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Abstract

In this paper, we derive a rate of convergence of the Lasso estimator when the penalty

parameter λ for the estimator is chosen using K-fold cross-validation; in particular, we show

that in the model with Gaussian noise and under fairly general assumptions on the candidate

set of values of λ, the prediction norm of the estimation error of the cross-validated Lasso

estimator is with high probability bounded from above up-to a constant by (s log p/n)1/2 ·
(log7/8 n) as long as p log n/n = o(1) and some other mild regularity conditions are satisfied,

where n is the sample size of available data, p is the number of covariates, and s is the

number of non-zero coefficients in the model. Thus, the cross-validated Lasso estimator

achieves the fastest possible rate of convergence up-to the logarithmic factor log7/8 n. In

addition, we derive a sparsity bound for the cross-validated Lasso estimator; in particular,

we show that under the same conditions as above, the number of non-zero coefficients of the

estimator is with high probability bounded from above up-to a constant by s log5 n. Finally,

we show that our proof technique generates non-trivial bounds on the prediction norm of the

estimation error of the cross-validated Lasso estimator even if p is much larger than n and the

assumption of Gaussian noise fails; in particular, the prediction norm of the estimation error

is with high-probability bounded from above up-to a constant by (s log2(pn)/n)1/4 under

mild regularity conditions.

1 Introduction

Machine learning techniques are gradually making their way into economics; see NBER Sum-

mer Institute Lectures Chernozhukov et al. (2013) and Athey and Imbens (2015). Using these

techniques, for example, Cesarini et al. (2009) analyzed genetic factors of social preferences,

Belloni and Chernozhukov (2011) found country characteristics associated with long-run growth

in the cross-county growth study, Saiz and Simonsohn (2013) constructed corruption measures

by country and by US state. Belloni et al. (2013) and Wager and Athey (2015) developed

machine-learning-type techniques for estimating heterogeneous treatment effects.
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The most popular machine learning technique in econometrics is certainly the Lasso estima-

tor. Since its invention by Tibshirani (1996), large number of papers have studied its properties.

Many of these papers have been concerned with the choice of the penalty parameter λ required

for the implementation of the Lasso estimator. As a result, several methods to choose λ have

been developed and theoretically justified; see, for example, Zou et al. (2007), Bickel et al.

(2009), and Belloni and Chernozhukov (2013). However, in practice researchers often rely upon

cross-validation to choose λ (see Bülmann and van de Geer (2011), Hastie, Tibshirani, and

Wainwright (2015), and Chatterjee and Jafarov (2015) for examples), and to the best of our

knowledge, there exist few results in the literature about properties of the Lasso estimator when

λ is chosen using cross-validation; see a review of existing results below. The purpose of this

paper is to fill this gap and to derive a rate of convergence of the cross-validated Lasso estimator.

We consider the regression model

Y = X ′β + ε, E[ε | X] = 0, (1)

where Y is a dependent variable, X = (X1, . . . , Xp)
′ a p-vector of covariates, ε unobserved scalar

noise, and β = (β1, . . . , βp)
′ a p-vector of coefficients. Assuming that a random sample of size n,

(Xi, Yi)
n
i=1, from the distribution of the pair (X,Y ) is available, we are interested in estimating

the vector of coefficients β. We consider triangular array asymptotics, so that the distribution

of the pair (X,Y ), and in particular the dimension p of the vector X, is allowed to depend on

n. For simplicity of notation, however, we keep this dependence implicit.

We assume that the vector of coefficients β is sparse in the sense that s = sn = ‖β‖0 =∑p
j=1 1{βj 6= 0} is (potentially much) smaller than p. Under this assumption, the effective way

to estimate β was introduced by Tibshirani (1996) who suggested the Lasso estimator:

β̂(λ) ∈ arg min
b∈Rp

(
1

n

n∑
i=1

(Yi −X ′ib)2 + λ‖b‖1

)
, (2)

where for b = (b1, . . . , bp)
′ ∈ Rp, ‖b‖1 =

∑p
j=1 |bj | denotes the L1 norm of b, and λ is some

penalty parameter (the estimator suggested in Tibshirani’s paper takes a slightly different form

but over the time the version (2) has become more popular, probably for computational rea-

sons). Whenever the solution of the optimization problem in (2) is not unique, we assume for

concreteness that one solution is chosen according to some pre-specified rule; in particular, we

assume that a solution with the smallest number of non-zero components is selected.

To perform the Lasso estimator β̂(λ), one has to choose the penalty parameter λ. If λ is

chosen appropriately, the Lasso estimator is consistent with (s log p/n)1/2 rate of convergence

in the prediction norm under fairly general conditions; see, for example, Bickel et al. (2009)

or Belloni and Chernozhukov (2011). On the other hand, if λ is not chosen appropriately, the

Lasso estimator may not be consistent or may have slower rate of convergence; see Chatterjee

(2014). Therefore, it is important to select λ appropriately. In practice, it is often recommended

to choose λ using cross-validation as described in the next section. In this paper, we analyze

properties of the Lasso estimator β̂(λ) when λ = λ̂ is chosen using (K-fold) cross-validation and
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in particular, we demonstrate that under certain mild regularity conditions, if the conditional

distribution of ε given X is Gaussian and p log n/n = o(1), then

‖β̂(λ̂)− β‖2,n .

(
s log p

n

)1/2

· (log7/8 n) (3)

with probability 1 − o(1) up-to some constant C, where for b = (b1, . . . , bp)
′ ∈ Rp, ‖b‖2,n =

(n−1
∑n

i=1(X ′ib)
2)1/2 denotes the prediction norm of b. Thus, under our conditions, the cross-

validated Lasso estimator β̂(λ̂) achieves the fastest possible rate of convergence in the prediction

norm up-to the logarithmic factor log7/8 n. We do not know whether this logarithmic factor can

or can not be dropped.

Under the same conditions as above, we also derive a sparsity bound for the cross-validated

Lasso estimator; in particular, we show that

‖β̂(λ̂)‖0 . s log5 n

with probability 1−o(1) up-to some constant C. Moreover, we demonstrate that our proof tech-

nique generates a non-trivial rate of convergence in the prediction norm for the cross-validated

Lasso estimator even if p is (potentially much) larger than n (high-dimensional case) and the

Gaussian assumption fails. Because some steps used to derive (3) do not apply, however, the

rate turns out to be sub-optimal, and our bound is probably not sharp in this case. Nonetheless,

we are hopeful that our proof technique will help to derive the sharp bound for the non-Gaussian

high-dimensional case in the future.

Given that cross-validation is often used to choose the penalty parameter λ for the Lasso

estimator and given how popular the Lasso estimator is, deriving a rate of convergence of the

cross-validated Lasso estimator is an important question in the literature; see, for example,

Chatterjee and Jafarov (2015), where further motivation for the topic is provided. Yet, to the

best of our knowledge, the only results in the literature about cross-validated Lasso estimator

are due to Homrighausen and McDonald (2013a,b, 2014). Homrighausen and McDonald (2013a)

showed that if the penalty parameter is chosen using K-fold cross-validation from a range of

values determined by their techniques, the Lasso estimator is risk consistent, which under our

conditions is equivalent to consistency in the L2 norm. Homrighausen and McDonald (2014)

derived a similar result for leave-one-out cross-validation. Homrighausen and McDonald (2013b)

derived a rate of convergence of the cross-validated Lasso estimator that depends on n via

n−1/4 but they substantially restricted the range of values over which cross-validation search

is performed. These are useful results but we emphasize that in practice the cross-validation

search is often conducted over a fairly large set of values of the penalty parameter, which could

potentially be much larger than required in their results. In contrast, we derive a rate of

convergence that depends on n via n−1/2, and we impose only minor conditions on the range of

values of λ used by cross-validation.

Other papers that have been concerned with cross-validation in the context of the Lasso

estimator include Chatterjee and Jafarov (2015) and Lecué and Mitchell (2012). Chatterjee
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and Jafarov (2015) developed a novel cross-validation-type procedure to choose λ and showed

that the Lasso estimator based on their choice of λ has a rate of convergence depending on n

via n−1/4. Their procedure to choose λ, however, is related to but different from the classical

cross-validation procedure used in practice. Lecué and Mitchell (2012) studied classical cross-

validation but focused on estimators that differ from the Lasso estimator in important ways. For

example, one of the estimators they considered is the average of subsample Lasso estimators,

K−1
∑K

k=1 β̂−k(λ), for β̂−k(λ) defined in (4) in the next section. Although the authors studied

properties of cross-validated version of such estimators in great generality, it is not immediately

clear how to apply their results to obtain bounds for the cross-validated Lasso estimator itself.

We emphasize that deriving a rate of convergence of the cross-validated Lasso estimator is a

non-standard problem. In particular, classical techniques to derive properties of cross-validated

estimators developed for example in Li (1987) do not apply to the Lasso estimator as those

techniques are based on the linearity of the estimators in the vector of dependent variables

(Y1, . . . , Yn)′, which does not hold in the case of the Lasso estimator. More recent techniques,

developed for example in Wegkamp (2003), help to analyze sub-sample Lasso estimators like

those studied in Lecué and Mitchell (2012) but are not sufficient for the analysis of the full-

sample Lasso estimator. See Arlot and Celisse (2010) for an extensive review of results on

cross-validation available in the literature.

The rest of the paper is organized as follows. In the next section, we describe the cross-

validation procedure. In Section 3, we state our regularity conditions. In Section 4, we present

our main results. In Section 5, we describe results of our simulation experiments. In Section

6, we provide proofs of the main results. In Section 7, we give some technical lemmas that are

useful for the proofs of the main results.

Notation. Throughout the paper, we use the following notation. For any vector b =

(b1, . . . , bp)
′ ∈ Rp, we use ‖b‖0 =

∑p
j=1 1{bj 6= 0} to denote the number of non-zero components

of b, ‖b‖1 =
∑p

j=1 |bj | to denote its L1 norm, ‖b‖ = (
∑p

j=1 b
2
j )

1/2 to denote its L2 norm (the Eu-

clidean norm), ‖b‖∞ = max1≤j≤p |bj | to denote its L∞ norm, and ‖b‖2,n = (n−1
∑n

i=1(X ′ib)
2)1/2

to denote its prediction norm. In addition, we use the notation an . bn if an ≤ Cbn for some

constant C that is independent of n. Moreover, we use Sp to denote the unit sphere in Rp, that

is, Sp = {δ ∈ Rp : ‖δ‖ = 1}. Further, for any matrix A ∈ Rp×p, we use ‖A‖ = supx∈Sp ‖Ax‖
to denote its spectral norm. Also, with some abuse of notation, we use Xj to denote the jth

component of the vector X = (X1, . . . , Xp)
′ and we use Xi to denote the ith realization of the

vector X in the random sample (Xi, Yi)
n
i=1 from the distribution of the pair (X,Y ). Finally, for

any finite set S, we use |S| to denote the number of elements in S. We introduce more notation

in the beginning of Section 6, as required for the proofs in the paper.
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2 Cross-Validation

As explained in the Introduction, to choose the penalty parameter λ for the Lasso estimator

β̂(λ), it is common practice to use cross-validation. In this section, we describe the procedure in

details. Let K be some strictly positive (typically small) integer, and let (Ik)
K
k=1 be a partition

of the set {1, . . . , n}; that is, for each k ∈ {1, . . . ,K}, Ik is a subset of {1, . . . ,K}, for each k, k′ ∈
{1, . . . ,K} with k 6= k′, the sets Ik and Ik′ have empty intersection, and ∪Kk=1Ik = {1, . . . , n}.
For our asymptotic analysis, we will assume that K is a constant that does not depend on n.

Further, let Λn be a set of candidate values of λ. Now, for k = 1, . . . ,K and λ ∈ Λn, let

β̂−k(λ) ∈ arg min
b∈Rp

 1

n− nk

∑
i/∈Ik

(Yi −X ′ib)2 + λ‖b‖1

 (4)

be the Lasso estimator corresponding to all observations excluding those in Ik where nk = |Ik|
is the size of the subsample Ik. As in the case with the full-sample Lasso estimator β̂(λ) in

(2), whenever the optimization problem in (4) has multiple solutions, we choose one with the

smallest number of non-zero components. Then the cross-validation choice of λ is

λ̂ = arg min
λ∈Λn

K∑
k=1

∑
i∈Ik

(Yi −X ′iβ̂−k(λ))2. (5)

The cross-validated Lasso estimator in turn is β̂(λ̂). In the literature, the procedure described

here is also often referred to as K-fold cross-validation. For brevity, however, we simply refer to

it as cross-validation. Below we will study properties of β̂(λ̂).

3 Regularity Conditions

Recall that we consider the model given in (1), the Lasso estimator β̂(λ) given in (2), and

the cross-validation choice of λ given in (5). Let c1, C1, a, and q be some strictly positive

numbers where a < 1 and q > 4. Also, let (ξn)n≥1, (γn)n≥1, and (Γn)n≥1 be sequences of

positive numbers, possibly growing to infinity. To derive our results, we will impose the following

regularity conditions.

Assumption 1 (Covariates). The random vector X = (X1, . . . , Xp)
′ is such that we have c1 ≤

(E[|X ′δ|2])1/2 ≤ C1 and (E[|X ′δ|4])1/4 ≤ Γn for all δ ∈ Sp. In addition, max1≤j≤p(E[|Xj |4])1/4 ≤
γn and nP (‖X‖ > ξn) = o(1).

The first part of Assumption 1 means that all eigenvalues of the matrix E[XX ′] are bounded

from above and below from zero. The second part of this assumption, that is, the condition that

(E[|X ′δ|4])1/4 ≤ Γn for all δ ∈ Sp, is often assumed in the literature with Γn . 1; see Mammen

(1993) for an example. To develop some intuition about this and other parts of Assumption 1,

we consider three examples.
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Example 1 (Gaussian independent covariates). Suppose that the vector X consists of inde-

pendent standard Gaussian random variables. Then for all δ ∈ Sp, the random variable X ′δ

is standard Gaussian as well, and so the condition that (E[|X ′δ|4])1/4 ≤ Γn for all δ ∈ Sp is

satisfied with Γn = 31/4. Similarly, the condition that max1≤j≤p(E[|Xj |4])1/4 ≤ γn holds with

γn = 31/4. In addition, ‖X‖2 is a chi-square random variable with p degrees of freedom in this

case, and so for all t > 0, we have P (‖X‖2 > p+ 2
√
pt+ 2t) ≤ e−t; see, for example, Section 2.4

and Example 2.7 in Boucheron, Lugosi, and Massart (2013). Setting t = 2 log n in this inequality

shows that the condition that nP (‖X‖ > ξn) = o(1) is satisfied with ξn = (2p+ 6 log n)1/2. �

Example 2 (Bounded independent covariates). Suppose that the vector X consists of in-

dependent zero-mean bounded random variables. In particular, suppose for simplicity that

max1≤j≤p |Xj | ≤ 1 almost surely. Then for all t > 0 and δ ∈ Sp, we have P (|X ′δ| > t) ≤
2 exp(−t2/2) by Hoeffding’s inequality. Therefore, the condition that (E[|X ′δ|4])1/4 ≤ Γn for

all δ ∈ Sp is satisfied with Γn = 2 by the standard calculations. Also, the condition that

max1≤j≤p(E[|Xj |4])1/4 ≤ γn is satisfied with γn = 1, and the condition that nP (‖X‖ > ξn) =

o(1) is satisfied with ξn = p1/2. �

Example 3 (Bounded non-independent covariates). Suppose that the vector X consists of not

necessarily independent bounded random variables. In particular, suppose for simplicity that

max1≤j≤p |Xj | ≤ 1 almost surely. Then the condition that (E[|X ′δ|4])1/4 ≤ Γn for all δ ∈ Sp is

satisfied with Γn = C
1/2
1 p1/4 since E[(X ′δ)4] ≤ E[(X ′δ)2‖X‖2‖δ‖2] ≤ pE[(X ′δ)2] ≤ C2

1p. Also,

like in Example 2, the conditions that max1≤j≤p(E[|Xj |4])1/4 ≤ γn and that nP (‖X‖ > ξn) =

o(1) are satisfied with γn = 1 and ξn = p1/2. �

Assumption 2 (Noise). We have c1 ≤ E[ε2 | X] ≤ C1 almost surely.

This assumption means that the variance of the conditional distribution of ε given X is

bounded from above and below from zero. The lower bound is needed to avoid potential super-

efficiency of the Lasso estimator. Such bounds are typically imposed in the literature.

Assumption 3 (Growth conditions). We have M2
ns(log4 n)(log p)/n1−2/q = o(1) where Mn =

(E[‖X‖q∞])1/q. In addition, γ4
ns

2 log p/n = o(1) and Γ4
n(log n)(log logn)2/n = o(1).

Assumption 3 is a mild growth condition restricting some moments of X and also the number

of non-zero coefficients in the model, s. In the remark below, we discuss conditions of this

assumption in three examples given above.

Remark 1 (Growth conditions in Examples 1, 2, and 3). In Example 1 above, this assumption

reduces to the following conditions: (i) s(log n)4(log p)2/n1−ε = o(1) for some constant ε > 0

and (ii) s2 log p/n = o(1) since in this case, Mn ≤ Cq(log p)1/2 for all q > 4 and some constant

Cq that depends only on q. In Example 2, Assumption 3 reduces to the following conditions:

(i) s(log n)4(log p)/n1−ε = o(1) for some constant ε > 0 and (ii) s2 log p/n = o(1) since in this

case, Mn ≤ 1 for all q > 4. In Example 3, Assumption 3 reduces to the following conditions: (i)
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s2 log p/n = o(1) and (ii) p(log n)(log logn)/n = o(1). Indeed, under assumptions of Example 3,

we have Mn ≤ 1 for all q > 4, and so the condition that M2
ns(log4 n)(log p)/n1−2/q = o(1) follows

from the condition that s(log4 n)(log p)/n1−2/q = o(1) but for q large enough, this condition

follows from s2 log p/n = o(1) and p(log n)(log logn)/n = o(1). Note that our conditions in

Examples 1 and 2 allow for the high-dimensional case, where p is (potentially much) larger

than n but conditions in Example 3 hold only in the moderate-dimensional case, where p is

asymptotically smaller than n. �

Assumption 4 (Candidate set). The candidate set Λn takes the following form: Λn = {C1a
l : l =

0, 1, 2, . . . ; al ≥ c1/n}.

It is known from Bickel et al. (2009) that the optimal rate of convergence of the Lasso estima-

tor in the prediction norm is achieved when λ is of order (log p/n)1/2. Since under Assumption

3, we have log p = o(n), it follows that our choice of the candidate set Λn in Assumption 4 makes

sure that there are some λ’s in the candidate set Λ that would yield the Lasso estimator with

the optimal rate of convergence in the prediction norm. Note also that Assumption 4 gives a

rather flexible choice of the candidate set Λn of values of λ; in particular, the largest value, C1,

can be set arbitrarily large and the smallest value, c1/n, converges to zero rather fast. In fact,

the only two conditions that we need from Assumption 4 is that Λn contains a “good” value of

λ, say λ̄0, such that the subsample Lasso estimators β̂−k(λ̄0) satisfy the bound (9) in Lemma 1

with probability 1 − o(1), and than |Λn| . log n up-to a constant that depend only on c1 and

C1. Thus, we could for example set Λn = {al : l = . . . ,−2,−1, 0, 1, 2, . . . ; a−l ≤ nC1 , al ≤ nC1}.

Assumption 5 (Dataset partition). For all k = 1, . . . ,K, we have nk/n ≥ c1.

Assumption 5 is mild and is typically imposed in the literature on K-fold cross-validation.

This assumption ensures that all subsamples Ik are balanced and their sizes are of the same

order.

4 Main Results

Recall that for b ∈ Rp, we use ‖b‖2,n = (n−1
∑n

i=1(X ′ib)
2)1/2 to denote the prediction norm

of b. Our first main result in this paper derives a rate of convergence of the cross-validated

Lasso estimator β̂(λ̂) in the prediction norm for the Gaussian case where ξ2
n log n/n = o(1). As

explained in Remark 4 below, the last condition implies that this is a moderate-dimensional

case, where p is asymptotically smaller than n.

Theorem 1 (Gaussian moderate-dimensional case). Suppose that Assumptions 1 – 5 hold. In

addition, suppose that ξ2
n log n/n = o(1). Finally, suppose that the conditional distribution of ε

given X is Gaussian. Then

‖β̂(λ̂)− β‖2,n .

(
s log p

n

)1/2

· (log7/8 n)

with probability 1− o(1) up-to a constant depending only on c1, C1, K, a, and q.
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Remark 2 (Near-optimality of cross-validated Lasso estimator). Let σ be a constant such that

E[ε2 | X] ≤ σ2 almost surely. The results in Bickel et al. (2009) imply that under assumptions

of Theorem 1, setting λ = λ∗ = Cσ(log p/n)1/2 for sufficiently large constant C gives the Lasso

estimator β̂(λ∗) satisfying ‖β̂(λ∗) − β‖2,n = OP ((s log p/n)1/2), and it follows from Rigollet

and Tsybakov (2011) that this is the optimal rate of convergence (in the minimax sense) for

the estimators of β in the model (1). Therefore, Theorem 1 shows that the cross-validated

Lasso estimator β̂(λ̂) has the fastest possible rate of convergence in the prediction norm up-

to the logarithmic factor log7/8 n. Note, however, that implementing the cross-validated Lasso

estimator does not require knowledge of σ, which makes this estimator attractive in practice. The

rate of convergence established in Theorem 1 is also very close to the oracle rate of convergence,

(s/n)1/2, that could be achieved by the OLS estimator if we knew the set of covariates Xj having

non-zero coefficient βj ; see, for example, Belloni et al. (2015a). �

Remark 3 (On the proof of Theorem 1). One of the ideas in Bickel et al. (2009) is to show

that outside of the event

λ < c max
1≤j≤p

∣∣∣∣∣ 1n
n∑
i=1

Xijεi

∣∣∣∣∣ , (6)

where c > 2 is some constant, the Lasso estimator β̂(λ) satisfies the bound ‖β̂(λ)−β‖2,n . λ
√
s.

Thus, to obtain the Lasso estimator with fast rate of convergence, it suffices to choose λ such

that λ is small enough but the event (6) holds at most with probability o(1). The choice

λ = λ∗ described in Remark 2 satisfies these two conditions. The difficulty with cross-validation,

however, is that, as we demonstrate in Section 5 via simulations, it typically yields a rather

small value of λ, so that the event (6) with λ = λ̂ holds with non-trivial probability even in

large samples, and little is known about properties of the Lasso estimator β̂(λ) when the event

(6) does not hold, which is perhaps one of the main reasons why there are only few results on

the cross-validated Lasso estimator in the literature. We therefore take a different approach.

First, we use the fact that λ̂ is the cross-validation choice of λ to derive bounds on ‖β̂−k(λ̂)−β‖
and ‖β̂−k(λ̂) − β‖2,n for the subsample Lasso estimators β̂−k(λ̂) defined in (4). Second, we

use the “degrees of freedom estimate” of Zou et al. (2007) to derive a sparsity bound for these

estimators, and so to bound ‖β̂−k(λ̂)− β‖1. Third, we use the two point inequality

‖β̂(λ)− b‖22,n ≤
1

n

n∑
i=1

(Yi −X ′ib)2 + λ‖b‖1 −
1

n

n∑
i=1

(Yi −X ′iβ̂(λ))2 − λ‖β̂(λ)‖1, for all b ∈ Rp,

which can be found in van de Geer (2016), with b = (K−1)−1
∑K

k=1(n−nk)β̂−k(λ̂)/n, a convex

combination of the subsample Lasso estimators β̂−k(λ̂), and derive a bound for its right-hand

side using the definition of estimators β̂−k(λ̂) and bounds on ‖β̂−k(λ̂)− β‖ and ‖β̂−k(λ̂)− β‖1.

Finally, we use the triangle inequality to obtain a bound on ‖β̂(λ)− β‖2,n from the bounds on

‖β̂(λ)− b‖2,n and ‖β̂−k(λ̂)− β‖2,n. The details of the proof, including a short proof of the two

point inequality, can be found in Section 6. �
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Remark 4 (On the condition ξ2
n log n/n = o(1)). Note that in Examples 1, 2, and 3 above, the

condition that ξ2
n log n/n = o(1) reduces to p log n/n = o(1), which we used in the abstract and

in the Introduction. In fact, Lemma 17 in Section 7 shows that under Assumptions 1 and 3,

we have
√
p . ξn, so that p is necessarily asymptotically smaller than n under the condition

ξ2
n log n/n = o(1). This is why we refer to the case where ξ2

n log n/n = o(1) as the moderate-

dimensional case. �

In addition to the bound on the prediction norm of the estimation error of the cross-validated

Lasso estimator given in Theorem 1, we derive in the next theorem a bound on the sparsity of

the estimator.

Theorem 2 (Sparsity bound for Gaussian moderate-dimensional case). Suppose that all condi-

tions of Theorem 1 are satisfied. Then

‖β̂(λ̂)‖0 . s log5 n (7)

with probability 1− o(1) up-to a constant depending only on c1, C1, K, a, and q.

Remark 5 (On the sparsity bound). Belloni and Chernozhukov (2013) showed that if λ is

chosen so that the event (6) holds at most with probability o(1), then the Lasso estimator β̂(λ)

satisfies the bound ‖β̂(λ)‖0 . s with probability 1 − o(1), so that the number of covariates

that have been mistakenly selected by the Lasso estimator is at most of the same order as the

number of non-zero coefficients in the original model (1). As explained in Remark 3, however,

cross-validation typically yields a rather small value of λ, so that the event (6) with λ = λ̂ holds

with non-trivial probability even in large samples, and it is typically the case that smaller values

of λ lead to the Lasso estimators β̂(λ) with a larger number of non-zero coefficients. However,

using the result in Theorem 1 and the “degrees of freedom estimate” of Zou et al. (2007), we

are still able to show that the cross-validated Lasso estimator is typically rather sparse, and in

particular satisfies the bound (7) with probability 1− o(1). �

With the help of Theorems 1 and 2, we immediately arrive at the following corollary for the

bounds on L2 and L1 norms of the estimation error of the cross-validated Lasso estimator:

Corollary 1 (Other bounds for Gaussian moderate-dimensional case). Suppose that all condi-

tions of Theorem 1 are satisfied. Then

‖β̂(λ̂)− β‖ .
(
s log p

n

)1/2

· (log7/8 n) and ‖β̂(λ̂)− β‖1 .

(
s2 log p

n

)1/2

· (log27/8 n)

with probability 1− o(1) up-to a constant depending only on c1, C1, K, a, and q.

To conclude this section, we consider the non-Gaussian case. One of the main complications

in our derivations for this case is that without the assumption of Gaussian noise, we can not

apply the “degrees of freedom estimate” derived in Zou et al. (2007) that provides a bound

on the number of non-zero coefficients of the Lasso estimator, ‖β̂(λ)‖0, as a function of the

9



prediction norm of the estimation error of the estimator, ‖β̂(λ)− β‖2,n; see Lemmas 6 and 9 in

the next section. Nonetheless, we can still derive an interesting bound on ‖β̂(λ̂)− β‖2,n in this

case even if p is much larger than n (high-dimensional case):

Theorem 3 (Sub-Gaussian high-dimensional case). Suppose that Assumptions 1 – 5 hold. In

addition, suppose that for all t ∈ R, we have log E[exp(tε) | X] ≤ C1t
2. Finally, suppose that

M4
ns(log8 n)(log2 p)/n1−4/q . 1. Then

‖β̂(λ̂)− β‖2,n .

(
s log2(pn)

n

)1/4

(8)

with probability 1− o(1) up-to a constant depending only on c1, C1, K, a, and q.

Remark 6 (On conditions of Theorem 3). This theorem does not require the noise ε to be

Gaussian conditional on X. Instead, it imposes a weaker condition that for all t ∈ R, we

have log E[exp(tε) | X] ≤ C1t
2, which means that the conditional distribution of ε given X

is sub-Gaussian; see, for example, Vershynin (2012). Also, we want to emphasize that the

condition that M4
ns(log8 n)(log2 p)/n1−4/q . 1 is not necessary to derive a non-trivial bound on

‖β̂(λ̂)−β‖2,n but it does simplify the bound (8). Inspecting the proof of Theorem 3 reveals that

without this condition, the bound (8) would take the form:

‖β̂(λ̂)− β‖2,n .

(
s log2(pn)

n

)1/4

+ (n1/qMn log2 n log1/2 p) ·
(
s log(pn)

n

)1/2

with probability 1− o(1) up-to a constant depending only on c1, C1, K, a, and q. �

5 Simulations

In this section, we present results of our simulation experiments. The purpose of the experiments

is to investigate finite-sample properties of the cross-validated Lasso estimator. In particular, we

are interested in (i) comparing estimation error of the cross-validated Lasso estimator in different

norms to the Lasso estimator based on other choices of λ; (ii) studying sparsity properties of

the cross-validated Lasso estimator; and (iii) estimating probability of the event (6) for λ = λ̂,

the cross-validation choice of λ.

We consider two data generating processes (DGPs). In both DGPs, we simulate the vector

of covariates X from the Gaussian distribution with mean zero and variance-covariance matrix

given by E[XjXk] = 0.5|j−k| for all j, k = 1, . . . , p. Also, we set β = (1,−1, 2,−2, 01×(p−4))
′. We

simulate ε from the standard Gaussian distribution in DGP1 and from the uniform distribution

on [−3, 3] in DGP2. In both DGPs, we take ε to be independent of X. Further, for each DGP,

we consider samples of size n = 100 and 400. For each DGP and each sample size, we consider

p = 40, 100, and 400. To construct the candidate set Λn of values of the penalty parameter λ,

we use Assumption 4 with a = 0.9, c1 = 0.005 and C1 = 500. Thus, the set Λn contains values

of λ ranging from 0.0309 to 500 when n = 100 and from 0.0071 to 500 when n = 400, that is, the

10



set Λn is rather large in both cases. In all experiments, we use 5-fold cross-validation (K = 5).

We repeat each experiment 5000 times.

As a comparison to the cross-validated Lasso estimator, we consider the Lasso estimator

with λ chosen according to the Bickel-Ritov-Tsybakov rule:

λ = 2cσn−1/2Φ−1(1− α/(2p)),

where c > 1 and α ∈ (0, 1) are some constants, σ is the standard deviation of ε, and Φ−1(·) is the

inverse of the cumulative distribution function of the standard Gaussian distribution; see Bickel

et al. (2009). Following Belloni and Chernozhukov (2011), we choose c = 1.1 and α = 0.1. The

noise level σ is typically have to be estimated from the data but for simplicity we assume that σ

is known, so we set σ = 1 in DGP1 and σ =
√

3 in DGP2. In what follows, this Lasso estimator

is denoted as P-Lasso and the cross-validated Lasso estimator is denoted as CV-Lasso.

Figure 5.1 contains simulation results for DGP1 with n = 100 and p = 40. The first three

(that is, the top-left, top-right, and bottom-left) panels of Figure 5.1 present the mean of the

estimation error of the Lasso estimators in the prediction, L2, and L1 norms, respectively.

In addition to the solid and dotted horizontal lines representing the mean of the estimation

error of CV-Lasso and P-Lasso, respectively, these panels also contain the curved dashed line

representing the mean of the estimation error of the Lasso estimator as a function of λ in the

corresponding norm (we perform the Lasso estimator for each value of λ in the candidate set

Λn; we sort the values in Λn from the smallest to the largest, and put the order of λ on the

horizontal axis; we only show the results for values of λ up to order 32 as these give the most

meaningful comparisons). This estimator is denoted as λ-Lasso.

From these three panels of Figure 5.1, we see that the estimation error of CV-Lasso is only

slightly above the minimum of the estimation error over all possible values of λ not only in the

prediction and L2 norms but also in the L1 norm. In comparison, P-Lasso tends to have much

larger estimation error in all three norms.

The bottom-right panel of Figure 5.1 depicts the histogram for the the number of non-zero

coefficients of the cross-validated Lasso estimator. Overall, this panel suggests that the cross-

validated Lasso estimator tends to select too many covariates: the number of selected covariates

with large probability varies between 5 and 30 even though there are only 4 non-zero coefficients

in the true model. Thus, we conjecture that even if it might be possible to decrease the power

of the logarithm in the inequality ‖β̂(λ̂)‖0 . s log5 n obtained in Theorem 2, it is probably not

possible to avoid the logarithm itself.

For all other experiments, the simulation results on the mean of the estimation error of

the Lasso estimators can be found in Table 5.1. For simplicity, we only report the minimum

over λ ∈ Λn of mean of the estimation error of λ-Lasso in Table 5.1. The results in Table 5.1

confirm findings in Figure 5.1: the mean of the estimation error of CV-Lasso is very close to

the minimum mean of the estimation errors of the λ-Lasso estimators under both DGPs for all

combinations of n and p considered in all three norms. Their difference becomes smaller when

the sample size n increases. The mean of the estimation error of P-Lasso is much larger than that
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of CV-Lasso in most cases and is smaller than that of CV-Lasso only in L1-norm when n = 100

and p = 400. Thus, given that the estimation error, for example, in the prediction norm of the

Lasso estimator β̂(λ) satisfies the bound ‖β̂(λ)−β‖2,n . (s log p/n)1/2 with probability 1− o(1)

when λ is chosen using the Bickel-Ritov-Tsybakov rule, we conjecture that it might be possible

to avoid the additional log7/8 n factor in the inequality ‖β̂(λ̂)−β‖2,n . (s log p/n)1/2 · (log7/8 n)

obtained in Theorem 1.

Table 5.2 reports model selection results for the cross-validated Lasso estimator. More

precisely, the table shows probabilities for the number of non-zero coefficients of the cross-

validated Lasso estimator hitting different brackets. Overall, the results in Table 5.2 confirm

findings in Figure 5.1: the cross-validated Lasso estimator tends to select too many covariates.

The probability of selecting larger models tends to increase with p but decreases with n.

Table 5.3 provides information on the finite-sample distribution of the ratio of the maximum

score max1≤j≤p |n−1
∑n

i=1Xijεi| over λ̂, the cross-validation choice of λ. Specifically, the table

shows probabilities for this ratio hitting different brackets. From Table 5.3, we see that this

ratio is above 0.5 with large probability in all cases and in particular this probability exceeds

99% in most cases. Hence, (6) with λ = λ̂ holds not only with non-trivial but actually with large

probability, meaning that existing arguments used to derive the rate of convergence of the Lasso

estimator based, for example, on the Bickel-Ritov-Tsybakov choice of λ do not apply to the

cross-validated Lasso estimator (see Remark 3 above) and justifying novel analysis developed in

this paper.

6 Proofs

In this section, we prove Theorems 1, 2, 3, and Corollary 1. Since the proofs are long, we

start with a sequence of preliminary lemmas. For convenience, we use the following additional

notation. For k = 1, . . . ,K, we denote

‖δ‖2,n,k =

 1

nk

∑
i∈Ik

(X ′iδ)
2

1/2

and ‖δ‖2,n,−k =

 1

n− nk

∑
i/∈Ik

(X ′iδ)
2

1/2

for all δ ∈ Rp. We use c and C to denote constants that can change from place to place but that

can be chosen to depend only on c1, C1, K, a, and q. We use the notation an . bn if an ≤ Cbn.

In addition, we denote Xn
1 = (X1, . . . , Xn). Moreover, for δ ∈ Rp and M ⊂ {1, . . . , p}, we use

δM to denote the vector in R|M | consisting of all elements of δ corresponding to indices in M

(with order of indices preserved). Finally, for δ = (δ1, . . . , δp)
′ ∈ Rp, we denote supp(δ) = {j ∈

{1, . . . , p} : δj 6= 0}.
In Lemmas 1 – 5, we will impose the condition that for all t ∈ R, we have log E[exp(tε) | X] ≤

C1t
2. Note that under Assumption 2, this condition is satisfied if the conditional distribution of

ε given X is Gaussian.
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Lemma 1. Suppose that Assumptions 1 – 5 hold. In addition, suppose that for all t ∈ R, we

have log E[exp(tε) | X] ≤ C1t
2. Then there exists λ̄0 = λ̄n,0 ∈ Λn, possibly depending on n, such

that for all k = 1, . . . ,K, we have

‖β̂−k(λ̄0)− β‖22,n,−k .
s(log p+ log log n)

n
and ‖β̂−k(λ̄0)− β‖21 .

s2(log p+ log log n)

n
(9)

with probability 1− o(1).

Proof. Let T = supp(β) and T c = {1, . . . , p}\T . Also, for k = 1, . . . ,K, denote

Zk =
1

n− nk

∑
i/∈Ik

Xiεi

and

κk = inf

{√
s‖δ‖2,n,−k
‖δT ‖1

: δ ∈ Rp, ‖δT c‖1 < 3‖δT ‖1
}
.

To prove the first asserted claim, we will apply Theorem 1 in Belloni and Chernozhukov (2011)

that shows that for any k = 1, . . . ,K and λ ∈ Λn, on the event λ ≥ 4‖Zk‖∞, we have

‖β̂−k(λ)− β‖2,n,−k ≤
3λ
√
s

2κk
.

Thus, it suffices to show that there exists c > 0 such that

P (κk < c) = o(1), (10)

for all k = 1, . . . ,K, and that there exist λ̄0 = λ̄n,0 ∈ Λn, possibly depending on n, such that

P
(
λ̄0 < 4‖Zk‖∞

)
= o(1) (11)

for all k = 1, . . . ,K and

λ̄0 .

(
log p+ log log n

n

)1/2

. (12)

To prove (10), note that by Jensen’s inequality,

Ln =
(

E
[

max
1≤i≤n

max
1≤j≤p

|Xij |2
])1/2

≤
(

E
[

max
1≤i≤n

max
1≤j≤p

|Xij |q
])1/q

≤
(∑n

i=1E
[

max
1≤j≤p

|Xij |q
])1/q

≤ n1/qMn.

Thus, for ln = s log n,

γn =
Ln
√
ln√
n
·
(

log1/2 p+ (log ln) · (log1/2 p) · (log1/2 n)
)

.
Ln
√
s√

n
· (log2 n) · (log1/2 p) ≤ Mn

√
s√

n1−2/q
· (log2 n) · (log1/2 p) = o(1)
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by Assumption 3. Hence, noting that (i) all eigenvalues of the matrix E[XX ′] are bounded from

above and below from zero by Assumption 1 and that (ii) (n − nk)−1 . n−1 by Assumption 5

and applying Lemma 15 with k, K, and δn there replaced by ln, Ln, and γn here shows that

1 . ‖δ‖2,n,−k . 1 (13)

with probability 1−o(1) uniformly over all δ ∈ Rp such that ‖δ‖ = 1 and ‖δT c‖0 ≤ s log n and all

k = 1, . . . ,K. Hence, (10) follows from Lemma 10 in Belloni and Chernozhukov (2011) applied

with m there equal to s log n here.

To prove (11) and (12) fix k = 1, . . . ,K and note that

max
1≤j≤p

∑
i/∈Ik

E[|Xijεi|2] . n

by Assumptions 1 and 2. Also,(
E
[

max
1≤i≤n

max
1≤j≤p

|Xijεi|2
])1/2

≤
(

E
[

max
1≤i≤n

max
1≤j≤p

|Xijεi|q
])1/q

≤
(∑n

i=1E
[

max
1≤j≤p

|Xijεi|q
])1/q

. n1/qMn

by Jensen’s inequality, the definition of Mn, and the assumption on the moment generating

function of the conditional distribution of ε given X. Thus, by Lemma 13 and Assumption 3,

E
[
(n− nk)‖Zk‖∞

]
.
√
n log p+ n1/qMn log p .

√
n log p.

Hence, applying Lemma 14 with t = (n log log n)1/2 and Z there replaced by (n − nk)‖Zk‖∞
here and noting that nM q

n/(n log log n)q/2 = o(1) by Assumption 3 implies that

‖Zk‖∞ .

(
log p+ log log n

n

)1/2

with probability 1−o(1). Hence, noting that log p+log log n = o(n) by Assumption 3, it follows

from Assumption 4 that there exists λ̄0 ∈ Λn such that (11) and (12) hold.

Further, to prove the second asserted claim, note that using (10) and (13) and applying

Theorem 2 in Belloni and Chernozhukov (2011) with m = s log n there shows that ‖β̂−k(λ̄0)‖0 .

s with probability 1− o(1) for all k = 1, . . . ,K. Hence,

‖β̂−k(λ̄0)− β‖21 . s‖β̂−k(λ̄0)− β‖2 . s‖β̂−k(λ̄0)− β‖22,n,−k .
s2(log p+ log log n)

n

with probability 1 − o(1) for all k = 1, . . . ,K, where the second inequality follows from (13),

and the third one from the first asserted claim. This completes the proof of the lemma. �

Lemma 2. Suppose that Assumptions 1 – 5 hold. In addition, suppose that for all t ∈ R, we

have log E[exp(tε) | X] ≤ C1t
2. Then we have for all k = 1, . . . ,K that

‖β̂−k(λ̄0)− β‖22,n,k .
s(log p+ log log n)

n

with probability 1− o(1) for λ̄0 defined in Lemma 1.

14



Proof. Fix k = 1, . . . ,K and denote β̂ = β̂−k(λ̄0). We have∣∣∣‖β̂ − β‖22,n,−k − ‖β̂ − β‖22,n,k∣∣∣ =
∣∣∣(β̂ − β)′

( 1

n− nk

∑
i/∈Ik

XiX
′
i −

1

nk

∑
i∈Ik

XiX
′
i

)
(β̂ − β)

∣∣∣
≤
∣∣∣(β̂ − β)′

( 1

n− nk

∑
i/∈Ik

XiX
′
i − E[XX ′]

)
(β̂ − β)

∣∣∣
+
∣∣∣(β̂ − β)′

( 1

nk

∑
i∈Ik

XiX
′
i − E[XX ′]

)
(β̂ − β)

∣∣∣
≤ ‖β̂ − β‖21 max

1≤j,l≤p

∣∣∣ 1

n− nk

∑
i/∈Ik

XijXil − E[XjXl]
∣∣∣

+ ‖β̂ − β‖21 max
1≤j,l≤p

∣∣∣ 1

nk

∑
i∈Ik

XijXil − E[XjXl]
∣∣∣

by the triangle inequality. Further, by Lemma 1, ‖β̂ − β‖21 . s2(log p + log log n)/n with

probability 1− o(1) and by Lemma 13,

E
[

max
1≤j,l≤p

∣∣∣ 1

n− nk
∑

i/∈IkXijXil − E[XjXl]
∣∣∣] . (γ4

n log p

n

)1/2

+
M2
n log p

n1−2/q
,

E
[

max
1≤j,l≤p

∣∣∣ 1

nk

∑
i∈IkXijXil − E[XjXl]

∣∣∣] . (γ4
n log p

n

)1/2

+
M2
n log p

n1−2/q
,

since 1/nk . 1/n and 1/(n− nk) . 1/n by Assumption 5 and

max
1≤j,l≤p

E[X2
ijX

2
il] ≤ max

1≤j≤p
E[X4

ij ] ≤ γ4
n

by Hölder’s inequality and Assumption 1. Noting that

γ4
ns

2 log p/n = o(1) and M2
ns log p/n1−2/q = o(1),

which hold by Assumption 3, and combining presented inequalities implies that∣∣∣‖β̂ − β‖22,n,−k − ‖β̂ − β‖22,n,k∣∣∣ . s(log p+ log log n)

n
· o(1)

with probability 1− o(1). In addition, by Lemma 1, ‖β̂ − β‖22,n,−k . s(log p+ log log n)/n with

probability 1− o(1). Therefore, it follows that

‖β̂ − β‖22,n,k .
s(log p+ log log n)

n

with probability 1− o(1). This completes the proof. �

Lemma 3. Suppose that Assumptions 1 – 5 hold. In addition, suppose that for all t ∈ R, we

have log E[exp(tε) | X] ≤ C1t
2. Then we have for all k = 1, . . . ,K that

‖β̂−k(λ̂)− β‖22,n,k .
s(log p+ log log n)

n
+

(log log n)2

n

with probability 1− o(1).
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Proof. We have
K∑
k=1

∑
i∈Ik

(Yi −X ′iβ̂−k(λ̂))2 ≤
K∑
k=1

∑
i∈Ik

(Yi −X ′iβ̂−k(λ̄0))2

for λ̄0 defined in Lemma 1. Therefore,

K∑
k=1

nk‖β̂−k(λ̂)− β‖22,n,k ≤
K∑
k=1

nk‖β̂−k(λ̄0)− β‖22,n,k + 2
K∑
k=1

∑
i∈Ik

εiX
′
i(β̂−k(λ̂)− β̂−k(λ̄0)).

Further, by assumptions of the lemma, for λ ∈ Λn, k = 1, . . . ,K, andDk = {(Xi, Yi)i/∈Ik ; (Xi)i∈Ik},
we have for all t ∈ R that

log E
[
exp

(
t
∑

i∈IkεiX
′
i(β̂−k(λ)− β̂−k(λ̄0))

)
| Dk

]
. t2nk‖β̂−k(λ)− β̂−k(λ̄0)‖22,n,k.

Therefore, since |Λn| . log n by Assumption 4, we have with probability 1 − o(1) that for all

k = 1, . . . ,K and λ ∈ Λn,∣∣∣∣∣∣
∑
i∈Ik

εiX
′
i(β̂−k(λ)− β̂−k(λ̄0))

∣∣∣∣∣∣ . √nk · (log log n) · ‖β̂−k(λ)− β̂−k(λ̄0)‖2,n,k

by the union bound and Markov’s inequality; in particular, since λ̂ ∈ Λn, we have with proba-

bility 1− o(1) that for all k = 1, . . . ,K,∣∣∣∣∣∣
∑
i∈Ik

εiX
′
i(β̂−k(λ̂)− β̂−k(λ̄0))

∣∣∣∣∣∣ . √nk · (log log n) · ‖β̂−k(λ̂)− β̂−k(λ̄0)‖2,n,k.

Hence, since nk/n ≥ c1 by Assumption 5, we have with probability 1− o(1) that

K∑
k=1

‖β̂−k(λ̂)− β‖22,n,k .
K∑
k=1

‖β̂−k(λ̄0)− β‖22,n,k +
log log n√

n

K∑
k=1

‖β̂−k(λ̂)− β̂−k(λ̄0)‖2,n,k.

Let k̂ be a k = 1, . . . ,K that maximizes ‖β̂−k(λ̂)− β̂−k(λ̄0)‖2,n,k. Then with probability 1−o(1),

‖β̂−k̂(λ̂)− β‖2
2,n,k̂

.
K∑
k=1

‖β̂−k(λ̄0)− β‖22,n,k +
log log n√

n
‖β̂−k̂(λ̂)− β̂−k̂(λ̄0)‖

2,n,k̂
,

and so, by Lemma 2 and the triangle inequality, with probability 1− o(1),

‖β̂−k̂(λ̂)− β‖2
2,n,k̂

.
s(log p+ log log n)

n

+
log log n√

n

√
s(log p+ log log n)

n
+

log log n√
n
‖β̂−k̂(λ̂)− β‖

2,n,k̂
.

Conclude that for all k = 1, . . . ,K, with probability 1− o(1),

‖β̂−k(λ̂)− β‖22,n,k . ‖β̂−k̂(λ̂)− β‖2
2,n,k̂

.
s(log p+ log log n)

n
+

(log log n)2

n
.

This completes the proof. �
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Lemma 4. Suppose that Assumptions 1 – 5 hold. In addition, suppose that for all t ∈ R, we

have log E[exp(tε) | X] ≤ C1t
2. Then we have for all k = 1, . . . ,K that

‖β̂−k(λ̂)− β‖2 .
s(log p+ log log n)

n
+

(log log n)2

n

with probability 1− o(1).

Proof. Fix k = 1, . . . ,K. For λ ∈ Λn, let δλ = (β̂−k(λ) − β)/‖β̂−k(λ) − β‖. Observe that con-

ditional on D̄k = (Xi, Yi)i/∈Ik , (δλ)λ∈Λn is non-stochastic. Therefore, maxλ∈Λn

∑
i∈Ik E[(X ′iδλ)4 |

D̄k] . Γ4
nn by Assumption 1 since ‖δλ‖ = 1 for all λ ∈ Λn. In addition,(

E
[

max
i∈Ik

max
λ∈Λn

(X ′iδλ)4 | D̄k

])1/2
≤ Γ2

n · (n|Λn|)1/2.

So, by Lemma 13,

R = max
λ∈Λn

∣∣∣∣∣∣ 1

nk

∑
i∈Ik

(
(X ′iδλ)2 − E[(X ′iδλ)2 | D̄k]

)∣∣∣∣∣∣
satisfies

E[R] .

√
Γ4
n log |Λn|

n
+

Γ2
n · (n|Λn|)1/2 log |Λn|

n
= o(1)

by Assumption 3 since |Λn| . log n by Assumption 4. Moreover, by Assumption 1, for any

λ ∈ Λn,

‖β̂−k(λ)− β‖2 .
1

nk

∑
i∈Ik

E[(X ′i(β̂−k(λ)− β))2 | D̄k]

≤ 1

nk

∑
i∈Ik

(X ′i(β̂−k(λ)− β))2 +R‖β̂−k(λ)− β‖2

= ‖β̂−k(λ)− β‖22,n,k +R‖β̂−k(λ)− β‖2.

Therefore, with probability 1− o(1),

‖β̂−k(λ̂)− β‖2 . ‖β̂−k(λ̂)− β‖22,n,k .
s(log p+ log log n)

n
+

(log log n)2

n
,

where the second inequality follows from Lemma 3. The asserted claim follows. �

Lemma 5. Suppose that Assumptions 1 – 5 hold. In addition, suppose that for all t ∈ R, we

have log E[exp(tε) | X] ≤ C1t
2. Finally, suppose that ξ2

n log n/n = o(1). Then we have for all

k = 1, . . . ,K that

‖β̂−k(λ̂)− β‖22,n,−k .
s(log p+ log log n)

n
+

(log log n)2

n

with probability 1− o(1).
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Proof. Since nP (‖X‖ > ξn) = o(1) and for all δ ∈ Sp, we have (E[|X ′δ|2])1/2 ≤ C1 and

(E[|X ′δ|4])1/4 ≤ Γn by Assumption 1, applying Lemma 16 shows that with probability 1− o(1),

‖β̂−k(λ̂)−β‖22,n,−k . ‖β̂−k(λ̂)−β‖2 ·

(
1 + Γ2

n · (P (‖X‖ > ξn))1/2 +

√
ξ2
n log(pn)

n
+
ξ2
n log(pn)

n

)
.

In addition, Γ2
n · (P (‖X‖ > ξn)1/2 = o(1) by Assumptions 1 and 3. Also, ξ2

n log(pn)/n = o(1)

since we have ξ2
n log n/n = o(1) and it follows from Lemma 17 that

√
p . ξn. Thus, the asserted

claim follows from Lemma 17. �

Lemma 6. For all λ ∈ Λn, the Lasso estimator β̂(λ) given in (2) based on the data (Xi, Yi)
n
i=1 =

(Xi, X
′
iβ + εi)

n
i=1 has the following properties: (i) the function (εi)

n
i=1 7→ (Xiβ̂(λ))ni=1 mapping

Rn to Rn for a fixed value of Xn
1 = (X1, . . . , Xn) is Lipschitz-continuous with Lipschitz constant

one whenever the matrix (X1, . . . , Xn)′ has full column rank; (ii) if for all i = 1, . . . , n, the

conditional distribution of εi given Xi is N(0, σ2
i ) and the pairs (Xi, εi) are independent across

i, then

E[‖β̂(λ)‖0 | Xn
1 ] =

n∑
i=1

σ−2
i E[εiX

′
i(β̂(λ)− β) | Xn

1 ] (14)

on the event that the matrix (X1, . . . , Xn)′ has full column rank.

Proof. This lemma is an extension of the main result in Zou et al. (2007) to the heteroscedastic

case (we allow σ2
i ’s to vary over i).

Fix λ ∈ Λn and Xn
1 = (X1, . . . , Xn) such that the matrix (X1, . . . , Xn)′ has full column

rank. Denote β̂ = β̂(λ) and T̂ = supp(β̂). Note that β̂ is well-defined because the solution of

the optimization problem (2) is unique since the optimized function is strictly convex under the

condition that the matrix (X1, . . . , Xn)′ has full column rank. Also, let D denote the set of all

vectors in Rp whose elements are either −1 or 1. Moreover, let NXn
1

be a subset of Rn consisting

of all values of e = (e1, . . . , en)′ ∈ Rn such that for some M ⊂ {1, . . . , p} with M 6= {1, . . . , p},
j ∈ {1, . . . , p} \M , and d ∈ D, we have∣∣∣∣∣ 2n

n∑
i=1

(ei +X ′i(β − b̂))Xij

∣∣∣∣∣ = λ

where b̂ = (̂b1, . . . , b̂p)
′ is a vector in Rp such that

(̂b)M =

(
1

n

n∑
i=1

(Xi)M (Xi)
′
M

)−1(
1

n

n∑
i=1

(Xi)
′
M (ei +X ′iβ)− λdM/2

)

and b̂j = 0 for all j /∈ M . Note that b̂ is well-defined because the matrix ((X1)M , . . . , (Xn)M )′

has full column rank under the condition that the matrix (X1, . . . , Xn)′ has full column rank.

It follows that NXn
1

is contained in a finite set of hyperplanes in Rn.

Next, by the Kuhn-Tucker conditions, for all j ∈ T̂ , we have

2

n

n∑
i=1

(Yi −X ′iβ̂)Xij = λ · sign(β̂j),
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and for all j /∈ T̂ , we have ∣∣∣∣∣ 2n
n∑
i=1

(Yi −X ′iβ̂)Xij

∣∣∣∣∣ ≤ λ.
Thus, since the matrix ((X1)

T̂
, . . . , (Xn)

T̂
)′ has full column rank under the condition that the

matrix (X1, . . . , Xn)′ has full column rank, we have for all l = 1, . . . , n that

X ′l β̂ = (Xl)
′
T̂

(
1

n

n∑
i=1

(Xi)T̂ (Xi)
′
T̂

)−1(
1

n

n∑
i=1

(Xi)T̂Yi − λ · sign(β̂
T̂

)/2

)
. (15)

Moreover, since β̂ is the unique solution of the optimization problem (2), it follows that the

functions (εi)
n
i=1 7→ T̂ and (εi)

n
i=1 7→ sign(β̂

T̂
) are well-defined and are locally constant for all

values of (εi)
n
i=1 satisfying (ε1, . . . , εn)′ /∈ NXn

1
.

Now we are ready to show that the function (εi)
n
i=1 7→ (X ′iβ̂)ni=1 is Lipschitz-continuous with

Lipschitz constant one, which is the first asserted claim. To this end, consider β̂ as a function of

(εi)
n
i=1. Let ε1 and ε2 be two values of (εi)

n
i=1, and let β̂(ε1) and β̂(ε2) be corresponding values

of β̂. Suppose first that the line segment P = {tε2 +(1− t)ε1 : t ∈ [0, 1]} does not intersect NXn
1

.

Then T̂ and sign(β̂
T̂

) are constant on P, and so (15) implies that

n∑
i=1

(
X ′iβ̂(ε2)−X ′iβ̂(ε1)

)2
≤ ‖ε2 − ε1‖2. (16)

Second, suppose that P has a non-empty intersection with NXn
1

. Recall that the set NXn
1

is

contained in a finite collection of hyperplanes, and so we can find 0 = t0 < t1 < · · · < tk = 1

such that T̂ remains constant on each line segment {tε2 + (1− t)ε1 : t ∈ (tj−1, tj)}, j = 1, . . . , k,

of P. In addition, note that the function (εi)
n
i=1 7→ (X ′iβ̂)ni=1 is continuous (otherwise we could

use, for example, the fact that the optimized function in (2) is strictly convex to arrive at a

contradiction). Hence, (16) holds in this case as well by the triangle inequality. This gives the

first asserted claim.

Next, we prove (14), which is the second asserted claim. Note that since for all values

of (εi)
n
i=1 satisfying (ε1, . . . , εn)′ /∈ NXn

1
, the functions (εi)

n
i=1 7→ T̂ and (εi)

n
i=1 7→ sign(β̂

T̂
)

are locally constant, it follows from (15) that for the same values of (εi)
n
i=1, the functions

(εi)
n
i=1 7→ X ′l β̂ are differentiable. Moreover,

∂(X ′l β̂)

∂εl
=

1

n
(Xl)

′
T̂

(
1

n

n∑
i=1

(Xi)T̂ (Xi)
′
T̂

)−1

(Xl)T̂ ,

and so

n∑
l=1

∂(X ′l β̂)

∂εl
=

1

n

n∑
l=1

(Xl)
′
T̂

( 1

n

n∑
i=1

(Xi)T̂ (Xi)
′
T̂

)−1
(Xl)T̂

=
1

n

n∑
l=1

tr
(

(Xl)
′
T̂

( 1

n

n∑
i=1

(Xi)T̂ (Xi)
′
T̂

)−1
(Xl)T̂

)
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=
1

n

n∑
l=1

tr
(( 1

n

n∑
i=1

(Xi)T̂ (Xi)
′
T̂

)−1
(Xl)T̂ (Xl)

′
T̂

)
= tr

(( 1

n

n∑
i=1

(Xi)T̂ (Xi)
′
T̂

)−1 1

n

n∑
l=1

(Xl)T̂ (Xl)
′
T̂

)
= |T̂ |

whenever (ε1, . . . , εn)′ /∈ NXn
1

. Since P((ε1, . . . , εn)′ ∈ NXn
1
| Xn

1 ) = 0, it follows that

n∑
l=1

E

[
∂(X ′l β̂)

∂εl
| Xn

1

]
= E[|T̂ | | Xn

1 ].

In addition, the first asserted claim implies that the functions (εi)
n
i=1 7→ X ′l β̂ are absolutely

continuous, and so applying Stein’s lemma (see, for example, Lemma 2.1 in Chen, Goldstein,

and Shao, 2011) conditional on Xn
1 and using the fact that pairs (Xi, εi) are independent across

i shows that

E[|T̂ | | Xn
1 ] =

n∑
l=1

E

[
∂(X ′l β̂)

∂εl
| Xn

1

]
=

n∑
l=1

σ−2
l E[εlX

′
l β̂ | Xn

1 ] =

n∑
l=1

σ−2
l E[εlX

′
l(β̂ − β) | Xn

1 ],

which gives (14), the second asserted claim, since |T̂ | = ‖β̂(λ)‖0. This completes the proof of

the lemma. �

Lemma 7. Suppose that Assumptions 2 and 5 hold. In addition, suppose that the conditional

distribution of ε given X is Gaussian. Then for all λ ∈ Λn and t > 0, we have

P
(∣∣∣‖β̂(λ)− β‖2,n − E[‖β̂(λ)− β‖2,n | Xn

1 ]
∣∣∣ > t | Xn

1

)
≤ Ce−cnt2 ,

and for all k = 1, . . . ,K, λ ∈ Λn, and t > 0, we have

P
(∣∣∣‖β̂−k(λ)− β‖2,n,−k − E[‖β̂−k(λ)− β‖2,n,−k | Xn

1 ]
∣∣∣ > t | Xn

1

)
≤ Ce−cnt2

on the event that the matrix (X1, . . . , Xn)′ has the full column rank, where c > 0 and C > 0 are

some constants that depend only on c1 and C1.

Proof. Fix λ ∈ Λn and Xn
1 = (X1, . . . , Xn) such that the matrix (X1, . . . , Xn)′ has full column

rank. By Lemma 6, the function (εi)
n
i=1 7→ (X ′iβ̂(λ))ni=1 is Lipschitz-continuous with Lipschitz

constant one, and so is (εi)
n
i=1 7→ (

∑n
i=1(X ′i(β̂(λ)−β))2)1/2. In turn, (

∑n
i=1(X ′i(β̂(λ)−β))2)1/2 =

√
n‖β̂(λ) − β‖2,n. Thus, by the Gaussian concentration inequality (see, for example, Theorem

2.1.12 in Tao, 2012),

P
(∣∣∣√n‖β̂(λ)− β‖2,n − E[

√
n‖β̂(λ)− β‖2,n | Xn

1 ]
∣∣∣ > t | Xn

1

)
≤ Ce−ct2 ,

for some constants c > 0 and C > 0 that depend only on c1 and C1. Replacing t by
√
nt in

this inequality gives the first asserted claim. The second asserted claim follows similarly. This

completes the proof of the theorem. �
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Lemma 8. For some sufficiently large constant C, let

Tn = C

((
s(log p+ log log n)

n

)1/2

+
log log n√

n

)
,

and for k = 1, . . . ,K, let

Λn,k(X
n
1 ) =

{
λ ∈ Λn : E[‖β̂−k(λ)− β‖2,n,−k | Xn

1 ] ≤ Tn
}
.

Suppose that Assumptions 1 – 5 hold. In addition, suppose that the conditional distribution of

ε given X is Gaussian. Finally, suppose that ξ2
n log n/n = o(1). Then λ̂ ∈ Λn,k(X

n
1 ) for all

k = 1, . . . ,K with probability 1− o(1).

Proof. Fix k = 1, . . . ,K. We have

P
(
λ̂ /∈ Λn,k(X

n
1 )
)
≤ P

(
‖β̂−k(λ̂)− β‖22,n,−k > T 2

n/4
)

+ P
(

max
λ∈Λn

∣∣∣‖β̂−k(λ)− β‖2,n,−k − E[‖β̂−k(λ)− β‖2,n,−k | Xn
1 ]
∣∣∣2 > T 2

n/4
)
.

The first term on the right-hand side of this inequality is o(1) by Lemma 5 (recall that the fact

that the conditional distribution of ε given X is Gaussian combined with Assumption 2 implies

that log E[exp(tε) | X] ≤ C1t
2 for all t > 0 if C1 in this inequality is large enough).

Further, since nP (‖X‖ > ξn) = o(1) and for all δ ∈ Sp, we have c1 ≤ (E[|X ′δ|2])1/2 ≤ C1

and (E[|X ′δ|4])1/4 ≤ Γn by Assumption 1, Lemma 16 implies that all eigenvalues of the matrix

(n − nk)−1
∑

i/∈Ik XiX
′
i are bounded below from zero with probability 1 − o(1), like in Lemma

5. In addition, on the event that the matrix (n− nk)−1
∑

i/∈Ik XiX
′
i is non-singular, we have by

Lemma 7 and the union bound that the expression

P

(
max
λ∈Λn

∣∣∣‖β̂−k(λ)− β‖2,n,−k − E[‖β̂−k(λ)− β‖2,n,−k | Xn
1 ]
∣∣∣2 > T 2

n/4 | Xn
1

)
is bounded from above by C|Λn| exp(−C log n) for arbitrarily large constant C as long as the

constant C in the statement of the lemma is large enough. Since |Λn| . log n by Assumption 4,

it follows that

P

(
max
λ∈Λn

∣∣∣‖β̂−k(λ)− β‖2,n,−k − E[‖β̂−k(λ)− β‖2,n,−k | Xn
1 ]
∣∣∣2 > T 2

n/4

)
= o(1).

Hence, the asserted claim follows. �

Lemma 9. Suppose that Assumptions 1 – 5 hold. In addition, suppose that the conditional

distribution of ε given X is Gaussian. Finally, suppose that ξ2
n log n/n = o(1). Then for all

k = 1, . . . ,K,

‖β̂−k(λ̂)‖0 . s · (log3/2 p) · (log2 n)

with probability 1− o(1).
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Proof. Fix k = 1, . . . ,K. Similarly to the proof of Lemma 5, we have by Lemma 16 that the

smallest eigenvalue of the matrix (n − nk)−1
∑

i/∈Ik XiX
′
i is bounded from below by c2

1/2 with

probability 1− o(1) since the smallest eigenvalue of the matrix E[XX ′] is bounded from below

by c2
1 by Assumption 1. Fix Xn

1 = (X1, . . . , Xn) such that the smallest eigenvalue of the matrix

(n − nk)−1
∑

i/∈Ik XiX
′
i is bounded from below by c2

1/2. Also, fix λ ∈ Λn,k(X
n
1 ) for Λn,k(X

n
1 )

defined in the statement of Lemma 8. Then E[‖β̂−k(λ)− β‖2,n,−k | Xn
1 ] ≤ Tn for Tn defined in

the statement of Lemma 8. Hence, by Fubini’s theorem and Lemma 7, we have

E
[
‖β̂−k(λ)− β‖42,n,−k | Xn

1

]
=

∫ ∞
0

P
(
‖β̂−k(λ)− β‖42,n,−k > t | Xn

1

)
dt

≤ T 4
n +

∫ ∞
T 4
n

P
(
‖β̂−k(λ)− β‖2,n,−k > t1/4 | Xn

1

)
dt

. T 4
n +

∫ ∞
T 4
n

exp
(
− cn(t1/4 − Tn)2

)
dt

. T 4
n +

1√
n

∫ ∞
0

(
t/
√
n+ Tn

)3
exp(−ct2)dt . T 4

n .

Thus, (
E[‖β̂−k(λ)− β‖42,n,−k | Xn

1 ]
)1/4

. Tn. (17)

Then by Assumption 2 and Lemma 6 applied to the data (Xi, Yi)i/∈Ik and the Lasso estimator

β̂−k(λ),

E[‖β̂−k(λ)‖0 | Xn
1 ] .

∑
i/∈IkE[εiX

′
i(β̂−k(λ)− β) | Xn

1 ]

. E
[∥∥∥∑i/∈IkεiXi

∥∥∥
∞
· ‖β̂−k(λ)− β‖1 | Xn

1

]
≤ E

[∥∥∥∑i/∈IkεiXi

∥∥∥
∞
· ‖β̂−k(λ)− β‖ ·

√
‖β̂−k(λ)‖0 + s | Xn

1

]
≤
(

E
[∥∥∥∑i/∈IkεiXi

∥∥∥2

∞
· ‖β̂−k(λ)− β‖2 | Xn

1

]
· E[‖β̂−k(λ)‖0 + s | Xn

1 ]
)1/2

,

where the last line follows from Hölder’s inequality. In turn, with probability 1− o(1),(
E
[∥∥∥∑i/∈IkεiXi

∥∥∥2

∞
· ‖β̂−k(λ)− β‖2 | Xn

1

])1/2

≤
(

E
[∥∥∥∑i/∈IkεiXi

∥∥∥4

∞
| Xn

1

]
· E
[
‖β̂−k(λ)− β‖4 | Xn

1

])1/4

.
√
n log p

(
E
[
‖β̂−k(λ)− β‖4 | Xn

1

])1/4
.
√
n log p

(
E
[
‖β̂−k(λ)− β‖42,n,−k | Xn

1

])1/4

and the last expression is bounded from above up-to a constant C by

s1/2 · (log1/2 p) · (log p+ log log n)1/2 + (log1/2 p) · (log log n)

by (17). Hence, with probability 1− o(1),

E[‖β̂−k(λ)‖0 | Xn
1 ] . s · (log p) · (log p+ log log n) + (log p) · (log log n)2.
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So, by Markov’s inequality and the union bound,

‖β̂−k(λ)‖0 . (log3/2 n) ·
(
s · (log p) · (log p+ log log n) + (log p) · (log log n)2

)
. s · (log3/2 p) · (log2 n)

for all λ ∈ Λn,k(X
n
1 ) with probability 1 − o(1) since |Λn,k(Xn

1 )| ≤ |Λn| . log n by Assumption

4 and since log p . log n by the assumption that ξ2
n log n/n = o(1) (recall that by Lemma 17,

√
p . ξn). The asserted claim follows since by Lemma 8, λ̂ ∈ Λn,k(X

n
1 ) for all k = 1, . . . ,K with

probability 1− o(1). �

Lemma 10. For all λ ∈ Λn and b ∈ Rp, we have

‖β̂(λ)− b‖22,n ≤
1

n

n∑
i=1

(Yi −X ′ib)2 + λ‖b‖1 −
1

n

n∑
i=1

(Yi −X ′iβ̂(λ))2 − λ‖β̂(λ)‖1.

Proof. The result in this lemma is sometimes referred to as the two point inequality; see van de

Geer (2016). Here we give a short proof of this inequality using an argument similar to that of

Lemma 5.1 in Chatterjee (2015). Fix λ ∈ Λn and denote β̂ = β̂(λ). Take any t ∈ (0, 1). We

have

1

n

n∑
i=1

(Yi −X ′iβ̂)2 + λ‖β̂‖1 ≤
1

n

n∑
i=1

(Yi −X ′i(tb+ (1− t)β̂))2 + λ‖tb+ (1− t)β̂‖1

≤ 1

n

n∑
i=1

(Yi −X ′iβ̂ + tX ′i(β̂ − b))2 + tλ‖b‖1 + (1− t)λ‖β̂‖1.

Hence,

tλ(‖β̂‖1 − ‖b‖1) ≤ t2‖β̂ − b‖22,n +
2t

n

n∑
i=1

(Yi −X ′iβ̂)(X ′iβ̂ −X ′ib),

and so

λ(‖β̂‖1 − ‖b‖1) ≤ t‖β̂ − b‖22,n +
2

n

n∑
i=1

(Yi −X ′iβ̂)(X ′iβ̂ −X ′ib).

Since t ∈ (0, 1) is arbitrary, we obtain

λ(‖β̂‖1 − ‖b‖1) ≤ 2

n

n∑
i=1

(Yi −X ′iβ̂)(X ′iβ̂ −X ′ib).

Thus,

‖β̂ − b‖22,n =
1

n

n∑
i=1

(Yi −X ′ib− (Yi −X ′iβ̂))2

=
1

n

n∑
i=1

(Yi −X ′ib)2 +
1

n

n∑
i=1

(Yi −X ′iβ̂)2 − 2

n

n∑
i=1

(Yi −X ′ib)(Yi −X ′iβ̂)

=
1

n

n∑
i=1

(Yi −X ′ib)2 − 1

n

n∑
i=1

(Yi −X ′iβ̂)2 − 2

n

n∑
i=1

(X ′iβ̂ −X ′ib)(Yi −X ′iβ̂)

≤ 1

n

n∑
i=1

(Yi −X ′ib)2 − 1

n

n∑
i=1

(Yi −X ′iβ̂)2 − λ(‖β̂‖1 − ‖b‖1).
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The asserted claim follows. �

Proof of Theorem 1

Let

b =
1

K − 1

K∑
k=1

n− nk
n

β̂−k(λ̂), (18)

so that b is a convex combination of {β̂−1(λ̂), . . . , β̂−K(λ̂)}. We have

n∑
i=1

(Yi −X ′iβ̂(λ̂))2 + nλ̂‖β̂(λ̂)‖1 =
1

K − 1

K∑
k=1

(∑
i/∈Ik

(Yi −X ′iβ̂(λ̂))2 + (n− nk)λ̂‖β̂(λ̂)‖1
)

≥ 1

K − 1

K∑
k=1

(∑
i/∈Ik

(Yi −X ′iβ̂−k(λ̂))2 + (n− nk)λ̂‖β̂−k(λ̂)‖1
)

≥ 1

K − 1

K∑
k=1

∑
i/∈Ik

(Yi −X ′iβ̂−k(λ̂))2 + nλ̂‖b‖1

where the second line follows from the definition of β̂−k(λ̂)’s and the third from the triangle

inequality. Also,

1

K − 1

K∑
k=1

∑
i/∈Ik

(Yi −X ′iβ̂−k(λ̂))2 ≥ 1

K − 1

K∑
k=1

∑
i/∈Ik

(
(Yi −X ′ib)2 + 2(Yi −X ′ib)(X ′ib−X ′iβ̂−k(λ̂))

)

=
n∑
i=1

(Yi −X ′ib)2 +
2

K − 1

K∑
k=1

∑
i/∈Ik

(Yi −X ′ib)(X ′ib−X ′iβ̂−k(λ̂)).

Thus, by Lemma 10,

n‖β̂(λ̂)− b‖22,n ≤
2

K − 1

K∑
k=1

∣∣∣∣∣∣
∑
i/∈Ik

(Yi −X ′ib)(X ′ib−X ′iβ̂−k(λ̂))

∣∣∣∣∣∣ ≤ 2

K − 1

K∑
k=1

(I1,k + I2,k)

where

I1,k =

∣∣∣∣∣∣
∑
i/∈Ik

εiX
′
i(b− β̂−k(λ̂))

∣∣∣∣∣∣ , I2,k =

∣∣∣∣∣∣
∑
i/∈Ik

(X ′iβ −X ′ib) · (X ′ib−X ′iβ̂−k(λ̂))

∣∣∣∣∣∣ . (19)

Next, for all k = 1, . . . ,K, we have

I1,k ≤ max
1≤j≤p

∣∣∣∑i/∈IkεiXij

∣∣∣ · ‖b− β̂−k(λ̂)‖1.
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Now, max1≤j≤p |
∑

i/∈Ik εiXij | .
√
n log n with probability 1−o(1). In addition, with probability

1− o(1), for all k = 1, . . . ,K,

‖b− β̂−k(λ̂)‖1 ≤ ‖b− β‖1 + ‖β̂−k(λ̂)− β‖1 .
K∑
l=1

‖β̂−l(λ̂)− β‖1

.
(
s · (log2 n) · (log3/2 p)

)1/2
K∑
l=1

‖β̂−l(λ̂)− β‖

.
(
s · (log2 n) · (log3/2 p)

)1/2 s1/2 · (log1/4 p) · (log1/4 n)

n1/2
=
s · (log p) · (log5/4 n)

n1/2

where the first line follows from the triangle inequality and (18), the second from Lemma 9, and

the third from Lemma 4 (again, recall that the fact that the conditional distribution of ε given

X is Gaussian combined with Assumption 2 implies that log E[exp(tε) | X] ≤ C1t
2 for all t > 0

if C1 in this inequality is large enough) and the observation that log p . log n, which follows

from ξ2
n log n/n = o(1) and Lemma 17. Thus, with probability 1− o(1), for all k = 1, . . . ,K,

I1,k . s · (log p) · (log7/4 n).

Also, with probability 1− o(1), for all k = 1, . . . ,K,

I2,k ≤ (n− nk)‖β − b‖2,n,−k · ‖b− β̂−k(λ̂)‖2,n,−k

. (n− nk)
(∑K

l=1‖β̂−l(λ̂)− β‖2,n,−k
)2

. s log n

where the first line follows from Hölder’s inequality and the second from (18) and Lemmas 3 and

5 since log p . log n. Combining presented inequalities shows that with probability 1− o(1),

‖β̂(λ̂)− b‖22,n .
s log p

n
· (log7/4 n).

Finally, with probability 1− o(1),

‖b− β‖22,n .
K∑
k=1

‖β̂−k(λ̂)− β‖22,n

.
K∑
k=1

(
‖β̂−k(λ̂)− β‖22,n,k + ‖β̂−k(λ̂)− β‖22,n,−k

)
.
s log n

n

by Lemmas 3 and 5. Thus, by the triangle inequality,

‖β̂(λ̂)− β‖22,n .
s log p

n
· (log7/4 n)

with probability 1− o(1). This completes the proof of the theorem. �
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Proof of Theorem 2

Let

Λn(Xn
1 ) =

{
λ ∈ Λn : E[‖β̂(λ)− β‖2,n | Xn

1 ] ≤ C ·
(s log p

n

)1/2
· (log7/8 n)

}
for some sufficiently large constant C. Since by Theorem 1,

‖β̂(λ̂)− β‖22,n ≤
C2

4
· s log p

n
· (log7/4 n)

with probability 1− o(1) if C is large enough, it follows by the same argument as that used in

the proof of Lemma 8 that λ̂ ∈ Λn(Xn
1 ) with probability 1− o(1).

Further, as in the proof of Lemma 9, fix Xn
1 = (X1, . . . , Xn) such that the smallest eigenvalue

of the matrix n−1
∑n

i=1XiX
′
i is bounded from below by c2

1/2, which happens with probability

1− o(1), and fix λ ∈ Λn(Xn
1 ). Then(

E[‖β̂(λ)− β‖42,n | Xn
1 ]
)1/4

.

(
s log p

n

)1/2

· (log7/8 n),

and so

E[‖β̂(λ)‖0 | Xn
1 ] .

n∑
i=1

E[εiX
′
i(β̂(λ)− β) | Xn

1 ]

.
(

E
[∥∥∥∑n

i=1εiXi

∥∥∥4

∞
| Xn

1

])1/4
·
(

E[‖β̂(λ)− β‖42,n | Xn
1 ]
)1/4

·
(

E[‖β̂(λ)‖0 + s | Xn
1 ]
)1/2

. s1/2 · (log p) · (log7/8 n) ·
(

E[‖β̂(λ)‖0 + s | Xn
1 ]
)1/2

. s1/2 · (log15/8 n) ·
(

E[‖β̂(λ)‖0 + s | Xn
1 ]
)1/2

by the same argument as that used in the proof of Lemma 9. Therefore,

E[‖β̂(λ)‖0 | Xn
1 ] . s log15/4 n.

Hence, given that |Λn(Xn
1 )| ≤ |Λn| . log n by Assumption 4, it follows from Markov’s inequality

and the union bound that

‖β̂(λ̂)‖0 . s log5 n

with probability 1− o(1). This completes the proof of the theorem. �

Proof of Corollary 1

Like in the proof of Lemma 5, it follows from Lemma 16 that

‖β̂(λ̂)− β‖2 . ‖β̂(λ̂)− β‖22,n
/(

1− Γ2
n · (P (‖X‖ > ξn)1/2 −

√
ξ2
n log(pn)

n
− ξ2

n log(pn)

n

)
with probability 1 − o(1), and so the first asserted claim follows from Theorem 1 and the

assumption that ξ2
n log n = o(n). The second asserted claim follows from the first claim combined

with the observation that

‖β̂(λ̂)− β‖21 ≤ (‖β̂(λ̂)‖0 + s) · ‖β̂(λ̂)− β‖2
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and Theorem 2. This completes the proof of the corollary. �

Lemma 11. For all λ ∈ Λn and k = 1, . . . ,K, we have ‖β̂−k(λ)‖0 ≤ n.

Proof. Fix λ ∈ Λn and k = 1, . . . ,K. Denote β̂ = β̂−k(λ) and T̂ = supp(β̂). Suppose to the

contrary that ‖β̂‖0 > n. Then the matrix ((X1)
T̂
, . . . , (Xn)

T̂
)′ does not have full column rank,

and there exists γ ∈ Rp with ‖γ‖ 6= 0 and supp(γ) ⊂ T̂ such that X ′iγ = 0 for all i = 1, . . . , n.

Also, the function α 7→ ‖β̂ + αγ‖1 mapping R into R is constant in some neighborhood around

zero, and so as α increases in this neighborhood, some of the components of the vector β̂ + αγ

increase and others decrease. Thus, as we move α, we can always find a vector β̂ + αγ that

is a solution of the optimization problem (4) but is also such that ‖β̂ + αγ‖0 < ‖β̂‖0, which

contradicts to our assumption that whenever the lasso optimization problem in (4) has multiple

solutions, we choose one with the smallest number of non-zero components. This completes the

proof of the lemma. �

Lemma 12. Suppose that Assumptions 1 – 5 hold. Then we have for all k = 1, . . . ,K that

‖β̂−k(λ̂)− β‖22,n,−k . (n2/qM2
n log4 n log p) · s log(pn)

n

with probability 1− o(1).

Proof. Note that ‖β̂−k(λ̂)‖0 ≤ n by Lemma 11. Also, recall that ‖β‖0 = s. In addition,(
E

[
max
i/∈Ik

max
1≤j≤p

|Xij |2
])1/2

≤ n1/qMn

for Mn defined in Assumption 3. Therefore, since all eigenvalues of the matrix E[XX ′] are

bounded from above by Assumption 1, applying Lemma 15 with k = n+ s . n shows that with

probability 1− o(1),

‖β̂−k(λ̂)− β‖22,n,−k . ‖β̂−k(λ̂)− β‖2 · n2/qM2
n log4 n log p.

Combining this inequality with Lemma 4 and noting that

s(log p+ log log n)

n
+

(log log n)2

n
.
s log(pn)

n

gives the asserted claim. �

Proof of Theorem 3

Define b as in (18). Also, for k = 1, . . . ,K, define I1,k and I2,k as in (19). Then it follows as in

the proof of Theorem 1 that

n‖β̂(λ̂)− b‖22,n ≤
2

K − 1

K∑
k=1

(I1,k + I2,k).
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Fix k = 1, . . . ,K. To bound I1,k, we have by the triangle inequality and Lemmas 4 and 11 that

‖b− β̂−k(λ̂)‖1 ≤ ‖b− β‖1 + ‖β̂(λ̂)− β‖1 .
K∑
l=1

‖β̂−l(λ̂)− β‖1

≤
√
n

K∑
l=1

‖β̂−l(λ̂)− β‖ . (s log(pn))1/2

with probability 1− o(1). Thus,

I1,k ≤ max
1≤j≤p

∣∣∣∣∣∣
∑
i/∈Ik

Xijεi

∣∣∣∣∣∣ · ‖b− β̂−k(λ̂)‖1 . (n log(pn))1/2 · (s log(pn))1/2 = (sn)1/2 log(pn)

with probability 1− o(1). Further, to bound I2,k, we have by Hölder’s inequality and Lemmas

3 and 12 that

I2,k ≤ (n− nk)‖β − b‖2,n,−k · ‖b− β̂−k(λ̂)‖2,n,−k

. (n− nk)
(∑K

l=1‖β̂−l(λ̂)− β‖2,n,−k
)2

. (n2/qM2
n log4 n log p) · (s log(pn))

with probability 1− o(1). Hence,

‖β̂(λ̂)− b‖22,n .

(
s log2(pn)

n

)1/2

+ (n2/qM2
n log4 n log p) · s log(pn)

n
.

(
s log2(pn)

n

)1/2

with probability 1− o(1) where the second inequality holds by the assumption that

M4
ns(log8 n)(log2 p)

n1−4/q
. 1.

Finally, with probability 1− o(1),

‖b− β‖22,n .
K∑
k=1

‖β̂−k(λ̂)− β‖22,n

.
K∑
k=1

(
‖β̂−k(λ̂)− β‖22,n,k + ‖β̂−k(λ̂)− β‖22,n,−k

)
.
(s log2(pn)

n

)1/2

by Lemmas 3 and 12. Combining these inequalities and using the triangle inequality shows that

‖β̂(λ̂)− β‖22,n .

(
s log2(pn)

n

)1/2

with probability 1− o(1). This completes the proof of the theorem. �

7 Technical Lemmas

Lemma 13. Let X1, . . . , Xn be independent centered random vectors in Rp with p ≥ 2. Define

Z = max1≤j≤p |
∑n

i=1Xij |, M = max1≤i≤n max1≤j≤p |Xij |, and σ2 = max1≤j≤p
∑n

i=1 E[X2
ij ].

Then

E[Z] ≤ K
(
σ
√

log p+
√

E[M2] log p
)

where K is a universal constant.
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Proof. See Lemma E.1 in Chernozhukov, Chetverikov, and Kato (2014). �

Lemma 14. Consider the setting of Lemma 13. For every η > 0, t > 0, and q ≥ 1, we have

P
(
Z ≥ (1 + η)E[Z] + t

)
≤ exp(−t2/(3σ2)) +KE[M q]/tq

where the constant K depends only on η and q.

Proof. See Lemma E.2 in Chernozhukov, Chetverikov, and Kato (2014). �

Lemma 15. Let X1, . . . , Xn be i.i.d. random vectors in Rp with p ≥ 2. Also, let K =

(E[max1≤i≤n max1≤j≤p |X2
ij ])

1/2 and for k ≥ 1, let

δn =
K
√
k√
n

(
log1/2 p+ (log k) · (log1/2 p) · (log1/2 n)

)
.

Moreover, let Sp = {θ ∈ Rp : ‖θ‖ = 1}. Then

E

[
sup

θ∈Sp : ‖θ‖0≤k

∣∣∣ 1
n

n∑
i=1

(X ′iθ)
2 − E[(X ′1θ)

2]
∣∣∣] . δ2

n + δn sup
θ∈Sp : ‖θ‖0≤k

(
E[(X ′1θ)

2]
)1/2

up-to an absolute constant.

Proof. See Lemma B.1 in Belloni et al. (2015b). See also Rudelson and Vershynin (2008) for

the original result. �

Lemma 16. Let X1, . . . , Xn be a random sample from the distribution of a p-dimensional ran-

dom vector X such that for all δ ∈ Sp, we have (E[|X ′δ|2)1/2 ≤ C and (E[|X ′δ|4)1/4 ≤ Γ for

some constants C and Γ. Then for any constants ξ > 0 and t > 0 such that t > 0, we have

P
(∥∥∥ 1

n

∑n
i=1XiX

′
i − E[XX ′]

∥∥∥ > t+ Γ2 · (P (‖X‖ > ξ))1/2
)

≤ exp
(

log(2p)− Ant2

ξ2(1 + t)

)
+ nP (‖X‖ > ξ)

where A is a constant depending only on C.

Proof. An application of Corollary 6.2.1 in Tropp (2012) shows that

P

(∥∥∥∥∥ 1

n

n∑
i=1

XiX
′
i1{‖Xi‖ ≤ ξ} − E

[
XX ′1{‖X‖ ≤ ξ}

]∥∥∥∥∥ > t

)
≤ exp

(
log(2p)− Ant2

ξ2(1 + t)

)
(20)

where A depends only on C; see, for example, Lemma 10 in Chetverikov and Wilhelm (2015).

Now, let D be the event that ‖Xi‖ ≤ ξ for all i = 1, . . . , n and let Dc be its complement.

Then P (Dc) ≤ nP (‖X‖ > ξ) by the union bound. Also,∥∥∥E
[
XX ′1{‖X‖ > ξ}

]∥∥∥ = sup
δ∈Rp : ‖δ‖=1

E
[
|X ′δ|21{‖X‖ > ξ}

]
≤ sup

δ∈Rp : ‖δ‖=1

(
E[‖X ′δ|4]

)1/2(
P (‖X‖ > ξ)

)1/2
≤ Γ2 ·

(
P (‖X‖ > ξ)

)1/2
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by Hölder’s inequality. Hence,

P
(∥∥∥ 1

n

∑n
i=1XiX

′
i − E[XX ′]

∥∥∥ > t+ Γ2 · (P (‖X‖ > ξ))1/2
)

≤ P
({∥∥∥ 1

n

∑n
i=1XiX

′
i − E[XX ′]

∥∥∥ > t+ Γ2 · (P (‖X‖ > ξ))1/2
}
∩ D

)
+ P (Dc)

≤ P
(∥∥∥ 1

n

∑n
i=1XiX

′
i1{‖Xi‖ ≤ ξ} − E[XX ′1{‖X‖ ≤ ξ}]

∥∥∥ > t
)

+ nP (‖X‖ > ξ)

by the triangle inequality. The asserted claim follows by combining this inequality with (20). �

Lemma 17. Let X be a random vector in Rp implicitly indexed by n, where the dimension

p = pn is also allowed to depend on n. Suppose that (E[|X ′δ|2])1/2 ≥ c1 for all δ ∈ Sp, n ≥ 1,

and some constant c1 > 0. Also, suppose that nP (‖X‖ > ξn) = o(1) as n → ∞ for some

sequence of constants (ξn)n≥1. In addition, suppose that Γn = supδ∈Sp(E[|X ′δ|4])1/4 satisfies

Γ4
n/n = o(1) as n→∞. Then ξ2

n > p ·min(1, c2
1/2) for all sufficiently large n.

Proof. Note that if c2
1/2 > 1, the assumption that (E[|X ′δ|2])1/2 ≥ c1 for all δ ∈ Sp implies that

(E[|X ′δ|2])1/2 ≥
√

2 for all δ ∈ Sp. Hence, it suffices to consider the case where c2
1/2 ≤ 1 and to

show that ξ2
n > c2

1p/2 for all sufficiently large n in this case.

To this end, suppose to the contrary that ξ2
n ≤ c2

1p/2 for all n = nk, k ≥ 1, where (nk)k≥1 is

some increasing sequence of integers. Then

E
[
‖X‖21{‖X‖ ≤ ξn}

]
≤ ξ2

n ≤ c2
1p/2

for all n = nk. On the other hand,

E[‖X‖2] = E[X ′X] = tr(E[X ′X]) = E[tr(X ′X)] = E[tr(XX ′)] = tr(E[XX ′]) ≥ c2
1p

for all n ≥ 1 by the assumption that (E[|X ′δ|2])1/2 ≥ c1 for all δ ∈ Sp, where for any p×p matrix

A, we use tr(A) to denote the sum of its diagonal terms, that is, tr(A) =
∑p

j=1Ajj . Hence,

E
[
‖X‖21{‖X‖ > ξn}

]
≥ c2

1p/2 (21)

for all n = nk. In addition, the assumption that nP (‖X‖ > ξn) = o(1) implies that

E
[
‖X‖21{ξn < ‖X‖ ≤

√
p}
]

= o(p/n)

as n→∞, and so it follows from (21) that

E
[
‖X‖21{‖X‖ > √p}

]
≥ c2

1p/4 (22)

for all n = nk with sufficiently large k.

Let us now use (22) to bound Γn = supδ∈Sp(E[|X ′δ|4])1/4 from below to obtain a contradiction

with the assumption that Γ4
n/n = o(1). Let N = (N1, . . . , Np)

′ be a standard Gaussian random

vector in Rp that is independent of X. Then U = N/‖N‖ is distributed uniformly on Sp and is

independent of ‖N‖. Further, let Z = X/‖X‖. Then for all δ ∈ Sp,

E[|X ′δ|4] ≥ E
[
|X ′δ|41{‖X‖ > √p}

]
= E

[
‖X‖4|Z ′δ|41{‖X‖ > √p}

]
,
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and so

sup
δ∈Sp

E[|X ′δ|4] ≥ E
[
‖X‖4|Z ′U |41{‖X‖ > √p}

]
= E

[
‖X‖41{‖X‖ > √p}E[|Z ′U |4 | X]

]
. (23)

On the other hand, for any non-stochastic z ∈ Sp,

3 = E[|z′N |4] = E[‖N‖4 · |z′U |4] = E[‖N‖4] · E[|z′U |4] ≤ 3p2E[|z′U |4],

so that E[|z′U |4] ≥ p−2. Hence, it follows from (23) that

sup
δ∈Sp

E[|X ′δ|4] ≥ p−2E
[
‖X‖41{‖X‖ > √p}

]
. (24)

However, (22) implies by Hölder’s inequality that

c2
1p/4 ≤ E

[
‖X‖21{‖X‖ > √p}

]
= E

[
‖X‖21{‖X‖ > √p} · 1{‖X‖ > √p}

]
≤
(

E
[
‖X‖41{‖X‖ > √p}

]
· P (‖X‖ > √p)

)1/2
,

so that

E
[
‖X‖41{‖X‖ > √p}

]
≥ c4

1p
2

16P (‖X‖ > √p)

for all n = nk with sufficiently large k. Therefore, it follows from (24) that

Γ4
n = sup

δ∈Sp
E[|X ′δ|4] ≥ c4

1

16P (‖X‖ > √p)

for all n = nk with sufficiently large k. This contradicts to the assumptions that nP (‖X‖ >
ξn) = o(1) and Γ4

n/n = o(1) since under our condition that c2
1/2 ≤ 1, we have ξ2

n ≤ c2
1p/2 ≤ p

and P (‖X‖ > ξn) ≥ P (‖X‖ > √p) for all n = nk. This completes the proof of the lemma. �
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Figure 5.1: DGP1, n = 100, and p = 40. The top-left, top-right, and bottom-left panels show the mean of

estimation error of Lasso estimators in the prediction, L2, and L1 norms. The dashed line represents the mean of

estimation error of the Lasso estimator as a function of λ (we perform the Lasso estimator for each value of λ in the

candidate set Λn; we sort the values in Λn from the smallest to the largest, and put the order of λ on the horizontal

axis; we only show the results for values of λ up to order 32 as these give the most meaningful comparisons). The

solid and dotted horizontal lines represent the mean of the estimation error of the cross-validated Lasso estimator

and the Lasso estimator with λ chosen according to the Bickel-Ritov-Tsybakov rule, respectively.
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Table 5.2: Probabilities for the number of non-zero coefficients of the cross-validated Lasso estimator hitting

different brackets

DGP1

[0, 5] [6, 10] [11, 15] [16, 20] [21, 25] [26, 30] [31, 35] [36, p]

(n, p)=(100, 40) 0.0004 0.0818 0.3660 0.3464 0.1538 0.0388 0.0118 0.0010

(n, p)=(100, 100) 0.0000 0.0102 0.0814 0.2164 0.2596 0.1968 0.1210 0.1146

(n, p)=(100, 400) 0.0018 0.0230 0.0552 0.0720 0.0896 0.1234 0.1312 0.5038

(n, p)=(400, 40) 0.0010 0.1028 0.3906 0.3392 0.1288 0.0312 0.0058 0.0006

(n, p)=(400, 100) 0.0002 0.0192 0.1304 0.2658 0.2636 0.1672 0.0952 0.0584

(n, p)=(400, 400) 0.0000 0.0028 0.0236 0.0680 0.1338 0.1680 0.1670 0.4368

DGP2

[0, 5] [6, 10] [11, 15] [16, 20] [21, 25] [26, p] [31, p] [36, p]

(n, p)=(100, 40) 0.0164 0.1394 0.3430 0.3134 0.1334 0.0426 0.0096 0.0022

(n, p)=(100, 100) 0.0142 0.1116 0.1952 0.2002 0.1818 0.1400 0.0774 0.0796

(n, p)=(100, 400) 0.0300 0.0934 0.1646 0.1728 0.1426 0.1160 0.0778 0.2028

(n, p)=(400, 40) 0.0012 0.0988 0.4022 0.3322 0.1304 0.0308 0.0044 0.0000

(n, p)=(400, 100) 0.0002 0.0210 0.1360 0.2620 0.2560 0.1802 0.0872 0.0574

(n, p)=(400, 400) 0.0000 0.0024 0.0238 0.0766 0.1348 0.1664 0.1592 0.4368

Table 5.3: Probabilities for max1≤j≤p n
−1|

∑n
i=1Xijεi|/λ̂ hitting different brackets

DGP1

[0, 0.5) [0.6, 1) [1, 1.5) [1.5, 2) [2, 2.5) [2.5, 3) [3, ∞)

(n, p)=(100, 40) 0.0000 0.0902 0.3478 0.2852 0.1404 0.0668 0.0696

(n, p)=(100, 100) 0.0000 0.1578 0.4446 0.2310 0.0976 0.0360 0.0330

(n, p)=(100, 400) 0.0124 0.3708 0.3426 0.1326 0.0570 0.0284 0.0562

(n, p)=(400, 40) 0.0002 0.1164 0.4352 0.2900 0.1072 0.0318 0.0192

(n, p)=(400, 100) 0.0000 0.2672 0.5664 0.1456 0.0186 0.0018 0.0004

(n, p)=(400, 400) 0.0000 0.5886 0.3956 0.0148 0.0008 0.0002 0.0000

DGP2

[0, 0.5) [0.6, 1) [1, 1.5) [1.5, 2) [2, 2.5) [2.5, 3) [3, ∞)

(n, p)=(100, 40) 0.0018 0.1522 0.3474 0.2402 0.1308 0.0600 0.0676

(n, p)=(100, 100) 0.0066 0.3444 0.3732 0.1542 0.0710 0.0260 0.0246

(n, p)=(100, 400) 0.0380 0.6188 0.2250 0.0610 0.0242 0.0122 0.0208

(n, p)=(400, 40) 0.0000 0.1188 0.4450 0.2880 0.0996 0.0306 0.0180

(n, p)=(400, 100) 0.0000 0.2698 0.5764 0.1320 0.0196 0.0018 0.0004

(n, p)=(400, 400) 0.0000 0.5792 0.4028 0.0174 0.0006 0.0000 0.0000
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