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CENTRAL LIMIT THEOREMS AND BOOTSTRAP IN

HIGH DIMENSIONS

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

Abstract. In this paper, we derive central limit and bootstrap the-
orems for probabilities that centered high-dimensional vector sums hit
rectangles and sparsely convex sets. Specifically, we derive Gaussian and
bootstrap approximations for the probabilities P(n−1/2 ∑n

i=1 Xi ∈ A)
where X1, . . . , Xn are independent random vectors in Rp and A is a
rectangle, or, more generally, a sparsely convex set, and show that the
approximation error converges to zero even if p = pn →∞ and p� n; in
particular, p can be as large as O(eCn

c

) for some constants c, C > 0. The
result holds uniformly over all rectangles, or more generally, sparsely
convex sets, and does not require any restrictions on the correlation
among components of Xi. Sparsely convex sets are sets that can be
represented as intersections of many convex sets whose indicator func-
tions depend nontrivially only on a small subset of their arguments, with
rectangles being a special case.

1. Introduction

Let X1, . . . , Xn be independent random vectors in Rp where p ≥ 2 may
be large or even much larger than n. Denote Xi = (Xi1, . . . , Xip)

′ for i =
1, . . . , n. Assume that each Xi is centered, namely E[Xij ] = 0, and E[X2

ij ] <
∞ for all i = 1, . . . , n and j = 1, . . . , p. Define the normalized sum

SXn := (SXn1, . . . , S
X
np)
′ :=

1√
n

n∑
i=1

Xi. (1)

We consider Gaussian approximation to SXn , and to this end, let Y1, . . . , Yn
be independent centered Gaussian random vectors in Rp such that each Yi
has the same covariance matrix as Xi, that is, Yi ∼ N(0,E[XiX

′
i]). Define

the normalized sum for the Gaussian random vectors:

SYn := (SYn1, . . . , S
Y
np)
′ :=

1√
n

n∑
i=1

Yi. (2)
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We are interested in bounding the quantity

ρn(A) := sup
A∈A

∣∣P(SXn ∈ A)− P(SYn ∈ A)
∣∣ , (3)

where A is a class of (Borel) sets in Rp.
Bounding ρn(A) for various classesA of sets in Rp, with a special emphasis

on explicit dependence on the dimension p in bounds, has been studied by
a number of authors; see, for example, [5, 6, 7, 20, 26, 31, 32, 33, 34] (see
[15] for an exhaustive literature review). Typically, we are interested in
how fast p = pn → ∞ is allowed to grow while guaranteeing ρn(A) → 0.
In particular, Bentkus [6] established one of the sharpest results in this
direction and proved that, when X1, . . . , Xn are i.i.d. with E[XiX

′
i] = I,

ρn(A) ≤ cp(A)E[‖Xi‖3]/
√
n, (4)

where cp(A) is a constant that depends only on p and A; for example, cp(A)
is bounded by a universal constant when A is the class of all Euclidean balls
in Rp, and cp(A) ≤ 400p1/4 when A is the class of all convex sets in Rp.
Note, however, that this bound does not allow p to be larger than n once
we require ρn(A) → 0. Indeed by Hölder’s inequality, when E[XiX

′
i] = I,

E[‖Xi‖3] ≥ (E[‖Xi‖2])3/2 = p3/2, and hence in order to make the right-hand

side of (4) to be o(1), we at least need p = o(n1/3) when A is the class

of Euclidean balls and p = o(n2/7) when A is the class of all convex sets.
Similar conditions are needed in other papers cited above. It is worthwhile
to mention here that, when A is the class of all convex sets, it was proved
by [26] that ρn(A) ≥ cE[‖Xi‖3]/

√
n for some universal constant c > 0.

In modern statistical applications, such as high dimensional estimation
and multiple hypothesis testing, however, p is often larger or even much
larger than n. It is therefore interesting to ask whether it is possible to
provide a nontrivial class of sets A in Rp for which we would have

ρn(A)→ 0 even if p is potentially larger or much larger than n. (5)

In this paper, we derive bounds on ρn(A) for A = Ar being the class of
all rectangles, or more generally for A = As being the class of simple convex
sets, and show that these bounds lead to (5). We call any convex set a simple
convex set if it can be well approximated by an affine transformation of a
rectangle. Once we establish the result for rectangles, we extend the results
to the simple convex sets, which include an interesting and important class
of sparsely convex sets. These are sets that can be represented as an inter-
section of many convex sets whose indicator functions depend nontrivially
only on a small subset of their arguments.

The sets considered are useful for applications in mathematical statistics.
In particular, the rectangles and sparsely convex sets are interesting because
they allow us to approximate the probabilities of various key statistics ex-
ceeding or falling below certain thresholds. For example, the probability
that a collection of Kolmogorov-type statistics falls below a collection of
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thresholds,

P

(
max
j∈Jk

SXnj ≤ tk; k = 1, ..., κ

)
= P

(
SXn ∈ A

)
,

can be approximated by P(SYn ∈ A) within the error margin ρn(Ar); here
{Jk} are subsets of {1, ..., p}, {tk} are the thresholds in the interval [−∞,∞],
1 ≤ κ ≤ 2p is an integer, and A ⊂ Ar is a rectangular region of the form {w ∈
Rp : maxj∈Jk wj ≤ tk; k = 1, ..., κ}. Or, for example, the probability that a
collection of Pearson-type statistics falls below a collection of thresholds,

P
(
‖(SXnj)j∈Jk‖

2 ≤ tk; k = 1, ..., κ
)

= P
(
SXn ∈ A

)
can be approximated by P(SYn ∈ A) within the error margin ρn(As); here
{Jk} are subsets of {1, ..., p} of fixed cardinality s0, {tk} are the thresholds
in the interval (0,∞], 1 ≤ κ ≤

(
p
s0

)
is an integer, and A ⊂ As is a sparsely

convex set of the form {w ∈ Rp : ‖(wj)j∈Jk‖2 ≤ tk; k = 1, ..., κ}. In practice,
as we demonstrate, the approximations above could be estimated using the
empirical or multiplier bootstrap.

The results in this paper extend those obtained in [14] where we consid-
ered the class A = Am of sets of the form A = {w ∈ Rp : maxj∈J wj ≤ a} for
some a ∈ R and J ⊂ {1, ..., p}, but to obtain much better dependence on n,
we employ new techniques. Most notably, we employ an induction argument
as the main ingredient in the new proof, as inspired by Bolthausen [8]. Our
paper builds upon our previous work [14], which in turn builds on a number
of works listed in the bibliography (see [15] for a detailed review and links
to the literature).

1.1. Organization of the paper. In Section 2, we derive a Central Limit
Theorem (CLT) for rectangles in high dimensions; that is, we derive a bound
on ρn(A) for A = Ar being the class of all rectangles and show that the
bound converges to zero under certain conditions even when p is potentially
larger or much larger than n. In Section 3, we extend this result by showing
that similar bounds apply for A = As being a class of simple convex sets. In
Section 4, we derive high dimensional Empirical and Multiplier Bootstrap
CLTs that allow to approximate the distribution of P(SYn ∈ A) for A ∈ Ar
or As using the data X1, . . . , Xn. In Section 5, we state an induction lemma,
a key result underlying all the derivations in the paper. Finally, we provide
all proofs as well as some technical results in the Appendix.

1.2. Notation. For a ∈ R, [a] denotes the largest integer smaller than or
equal to a. For w = (w1, . . . , wp)

′ ∈ Rp and s = (s1, . . . , sp)
′ ∈ Rp, we

write w ≤ s if wj ≤ sj for all j = 1, . . . , p. For s = (s1, . . . , sp)
′ ∈ Rp and

a ∈ R, we write s+ a := (s1 + a, . . . , sp + a)′. Throughout the paper, En[·]
denotes the average over index i = 1, . . . , n; that is, it simply abbreviates
the notation n−1

∑n
i=1[·]. For example, En[xij ] = n−1

∑n
i=1 xij . Also, we

denote Xn
1 := (X1, . . . , Xn). Finally, following standard notation, for α > 0,
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we define the function ψα : [0,∞) → [0,∞) by ψα(x) := exp(xα) − 1, and
for a random variable ξ, we define

‖ξ‖ψα := inf{λ > 0 : E[ψα(|ξ|/λ)] ≤ 1}.

For α ≥ 1, ‖ · ‖ψα is an Orlicz norm, while for α ∈ (0, 1), ‖ · ‖ψα is not a
norm but a quasi-norm, that is, there exists a constant Kα depending only
on α such that ‖ξ1 + ξ2‖ψα ≤ Kα(‖ξ1‖ψα + ‖ξ2‖ψα). Throughout the paper,
we assume that n ≥ 4 and p ≥ 2.

2. High Dimensional CLT for Rectangles

This section presents a high dimensional CLT for rectangles. Let Ar be
the class of all rectangles in Rp; that is, Ar consists of all sets A of the form

A = {w ∈ Rp : aj ≤ wj ≤ bj for all j = 1, . . . , p} (6)

for some −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p. We will derive a bound on
ρn(Ar), and show that under certain conditions it leads to ρn(Ar)→ 0 even
when p = pn is potentially larger or much larger than n.

To describe the bound, we need to prepare some notation. Define

Ln := max
1≤j≤p

1

n

n∑
i=1

E[|Xij |3], (7)

and for φ ≥ 1, define

Mn,X(φ) :=
1

n

n∑
i=1

E

[
max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | >
√
n/(4φ log p)

}]
. (8)

Similarly, defineMn,Y (φ) withXij ’s replaced by Yij ’s in (8), and letMn(φ) :=
Mn,X(φ) +Mn,Y (φ). The following is the first main result of this paper.

Theorem 2.1 (High Dimensional CLT for Rectangles). Suppose that there
exists some constant b > 0 such that m−1

∑m
i=1 E[X2

ij ] ≥ b for all j = 1, . . . , p

and m = [n − log n − 1], . . . , n. Then there exist constants K1,K2 > 0
depending only b such that for every constant Ln ≥ Ln,

ρn(Ar) ≤ K1

(L2
n log7 p

n

)1/6

+
Mn(φn)

Ln

 , (9)

with

φn := K2

(
L
2
n log4 p

n

)−1/6
. (10)

Remark 2.1 (Key features of Theorem 2.1, I). The bound (9) should be
contrasted with Bentkus’s [6] bound (4). For the sake of exposition, assume
that the vectors X1, . . . , Xn are such that E[X2

ij ] = 1 and for some constant
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Bn ≥ 1, |Xij | ≤ Bn for all i = 1, . . . , n and j = 1, . . . , p. Then it can be
shown that the bound (9) reduces to

ρn(Ar) ≤ K
(
B2
n log7(pn)

n

)1/6

(11)

for some universal constant K; see Corollary 2.1 below. Importantly, the
right-hand side of (11) converges to zero even when p is much larger than
n; indeed we just need B2

n log7(pn) = o(n) to make ρn(Ar) → 0, and if in

addition Bn = O(1), the condition reduces to log p = o(n1/7). In contrast,

Bentkus’s bound (4) requires p = o(n2/7) to make ρn(A)→ 0 when A is the
class of all convex sets. Thus, if we restrict attention to the smaller class of
sets, A = Ar, the requirements on p are considerably weaker. �

Remark 2.2 (Key features of Theorem 2.1, II). On the other hand, the

bound in (11) depends on n through n−1/6, so that our Theorem 2.1 does
not recover the Berry-Esseen bound when p is fixed. However, given the that
the rate n−1/6 is optimal (in a minimax sense) in CLT in infinite dimensional

Banach spaces (see [4]), the factor n−1/6 seems nearly optimal in terms of
dependence on n in the high-dimensional settings. In addition, examples in
[16] suggest that dependence on Bn is also optimal. Therefore, we conjecture
that

K

(
B2
n loga(p)

n

)1/6

for some a > 0 is an optimal bound (in a minimax sense) in the high di-
mensional setting. A value of a = 3 could be motivated by the theory of
moderate deviations for self-normalized sums when the components of Xi

are independent. �

Remark 2.3 (Relation to previous work). Theorem 2.1 extends the result
of Theorem 2.2 in [14] where we derived a bound on ρn(Am) with Am ⊂ Ar
consisting of all sets of the form

A = {w = (w1, . . . , wp)
′ ∈ Rp : wj ≤ a for all j = 1, . . . , p}

for some a ∈ R. In particular, we improve dependence on n from n−1/8 in
[14] to n−1/6. In addition, we note that extension to the class Ar from the
class Am is not immediate since in both papers we assume that var(SXnj) is
bounded below from zero uniformly in j = 1, . . . , p, so that it is not possible
to obtain the class Ar from the class Am by rescaling some coordinates of
SXn . �

The bound (9) depends on Mn(φn) whose values are problem specific.
Therefore, we now apply Theorem 2.1 in two specific examples that are
most useful in mathematical statistics (as well as other related fields such as
econometrics). Let b > 0 be some constant and let Bn ≥ 1 be a sequence of
constants, possibly growing to infinity as n→∞. Assume that the following
conditions are satisfied:
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(M.1) n−1
∑n

i=1 E[X2
ij ] ≥ b for all j = 1, . . . , p,

(M.2) n−1
∑n

i=1 E[|Xij |2+k] ≤ Bk
n for all j = 1, . . . , p and k = 1, 2.

We consider examples where one of the following conditions holds:

(E.1) E[exp(|Xij |/Bn)] ≤ 2 for all i = 1, . . . , n and j = 1, . . . , p,

(E.2) E[(max1≤j≤p |Xij |/Bn)q] ≤ 2 for all i = 1, . . . , n,

where q ≥ 4. Application of Theorem 2.1 under these conditions leads to
the following corollary.

Corollary 2.1 (Leading Examples). Assume that conditions (M.1) and
(M.2) are satisfied. Then under (E.1), we have

ρn(Ar) ≤ C
(
B2
n log7(pn)

n

)1/6

, (12)

where the constant C depends only on b, while under (E.2), we have

ρn(Ar) ≤ C

[(
B2
n log7(pn)

n

)1/6

+

(
B2
n log3 p

n1−2/q

)1/3
]
, (13)

where the constant C depends only on b and q.

3. High Dimensional CLT for Simple Convex Sets

In this section, we extend the results of Section 2 by considering larger
classes of sets; in particular, we consider classes of simple convex sets, and
obtain, under certain conditions, bounds that are similar to those in Section
2 (Corollary 3.1). Although an extension to simple convex sets is not dif-
ficult, in high dimensional spaces, the class of simple convex sets is rather
large, and, as we demonstrate in Lemma 3.1, contains interesting classes
of sparsely convex sets (Definition 3.1). These classes in turn may be of
interest in mathematical statistics where sparse models and techniques have
been getting very popular in the past years.

Consider a convex set A ⊂ Rp. This set can be characterized by its
support function:

SA : Sp−1 → R ∪ {∞}, v 7→ SA(v) := sup{w′v : w ∈ A},
where Sp−1 := {v ∈ Rp : ‖v‖ = 1}; in particular, A = ∩v∈Sp−1{w ∈ Rp :
w′v ≤ SA(v)}. We say that a convex set A is m-generated if it is generated
by intersections of m half-spaces. The support function SA of such a set A
can be characterized completely by its values {SA(v), v ∈ V(A)} for the set
V(A) consisting of m unit vectors that are outward normal to the faces of
A. Indeed,

A = ∩v∈V(A){w ∈ Rp : w′v ≤ SA(v)}.
For ε > 0 and an m-generated convex set Am, we define

Am,ε := ∩v∈V(Am){w ∈ Rp : w′v ≤ SAm(v) + ε}.
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Further, we say that a convex set A admits an approximation with precision
ε by an m-generated convex set Am if

Am ⊂ A ⊂ Am,ε.

Let a, d > 0 be some constants. Let As be a class of sets A in Rp that
satisfy the following condition:

(C) The set A admits an approximation with precision ε = a/n by an
m-generated convex set Am where m ≤ (pn)d.

We refer to sets A that satisfy condition (C) as simple convex sets because
they can be well approximated by affine transformations of rectangles. Note
that rectangles A ∈ Ar trivially satisfy condition (C) with a = 0 and d = 1.

For all A ∈ As with the approximatingm-generated set Am as in condition

(C) and X̃i = (X̃i1, . . . , X̃im)′ = (v′Xi)v∈V(Am), i = 1, . . . , n, we assume that
the following conditions are satisfied:

(M.1′) n−1
∑n

i=1 E[X̃2
ij ] ≥ b for all j = 1, . . . ,m,

(M.2′) n−1
∑n

i=1 E[|X̃ij |2+k] ≤ Bk
n for all j = 1, . . . ,m and k = 1, 2.

In addition, we assume that one of the following conditions hold:

(E.1′) E[exp(|X̃ij |/Bn)] ≤ 2 for all i = 1, . . . , n and j = 1, . . . ,m,

(E.2′) E[(max1≤j≤m |X̃ij |/Bn)q] ≤ 2 for all i = 1, . . . , n,

Conditions (M.1′), (M.2′), (E.1′), and (E.2′) are similar to those used in

the previous section but they apply to vectors X̃1, . . . , X̃n rather than to
vectors X1, . . . , Xn.

Recall the definition of ρn(A) in (3). A simple extension of Corollary 2.1
gives the following result for the classes of sets A = As.

Corollary 3.1 (High dimensional CLT for simple convex sets). If all sets
A in the class As satisfy (C), (M.1′), (M.2′), and (E.1′), then we have

ρn(As) ≤ C
(
B2
n log7(pn)

n

)1/6

, (14)

where the constant C depends only on b, a, and d; and if all sets A in the
class A = As satisfy (C), (M.1′), (M.2′), and (E.2′), then we have

ρn(As) ≤ C

[(
B2
n(log7(pn)

n

)1/6

+

(
B2
n log3 p

n1−2/q

)1/3
]
,

where the constant C depends only on b, q, a, and d.

Applying Corollary 3.1 to log-concave distributions gives the following
particularly useful result:
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Corollary 3.2 (High dimensional CLT for simple convex sets with log–
concave distributions). Assume that the vectors X1, . . . , Xn have (centered)
log-concave distributions on Rp and that maximal eigenvalue of E[XiX

′
i] is

bounded from above by a constant K for all i = 1, . . . , n. If all sets A in the
class As satisfy (C) and (M.1′), then we have

ρn(As) ≤ C
(

log7(pn)

n

)1/6

,

where the constant C depends only on b, a, d, and K.

As we mentioned above, the class of simple convex sets is large and, in
high dimensions, contains many interesting sets. In particular, this class
contains sparsely convex sets defined as follows.

Definition 3.1 (Sparsely convex sets). For integers s,Q > 0, we say that

A ⊂ Rp is an (s,Q)-sparsely convex set if A = ∩Qq=1Aq where for each q,

Aq ⊂ Rp is a convex set whose indicator function w 7→ I(w ∈ Aq) depends at
most on s components of its argument w = (w1, . . . , wp) (which we call main

components of Aq). We also say that A = ∩Qq=1Aq is a sparse representation
of A.

The simplest example fitting into this definition is a rectangle as in (6),
which is a (1, 2p)-sparsely convex set. Another simple example is the set

A = {w ∈ Rp : v′kw ≤ ak, for all k = 1, . . . ,m} (15)

for some unit vectors vk ∈ Sp−1 and coefficients ak, k = 1, . . . ,m. If the
number of non-zero components of each vk does not exceed s, this A is an
(s,m)-sparsely convex set. Another, slightly more complicated, example is
the set

A = {w ∈ Rp : aj ≤ wj ≤ bj for all j = 1, . . . , p and w2
1 + w2

2 ≤ c} (16)

for some coefficients −∞ ≤ aj ≤ bj ≤ ∞, j = 1, . . . , p, and 0 < c ≤ ∞. This
A is (2, 2p+ 1)-sparsely convex set. A more complicated example is the set

A = {w ∈ Rp : aj ≤ wj ≤ bj , w2
k + w2

l ≤ ckl, for all j, k, l = 1, . . . , p} (17)

for some coefficients −∞ ≤ aj ≤ bj ≤ ∞, 0 < ckl ≤ ∞, j, k, l = 1, . . . , p.
This A is (2, p2 + 2p)-sparsely convex set. Another example, given in the
introduction, is

A = {w ∈ Rp : ‖(wj)j∈Jk‖
2 ≤ tk : k = 1, ..., κ}

here {Jk} are subsets of {1, ..., p} of fixed cardinality s0, {tk} are the thresh-
olds in the interval (0,∞), and 1 ≤ κ ≤

(
p
s0

)
is an integer. This A is

(s0, p
s0)-sparsely convex set. In practice the approximations above could be

estimated using the empirical or multiplier bootstrap.
The following lemma shows than many sparsely convex sets are simple

convex sets:
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Lemma 3.1 (Sparsely convex sets are simple convex sets). Assume that A is
an (s,Q)-sparsely convex set containing the origin such that supw∈A |w| ≤ R
and such that all sets Aq in the sparse representation A = ∩Qq=1Aq of A

satisfy −Aq ⊂ µAq for some µ ≥ 1. Then for any γ > e/8, there exists ε0 =
ε0(γ) > 0 such that for any 0 < ε < ε0, the set A admits an approximation
with precision Rε by an m-generated convex set Am where

m ≤ Q
(
γ

√
µ+ 1

ε
log

1

ε

)s2
. (18)

Therefore, if Q ≤ (pn)d0, R ≤ (pn)d0, and µ ≤ (pn)d0 for some constant
d0 ≥ 1, then there exists an absolute integer n0 such that the set A satisfies
(C) for all n ≥ n0 with a = 1 and d depending only on s and d0.

Remark 3.1 (On conditions of Lemma 3.1). The conditions of the lemma
are sufficient to establish the bound (18) but they are not necessary. These
conditions arise from the fact that our derivation relies upon the approxima-
tion result of Barvinok [3]. Similar bounds can often be established under
different/weaker conditions using ad hoc arguments. For example, these
assumptions can be clearly avoided in the case of the set in (15).

Remark 3.2 (On condition (M.1′) for sparsely convex sets). As the proof of
Lemma 3.1 reveals, a simple sufficient condition for any (s,Q)-sparsely con-
vex set A in Rp to obey condition (M.1′) is that n−1

∑n
i=1 E[(v′Xi)

2] ≥ b for
any v ∈ Sp−1 with non-zero components corresponding to main components

of some Aq in the sparse representation A = ∩Qq=1Aq.

We conclude this section with a lemma relating conditions (M.2′), (E.1′),
and (E.2′) to conditions (M.2), (E.1), and (E.2).

Lemma 3.2 (On conditions (M.2′), (E.1′), and (E.2′) for sparsely convex
sets). Assume that conditions (M.2) and (E.1) (or (E.2)) are satisfied with
constants b and Bn. Then any (s,Q)-sparsely convex set A in Rp obeys con-
ditions (M.2′) and (E.1′) (or (E.2′), respectively) with constants b and s4Bn
(in place of Bn) and approximating m-generated convex set Am constructed
as in Lemma 3.1.

4. Empirical and Multiplier Bootstrap CLTs

In the last two sections, we showed that the probabilities P(SXn ∈ A)
can be well approximated by the Gaussian analog P(SYn ∈ A) under weak
conditions uniformly over rectangles A ∈ Ar or simple convex sets A ∈ As.
In practice, however, the covariance matrix of SYn is typically unknown,
and so approximating P(SXn ∈ A) by P(SYn ∈ A) is infeasible. Therefore,
in this section, we derive two high dimensional bootstrap CLTs. These
theorems allow us to further approximate the probabilities P(SYn ∈ A) (and
hence P(SXn ∈ A)) by means of the bootstrap. We consider multiplier and
empirical bootstrap methods.
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Our first theorem is concerned with the multiplier bootstrap. Let e1, . . . , en
be a sequence of i.i.d. N(0, 1) random variables that are independent of
Xn

1 = {X1, . . . , Xn}. Let µ̂Xn := (µ̂Xn1, . . . , µ̂
X
np)
′ := En[Xi], and consider the

normalized sum:

SeXn := (SeXn1 , . . . , S
eX
np )′ :=

1√
n

n∑
i=1

ei(Xi − µ̂Xn ).

We are interested in bounding

ρMB
n (A) := sup

A∈A

∣∣P(SeXn ∈ A | Xn
1 )− P(SYn ∈ A)

∣∣
for A = Ar and As. To state the bound, let

ΣeX
n :=

1

n

n∑
i=1

(Xi − µ̂Xn )(Xi − µ̂Xn )′ and ΣY
n :=

1

n

n∑
i=1

E[YiY
′
i ]

denote the covariance matrices of SeXn and SYn , respectively (conditional on
Xn

1 in case of SeXn ), with ΣeX
n,jk and ΣY

n,jk denoting the (j, k)th element of

ΣeX
n and ΣY

n , respectively. Also, denote the maximum norm of the difference
between ΣeX

n and ΣY
n by ∆n:

∆n := max
1≤j,k≤p

∣∣ΣeX
n,jk − ΣY

n,jk

∣∣ .
We have the following theorem for the class of rectangles A = Ar.

Theorem 4.1 (Multiplier bootstrap CLT). Assume that condition (M.1) is
satisfied. Then for any constant ∆̄n, we have

ρMB
n (Ar) ≤ C∆̄1/3

n (log p)2/3

on the event that ∆n ≤ ∆̄n where the constant C depends only on b.

We now specialize this theorem for moment conditions as in our leading
examples. For brevity of the paper, we state the corollary for the case of
simple convex sets A = As and note that since all rectangles is a special
case of simple convex sets, the same result trivially applies for the case of
rectangles A = Ar with conditions (C), (M.1′), (M.2′), and (E.j′) replaced
by (M.1), (M.2), and (E.j) for j = 1 or 2. We have the following corollary.

Corollary 4.1 (Leading Examples). Let α ∈ (0, e−1) be a constant. If all
sets A in the class As satisfy (C), (M.1′), (M.2′), and (E.1′), then we have
with probability at least 1− α,

ρMB
n (As) ≤ C

(
B2
n log5(pn) log2(1/α)

n

)1/6

, (19)

where the constant C depends only on b; and if all sets A in the class As
satisfy (C), (M.1′), (M.2′), and (E.2′), then we have with probability at least



CLT AND BOOTSTRAP FOR HIGH DIMENSIONS 11

1− α,

ρMB
n (As) ≤ C

[(
B2
n log5(pn) log2(1/α)

n

)1/6

+

(
B2
n log3 p

α2/qn1−2/q

)1/3
]
, (20)

where the constant C depends only on b and q.

Our second theorem is concerned with the empirical bootstrap. Let
X∗1 , . . . , X

∗
n be i.i.d. draws from the empirical distribution of X1, . . . , Xn.

Conditional on Xn
1 = {X1, . . . , Xn}, X∗1 , . . . , X∗n are i.i.d. with mean µ̂Xn =

En[Xi]. Consider the normalized sum:

SX
∗

n := (SX
∗

n1 , . . . , S
X∗
np )′ :=

1√
n

n∑
i=1

(X∗i − µ̂n).

We are interested in bounding

ρEBn (A) := sup
A∈A

∣∣∣P(SX
∗

n ∈ A | Xn
1 )− P(SYn ∈ A)

∣∣∣
for A = Ar and As. To state the bound, define

L̂n := max
1≤j≤p

1

n

n∑
i=1

|Xij − µ̂Xnj |3, (21)

an empirical analog of Ln. Also, for φ ≥ 1, define

M̂n,X(φ) :=
1

n

n∑
i=1

max
1≤j≤p

|Xij − µ̂Xnj |31
{

max
1≤j≤p

|Xij − µ̂Xnj | >
√
n/(4φ log p)

}
,

M̂n,Y (φ) := E

[
max
1≤j≤p

|SeXnj |31
{

max
1≤j≤p

|SeXnj | >
√
n/(4φ log p)

}
| Xn

1

]
empirical analogs of Mn,X(φ) and Mn,Y (φ), and let M̂n(φ) := M̂n,X(φ) +

M̂n,Y (φ). Then we have the following theorem for the class of rectangles
A = Ar.

Theorem 4.2 (Empirical bootstrap CLT). For any constants b, Ln, and
Mn, we have

ρEBn (Ar) ≤ ρMB
n (Ar) +K1

(L2
n log7(pn)

n

)1/6

+
Mn

Ln


on the event that En[(Xij − µ̂Xnj)2] ≥ b for all j = 1, . . . , p, Ln ≥ L̂n, and

Mn ≥ M̂n(φn), where

φn := K2

(
L
2
n log4 p

n

)−1/6
,

and where the constants K1,K2 depend only on b.
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As in the case of multiplier boostrap, we now specialize this theorem for
moment conditions as in our main examples. For brevity of the paper, we
state the corollary for the case of simple convex sets A = As and note that
the same result applies for the case of rectangles as a special case. We have
the following corollary.

Corollary 4.2 (Leading Examples). Let α ∈ (0, e−1) be a constant. Assume
that log(1/α) ≤ K log(pn) for some other constant K. If all sets A in the
class As satisfy (C), (M.1′), (M.2′), and (E.1′), then we have with probability
at least 1− α,

ρEBn (As) ≤ C
(
B2
n log5(pn) log2(1/α)

n

)1/6

, (22)

where the constant C depends only on b and K; and if all sets A in the class
As satisfy (C), (M.1′), (M.2′), and (E.2′), then we have with probability at
least 1− α,

ρEBn (As) ≤ C

[(
B2
n log5(pn) log2(1/α)

n

)1/6

+

(
B2
n log3(pn)

α2/qn1−2/q

)1/3
]
, (23)

where the constant C depends only on b, q, and K.

Remark 4.1 (The a.s. bootstrap CLTs). Corollaries 4.1 and 4.2 are sharp
enough to yield the following a.s. multiplier and empirical bootstrap CLTs.
Let Z,Z1, Z2, . . . be i.i.d. random variables taking values in a measurable
space (S,S). For each n ≥ 4, let Fn be a class consisting of p = pn =
|Fn| ≥ 2 measurable functions S → R. Consider random vectors in Rp,
Xi := Xi,n := (f(Zi)−E[f(Z)])f∈Fn , for i = 1, . . . , n. Also define SXn , SeXn ,

SX
∗

n , ρMB
n (As), and ρEBn (As) as above. Applying Corollaries 4.1 and 4.2

with α = αn = n−1 log−2 n and using the Borel-Cantelli emma (recall that∑∞
n=4 n

−1 log−2 n < ∞) implies that under conditions (C), (M.1′), (M.2′),
and (E.1′),

ρMB
n (As) = o(1) and ρEBn (As) = o(1) a.s. (24)

if B2
n log7(pn)/n = o(1). Similarly, under conditions (C), (M.1′), (M.2′), and

(E.2′), (24) holds if B2
n log7(pn)/n = o(1) and B2

n log3(pn) log4/q n/n1−4/q =
o(1).

5. Induction Lemma

In this section, we prove an induction lemma that plays a key role in the
proof of our high dimensional CLT for rectangles (Theorem 2.1). Fix n, and
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consider normalized partial sums for m = 1, . . . , n:

SXn,m := (SXn,m,1, . . . , S
X
n,m,p)

′ :=
1√
m

m∑
i=1

Xi,

SYn,m := (SYn,m,1, . . . , S
Y
n,m,p)

′ :=
1√
m

m∑
i=1

Yi.

Define

%n,m := sup
s∈Rp,v∈[0,1]

∣∣P (√vSXn,m +
√

1− vSYn,m ≤ s
)
− P(SYn,m ≤ s)

∣∣ , (25)

and let Mn(φ) := Mn,X(φ)+Mn,Y (φ). Our induction lemma below provides
a bound on %n,m in terms of %n,m−1 for each m = [n− log n], . . . , n.

Lemma 5.1 (Induction Lemma). Suppose that there exists some constant
b > 0 such that m−1

∑m
i=1 E[X2

ij ] ≥ b for all j = 1, . . . , p and m = [n −
log n − 1], . . . , n. Then %n,m satisfies the following inequality for all φ ≥ 1
and m = [n− log n], . . . , n:

%n,m .
φ2(log p)2

n1/2

(
Lnφ%n,m−1 + Ln(log p)1/2 + φMn(φ)

)
+

(log p)1/2

φ

up to a constant K that depends only on b.

Lemma 5.1 has an immediate corollary. Indeed, define

%′n,m := sup
A∈Ar,v∈[0,1]

∣∣P(
√
vSXn,m +

√
1− vSYn,m ∈ A)− P(SYn,m ∈ A)

∣∣
where Ar is the class of all rectangles in Rp. Then we have

Corollary 5.1. Suppose that there exists some constant b > 0 such that
m−1

∑m
i=1 E[X2

ij ] ≥ b for all j = 1, . . . , p and m = [n−log n−1], . . . , n. Then

%′n,m satisfies the following inequality for all φ ≥ 1 and m = [n−log n], . . . , n:

%′n,m .
φ2(log p)2

n1/2

(
Lnφ%

′
n,m−1 + Ln(log p)1/2 + φMn(2φ)

)
+

(log p)1/2

φ

up to a constant K ′ that depends only on b.

Appendix A. Technical tools

A.1. Anti-concentration inequality.

Lemma A.1 (Nazarov inequality, [27]). Let Y = (Y1, . . . , Yp)
′ be a centered

Gaussian random vector in Rp such that E[Y 2
j ] ≥ b for all j = 1, . . . , p and

some constant b > 0. Then for every s ∈ Rp and a > 0,

P(Y ≤ s+ a)− P(Y ≤ s) ≤ Ca(log p)1/2,

where C is a constant depending only on b.
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Remark A.1. This inequality is less sharp than the dimension-free anti-
concentration bound CaE‖Y ‖∞ proved in [17] for the case of max rectangles
(anti-concentration inequalities for suprema of Gaussian processes). How-
ever, the former inequality allows for more general rectangles than the lat-
ter. The difference in sharpness for the case of max-rectangles arises due
to dimension-dependence (log p)1/2, in particular the term (log p)1/2 can be
much larger than E‖Y ‖∞. This also makes the anti-concentration bound in
[17] more relevant for the study of suprema of Gaussian processes indexed
by infinite classes. It is an interesting question whether one could establish
a dimension-free anti-concentration bound similar to that in [17] for classes
of rectangular sets other than max rectangles. �

Proof of Lemma A.1. Let Σ = E[Y Y ′], so that Y has the same distribution

as Σ1/2Z where Z is a standard Gaussian random vector. Denote by σj the

jth column of Σ1/2, so that Σ1/2 = (σ1, . . . , σp). Then

P(Y ≤ s+ a) = P(Σ1/2Z ≤ s+ a)

= P((σj/|σj |)′Z ≤ (sj + a)/|σj | for all j = 1, . . . , p),

and

P(Y ≤ s) = P((σj/|σj |)′Z ≤ sj/|σj | for all j = 1, . . . , p).

Since Z is a standard Gaussian random vector, and a/‖σj‖ ≤ a/b1/2 for all
j = 1, . . . , p, the assertion follows from Theorem 20 in [22], whose proof the
authors credit to Nazarov [27]. �

A.2. Maximal inequalities.

Lemma A.2. Let X1, . . . , Xn be independent centered random vectors in Rp
with p ≥ 2. Define Z := max1≤j≤p |

∑n
i=1Xij |, M := max1≤i≤n max1≤j≤p |Xij |

and σ2 := max1≤j≤p
∑n

i=1 E[X2
ij ]. Then

E[Z] ≤ K(σ
√

log p+
√

E[M2] log p).

where K is a universal constant.

Proof. See Lemma 8 in [17]. �

Lemma A.3. Assume the setting of Lemma A.2. (i) For every η > 0, β ∈
(0, 1] and t > 0,

P{Z ≥ (1 + η)E[Z] + t} ≤ exp{−t2/(3σ2)}+ 3 exp{−(t/(K‖M‖ψβ ))β},

where K = K(η, β) is a constant depending only on η, β.
(ii) For every η > 0, s ≥ 1 and t > 0,

P{Z ≥ (1 + η)E[Z] + t} ≤ exp{−t2/(3σ2)}+K ′E[M s]/ts,

where K ′ = K ′(η, s) is a constant depending only on η, s.

Proof. See Theorem 4 in [1] for case (i) and Theorem 2 in [2] for case (ii).
See also [19]. �
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Lemma A.4. Let X1, . . . , Xn be independent random vectors in Rp with
p ≥ 2 such that Xij ≥ 0 for all i = 1, . . . , n and j = 1, . . . , p. Define
Z := max1≤j≤p

∑n
i=1Xij and M := max1≤i≤n max1≤j≤pXij. Then

E[Z] ≤ K
(

max
1≤j≤p

E[
∑n

i=1Xij ] + E[M ] log p

)
,

where K is a universal constant.

Proof. See Lemma 9 in [17]. �

Lemma A.5. Assume the setting of Lemma A.4. (i) For every η > 0, β ∈
(0, 1] and t > 0,

P{Z ≥ (1 + η)E[Z] + t} ≤ 3 exp{−(t/(K‖M‖ψβ ))β},

where K = K(η, β) is a constant depending only on η, β. (ii) For every
η > 0, s ≥ 1 and t > 0,

P{Z ≥ (1 + η)E[Z] + t} ≤ K ′E[M s]/ts,

where K ′ = K ′(η, s) is a constant depending only on η, s.

The proof of Lemma A.5 relies on the following lemma, which follows
from Theorem 10 in [24].

Lemma A.6. Assume the setting of Lemma A.4. Suppose that there exists
a constant B such that M ≤ B. Then for every η, t > 0,

P

{
Z ≥ (1 + η)E[Z] +B

(
2

3
+

1

η

)
t

}
≤ e−t.

Proof of Lemma A.6. By homogeneity, we may assume that B = 1. Then
by Theorem 10 in [24], for every λ > 0,

log E[exp(λ(Z − E[Z]))] ≤ ϕ(λ)E[Z],

where ϕ(λ) = eλ − λ− 1. Hence by Markov’s inequality, with a = E[Z],

P{Z − E[Z] ≥ t} ≤ e−λt+aϕ(λ).

The right side is minimized at λ = log(1 + t/a), at which −λt + aϕ(λ) =
−aq(t/a) where q(t) = (1 + t) log(1 + t) − t. It is routine to verify that
q(t) ≥ t2/(2(1 + t/3)), so that

P{Z − E[Z] ≥ t} ≤ e−
t2

2(a+t/3) .

Solving t2/(2(a + t/3)) = s gives t = s/3 +
√
s2/9 + 2as ≤ 2s/3 +

√
2as.

Therefore, we have

P{Z ≥ E[Z] +
√

2as+ 2s/3} ≤ e−s.

The conclusion follows from the inequality
√

2as ≤ ηa+ η−1s. �
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Proof of Lemma A.5. The proof is a modification of that of Theorem 4 in
[1] (or Theorem 2 in [2]). We begin with noting that we may assume that
(1 + η)8E[M ] ≤ t/4, since otherwise we can make the lemma trivial by
setting K or K ′ large enough. Take

ρ = 8E[M ], Yij =

{
Xij , if max1≤j≤pXij ≤ ρ,
0, otherwise

Define

W1 = max
1≤j≤p

n∑
i=1

Yij , W2 = max
1≤j≤p

n∑
i=1

(Xij − Yij).

Then

P{Z ≥ (1 + η)E[Z] + t} ≤ P{W1 ≥ (1 + η)E[Z] + 3t/4}+ P(W2 ≥ t/4)

≤ P{W1 ≥ (1 + η)E[W1]− (1 + η)E[W2] + 3t/4}+ P(W2 ≥ t/4).

Observe that

P

{
max

1≤m≤n
max
1≤j≤p

m∑
i=1

(Xij − Yij) > 0

}
≤ P(M > ρ) ≤ 1/8,

so that by the Hoffmann-Jørgensen inequality [see 23, Proposition 6.8], we
have

E[W2] ≤ 8E[M ] ≤ t/(4(1 + η)).

Hence

P{Z ≥ (1 + η)E[Z] + t} ≤ P{W1 ≥ (1 + η)E[W1] + t/2}+ P(W2 ≥ t/4).

By Lemma A.6, the first term on the right-hand side is bounded by e−ct/ρ

where c depends only on η. We bound the second term separately in cases
(i) and (ii). Below C1, C2, . . . are constants that depend only on η, β, s.

Case (i). By Theorem 6.21 in [23] (note that a version of their theorem
applies to nonnegative random vectors) and the fact that E[W2] ≤ 8E[M ],

‖W2‖ψβ ≤ C1(E[W2] + ‖M‖ψβ ) ≤ C2‖M‖ψβ ,

which implies that P(W2 ≥ t/4) ≤ 2 exp{−(t/(C3‖M‖ψβ ))β}. Since ρ ≤
C4‖M‖ψβ , we conclude that

e−ct/ρ + P(W2 ≥ t/4) ≤ 3 exp{−(t/(C5‖M‖ψβ ))β}.

Case (ii). By Theorem 6.20 in [23] (note that a version of their theorem
applies to nonnegative random vectors) and the fact that E[W2] ≤ 8E[M ],

(E[W s
2 ])1/s ≤ C6(E[W2] + (E[M s])1/s) ≤ C7(E[M s])1/s.

The conclusion follows from Markov’s inequality together with the simple
fact that e−t/t−s → 0 as t→∞. �
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A.3. Other useful inequalities.

Lemma A.7. Let ϕ : R→ R+ and φ : R→ R+ be nondecreasing functions,
and let ξ1 and ξ2 be independent random variables. Then

E[ϕ(ξ1)]E[φ(ξ1)] ≤ E[ϕ(ξ1)φ(ξ1)], (26)

E[ϕ(ξ1)]E[φ(ξ2)] ≤ E[ϕ(ξ1)φ(ξ1)] + E[ϕ(ξ2)φ(ξ2)], (27)

E[ϕ(ξ1)φ(ξ2)] ≤ E[ϕ(ξ1)φ(ξ1)] + E[ϕ(ξ2)φ(ξ2)]. (28)

Moreover, (28) holds without independence of ξ1 and ξ2.

Proof. Inequality (26) is Chebyshev’s association inequality; see Theorem
2.14 in [10]. Further, since ξ1 and ξ2 are independent, E[ϕ(ξ1)φ(ξ2)] =
E[ϕ(ξ1)]E[φ(ξ2)], and so (27) follows from (28). In turn, (28) follows from

E[ϕ(ξ1)φ(ξ2)] ≤ E[ϕ(ξ1)φ(ξ2)] + E[φ(ξ1)ϕ(ξ2)]

≤ E[ϕ(ξ1)φ(ξ1)] + E[ϕ(ξ2)φ(ξ2)]

where the first inequality holds because φ(ξ1)ϕ(ξ2) ≥ 0 and the second
inequality follows from rearranging terms in the following inequality:

E[(ϕ(ξ1)− ϕ(ξ2))(φ(ξ1)− φ(ξ2))] ≥ 0,

which holds by monotonicity of ϕ and φ. This completes the proof of the
lemma. �

Lemma A.8. Let ξ be a nonnegative random variable such that P(ξ > x) ≤
Ae−x/B for all x ≥ 0 and for some constants A,B > 0. Then for every
t ≥ 0, E[ξ31{ξ > t}] ≤ 6A(t+B)3e−t/B.

Proof. Observe that

E[ξ31{ξ > t}] = 3

∫ t

0
P(ξ > t)x2dx+ 3

∫ ∞
t

P(ξ > x)x2dx

= P(ξ > t)t3 + 3

∫ ∞
t

P(ξ > x)x2dx.

Since P(ξ > x) ≤ Ae−x/B, using integration by parts, we have∫ ∞
t

P(ξ > s)x2dx ≤ A(Bt2 + 2B2t+ 2B3)e−t/B,

which leads to

E[ξ31{ξ > t}] ≤ A(t3 + 3Bt2 + 6B2t+ 6B3)e−t/B ≤ 6A(t+B)3e−t/B.

This completes the proof of the lemma. �
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Appendix B. Proofs for Section 5

Proof of Lemma 5.1. The proof of this lemma relies on a Slepian-Stein
method developed in [14] and an induction idea of [8]. In the proof, in-
equalities an . dn are understood as an ≤ Cdn where C is a constant that
depends only on b. Also, since n ≥ 4, it follows that [n − log n] ≥ n/2, so
that m ≥ n/2 for all m = [n − log n], . . . , n. We will use this inequality in
the proof frequently without additional notice.

Fix s = (s1, . . . , sp)
′ ∈ Rp, v ∈ [0, 1], and m = [n − log n], . . . , n. Let

W1, . . . ,Wn be a copy of Y1, . . . , Yn. Without loss of generality, we assume
that sequences X1, . . . , Xn, Y1, . . . , Yn, and W1, . . . ,Wn are independent.
Consider

SWn,m :=
1√
m

m∑
i=1

Wi.

Then P(SYn,m ≤ s) = P(SWn,m ≤ s), so that

%n,m = sup
s∈Rp,v∈[0,1]

∣∣P (√vSXn,m +
√

1− vSYn,m ≤ s
)
− P(SWn,m ≤ s)

∣∣ .
Further, denote

β := φ log p,

and for w ∈ Rp, define

Fβ(w) :=
1

β
log

 p∑
j=1

exp(β(wj − sj))

 .

It is easy to check that the function Fβ(w) has the following property:

0 ≤ Fβ(w)− max
1≤j≤p

(wj − sj) ≤ β−1 log p = φ−1 (29)

for all w ∈ Rp. Also, consider a function g0 : R → [0, 1] with bounded
derivatives up to the third order such that g0(t) = 1 for t ≤ 0 and g0(t) = 0
for t ≥ 1. For t ∈ R, define g(t) := g0(φt), and for w ∈ Rp, define

m(w) := g(Fβ(w)).

For brevity of notation, we will use indices to denote partial derivatives of m;
for example, ∂j∂k∂lm = mjkl. The function m(w) has the following property
established in Lemmas A.5 and A.6 of [14]: for every j, k, l = 1, . . . , p, there
exists a function Ujkl(w) such that

|mjkl(w)| ≤ Ujkl(w), (30)
p∑

j,k,l=1

Ujkl(w) . (φ3 + φβ + φβ2) . φβ2, (31)

Ujkl(w) . Ujkl(w + w̃) . Ujkl(w) (32)

where inequalities (30) and (31) hold for all w ∈ Rp, and inequality (32) holds
for all w, w̃ ∈ Rp with max1≤j≤p |w̃j |β ≤ 1 (formally, [14] only considered
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the case s = (0, . . . , 0)′ but the extension to s ∈ Rp is trivial). Moreover, for
w ∈ Rp and t > 0, define

h(w, t) := 1

{
−φ−1 − t/β < max

1≤j≤p
(wj − sj) ≤ φ−1 + t/β

}
. (33)

Finally, for t ∈ (0, 1), define

ω(t) :=
1√

t ∧
√

1− t
.

The proof consists of two steps. In the first step, we show that

E[In] .
φ2(log p)2

n1/2

(
Lnφ%n,m−1 + Ln(log p)1/2 + φMn(φ)

)
+

(log p)1/2

φ

where

In := m(
√
vSXn,m +

√
1− vSYn,m)−m(SWn,m).

In the second step, we combine the bound from the first step with Lemma
A.1 to complete the proof.

Step 1. For t ∈ [0, 1], define the Slepian interpolant

Z(t) :=
m∑
i=1

Zi(t)

where

Zi(t) :=
1√
m

(√
t(
√
vXi +

√
1− vYi) +

√
1− tWi

)
.

Note that Z(1) =
√
vSXn,m +

√
1− vSYn,m and Z(0) = SWn,m, and so

In = m(
√
vSXn,m +

√
1− vSYn,m)−m(SWn,m) =

∫ 1

0

dm(Z(t))

dt
dt. (34)

Also, define Stein leave-one-out terms

Z(i)(t) := Z(t)− Zi(t).

Finally, define

Żi(t) :=
1√
m

(
1√
t
(
√
vXi +

√
1− vYi)−

1√
1− t

Wi

)
.

For brevity of notation, we omit argument t; that is, we write Z = Z(t),

Zi = Zi(t), Z
(i) = Z(i)(t), and Żi = Żi(t).

Now, it follows from (34) and Taylor’s theorem that

E[In] =
1

2

p∑
j=1

n∑
i=1

∫ 1

0
E[mj(Z)Żij ]dt =

1

2
(I + II + III)



20 CHERNOZHUKOV, CHETVERIKOV, AND KATO

where

I :=

p∑
j=1

m∑
i=1

∫ 1

0
E[mj(Z

(i))Żij ]dt,

II :=

p∑
j,k=1

m∑
i=1

∫ 1

0
E[mjk(Z

(i))ŻijZik]dt,

III :=

p∑
j,k,l=1

m∑
i=1

∫ 1

0

∫ 1

0
(1− τ)E[mjkl(Z

(i) + τZi)ŻijZikZil]dτdt.

By independence of Z(i) from Żij together with E[Żij ] = 0, we have I = 0.

Also, by independence of Z(i) from ŻijZik together with

E[ŻijZik] =
1

m
E
[
(
√
vXij +

√
1− vYij)(

√
vXik +

√
1− vYik)−WijWik

]
=

1

m
E[vXijXik + (1− v)YijYik −WijWik] = 0,

we have II = 0. Therefore, it suffices to bound III.
To this end, denote

χi = 1

{
max
1≤j≤p

|Xij | ∨ |Yij | ∨ |Wij | ≤
√
n/(4β)

}
.

Then III = III1 + III2 where

III1 :=

p∑
j,k,l=1

m∑
i=1

∫ 1

0

∫ 1

0
(1− τ)E[χimjkl(Z

(i) + τZi)ŻijZikZil]dτdt,

III2 :=

p∑
j,k,l=1

m∑
i=1

∫ 1

0

∫ 1

0
(1− τ)E[(1− χi)mjkl(Z

(i) + τZi)ŻijZikZil]dτdt.

We bound III1 and III2 separately. For III2, we have

|III2| ≤
p∑

j,k,l=1

m∑
i=1

∫ 1

0

∫ 1

0
E[(1− χi)Ujkl(Z(i) + τZi)|ŻijZikZil|]dτdt

. φβ2
m∑
i=1

∫ 1

0
E[(1− χi) max

1≤j,k,l≤p
|ŻijZikZil|]dt

.
φβ2

m3/2

m∑
i=1

∫ 1

0
ω(t)E[(1− χi) max

1≤j≤p
|Xij |3 ∨ |Yij |3 ∨ |Wij |3]dt. (35)

where the first and the second lines follow from (30) and (31), respectively.
Further, denoting T =

√
n/(4β), the union bound gives

1− χi ≤1

{
max
1≤j≤p

|Xij | > T
}

+ 1

{
max
1≤j≤p

|Yij | > T
}

+ 1

{
max
1≤j≤p

|Wij | > T
}
.
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Therefore, using inequality

max
1≤j≤p

|Xij |3 ∨ |Yij |3 ∨ |Wij |3 ≤ max
1≤j≤p

|Xij |3 + max
1≤j≤p

|Yij |3 + max
1≤j≤p

|Wij |3

and inequality (28) of Lemma A.7, we obtain that the integral in (35) is
bounded from above up to an absolute constant by

E

[
max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | > T
}]

+ E

[
max
1≤j≤p

|Yij |31
{

max
1≤j≤p

|Yij | > T
}]

since Wi’s have the same distribution as that of Yi’s. Conclude that

|III2| . (Mn,X(φ) +Mn,Y (φ))φβ2/n1/2 = Mn(φ)φβ2/n1/2

since m ≥ n/2, and so 1/m3/2 ≤ (2/n)3/2.

To bound III1, recall the definition of h(w, t) in (33). Note thatmjkl(Z
(i)+

τZi) = 0 for all τ ∈ [0, 1] if both h(Z(i), 2) = 0 and χi = 1 hold (indeed, if

χi = 1, then max1≤j≤p |Zij | ≤ (3/4)(n/m)1/2/β ≤ 2/β, and so when both

h(Z(i), 2) = 0 and χi = 1 hold, we have that h(Z(i) + τZi, 0) = 0, which in

turn means that either Fβ(Z(i) + τZi) ≤ 0 or Fβ(Z(i) + τZi) ≥ φ−1 because

of (29); in both cases, g′(Fβ(Z(i) + τZi)) = 0, so that the claim follows from
the definition of m). Therefore,

|III1| ≤
p∑

j,k,l=1

m∑
i=1

∫ 1

0

∫ 1

0
E[χi|mjkl(Z

(i) + τZi)ŻijZikZil|]dτdt

.
p∑

j,k,l=1

m∑
i=1

∫ 1

0

∫ 1

0
E[χih(Z(i), 2)Ujkl(Z

(i) + τZi)|ŻijZikZil|]dτdt

.
p∑

j,k,l=1

m∑
i=1

∫ 1

0

∫ 1

0
E[χih(Z(i), 2)Ujkl(Z

(i))|ŻijZikZil|]dτdt

.
p∑

j,k,l=1

m∑
i=1

∫ 1

0
E[h(Z(i), 2)Ujkl(Z

(i))]E[|ŻijZikZil|]dt (36)

where the second inequality follows from (30), the third inequality from

(32), and the fourth inequality from the indepence of Z(i) from ŻijZikZil.
Further, we split the integral in (36) inserting χi + (1 − χi) under the first
expectation sign. We have

p∑
j,k,l=1

m∑
i=1

∫ 1

0
E[(1− χi)h(Z(i), 2)Ujkl(Z

(i))]E[|ŻijZikZil|]dt

. φβ2
m∑
i=1

∫ 1

0
E[1− χi]E

[
max

1≤j,k,l≤p
|ŻijZikZil|

]
dt .Mn(φ)φβ2/n1/2

where the last inequality follows from an argument similar to that used to
bound III2 with an application of (26) and (27) instead of (28) in Lemma
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A.7. Also, since h(Z(i), 2) = 0 if both h(Z, 4) = 0 and χi = 1 hold by the
same argument as above, we have

p∑
j,k,l=1

m∑
i=1

∫ 1

0
E[χih(Z(i), 2)Ujkl(Z

(i))]E[|ŻijZikZil|]dt

.
p∑

j,k,l=1

m∑
i=1

∫ 1

0
E[h(Z, 4)Ujkl(Z)]E[|ŻijZikZil|]dt

=

p∑
j,k,l=1

∫ 1

0
E[h(Z, 4)Ujkl(Z)]

m∑
i=1

E[|ŻijZikZil|]dt

. φβ2
∫ 1

0
E[h(Z, 4)] max

1≤j,k,l≤p

m∑
i=1

E[|ŻijZikZil|]dt (37)

We split the integral in (37) inserting χm + (1− χm) under the first expec-
tation sign again. We have

φβ2
∫ 1

0
E[(1− χm)h(Z, 4)] max

1≤j,k,l≤p

m∑
i=1

E[|ŻijZikZil|]dt (38)

. φβ2
m∑
i=1

∫ 1

0
E[1− χm]E

[
max

1≤j,k,l≤p
|ŻijZikZil|

]
dt. (39)

Under the integral in (39), we add the term

E[1− χi]E
[

max
1≤j,k,l≤p

|ŻmjZmkZml|
]
,

and then the resulting expression can be bounded using an argument similar
to that used to bound III2 with an application of (26) and (27) instead of

(28) in Lemma A.7, so that we obtain (39) .Mn(φ)φβ2/n1/2.

In addition, since h(Z, 4) = 0 if both h(Z(m), 6) = 0 and χm = 1 hold, by
the same argument as above, we have

φβ2
∫ 1

0
E[χmh(Z, 4)] max

1≤j,k,l≤p

m∑
i=1

E[|ŻijZikZil|]dt

. φβ2
∫ 1

0
E[h(Z(m), 6)] max

1≤j,k,l≤p

m∑
i=1

E[|ŻijZikZil|]dt

. (L̃nφβ
2/n1/2)

∫ 1

0
ω(t)E[h(Z(m), 6)]dt .

Lnφβ
2

n1/2

∫ 1

0
ω(t)E[h(Z(m), 6)]dt

where

L̃n = max
1≤j≤p

1

n

n∑
i=1

E
[
|Xij |3 + |Yij |3

]
and the last line follows from m ≥ n/2 and the observation that E[|Yij |3] .
(E[|Yij |2])3/2 = (E[|Xij |2])3/2 ≤ E[|Xij |3] by Gaussianity of Yij .
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It remains to bound
∫ 1
0 ω(t)E[h(Z(m), 6)]dt. Note that

Z(m) =d
1√
m

m−1∑
i=1

(ṽ1/2Xi + (1− ṽ)1/2Yi)

=

√
m− 1

m
(ṽ1/2SXn,m−1 + (1− ṽ)1/2SYn,m−1) =

√
m− 1

m
Ṽn,m−1

where ṽ :=
√
tv and Ṽn,m−1 := ṽ1/2SXn,m−1 + (1− ṽ)1/2SYn,m−1. Therefore,

E[h(Z(m), 6)] = P
(
Ṽn,m−1 ≤ Ī

)
− P

(
Ṽn,m−1 ≤ I

)
where I and Ī are vectors in Rp defined as

I :=

√
m

m− 1
(s− φ−1 − 6β−1) and Ī :=

√
m

m− 1
(s+ φ−1 + 6β−1).

By the definition of %n,m−1, this implies that

E[h(Z(m), 6)] ≤ 2%n,m−1 + P(SYn,m−1 ≤ Ī)− P(SYn,m−1 ≤ I)

. %n,m−1 + (log p)1/2/φ

where the second line follows from the anti-concentration inequality (Lemma
A.1) since β−1 ≤ φ−1. Combining presented bounds gives the claim of this
step.

Step 2. We now complete the proof using the argument from [14]. De-
noting

Vn,m :=
√
vSXn,m +

√
1− vSYn,m,

we obtain

P(Vn,m ≤ s− φ−1) ≤ P(Fβ(Vn,m) ≤ 0) ≤ E[m(Vn,m)]

≤ P(Fβ(SWn,m) ≤ φ−1) + (E[m(Vn,m)]− E[m(SWn,m)])

≤ P(SWn,m ≤ s+ φ−1) + E[In]

≤ P(SWn,m ≤ s− φ−1) + C(log p)1/2/φ+ E[In]

where the first three lines follow from the properties of Fβ(w) and g(t) (recall
that m(w) = g(Fβ(w))) and the fourth line from the anti-concentration
inequality (Lemma A.1). Here the constant C depends only on b. Combining
this chain of inequalities with the bound on E[In] derived in Step 1 and
noting that the bound is independent of s and that a similar argument also
gives

P(Vn,m ≤ s− φ−1) ≥ P(SWn,m ≤ s− φ−1)− C(log p)1/2/φ− E[In]

completes the proof of the lemma. �
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Proof of Corollary 5.1. Fix some rectangle A = {w ∈ Rp : wj ∈
[aj , bj ] for all j = 1, . . . , p}. For i = 1, . . . , n, consider random vectors X̃i

and Ỹi in R2p defined by X̃ij = Xij and Ỹij = Yij for j = 1, . . . , p and

X̃ij = −Xi,j−p and Ỹij = −Yi,j−p for j = p + 1, . . . , 2p. Also, consider the
constant vector s in R2p defined by sj = bj for j = 1, . . . , p and sj = −aj−p
for j = p+ 1, . . . , 2p. Then

P(SXn,m ∈ A) = P(SX̃n,m ≤ s) and P(SYn,m ∈ A) = P(SỸn,m ≤ s)

where SX̃n,m and SỸn,m are defined as SXn,m and SYn,m with Xi’s and Yi’s re-

placed by X̃i’s and Ỹi’s. Therefore, the corollary follows by applying Lemma

5.1 to random vectors (X̃i)
n
i=1 and (Ỹi)

n
i=1 and noting that the term Mn(φ)

in the lemma is replaced by Mn(2φ) in the corollary because

E

[
max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | >
√
n/(4φ log(2p))

}]
≤ E

[
max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | >
√
n/(8φ log(p))

}]
since we assume that p ≥ 2. �

Appendix C. Proofs for Section 2

Proof of Theorem 2.1. The proof of this result relies on the induction
Lemma 5.1 and its Corollary 5.1 stated in Section 5 and proven in Appendix
B.

Let K ′ denote a constant from the conclusion of Corollary 5.1. This
constant depends only on b. Set K2 := 1/(K ′ ∨ 1) in (10), so that

φn =
1

K ′ ∨ 1

(
L
2
n(log p)4

n

)−1/6
Without loss of generality, we will assume that φn ≥ 2; otherwise, the claim
of the theorem holds trivially by setting K1 = 2(K ′ ∨ 1).

Now, applying Corollary 5.1 with φ = φn/2 gives for all m = [n −
log n], . . . , n,

%′n,m ≤
%′n,m−1

8(K ′ ∨ 1)2
+

3(K ′ ∨ 1)2L
1/3
n (log p)7/6

n1/6
+

Mn(φn)

8(K ′ ∨ 1)2Ln
.

Iterating this inequality and using inequalities K ′ ∨ 1 ≥ 1 and [log n] ≤
n− [n− log n] yields

%′n,n ≤
(

1

8

)[logn+1]

%′n,[n−logn]−1

+

n∑
m=[n−logn]

(
1

8

)n−m(3(K ′ ∨ 1)2L
1/3
n (log p)7/6

n1/6
+
Mn(φn)

8Ln

)
.
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Since %′n,[n−logn]−1 ≤ 1 and
∑∞

j=0(1/8)j = 8/7, this inequality gives

%′n,n ≤
(

1

8

)logn

+
8

7

(
3(K ′ ∨ 1)2L

1/3
n (log p)7/6

n1/6
+
Mn(φn)

8Ln

)
.

In addition, it follows from the assumption n−1
∑n

i=1 E[X2
ij ] ≥ b that Ln ≥

Ln ≥ c for some constant c that depends only on b, and so (1/8)logn ≤
(1/e)logn = 1/n ≤ ((log p)7/n)1/6 ≤ c−1/3(L

2
n(log p)7/n)1/6. Therefore, the

asserted claim follows by noting that ρn(Ar) ≤ %′n,n. �

Proof of Corollary 2.1. The proof consists of applying Theorem 2.1.
Without loss of generality, we will assume in the proof that

B2
n(log(p ∨ n))7

n
≤ c := min

(
b/(6A), (c′/2)3, (K2/2)6

)
(40)

where K2 appears in (10), A > 0 is an absolute constant and c′ > 0 is a
constant that depends only on b; both A and c′ are defined later in the proof.
Otherwise, the result for both cases is trivial.

Step 1. In this step we verify that

1

m

m∑
i=1

E[X2
ij ] ≥ b/2 (41)

holds for all m = [n − log n − 1], . . . , n and j = 1, . . . , p. Indeed, under the
conditions (E.1) or (E.2), we have that E[X2

ij ] ≤ AB2
n for all i = 1, . . . , n

and j = 1, . . . , p where A is an absolute constant. Therefore,

1

n

n∑
i=m+1

E[X2
ij ] ≤ AB2

n(2 + log n)/n ≤ 3AB2
n log n/n ≤ 3Ac

since n ≥ 4. Since c > 0 is such that 3Ac ≤ b/2, we have

1

m

m∑
i=1

E[X2
ij ] ≥

1

n

m∑
i=1

E[X2
ij ] ≥

1

n

n∑
i=1

E[X2
ij ]− b/2 ≥ b/2.

Therefore, (41) follows.
Step 2. Given Step 1 we can apply Theorem 2.1 to get the bound on

ρn(Ar) stated in Theorem 2.1:

ρn(Ar) ≤ K1

(L2
n(log p)7

n

)1/6

+
Mn,X(φn) +Mn,Y (φn)

Ln

 , (42)

where

φn = K2

(
L
2
n(log p)4

n

)−1/6
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and where Ln is any number such that Ln ≥ Ln. Recall that

Ln = max
1≤j≤p

1

n

n∑
i=1

E[|Xij |3],

Mn,X(φn) =
1

n

n∑
i=1

E

[
max
1≤j≤p

|Xij |31
{

max
1≤j≤p

|Xij | >
√
n/(4φ log p)

}]
,

and Mn,Y (φn) is defined similarly with Xij ’s replaced by Yij ’s.

In what follows, we need to select L̄n such that Ln ≥ Ln and compute
upper bounds on Mn,X(φn) and Mn,Y (φn) in order to compute upper bounds
on the right side of (42). The steps below carry out these computations for
cases (E.1) and (E.2) separately. Inserting the resulting bounds into (42)
gives the two claims of the corollary.

Case (E.1). In this case, the notation an . dn means that an ≤ Cdn
for some constant C > 0 depending only on b. By condition (M.2), we have
Ln ≤ Bn =: Ln. Observe that (E.1) implies that ‖Xij‖ψ1 ≤ Bn for all i and
j. Therefore, Lemma 2.2.2 in [38] shows that∥∥∥∥max

1≤j≤p
Xij

∥∥∥∥
ψ1

≤ A′Bn log p (43)

for some absolute constant A′. Hence, by Markov’s inequality,

P

(
max
1≤j≤p

|Xij | > x

)
≤ 2 exp

(
− x

A′Bn log p

)
for all x ≥ 0, so that applying Lemma A.8 gives

Mn,X(φn) .
(√
n/(φn log p) +Bn log p

)3
exp

(
−
√
n/(4φn log p)

A′Bn log p

)
.
(√
n+Bn log p

)3
exp

(
− c′n1/3

B
2/3
n (log p)4/3

)

. n3/2 exp

(
−c′ log(pn)

(
B2
n(log(pn))7

n

)−1/3)
. n3/2 exp(−2 log(pn)) ≤ n−1/2

for some constant c′ > 0 that depends only on b where the second, third,
and fourth lines follow from (40) and the observation that

1

φn
=

1

K2

(
L
2
n(log p)4

n

)1/6

≤ 1

K2

(
B2
n(log(pn))4

n

)1/6

≤ 1 (44)

where the last inequality again follows from (40). Further, E[Y 2
ij ] = E[X2

ij ] ≤
AB2

n, so that ‖Yij‖ψ1 . Bn by Gaussianity of Yij for all i and j. Therefore,
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Mn,Y (φn) . n−1/2 by the same argument as that used above, and so

Mn,X(φn) +Mn,Y (φn)

Ln
≤Mn,X(φn) +Mn,Y (φn) .

(
B2
n(log(pn))7

n

)1/6

where we used Bn ≥ 1. Inserting this bound and L̄n into (42) gives the
required claim (12).

Case (E.2). In this case, the notation an . dn means that an ≤ Cdn for
some constant C > 0 depending only on b and q. Without loss of generality,
in addition to (40), we will assume that

B2
n(log p)3/2

n1/2−1/q
≤ (K2/2)3/2; (45)

otherwise, the result for the (E.2) case is trivial. Further, by definition of
Ln and condition on Bn given in (M.2) we have that:

Ln ≤ Bn ≤
(
Bn +

B2
n

(log p)1/2n1/2−2/q

)
=: Ln.

Therefore, since (a+ d)1/6 ≤ a1/6 + d1/6 for any a, d ≥ 0,(
L
2
n(log p)7

n

)1/6

≤
(
B2
n(log p)7

n

)1/6

+

(
Bn(log p)3/2

n1/2−1/q

)2/3

.

Hence, under (40) and (45), we have that that

1

φn
=

1

K2

(
L
2
n(log p)4

n

)1/6

≤ 1

K2

(
L
2
n(log p)7

n

)1/6

≤ 1.

Next, using the bound E[|Z|31(|Z| > t)] ≤ E[|Z|3(|Z|/t)q−31(|Z| > t)] ≤
E[|Z|qt3−q] holding for any random variable Z and t ≥ 0, we conclude that

Mn,X(φn) .
Bq
nφq−3(log p)q−3

nq/2−3/2
.

Using an elementary inequality, we also conclude that

1

L̄n
.

(log p)1/2n1/2−2/q

B2
n

(46)

Hence, using the bound

φn = K2

(
L
2
n(log p)4

n

)−1/6
.

n1/3−2/(3q)

B
2/3
n (log p)1/2

which follows from (46), gives us

Mn,X(φn) .
B

q/3+2
n (log p)q/2−3/2

nq/6+1/6−2/q
and

Mn,X(φn)

Ln

.
1

log p

(
Bn(log p)3/2

n1/2−1/q

)q/3

.
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Moreover, as in the proof for the (E.1) case, we have that

Mn,Y (φn)

Ln
.

(
B2
n(log(p ∨ n))7

n

)1/6

.

Inserting these inequalities and L̄n into (42) gives the required claim (13).
�

Appendix D. Proofs for Section 3

Proof of Corollary 3.1. Consider the (E.1′) case first. Fix any A ∈
As. Let Am be an approximating m-generated convex set as in (C.1). By
assumption, Am ⊂ A ⊂ Am,ε, and so denoting

ρ := |P(SXn ∈ Am)− P(SYn ∈ Am)| ∨ |P(SXn ∈ Am,ε)− P(SYn ∈ Am,ε)|,

we obtain

P(SXn ∈ A) ≤ P(SXn ∈ Am,ε) ≤ P(SYn ∈ Am,ε) + ρ

≤ P(SYn ∈ Am) + Cε(log p)1/2 + ρ

≤ P(SYn ∈ A) + Cε(log p)1/2 + ρ.

An analogous argument also gives

P(SXn ∈ A) ≥ P(SYn ∈ A)− Cε(log p)1/2 − ρ.

Therefore, ∣∣P(SXn ∈ A)− P(SYn ∈ A)
∣∣ ≤ Cε(log p)1/2 + ρ.

Further,

ε(log p)1/2 ≤ C (log p)1/2

n
≤ C

(
B2
n(log(pn))7

n

)1/6

since Bn ≥ 1 and ε ≤ a/n. Therefore, the asserted claim in the (E.1′) case
follows by noting that

ρ ≤ C
(
B2
n(log(pn))7

n

)1/6

under (E.1′) by Corollary 2.1 applied to vectors X̃1, . . . , X̃n and Ỹ1, . . . , Ỹn
where the latter sequence is defined by analogy with the former sequence
but using vectors Y1, . . . , Yn. The asserted claim in the (E.2′) case follows
from the same argument. This completes the proof of the corollary. �
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Proof of Corollary 3.2. Since Xi is a centered random vector with a log-
concave distribution in Rp, Borell’s inequality [9, Lemma 3.1] implies that

‖v′Xi‖ψ1 ≤ c(E[(v′Xi)
2])1/2 for all v ∈ Rp for some universal constant c > 0

[see 25, Appendix III]; hence if the maximal eigenvalue of each E[XiX
′
i]

is bounded by a constant K, then any deformed rectangle A ∈ As obeys
conditions (M.2′) and (E.1′) with Bn replaced by a constant C depending
only on c and K. Therefore, the asserted claim follows by applying Corollary
3.1. �

Proof of Lemma 3.1. For convex sets P1 and P2 containing the origin and
such that P1 ⊂ P2, denote

dBM (P1, P2) := inf{ε : P2 ⊂ (1 + ε)P1}.

It is immediate to verify that the function dBM has the following useful
property: for any convex sets P1, P2, P3, and P4 containing the origin and
such that P1 ⊂ P2 and P3 ⊂ P4,

dBM (P1 ∩ P3, P2 ∩ P4) ≤ dBM (P1 ∩ P2) ∨ dBM (P3 ∩ P4). (47)

Let A = ∩Qq=1Aq be a sparsely representation of A as appeared in the
statement of the lemma. Fix any Aq. By assumption, the indicator function
w 7→ I(w ∈ Aq) depends only on sq ≤ s components of its argument w =
(w1, . . . , wp). Let Eq denote the subspace of Rp corresponding to these sq
components. Since A contains the origin, it follows that Aq contains the
origin as well. Therefore, applying Corollary 1.5 in [3] shows that one can

construct a polytope P ′q ⊂ Eq with at most (γ((µ + 1)/ε)1/2 log(1/ε))sq

vertices such that the section Aq ∩ Eq satisfies

P ′q ⊂ Aq ∩ Eq ⊂ (1 + ε)P ′q.

Clearly, the polytope P ′q has

mq ≤

(
γ

√
µ+ 1

ε
log

1

ε

)s2q
≤

(
γ

√
µ+ 1

ε
log

1

ε

)s2
(48)

faces (of dimension sq − 1). Indeed, since Eq is a sq-dimensional vector
space, a polytope with k vertices has no more than ksq faces. Hence, one
can construct an mq-generated convex set Pq such that Pq ⊂ Aq ⊂ (1 + ε)Pq
and all vectors in V(Pq) having at most s non-zero components. Hence,

dBM (Pq, Aq) ≤ ε.

Next, it follows from (47) that

dBM (∩Qq=1Pq,∩
Q
q=1Aq) ≤ ε.

Therefore, defining Am = ∩Qq=1Pq, we obtain from A = ∩Qq=1Aq that

Am ⊂ A ⊂ (1 + ε)Am ⊂ Am,Rε
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where the last assertion follows from the assumption that supw∈A |w| ≤ R.

Since Am is an m-generated convex set with m ≤
∑Q

q=1mq, the asserted

claim of the lemma now follows from (48). �

Proof of Lemma 3.2. Fix any v = (v1, . . . , vp)
′ ∈ V(Am). To estab-

lish (M.2′), observe that by construction of Am in Lemma 3.1, v has at
most s non-zero components. Let J(v) be the set containing positions of
non-zero components, so that |J(v)| ≤ s. Using an elementary inequality
(
∑

j∈J(v) |aj |)2+k ≤ s2+k
∑

j∈J(v) |aj |2+k for all a = (a1, . . . , ap)
′ ∈ Rp, we

obtain for k = 1 or 2,

1

n

n∑
i=1

E[|v′Xi|2+k] ≤
1

n

n∑
i=1

E
[( ∑

j∈J(v)

|Xij |
)2+k]

≤ s2+k 1

n

n∑
i=1

E
[ ∑
j∈J(v)

|Xij |2+k
]
≤ s3+kBk

n ≤ (B′n)k

where B′n = s4Bn. This gives condition (M.2′).
Next, under (E.1′), we have ‖Xij‖ψ1 ≤ Bn. Therefore, by the triangle

inequality, ‖v′Xi‖ψ1 ≤
∑

j∈J(v) ‖Xij‖ψ1 ≤ sBn showing that the vectors X̃i,

i = 1, . . . , n, satisfy (E.1′) with Bn replaced by sBn.
Finally, under (E.2′),

E

[
max

v∈V(Am)
|v′Xi|q

]
≤ sqE

[
max
1≤j≤p

|Xij |q
]
,

showing that the vectors X̃i, i = 1, . . . , n, satisfy (E.2′) with Bn replaced by
sBn. This completes the proof of the lemma. �

Appendix E. Proofs for Section 4

Proof of Theorem 4.1. We first show that

%MB
n := sup

s∈Rp

∣∣P(SeXn ≤ s | Xn
1 )− P(SYn ≤ s)

∣∣ . ∆1/3
n (log p)2/3 (49)

up to a constant C that depends only on b. To show (49), fix s = (s1, . . . , sp)
′ ∈

Rp. As in the proof of Lemma 5.1, for β > 0 and w ∈ Rp, define

Fβ(w) :=
1

β
log

 p∑
j=1

exp(β(wj − sj))

 .

Note that conditional on Xn
1 , SeXn is a zero-mean Gaussian random vector

with covariance matrix ΣeX
n . Hence, using the same argument as that in

the proof of Theorem 1 in [17], we obtain for any g ∈ C2(R) with ‖g′‖∞ ∨
‖g′′‖∞ <∞ that

|E[g(Fβ(SeXn )) | Xn
1 ]− E[g(Fβ(SYn ))]| ≤ (‖g′′‖∞/2 + β‖g′‖∞)∆n
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(Formally, the proof of Theorem 1 in [17] imposes s = 0 but it is easy to
verify that their proof also applies for all s ∈ Rp.) Therefore, as in Step 2
of the proof of Lemma 5.1, we obtain with φ = β/ log p that

|P(SeXn ≤ s− φ | Xn
1 )− P(SYn ≤ s− φ)| . (log p)1/2

φ
+ (φ2 + βφ)∆n

up to a constant C that depends only on b. Substituting β = φ log p, op-
timizing the resulting expression with respect to φ, and noting that s is
arbitrary give (49).

The conclusion of the theorem now follows by noting that on the event

∆n ≤ ∆̄n, we have %MB
n . ∆̄

1/3
n (log p)2/3, and applying the same argument

as that in the proof of Corollary 5.1. �

Proof of Corollary 4.1. In this proof, c and C are constants that depend
only on b under (E.1′) and on b and q under (E.2′) but their values may
change at each appearance. Also, for brevity of notation, in this proof we
implicitly assume that i is varying over {1, . . . , n} and j and k are varying
over {1, . . . , p}. Finally, without loss of generality, we will assume that

B2
n(log(pn))5(log(1/α))2

n
≤ 1; (50)

otherwise, the asserted claims are trivial.
Fix any A ∈ As. Let Am be an approximating m-generated convex set as

in (C). By assumption, Am ⊂ A ⊂ Am,ε. Denote

ρ := max
{
|P(SeXn ∈ Am | Xn

1 )− P(SYn ∈ Am)|,

|P(SeXn ∈ Am,ε | Xn
1 )− P(SYn ∈ Am,ε)|

}
.

As in the proof of Corollary 3.1,

|P(SeXn ∈ A | Xn
1 )− P(SYn ∈ A)| ≤ Cε(log p)1/2 + ρ

≤ C
(
B2
n(log(pn))7

n

)1/6

+ ρ.

Therefore, the problem reduces to the case of rectangles A = Ar; that is,
it suffices to prove the bounds (19) and (20) with ρMB

n (As) replaced by
ρMB
n (Ar) and conditions (C), (M.1′), (M.2′), and (E.1′) (or (E.2′)) replaced

by (M.1), (M.2), and (E.1) (or (E.2), respectively). For the latter problem,
we will apply Theorem 4.1.

Note that E[XiX
′
i] = E[YiY

′
i ] for all i. Therefore,

ΣeX
n − ΣY

n =
1

n

n∑
i=1

(XiX
′
i − E[XiX

′
i])− µ̂Xn (µ̂Xn )′.

Hence, by the triangle inequality,

∆n ≤ ∆n,1 + ∆2
n,2 (51)
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where

∆n,1 := max
1≤j,k≤p

∣∣∣∣∣ 1n
n∑
i=1

(XijXik − E[XijXik])

∣∣∣∣∣ , (52)

∆n,2 :=

(
max

1≤j,k≤p

∣∣µ̂Xnjµ̂Xnk∣∣)1/2

= max
1≤j≤p

∣∣µ̂Xnj∣∣ . (53)

The asserted claims follow from the bounds on ∆n,1 and ∆n,2, derived sep-
arately for (E.1) and (E.2) cases below, and Theorem 4.1.

Case (E.1). We start with some preliminary calculations. We have

σ2n := max
j,k

n∑
i=1

E
[
(XijXik − E[XijXik])

2
]
≤ max

j,k

n∑
i=1

E[|XijXik|2] (54)

≤ max
j,k

(
n∑
i=1

E[|Xij |4]
n∑
i=1

E[|Xik|4]

)1/2

≤ nB2
n (55)

where the second line follows from Hölder’s inequality and (M.2). In addi-
tion,

‖max
i,j,k
|XijXik|‖ψ1/2

= ‖max
i,j
|Xij |2‖ψ1/2

= ‖max
i,j
|Xij |‖2ψ1

. (Bn log(pn))2

by (E.1). Thus, denoting Mn := maxi,j,k |XijXik − E[XijXik]|, we obtain

‖Mn‖ψ1/2
. ‖max

i,j,k
|XijXik|‖ψ1/2

+ max
i,j,k

E[|XijXik|]

. (Bn log(pn))2 +B2
n . (Bn log(pn))2,

which also implies that (E[M2
n])1/2 . (Bn log(pn))2. So Lemma A.2 yields

E[∆n,1] .

√
σ2n log p

n
+

√
E[M2

n] log p

n

.

(
B2
n log p

n

)1/2

+
B2
n(log(pn))3

n
.

(
B2
n log(pn)

n

)1/2

where the last inequality follows from (50). Thus, applying Lemma A.3 (i)
with β = 1/2 yields for any t > 0,

P

(
∆n,1 > C

(
B2
n log(pn)

n

)1/2

+ t

)

. exp

(
−cnt

2

B2
n

)
+ exp

(
− c

√
nt

Bn log(pn)

)
for sufficiently large C > 0 and sufficiently small c > 0. Setting t =
C(B2

n log(pn)(log(1/α))2/n)1/2 with sufficiently large C > 0, this inequality
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yields

P

(
∆n,1 > C

(
B2
n log(pn)(log(1/α))2

n

)1/2
)

≤ α

4
+

1

4
exp

(
−n

1/4(log(1/α))1/2

B
1/2
n (log(pn))3/4

)
≤ α

2

by (50). Hence,

P

(
(∆n,1(log p)2)1/3 > C

(
B2
n(log(pn))5(log(1/α))2

n

)1/6
)
≤ α

2

It is also easy to check that the same inequality holds with ∆n,1 replaced by
∆2
n,2. Therefore, the asserted claim for the (E.1) case follows from Theorem

4.1 applied with ∆̄n = ∆n,1 + ∆2
n,2.

Case (E.2). Define σ2n and Mn by the same expressions as those in
the (E.1) case. Then the bounds (54) and (55) on σ2n hold under (E.2) as

well. For the bound on Mn, using an elementary inequality |x − y|q/2 .
|x|q/2 + |y|q/2 for all x, y ∈ R and q ≥ 2, we obtain

E[M q/2
n ] . E[max

i,j,k
|XijXik|q/2] + max

i,j,k
(E[|XijXik|])q/2

. E[max
i,j,k
|XijXik|q/2] = E[max

i,j
|Xij |q] . nBq

n

where the third line follows from Jensen’s inequality and (E.2). The last

bound also implies that (E[M2
n])1/2 . n2/qB2

n. So Lemma A.2 yields

E[∆n,1] .

√
σ2n log p

n
+

√
E[M2

n] log p

n
.

(
B2
n log p

n

)1/2

+
B2
n log p

n1−2/q
.

Thus, applying Lemma A.3 (ii) with s = q/2 yields for any t > 0,

P

(
∆n,1 > C

(
B2
n log p

n

)1/2

+
CB2

n log p

n1−2/q
+ t

)

. exp

(
−cnt

2

B2
n

)
+

Bq
n

tq/2nq/2−1

for sufficiently large C > 0 and sufficiently small c > 0. Setting

t = C

[(
B2
n log(pn)(log(1/α))2

n

)1/2

+
B2
n

α2/qn1−2/q

]
with sufficiently large C > 0 yields

P

(
∆n,1 > C

(
B2
n log(pn)(log(1/α))2

n

)1/2

+
CB2

n log p

α2/qn1−2/q

)
≤ α

4
+
α

4
=
α

2
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by (50). Hence, using an elementary inequality |x+y|1/3 ≤ |x|1/3+ |y|1/3 for

all x, y ∈ R, we obtain that the probability that (∆n,1(log p)2)1/3 is bounded
from below by

C

[(
B2
n(log(pn))5(log(1/α))2

n

)1/6

+

(
B2
n(log p)3

α2/qn1−2/q

)1/3
]

is bounded from above by α/2. It is also easy to check that the same
inequality holds with ∆n,1 replaced by ∆2

n,2. Therefore, the asserted claim

for the (E.2) case follows from Theorem 4.1. This completes the proof of
the corollary. �

Proof of Theorem 4.2. By the triangle inequality,

ρEBn ≤ ρMB
n + %EBn

where

%EBn := sup
A∈Ar

∣∣∣P(SX
∗

n ∈ A | Xn
1 )− P(SeXn ∈ A | Xn

1 )
∣∣∣ .

Also, conditional on Xn
1 , X∗1 − µ̂Xn , . . . , X∗n − µ̂Xn are i.i.d. with zero mean

and covariance ΣeX
n . In addition, conditional on Xn

1 ,

SeXn =d
1√
n

n∑
i=1

Y ∗i

where Y ∗1 , . . . , Y
∗
n are i.i.d. zero-mean Gaussian random vectors with the

same covariance ΣeX
n . Therefore, the result follows by applying Theorem

2.1 conditional on Xn
1 (with Ln and Mn(φn) in Theorem 2.1 substituted by

L̂n and M̂n(φn)) to bound %EBn on the event that En[(Xij − µ̂nj)2] ≥ b for

all 1 ≤ j ≤ p, Ln ≥ L̂n, and Mn ≥ M̂n(φn). �

Proof of Corollary 4.2. Here c, C are constants depending only on b, q,K;
their values may change from place to place. We first note that, for suffi-
ciently small c > 0, we may assume that

B2
n(log(pn))5(log(1/α))2 ≤ cn, (56)

since otherwise we can make the assertion of the lemma trivial by setting C
sufficiently large.

Further, by the same argument as that used in the proof of Corollary 4.1,
the problem reduces to the case of rectangles A = Ar; that is, it suffices
to prove the bounds (22) and (23) with ρEBn (As) replaced by ρEBn (Ar) and
conditions (C), (M.1′), (M.2′), and (E.1′) (or (E.2′)) replaced by (M.1),
(M.2), and (E.1) (or (E.2), respectively). For the latter problem, we will
apply Theorem 4.2.

Case (E.1). With (56) in mind, by the proof of Corollary 4.1, we see
that P(∆n > b/2) ≤ α/6, so that with probability larger than 1 − α/6,
b/2 ≤ En[(Xij − µ̂Xij )2] ≤ CBn for all j = 1, . . . , p. We turn to bounding
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L̂n. Using the inequality |a − b|3 ≤ 4(|a|3 + |b|3) together with Jensen’s
inequality, we have

L̂n ≤ 4( max
1≤j≤p

En[|Xij |3] + max
1≤j≤p

|µ̂Xnj |3) ≤ 8 max
1≤j≤p

En[|Xij |3].

By Lemma A.4,

E[ max
1≤j≤p

En[|Xij |3]] ≤ C(Ln + n−1E[ max
1≤i≤n

max
1≤j≤p

|Xij |3] log p)

≤ C(Bn + n−1B3
n(log(pn))4).

Note that ‖|Xij |3‖ψ1/3
≤ ‖Xij‖3ψ1

≤ B3
n, so that applying Lemma A.5 (i)

with β = 1/3, we have for every t > 0,

P{L̂n ≥ C(Bn + n−1B3
n(log(pn))4 + n−1B3

nt
3)} ≤ 3e−t.

Taking t = log(18/α) ≤ C log(pn), we conclude that, with Ln = CBn (recall
(56)),

P(L̂n > Ln) ≤ α/6.
Consider to bound M̂n,X(φn). Observe that

max
1≤j≤p

|Xij − µ̂Xnj | ≤ 2 max
1≤i≤n

max
1≤j≤p

|Xij |,

so that

P{M̂n,X(φn) > 0} ≤ P{max
i,j
|Xij | >

√
n/(8φn log p)}.

Since ‖Xij‖ψ1 ≤ Bn, the right side is bounded by

2(pn) exp{−
√
n/(8Bnφn log p)}.

Observe that

Bnφn log p ≤ Cn−1/6B2/3
n (log p)1/3,

so that using (56), we conclude that P{M̂n,X(φn) > 0} ≤ α/6. For M̂n,Y (φn),

since with probability larger than 1 − α/6, En[(Xij − µ̂Xnj)2] ≤ CBn for all

j = 1, . . . , p, on that event, conditional on X1, . . . , Xn, ‖SeXnj ‖ψ2 ≤ CB
1/2
n

for all j = 1, . . . , p. Hence, using the same argument used in bounding

M̂n,X(φn), we conclude that

P{M̂n,Y (φn) > 0} ≤ α/6 + α/6 = α/3,

which implies that

P{M̂n(φn) = 0} > 1− (α/6 + α/3) = 1− α/2.

Taking these together, by Theorem 4.2, with probability larger than 1−
(α/6 + α/6 + α/2) = 1− 5α/6, we have

ρEBn ≤ ρMB
n + C{n−1B2

n(log(pn))7}1/6.

The final conclusion follows from Corollary 4.1.
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Case (E.2). In this case, in addition to (56), we may assume that

B2
n(log(pn))3

α2/qn1−2/q
≤ c ≤ 1, (57)

since otherwise we can make the assertion of the lemma trivial by setting
C sufficiently large. Then as in the previous case, by the proof of Corollary
4.1, with probability larger than 1−α/6, b/2 ≤ En[(Xij − µ̂Xnj)2] ≤ CBn for
all j = 1, . . . , p.

To bound L̂n, recall that L̂n ≤ 8 max1≤j≤p En[|Xij |3], and by Lemma A.4,

E[ max
1≤j≤p

En[|Xij |3]] ≤ C(Bn +B3
nn
−1+3/q log p).

Hence by applying Lemma A.5 (ii) with s = q/3, we have for every t > 0,

P{L̂n ≥ C(Bn+B3
nn
−1+3/q log p)+n−1t} ≤ Ct−q/3E[max

i,j
|Xij |q] ≤ Ct−q/3nBq

n.

Solving Ct−q/3nBq
n = α/6, we conclude that

P(L̂n ≥ Ln) ≤ α/6,

where Ln = C(Bn +B3
nn
−1+3/qα−3/q log p).

We turn to bounding M̂n,X(φn). As in the previous case,

P{M̂n,X(φn) > 0} ≤ P{max
i,j
|Xij | >

√
n/(8φn log p)}.

Since the right side is nondecreasing in φn, and

φn ≤ cB−1n n1/2−1/qα1/q(log p)−1,

we have (by choosing the constant C in Ln large enough)

P{max
i,j
|Xij | >

√
n/(8φn log p)} ≤ nP{max

j
|Xij | > CBnn

1/qα−1/q} ≤ α/6.

For M̂n,Y (φn), we make use of the argument in the previous case, and con-
clude that

P{M̂n,Y (φn) > 0} ≤ α/2.
The rest of the proof is the same as in the previous case. Note that(

L
2
n(log(pn))7

n

)1/6

≤ C

[(
B2
n(log(pn))7

n

)1/6

+

(
B2
n(log(pn))3

α2/qn1−2/q

)1/2
]
,

and because of (57), the second term inside the bracket on the right-hand
side is at most (

B2
n(log(pn))3

α2/qn1−2/q

)1/3

.

This completes the proof of the corollary. �
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