
Asymptotic properties of a Nadaraya-Watson 
type estimator for regression functions of 
infinite order

Seok Young Hong 
Oliver Linton

The Institute for Fiscal Studies 
Department of Economics, UCL 

cemmap working paper CWP53/16



Asymptotic properties of a Nadaraya-Watson type

estimator for regression functions of infinite order∗

Seok Young Hong† Oliver Linton‡

University of Cambridge

November 23, 2016

Abstract

We consider a class of nonparametric time series regression models in which the regressor

takes values in a sequence space and the data are stationary and weakly dependent. We pro-

pose an infinite dimensional Nadaraya-Watson type estimator with a bandwidth sequence that

shrinks the effects of long lags. We investigate its asymptotic properties in detail under both

static and dynamic regressions contexts. First we show pointwise consistency of the estimator

under a set of mild regularity conditions. We establish a CLT for the estimator at a point under

stronger conditions as well as for a feasibly studentized version of the estimator, thereby allowing

pointwise inference to be conducted. We establish the uniform consistency over a compact set

of logarithmically increasing dimension. We specify the explicit rates of convergence in terms

of the Lambert W function, and show that the optimal rate that balances the squared bias and

variance is of logarithmic order, the precise rate depending on the smoothness of the regression

function and the dependence of the data in a non-trivial way.
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1 Introduction

Nonparametric modelling is a well established practical tool for analyzing time series data; see for

example Härdle (1990), Bosq (1996), or Fan and Yao (2003) for a comprehensive review. A major

advantage of this approach is that the relationship between the explanatory variables under study,

denoted by X = (X1, . . . , Xd)
ᵀ
, and the response, say Y , can be modelled without assuming any

restrictive parametric or linear structures. One issue with allowing for this extended flexibility is

the curse of dimensionality; Stone (1980, 1982) showed that given a fixed measure of smoothness β

allowed on the regression function the best achievable convergence rate (in minimax sense) n−β/(2β+d)

deteriorates dramatically as the dimension/order d increases.

In a time series context it is often reasonable to model the dependence upon the infinite past.

For example, the AR(d) and ARX(d) models with d = ∞ naturally extends those classical linear

models, and enables the influence of all past information to be taken into account, thereby allowing

for maximal flexibility with regard to the dynamic structure. It can also be very useful for several

semiparametric applications, and for testing the martingale hypothesis or the effi cient market hy-

pothesis in economics, where the conditional mean given all past information E(Yt|Ft−1) is the object

of main interest. It is desirable to be able to nest the linear AR(∞) models, and this is one of our
aims. Not restricting the number of conditioning variables also has an advantage of avoiding the

econometrician’s a priori choice of the order d based on some order determination principles whose

validity is often subject to question in practical situations. For these reasons, we study a class of

nonparametric time series regression models of infinite order that covers both static and dynamic

regression cases, and in particular includes the autoregression framework as a special case.

Pagan and Hong (1990) proposed studying the nonparametric regression case where d→∞ in the

context of the econometric analysis of risk models. Linton and Sancetta (2009) tackled the estimation

problem in the context of an autoregressive model and established uniform almost sure consistency for

stationary ergodic sample observations. There is a vast literature on statistical research on functional

data (typical examples include curves and images), which are infinite-dimensional in nature. Ferraty

and Vieu (2002) first studied the case where the regressor was function valued. Masry (2005) provided

a rigorous treatment of nonparametric regression with dependent functional data in which X lies in

a general semi-metric space, establishing the central limit theorem. Mas (2012) derived the minimax

rate of convergence for nonparametric estimation of the regression function with strictly independent

and identically distributed covariates. Ferraty and Vieu (2006) detailed a number of extensions and

gave an overview of nonparametric approaches in the functional statistics literature. Geenens (2011)

gave an up-to-date accessible summary of the literature on nonparametric functional regression,

and introduced the term curse of infinite dimensionality, which reflects the evident diffi culties in

nonparametric estimation of infinite-dimensional objects due to extreme data sparsity. We discuss

in the next section the difference between the functional data framework and our discrete time

framework.
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One major challenge in the infinite-dimensional setting is that the usual notion of density p(·) does
not exist. Since there is no σ-finite Lebesgue measure in infinite-dimensional spaces, the Lebesgue

density (with respect to the infinite product of probability measures) of the regressor cannot be

defined via the Radon-Nikodym theorem. Consequently, standard asymptotic arguments for kernel

estimators are no longer valid, for example, Bochner’s lemma whereby under suitable regularity

conditions, for j = 1, 2

1

hd
E

[
Kj
(
x−X
h

)]
=

∫
Kj(u)p(x− uh) du→ p(x)‖K‖jj as h→ 0 (1)

where K is a multivariate kernel function (see subsection 2.2 below). Hence, classical limiting theories
in nonparametric literature cannot be readily extended.

In this paper, we consider an infinite dimensional analogue of the classical nonparametric regres-

sion approach. We propose a Nadaraya-Watson type kernel estimator and investigate its large sample

properties. In particular, we establish both pointwise and uniform consistency of the estimator and

establish its asymptotic normality under both static and dynamic regression contexts under α-mixing

and near epoch dependent sample observations. We impose some regularity conditions on the vector

bandwidth sequence, and we derive the rate of convergence via specifying the small deviation prob-

abilities. The pointwise and uniform rates are logarithmic, which reflects the diffi culty of capturing

nonparametrically the effect of an infinite number of lags. Our pointwise rate is consistent with the

rate in Mas (2012) who derived under strict cross-sectional and temporal independence.

For notations, we define an ' bn by an = bn + o(1), and cn ∼ dn by equivalence of order between

the two sequences cn and dn. Also, f � g means there exists some constant c > 0 such that

limn→∞ f(n)/g(n) ≤ c. The term ‘stationarity’is taken to mean strict stationarity. Throughout, C

(or C ′, C ′′) refers to some generic constant that may take different values in different places unless

defined specifically otherwise.

2 Some Preliminaries

We consider the regression model

Y = m(X) + ε, (2)

where the regressor X = (X1, X2, . . . .)
ᵀ
is a random element taking values in some sequence space

S, the response Y is a real-valued variable, and the stochastic error ε is such that E(ε|X) = 0 a.s.

The objective is to estimate the Borel function m(·) = E(Y |X = ·) based on n random samples

observed from a strictly stationary data generating process {(Yt, Xt) ∈ R× S}t∈Z having some weak
dependence structure (see section 2.1 below).

This setting is related to the usual framework adopted for functional data, which has been widely

studied by statisticians, see Ramsey and Silverman (2002). Recently, successful attempts have been

made to develop theories for nonparametric inference in the functional statistics literature; Ferraty
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and Romain (2010) gives a comprehensive review. A major issue in this field of research lies in

extending the statistical theories applicable to Rd to function spaces. In this literature, attention is
usually on smooth functions that are approximated and reconstructed from finely discretised grids

on some compact interval. In contrast, the setup in our model (2) can be viewed as looking at a

countable number of discrete observations. Such a difference is reflected by the fact that the observed

data is taken to be a discrete process X = (Xs) with unbounded s ∈ Z+ so that S = {f |f : N→ R},
rather than X = (X(s)) with s ∈ [0, T ]k so that S = {f |f : [0, T ]k ⊂ Rk → R}, e.g. curves if k = 1,

images if k ≥ 2. The discrete nature of our setting has several fundamental distinctive features that

allow us to look further into many specific practical issues.

An immediate consequence of our framework is that the tuning parameter can be imposed on each

and every dimension, allowing one to control the marginal influence of the regressors. For instance

when it is sensible to postulate that the influence of distant covariates is getting monotonically

downweighted, one may set the marginal bandwidths to increase in the lag horizon so as to impose

higher amount of smoothing. Depending on the nature of the regressor, S may be taken as the space

of all infinite real sequences R∞ :=
∏∞

j=1Rj formed by taking Cartesian products of the reals, or its
various linear subspaces such as `∞, `p, c. We propose to take S = R∞ so as to refrain from imposing
any prior restrictions with regard to the choice of the regressor; for example, taking S to be the space

of bounded sequences excludes the possibility of the regressors with infinite supports (e.g. Gaussian

process).

2.1 Dependence structure and leading examples

A distinctive characteristic of time series data is temporal dependence between observations. In the

nonparametric time series literature, Rosenblatt (1956)’s α-mixing has been the de facto standard

choice due to it being the weakest among the class of mixing-type asymptotic independence condi-

tions. Roussas (1990) established pointwise and uniform consistency of the local constant estimator

under this condition, respectively, while Fan and Masry (1992) established asymptotic normality.

The α-mixing condition has also been widely used in the context of dependent functional observa-

tions, see for instance Ferraty et al. (2010), Masry (2005), and Delsol (2009).

Definition 1. A stochastic process {Zt}∞t=1 defined on some probability space (Ω,F , P ) is called

α-mixing (cf. ‘jointly’α-mixing if Zt is Rd-valued, with d ∈ (1,∞]) if

α(r) := sup
A∈Ft−∞,B∈F∞r+t

|P (A ∩B)− P (A)P (B)|

is asymptotically zero as r → ∞, where F ba is the σ-algebra generated by {Zs; a ≤ s ≤ b}. In par-
ticular, we say the process is algebraically (respectively exponentially) α-mixing if there exists some

c, k > 0 such that α(r) ≤ cr−k (respectively if there exists some γ, ς > 0 such that α(r) ≤ exp(−ςrγ)).
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The popularity of the α-mixing condition (note the modifier α- will occasionally be omitted if

no confusion is likely) in the literature stems from the fact that it is easy to work with, see e.g.

Doukhan (1994) or Rio (2000) for a comprehensive survey. However, there are several limitations

that have been pointed out in the literature. First, it is a rather strong technical condition that is

hard to verify in practice. Second, some basic processes are not mixing. e.g. AR(1) with Bernoulli

innovations, Andrews (1984).

We turn to our setting. In the static regression case it is appropriate to assume the mixing

condition, but in the dynamic case this condition is not generally applicable as we now explain.

Recall that the object of estimation is the conditional mean E(Yt|F), cf. (2), where the information

set F is determined by the nature of the conditioning variables. There are two leading cases: the

first case is the static regression where the information set is taken to mean σ(Xjt; j = 1, 2, . . .), the

σ-algebra generated by the exogenous marginal regressors. The second case is the autoregression,

whereXtj = Yt−j for all j, in which case F = Ft−1 represents σ(Ys; s ≤ t−1), the σ-algebra generated

by the sequence of the lags of the response (Ys)s≤t−1. In fact, as for the latter framework we may

consider a more general setup, i.e. a dynamic regression, where the information set is taken to be

F = σ(Xjs, Ys; s ≤ t− 1) for some j. Details are formally given in Assumptions A below.

In the static regression case the usual joint α-mixing condition can be assumed on the sample

data {Yt, Xt} as is usually done; since marginal regressors are observed at the same time t: Xt =

(X1t, X2t, . . .)
ᵀ, assuming joint dependence does not require additional adjustments. Indeed, joint

mixing implies that both marginal component processes and any measurable function thereof are

mixing.1 In this paper, we do not necessarily require independence between component processes

{Xjt}, j = 1, 2, . . .; later we specify to what extent some dependence can be allowed (see Assumption

C2). It will turn out that the requirement is mild and allows suffi cient generality in application.

Moving on to the dynamic regression setting, since the regressors are taken to be the lags of

the response and/or a covariate, measurable functions of Xt depend on infinite time-lags and hence

are not necessarily mixing.2 Therefore an alternative set of dependence conditions is necessary to

establish asymptotic theories for the second framework. We shall adopt the notion of near epoch

dependence due to Ibragimov (1962) as for the dynamic regression setting and deal with two leading

cases separately.

Definition 2. A stochastic process {Zt}∞t=1 defined on some probability space (Ω,F , P ) is called

near-epoch dependent or stable in L2 with respect to a strictly stationary α-mixing process {ηt} if
the stability coeffi cients v2(r) := E|Zt − Zt,(r)|2 is asymptotically zero as r → ∞, where Zt,(r) =

Ψr(ηt, . . . , ηt−r+1) for some Borel function Ψr : Rr → R.
1The converse is not necessarily true unless the marginal processes are independent to each other, see Bradley

(2005, Section 5).
2Except for some very special cases; Davidson (1994, Theorem 14.9) gives a set of technical conditions under which

a process with infinite (linear) temporal dependence is α-mixing.
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A process that is near epoch dependent on a mixing sequence is influenced primarily by the

“recent past”of the sequence and hence asymptotically resembles its dependence structure; see e.g.

Billingsley (1968), Davidson (1994), or Lu (2001) for details. Andrews (1995) established uniform

consistency of kernel regression estimators under near epoch dependence conditions. Following the

usual convention, e.g. Bierens (1983), we shall take Ψr(ηt, . . . , ηt−r+1) ≡ E(Zt|ηt, . . . , ηt−r+1). In

section 3 it will be shown that under suitable conditions similar asymptotic theories can be derived

for both static and dynamic regression frameworks.

2.2 Local Weighting

In this section we fix the notions of local weighting and the measure of closeness between the data

objects. Let K : [0,∞) → [0,∞) =: R+ be a univariate density function and for an element u of a

normed sequence space, let

K(u) := K(‖u‖). (3)

In our setting the properties of K are crucially important. We now group the kernel functions into

three subcategories depending on how they are generated. The first two, referred to as Type-I and

Type-II kernels in Ferraty and Vieu (2006) generalize the usual ‘window’kernels and monotonically

decreasing kernels in finite dimension, respectively. Both types of kernels are continuous on a com-

pact support [0, λ].

Definition 3. A function K : [0,∞)→ [0,∞) is called a kernel of type−I if it integrates to 1, and
if there exist real constants C1, C2 (with 0 < C1 < C2) for which

C11[0,λ](u) ≤ K(u) ≤ C21[0,λ](u), (4)

where λ is some fixed positive real number. A function K : [0,∞) → [0,∞) is called a kernel of

type−II if it satisfies (4) with C1 ≡ 0, and is continuous on [0, λ] and differentiable on (0, λ) with

the derivative K ′ that satisfies

C3 ≤ K ′(u) ≤ C4

for some real constants C3, C4 such that −∞ < C3 < C4 < 0.

The definition above suggests that the uniform kernel on [0, λ] is a type-I kernel, and the Epanech-

nikov, Biweight and Bartlett kernels belong to the class of Type-II kernels. Some of those with

semi-infinite support, for example (one-sided) Gaussian, are covered by the last group, which we will

call the Type-III kernels.

Definition 4. A function K : [0,∞) → [0,∞) is a kernel of type−III if it integrates to 1, and if
it is of exponential type; that is, K(r) ∝ exp(Crβ) for some β and C.

6



2.3 Small deviations

The small ball (or small deviation) probability plays a crucial role in establishing the asymptotic

theory. Let S∗ be a sequence space equipped with some norm ‖.‖; then the small ball probability of
an S∗-valued random element Z is a function defined as

ϕz(h) := P (‖z − Z‖ ≤ h) , (5)

where h ∈ R+. We shall call the probability centered if z = 0 (in which case we write ϕ(h)), and

shifted (with respect to some fixed point z ∈ S∗) if otherwise. The relation between the two quantities
cannot be explicitly specified in general, and will be given in terms of the Radon-Nikodym derivative

(See Assumption D1 below).

The name small ball stems from the fact that we are interested in the asymptotic behaviour of

ϕz(h) as h tends to zero. The function can be thought of as a measure for how much the observations

are densely packed or concentrated around the fixed point z with respect to the associated norm and

the reference distance h. From the definition it is straightforward to see that ϕz(h) → 0 as h → 0,

and that nϕz(h) is an approximate count of the number of observations whose influence is taken into

account in the smoothing procedure. When Z is a continuous random vector of fixed dimension d

with density p(·) > 0, it can be readily shown that the shifted small ball probability (with respect

to the usual Euclidean norm) is given by

ϕz(h) = Vdh
dp(z) = O(hd), (6)

where Vd = πd/2/Γ(d/2 + 1) is the volume of the d-dimensional unit sphere.

However, when Z takes values in an infinite-dimensional normed space, it is diffi cult to specify

the exact form of the small ball probability, and its behaviour varies depending heavily on the nature

of the associated space and its topological structure. Due to the non-equivalence of norms in infinite

dimensional spaces, it is intuitively clear that the “speed”at which ϕz(h) converges to zero is affected

by the choice of the norm ‖.‖. Nonetheless, a rapid decay is expected in general irrespective of the
choice of the norm due to the extreme sparsity of data in infinite-dimensional spaces.

One possible example of S∗ is (`r, ‖.‖r), the space of r-th power summable sequence equipped with
the `r-norm; the centred small ball behaviour of sums of weighted i.i.d. random variables is widely

studied in the literature, see for example Borovkov and Ruzankin (2008) and references therein. In

this paper, we will focus our main attention on the case of r = 2 (and take ‖.‖ to mean ‖.‖2 unless

specified otherwise). Nevertheless, it is worth noting that the results derived in this paper can be

extended to the case of r > 2 as long as the regularity conditions are adjusted appropriately.

Writing the expected value of the kernel in terms of the small ball probability

EK
(
z − Z
h

)
= EK

(
‖z − Z‖

h

)
=

∫
K(u) dP‖z−Z‖/h(u) =

∫
K(u) dϕz(uh), (7)
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we are able to bypass the diffi culties mentioned in the introduction, and to establish the convergence

of the integrals without explicitly requiring the existence of the Lebesgue density.

Lemma 1. Ferraty and Vieu (2006, Lemma 4.3 & 4.4). Suppose ‖.‖ is some semi-norm defined on a

function space. If K is type-I, then it satisfies

Cj
1 ≤

1

ϕz(hλ)

∫ λ

0

Kj(v) dϕz(vh) ≤ Cj
2 , j = 1, 2 (8)

where C1, C2 > 0 are as defined in Definition 3. When the kernel K is type-II, if

∃ ε0 > 0, C5 > 0 s.t. ∀ε < ε0,

∫ ε

0

ϕx(u)du > C5εϕx(ε) (9)

then we have

Cj
6 ≤

1

ϕz(hλ)

∫ λ

0

Kj(v) dϕz(vh) ≤ Cj
7 , j = 1, 2 (10)

where the constants C6 = −C5C4 and C7 = sups∈[0,λ] K(s) are strictly positive.

Under the regularity conditions of Lemma 1, (8) and (10) hold for every h > 0, so it follows that

for any kernels of type-I and II:

Corollary 1. If the kernel K is either type-I or type-II, then for j = 1, 2 we have

1

ϕz(hλ)
E

[
Kj
(
z − Z
h

)]
−→ ξj as h→ 0+, (11)

where ξ1 and ξ2 are some strictly positive real constants.

This result can be seen as an infinite-dimensional analogue of Bochner’s lemma (1): i.e., for

Z ∈ Rd, h−dEK((z − Z)/h) → p(z) > 0. It is obvious that ξj is bounded below and above by C
j
1

and Cj
2 , respectively (or C

j
6 and C

j
7 depending on the choice of the kernel). With specific choices of

kernels and regressors we may be able to specify the exact values of the constants in some certain

cases. For example, it is straightforward to see that ξ1 = 1/λ and ξ2 = 1/λ2 whenK is uniform kernel.

Remarks. (i) Lemma 1 reveals the importance of condition (9) in constructing the asymptotics

when the kernel is of type-II. Whereas the condition is widely assumed in the functional statistics

literature for that reason, Azais and Fort (2013) proved that it necessarily restricts the variable

Z to be of finite dimension. In other words, whenever (9) is valid, the topology that governs the

concentration properties of Z accounts effectively only for finite dimension. An example (cf. Section

13.3.3 of Ferraty and Vieu (2006)) includes the case where Z is associated with the semi-norm

‖y‖ := (y1, . . . , yp, 0, 0, . . .) for some positive integer p < ∞, where y ∈ R∞. Since this severely
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restricts the applicability of our paper, we shall not consider the case of Type-II kernels. (ii) A

natural question one may then ask is whether (11) would hold for kernels with semi-infinite support

such as the Type-III kernels. In the finite Rd-framework, it is well known that a set of assumptions
including ‖u‖dK(u) → 0 as u → ∞ is suffi cient for showing (1), see for instance Parzen (1962,

Theorem 1A) and Pagan and Ullah (1999, Lemma 1). However, in the infinite-dimensional setting

the answer is negative in most usual cases where the kernel is of exponential type (e.g. Gaussian

kernel). Whereas the lower bound of the limit can be easily constructed via Chebyshev’s inequality:

with reference to Definition 4, writing V = ‖z−Z‖β, δ = hβ and letting cδ be some function of δ we

have

(0 <) exp(−cδδ) ≤ [P (V ≤ δ)]−1E exp(−cδV ). (12)

So the upper bound may not exist, and the rate at which the small ball probability decays to zero

may dominate the speed at which the integral (7) converges to zero. This claim cannot be formally

verified for all general cases because (as aforementioned) there is no unified result for the asymptotic

behaviour of small deviations available. Nevertheless, the idea can be sketched in the common case

where the asymptotics of the distribution function (i.e. small deviation) is of exponential order:

P (V ≤ δ) ∼ exp(−Cδ−θ) as δ → 0 for some constants C and θ > 0. By de Bruijn’s exponential

Tauberian theorem (see Bingham et al. (1987), Li (2012)), a necessary and suffi cient condition for

such a case is the following limiting behaviour of the Laplace transform near infinity:

E[exp(−cδV )] ∼ exp
(
− C ′ · cθ/(1+θ)

δ

)
as cδ →∞

for some constant C ′ > 0. With V = ‖z − Z‖2, δ = h2, cδ = 2−1h−2 (which corresponds to the

case of the Gaussian kernel) the difference in the order of convergence suggests that the right hand

side of (12) is unbounded, and that the limit (11) diverges. Due to this reason, we shall confine our

attention to compactly supported kernels in this paper.

2.4 Bandwidth Matrix and covariates

We will be estimating the regression operator at a point x ∈ R∞ with an R∞-dimensional regressor
X = (X1, X2, . . .)

ᵀ
. We define a bandwidth matrix H := diag(h) = diag(h1, h2, . . .) ∈ R∞×∞. We

shall require that a norm ‖.‖ can be admitted to the weighted regressor values and the weighted point,
and for this the bandwidth sequence must be chosen appropriately. In particular, we shall assume

that

H = hD = h× diag(φ1, φ2, . . .), (13)

where D ∈ R∞×∞ and h ∈ R. By Kolmogorov’s three-series theorem, the sequence of weighted
regressors {φ−1

j Xj} is square summable, with probability one, provided that the marginal regressors
X ′j are independent with finite variance and satisfy

∞∑
j=0

Emin
{

1, φ−2
j X2

j

}
<∞, (14)
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so that (φ−1
1 X1, φ

−1
2 X2, . . .)

ᵀ
=: Z is (`2, ‖.‖2)-valued. In terms of the autoregressive framework the

sequence φj can be interpreted as non-decreasing weights that represent the “relative influence”of

the marginal regressors, which diminishes as lags get further apart.

For this purpose we assume from now on that the bandwidth-weighted X and x (i.e. Z and

z := (φ−1
1 x1, φ

−1
2 x2, . . .)

ᵀ
, respectively) are `2-valued3 and normed with ‖.‖ = ‖.‖2. In view of this

assumption, (with an abuse of notation) we can extend the usual definition of shifted small deviation

to account for the generalized support [0, λ] and bandwidth vector h = (h1, h2, . . .)
ᵀ
:

ϕx(hλ) := P
(
‖H−1(x−Xt)‖ ≤ λ

)
= P

(
‖D−1(x−Xt)‖ ≤ hλ

)
. (15)

Equivalently, ϕx(hλ) = P (Xt ∈ E(x, hλ)), where E is the infinite-dimensional hyperellipsoid centred
at x ∈ R∞, and λ is as defined in section 2.2. Clearly, ϕx(hλ) = ϕz(hλ).

For later reference, we also define the joint small ball probability of the regressor vectors observed

at different times t and s as the joint distribution

ψx(hλ; t, s) := P
(
(Xt, Xs) ∈ E(x, λh

)
× E(x, λh)

)
. (16)

3 The Estimator

We observe a sample {Yt, Xt}nt=1 with Yt ∈ R andXt ∈ R∞.We propose to estimatem(x) = E(Y |X =

x), x ∈ R∞ by the following local constant type estimator:

m̂(x) :=

∑n
t=1K

(
H−1(x−Xt)

)
Yt∑n

t=1K
(
H−1(x−Xt)

) ≡ ∑n
t=1 K

(
‖H−1(x−Xt)‖

)
Yt∑n

t=1 K
(
‖H−1(x−Xt)‖

) . (17)

In the static case we may observe an infinity of regressors, but in the autoregression case we essentially

observe only {Y1, Y2, . . . , Yn} rather than the full infinity, see Assumptions A below. Hence for

practical applications, one may employ a truncation argument on the regressor (as will be done in

section 3.4 - albeit with a different purpose) and let the effective dimension τ of the regressor Xt to

increase in n.

The estimator can be viewed as an infinite-dimensional generalization of the standard multivariate

local linear estimator, and is a special case of the one in Ferraty and Vieu (2002), Masry (2005) and

references therein for functional data. In the following section we will examine some asymptotic

properties of the estimator.

3This gives a mild restriction on the range of possible points at which the estimation is made; i.e. x ∈ R∞ is such

that
∑

j j
−2px2j <∞.
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4 Asymptotic Properties

In this section we introduce the main results of our paper, deriving some large sample asymptotics

of the proposed estimator (17). We establish consistency in both the pointwise and uniform sense,

and also asymptotic normality. All proofs are detailed in the appendix.

We consider two different cases: (1) the static regression and (2) the dynamic regression. Below

we specify two sets of dependence conditions, either of which will be assumed on the data generating

process of the sample observations. Assumption A1 corresponds to the static regression case where

we have exogenous regressors that are jointly observed in time in a weakly dependent manner. No

restriction is needed as regards the dependence structure between the marginal regressors, although

certain additional conditions can be potentially imposed at the later stage (see Assumptions C be-

low). The second option A2 concerns the dynamic regression framework. In this case, the notion

of near epoch dependence is adopted to describe the dependence structure of the processes defined

as functions of the response variables. The assumptions below suggest that there is a trade-off be-

tween the degree of mixing and the possible order of moments, 2+δ, we allow on the response variable.

Assumptions A

A1. The marginal regressors X1t, X2t, X3t, . . . are exogenous variables, and the sample data {Yt, Xt}nt=1

= {Yt, (X1t, X2t, . . .)}nt=1 is stationary and jointly arithmetically α-mixing with rate k > (2δ +

4)/δ, where δ is as defined in Assumption B4 below.

A2. Each regressor is either a lag of the response variable Yt or of a covariate Vt, i.e. Xjt = Yt−j

or Xjt = Vt−j, j ∈ N, and {Yt, Vt}nt=1 is stationary and arithmetically α-mixing with rate

k > (2δ+ 4)/δ. Also, the process Kt := K(‖H−1(x−Xt)‖) is near epoch dependent on (Yt, Vt),

and there exists some r = rn →∞ such that the rate of stability for Kt denoted v2(rn) = v2(r)

satisfies

v2(r)1/2[ϕx(hλ)]−(2δ+3)/(2δ+2)n1/(2(δ+1)) → 0 as n→∞. (18)

Remark. Our model under Assumption A2 can be viewed as a generalization of the NAARX model

in Chen and Tsay (1993). The framework nests both the fully autoregressive framework in which

Xjt = Yt−j for all j, and the case where the regressor vector consists only of the lags of a covariate

Vt.

4.1 Pointwise consistency

Pointwise consistency of the local constant estimator was first studied byWatson (1964) and Nadaraya

(1964) for i.i.d data with d = 1. Their result was extended to the multivariate case (finite dimen-

sion) by Greblicki and Krzyzak (1980) and Devroye (1981). Robinson (1983) and Bierens (1983) were

amongst the earliest papers that worked on consistency of the estimator with dependent observations
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(both static regression and autoregression were allowed in their frameworks), followed by Roussas

(1989), Fan (1990), and Phillips and Park (1998) to name a few out of numerous papers. The case

of the functional regressor was first studied by Ferraty and Vieu (2002).

In this section we establish the pointwise weak consistency of the estimator (17) with dependent

data satisfying either A1 or A2. A set of assumptions required for the theory is now introduced, and

some introductory arguments are briefly sketched.

Assumptions B

B1. The regression operator m : R∞ → R is continuous in some neighbourhood of x

B2. The marginal bandwidths satisfy hj = hj,n → 0 as n → ∞ for all j = 1, 2, . . ., where

diag(h1, h2, . . .) = diag(h) = H is the bandwidth matrix, and the small ball probability obeys

nϕx(hλ) → ∞ for every point x ∈ R∞, where ϕx(hλ) := P (‖H−1(x − X)‖ ≤ λ) → 0 as

n→∞.

B3. The kernel K is type−I

B4. The response Yt satisfies E
(
|Yt|2+δ

)
≤ C <∞ for some C, δ > 0.

B5. The joint small ball probability (16) satisfies ψx(hλ; i, j) ≤ Cϕx(λh)2, ∀i 6= j.

B6. The conditional expectation E
(
|YtYs||Xt, Xs

)
≤ C <∞ for all t, s.

Remark. The continuity assumption B1 is necessary for asymptotic unbiasedness of the esti-

mator. It will be shown that the estimator is unbiased at every point of continuity, and that the

rate of convergence for the bias term can be specified upon imposing further smoothness condition

on the regression operator, see later. Assumption B2 can be thought of as an extension of the usual

bandwidth conditions that are assumed in finite-dimensional nonparametric literature, cf. (6). As

discussed before, nϕx(hλ) can be understood as an approximate number of observations that are

“close enough”to x. Therefore, it is sensible to postulate that nϕx(hλ) → ∞ as n → ∞, meaning
that the point x is visited many times by the sample of data as the size of the sample grows to infin-

ity. This is in line with the usual assumption that nhd →∞ when X ∈ Rd, in which case the small
ball probability is given by ϕx(h) ∝ hdpX(x) as noted in (6). Conditions B5 and B6 are imposed to

control the asymptotics of the covariance terms. The validity of condition B5 can be easily seen in

the Rd frameworks; for relevant discussions, see Ferraty and Vieu (2006, Remark 11.2).

To sketch the idea, we write Kt := K(‖H−1(x −Xt)‖) for the sake of simplicity of presentation
(note its dependence upon Xt), and express the estimator (17) as

m̂(x) :=

∑n
t=1 K

(
‖H−1(x−Xt)‖

)
Yt∑n

t=1 K
(
‖H−1(x−Xt)‖

) =
1
n

∑n
t=1

Kt
EK1

Yt
1
n

∑n
i=1

Kt
EK1

=
m̂2(x)

m̂1(x)
. (19)

12



We then employ the following decomposition:

m̂(x)−m(x) =
m̂2(x)

m̂1(x)
−m(x) =

m̂2(x)−m(x)m̂1(x)

m̂1(x)

=
Em̂2(x)−m(x)Em̂1(x)

m̂1(x)
+

[m̂2(x)− Em̂2(x)]−m(x)[m̂1(x)− Em̂1(x)]

m̂1(x)
, (20)

where clearly Em̂1(x) = 1. Below we show consistency by proving that the ‘bias part’Em̂2(x)−m(x)

and the ‘variance part’ [m̂2(x) − Em̂2(x)] − m(x)[m̂1(x) − 1] are both negligible in large samples.

As for the latter term, it suffi ces to show the mean squared convergence of m̂2(x)− Em̂2(x) to zero

because m̂1(x)→P 1 then readily follows.

Theorem 1. Suppose that Assumptions B1-B5 hold. Then the estimator (17) with sample observa-

tions {Yt, Xᵀ
t }nt=1 satisfying either A1 or A2 is weakly consistent for the regression operator m(x).

That is, as n→∞
m̂(x)

P−→ m(x). (21)

In the following section, we present the rates of convergence and asymptotic normality under

additional regularity conditions.

4.2 Asymptotic Normality

Earlier studies on the limiting distribution of the standard Nadaraya-Watson estimator can be traced

back to Schuster (1972) and Bierens (1987), where the case of univariate and multivariate regressors

was considered, respectively. The case of dependent samples was studied in Robinson (1983) and

Bierens (1983), Masry and Fan (1997), and by many others under various model setups and different

regularity conditions. Masry (2005, Theorem 4) and Delsol (2009) established general distribution

theories for Nadaraya-Watson type estimators in a semi-metric space. Our results are different from

those in two respects. First, the difference of our framework from the functional literature discussed

in the beginning of Section 2 gives us some additional flexibility. Second, whereas the final results

of many existing papers were given in terms of abstract functions, our results are presented with an

explicit rate of convergence.

The primary objective of this section is to outline the main theory and some interesting con-

sequences thereof. Both cases of the independent marginals (in other words, when the marginal

regressors Xj are independent and identically distributed) and also a dependent framework are al-

lowed. Specifically, we introduce how independence restriction can possibly be moderated to allow

for some mild dependence structure. In particular, the second condition in Assumption C below

specifies the extent to which certain cross-sectional dependence can be allowed on the marginal re-

gressors in our theory while still allowing for specification of the exact form of the convergence rate

of the estimator.
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Assumptions C. For every fixed t, the real-valued stochastic process formed by the marginal regres-

sors {Xjt}∞j=1 is either:

C1. independent and identically distributed over j with EX4
jt ≤ C <∞ ∀j, or

C2. stationary (over j), and admits a moving average representation:

Xjt =
∞∑

u=−∞
auεj−u,t, (22)

where au is a square summable sequence, and {εjt}j is an independent and identically distrib-
uted standard Gaussian sequence.

Remark. In either case the marginal regressors are required to be identically distributed over

j; an additional distributional assumption will be imposed in D2 below. Nonetheless, the possible

degree of dependence allowed in C2 is very mild and general, since an equivalent condition of having

the representation for a Gaussian process is simply the existence of the spectral density. Note that

(22) includes the causal (one-sided) MA representation as a special case. If a stationary stochastic

process {Xjt}j is α-mixing (over j), then it always has such a representation (i.e. au = 0, ∀u < 0)

provided it is Gaussian. This is because any α-mixing process is regular4 by definition, so is linearly

regular when it is Gaussian, and hence (with stationarity) admits the Wold decomposition with

independent Gaussian innovations by Corollary 17.3.1 of Ibragimov and Linnik (1971).

Note that each C1 and C2 is consistent with the case allowed in Assumption A1 and A2, re-

spectively (because in the latter case the process {Xjt}j consists of temporal lags of the response
variable and/or a covariate which form a mixing process by Assumption A2), although the depen-

dence structure specified in C2 can be allowed also for the static case (i.e. A1). This suggests that

there is absolutely no need to assume independence between marginal regressors in our model (2)

under Gaussianity, and hence a wide flexibility is allowed in terms of the model setup. In particular,

the convergence rates of our estimator will be shown to be the same (upto some constant factor in

the limiting variance) in both cases C1 and C2. Lastly, the requirement of a finite 4th moment is

imposed to ensure that the squared marginal regressors have finite second moments due to the rea-

sons to be clarified below; obviously, when a lag of the response is included in the dynamic regression

framework (A2), this forces δ ≥ 2 in Assumption B4.

We now introduce some main assumptions needed for distributional theories.

4In the sense of Ibragimov and Linnik (1971) and Davidson (1994, Part III)

14



4.2.1 The ‘bias component’

The first part concerns with the asymptotic ‘bias’, where Assumptions A is strengthened by impos-

ing additional smoothness conditions and suitable bandwidth adjustments. They belong to a set

of suffi cient conditions under which the exact upper bound of the asymptotic bias can be specified.

Note that alternatively, a Fréchet-type differentiability condition can be imposed, as was done in

Mas (2012).

Further Assumptions B

B7. The regression operator m : R∞ → R satisfies∣∣m(x)−m(x′)
∣∣ ≤ ∞∑

j=1

cj
∣∣xj − x′j∣∣β (23)

for every x, x′ ∈ R∞, and some constant β ∈ (0, 1], where {cj} is some sequence of real
constants that satisfies

∑∞
j=1 cj ≤ 1.

B8. The marginal bandwidths satisfy hj = φj ·h for some positive real numbers φj, where h = hn → 0

as n→∞. We suppose that φj satisfy
∑∞

j=1 φ
−2
j <∞ and

∑∞
j=1 cjφ

β
j <∞.

Remark. These additional assumptions help us specify and regulate the bias component. As-

sumption B8 extends the previous bandwidth condition B2. Obviously, it is consistent with what

was previously assumed in B2 since h→ 0 implies the coordinate-wise convergence of each marginal

bandwidths. With this condition one is able to write the asymptotic bias expression and the order

of the bias-variance balancing bandwidth in terms of the common factor h. It is possible to dispense

with this condition at the cost of imposing minor modifications in B7; the asymptotic bias will then

be written in terms of the infinite sum of a weighted marginal bandwidth hj, whose convergence

needs to be ensured. For the sake of understanding the asymptotic behaviour of the variance com-

ponent, a further increment condition will be imposed on the sequence of marginal coeffi cients φj
in Assumption D later. We remark that at this point such an assumption is not necessary as the

variance term is not concerned.

Assumption B7 replaces and strengthens Assumption B1, and can be thought of as a variant of

Hölder-type continuity; the case of cj = 2−j and β = 1 is implied by the Lipschitz condition. Another

example of cj includes exp(−j). Indeed, under B7 the regression operator becomes a contraction
mapping, and the contribution from each marginal dimension decreases in lag or index. This ensures

summability of the bias of the estimator and allows one to specify its order of convergence rate, cf.

(29) below.

In the context of autoregression where Xj ≡ Yt−j for all j, the model is given by

Yt = m(Yt−1, Yt−2, . . .) + εt (24)
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and whether the stationary solution {Yt} indeed exists is an important question, since (24) essentially
gives an infinite number of recurrence relations whose solution may not be always well-defined. In

the study of a class of general nonlinear AR(d) models, Duflo (1997) and Götze and Hipp (1994)

assumed what is called the Lipschitz mixing condition (or the strong contraction condition), which is

essentially (23) replaced by finite d-sum on the right hand side. In our context, Assumption B7 plays

a similar role; Doukhan and Wintenberger (2008) showed that (23) with
∑∞

j=1 cj < 1, is suffi cient

for the existence of a stationary solution: for some measurable f ,

Yt = f(εt, εt−1, . . .), (25)

where εt is an i.i.d. sequence. Wu (2011) arrived at the same conclusion under the assumption of∑∞
j=1 cj = 1; the specific restrictions on cj are chosen to reflect their findings, despite the fact that

we are not restricting the error process {εt} to be an independent sequence in our model setup.

Before we proceed, we remark that from now on the rate condition stipulated in (18) is slightly

strengthened as follows (and Assumption A2 is modified accordingly):

v2(r)1/2[ϕx(hλ)]−1n1/2 → 0 as n→∞. (26)

4.2.2 The ‘variance component’

We now move on to the second chunk of assumptions that are concerned with the ‘variance part’.

As before, vectors Z and z are taken to mean (φ−1
1 X1, φ

−1
2 X2, . . .)

ᵀ
and (φ−1

1 x1, φ
−1
2 x2, . . .)

ᵀ
, respec-

tively, where the vector x = (x1, x2, . . .)
ᵀ
is the point at which estimation is made, and φ′js are the

coeffi cients in Assumption B8.

Assumptions D

D1. The induced probability measure Pz−Z is dominated by the measure PZ, and its Radon-Nikodym

density dPz−Z/dPZ =: p∗ is continuous and is bounded away from zero at 0 ∈ R∞; i.e.,
p∗(0) > 0.

D2. The distribution F of X2
s , where each Xs is the marginal regressor, is regularly varying near

zero with strictly positive index (−ρ) > 0.

D3. Further to B8, the bandwidth satisfies hj = jph (i.e. φj = jp) with p ∈ Π(c, β), where

Π(c, β) =

{
p :

∞∑
j=1

cjj
pβ <∞, p > 1/2

}
.

D4. The conditional variance var[Yt|Xt = u] = σ2(u) is continuous in some neighbourhood of x; i.e.

supu∈E(x,hλ)[σ
2(u)−σ2(x)] = o(1). Similarly, the cross-conditional moment E[(Yt−m(x))(Ys−

m(x)|Xt = u,Xs = v] = σ(u, v), t 6= s is continuous in some neighbourhood of (x, x).
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D5. Rnt := (EK1)−1{Kt(Yt − m(x)) − EKt(Yt − m(x))} belongs to the domain of attraction of a
normal distribution.

Remark. Assumption D1 is concerned with a transition of the shifted small ball probability to

the centred small deviation (whose asymptotic behaviour is more accessible), see Mas (2012). The

explicit form of the derivative (and hence of the relationship between the two probabilities) cannot

be easily computed in general. Nonetheless, in the special case of the Gaussian process Z with

covariance operator Σ it is known by Sytaya (1974) and Zolotarev (1986) that

P
(
‖z − Z‖ ≤ ε

)
' P

(
‖Z‖ ≤ ε

)
exp

{
− 1

2
‖Σ−1/2z‖2

}
as ε→ 0. (27)

The reader is directed to Li and Shao (2001) for detailed discussion on this asymptotic equivalence

relation. Note that Σ can be expressed in terms of the aj constants (in Assumption C), which govern

the dependence between the marginal regressors and the bandwidth weights φj:

cov(Z) = Σ = (DA)(A∗D), (28)

where A = (aij) = (ai−j) and D = diag(φ1, φ2, . . .).

Condition D2 is equivalent to saying that

lim
x→∞

F (1/(γx))

F (1/x)
= γρ,

where ρ is the index of variation which is strictly negative. Under this condition, Dunker, Lifshits and

Linde (1998, cf. Conditions I and L) derived the explicit behaviour of the small ball probability. We

require the function F (1/x) to be regularly varying in order to ensure that the small ball probability

is well-behaved near infinity in the asymptotic sense. Since only those functions having strictly

negative ρ satisfy the condition, the distribution F of the squared regressor must be such that

F (1/x) decreases (as x→∞) at a reasonable speed. By reasonable we mean that the relative weight
of decrease follows a power law, and the variation should be continuous. A large class of common

distributions satisfies this condition; for example: the Gamma, Beta, Pareto, Exponential, Weibull,

and also the Chi-squared distribution (in which case each Xs is Gaussian). Indeed, both D1 and D2

hold under Gaussianity (e.g. when condition C2 is assumed).

The specific bandwidth increment condition assumed in D3 is one framework under which the

explicit behaviour of the small ball probability can be specified (cf. Dunker et al. (1998)). In the

exceptional case of static regression where the regressors form an i.i.d. sequence, the probability can

also be derived when the weights are of an exponential type (i.e. hj = ejh) up to an unknown func-

tion, or are non-increasing in a particular manner (cf. Gao et al. (2003)) similar to the polynomial

decay. In this paper however, we shall confine our attention to the case of the polynomial law for

expositional simplicity and consistency of presentation, since the asymptotic behaviour of the small
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ball is not yet known in the dependent case for choices other than the polynomial decay as in D3.

In practice, we would require some ordering for the marginal regressors in the static regressions case

A1, since the influence of marginals is set to decrease via the bandwidth adjustments. The standard

conditions in D4 are assumed to deal with the asymptotics of the variance and covariance terms.

The last condition is imposed to establish the self-normalized CLT without assuming higher moment

conditions; relevant discussions can be found for example in de la Peña et al. (2009). The condition

is not affected by the dependence structure of Rnt as the property is inherited to the approximated

sum in the Bernstein’s blocking procedure; see (77) for details.

With reference to (20) we are now able to derive the following results for the bias and variance

components using Assumptions B7, B8 and C, and Corollary 1:

Bn(x) :=
[
Em̂2(x)−m(x)

]
≤ hβλβ

∞∑
j=1

cjj
pβ (29)

Vn(x) := var [m̂2(x)] ' σ2(x)ξ2

nϕx(hλ)ξ2
1

, (30)

where λ and m̂2(·) are as in (4) and (19), respectively. Formal derivation is done in 7.2 of the
appendix. We next present the CLT of our estimator.

4.2.3 Limiting distribution under independence of regressors

We first consider the situation in which there is a set of independent exogenous regressors in the

static regression context. That is, when marginal regressors Xs are independent to each other

and are identically distributed (i.e. satisfies Assumption C1), and the sample observations follow

Assumption A1.

In this case, the asymptotic normality can be established for regressors that follow a wide range

of different distributions. Recall that under Assumption D2, the distribution function F (of X2)

is regularly varying with the index of variation ρ < 0. Then, by the characterization theorem of

Karamata (1933) (see for example Feller (1971)), there always exists a slowly varying function `(x)

that satisfies

F (1/x) = xρ`(x). (31)

Now fix some p, the order of increment constant for bandwidth in Assumption D3, and denote by

L(t) the Laplace transform of X2. We then define the following constants:

C` = lim
δ→0

[
`−1/2

(
δ−

4p
2p−1

)]
, ζ = −

∫ ∞
0

u−1/2pL′(u)

L(u)
du

C∗ =
(2π)(1+2pρ)(2p− 1)

Γ−1(1− ρ) · (2p)
2p(ρ+2)−1

2p−1
· ζ

2p(1+ρ)
2p−1 , C∗∗ = (2p− 1) ·

(
ζ

2p

)2p/(2p−1)
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X2
j ∼ F i.i.d. ρ limx→∞ `(x) = C−2

` ζ

Uniform(1,b) −1 1 n/a

Gamma(α, β) −α βαα−1Γ(α)−1 απβ−1/2p

sin(π/2p)

exp(η) −1 η πη−1/2p

sin(π/2p)

Weibull(α, β) −α β n/a

Pareto(θ, µ) −1 µ/θ n/a

χ2
1 −1/2 (2/π)1/2 π2(1−2p)/2p

sin(π/2p)

Table 1: Examples of key constants for some common distributions

κ0(K, p, F ) = C∗∗λ−
2

2p−1 and κ1(K, p, F ) =
C∗C`ξ2

p∗(0)ξ2
1λ

1+2ρp
2p−1

,

where Γ(·) is the Gamma function, ξ1 and ξ2 are the constants specified in (11) (which simplify in

case of uniform kernel for example), λ is the upper bound of the support of the kernel, and p∗(·)
is the Radon-Nikodym derivative in D1. The underlying arguments for the formulation of these

constants can be found in Dunker, Lifshits and Linde (1998). To aid the exposition, we compute

the constants for some common, regularly varying distributions in Table 1. The main result of

this subsection now follows. The theorem gives the limiting distribution of the infinite-dimensional

Nadaraya-Watson type estimator under cross sectional independence with respect to mixing sample

data.

Theorem 2. Suppose that B2-B8 and D1-D4 hold. Let the marginal regressors Xs satisfy Assump-

tion C1. Then the estimator (17) based on the sample observations {Yt, Xt}nt=1 satisfying A1 is

asymptotically normal with the following limiting distribution:√
nh

1+2ρp
2p−1 exp

(
−κ0h

− 2
2p−1

)
(m̂(x)−m(x)− Bn(x)) =⇒ N

(
0, κ1σ

2(x)
)
, (32)

where Bn(x) = O(hβ) is is the bias component as in (29) and σ2(·) is the conditional variance defined
in Assumption D4.

4.2.4 Limiting distribution under Gaussianity & dependence of regressors

The independence condition between the regressors assumed in the previous section can be relaxed

to allow some mild dependence specified in Assumption C2. In doing so, we make use of the result

derived in Hong, Lifshits and Nazarov (2016, Theorem 1.1), where the asymptotics of the small

deviation probability of Gaussian dependent sequences was investigated. This setting not only grants

suffi cient flexibility in the static regression case, but moreover allows one to compute the distributional

result for the dynamic regression context, where the regressor vector consists of time lags of the
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response or a covariate with dependence structure stipulated in Assumption A2. The price we have

to pay for this modification is the Gaussianity restriction on the regressors.

With reference to Table 1 above, we can easily compute the constants C∗ and C∗∗ for the Gaussian

case, denoted C∗G and C
∗∗
G respectively, as follows:

C∗G =
(2π)(1−p)(2p− 1)

2 · (2p)
3p−1
2p−1

·
[
π2(1−2p)/2p

sin(π/2p)

] −p
2p−1

, C∗∗G =
2p− 1

2

(
π

2p sin π
2p

) 2p
2p−1

.

For the square summable sequence aj in (22) define

CA =

[
1

2π

∫ 2π

0

∣∣∣∣ ∞∑
j=0

aj exp(ijs)

∣∣∣∣1/p ds
]p

and κ2(K, p, a) =
C∗GC`ξ2ξ

−2
1

e−
1
2
‖Σ−1/2z‖22(CAλ)

1−p
2p−1

.

where z = (zj) = (j−pxj) = D−1x. Recall that for the uniform (Box) kernel ξ2 = ξ2
1, so they cancel

out in κ2. Let κ′0 = C∗∗G λ
−2/(2p−1).

With other constants defined as before, we now have the following asymptotic normality for the

case of dependent regressors. We reiterate that the result covers both the static and dynamic regres-

sions context (A1 and A2), and is invariant to (32) upto a constant factor in the limiting variance

as long as the cross-dependence structure satisfies Assumption C2.

Theorem 3. Suppose B2-B8 and D1-D4 hold. Let the regressor X = (X1, X2, . . .)
ᵀ
is jointly nor-

mally distributed with zero mean and the covariance operator Σ, and satisfies C2. Then, the estima-

tor (17) with respect to sample observations {Yt, Xᵀ
t }nt=1 satisfying either A1 or A2 is asymptotically

normal with the following limiting distribution:√
nh

1−p
2p−1 exp

(
−κ′0h

− 2
2p−1

)
(m̂(x)−m(x)− Bn(x)) =⇒ N

(
0, κ2σ

2(x)
)
, (33)

where Bn(x) is the bias component in (29) and σ2(x) is the conditional variance defined in Assump-

tion D4.

Remark. The additional constant CA is a function of the sequence aj, and represents the

dependence structure allowed between the regressors. This suggests an interesting finding that says

allowing for dependence does not incur much penalty; we conjecture that similar conclusion would

hold for regressors of different distributions, but leave it for future studies. The exponential term

in the denominator of the asymptotic variance arises from the asymptotic equivalence relationship

between the shifted and non-shifted small deviation for `2-valued Gaussian variables, cf. (27).

In both frameworks of independent regressors and dependent Gaussian regressors we are able to

construct the self-normalised central limit theorem; define

∆2
n(x) =

n∑
t=1

(
n∑
s=1

Ks

)−2 [
Kt

(
Yt − m̂(x)

)]2

, (34)
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where Kt := K(‖H−1(x−Xt)‖) as before.

Corollary 2. Further to the conditions assumed either in Theorem 2 or Theorem 3, suppose that

Assumption D5 holds. Then the following central limit theorem holds

∆−1
n (x)

(
m̂(x)−m(x)− Bn(x)

)
=⇒ N (0, 1) ,

where ∆n(x) is the square root of (34).

This self-normalized limit distribution gives (pointwise) confidence intervals for m̂(x), which can

be used as a basis for conducting standard statistical inference.

4.3 Optimal Bandwidth

We now briefly discuss the issue of bandwidth optimality. As in the finite-dimensional framework,

there is a bias-variance trade-off. As the bandwidth goes up, the variance gets smaller while the bias

increases, and vice versa. Therefore we search for the optimal bandwidth hopt that balances the order

of those two quantities.

We first suppose that p ∈ Π(c, β) is given. In the i.i.d. case with Gaussian regressor we have

hβ ∼

√
exp

(
κ0h−2/(2p−1)

)
nh

1−p
2p−1

, (35)

so that [
2β +

1− p
2p− 1

]
· log h− κ0h

− 2
2p−1 ∼ − log n.

Taking h ∼ (log n)a for some a < 0 balances the leading terms on both sides:[
2β +

1− p
2p− 1

]
· a · log log n− κ0(log n)−

2
2p−1 ·a ∼ − log n. (36)

The explicit order a that solves (36) can be expressed in terms of n, β and p. Writing ϑ :=

[2β + (1− p)/(2p− 1)] and χ := 2/(2p− 1) for notational simplicity, and solving for a we have

aopt =
ϑ · W

(
χ
ϑ
· κ0 · nχ/ϑ

)
− χ log n

ϑχ · log log n
, (37)

whereW(y) is the Lambert W function (see e.g. Olver et al. (2010)), which returns the solution x of

y = x · ex. From (37) the optimal bandwidth hopt ∼ (log n)aopt follows in which case the asymptotic

root mean squared error is of the order (log n)βaopt .

Remark. We can look for the optimal bandwidth for the cases of non-Gaussian regressors by

following exactly the same manner as above; tedious details are omitted here. As regards the solu-

tion in (37), since the mapping x 7→ x · ex is not an injection, the solution may be multi-valued on
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the negative domain, i.e. y < 0. This does not happen in (37) provided β ≥ 1/4 (however big p

is), because (1 − p)/(2p − 1) is bounded away from −1/2; in this case, the coeffi cient of the double

logarithmic term in (36) is strictly smaller or equal to zero.

Since the log terms dominate the double logarithm in (36) as the sample size n increases, it can be

readily expected that the optimal value of a in (37) converges to a limit in such a way that the leading

orders are balanced. Below we introduce without formal justification a trivial result that gives the

lower bound (infimum) of the optimal bandwidth (and hence of the optimal rate that balances the

bias and variance, see also Mas (2012, Theorem 3)). It is worth noting that the result below holds for

other choices of the distribution of the regressors, since the exponent of the leading term −2/(2p−1)

remains invariant as it was shown in (32) and (33).

Corollary 3. For any fixed choice of p ∈ Π(c, β) and the distribution F of X2 satisfying D2, the

order of the optimal bandwidth aopt satisfies

aopt ↓
(
−2p− 1

2

)
as n→∞, (38)

which suggests that the lower bound of the optimal bandwidth is given by

(log n)−
2p−1
2 � hopt ∼ (log n)aopt . (39)

Remark. (i) This result tells us what the best possible performance we can expect from the

optimal bandwidth. Because nk(log n)−(2p−1)/2 → ∞ for any positive real number k, it follows that

we cannot possibly estimate the regression function at a polynomial rate. (ii) The above arguments

are true for any p ∈ Π(c, β). Let pmax = supp∈Π(c,β) p. Then a lower bound on the optimal rate of

convergence (over all p) is (log n)−(pmax− 1
2). For example, when cj = (1/2)j−2 we have pmax = 1/β.

Unfortunately, it is generally the case that pmax /∈ Π(c, β), in which case the lower bound is not quite

achievable by our method.

Remark. Regarding bandwidth selection, one possibility is the Bayesian bandwidth selection

methods like proposed in Zhang, King, and Hyndman (2006). We take as prior for h the density

proportional to 1/(1 + λh2) and as prior for p − 1/2 the density of a χ2(w) random variable. The

hyperparameters λ,w may be chosen by experimentation. The priors are combined with a Gaussian

(least squares) density to deliver a posterior for the bandwidth.

We conclude this section by briefly considering the case where we have an exponential growth

in the bandwidth. That is, when φj = exp(jq), so that hj = exp(jq)h for some q > 0, and let

q ∈ Φ(c, β) = {q :
∑∞

j=1 cj(exp(jq))β < ∞}. We will only briefly go over this because explicit
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expressions for the small ball probability are limited in this case. Specifically, it is known that the

small ball probability is of the following order

ϕx(h) :=P
(
‖H−1(x−Xt)‖ ≤ 1

)
=P

(
‖D−1(x−Xt)‖ ≤ h

)
∼ exp

[
− (log(1/h))1+1/2q

]
, (40)

provided that the regressor is Gaussian and they are cross-sectionally independent (Assumption C1).

No such explicit expression is available when the regressor follows other distributions, Dunker et al.

(1988), and also, it is not known whether this still holds under cross-sectional dependence (e.g. under

Assumption C2). Now it follows that the optimal bandwidth hopt that balances the squared bias and

the variance satisfies the following equivalence relation:

h2β ∼ 1

n exp
[
− (log(1/h))1+1/2q

]
from which we have

log n+ 2β log h ∼
[
log

(
1

h

)]1+1/2q

.

Try h = exp[a · (log n)b] for some a < 0 and b > 0, and solve for n, then we have[
log n+ 2βa(log n)b

] 2q+1
2q ∼ −a(log n)b

and the optimal bandwidth is the one with the values a and b that satisfies this relaiton. Now in

view that β is non-negative and a < 0, it can be shown that

exp
[
−(log n)

2q
2q+1

]
� hopt ∼ exp[aopt · (log n)bopt ]

The performance is better in general than what we had with a polynomial increment for bandwidth,

although we still do not attain polynomial rate of convergence.

4.4 Uniform consistency

Uniform consistency of the Nadaraya-Watson estimator was first studied by Nadaraya (1964, 1970)

and subsequently by numerous others. To introduce a few, Devroye (1978) weakened the regularity

conditions required in the previous papers, and Robinson (1983) proved uniform consistency for de-

pendent sample data. In the functional statistics literature, only uniform consistency with respect

to i.i.d. data sample has been established so far, see Ferraty et al. (2010). We start by introducing

the notion of Kolmogorov’s entropy.

Definition 5. Given some η > 0, let L(S, η) be the smallest number of open balls in E of radius η

needed to cover the set S ⊂ E. Then Kolmogorov’s η-entropy is defined as logL(S, η).
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From the definition it can be readily expected that Kolmogorov’s entropy is dependent heavily on

the nature of the space we work on, and is closely related to the rate of convergence of the estimator.

It is well known that the regression function cannot be estimated uniformly over the entire space,

see e.g. Bosq (1996). In our infinite dimensional framework, even greater restrictions apply; since

we are working on infinite sequence spaces, none of their subsets can be covered by a finite number

of balls, so that L(S, η) = ∞. Therefore, we propose to adopt a truncation argument and consider
uniform consistency over a set whose effective dimension is increasing in sample size n. In particular,

we define the set

Sτ :=
{
u|(ui)i∈Z+ , uj = 0 for all j > τ, ‖u‖∞ ≤ λ

}
(41)

where τ = τn is some increasing sequence and λ is fixed, and consider uniform consistency over this

compact set.

Then Kolmogorov’s entropy of the set Sτ is given as follows:

Lemma 2. Kolmogorov’s η-entropy of Sτ defined in (41) with τ = τn(→∞) and λ > 0 is

logL
(
Sτ , η

)
= log

[(
2λ
√
τ

η
+ 1

)τ ]
. (42)

Remark. We note that (42) is indeed in line with common intuition; as the dimension τ in-

creases, the number of balls with some fixed radius required to cover the set goes off to infinity. The

proof of this result can be done by exploiting the splitting technique and then by attempting to cover

the polyhedron of increasing dimension. See appendix for details. From this result it follows that for

fixed λ and η = ηn, Kolmogorov’s entropy logL(Sτ , η) is of order O(τ log τ − τ log η).

We now introduce some further assumptions needed for uniform consistency:

Assumptions E

E1. For suffi ciently large n, Kolmogorov’s η-entropy logL(Sτ , η) satisfies

(log n)8+2ε

nϕx(h)
≤ logL(Sτ , η) ≤

√
nϕx(h)

(log n)1+ε
for some ε ∈ (0, 1/2). (43)

Furthermore, 0 < ϕx(h) � h <∞ and (log n)2/(nϕx(h)) −→ 0 as n→∞.

E2. The kernel function K is Lipschitz continuous on [0, λ].

Remark. The first part of Assumption E1 specifies the rate at which Kolmogorov’s entropy

should behave with sample size n (hence in dimension τ = τn). From the upper and lower bound

it readily follows that nϕ(h) must be of order larger than (log n)6+2ε. This assumption allows suf-

ficient generality; for example, the restriction that the bias-variance optimal bandwidth satisfies
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h � (log n)−(2p−1)/2 gives nϕ(h) � (log n)(2p−1)β. In this case, assumption (43) is valid as long as p is

moderately large enough relative to β ≤ 1 in such a way that 6 + 2ε ≤ (2p− 1)β. The second part of

E1 is standard and the last condition straightforwardly follows by (43) and only slightly strengthens

the bandwidth condition in Assumption B2.

We now introduce the main result of this section. Note that in the sequel, (with a slight abuse of

notation) X is taken to denote the regressor, but with zeros after its τ th(= τn →∞ as n→∞) entry;

that is, X = (X1, X2, . . . , Xτ , 0, 0, . . .)
ᵀ
(so that the original X is recovered as n → ∞). Also, the

regression operator and the estimator with respect to this truncated regressor are denoted by mτ (·)
and m̂τ (·), respectively. The aforementioned assumptions are understood to be modified accordingly.

For uniform consistency we impose a slightly stricter condition on the response:

B4′. The response Yt is satisfies the following tail condition: There exists some positive constant γ1

and C such that P (|Yt| > u) ≤ C exp(1− uγ1) for any u > 0.

For example, a Gaussian random variable satisfies B4′ with γ1 < 2. The condition is also satisfied by

many unbounded variables and all those bounded ones as well. We also impose a stronger condition

on mixing coeffi cients; from hereafter, by A1′ and A2′ we mean Assumptions A1 and A2 but with

the arithmetic mixing rate condition strengthened to the following exponential mixing condition (cf.

Definition 1):

α(r) ≤ exp(−ςrγ2) (44)

where ς > 1 and γ2 is a positive constant such that γ := 1/(γ−1
1 + γ−1

2 ) ≥ 1. In the case of bounded

response (i.e. |Yt| ≤ C), γ1 may be taken to be ∞ so that γ2 = γ ≥ 1.

Theorem 4. Suppose that Assumptions B2, B3, B4′, B5-B8, D1-D3 and E1-E2 hold. Let the

marginal regressors Xs satisfy C1, and take τ = τn ∼ (log n). Then the estimator m̂τ (·) with respect
to sample observations {Yt, Xt}nt=1 satisfying A1

′ is uniformly consistent for m(x) = m(x1, x2, . . .)

over Sτ :

sup
x∈Sτ

∣∣∣m̂τ (x)−mτ (x)
∣∣∣ = OP

(
hβ +

√
(log n)2 exp

(
κh−2/(2p−1)

)
nh

1−p
2p−1

)
. (45)

If alternatively Xs is Gaussian and satisfies C2, then the same conclusion holds with respect to sample

observations satisfying either A1′ or A2′.

Remark. We may choose the optimal bandwidth as before; following the same arguments in the

pointwise case, choosing h ∼ (log n)a and solving for n gives

aopt =
ϑ · W

[
χ
ϑ
c exp(−χ

ϑ
2 log log n+ χ log n)

]
+ 2χ log log n− χ log n

ϑχ log log n
. (46)
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And because the order of the leading terms is (log n)−(2p−1)/2 as in the pointwise case, it is straightfor-

ward to see that the lower bound of the optimal bandwidth in Corollary 2 still continues to hold; that

is, hopt � (log n)−(2p−1)/2. This is again invariant to the choice of distribution F of the squared regres-

sor. It is important to note that as before, potential cross-sectional dependence between marginal

regressors and also their distributional properties are represented via c, the collection of constants

that appear inside the exponential terms either in (32) and (33).

In the following lemma we derive the lower rate of convergence.

Lemma 3. The lower bound for estimating the minimax quadratic risk of the regression function

m(·) at a fixed point x is (log n)−(2p−1); specifically,

inf
m̃

sup
m∈Mβ

E|m̃(x0)−m(x0)|2 � h2β
opt

(
� (log n)−(2p−1)

)
(47)

where Mβ is the class of regression functions m satisfying Assumption B7, and hopt is the optimal

bandwidth that balances the squared bias and the variance, provided that there exists some constant c

such that for any real number θ we have∫ {√
pε(t)−

√
pε
(
t+ θ

)}2

dt ≤ cθ2, (48)

where pε(·) is the density of the error ε defined in (2).

The results altogether give the optimal rate of convergence of our estimator as follows. The same

argument trivially applies to the pointwise case.

Corollary 4. Suppose conditions assumed in Theorem 4 and (47) hold. Upon choosing h ∼
(log n)aopt, where aopt is as defined in (46), we have

sup
x∈Sτ

∣∣∣m̂τ (x)−mτ (x)
∣∣∣ = OP

(
[log n]β·aopt

)
, (49)

and this rate of convergence is minimax optimal in view of (47).

5 Application to the Risk Return Relationship

The relation between the expected excess return on the aggregate stock market - the so called

“equity risk premium" - and its conditional variance has long been the subject of both theoretical

and empirical research in financial economics. The risk-return relation is an important ingredient in

optimal portfolio choice, and is central to the development of theoretical asset-pricing models aimed at

explaining a host of observed stock market patterns. Asset pricing models generally predict a positive

relationship between the risk premium on the market portfolio and the variance of its return. In
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an influential paper, Merton (1973) obtained very simple restrictions albeit under somewhat drastic

assumptions; he showed in the context of a continuous time partial equilibrium model that

µt = E[(rmt − rft)|Ft−1] = γvar[(rmt − rft)|Ft−1] = γσ2
t , (50)

where rmt, rft are the returns on the market portfolio and risk-free asset respectively, while Ft−1 is

the market wide information available at time t − 1. The positive constant γ is the Arrow—Pratt

measure of relative risk aversion. The linear functional form actually only holds when σ2
t is constant;

otherwise µt and σ
2
t can be nonlinearly related, Gennotte and Marsh (1993). Further examples with

a positive risk return trade-off include the external habit model of Campbell and Cochrane (1999)

and the Long Run Risks model of Bansal and Yaron (2004). However, a negative risk-return relation

is not inconsistent with (a general enough) equilibrium, Backus and Gregory (1993). Unfortunately,

the empirical evidence on the risk-return relation is mixed and inconclusive. Ghysels, Santa-Clara,

and Valkanov (2005), Lundblad (2005), Pástor, Sinha, and Swaminathan (2008), and Ludvigson and

Ng (2007) find a positive risk-return relation, while Campbell (1987), Glosten, Jagannathan, and

Runkle (1993), Harvey (2001), and Lettau and Ludvigson (2003) find a negative relation. Still others

find mixed and inconclusive evidence like French, Schwert, and Stambaugh (1987), Nelson (1991),

Campbell and Hentschel (1992), Linton and Perron (2003), and Whitelaw (1994). Scruggs (1998) and

Guo and Whitelaw (2006) document a positive trade-off within specifications that facilitate hedging

demands. However, Scruggs and Glabadanidis (2003) find that this partial relationship is not robust

across alternative volatility specifications. The main diffi culty in estimating the risk-return relation

is that neither the conditional expected return nor the conditional variance of the market is directly

observable. The contradictory findings of the above studies are mostly the result of differences

in the approaches to modeling the conditional mean and variance. Some studies have relied on

parametric and semi-parametric ARCH or stochastic volatility models that impose a high degree of

structure on the return generating process, about which there is little direct empirical evidence. Other

studies have typically measured the conditional expectations underlying the conditional mean and

conditional variance as projections onto predetermined conditioning variables. Practical constraints,

such as choosing among a few conditioning variables, introduce an element of arbitrariness into the

econometric modeling of expectations and can lead to omitted information estimation bias.

Pagan and Hong (1990) initiated the use of nonparametric methods in this setting. They argued

that the risk premium µt and the conditional variance σ
2
t are highly nonlinear functions of the past

whose form is not captured by standard parametric GARCH—M models. They estimated E(rmt −
rft|rm,t−1, . . . , rm,t−p) and var(rmt−rft|rm,t−1, . . . , rm,t−p) nonparametrically, where p ∈ {1, 5}, finding
evidence of considerable nonlinearity. They then estimated δ from the regression

rmt − rft = δσ2
t + ηt, (51)

by OLS and IV methods, finding a negative but insignificant δ. There are a number of drawbacks

with the Pagan and Hong (1990) approach. Firstly, the conditional moments are calculated using a
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finite conditioning set. This greatly restricts the dynamics for the variance process. Secondly, they

only test for linearity of the relationship between µt and σ
2
t ; this seems to be somewhat restrictive

in view of earlier findings. Linton and Perron (2003) considered the model where σ2
t was a paramet-

rically specified CH process (with dependence on the infinite past) but µt = ϕ(σ2
t ) for some function

ϕ of unknown functional form. They proposed an estimation algorithm but did not establish any

statistical properties. They found some evidence of a nonlinear relationship. Conrad and Mammen

(2008) develop the theory of estimation and inference for this model. Christensen, Dahl, and Iglesias

(2012) developed the theoretical framework by considering volatility models that are driven by ob-

servable shocks so that a full theory can be given. Escanciano, Pardo-Fernández and Van Keilegom

(2015) consider a more general class of semiparametric models.

Under the semi-strong form of the effi cient markets hypothesis prices contain all relevant informa-

tion and so the risk premium and risk themselves can be expressed in terms of only the past history

of prices. We shall use this assumption to obviate the omitted variables/endogeneity issues that have

limited previous applications in this area. Let µ(x) = E(Y |X = x) and σ2(x) = var(Y |X = x),

where Y is aggregate stock market returns in excess of the risk free rate and X is lagged values

of returns. We suppose that both functions are unrestricted nonparametric functions of the entire

information set and they are related in a quadratic way, that is,

µ(x) = α + βσ(x) + γσ2(x),

where θ = (α, β, γ)
ᵀ
with α, β, γ being unknown constants. Let x1, x2, . . . , xq ∈ R∞ be some given

points such that ‖D−1(xj − xk)‖ > 0 for all j, k, and let µ̂(x) and σ̂2(x) be the estimated moments.

Then we take

θ̂ =
(
α̂, β̂, γ̂

)ᵀ
= Σ̂−1

q Ûq

Σ̂q =

 1
∑q

i=1 σ̂(xi)
∑q

i=1 σ̂
2(xi)∑q

i=1 σ̂(xi)
∑q

i=1 σ̂
2(xi)

∑q
i=1 σ̂

3(xi)∑q
i=1 σ̂

2(xi)
∑q

i=1 σ̂
3(xi)

∑q
i=1 σ̂

4(xi)

 ; Ûq =


∑q

i=1 µ̂(xi)∑q
i=1 σ̂(xi)µ̂(xi)∑q
i=1 σ̂

2(xi)µ̂(xi)

 ,

where q is finite.

We next derive the limiting distribution of the vector of estimated coeffi cients θ̂ := (α̂, β̂, γ̂)
ᵀ
,

which can be used for conducting statistical inference. Define:

Σq =

 1
∑q

i=1 σ(xi)
∑q

i=1 σ
2(xi)∑q

i=1 σ(xi)
∑q

i=1 σ
2(xi)

∑q
i=1 σ

3(xi)∑q
i=1 σ

2(xi)
∑q

i=1 σ
3(xi)

∑q
i=1 σ

4(xi)


Ω(xi) =

(
σ2(xi) skew(Yt|Xt = xi)

skew(Yt|Xt = xi) σ4(xi) (kurt(Yt|Xt = xi) + 2)

)
=:

(
ω1,1(xi) ω1,2(xi)

ω2,1(xi) ω2,2(xi)

)
, (52)

Vq =

q∑
i=1

J(xi)Ω(xi)J(xi)
ᵀ

; J(xi) =

 1 0

σ(xi)
µ
2σ

(xi)

σ2(xi) µ(xi)

 .
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Here, skew and kurt denote skewness and kurtosis of Yt (conditional on Xt = xi). The result is a

direct consequence of consistency of estimated moments and their asymptotic independence across i.

Theorem 5. Let Assumptions B2, B3, B5-B8, and D1-D4 hold, and suppose B4 is strengthened

to require E(|Yt|8+δ) ≤ C < ∞ for some C, δ > 0. Suppose the operator g(·) = E(Y 2|X = ·)
satisfies Assumption B7. Suppose further that ωa,b(u) is continuous in some neighbourhood of xi for

all i. Then, given the sample observations {Yt, Xt}nt=1 specified in A2, we have the following limiting

distribution: √
nh

1−p
2p−1 exp

(
−κ′0h

− 2
2p−1

)(
θ̂ − θ −Bθ

)
=⇒ N

(
0, κ2(K, p, a)Σ−1

q VqΣ
−1
q

)
,

where Bθ is a bias terms of order hβ, κ2 is the constant in (33).

The parameters θ are estimated at the same rate as the functions µ(.) and σ2(.). It may be

possible to achieve faster rates of convergence by allowing q → ∞, as is commonly done in the
semiparametric literature, but we have not yet been able to establish this rate improvement; see

Chen and Christensen (2015).

We apply these methods to the daily risk premium on the value weighted S&P500 index – the

total return on the index minus the returns on T-bills – over the period January 1950 to November

2016, a total of 16,820 observations. There is quite considerable variation in the ex-post risk and

return by decades. We estimate µ(x) and σ2(x) using uniform kernel and the bandwidth sequence

h = 0.5× s, where s was the full sample standard deviation, and p = 4. We estimated at the points

X = (x, x, . . .) with x = 0,±0.1s,±0.2s.

Table 1
Full and Sub Period

1950-2016 1950-1960 1960-1970 1970-1980 1980-1990 1990-2000 2000-2016

255× µ 8.52 13.67 5.02 2.21 13.85 15.10 4.11√
255× σ2 15.45 11.53 10.25 13.69 17.23 14.18 19.94

α 63.489 4.280 26.485 154.077 -284.338 29.075 1052.215

β -3829.669 -275.651 -2399.650 -9733.012 14907.935 -1764.49 -51696.121

γ 57767.094 4275.594 54082.905 153819.71 -195301.47 26813.274 634971.52

We give the fitted surface by decade against the conditioning value. This suggests that the

conditional risk premium was negative in the 1950s and 1960s when the conditioning value was

strongly negative, whereas this phenomenon has disappeared in later decades with a flatter prediction

profile.
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6 Concluding remarks

Other quantities of interest in prediction such as the conditional median or mode can also be studied.

This could be done via nonparametrically estimating the conditional distribution P (Y ≤ y|X = ·) =

E(1{−∞, y](Y )|X = ·), but would necessarily require a slightly different set of assumptions. It is
also quite easy to bring finite dimensional predictors into the theory separately. For example, one

may want to allow for slow time variation whereby t/T becomes an additional covariate and the

regression function is m(x, u) with u ∈ [0, 1] and x ∈ R∞. In this case we modify the estimator of
(17) by introducing a multiplicative kernel of the form kb(u− t/T ), where b is a bandwidth and k is

a symmetric probability density function.

7 Appendix: Proofs of the main results

7.1 Proof of Theorem 1

From the decomposition (20):

m̂(x)−m(x) =
Em̂2(x)−m(x)

m̂1(x)
+
m̂2(x)− Em̂2(x)

m̂1(x)
− m(x)[m̂1(x)− 1]

m̂1(x)
,
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we see that it suffi ces to show Em̂2(x) −m(x) → 0 and m̂2(x) − Em̂2(x) →P 0, since m̂1(x) →P 1

would then follow from the latter and complete the proof.

As for the former ‘bias component’, denoting by E(x, λh) the infinite dimensional hyperellipsoid

centred at x = (xj)j ∈ R∞ with semi-axes hj in each direction we have

Em̂2(x)−m(x) = E

(
1

nEK1

n∑
t=1

KtYt −m(x)

)

=
1

EK1

EK1Y1 −
EK1

EK1

m(x) =
1

EK1

E

[
E

[(
Y1 −m(x)

)
K1

∣∣∣X]]
=

1

EK1

E
[[
m(X)−m(x)

]
K1

]
≤ sup

u∈E(x,λh)

∣∣m(u)−m(x)
∣∣ −→ 0 (53)

as n → ∞, where Kt is the shorthand notation for K(‖H−1(x − Xt)‖) as introduced in the main
text before. The second equality is justified by stationarity that is preserved under measurable

transformation, and the last inequality is due to compact support of the kernel and continuity of the

regression operator at x (Assumption B1).

The next step concerns with the latter ‘variance component’m̂2 − Em̂2; its mean-squared con-

vergence to zero will be shown. Writing

m̂2 − Em̂2 =
1

n

n∑
t=1

1

EK1

{
KtYt − E(KtYt)

}
=:

1

n

n∑
t=1

Qnt, (54)

we remark that the arguments to follow depend upon the temporal dependence structure of Qnt. In

the static regression case, Qnt is a measurable function of Yt, X1t, X2t, . . ., and hence inherits their

joint dependence structure. That is, Qnt is arithmetically α-mixing with the rate specified in A1. In

the dynamic regressions case (which covers the autoregression framework), the dependence of Qnt is

defined via Kt which is near epoch dependent on (Yt, Vt) as specified in Assumption A2; this bypasses

the issue of Qnt being dependent upon infinite past of Yt and/or Vt. We proceed with these two cases

separately.

Case 1: Static Regression. Clearly, it is suffi cient to prove var(m̂2−Em̂2)→ 0 for mean squared

convergence. Since Qnt is stationary over time we have

var(m̂2 − Em̂2) =
1

n2

n∑
t=1

var(Qnt) +
2

n2

∑∑
1≤i<j≤n

cov
(
Qni, Qnj

)
(55)

=
1

n
var(Qn1) +

2

n2

∑∑
1≤j−i<n

cov
(
Qni, Qnj

)
=

1

n
var(Qn1) +

2

n2

n−1∑
s=1

(n− s) · cov
(
Qn1, Qn,s+1

)
=: A1 + A2. (56)
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Now, by (8), (10) and Assumption A it follows that

A1 =
1

nE2K1

var
(
K1Y1 − EY1K1

)
=
var (K1Y1)

nE2K1

≤ EK2
1Y

2
1

nE2K1

=
E(E(Y 2

1 |X1)K2
1)

nE2K1

≤ C

nϕx(λh)
→ 0 (57)

as n→∞.
We now move on to the second term A2 and investigate the covariance term. Since measurable

transformations of mixing variables preserve the mixing property, using Davydov’s inequality, see

Davydov (1968, Lemma 2.1) or Bosq (1996, Corollary 1.1) and stationarity we have∣∣cov(Qn1, Qn,s+1

)∣∣ =

∣∣∣∣∣cov
(
Y1

K1

EK1

, Ys+1
Ks+1

EK1

)∣∣∣∣∣ ≤ C{E|Y1K1|2+δ}
2

2+δ

ϕx(hλ)2 · skδ/(2+δ)
. (58)

In the meantime,∣∣cov(Qn1, Qn,s+1

)∣∣ =

∣∣∣∣∣cov
(
Y1

K1

EK1

, Ys+1
Ks+1

EK1

)∣∣∣∣∣
≤
∣∣∣∣∣E
(
Y1

K1

EK1

Ys+1
Ks+1

EK1

)∣∣∣∣∣+

∣∣∣∣∣E
(
Y1

K1

EK1

)
E

(
Ys+1

Ks+1

EK1

)∣∣∣∣∣
≤ C

ϕx(hλ)2
|E (K1Ks+1)|+ C ′

E2K1

|E (K1)E (Ks+1)|

≤ C

ϕx(hλ)2
· ψx(λh; 1, s+ 1) + C ′ ≤ C ′′ (59)

by stationarity, law of iterated expectation, boundedness of regression function, and Assumption B6,

B5 (along with the upper bound ψ(λh; 1, s+ 1) of EK1Ks+1 obtained as a direct consequence of B5

following similar arguments used for Lemma 1).

With reference to (58) and (59), we take some increasing sequence un →∞ such that un = o(n),

and write
n−1∑
s=1

∣∣cov(Qn1,Qn,s+1

)∣∣ =

un−1∑
s=1

∣∣cov(Qn1, Qn,s+1

)∣∣+

n−1∑
s=un

∣∣cov(Qn1, Qn,s+1

)∣∣
≤ C ′′

(
un − 1) +

n−1∑
s=un

Cs−kδ/(2+δ)

ϕx(hλ)2
= O

(
un +

u
−kδ/(2+δ)+1
n

ϕx(hλ)2

)
, (60)

which is O
(
ϕx(hλ)−2(2+δ)/(kδ)

)
upon choosing un ∼ ϕx(hλ)−2(2+δ)/(kδ).

Consequently, since k ≥ 2(2 + δ)/δ it follows that

A2 :=
2

n2

n−1∑
s=1

(n− s) · cov
(
Qn1, Qn,s+1

)
=

2

n

n−1∑
s=1

(
1− s

n

)
· cov

(
Qn1, Qn,s+1

)
= O

(
n−1[ϕx(hλ)]−2(2+δ)/(kδ) + n−2[ϕx(hλ)]−2(2+δ)/(kδ)

)
= O

(
n−1[ϕx(hλ)]−2(2+δ)/(kδ)

)
= o(1) (61)
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by Assumption B2, and the desired result is obtained.

Case 2: Dynamic Regression.5 We return back to (54):

m̂2 − Em̂2 =
1

n

n∑
t=1

1

EK1

{
KtYt − E(KtYt)

}
=:

1

n

n∑
t=1

Qnt. (62)

In this framework Kt = K(‖H−1(x − Xt)‖) is a (measurable) function of (Yt−1, Yt−2, . . .). Despite

loosing the mixing property, Kt inherits stationarity of the mixing process {Yt}. We write Kt,(r) =

Ψ(Yt, Yt−1, Yt−2, . . . , Yt−r+1) = E(Kt|Yt, . . . , Yt−r+1), where Ψ denotes a measurable map and r is

as in Assumption A2. Clearly, Kt,(r) preserves the mixing dependence structure of Yt with mixing

coeffi cient α(` − (r − 1)) since σ(Ks,(r); s ≥ t + `) ⊂ σ((Ys, . . . , Ys−r+1); s ≥ t + `) = σ(Ys; s ≥
t+ `− (r − 1)).

Now write

m̂2 − Em̂2 =
1

n

n∑
t=1

1

EK1

[
Kt,(r)Yt − E

(
Kt,(r)Yt

)]
+

1

n

n∑
t=1

1

EK1

[
KtYt −Kt,(r)Yt

]
+

1

n

n∑
t=1

1

EK1

[
E
(
Kt,(r)Yt

)
− E(KtYt)

]
= R1 +R2 +R3, (63)

and first consider the last term R3.

Fix some increasing sequence q = qn →∞, and write Yt,L := Yt1{|Yt| ≤ q} and Yt,U = Yt1{|Yt| >
q}. Then

EYtKt,(r) = EYtK
(
‖H−1(x−Xt)‖

)
− EYt,UK

(
‖H−1(x−Xt)‖

)
+ EYt,LKt,(r) − EYt,LK

(
‖H−1(x−Xt)‖

)
+ EYt,UKt,(r) = D1 +D2 +D3. (64)

The second part of D1 is given by

EYt,UK
(
‖H−1(x−Xt)‖

)
≤ E|Yt|1{|Yt|>q}K

(
‖H−1(x−Xt)‖

)
≤ q−(δ+1)E|Yt|2+δ1{|Yt|>q}Kt ≤ Cq−(δ+1)E|Yt|2+δ1{|Yt|>q} = o(q−(δ+1)) (65)

because 1{|Yt|>q} = o(1) as n→∞. Following similar arguments on D3 we have D1 +D3 = EYtKt +

o(q−(δ+1)). So we are now left with the middle term D2:

D2 ≤ E |Yt,L|
∣∣Kt −Kt,(r)

∣∣ = O
(
q
√
v2(rn)

)
(66)

by Hölder’s inequality. Therefore, from (64), (65) and (66) we see that

R3 =
1

nEK1

n∑
t=1

[
EKt,(r)Yt − E(KtYt)

]
= o

(
q−(δ+1)

ϕx(λh)

)
+O

(
q
√
v2(rn)

ϕx(λh)

)
, (67)

5For the sake of notational simplicity, we will write the proofs for the dynamic regression framework in terms of

its autoregressive special case throughout the appendix. That is, some lags of the response variable Yt here possibly

represent the lags of the covariate Vt.
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and upon choosing q = (ϕx(hλ)/n)−1/(2(δ+1)) we have o(ϕ−1q−(δ+1)) = o(ϕ−1(ϕ/n)1/2) = o(n−1/2ϕ−1/2) =

o(1). Furthermore,

O

(
1

ϕx(hλ)
q
√
v2(rn)

)
= O

(
1

ϕx(hλ)
·
(
ϕx(hλ)

n

)−1/(2(δ+1))√
v2(rn)

)

= O

( √
v2(rn)

[ϕx(hλ)](2δ+3)/(2δ+2)n−1/(2(δ+1))

)
= o(1) (68)

by Assumption A2, yielding R3 = o(1), and hence R2 = op(1).

As for the first term that remains,

R1 =
1

n

n∑
t=1

[
Kt,(r)Yt − E(KtYt)

EK1

]
+

1

n

n∑
t=1

[
E(KtYt)− E(Kt,(r)Yt)

EK1

]
=

1

n

n∑
t=1

E
(
Qnt|Yt, Yt−1, . . . , Yt−r+1

)
−R3

=
1

n

n∑
t=1

Qnt,(r) + o

(
q−(δ+1)

ϕx(hλ)

)
+O

( √
v2(rn)

[ϕx(hλ)](2δ+3)/(2δ+2)n−1/(2(δ+1))

)
. (69)

Since Qnt,(r) is α-mixing, we can work with the first term by following similar arguments in the

regression case. Specifically, due to boundedness of the kernel and the mixing properties, the bound

in (58) can be constructed. As for the constant bound constructed in (59), we rewrite

cov
(
Y1K1,(r), Ys+1Ks+1,(r)

)
ϕx(λh)2

=
cov
(
Y1[K1,(r) −K1], Ys+1[Ks+1,(r) −Ks+1]

)
ϕx(λh)2

+
cov
(
Y1[K1,(r) −K1], Ys+1Ks+1,(r)

)
ϕx(λh)2

+
cov
(
Y1, Ys+1[Ks+1,(r) −Ks+1]

)
ϕx(λh)2

+
cov
(
Y1K1, Ys+1Ks+1

)
ϕx(λh)2

= G1 + G2 + G3 + G4.

By (58), G4 ≤ C by (59). Further,

G1 ≤
∣∣∣∣E(Y1Ys+1[K1,(r) −K1][Ks+1,(r) −Ks+1])

ϕx(λh)2

∣∣∣∣
+

∣∣∣∣E(Y1[K1,(r) −K1]) · E(Ys+1[Ks+1,(r) −Ks+1])

ϕx(λh)2

∣∣∣∣ ≤ C ′
v2(r)

ϕx(λh)2
→ 0

by Assumption B6 and by the fact that(√
v2(rn)

ϕx(hλ)

)
≤
(√

v2(rn)

ϕx(hλ)

)
· (n/ϕ)1/(2δ+2) −→ 0
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by (18) in Assumption A2. Similarly, G2 and G3 can be easily shown to converge to zero in large

sample.

Now choosing an increasing sequence un ∼ [ϕx(hλ)−2(2+δ)/(kδ) + rn]→∞ such that rn/un = o(1),

we see that (ignoring the array notation in Qnt,(r) for simplicity)

n−1∑
s=1

∣∣cov(Q1,(r), Qs+1,(r)

)∣∣ =

un−1∑
s=1

∣∣cov(Q1,(r), Qs+1,(r)

)∣∣+
n−1∑
s=un

∣∣cov(Q1,(r), Qs+1,(r)

)∣∣
≤ C

(
ϕx(hλ)−

2(2+δ)
(kδ) + rn

)
+

n−1∑
s=un

C(s− rn + 1)−kδ/(2+δ)

ϕx(hλ)2
= O

(
ϕx(hλ)−

2(2+δ)
(kδ)

)
,

since the mixing coeffi cient for Qnt,(r) denoted α′(n) is given by α(n−(r−1)) for n ≥ r. It now follows

by the same arguments in (61) that the first term in (69) converges to zero, and hence R1 = op(1),

which is the result we desired.

7.2 Proof of Theorem 2 and 3

We start by recalling the bias component discussed in (53). Additional assumptions B7, B8 and D3

allow us to proceed further as follows:

Bn(x) = Em̂2(x)−m(x) = E

(
1

nEK1

n∑
t=1

KtYt −m(x)

)
=

1

EK1

EK1Y1 −
EK1

EK1

m(x) =
1

EK1

E

[
E

[(
Y1 −m(x)

)
K1

∣∣∣X]]
=

1

EK1

E
[[
m(X)−m(x)

]
K1

]
≤ sup

u∈E(x,λh)

∣∣m(u)−m(x)
∣∣

≤ sup
u∈E(x,λh)

∞∑
j=1

cj
∣∣uj − xj∣∣β =

∞∑
j=1

cj(λhφj)
β = hβ

(
λβ

∞∑
j=1

cjj
pβ

)
<∞. (70)

Now rewriting the decomposition (20) as

m̂(x)−m(x)− Bn(x)

=
Bn(x) ·

[
1− m̂1(x)

]
m̂1(x)

+
m̂2(x)− Em̂2(x)−m(x)

[
m̂1(x)− 1

]
m̂1(x)

,

and noting that m̂1(x) →p 1 (an immediate consequence of Theorem 1), we see that it suffi ces to

derive the limiting distribution of

m̂2(x)− Em̂2(x)−m(x)[m̂1(x)− 1]

=
1

n

n∑
t=1

1

EK1

[
KtYt −m(x)Kt − E(KtYt) +m(x)EKt

]
=:

1

n

n∑
t=1

Rnt. (71)
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By Assumption B6, D3, D4, and the law of iterated expectations, the asymptotic variance of the

triangular array Rnt is given by

var(Rnt) =
var[Kt(Yt −m(x))]

E2K1

=
1

E2K1

{
E
[
Kt(Yt −m(x))

]2

− E2
[
Kt(Yt −m(x))

]}
' 1

E2K1

{
E
[
σ2(X)K2

1

]
+ E

([
m(X)−m(x)

]2

K2
1

)}

=
1

E2K1

{
σ2(x)EK2

1 + E

([
σ2(X)− σ2(x)

]
K2

1

)
+ o(1)EK2

1

}

=
EK2

1

E2K1

(σ2(x) + o(1)) ' σ2(x)ξ2

ϕx(hλ)ξ2
1

. (72)

Following similar arguments and using the latter assumption of D4, it can be readily shown that

the covariance term is of smaller order than (72), which together shows (30). Under Assumption

D1 the small ball probability can be written in terms of the centered small deviation and p∗(·), the
Radon-Nikodym derivative of the induced probability measure Pz−Z with respect to PZ :

ϕx(λh) = P
(
X ∈ E(x, λh)

)
= P

( ∞∑
j=1

j−2p
(
xj −Xj

)2 ≤ h2λ2

)
= P

(
‖z − Z‖ ≤ hλ

)
=

∫
B(0,hλ)

dPz−Z(u) =

∫
B(0,hλ)

p∗(u) dPZ(u)

' p∗(0) · P (‖Z‖ ≤ hλ) = p∗(0)× P
(

n∑
j=1

j−2pX2
j ≤ h2λ2

)
, (73)

where the latter probability can be explicitly specified by substituting r = h2λ2, A = 2p, and

a = 2p/(2p− 1) in Proposition 4.1 of Dunker et al. (1998) for the i.i.d. case. As for the case where

the regressors are dependent, i.e. when the X ′js satisfy Assumption C2, the small ball probability

can be specified in view of Theorem 1.1 of Hong, Lifshits and Nazarov (2016). Finally we have,

σ2(x)ξ2

ϕx(hλ)ξ2
1

=
1

φ(h)
· σ

2(x)ξ2

p∗(0)ξ2
1

· C
∗C`

λ
1+2ρp
2p−1

,

where φ(h) = h(1+2ρp)/(2p−1) exp{−C∗∗(λh)−2/(2p−1)}, and (as defined before)

C` = lim
h→0

[
`−1/2

(
h−

4p
2p−1

)]
C∗ =

(2π)(1+2pρ)(2p− 1)

Γ−1(1− ρ) · (2p)
2p(ρ+2)−1

2p−1
· ζ

2p(1+ρ)
2p−1

and Γ(·) is the Gamma function, ξ1 and ξ2 are the constants specified in (11), and λ is the upper

bound of the support of the kernel.
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In constructing the central limit theorem we consider the normalized statistic R∗nt :=
√
φ(h) ·Rnt

and derive the self normalized limiting distribution of (1/
√
n) ·R∗nt. We shall only prove the autore-

gression case, where an additional step of mixing approximation is added to the standard regression

case; the asymptotic normality for the regression case in a functional context was established in

Masry (2005). In many places of the remainder of this proof we shall closely follow their proof of

Theorem 4.

We make use of Bernstein’s blocking method and partition {1, . . . , n} by 2k(= 2kn →∞) number

of blocks of two different sizes that alternate (hereafter referred to as the “big”and “small”blocks)

and lastly a single block (the “last block”) that covers the remainder. The size of the alternating

blocks is given by an and bn respectively, where the one for the “big-blocks”an is set to dominate

that for the “small-blocks”bn in large sample, i.e. bn = o(an). More specifically, we take

kn = bn/(an + bn)c and an = b
√
nφ(h)/qnc

where qn →∞ is a sequence of integer; it then clearly follows that an/n→ 0 and an/
√
nφ(h)→ 0.

We also assume (n/an) · α∗(bn) = (n/an) · α(bn − r + 1) → 0, where α∗ is the mixing coeffi cient of

R∗nt,(r) = E(R∗nt|F t−1
t−r+1).

By construction above we can write
√
n
−1∑n

t=1R
∗
nt as the sum of the groups of big-blocks B,

small-blocks S and the remainder block R defined as

B :=
1√
n

k−1∑
j=0

Ξ1,j =
1√
n

k−1∑
j=0

 j(a+b)+a∑
t=j(a+b)+1

R∗nt


S :=

1√
n

k−1∑
j=0

Ξ2,j =
1√
n

k−1∑
j=0

 (j+1)(a+b)∑
t=j(a+b)+a+1

R∗nt


R :=

1√
n

Ξ3,j =
1√
n

 n∑
t=k(a+b)+1

R∗nt

 .

The aim is to show that the contributions from the small and the last remaining block are

negligible, and that the big-blocks are asymptotically independent.

We first consider the big blocks B. Given r as in Assumption 2, andR∗nt,(r) = E(R∗nt|Yt, . . . , Yt−r+1)

we have

B =
1√
n

k−1∑
j=0

 j(a+b)+a∑
t=j(a+b)+1

R∗nt,(r)

+
1√
n

k−1∑
j=0

 j(a+b)+a∑
t=j(a+b)+1

[
R∗nt,(r) −R∗nt

] = Q1 +Q2.
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As for the second term, consider

1√
n
EQ2 ≤

1√
n

k−1∑
j=0

j(a+b)+a∑
t=j(a+b)+1

E
∣∣R∗nt,(r) −R∗nt∣∣

=
1

EK1

1√
n

k−1∑
j=0

j(a+b)+a∑
t=j(a+b)+1

E
∣∣KtYt − YtE(Kt|Yt, Yt−1, . . . , Yt−r+1)

∣∣
≤ 1√

n

1

ϕx(hλ)

k−1∑
j=0

j(a+b)+a∑
t=j(a+b)+1

E|Yt||Kt −Kt,(r)|

≤ 1√
n

1

ϕx(hλ)

k−1∑
j=0

j(a+b)+a∑
t=j(a+b)+1

(
E|Yt|2

)1/2(
E|Kt −Kt,(r)|2

)1/2

≤ C · 1√
n
knan

√
v2(rn)

ϕx(λh)
= O

(√
n · v2(rn)

ϕx(λh)

)
= o(1),

which implies that
√
n
−1Q2 = op(1).

We now show asymptotic independence of terms in Q1, on noting that Ξ′1,js are independent if

for all real tj ∣∣∣∣∣E
[
k−1∑
j=0

exp
(
itjΞ1,j

)]
−

k−1∏
j=0

E
[

exp(itjΞ1,j)
]∣∣∣∣∣ (74)

is zero, see for instance Applebaum (2009, page 18). Applying the Volkonskii-Rozanov inequality (see

Fan and Yao (2003, page 72)), it can be shown that (74) is bounded above by C(n/an)·α(bn−r+1)→
0, implying asymptotic independence.

Moving on to the small blocks, due to stationarity we have

var (S) =
1

n
var

k−1∑
j=0

(j+1)(a+b)∑
t=j(a+b)+a+1

R∗nt


=

1

n

k−1∑
j=0

var

 (j+1)(a+b)∑
t=j(a+b)+a+1

R∗nt

+
1

n

k−1∑∑
j 6=l

cov

 (j+1)(a+b)∑
t=j(a+b)+a+1

R∗nt,

(l+1)(a+b)∑
s=l(a+b)+a+1

R∗ns


=

1

n

k−1∑
j=0

(
bnvar(R∗nt) +

bn∑
t6=l

cov(R∗nt, R
∗
nl)

)
+

1

n

k−1∑∑
j 6=l

bn∑
i,j=1

cov
(
R∗n,i+wj , R

∗
n,r+wl

)
= Q1 +Q2 +Q3.

where wj = j(a+ b) + a.

Regarding the first term, similar arguments used in deriving (72) yield

Q1 =
1

n
knbn

[
ϕx(hλ)1/2

]2
σ2(x)ξ2

ϕx(hλ)ξ2
1

=
knbnσ

2(x)ξ2

nξ2
1

−→ 0 (75)
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because knbn/n ∼ bn/(an + bn) → 0. Now moving on to Q2 and Q3, the sum of covariances can be

dealt with in the same manner as we did for the variance using (72), so Q2 → 0. Similarly for Q3,

implying var(S)→ 0 as desired. Convergence result for the remainderR can be established similarly,
and is bounded by C(an + bn)/n→ 0.

The results above suggest that

1√
n

n∑
t=1

R∗nt =
1√
n

k−1∑
j=0

 j(a+b)+a∑
t=j(a+b)+1

R∗nt

+ op(1) =
1√
n

k−1∑
j=0

ηj + op(1), (76)

and the desired result holds in view of (62) and the CLT for triangular array upon checking the

Lindeberg condition (which is omitted here due to its similarity with Masry (2005, page 174-175)).

Corollary 2 now follows because

√
nφ(h)

(
m̂−m− Bn√
nφ(h)∆n

)
=

√
n 1
n

∑n
t=1 R

∗
nt√

1
n

∑
t R̂
∗,2
nt

=

1√
n

∑n
t=1R

∗
nt√

1
n

∑
tR
∗,2
nt + op(1)

=

1√
n

∑k−1
j=0

∑j(a+b)+a
t=j(a+b)+1 R

∗
nt + op(1)√

1
n

∑k−1
j=0

(∑j(a+b)+a
t=j(a+b)+1 R

∗
nt

)2

+ op(1)

=

1√
n

∑k−1
j=0 ηj + op(1)√

1
n

∑k−1
j=0 η

2
j + op(1)

=⇒ N(0, 1) (77)

by Theorem 4.1 of de la Peña et al. (2009), since the denominator converges in probability to a

strictly positive quantity (σ2(x)ξ2/ξ
−2
1 ), and that ηj belongs to the domain of attraction of a normal

distribution by definition and (76).

7.3 Proof of Lemma 1 and 2

Lemma 1 is a straightforward extension of Lemma 4.3 and 4.4 of Ferraty and Vieu (2006), and

hence is omitted. Lemma 2 can be shown by noting that for each n the τn-dimensional polyhedron

D := {w = (wi)i≤τ ∈ Rτ , |wi| ≤ λ} can be covered by ([2λ
√
τ/ε + 1])τ number of balls of radius ε,

see Chaté and Courbage (1997), and then following the proof steps of Theorem 2 in Jia et al. (2003).

7.4 Proof of Theorem 4

As before, we start from the decomposition (20):

m̂(x)−m(x) =
1

m̂1(x)

([
m̂2(x)− Em̂2(x)

]
+
[
Em̂2(x)−m(x)

]
−m(x)

[
m̂1(x)− 1

])
.
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We recall from (73) that ϕx(λh) ∼ ϕ(λh) and that the small deviation for the truncated regressor

X = (X1, . . . , Xτ , 0, 0, . . .) denoted ϕT (λh) satisfies

ϕ(λh) = P

( ∞∑
j=1

j−2pX2
j ≤ h2

)
≤ P

(
τ∑
j=1

j−2pX2
j ≤ h2

)
= ϕT (λh). (78)

In the first step of the proof we show

sup
x∈Sτ

∣∣∣m̂2(x)− Em̂2(x)
∣∣∣ = OP

(√
(log n)2

nϕ(λh)

)
. (79)

We cover the set Sτ defined in (41) with L = L(Sτ , η) number of balls of radius η denoted by Ik,

each of which is centred at xk, k = 1, . . . , L. i.e. Sτ ⊂
⋃Ln
k=1B(xk,n, η). Then it follows that

sup
x∈Sτ

∣∣∣m̂2(x)− Em̂2(x)
∣∣∣ = max

1≤k≤Ln
sup

x∈Ik∩Sτ

∣∣∣m̂2(x)− Em̂2(x)
∣∣∣

= max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣m̂2(x)− m̂2(xk) + m̂2(xk)− Em̂2(xk) + Em̂2(xk)− Em̂2(x)
∣∣∣

≤ max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣m̂2(x)− m̂2(xk)
∣∣∣+ max

1≤k≤Ln
sup

x∈Ik∩Sτ

∣∣∣Em̂2(xk)− Em̂2(x)
∣∣∣

+ max
1≤k≤Ln

∣∣∣m̂2(xk)− Em̂2(xk)
∣∣∣ =: R1 +R2 +R3, (80)

where m̂2(xk) = (EK1)−1
∑n

t=1 YtKt,k and Kt,k = K(‖H−1(xk −Xt)‖).
We first consider R1:

R1 = max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣m̂2(x)− m̂2(xk)
∣∣∣

= max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣∣∣ 1

nEK1

n∑
t=1

YtK
(
‖H−1(x−Xt)‖

)
− YtK

(
‖H−1(xk −Xt)‖

)∣∣∣∣∣
≤ max

1≤k≤Ln
sup

x∈Ik∩Sτ

C

nϕ(λh)

n∑
t=1

∣∣YtKt − YtKt,k

∣∣.
Now, because the kernel function is assumed to be Lipschitz continuous by Assumption E2, it follows

that

R1 ≤
1

n

n∑
t=1

C ′|Yt|
ϕ(hλ)

ηh−1 =:
1

nϕ(hλ)

n∑
t=1

Jt,

where Jt is α-mixing under both assumptions A1′ and A2′. Then for some δ > 0, on choosing η =

log n/n and by Assumption B4′ we see that the tail condition (which is required for the exponential

inequality to be applied below) continues to hold for Jt.

Also, using Assumption B6 we see that

E|Jt| ≤
E(E(|Yt||X))η

h
≤ Cη

h
. (81)
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By Lemma 2 we can specify the Kolmogorov’s entropy for Sτ with η = log n/n2:

logL

(
S,

log n

n2

)
= C log

[(
2λn2

√
log n

+ 1

)logn ]
∼ log n× log

[
2λn2

√
log n

]

for suffi ciently large n and λ, implying that the order of Kolmogorov’s logn
n2

entropy is

O

(
logL

(
Sτ ,

log n

n2

))
= O

(
(log n)2 − log n[log log n]

)
= O

((
log n

)2
)
. (82)

Now, we apply the Fuk-Nagaev inequality (cf. Fuk and Nagaev (1971)) for exponentially mixing

variables of Merlevède, Peligrad and Rio (2009, 1.7) with ε = ε0[logL
(
S, logn

n2

)
/(nϕ(λh))]1/2 and

r = (log n)2 for some positive constant ε0. Since

s2
n :=

n∑
t=1

n∑
s=1

cov (Jt, Js) ≤ C

(
(log n)2

n2h2

)
= O

(
nϕ(λh) log n

)
,

and due to exponential mixing assumption it follows that

P

(
max

1≤k≤Ln
sup

x∈Ik∩Sτ

∣∣∣m̂2(x)− m̂2(xk)
∣∣∣ > ε0

√
logL

(
S, logn

n2

)
nϕ(λh)

)

≤ 4

(
1 +

n2ϕ(λh)2ε2
0 logL

(
S, logn

n2

)
16(log n)2s2

nnϕ(λh)

)− (logn)2

2

+
16Cn√

nϕ(λh) log n
e
−ς
{√

nϕ(λh)

(logn)

}γ

= 4

(
1 +

nϕ(λh)ε2
0

16s2
n

)− (logn)2

2

+
16C
√
n√

ϕ(λh) log n
exp

(
− ς logLn

)
≤ 4 exp

(
− ε2

0(log n)2nϕ(λh)

32s2
n

)
+

(
Cn2

√
log n

)
L−ςn

≤ 4 exp

(
− ε2

0 log n

32

)
+

(
Cn2

√
log n

)(√
log n

n2

)ς logn

−→ 0 (83)

by the Taylor expansion of log(1 + ε) for suffi ciently small ε > 0.

Hence by (81) and Assumption E1 it follows that

R1 = max
1≤k≤Ln

sup
x∈Ik∩Sτ

∣∣∣m̂2(x)− m̂2(xk)
∣∣∣ ≤ O

(
η

h

)
+OP

(√
logL

(
S, logn

n2

)
nϕ(λh)

)

= O

(√
(log n)2

nϕ(λh)

)
+OP

(√
(log n)2

nϕ(λh)

)
= OP

(√
(log n)2

nϕ(λh)

)
. (84)

As for the second term R2, we have

R2 ≤ max
1≤k≤Ln

sup
x∈Ik∩Sτ

E
∣∣m̂2(x)− m̂2(xk)

∣∣ = O

(
η

h

)
= O

(√
(log n)2

nϕ(λh)

)
. (85)
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Next we move on to the last component:

R3 = max
1≤k≤Ln

∣∣m̂2(xk)− Em̂2(xk)
∣∣ =: max

1≤k≤Ln

∣∣Wn(xk)
∣∣ (86)

where

Wn(x) = m̂2(x)− Em̂2(x) =
1

nEK1

n∑
t=1

[
YtKt − EYtKt

]
≤ C

nϕTx (hλ)

n∑
t=1

[
YtKt − EYtKt

]
=

C

nϕx(hλ)

n∑
t=1

Unt.

where Unt = YtKt − EYtKt, and by elementary arguments

P

(
max

1≤k≤Ln
|m̂2(xk)− Em̂2(xk)| > ε

)
≤ Ln · sup

x∈S
P
(
|Wn(x)| > ε

)
. (87)

Due to the dependence ofQnt onXt we consider the cases of static and dynamic regressions separately,

because the asymptotic arguments to follow depends upon the temporal dependence structure of Qnt.

In the static case, we first examine the situation where the response is unbounded and satisfies

the exponential tail condition in B4′. Since

s2
n =

n∑
t=1

n∑
s=1

cov (Unt, Uns) = O
(
nϕTx (hλ)

)
,

we apply the Fuk-Nagaev inequality for exponentially mixing variables once again. Writing Ln :=

L
(
S, logn

n2

)
and taking ε = ε0[logL

(
S, logn

n2

)
/(nϕ(λh))]1/2 and r = (log n)2+ε, ε ∈ (0, 1/2) for some

ε0 > 0, we have

P

(∣∣∣m̂2(x)− Em̂2(x)
∣∣∣ > ε0

√
logLn
nϕ(λh)

)
≤ P

(∣∣∣∣∣
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Unt

∣∣∣∣∣ > nϕTx (hλ)ε0

√
logLn
nϕT (λh)

)

≤ 4

(
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nϕT (λh)ε2
0 logLn

16(log n)2+εs2
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(log n)1+ε

}γ)

≤ 4

(
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0 logLn
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16C
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ϕT (λh) log n
exp
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− ς logLn
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≤ 4 exp
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−ε

2
0 logLn
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Cn2

√
log n

)
L−ςn ≤ 4L

− ε
2
0
32

n +

(
Cn2

√
log n

)(√
log n

n2

)ς logn

→ 0

because γ ≥ 1 and Ln = O((n2/
√

log n)logn).

Now since ς > 1, by choosing ε0 large enough it follows by (87) that

R3 = max
1≤k≤Ln

∣∣∣m̂2(xk)− Em̂2(xk)
∣∣∣ = OP

(√
(log n)2

nϕ(λh)

)
. (88)
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In the special case when the response is bounded, the same result continues to hold with γ1 =∞
(so that γ2 = γ(≥ 1)).

An alternative proof for the case of bounded response could be done by applying the exponential

inequality of Bosq (1996, Theorem 1.3.2) for α-mixing sequences as follows: Noting that |Qt| ≤
C/ϕx(hλ) =: b, ∀t, and that σ2(r) := p · var(Qt) = O(p/ϕ(hλ)) (where p = n/(2q) and q =

log n
√
n/
√
ϕ) by the Cauchy-Schwarz inequality and Assumption B4 we have

v2(r) =
2

p2
σ2(r) +

bε

2
≤ Cq

nϕx(hλ)
+

Cε

ϕx(hλ)
≤ C ′ε

ϕx(hλ)
,

where ε = ε0

√
logLn/(nϕ) and Ln := L

(
S, logn

n2

)
, and by Assumption A1 that

P

(∣∣∣m̂2(x)− Em̂2(x)
∣∣∣ > ε0

√
logLn
nϕ(λh)

)
≤ 4e−ε
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n
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8
√
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nϕ

ϕ log n
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log n

√
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√
ϕ

α

([ √
nϕ

2 log n

])
≤ 4 exp

{
−ε0 logLn

8

}
+ exp

(
−ς
{√

nϕ(λh)

log n

}γ2
)

≤ 4L−ε0/8n +
C(log n)1/2n3/4

ϕ(λh)Lςn
→ 0.

In the dynamic regression case (i.e. under C2), the same conclusion can be derived by starting

from (86) and exploiting the mixing approximation argument:

max
1≤k≤Ln

∣∣m̂2(xk)− Em̂2(xk)
∣∣ = max

1≤k≤Ln

∣∣Wn(xk)
∣∣ = max

1≤k≤Ln

∣∣∣∣n−1

n∑
t=1

Qnt,k

∣∣∣∣
≤ max

1≤k≤Ln

∣∣∣∣∣ 1n
n∑
t=1

Qnt,k,(r)

∣∣∣∣∣+ sup
x∈S

1

n

n∑
t=1

∣∣Qnt,(r) −Qnt

∣∣
= OP

(√
(log n)2

nϕ(λh)

)
+OP

(√
v2(r)

ϕ(λh)

)
= OP

(√
(log n)2

nϕ(λh)

)
,

since
√
n
√
v2(r)(log n)−1/

√
ϕ ≤
√
n
√
v2(r)/ϕ→ 0 by (26).

Now returning back to where we started, viewing m̂1(x) as a special case of m̂2(x) with Yt = 1

∀t, we can repeat the above procedure, yielding (since Em̂1(x) = 1)

sup
x∈Sτ

∣∣∣m̂1(x)− 1
∣∣∣ = OP

(√
(log n)2

nϕ(λh)

)
. (89)

The proof is now complete in view of (78), (79), (84), (85), (88), (89), contributions from the bias

component, Proposition 4.1 of Dunker, Lifshits and Linde (1998), and Theorem 1.1 of Hong, Lifshits

and Nazarov (2016).
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7.5 Proof of Lemma 3

The main idea of the proof is to follow the arguments of Tsybakov (2004) where a lower bound for

minimax risk of an estimator is constructed via deriving the upper bound of the squared Hellinger

distance between probability measures. Further details are omitted as they closely follow the proof

of Theorem 3 of Mas (2012).

7.6 Proof of Theorem 5

Given the extended moment condition upto 8 + δ, it is straightforward to see (from Theorem 1 and

2 & 3) the consistency of σ̂j(xi) for σj(xi) for j = 1, 2, 3, 4 at every point of continuity xi, and the

asymptotic normality of (µ̂, σ̂2) with limiting variance Ω(xi).

Hence it suffi ces to show asymptotic independence of m̂(xi)and m̂(x′i) across i, where xi and x
′
i

are continuity points of m such that ‖D−1(xi − x′i)‖ > 0. Following the notations of the proof of

Theorem 2 and 3, the asymptotic covariance matrix is given by Var
[
(
√
φ(h)/

√
n)
∑n

t=1Rnt

]
, and

Var(Rnt) = Var

(
1

EK1,x
·Kt,x[Yt −m(x)]

1
EK1,x′

·Kt,x′ [Yt −m(x′)]

)
= E

(
A11 A12

A21 A22

)
(90)

We know from Theorem 2 and 3 that as for A11 ' σ2(x) and A22 ' σ2(x′). So we just consider the

off-diagonal terms. Due to stationarity we see that

E
[
Kt,xKt,x′(Yt −m(x))(Yt −m(x′))

]
= E

[
K1,xK1,x′

[{
(Y1 −m(X1)) + (m(X1)−m(x))

}{
(Y1 −m(X1)) + (m(X1)−m(x′))

}]
= E

[
K1,xK1,x′(Yt −m(X1))(Yt −m(X1))

]
+ o(1) = E

[
K1,xK1,x′σ

2(X1)
]

+ o(1)

≤ sup
u∈B(x,h)∩B(x′,h)

σ2(u)E[K1,x′K1,x]→ 0

as h→ 0 since the kernels return 0 outside its compact support and ‖D−1(xi−x′i)‖ > 0. The desired

result now directly follows via the delta method.
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