (—— 7T)p_—1pUU] )

1 1 1
= k(pL —r) [PL“ + (1—_5 - W)PZPUU} :

1

1 : . o

using k = k,JE(ny ) and v = —L . With these results, we can now return to the determination of
h Bny”)

pu-
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B.1.3 Determination of py

As pr, = (1 = §)p,, we have:

ql=

_1 1 p
Dy(p:) =k |p, *E(ng) —mp {—U}

|
5
S
13 |q
|

1+f1/o'

he)

The first order condition for the maximization of this profit function is:

L o(-1- a 8f o
Doty + (= ke (2 7 [ B - a2 ] ) —0

(B.24)
Setting p; = py yields:

af
1/o 1/o
—_— —_— — = 0
O_pU nt ) ™ aa :|> ’
in which a = ——. We have:

nep

Dutpu) + (oo ko (~22k 7 [

~1 1 PU = 1 1 (-1-1) o o o 1
py” E(n7)=mp {7} L+ fige (E) +(pu—r) (—;pU B = 7B |1 < n7pd|| ) =
since by definition:

afl/a

L =B " 1n’” < 1/a}].
We shall assume that p < 1 so that:

1 8 (o2 g (o
fi/o (T) =0 and % =B [ni/ 1{n,’
7P o

1
Vo < Qop}] = 0. (B.25)
Thence we have:
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o
1 1 Lo 10
pu(Emi) —mpne) = (pv — &) —EMm") = 0,
1 1 1 /o
pu((1— ;)E(m ) —7mpne) + H;E(m ) =0,
1 0= 1
pU(<1__)_ p _1/0)_‘—"{'_ = 07
g E(n,"") g
1
po((l—=)—mpv)+ K= = 0
%
denoting v = ﬁ—l/a This implies that:
E(n'")
K
= ) B.26
K gy (B.26)

In turn this implies that:

=

1 1

y(py) = kalpo — K)py° [E(né’) —mpne |,

= k(py — k)py” [1 —mpy].

Note that py is NOT the maximum of this profit function sin%e there are dynamic externalities that

imply that the price is lower than the monopolistic price, ]
—0
Finally, we need to check that the solution to equation (B.24) is a maximum that is:

8QHU(JUt)

< 0.
op?

pt=pu

We use the second order derivative of demands given in equation (B.23) and replace p; = py:

0? Dy

2
p t Ipi=pu

Ofife. T (190 f1/0
m da )_?pU da?

1 (=19 1 P
N {(— (B -
g g

By the same argument as in the above equation (B.25) we have when p, is in the neighborhood of

bu:
8f1/0'
Oa

82f1/a

0a? =0

=0,
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so that the arguments for the concavity of the profit function goes as follows:

9211 oD 0*D
| o on
Ip; Pt=puU Op pt=pU opy Pt=pU
1 -1 o 1 1 9.1 o
. {2 (__pg " VE@m/ >) + (oo — w7 (= + DEm)| K,
o o o
1 (—1 o o 1
= LR |2+ )00
1 1
x {(E — Dpy — (; + 1)5)} ;
— JtE[1—0—(14—0)(1—0—1—07pr)]
o
— % [—o(1—0)— (14 0)ompr)] <0
if o € (0,1).

Remark: This proof is slightly more involved if p = 1 and all the mass is concentrated at n in
the distribution of 7,. We assume away this case.

B.2 Proof of Proposition 4

The equalization of profits lead to:

Iz (pr) = k(pr — k) [pL" + (ﬁ —m)pvpy° | = k(py — ff)pf [1 —mpv] =y (py),

and therefore:

_1 1 _1 1
(pr — ) lpL" (=5 — Moy | = (o= R)py” (L= 7o),
1 1 _;: _1
< (pr — (1 — o +ompv)py) lpL” Hg—s —™eeey”| = po(l = (1 —o+omp)py” [1—mpy]
L :
= (o= (-0 +omm)) [as-a F | = ol (B.27)
in which we have set ¢ = g—f].
The second equation is provided by:
app = (1 —0)p* = af(1 —0)(xpr + (1 — m)py),
and therefore:
1— %5)
o=B(1-08)(rdp+(1—7)) == %. (B.28)
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We shall study below the existence of a solution to equations (B.27) and (B.28) but we first
analyze conditions under which the constraint (7) is satisfied.

B.2.1 The constraint on n

To derive these equations, we assumed that:

oz B0 Sap((1 - o) = —U
o (22T
— f EE R B ) Y (B.29)
pu - pun
We have that:
pr = PA=08)p"=p1—=9)(rpL + (1 —m)pv)
_ B1=06)(1—mn)
= T T Ra o Y

so that equation (B.29) can be rewritten as:

1—o+ompr (1—7)
1 < A5 PU 16(15)7er> L 1A -0 —m)

pu n1-B1-dn’
4 (l-o+ompr  (1-m) 15(1—0)(1—m)
=/ ( B(1—9) 1—6(1—5)7T) - n1-p1-dnr’

l1—o+ompy (1—m) 11 =961 —m)
Fi-9)  1-pi-om - f(gl—ﬁﬂ—&w)'

The constraint can be expressed as:

l—o onpy (1—m) +f(ﬁ(1—5) (1—m) )
B0-0) " BU-6)  1-5(1-0)r W 1- A b
in which the term i% < % and therefore, f (%%) < 0. The right hand side is
(1-m)

decreasing with m because TA—0)r is decreasing in 7 and f() is increasing. The strongest constraint
is then obtained when 7 = 0 and the right hand side is:

l—o0o B(1—196)
—5(1_5)21+f<—ﬂ )<1,

which does not preclude any value for o.
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As ¢ = BL = BA9)A-7) we can also rewrite the constraint as:

pU 1-p(1=6)=
l—0 _ompy ) ?
si-a = “Ba-9 sa-a ')

— W2L<g_1+¢+5<1—6>f<§>)

opv

B.2.2 The supply equations
Equations (B.27) and (B.28) provide a system of 2 equations in 2 unknowns (¢, 7). We can rewrite

equation (B.27) as:

(¢ —(1—0) |77 + (ﬁ — m)pr| — ompu(6™F + T5) + o(mpr)? = o1 - 2mpw) + o(mpr)”

which is linear in 7. Define ¢,(¢) = o7+ = and write:

(¢ — (1 —=0))(¢o(®) — mpr) — ompry(p) = o(1 — 2mpr),

so that:
(¢ —(1=0))po(¢) —o=mpr[d— (1 —0)+0¢s(¢) — 20]
and therefore:
o= (36— (1-0)a9)
T 1=9—0a(d(¢)—1)

Thus:
1o—(¢—(1-0))g(¢)
pr 1—¢—o(gg(d) —1)

The second equation is also a function of 7 :

m1(¢) =

m3(9) = —200. (B.30)

Furthermore since ¢ = 2 € (0, 1):

¢
p(1=9)

0 < m@P)<led<l-— <1-¢,

— o< p(1-9)<1.
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Moreover:

so that:

B.2.3 Existence

¢:p—L>i:1—a+a7rpy>1—o.
bu  Pu

l—o<¢p<p(l=90).

We shall assume in the rest of the proof that we are in a neighborhood of § =1 and 6 = 0. Let

eg=1—[>0and 0 > 0 be small quantities so that first-order Taylor expansions with respect to

them are legitimate.
Set:

p(@) = (1=9)(1—¢—o(d(9) —1))pu(m(d) —m(9)),

= (0= (0= (1=0))y())(1 = ¢) — pr(1 -

As:

¢
A1 -

7)1~ ¢ = olen(@) ~ V).

_ 1, v
tol@) = 7% + =

is decreasing with its argument, we have ¢y(¢) > 1+ = in the range of interest [1 — o, 3(1 — J)].

We have:

p(1—o0)

9 l-0o

o° — pr(l— ﬁ(l——é)(a — o(do(6) — 1))

1-— l=0a

S

= (0 — pulo — (1— 0)(es + 8))(2 — do(1 - 0)) + ole, )

(0 -

= oo —pr(l—(1- 0’)( +e5+90))(2 = ¢o(1 — ) + 0(ep, 0)
(

= o*(1— pu(2 = ¢y(1 — 7)) + O(e5,0)

Therefore if 2 — ¢y(1 —0) <0, p(1 —0) > 0. Else if 2 — ¢y(1 — o) > 0 and as pv < 1:

p(l—0) > *(¢(1—0)—1)+O(es,9)
= o’pr+ O(gs,6) > 0 (B.31)

which proves that ¢(1 — o) > 0 in a neighborhood of § =1 and § = 0.

We also have:

p(B(1 = 9))

= (0= (B(1-96) = (1-0))g(B(1-0)))(1 - B(1-9)).
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Using (1 —0) =1 — (eg +9) + o(gs,0):

Bo(BL—0)) = (1—(e5+8))77 + pu(1l +8) + oles, ),

0
_ 1+65+

+ pu(L+ ) + olep, 8),

which yields

PB1-0) = (o4 (e +5— )1+ Z50 4 pu(14.8)(es +5) + ol ),
= (ol=m) + (e + O)(1 + ) — (P2 4 ) e+ 0) + ol ),
= —opv(eg+9)+o(es,0). (B.32)

Therefore ¢(3(1 — §)) < 0 in a neighborhood of 5 =1 and § = 0.
It remains to be seen if 1 —¢—o(¢y(¢) — 1) keeps the same sign over the range of ¢. Its derivative
is equal to

1
—1-00y(@) = —1—o(——¢ = )= -1+ ' 20if o <1,
so that its maximum is bounded by the value at ¢ = 1 which is equal to —o{%. Therefore,
1—¢—0(dy(¢) —1) <0 for ¢ €[l —0,B(1—0). (B.33)

In summary we have that:

©()
(1=0)(1— ¢ —a(dy(d) —1))pr

mi(¢) — m2(9) = (B.34)

takes negative values when ¢ = 1 — o because of equations (B.31) and (B.33) and takes positive
values when ¢ = (1 — ¢§) because of equations (B.32) and (B.33). It is continuous since ¢(¢) and
the denominator in equation (B.34) are continuous over this range of values and the denominator
is not equal to zero. Then there exists ¢* € [1 — o, §(1 — )] such that:

T =m(¢%) = ma(¢*) € (0,1).

Remark that the validity conditions on €3 and ¢ given in equations (B.31) and (B.32) are weaker
the larger o and the larger pv.
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B.3 Proof of Proposition 5

Assume that preference shocks 7, have a probability w to take value 0 and a probability (1 —w) to
take values above 1> 0. The Bellman equation writes as a weighted combination of:

1—0o
. C .
Wt("") (Zt—l) = max { 1 t_ o'nt — P T¢ + BEtWH—l(Zt)}

Ct,Tt

Wt(O) (it—1> = I%E:X {—ozptxt + BEtWt—l-l(it)} .

under the constraints:
iv = (1 —0)i—1 + x4 — ¢t ip > 0,24 > 0,

The analysis of the static case in case preference shocks are positive is the same as in Section 2.

B.3.1 Static conditions

When preference shocks are zero, we write the Lagrangian as:
Wt(O) (it-1) = max {—apx; + BEW; 11 (i) + pyis + Ve ),
Tt

the multipliers p, and v, being associated to the two constraints. We get the first order condition
with respect to x; as:
—opy + Me(ie) + py + ¢, = 0.

Note however that the constraint on ¢; cannot be binding since the control variable cannot but
increase stocks from its value (1 — §)i;_;. We can then set p, = 0. We thus have two cases:
(i) The constraint on z; is not binding that is ¢, = 0 and z; > 0. Optimal stocks are given by:

apy = )\t(z:)7

this implies that A\;(0) > ap;. We have, xf = i —(1—6)i;—; which is realizable when (1—9)i;—; < ;.
If (1 —§)i—q > i} the constraint on z; is binding.

(ii) The constraint on z; is binding that is ¢, > 0 and z; = 0. Then i; = (1 — §)i;—1 and
(i) = apy — P, < ap.

In summary:

(1) If M((1 = 9)ig—1) < ap; then iy = (1 — 6)i4—y and xf =0

(i) Else if \((1 — 0)iz—1) > ap; then ap, = A\ (iF) and xf = if — (1 — 0)iy_1.

The dynamic equation remains similar when we set p, = 0O:

oW, (i,_q)
)

W1 (i)
9i,
— A =B =8B+ 1)

—  B(1-0)E,

o4



B.3.2 Dynamics

We now have:

Air) = B(1 = 0) {wEA(ies1) | a1 = 0) + (1 = W) E((ie+1) + fgyy [ a1 > 1)} - (B.35)
No initial stocks First assume that i; = 0. When preference shocks are positive, purchases are

necessarily positive and the expected marginal value of stocks is equal to the expected price weighted
by the marginal value of money:

EA(it1) + fysr | egr > 1) = E(apiga) = ap”.

When preference shocks are zero, we derive from the static conditions in the previous section that:

EA(ier1) [ 11 = 0) = Elapia1{A0) = apra} + A0)1{A(0) < api1}]
= ap”+ E[(A0) — api+1)1{\0) < api1}].

Using equation (B.35) we get:
A0) = B(1 = d)ap® + B(1 — §)wE [(A(0) — ape1)1 {A(0) < aprir}]

If there are stocks in equilibrium and all agents coordinate on the expectations that future prices
belong in the set {py,py} and the low price has probability = € (0, 1) then ap;, < A(0) < apy and

A0) = B(1 = d)ap® + (1 = d)w(l — m)(A(0) — apy) (B.36)

so that :

MO =TS S
Since py > (1 — 0)p*, we have:
0X(0) <0
ow ’

because zero preference shocks decreases the value of stocking.

Positive initial stocks Returning to the general argument, the second term of equation (B.35)
is the usual term and we can write:

E(A(it1) + progr | 1 > 0) = B(1 = 0)ap® + B(1 — 0)7y(ir),
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in which

Vi) = B((L = 0)it) " mpn — aprea] 1 {Oépt+1 > A(0),7141 < ﬁ} [ 1 > 1) <O,
(L= )i)

apy

).

= apyf(

The first term of equation (B.35) can be written using the static conditions given in the previous
section:

EA(ir1) | 1 =0) = Elopia L{A(L = 8)ie) > apra} + AM(1 = 6)in) L{A((L = 0)ie) < apra}],
= Elapir + (AM(1 = 0)is) — aper) T{A(L = 6)ir) < apea )]

If all agents coordinate on the expectations that future prices belong in the set {pr,py} then

apr < A(0) < apy. Therefore, for any i; we have A\((1—9)i;) < apy since A(.) is non increasing and

A(1=0)iy) > apyr if (1—19)i; <i(pr). As (1—19)i; > i(pr) is never played at the future equilibrium,

we have:
EA(i41) | 141 = 0) = ap” + (L — ) (M(1 = 6)ie) — apy) -

Using results from the positive preference shocks regime we can write:
Aie) = B(1 = d)ap” + B(1 = 8)(w(l — ) (A((1 = 8)ir) — apy) + (1 — w)(ir))
Subtracting equation (B.36) that defines A(0), we get:
Air) = A(0) + B(1 = o) (w(L = m)((AM(L = 6)ir) — A(0)) + (1 — w)y(ir)).
This equation can be written as:
A= B(1 = 0)(w(l = 1) Agp + (1 —w)y((1 = 8)*ir))

in which for any k£ > 0:
Ap = A1 = 8)"ir) = A(0),

and therefore:
Mie) = M0)+B(1—0)(1—w) Y (1 [B(1 = 8)w(1 —m)]",
(1 —0)kiy)—° k
= A0)+ B8(1 = 8)(1 — w)apy Z f(—) [B(1 = 0)w(l —m)]",

— apu
= X0)+ B8(1 = 6)(1 — w)apu(iy)
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in which:
(7

sy =3 f(EZT T 50 s - mp < (22T

« (0]
—0 Pu Pu

k+1; )fo'

the bound being the first term in the series and obtained since f < 0. If w = 0, the bound is attained
and we get the usual expression.

Furthermore as |f| < land (1 — §)w(1 — ) the infinite series is convergent for any i, and 7(i;)
inherits the differentiability, invertibility and concavity properties of f.

Optimal stocks Note first that if for igo), we have:

((1—8)i")

apuy

oA

) =0

then for any i; < igo) we have

f<<<1 — 5)it)_g) -0

apy

since f is increasing in its argument. This implies in particular that:

(1= )il

)7\ _
apu )=0

VE >0, f(

Thus the equation ¥(i(pr)) = 0 has the solution corresponding to the minimum value which makes
function f equal to zero and therefore:

(1= 8)i(pe) ™" _

1
apu n

the usual solution when w = 0.
The optimal stock is now obtained by setting:

A(it) = ap
and thus:
Bl =081 —w)apyy(i) = ap;— A(0)
oy, A= 00l — (1 =)
! 1—-p(1=08)w(l—m)
so that:
. i (p* —w(l —7m)pv)

Y(ie) = BI—0)1—wpr (1-w)(1-50 0wl —m)po

o7



and:

pL=0)(1-wpy (1 -w)(d -1 =0)wl—m))py

By the above, stocks are now larger than in the positive preference case.

it:’y

1 ( P (p" —w(l —m)py) )

We have seen in Section B.1 that maximizing profits leads the firm to make the consumer
indifferent between owning or not stocks, and thus to set the argument of the previous function to

0 and thus:
B —0)(p* —w(l —m)py)
1-8(1-0)w(l—m)

Pr = (B.37)

We then obtain that the optimal stocks are pi(py).

B.3.3 Demands

When preference shocks are positive at two successive dates (with probability (1 — w)?), we have
the usual demands given by equation (10) in which we have used equation (B.37):

1 1 1

z (pu,pu) = @ Tpyong,

O p -1
x (pu,pr) = a7 [pL”W +1T5PUUT}7

B R O T L
v (pr,pL) = o @ |pL7n; +1T5PU nel,

1 -1 1

_1 = 1
zy (pr,pu) = @ opy’(ng —pn7).

If preference shocks are positive last period and zero at the current period we have:

T (pUapU) = 07

1 1
z (pu,pr) = a - T sPu'n |

po 1
xt(p[an) = 0 7 mpUaﬁg )

Ty (pLapU) = 0.

This provides the case with missing prices. We can then impute py if we do not observe purchases.
It means that if prices are low, stocks are put at their optimal values. If prices are high, existing
stocks are depleted in the regime py,py from i(pr) to (1 — §)i(pr). The imputation of py has no
effect on demands apart from assigning these observations to a regime of high prices.

It means that we can chain over the zero purchase dates, say p™. We distinguish two cases
according to whether preferences are positive or not at period t :

o8



1. Preferences are positive with probability 1 — w and:

m missing dates
o —L1 -2 2
Ty | Pus P 5P y PUu = «w UpUJn;? (B38)

" " 1 101 P 1
mt(pUap y o P 7pL) = |:pLa77tU+T5pUGQU:|7

zy (pr, 0™, ., p"\pL) = o @

1 1 1 1

ajt(pLapm?'apm?pU) = a_;pUJ(T/to_p(]'_é) ﬂa)

2. Preferences are zero with probability w and:

m missing dates

——
Ty | PU, pm7 'upm y PU =0 (B39)

m m -1 p _% 1
Ty (pUap YL JPL):a 7 |:1T5pU ﬂ”:| eXp(&it%

m m -1 p(l_(1_6m+1) -1
zy (pr, ™, ., p",pL) = & G[ ) prne | exp(&y),

1-9 -

Tt (vapm7 '7pm7pU) =0

B.3.4 Profits

Consumer segmentation At period ¢, the firm faces different subpopulations of consumers
according to the realizations of their preference shocks and the prices they faced during the previous
periods.

e Some consumers may have purchased in period ¢t —1 (i.e. the number of missing prices before
t is m = 0) and this happens because in the previous period, they have had positive preference
shocks or because they have had no taste for the product but faced low prices. This happens
with probability (1 — w 4+ wn). Among those consumers, the probabilities of high and low
prices at period t — 1 are:

(1 —w)m+wr T

P _ = IO = =

H(pes pe|m=0) l-—w4wr 1 —w+wnr’
(1—-w)(1—m)

Pr(pey = pufm=0)= l—w+wr

e Other consumers may have purchased in period ¢t —m — 1 but not after until period ¢ (i.e. the
number of missing prices before ¢ is m). This happens because in period t —m — 1, they have
had positive preference shocks or because they have had no taste for the product but faced
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low prices whereas in the intermediate periods they had no taste and faced high prices. This
happens with probability (1 —w 4 wn)(w(1 — 7))™. Among those consumers, the probabilities
of high and low prices at period £ — 1 are the same as above since the no purchase periods do

not matter:
T
P —m— pr— pr— —7
r(Pr—m—1 prlm) == o
(1 —-w)(l—m)
P —m— pr— p— .
r(Pr—m—1 pu|m) ="

High price profits Using the system of demand (B.38) and (B.39) and assuming that a high
price is played, we get that demands are equal to the sum of expected demands obtained through
the segmentation of consumers given above. Specifically we have that consumers purchasing when
prices are high consist of two sub-populations whose probabilities are:

Pr(n, > 0,pi—m-1=pu,m)="Pr(n, > 0,p; = pr)(1 —w)(w(l —m))",
= 1-w)(l-w)(l-m)(wld-m)"
Pr(n, > 0,pi—m-1=pr,m)="Pr(n, >0,p, = py)m(w(l —m))™,

and in consequence if prices are set to py, the expected demand is:

Dy — (1—w) [ (1= w)(1 = m) S p(w(l = )™ Ela+)py” E (i )+
T3yl — m) (0 )y (B(n) — p(1 — )" n?)

Normalizing E(of%) = k, and recomposing, this yields:

l-w)(l—m)+m7

_1

E(nf oy — PWP;%Q% > (@@ —m)"(t - 5)’”] )

DU = k’a(l—W)[

1l—w+wnr —
1
_1 1 pﬂ'ng
= ka(1—w)py” |E(m7) — = :
( w)pU (nt ) 1— (,d(l . 71_)(1 . 5)

= k(1- w)p{f [1 — mpb(m)],

in which we have set:

1

o = a0

Following the same steps as the ones before equation (B.26) we obtain:

T 1—o(l—mprb(m))’

bu
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and the profit is :
1
Oy = k(1 —w)(pu — K)py° [1 — prvb(m)].

Low price profits Using the systems of demand (B.38) and (B.39) and assuming that a low price
is played, we get that demands are equal to the sum of expected demands obtained through the
segmentation of consumers given above:

_1
o

(1= w)(1 = m) T glw(l = m)™(py” Bng + 25p57 17+
T Y (w(l = m) (o B ) + pe e
(1= w)(1 =) 5o (w(1 — 7)™ Espp 7 ne +

0o m §ym+1 _1 4
T3 (w1 —m))mp Ty ey

DL = k:(l—w)[

~—

+kw

Recomposing, this yields:

by, Pt i
Dy = ka(l=w) p,"E(i) + = 5PU ne = prpy ﬂ“mZ: w(l =)™ (1 =0)"| +
P -5t -5, L - m m
thaw | T 5pU 0t — prpy” s n;(w(l —m))"(1—9) ] ,
e _1 P _1 _1 1
- [( R w A LT s 5)} ’
_1 1 1 1
=k [(1 —w)pp” + (m - WQ(W))PQ"PU”} 7
by defining # as above. The profit becomes:
_1 1 _1
M = k(pr = k) | (1 = w)py” + (75 — 70(m))prpy” | -
Equalizing profits The equalization of profits lead to:
_1 1 _1] _1
(pL — k) [(1 —w)p” + (m —w0(m))prpye | = (1—w)(pv — K)py” [1 — prrf(7)],
_1 1] _
< (pr — (1 — o + omprd)py) [(1 —w)p.° + (m — 1) pvpy| = pu(l—w)(1—(1—0+omprld))p,
) -
= (0= (1= o amput) (=)™ + (g = ndr] = (1= wolt — mput)?
The second equation is provided by:
a;ipr, = A(0)
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and therefore:

51— 8)(p = w(1 = mpw)

PL= " 80— 6wl — )

This yields:

(1-B81=0)w(l—=m)pr = B —=0)(mpr+ (1 —m)py —w(l —7)py)
— (1-B(1-0wd—-m)p=7p1-0)(m¢+ (1 —m)(1—w)).

the second equation on the supply side.

C Proofs of Section 4

C.1 Proof of Lemma 7

1
By setting ¢, = 1y and e= ﬂi, we have the following demand equations

1

i (pu, pu) = aepy 5t exp(&,), .
r (pu, pr) = (« pL 7er+ — 504pU §) exp(&,),
vy (pr,pr) = (« pL 5t + 0155 5aPU _) exp(&y),
2 (pr,pu) = (@%py e — papy*2) exp(€,).
Taking logs:
log x; (pu, pv) = —}7 Ino — %lnpU + log(ey) + ft,
log x; (pv,prL) = %lna— ilan—f—log(s (zf_a)%§>+§t’
logzy (pr,pr) = —=Ina — LInpy + log(e, + £ (p—;)%g) +¢&,,
log zy (pr, pv) = %lna — ilnpy + log(e; — g) &,

We log linearize the terms log(e;) around log(E(e;)) that is:

log(Ee; + (61 — Eey)) = log(Fey) + gt;—jgt,
og(ee + 75 (00)t) = tog(Fey+ (Pt + + ‘_JE(_ e
log(e; + p—éé(}%)ig) = log(Ee; + p—éé(]];—; og) + Bet 2 E(Z);é,
log(e; — pe) = log(Ee; — pe) + ﬁ
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1
By Setting v= = = 27 and & = =ha 4 Jog(Ee;) we obtain the system of equations displayed in
Enf
Lemma 7 in which: t

E(UU) & Fey
t Egt )
Et
(UL) o Eé‘t
€ a o (pL\L,)’
Et
(LL) Ee;
€ B pS (pLN\L )’
1+ 550y
Et
(LU) Eey
Et - )
1—pv

all of mean zero by construction.
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C.2 Tables

Table 7 (part 1):

Variables

In py
Inpyg,

ayr

0
arr

1
arr

2
arr

3
arr

4
arp,

5
arr

6
arr

7
arr

8
arr

9
QT

10
arr

11
arr

12
arr

13
arr

14
arr,

15
arr

16
arr

17
arr

18
arr

19
arr,

(1)
In Tht
-1.974%%*
(0.341)
-2.796%**
(0.0865)
-0.156%**
(0.0603)
-0.211%%*
(0.0592)

(2)
In Tht
-3.148%%*
(0.124)
-2.816%**
(0.0630)
0.0383**
(0.0169)
-0.0217
(0.0141)
0.00564
(0.0147)

3)

In Tht
-3.072%**
(0.116)
-2 TTIH*X
(0.0577)
0.0356**
(0.0159)
-0.0230*
(0.0138)
0.00226
(0.0144)
0.0123
(0.0159)

64

(4)
In Tht
-3.039%**
(0.107)
-2.805%**
(0.0519)
0.0333**
(0.0148)
-0.0259*
(0.0134)
-0.000236
(0.0140)
0.00628
(0.0155)
-0.0136
(0.0171)
-0.00545
(0.0191)
0.0166
(0.0219)

(5)

In Tht
-3.048%**
(0.103)
-2.823%**
(0.0500)
0.0328**
(0.0145)
-0.0266**
(0.0133)
-0.000682
(0.0139)
0.00506
(0.0155)
-0.0141
(0.0171)
-0.00586
(0.0191)
0.0159
(0.0219)
0.0117
(0.0247)
-0.0406
(0.0265)
-0.0449
(0.0293)
-0.0163
(0.0333)

(6)
In Tht
-3.0817%**
(0.101)
-2.867***
(0.0486)
0.0282**
(0.0142)
-0.0290%*
(0.0132)
-0.00347
(0.0139)
0.00233
(0.0154)
-0.0160
(0.0170)
-0.0103
(0.0190)
0.0118
(0.0219)
0.00798
(0.0246)
-0.0411
(0.0264)
-0.0456
(0.0292)
-0.0194
(0.0332)
-0.0267
(0.0348)
0.0122
(0.0418)
0.0432
(0.0427)
-0.137%%*
(0.0492)
-0.0226
(0.0466)
-0.0182
(0.0509)
0.0418
(0.0555)
0.0540
(0.0575)
-0.0742
(0.0629)
-0.0329
(0.0660)




Table 7 (part 2):

M @) 3) () (%) (©)
Variables In zp, In zp, In zp, Inzy; In x5 Inxp
%, 0.0669%*  0.0706***  0.0734%%*  0.0853%F%  0.0883%F%  0.0002%%*
(0.0180)  (0.0160)  (0.0157)  (0.0153)  (0.0152)  (0.0152)
aty 0.0806%*%  0.0775%5  0.0849%%*%  (.0873%%*  0.0887**
(0.0186)  (0.0182)  (0.0179)  (0.0178)  (0.0178)
iy 0.0493%F  0.0573%F%  0.0604%*F  0.0616+**
(0.0220)  (0.0216)  (0.0216)  (0.0216)
a3y 0.0412%  0.0458*  0.0476*
(0.0249)  (0.0248)  (0.0248)
aty 0.0833%%%  0.0847%F  0.0850%**
(0.0301)  (0.0301)  (0.0300)
Ay 00226 -0.0210  -0.0221
(0.0361)  (0.0360)  (0.0360)
Sy 0.0398  0.0456
(0.0383)  (0.0382)
aly 0.0674  0.0677
(0.0440)  (0.0439)
od 0.0379  0.0352
(0.0483)  (0.0483)
ay -5.66e-06  0.00525
(0.0574)  (0.0572)
ol 0.0346
(0.0539)
aktl 0.0335
(0.0610)
gy 0.0631
(0.0706)
a3, 0.0220
(0.0791)
alt -0.0241
(0.0694)
ak, 0.0627
(0.0728)
alt, -0.0599
(0.0844)
alt -0.135
(0.0961)
aly; 0.0755
(0.0959)
ar, 0.167
(0.102)
Year FE yes yes yes yes yes yes
Observations 13,403 23,501 27,731 33837 36,830 39,133
R-squared 0.094 0.099 0.097 0.103 0.104 0.108
Number of hh 1,322 1,468 6]5468 1,468 1,468 1,468

Note: Selected households doing at least 10 purchases in the 3 year period.



Table 10: GMM estimation results (Orangina)

Moments used M1 -M6 M1-M6 M1-M6 M1-M7 M1-M7 M1-—- M7
Lags M 1 2 3 1 2 3

Parameters

o 0.4425 0.4028 0.4192 0.3923 0.3781 0.3413
0.0000 0.0036 0.0039 0.0059 0.0043 0.0067

4] 0.2625 0.2690 0.3204 0.2075 0.2342 0.2674
0.0000 0.0025 0.0030 0.0075 0.0045 0.0071

pv 0.2179 0.2235 0.2349 0.2120 0.2117 0.2065
0.0000 0.0011 0.0013 0.0029 0.0020 0.0031

¢ = f,—g 0.4130 0.4230 0.3988 0.4516 0.4311 0.4920
0.0000 497.93 3010.9 0.7191 0.6420 1.2815

B 0.9778 1.0000 1.0000 0.9599 0.9604 0.9696
0.0000 0.0042 0.0041 0.0131 0.0098 0.0141

X 0.0449 0.0333 0.0357 0.0343 0.0323 0.0264

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w 0.5262 0.5339 0.5202 0.5145 0.5149 0.4252
0.0000 0.0024 0.0025 0.0057 0.0043 0.0056

N 3,584 5,827 7417 3,584 5,827 TALT
P (pw < sn (V) 0.0681 0.0819 0.0747 0.0820 0.0836 0.0911
P = 0) 0.6258 0.6577 0.6805 0.6258 0.6577 0.6805

Note: Standard errors under parameters estimates.

Table 11: GMM estimation results (Orangina)

Moments used M1 - M8 M1 -MS M1-M8 M1-—-M9 M1-M9 MI1-M9
Lags M 1 2 3 1 2 3

Parameters

o 0.3923 0.8070 0.5977 0.3923 0.5356 0.5492
0.0059 0.0088 0.0087 0.0059 0.0092 0.0095

o 0.2075 0.5780 0.4598 0.2075 0.5578 0.4394
0.0075 0.0116 0.0088 0.0075 0.0089 0.0076

pv 0.2120 0.2398 0.1522 0.2120 0.1201 0.2209
0.0029 0.0085 0.0077 0.0029 0.0045 0.0043

O = f,TL, 0.4516 0.4016 0.4786 0.4516 0.3153 0.3598
0.7191 1.8930 4.2682 0.7191 394.85 3.4540

6] 0.9599 1.0000 0.9582 0.9599 0.9991 0.9277
0.0131 0.0000 0.0236 0.0131 0.0264 0.0269

X 0.0343 0.0881 0.0389 0.0343 0.0339 0.0389

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w 0.5145 0.0810 0.0900 0.5145 0.2883 0.3433
0.0057 0.0077 0.0059 0.0057 0.0065 0.0064

N 3,584 5,827 TALT 3,584 5,827 TALT
P (o < sn (X)) 0.0820 0.0369 0.0696 0.0820 0.0815 0.0697
Pan = 0) 0.6258 0.6577  0.6805 0.6258 0.6577  0.6805

Note: Standard errors under parameters estimates.
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Table 12: GMM estimation results (Pepsi)

Moments used M1 -M6 M1-M6 M1-M6 M1-M7 M1-M7 M1-—- M7
Lags M 1 2 3 1 2 3

Parameters

o 0.4013 0.4020 0.4331 0.4663 0.4001 0.3901
0.0000 0.0023 0.0020 0.0081 0.0070 0.0037

4] 0.0075 0.0134 0.2039 0.0000 0.0039 0.1049
0.0000 0.0046 0.0028 0.0000 0.0155 0.0070

pv 0.2001 0.2010 0.2252 0.2009 0.2001 0.2062
0.0000 0.0010 0.0010 0.0051 0.0029 0.0021

¢ = f,—g 0.5701 0.5674 0.4800 0.8282 0.5725 0.5201
0.0000 0.4318 1.9187 0.2110 5.0213 0.1924

B 0.8829 0.8855 0.9957 0.8784 0.8814 0.9151
0.0000 0.0045 0.0045 0.0148 0.0143 0.0096

X 0.0401 0.0399 0.0365 0.0233 0.0399 0.0362

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w 0.5001 0.5015 0.5558 0.2260 0.4998 0.5025
0.0000 0.0026 0.0025 0.0066 0.0072 0.0050

N 2,540 3,993 4,988 2,540 3,993 4,988
P (pnt < 51 (N)) 0.0835 0.0756 0.0776 0.1323 0.0756 0.0778
P(ap = 0) 0.5720 0.6130 0.6421 0.5720 0.6130 0.6421

Note: Standard errors under parameters estimates.

Table 13: GMM estimation results (Pepsi)

Moments used M1 - M8 M1 -MS M1-M8 M1-—-M9 M1-M9 MI1-M9
Lags M 1 2 3 1 2 3

Parameters

o 0.4663 0.4012 0.4050 0.4663 0.4018 0.4047
0.0081 0.0063 0.0048 0.0081 0.0064 0.0049

o 0.0000 0.0430 0.0374 0.0000 0.0442 0.0351
0.0000 0.0086 0.0079 0.0000 0.0088 0.0081

pv 0.2009 0.2015 0.2011 0.2009 0.2014 0.2004
0.0051 0.0030 0.0033 0.0051 0.0029 0.0031

O = f,TL, 0.8282 0.5512 0.5502 0.8282 0.5510 0.5527
0.2110 0.3042 0.3372 0.2110 0.3084 0.3602

6] 0.8784 0.8902 0.8863 0.8784 0.8902 0.8860
0.0148 0.0118 0.0136 0.0148 0.0122 0.0142

X 0.0233 0.0389 0.0399 0.0233 0.0389 0.0399

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
w 0.2260 0.4944 0.4943 0.2260 0.4935 0.4935
0.0066 0.0064 0.0068 0.0066 0.0064 0.0070

N 2,540 3,993 4,988 2,540 3,993 4,933
P (pm < 51 (X)) 0.1323 0.0784 0.0704 0.1323 0.0784 0.0704
Pl = 0) 0.5720 0.6130 0.6421 0.5720 0.6130 0.6421

Note: Standard errors under parameters estimates.
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