cemmap

centre for microdata methods and practice

Inference under covariate-
adaptive randomization

Federico Bugni
lvan Canay
Azeem Shaikh

The Institute for Fiscal Studies
Department of Economics, UCL

cemmap working paper CWP45/15

An ESRC Research Centre



Inference under Covariate-Adaptive Randomization*

Federico A. Bugni Ivan A. Canay
Department of Economics Department of Economics

Duke University Northwestern University
federico.bugni@duke.edu iacanay@northwestern.edu

Azeem M. Shaikh
Department of Economics
University of Chicago

amshaikh@uchicago.edu
August 6, 2015

Abstract

This paper studies inference for the average treatment effect in randomized controlled trials with
covariate-adaptive randomization. Here, by covariate-adaptive randomization, we mean randomization
schemes that first stratify according to baseline covariates and then assign treatment status so as to
achieve “balance” within each stratum. Such schemes include, for example, Efron’s biased-coin design
and stratified block randomization. When testing the null hypothesis that the average treatment effect
equals a pre-specified value in such settings, we first show that the usual two-sample t-test is conservative
in the sense that it has limiting rejection probability under the null hypothesis no greater than and
typically strictly less than the nominal level. In a simulation study, we find that the rejection probability
may in fact be dramatically less than the nominal level. We show further that these same conclusions
remain true for a naive permutation test, but that a modified version of the permutation test yields a
test that is non-conservative in the sense that its limiting rejection probability under the null hypothesis
equals the nominal level. The modified version of the permutation test has the additional advantage
that it has rejection probability exactly equal to the nominal level for some distributions satisfying the
null hypothesis. Finally, we show that the usual ¢-test (on the coefficient on treatment assignment) in a
linear regression of outcomes on treatment assignment and indicators for each of the strata yields a non-
conservative test as well. In a simulation study, we find that the non-conservative tests have substantially

greater power than the usual two-sample t-test.
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1 Introduction

This paper studies inference for the average treatment effect in randomized controlled trials with covariate-
adaptive randomization. Here, by covariate-adaptive randomization, we mean randomization schemes that
first stratify according to baseline covariates and then assign treatment status so as to achieve “balance”
within each stratum. Many such methods are used routinely in randomized controlled trials in economics
and the social sciences more generally. Duflo et al. (2007) and Bruhn and McKenzie (2008) provide a review
focused on methods used in randomized controlled trials in development economics. In this paper, we take
as given the use of such a treatment assignment mechanism satisfying weak assumptions and study its
consequences for testing the null hypothesis that the average treatment effect equals a pre-specified value in

such settings.

Our first result establishes that the usual two-sample t-test is conservative in the sense that it has limiting
rejection probability under the null hypothesis no greater than and typically strictly less than the nominal
level. We additionally provide a characterization of when the limiting rejection probability under the null
hypothesis is in fact strictly less than the nominal level. As explained further in Remark 4.4 below, our result
substantially generalizes a related result obtained by Shao et al. (2010), who established this phenomenon
under much stronger assumptions and for only one specific treatment assignment mechanism. We show
further that these conclusions remain true for a naive permutation test. In a simulation study, we find that
the rejection probability of these tests may in fact be dramatically less than the nominal level, and, as a
result, they may have very poor power when compared to other tests. Intuitively, the conservative feature
of these tests is a consequence of the dependence in treatment status across units and between treatment

status and baseline covariates resulting from covariate-adaptive randomization.

Motivated by these results, we go on to show that a modified version of the permutation test which only
permutes treatment status for units within the same stratum yields a test that is non-conservative in the
sense that its limiting rejection probability under the null hypothesis equals the nominal level. We refer to
this test as the covariate-adaptive permutation test. As explained further in Remark 4.10 below, this test or
closely related tests have been previously proposed and justified in finite samples for a much narrower version
of the null hypothesis when treatment status is determined using very specific randomization schemes. See,
for example, Rosenberger and Lachin (2004, Section 7.4), Rosenbaum (2007), and Heckman et al. (2011).
Exploiting recent results on the large-sample behavior of permutation tests by Chung and Romano (2013),
our results, in contrast, asymptotically justify the use of these tests for testing the null hypothesis that the
average treatment effect equals a pre-specified value for a much wider variety of randomization schemes,

while retaining the finite-sample validity for the narrower version of the null hypothesis.

We additionally consider the usual ¢-test (on the coefficient on treatment assignment) in a linear regression
of outcomes on treatment assignment and indicators for each of the strata. We refer to this test as the t-test
with strata fixed effects. Remarkably, this simple modification of the usual two-sample ¢-test yields a test
that is non-conservative as well. On the other hand, this test does not enjoy the finite-sample validity of the
covariate-adaptive permutation test for the narrower version of the null hypothesis, though it remains valid

asymptotically for an even wider variety of randomization schemes.



While all of our results apply much more generally, it is important to emphasize that they apply in
particular to stratified block randomization. In stratified block randomization, units are first stratified
according to baseline covariates and then a subset of the units within each strata are chosen at random
to be assigned to treatment. In a sense made more precise in Example 3.4 below, when approximately
one half of the units within each strata are chosen to be assigned to treatment, this treatment assignment
mechanism exhibits the best finite-sample “balancing” properties. It has therefore become increasingly
popular, especially in development economics. Indeed, many very recent papers in development economics
use this particular randomization scheme, including, for example, Dizon-Ross (2014, footnote 13), Duflo

et al. (2014, footnote 6), Callen et al. (2015, page 24), and Berry et al. (2015, page 6).

The remainder of the paper is organized as follows. In Section 2, we describe our setup and notation.
In particular, there we describe the weak assumptions we impose on the treatment assignment mechanism.
In Section 3, we discuss several examples of treatment assignment mechanisms satisfying these assumptions,
importantly including stratified block randomization. Our main results about the four tests mentioned above
are contained in Section 4. In Section 5, we examine the finite-sample behavior of these tests as well as some

other tests via a small simulation study. Proofs of all results are provided in the Appendix.

2 Setup and Notation

Let Y; denote the (observed) outcome of interest for the ith unit, A; denote an indicator for whether the
7th unit is treated or not, and Z; denote observed, baseline covariates for the ith unit. Further denote by
Yi(1) the potential outcome of the ith unit if treated and by Y;(0) the potential outcome of the ith unit if
not treated. As usual, the (observed) outcome and potential outcomes are related to treatment assignment
by the relationship

Vi =Yi(D)A; +Yi(0)(1 - 4;) . (1)

Denote by P, the distribution of the observed data
XMW = {(V;, A, Z):1<i<n}
and denote by @,, the distribution of
W ={(¥i(1),%i(0), Z)) s 1 <i < n} .

Note that P, is jointly determined by (1), @, and the mechanism for determining treatment assignment.
We therefore state our assumptions below in terms of assumptions on @),, and assumptions on the mechanism
for determining treatment status. Indeed, we will not make reference to P,, in the sequel and all operations

are understood to be under @,, and the mechanism for determining treatment status.

We begin by describing our assumptions on Q,,. We assume that W™ consists of n i.i.d. observations,
ie., Q, = Q", where @ is the marginal distribution of (Y;(1),Y;(0), Z;). We further restrict @ to satisfy the

following, mild requirement:



Assumption 2.1. For some § > 0, @) satisfies

E[[Y;()]**] < o0 and E[JY;(0)**%] < oo .

Next, we describe our assumptions on the mechanism determining treatment assignment. As mentioned
previously, in this paper we focus on covariate-adaptive randomization, i.e., randomization schemes that
first stratify according baseline covariates and then assign treatment status so as to achieve “balance” within
each stratum. In order to describe our assumptions on the treatment assignment mechanism more formally,
we require some further notation. To this end, let S : supp(Z;) — S, where S is a finite set, be the function
used to construct strata and, for 1 <4 < n, let S; = S(Z;). Denote by S the vector of strata (Si,...,S,)
and denote by A(™ the vector of treatment assignments (A;, ..., A,). For s € S, let p(s) = P{S; = s} and

Dn(s)= Y ArI{S;=s}, (2)

1<i<n

where

AP =24, 1.

Note that D, (s) as defined in (2) is simply a measure of the imbalance in stratum s. In order to rule out
trivial strata, we, of course, assume that p(s) > 0 for all s € S. Our other requirements on the treatment

assignment mechanism are summarized in the following assumption:

Assumption 2.2. The treatment assignment mechanism is such that

(a) W LA(")|S("),
(b) E[A;|SM™M] =14+ 0,4(%) forall 1 <i<mn,

(c) {{D\%S)}ses ‘S(")} < N(0,¥p) a.s., where Xp = diag{c%(s) : s € S} and

o%(s) = p(s)7(s) with 0 < 7(s) <1 foralls € S,

(d) Var[D,(s)] < np(s) for all s € S.

Assumption 2.2.(a) simply requires that the treatment assignment mechanism is a function only of the
vector of strata and an exogenous randomization device. Assumption 2.2.(b)—(d) are additional requirements
that are satisfied by a wide variety of randomization schemes. In the following section, we provide several
important examples of treatment assignment mechanisms satisfying this assumption, including many that

are used routinely in economics and other social sciences.

Our object of interest is the average effect of the treatment on the outcome of interest, defined to be

0(Q) = E[Yi(1) = Yi(0)] - 3)



For a pre-specified choice of 6y, the testing problem of interest is
Hy : 6(Q) = 09 versus Hy : 0(Q) # by (4)

at level a € (0,1).

3 Examples

In this section, we briefly describe several different randomization schemes that satisfy our Assumption 2.2.
A more detailed review of these methods and their properties can be found in Rosenberger and Lachin
(2004). In our descriptions, we make use of the notation A*~1) = (A;,... A1) and S® = (S;,...,S})

for 1 < k < n, where A is understood to be a constant.

Example 3.1. (Simple Random Sampling) Simple random sampling (SRS), also known as Bernoulli trials,

refers to the case where A consists of n i.i.d. random variables with

P{Ay=1S") = P{Ay =1} = | (5)

for 1 < k < n. In this case, Assumption 2.2.(a) follows immediately from (5), Assumption 2.2.(b) follows
from E[A;] = 5, Assumption 2.2.(c) follows from the central limit theorem with 7(s) =1 for all s € S, and
Assumption 2.2.(d) holds with equality for all s € S. Note that E[D,(s)] =0 for all s € S, so SRS ensures

“balance” on average, yet in finite samples D, (s) may be far from zero. ®

Example 3.2. (Biased-Coin Design) A biased-coin design is a generalization of simple random sampling
originally proposed by Efron (1971) with the aim of improving “balance” in finite samples. In this random-

ization scheme, treatment assignment is determined recursively for 1 < k < n as follows:

z if Dy_1(Sk) =0
P{A, = 18" A=V} = ¢ & if Dy_1(Sk) <0 (6)
1—7 if Dk_l(Sk) >0

where Dy_1(Sk) = Z1§i§k71 AFI{S; = Sk}, and % < m < 1. Here, Dg(S1) is understood to be zero. When
™= %, the scheme is just SRS; otherwise, it adjusts the probability with which the kth unit is assigned to
treatment in an effort to improve “balance” in the corresponding stratum in finite samples. In this case,
Assumption 2.2.(a) follows immediately from (6), Assumption 2.2.(b) follows from Rosenberger and Lachin
(2004, Section 3.6), and Assumption 2.2.(c)-(d) follow from Markaryan and Rosenberger (2010, Proposition
4.1), which implies in particular that D, (s) = Op(1) for all s € S, so that Assumption 2.2.(c) holds with
7(s) =0 for all s € S. In this sense, we see that biased-coin design provides improved “balance” relative to

simple random sampling. MW

Example 3.3. (Adaptive Biased-Coin Design) An adaptive biased-coin design, also known as Wei’s urn

design, is an alternative generalization of SRS originally proposed by Wei (1978). This randomization scheme



is similar to a biased-coin design, except that the probability 7 in (6) depends on Dj_1(S), the magnitude of
imbalance in the corresponding stratum. More precisely, in this randomization scheme, treatment assignment

is determined recursively for 1 < k < n as follows:

Dy_1(S
P{A;, =1|S®), Ak-D} = <kkl(1k)> 7 (7)
where ¢(z) : [-1,1] — [0,1] is a pre-specified non-increasing function satisfying o(—x) = 1 — ¢(x). Here,

% is understood to be zero. In this case, Assumption 2.2.(a) follows immediately from (7), Assumption
2.2.(b) follows from Rosenberger and Lachin (2004, Section 3.7), Assumption 2.2.(c) follows from Wei (1978,
Theorem 3), and Assumption 2.2.(d) follows from the proof of Theorem 4 in Baldi Antognini (2008). In
particular, Assumption 2.2.(c) holds with 7(s) = (1 — 4¢’(0))~! € (0,1). In this sense, adaptive biased-coin
designs provide improved “balance” relative to simple random sampling (i.e., 7(s) < 1), but to a lesser extent

than biased-coin designs (i.e., 7(s) > 0). W

Example 3.4. (Stratified Block Randomization) An early discussion of stratified block randomization is
provided by Zelen (1974). This randomization scheme is sometimes also referred to as block randomization
or permuted blocks within strata. In order to describe this treatment assignment mechanism, for s € S,
denote by n(s) the number of units in stratum s and let ni(s) < n(s) be given. In this randomization

scheme, n1(s) units in stratum s are assigned to treatment and the remainder are assigned to control, where

all
n1(s)
possible assignments are equally likely and treatment assignment across strata are independent. By setting

n(S)J 7

ms) = | ®

this scheme ensures | D,,(s)| < 1for all s € S and therefore exhibits the best “balance” in finite samples among
the methods discussed here. In this case, Assumption 2.2.(a) holds immediately and Assumption 2.2.(b)-(d)
follow from the analysis in Hallstrom and Davis (1988). In particular, as in Example 3.2, Assumption 2.2.(c)
holds with 7(s) =0 foralls € S. ®m

Example 3.5. (Minimization Methods) Minimization methods were originally proposed by Pocock and
Simon (1975) and more recently extended and further studied by Hu and Hu (2012). In Hu and Hu (2012),

treatment assignment is determined recursively for 1 < k& < n as follows:

if Imby, = 0
P{A, =1|S® A=y = o if Imby, <0 (9)

1—m ifImbg >0

N

where 1 < 7 < 1 and Imby, = Imby,(S®), A®~Y) is a weighted average of different measures of imbalance.
See Hu and Hu (2012) for expressions of these quantities. In this case, Assumption 2.2.(a) holds immediately

and Assumption 2.2.(b)—(d) can be established using arguments in Hu and Hu (2012). In particular, Hu and



Hu (2012, Theorem 3.2 and Remark 3.1) show that D,(s) = Op(1) for all s € S, so, as in as in Examples
3.2 and 3.3, Assumption 2.2.(c) holds with 7(s) =0 foralls € S. ®m

Remark 3.1. Another treatment assignment mechanism for randomized controlled trials that has received
considerable attention is re-randomization. See, for example, Bruhn and McKenzie (2008) and Lock Morgan
and Rubin (2012). In this case, as explained by Lock Morgan and Rubin (2012), the properties of D,,(s)
depend on the rule used to decide whether to re-randomize and how to re-randomize. As a result, the
analysis of such randomization schemes is necessarily case-by-case, and we do not consider them further in

this paper. ®

Remark 3.2. Our framework does not accommodate response-adaptive randomization schemes. In such
randomization schemes, units are assigned to treatment sequentially and treatment assignment for the ith
unit, A;, depends on Y7,...,Y;_;. This feature leads to a violation of part (a) of our Assumption 2.2. It is
worth emphasizing that response-adaptive randomization schemes are only feasible when at least some of the
outcomes are observed at some point of the treatment assignment process, which is unusual in experiments

in economics and other social sciences. W

4 Main Results

4.1 Two-Sample t-Test

In this section, we consider using the two-sample t-test to test (4) at level a € (0,1). In order to define this

test, for a € {0,1}, let

_ 1

Yoo = — Y Yil{Ai=d}
¢ 1<i<n
1 _

OA_’%,,Q = o Z (Y; *Yn,a)QI{Ai =a},
¢ 1<i<n

where n, = Z1§ign I{A; = a}. The two-sample t-test is given by
(bf;teSt(X(n)) — I{|T:L_teSt(X(n))| > 217%} , (10)

where _ _
Yni1—Yno0—6

=2
@+

ni no

Ti_tCSt(X(n)) _ — (11)
9n.0

and 21— ¢ is the 1 — 5 quantile of a standard normal random variable. This test may equivalently be described
as the usual ¢-test (on the coefficient on treatment assignment) in a linear regression of outcomes on treatment
assignment with heteroskedasticity-robust standard errors. It is used routinely throughout economics and
the social sciences, including settings with covariate-adaptive randomization. Note that further results on

linear regression are developed in Section 4.4 below.



The following theorem describes the asymptotic behavior of the two-sample t-statistic defined in (11)
and, as a consequence, the two-sample t-test defined in (10) under covariate-adaptive randomization. In
particular, the theorem shows that the limiting rejection probability of the two-sample ¢-test under the null

hypothesis is generally strictly less than the nominal level.

Theorem 4.1. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-

sumption 2.2. Then,

- N(O’ U?—test) )

where 02 .., < 1. Furthermore, 07 .., < 1 unless
(1= 7(s))(Elm1(Z:)|Si = s] + E[mo(Z:)|S; = s])* =0 for all s € S, (12)

where
ma(Z;) = E[Yi(a)|Zi] — E[Y;(a)] (13)

for a € {0,1}. Thus, for the problem of testing (4) at level o € (0,1), ¢tteH( X (M) defined in (10) satisfies

lim sup E[¢! (X (™)) < o (14)
n—oo
whenever @ additionally satisfies the null hypothesis, i.e., 6(Q) = 0. Furthermore, the inequality in (14) is
strict unless (12) holds.

Remark 4.1. Note that the two-sample ¢-test defined in (10) uses the 1 — § quantile of a standard normal
random variable instead of the corresponding quantile of a t¢-distribution. Theorem 4.1 remains true with
such a choice of critical value provided that the rule for choosing the degrees of freedom for the ¢-distribution
diverges (in probability) with the sample size. See Imbens and Kolesar (2012) for a recent review of some

such degrees of freedom adjustments. W

Remark 4.2. While we generally expect that (12) will fail to hold, there are some important cases in
which it does hold. First, as explained in Example 3.1, for simple random sampling Assumption 2.2 holds
with 7(s) = 1 for all s € S. Hence, (12) holds, and Theorem 4.1 implies, as one would expect, that the
two-sample t-test is not conservative under simple random sampling. Second, if stratification is irrelevant
for potential outcomes in the sense that E[Y;(a)|S;] = E[Y;(a)] for all a € {0, 1}, then E[my(Z;)|S;] = 0 for
a € {0,1}. Hence, (12) again holds, and Theorem 4.1 implies that the two-sample ¢-test is not conservative
when stratification is irrelevant for potential outcomes. Note that a special case of irrelevant stratification

is simply no stratification, i.e., S; is constant. W

Remark 4.3. In the proof of Theorem 4.1 in the Appendix, it is shown that

2

2 2 2
B o3 ‘o +oa
Ot-test —

15
e (15)



where

o7 = 2(Var[Y;(1)] + Var[Y;(0)]) (16)
o2 = 2(Var[Y;(1)] + Var[¥;(0)]) (a7)
0% = EB[(Elmi(2)|8)] - Elmo(Z:)|S:))?) (18)
A = Elr(S)(Elm(Z)|S)] + Elmo(Z:)[S)?) (19)

with Y;(a) = Yi(a) — E[Y;(a)|S;]. From (15), we see that three different sources of variation contribute to

the variance. The first quantity, o2, reflects variation in the potential outcomes; the second quantity, 0%,

2
)77
reflects variation due to heterogeneity in the responses to treatment, i.e., m; # mg; and the third quantity,
0%, reflects variation due to “imperfectly balanced” treatment assignment, i.e., o%(s) > 0 in Assumption

22. n

Remark 4.4. Under substantially stronger assumptions than those in Theorem 4.1, Shao et al. (2010) also
establish conservativeness of the two-sample t-test for a specific covariate-adaptive randomization scheme.
Shao et al. (2010) require, in particular, that m,(Z;) = v'Z;, that Var[Y;(a)|Z;] does not depend on Z;, and
that the treatment assignment rule is a biased-coin design, as described in Example 3.2. Theorem 4.1 relaxes

all of these requirements. W

Remark 4.5. While Theorem 4.1 characterizes when the limiting rejection probability of the two-sample
t-test under the null hypothesis is strictly less than the nominal level, it does not reveal how significant this
difference might be. In our simulation study in Section 5, we find that the rejection probability may in fact
be dramatically less than the nominal level and that this difference translates into substantial power losses

when compared with non-conservative tests studied in Sections 4.3 and 4.4. ®

4.2 Naive Permutation Test

In this section, we consider using a naive permutation test to test (4) at level a € (0,1). In order to define
this test, let G,, to be the group of permutations of n elements. Define the action of g € G, on X as
follows:

9X™ = {(Yi, Ay, Zi) : 1 < i <},

ie., g € G, acts on X by permuting treatment assignment. For a given choice of test statistic T}, (X (”)),

the naive permutation test is given by
G(X ) = {TL(X™) > 621 — )}, (20)
where

1
|G

énaive(l —a)=inf¢zeR:

n

S HT(gXxM)<a}>1-ay . (21)
9€Gp

The following theorem describes the asymptotic behavior of naive permutation test defined in (20) with



T,(X™) given by (11) under covariate-adaptive randomization. In particular, it shows that the naive
permutation test, like the two-sample t-test, also has limiting rejection probability under the null hypothesis

generally strictly less than the nominal level.

Theorem 4.2. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumption 2.2. For the problem of testing (4) at level o € (0,1), ¢r@ve(X ™) defined in (20) with T, (X ™)
given by (11) satisfies

lim sup E[¢7¢(X (™)) < o (22)

n—oo

whenever Q additionally satisfies the null hypothesis, i.e., 0(Q) = 0y. Furthermore, the inequality in (22) is
strict unless (12) holds.

Remark 4.6. This result essentially follows from Theorem 4.1, which establishes the asymptotic behavior
of the two-sample t-statistic, and results in Janssen (1997) and Chung and Romano (2013), which establish
the asymptotic behavior of é1%ive(1 — o) defined in (21). =

Remark 4.7. It may often be the case that G,, is too large to permit computation of é#Ve(1 — o) defined
in (21). In such situations, a stochastic approximation to the test may be used by replacing G, with
G, ={g1,...,9B}, where g1 equals the identity permutation and gs, . . ., gg are i.i.d. Uniform(G,,). Theorem

4.2 remains true with such an approximation provided that B — oo asn — co. R

Remark 4.8. While Theorem 4.2 characterizes when the limiting rejection probability of the naive permu-
tation test under the null hypothesis is strictly less than the nominal level, it does not reveal how significant
this difference might be. In our simulation study in Section 5, we find that, like the two-sample t-test stud-
ied in the previous section, the rejection probability may in fact be dramatically less than the nominal level
and that this difference translates into substantial power losses when compared with non-conservative tests
studied in Sections 4.3 and 4.4. H

4.3 Covariate-Adaptive Permutation Test

It follows from Theorems 4.1-4.2 and Remark 4.2 that the two-sample t-test and naive permutation test are
conservative in the sense that their limiting rejection probability under the null hypothesis is generally strictly
less than the nominal level. As explained in Remarks 4.5 and 4.8, the finite-sample rejection probability
may in fact be dramatically less than the nominal level. In this section, we propose a modified version of the
permutation test, which we term the covariate-adaptive permutation test, that is not conservative in this

way.

In order to define the test, we require some further notation. Define
G, (S™)={g€ Gy : Sy =S forall 1 <i<n}, (23)

i.e., G,(S™) is the subgroup of permutations of n elements that only permutes indices within strata.

Define the action of g € G,(S™) on X(™ as before. For a given choice of test statistic T,,(X (™), the



covariate-adaptive permutation test is given by

S (X ™) = HT,(X™) > & (1~ a)} (24)
where
1
A o) =i R (n) —
EP(1l—a)=inf¢zeR: G (S, Z HT,(gX™) <z} >1-a, . (25)
QGGn(S(n))

The following theorem describes the asymptotic behavior of the covariate-adaptive permutation test
defined in (24) with T,,(X (™)) given by (11) under covariate-adaptive randomization. In particular, it shows
that the limiting rejection probability of the proposed test under the null hypothesis equals the nominal
level. As a result of this, we show in our simulations that the test has dramatically greater power than either
the two-sample t-test or the naive permutation test. In comparison with our preceding results, the theorem
further requires that 7(s) = 0 for all s € S, but, as explained in Section 3, this property holds for a wide
variety of treatment assignment mechanisms, including biased-coin designs, stratified block randomization,

and the minimization method proposed by Hu and Hu (2012).

Theorem 4.3. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumption 2.2 with 7(s) = 0 for all s € S. For the problem of testing (4) at level o € (0,1), ¢p<P(X (™)
defined in (24) with T,,(X™) given by (11) satisfies

lim E[6e?(X™)] = a

n—oo
whenever @ additionally satisfies the null hypothesis, i.e., 0(Q) = 6.

Remark 4.9. An additional advantage of the covariate-adaptive permutation test is that it satisfies

E[py*(X"M)] < o (26)

for any @ such that

K3

Yi(0)[S; = Yi(1)[S; (27)

and treatment assignment mechanism such that
gAM |8 L 45 for all g € G, (S™) . (28)

This property clearly holds, for example, for simple random sampling and stratified block randomization.
Moreover, if one uses a randomized version of the test, as described in Chapter 15 of Lehmann and Romano
(2005), then the inequality in (26) holds with equality. W

Remark 4.10. For testing the much narrower null hypothesis that (27) holds and for very specific random-
ization schemes, the use of the test in (24) has been proposed previously. See, for example, Rosenberger
and Lachin (2004, Section 7.4), Rosenbaum (2007), and Heckman et al. (2011). Theorem 4.3 asymptotically

justifies the use of (24) for testing (4) for a wide variety of treatment assignment mechanisms while retaining

10



this finite-sample validity. The proof of Theorem 4.3 exploits recent developments in the literature on the
asymptotic behavior of permutation tests. In particular, we employ a novel coupling construction following
the approach put forward by Chung and Romano (2013) in order to show that the test statistic 7,,(X ) in
(11) and the group of permutations G,,(S(™)) in (23) satisfy the conditions in Hoeffding (1952). m

Remark 4.11. As with the naive permutation test, it may often be the case that Gn(S(")) is too large to
permit computation of ¢2P(1 — «) defined in (25). In such situations, a stochastic approximation to the test
may be used by replacing G, (S™) with G,, = {g1,...,gp}, where g, equals the identity permutation and
g2, ..,gp are iid. Uniform(G,(S™)). Theorem 4.3 remains true with such an approximation provided

that B—+>oc0asn —oco. R

4.4 Linear Regression with Strata Indicators

In this section, we consider using the usual ¢-test (on the coefficient on treatment assignment) in a linear re-
gression of outcomes on treatment assignment and indicators for each of the strata. As mentioned previously,
we refer to this test as the t-test with strata fixed effects. We consider tests with both homoskedasticity-only
and heteroskedasticity-robust standard errors. Note that the two-sample t-test studied in Section 4.1 can
be viewed as the usual ¢-test (on the coefficient on treatment assignment) in a linear regression of outcomes
on treatment assignment only with heteroksedasticity-robust standard errors. It follows from Theorem 4.1
and Remark 4.2 that such a test is conservative in the sense that the limiting rejection probability under
the null hypothesis is generally strictly less than the nominal level. Remarkably, in this section, we show
that the addition of strata fixed effects results in a test is not conservative in this way, regardless of whether

homoskedasticity-only or heteroskedasticity-robust standard errors are used.

In order to define the test, consider estimation of the equation

Y =BA;i+ Y 6. I{Si=s}+e (29)

seS
by ordinary least squares. Denote by Bn the resulting estimator of 8 in (29). Let

n n_00

T (x) = Y to)
ALY
where Vn g equals either the usual homoskedasticity-only or heteroskedasticity-robust standard error for Bn
See (A-59) and (A-61) in the Appendix for exact expressions. Using this notation, the test of interest is

given by
st n)\ __ st n
gre (X)) = H{ITF (X M) > 215} (30)

The following theorem describes the asymptotic behavior of the proposed test. In particular, it shows
that its limiting rejection probability under the null hypothesis equals the nominal level. In the simulation
results below, we show that, like the covariate-adaptive permutation test, the test has dramatically greater

power than either the two-sample ¢-test or the naive permutation test. Note that, in contrast to our preceding
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result on the covariate-adaptive permutation test, the theorem does not require 7(s) = 0 for all s € S. On
the other hand, the ¢-test with strata fixed effects studied here does not share with the covariate-adaptive

permutation test the finite-sample validity explained in Remark 4.9.

Theorem 4.4. Suppose Q satisfies Assumption 2.1 and the treatment assignment mechanism satisfies As-
sumption 2.2. Then,
d
Vi(Bn —0(Q)) = N(0,0%,) -
Furthermore,
Vn,ﬁ E) O’ffe 5
where Vnwg equals either the usual homoskedasticity-only or heteroskedasticity-robust standard error for By
Thus, for the problem of testing (4) at level o € (0,1), ¢/¢(X (™) defined in (30) with either choice of Vi s
satisfies
lim EpY4(X™)] = a

n—oo
for Q additionally satisfying the null hypothesis, i.e., 0(Q) = 6p.

Remark 4.12. In the proof of Theorem 4.4 in the Appendix, it is shown that

2

Ogfe — 0)27 + O—%{ ) (31)

where af; and 0% are defined as in (17) and (18), respectively. Remarkably, from (31), we see that variation
due to “imperfectly balanced” treatment assignment, i.e., 0% (s) > 0 in Assumption 2.2, does not contribute
to the variance 0Z,. It is for this reason that Theorem 4.4, as opposed to Theorem 4.3, does not require
7(s) = 0 for all s € S and so ¢5¢(X (™) remains valid for randomization schemes like adaptive biased-coin

designs; see Example 3.3. ®H

Remark 4.13. Imbens and Rubin (2015, Ch. 9.6) examine the limit in probability of ,, under a specific
randomization assignment, namely, stratified block randomization; see Example 3.4. In contrast to our
results, they do not impose the requirement that nq(s) is chosen to achieve “balance” as, for example, in
(8). As a result, Assumption 2.2.(b)-(c) do not necessarily hold, and they conclude that 3, is generally
not consistent for the average treatment effect, 6(Q). By exploiting Assumption 2.2.(b)-(c), we not only
conclude that 3, is consistent for 6(Q), but the test ¢*f(X (™) has limiting rejection probability under the
null hypothesis equal to the nominal level. Importantly, Imbens and Rubin (2015) do not include results on
#5fe (X (™). Note that the required arguments are involved due to A not being i.i.d., relying in particular

on non-standard convergence results, such as Lemma B.2 in the Appendix. ®H

Remark 4.14. As in the literature on linear panel data models with fixed effects, 3, may be equivalently
computed using ordinary least squares and the deviations of Y; and A; from their respective means within
strata. However, it is important to note that the resulting standard errors are not equivalent to the standard
errors associated with ordinary least squares estimation of (29). We therefore do not recommend computing

Bn using the deviations of Y; and A; from their respective means within strata. W

Remark 4.15. It is important to point out that the asymptotic validity of neither the covariate-adaptive

permutation test nor the ¢-test with strata fixed effects discussed in this section rely on a particular model
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of (potential) outcomes. In the simulations below, we see that when such additional information is available,
it may be possible to exploit it to devise even more powerful methods (e.g., linear regression of outcomes
on treatment assignment and covariates). However, these methods may perform quite poorly when this

information is incorrect. M

5 Simulation Study

In this section, we examine the finite-sample performance of several different tests of (4), including those
introduced in Section 4, with a simulation study. For a € {0,1} and 1 < i < n, potential outcomes are

generated in the simulation study according to the equation:
Yi(a) = pa + ma(Z;) + 04(Zi)ea,i - (32)

where g, mo(Z;), 04(Z;), and €,,; are specified as follows. In each of the following specifications, n = 100

and {(Z;,€04,€1,) : 1 <i<n} areiid. and (Z;,€0,,€1,;) are mutually independent.

Model 1: Z; ~ Beta(2,2) (re-centered and re-scaled to have mean zero and variance one); o¢(Z;) =
gp = 1 and O'l(Zi) = 01; €0,5 ™~ N(O, 1) and €1,5 ™~ N(O, 1), mo(Zl) = ml(Zz) = ")/Z, Note that in this
case

Yi = po + (i1 — po)Ai +vZi + i

where

n; = o14i€1; +0o(l — A;)eo
and E[n;|A;, Z;] = 0.
Model 2: As in Model 1, but mg(Z;) = m1(Z;) = sin(vZ;).
Model 3: As in Model 2, but m1(Z;) = sin(vZ;) + VZ; + 2.25.
Model 4: As in Model 3, but 0¢(Z;) = Z? and 01(Z;) = Z?04.
Model 5: As in Model 4, but ¢; ~ Pareto(1,2) and €;,; ~ Pareto(1,2) (both re-centered to have

mean zero); Z; ~ Uniform(—2,2); and

mo(Zz) = m1(Zz) = .
v(2 - Z;)?  otherwise

For each of the above specifications of m.(Z;), 04(Z;), and ¢€;,, we consider both (v,01) = (2,1) and
(v,01) = (4,4/2). For each resulting specifications, we additionally consider both (ug, 1) = (0,0) (i.e.,

under the null hypothesis) and (p, 1) = (0, 3) (i.e., under the alternative hypothesis).

Treatment assignment is generated according to one of the four different covariate-adaptive randomization

schemes. In each of the schemes, strata are determined by dividing the support of Z; (which is a closed
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interval in all specifications) into ten intervals of equal length and having S(Z;) be the function that returns

the interval in which Z; lies. In particular, |S| = 10 in all specifications.

SRS: Treatment assignment is generated as in Example 3.1.

BCD: Treatment assignment is generated as in Example 3.2 with m = %

WEL Treatment assignment is generated as in Example 3.3 with ¢(z) = 1 — 22

SBR.: Treatment assignment is generated as in Example 3.4 with blocks of size L@J

In all cases, observed outcomes Y; are generated according to (1).

In the simulation results below, we consider the following five different tests:

t-test: The usual two-sample t-test studied in Section 4.1.
Naive: The naive permutation test studied in Section 4.2.

Reg: The usual t-test (on the coefficient on treatment assignment) in a linear regression of outcomes

Y; on treatment assignment A; and covariates Z; using heteroskedasticity-robust standard errors.
SYZ: The bootstrap-based test proposed by Shao et al. (2010).
CAP: The covariate-adaptive permutation test studied in Section 4.3.

SFE: The t-test with strata fixed effects studied in Section 4.4. In this case, we consider both

homoskedasticity-only and heteroskedasticity-robust standard errors.

In all cases, rejection probabilities are computed using 10* replications.

Table 1 displays the results of the simulation study for (v,01) = (2,1) and Table 2 displays the results of
the simulation study for (y,01) = (4,v/2). In the ‘SFE’ column in both tables, the first number corresponds
to homoskedasticity-only standard errors and the second number corresponds to the heteroskedasticity-robust

standard errors. We organize our discussion of the results by test:

t-test: As expected in light of Theorem 4.1 and Remark 4.2, we see the two-sample t-test has rejection
probability under the null hypothesis very close to the nominal level under simple random sampling,
but has rejection probability under the null hypothesis strictly less than the nominal level under the
more complicated randomization schemes. Indeed, in some instances, the rejection probability under
the null hypothesis is close to zero. Moreover, for all specifications, the two-sample ¢-test has nearly
the lowest rejection probability under the alternative hypothesis. Remarkably, this difference in power

is pronounced even under simple random sampling.

Naive: The results for the nalve permutation test are very similar to those for the two-sample t-test.
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Rejection rate under null - § =0

Rejection rate under alternative - = 1/2

Model CAR | t-test Naive Reg SYZ CAP SFE t-test Naive Reg SYZ CAP SFE
1 SRS 5.39 481 545 492 504 5.26/5.07 | 20.03 18.86 68.18 19.08 44.94 61.73/61.38
WEI | 0.69 0.57 501 539 498 513/5.32 | 13.25 11.94 69.71 35.7 50.61 65.46/64.02
BCD | 090 0.68 494 6.05 5.00 4.99/4.90 | 13.08 11.63 69.50 35.87 50.02 65.26/64.96
PB 0.01  0.01 520 493 5.05 5.04/5.13 | 530 442 70.10 59.49 61.45 66.47/66.14
2 SRS 5.69 503 520 5.11 5.01 5.29/5.49 | 53.80 51.97 55.13 52.36 57.71 62.65/63.85
WEI | 3.05 265 3.23 591 451 4.88/5.15| 55.12 53.00 56.64 65.17 63.32 66.63/66.12
BCD | 3.08 2.65 3.28 589 500 4.96/4.90 | 54.99 52.84 56.16 65.19 63.59 65.94/67.13
PB 219 195 237 563 4.75 4.57/5.22 | 55.95 53.58 57.12 70.71 67.73 67.81/68.09
3 SRS | 543 480 5.05 498 5.03 4.98/542 | 49.32 47.20 54.15 47.89 55.05 62.15/63.43
WEI | 2.74 241 3.51 6.10 4.85 5.02/4.69 | 49.92 47.70 55.06 61.72 59.93 64.22/65.79
BCD | 256 222 3.39 569 4.81 4.90/5.16 | 48.80 46.47 54.43 61.33 60.76 64.70/65.65
PB 1.66 145 240 6.24 498 4.85/4.83 | 50.08 47.95 55.85 68.92 65.39 66.44/66.01
4 SRS | 5.18 451 5.09 496 4.77 5.80/5.03 | 34.47 32.59 37.80 32.89 39.11 46.90/41.97
WEI | 3.54 3.03 4.08 6.67 5.18 5.83/5.25 | 33.92 3221 36.93 42.79 40.99 46.43/44.45
BCD | 3.17 280 391 578 4.73 5.84/5.07 | 33.74 3191 37.31 42.09 40.68 46.80/44.69
PB 2.91 252 375 7.29 5.06 6.06/5.88 | 33.66 31.69 36.99 47.52 42.20 46.26/45.20
5 SRS | 436 396 3.93 394 490 3.13/3.62 | 1450 13.54 13.93 13.78 19.55 19.02/18.63
WEI | 2.41 220 211 4.65 4.87 3.51/3.04 | 11.54 10.86 10.88 18.51 21.09 20.12/18.48
BCD | 2.17 1.91 1.85 442 495 3.37/3.39 | 12.23 11.22 11.20 18.26 20.96 20.13/19.27
PB 1.27 1.00 1.05 4.20 4.85 3.29/3.22 | 9.52 8.98 8.88 2191 2290 19.36/19.51
Table 1: Parameter values: v =2, o1 = 1.
Rejection rate under null - § = 0 Rejection rate under alternative - 6 = 1/2
Model CAR | t-test Naive Reg SYZ CAP SFE t-test Nalve Reg SYZ CAP SFE
1 SRS 5.89 527 513 537 530 5.26/4.86 | 9.73 8.81 52.02 9.11 31.81 42.70/41.80
WEI | 037 031 5.15 546 4.93 5.04/5.20 | 2.20 1.80 51.55 15.03 32.97 43.78/44.08
BCD | 0.56 0.50 4.69 5.22 4.61 4.63/4.99 | 2.32 1.98  52.57 1520 33.54 44.43/43.99
PB 0.00 0.00 5.21 362 5.09 4.98/527 | 001 0.01 51.95 30.43 39.08 45.56/46.90
2 SRS 5.65 514 504 5.24 496 4.96/4.73 | 43.22 41.42 41.47 41.97 43.99 46.52/45.18
WEI | 4.24 3.78 383 6.43 5.26 5.22/4.43 | 42.83 40.78 40.74 48.89 46.38 47.76/47.32
BCD | 4.16 3.63 3.65 6.08 5.20 5.04/4.88 | 42.84 40.57 40.63 49.16 47.04 47.14/48.42
PB 3.42 322 310 6.57 5.01 5.26/5.35 | 42.82 41.82 40.81 53.62 49.16 49.27/49.96
3 SRS | 551 485 4.89 5.04 5.03 5.06/5.36 | 42.17 40.45 40.78 40.81 42.93 45.06/46.27
WEI | 4.23 3.73 386 6.20 5.20 5.02/5.13 | 42.26 40.21 40.86 48.50 46.02 47.78/48.51
BCD | 3.73 333 339 567 485 4.77/5.14 | 41.63 39.78 40.44 47.85 45.86 47.37/48.10
PB 3.21 296 283 6.31 4.81 4.93/5.31 | 42.12 41.14 40.58 53.48 48.86 48.98/49.10
4 SRS | 544 466 498 479 527 5.95/5.00 | 28.54 26.91 28.06 27.48 29.92 34.38/31.53
WEI | 4.07 3.51 3.77 574 474 5.36/543 | 27.68 26.02 27.27 31.76 30.26 34.50/33.57
BCD | 4.19 3.65 395 6.01 4.86 5.70/4.96 | 27.97 26.49 2744 3225 30.86 34.52/33.30
PB 3.80 3.58 358 7.53 5.00 6.23/6.77 | 27.53 26.51 26.68 36.58 31.13 33.65/34.91
5 SRS | 5.04 462 469 4.67 574 4.93/492| 731 658 6.75 6.79 8.94 7.24/7.85
WEI 1.93 1.72 181 5.72 6.05 5.02/5.21 | 3.34 2.93 3.04 8.13 9.20 7.62/8.01
BCD | 1.61 1.40 1.47 536 6.12 4.72/4.82 | 3.36 2.89 2.96 8.08 9.80 7.71/7.54
PB 0.70  0.58 0.55 5.71 6.37 5.03/5.10 | 1.59 1.53 141 9.39 9.84 7.00/8.12

Table 2: Parameter values: v =4, 0y = v/2

Reg: The usual t-test (on the coefficient on treatment assignment) in a linear regression of outcomes

Y, on treatment assignment A; and covariates Z; using heteroskedasticity-robust standard errors has

rejection probability under the null hypothesis very close to the nominal level for Model 1, i.e., when the

linear regression is correctly specified. Interestingly, even though the linear regression is incorrectly
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specified for all other models, the rejection probability of the test under the null hypothesis never
exceeds the nominal level, though it is frequently much less than the nominal level. Not surprisingly,
for Model 1, the test also has the highest rejection probability under the alternative hypothesis. For
all other models, the rejection probability of the test under the alternative hypothesis is lower than

that of some of the other tests considered below.

SYZ: For most specifications, the bootstrap-based test proposed by Shao et al. (2010) has rejection
probability under the null hypothesis very close to the nominal level, though in some instances the
rejection probability under the null hypothesis mildly exceeds the nominal level (e.g., 7.53% under
Model 4 and stratified block randomization with v = 4 and oy = /2). Its rejection probability under
the alternative hypothesis is often considerably lower than that of the other tests considered below.

Recall, however, that Shao et al. (2010) only justify the use of this test for biased-coin designs.

CAP: As expected in light of Theorem 4.3, the covariate-adaptive permutation test has rejection
probability under the null hypothesis very close to the nominal level in all specifications. Indeed, among
all the tests considered here, it arguably has rejection probability under the null hypothesis closest to the
nominal level across all specifications. As explained in Remark 4.9, its rejection probability under the
null hypothesis even equals the nominal level in finite-samples for some specifications. Furthermore, its
rejection probability under the alternative hypothesis typically exceeds that of all the tests considered
previously and often by a considerably margin. On the other hand, its rejection probability under the

alternative hypothesis is typically less than that of the following test.

SFE: As expected in light of Theorem 4.4, the t-test with strata fixed effects has rejection probability
under the null hypothesis very close to the nominal level in nearly all specifications. The only specifi-
cation for which this is not true is Model 5 with v = 2 and o1 = 1, in which case the test has rejection
probability under the null hypothesis mildly less than the nominal level. Its rejection probability under
the alternative hypothesis typically exceeds that of all the tests considered previously and often by a
considerable margin. Note that the results using homoskedasticity-only and heteroskedasticity-robust

standard errors are nearly identical.
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Appendix A Proof of the main results

Throughout the Appendix we employ the following notation, not necessarily introduced in the text.

0%(s) For a random variable X, 0% (s) = Var[X|S = s]
0%  For a random variable X, 0% = Var[X]
pe For a € {0,1}, EY;(a)]

¥i() Forae {01}, Yi(a) — B¥i(a)s)

ma(Z;) For a € {0,1}, E[Y;(a)|Zi] — 1ta

Ulz/ 2(012/(1) + 032/(0))
oS 2(0?(1) + 0?(0))
o YsesP(8)(E[mi(Z2)|S = 5] — E[mo(2)|S = s])?
0% Yes b (8)(Elmi(Z)|S = 5] + E[mo(2)|S = s])*

S
)

—~
V)
~—

3
=

Number of individuals in strata s € S
Number of individuals in the treatment group in strata s € S

Table 3: Useful notation

A.1 Proof of Theorem 4.1
We start the proof by showing that the numerator of the root in the statement of the theorem satisfies

Vi (Yo = Yoo = 0(Q)) 5 N (0,02 + 0% +0%) . (A-33)

Consider the following algebraic derivation,

Vit(Tas = Yoo = 6(Q) = Vil S (Yi(1) = p)As = - S (¥i(0) — po)(1 — Aq))

n
1 =1 =1

— R D [0 20 - s - (14 220 - 49
=Ry1(Rn2+ Rys),

where we used po = E[Yi(a)], n = no +n1, n/ny = 2(Dn/n+1)"", D, = Y scs Dn(s), and the following definitions,

. 2
= T D
R, = % D 0(1) = )i = (¥i(0) = po) (1 = 49)]

Ris = = S0 = m) Aok (05(0) = o)1 = 4]

By Assumption 2.2.(c), D, /n 2 0 and this implies R4 % 2. Lemma B.1 implies Ry 4 N(0, (a% + ok +03)/4).

Lemma B.3 implies R}, 5 5 0. Elementary properties of stochastic convergence complete the proof of this first step.

We next prove that

~2
1, %0 p 2 2
= ./2 .
i V2003 ) + 0% 0)

This follows from showing that n&2 ,/n. - 2‘7?’(@ for a € {0,1}. We only show a = 1, as the result for a = 0 is

(A-34)
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analogous. Start by writing Y, 1 as follows,
Vor=—S jAmzuwﬁl}n:Ai(muym). (A-35)
’ ; nin“

Then consider the following derivation,

~2 n n

né, 1 n 1 — .2 n 1 5 2
e N e ) o P — Vo + Yi(1) — i) A,
o i 2‘:1( 1) g i:l(lul 1+ Yi(l) — )

n 2 3
-2 {”1 S O(1) — il Ac — —?mf} (&) B () i
ni nyn ni ni

=1

where we used (A-35) and the following definitions,
R = — > [Yi(l) — m]*A:
R,s =

Since n/n1 = 2(Dn/n+ 1)~ and D,,/n & 0 by Assumption 2.2.(c), it follows that n/n; 2 2. The result follows

from showing that R}, 4 N %03/(1) and Ry, 5 0.

Start with R}, ,. By Assumption 2.2.(a) and W consisting of n i.i.d. observations we have that, conditionally

on {8, AMY LA,(Vi(1) — p1)?: 1 < i < n} is an independent sequence. It follows that

‘ lan) An Iy
B[R} 4|S™, A™] = %Z(Ai + DE[(Yi(1) — p1)?Si]
=1

= S B0 — s = o] (22 70

n n
seS

1
% LS E(Y() — m)IS = slo(s)
seS
1,
=30v@) (A-36)
where we used Assumption 2.2.(a), A; = (1 + A*)/2, Dp(s)/n 2 0 and n(s)/n 2 p(s) for all s € S. Then, for any

>0,

P{IR: 4 — B[R 4|, AT)| > ¢80, A | 4072

1468/2

L s A | Lo (A-37)

— D Ai(Yi(1) =)’

i=1

<E S 4

YA ) - B

where the convergence is the result of E[|A;(Y;(1) —u1)]?+°|S™, A™)] < oo, which follows from Assumption 2.1, and
Lemma B.5. By definition, (A-37) implies that,

Ry4—E[Ry.]S™,A™ B 0. (A-38)

By combining (A-36) and (A-38) we can conclude that R}, 4 2 %af,(l).

The arguments for R}, 5 are analogous. In fact, replacing A;(Y;(1) — p1)? with A;(Yi(1) — p1) in the derivations
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leading to (A-36), (A-37) and (A-38), results in R} 5 = E[(Yi(1) — p1)]/2 = 0.

To prove that cr%, + 0% + 0% < 0% holds with strict inequality unless (12) holds, notice that for a € {0,1},

0% () = @) — Y BI(Y (1) = p1)|S = 8’p(s) = 0% (a) — >, Elma(Z:)|S = s°p(s) - (A-39)
seS seS

Using (A-39) and some algebra shows that,

oy — a%, —oh—oh = 2(0?/ a + Uff«)) — 037(1) — U?}(()))

= > p(s)[Elmi(2)|S = s] = Elmo(Z)|S = s])*

- S b @B (2)S = 5] + Elma(2)[$ = o]
=S p() (1~ 7 [Elmi (2)|S = s] + Elmo(2)[S = s,

where, by Assumption 2.2.(c), 05 (s) = p(s)7(s) with 7(s) € [0,1]. The RHS is non-negative and it is zero if and only
if (12) holds, as required.

A.2 Proof of Theorem 4.3

We divide the proof in two parts. The first part shows that our test statistic and group of permutations satisfies the
so-called Hoeffding’s condition, cf. Lehmann and Romano (2005, Eq. (15.10)). The second part uses the first one to

prove the convergence of the critical value and the conclusion of the theorem.

Part I. Let G™ and G be two independent random variables that are uniform on G, (S™) and independent
of X™  and let

2 2
oo +o
R (A-40)
oy

We will show that, for @ such that 0(Q) = 6o,
(Tn(G(n)X(n)) (G<”)'X<”))) (T, T ),

where T and T” are independent with common c.d.f. ®(t/ccap).

Step 1: We start the proof of part I by using a coupling construction, following Chung and Romano (2013), that
links the random variables in Lemma B.6 with those in X in a way that, except for ordering, most observations in
{V;:1<j<n}and {Vi:1<i<n} are identically the same, conditional on S™. We do this using the following
three-step algorithm, where we initiate YV, = {Y; : 1 <@ < n}:

1. Given s € S, draw an index C; € {0,1} such that P{C; =1} =1/2.

2. Conditional on C; = a, set V; = Y; — 0pA; for YV; € YV, such that A; = a and S; = s, if one such observation
is available, and remove Y; from )),. If there is no such Y; in ),, draw a new independent observation from

Qa(s) and set it equal to V;.

3. Repeat steps 1-2 n(s) times for each s € S.

The algorithm above generates random variables V(™ = {V; : 1 < j < n} using observation from Y™ = {¥; : 1 <

¢ < n}, when possible, while making sure that the random variables generated in this way have the properties in
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Lemma B.6. In addition, by construction there exists go € Gn(S<")) such that goV " has the elements in common
with Y™ in exactly the same position. In fact, if we denote by K, the number of observations in goV(™® and Y
that differ (which equals the random number of independently generated variables from Q. (s), a € {0, 1}, in step 2),
it follows that "
K=Y H{Vyu #Yi— A} = 0p(n'/?) . (A-41)
i=1

A proof of the above result follows similar arguments to those in Chung and Romano (2013) so we omit it here. We

next divide the proof in two steps.

Step 2: we now prove that for @ such that 6(Q) = 6y and

1 & 1 &
TYX™) = n(—S Yidi— — S Yi(l— A4) -6 , A-42
(X)) Jﬁ(nl ;:1 - ;:1 ( ) —0(Q)) (A-42)
it follows that
(T (G X)) TV (G x ™)) & (7Y TV | (A-43)

where TV and TY' are independent with common distribution given by N(0, 0% + 0%1), We do this using a similar
approach to that in the proof of Lemma 5.1 in Chung and Romano (2013). This requires verifying two conditions,

together with an application of Slutsky’s theorem. The first condition requires us to show that
(T (GE™ X)), TV (G ™ X)) S (1Y, TV (A-44)
where X (™ = {(Vi, As, Z;) : 1 < i < n}. The second condition requires us to show that, for any g € Gn(S(")),
T (990 Xn) = T (9X ™) = 0p(1) . (A-45)

Given (A-44) and (A-45), (A-43) immediately follows from Slutsky’s theorem.

To verify (A-44), let AY = 24; — 1 and let g(-) and ¢/(-) be the two random permutations associated with G
and G, respectively. By (B-77) and the fact that permuting X, is equivalent to permuting {A} : 1 < i < n}, we
get,

n) v n)’ < 2 _ * 2 ~ %
(T (G X0), T (G X)) = (\/ﬁzw%mvﬁzw%'(i)) +op(1) .
i=1 i=1

By Lemma B.7 and the Cramer-Wold device, it suffices to show that for any ¢ € R and b € R,
% Z_il Vi(aAguy + bAg4)) A \/mzv(o, af; +oh+03).
In order to do this, note that the left hand side in the above display equals
% il Vi'(adga) +bAgm) + % i(E[mO(Zi)ISA + Elma(Z:)|9:]) (aAgq) + bAg i) (A-46)

where V;* = V; — L(E[mo(Z:)|S:]) + E[m1(Z:)|S;]) has mean zero conditional on ™. Denote by Rn,1 and Ry o the

2
first and second term in (A-46), respectively.

Now let B; = aAy.; + bAy, ;. Conditional on {S("),A(”)}, B; and V;* are independent and V;* is i.i.d. with

conditional mean equal to zero and conditional variance as defined in Lemma B.6. It then follows from Lemma 11.3.3
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in Lehmann and Romano (2005) and the proof of Lemma B.7 that

(Rna|S™, A} 4 /a2 TN(0,02 + %) as. | (A-47)
provided that
i<n B? n) a(n
{maf<1<n</” s Am L2y g (A-48)
Y B

Since conditional {S(">, A(">}, Ay ;) and Ay, ;) are independent, similar arguments to those in Lehmann and Romano

(2005, Eq. (15.16)) show that
1 o 1 o
- ZBJQ =a®+ b+ 2abﬁ ZA;(j)A;/(j) B a?+ 0% as.,
j=1 j=1

where the convergence occurs conditional on {S™, A™}. Thus, (A-48) follows from maxi<;<, B < (|a| + |b])2.

Next, by the definition of G, (S™), ¢(-) and ¢'(-) do not permute observations across strata and therefore
Dn(s) =Y Ay I{Si=s} =Y Ay I{Si = s} .
=1 =1

It follows that "
Ruz = S (Elno(2)|S = 5] + Elma(2)|S = s))(a +b) D\j(;)

sES

and so

{R,.2|S"™} 4 (a+b)N(0,0%) a.s. ,

where the convergence follows from Assumption 2.2.(c). Finally, by similar arguments to those used in the proof of

Lemma B.1, }N{n,l and Rn,g are asymptotically independent and so it follows that
2 < * * d
ﬁ Z Vi(aAg(i) + bAg/(i)) — N(0, (a2 + bz)(afy + O'?_I + 0124) + Qabafl) .
=1

We conclude that the Cramer-Wold condition holds for any ¢ € R and b € R if and only if 0% = 0, which in turn
follows from 7(s) = 0 for all s € S. Condition (A-44) then holds.

To verify (A-45), let g(-) be the random permutation associated with a random G™ € G, (S™) and note that

n n

n ¥ n n 1 1
T (G go Xn) = T (G X™) = V/n - > Vago) = Yat +0(Q)Ai - . > Vago) = Ya@) (1 = A)

i=1 =1

Due to our coupling construction, all of the terms in the above two sums are zero except for at most K, of them,

where K, satisfies (A-41). But any nonzero term like (Vyg,¢) — Yg0i)) (1 — As) satisfies,

El(Vygots) = Yy) (1 — Ai)|[Kn, g, A™] =0
Var|(Vygo ) — Ya) (1 — Ai)[Kn, g, A™] < max Var[Yi(a)] < oo .

It follows that E[TY (G™goX,) — TV (G™X™)|K,, g, A™] = 0, with conditional variance

2n
min{ng, 3} oty VOO (A9

Var[T, (G™ goX,) — T (G™ X ™)K, g, AT™] <
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and therefore the unconditional variance is bounded above by

Op(n™") max Var(¥i (@)]0p(n*/%) = Op(n™""%) . (A-50)
acq0,
By an application of Chebyshev’s inequality, (A-45) follows. Finally, by invoking Slutsky’s theorem, (A-43) follows
and this completes the proof of step 2.

Step 3: note that we can write Ty, (G™ X ™) as

1
(n) y(n)y _ U/ ~(n) v(n)

where TF (X (™) is as in (B-80) and TV (X (™) is as in (B-75). By Lemma B.8 and the continuous mapping theorem,

we have
1 p 1

— A ,
TE(Xn) ol

where o3 = 2(0%“) + J%m)). It follows from Chung and Romano (2013, Lemma 5.3) that

1 EN 1
THGOX™) 7 /5T

(A-51)

for any random G™ € G,(S™). This allows us to deduce the behavior of the statistic T.* under the permutation
distribution on X™ from the behavior of T'* under the i.i.d. random variables X,,. Combining (A-51), (A-43), and
Lemma B.9, we conclude that

(T (G X ™) T,(G™' X ™)) 4 (T, T, (A-52)

where T and T are independent with common c.d.f. ®(t/0cap) and o2, as in (A-40). The completes the proof of
Part 1.

Part II. Let ¢;*P(1 — ) denote the critical value of the CAP test in (24), defined as

1

~cap s . (n)

gEG L (S(M))

By the result in Part I and Lehmann and Romano (2005, Theorem 15.2.3), it follows that
EP(1—a) B inf{t : ®(t/ocap) >t} .

Combining this last result with Theorem 4.1, we get lim,— 00 E[¢5P (X("))] = a, under the null hypothesis (Q) = 6o,
whenever the treatment assignment mechanism is such that 7(s) = 0 for all s € S. This completes the proof of the

theorem.

A.3 Proof of Theorem 4.4
Part I. Let 3, be the least squares estimator of 3 in (29). We first prove that

V(B = 0(Q)) > N(0, 0%sara) - (A-54)
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To do this, write Bn as

Ao ?:1 A~7,Yl
where /L is the projection of A; on the strata indicators and it equals /L =A; — "1<(5) , with

=> I{S; = ))

sES

We prove the result by showing that \/ﬁ(Bn —0(Q)) =2Rn1 + 2Rn 3 + 0p(1) where R,,1 and Ry 3 are defined as in
(B-64) and (B-66). To this end, consider the following derivation,

V(B = 0(Q)) = E\/ﬁ Ve [(iZAiYi)—e(Q) iz,&?)

i=1

_ 1
w2 A

=+/n (ib 241‘1«;1@ — 9(@)) +op(1),

where the last step uses v/n (% S A2 - 1/4) = 0p(1), which follows from step 1 below.

Step 1: Show that \/n (% S A7 - 1/4) = 0p(1). This follows from

vn <ii[l? - 1/4) =vn (ii (Ai -S> 1S = 5}7;1((3> - 1/4)

i=1 sES
:ﬁ(iZ( =240 IS = s} —|—Z[{S—s}< ))>>—1/4>
i=1 seS seS
~ vt Z RN ”12/”) + vk
seS
*IZD )/n =Y v/n(ni(s)/n —p(s)/2) + op(1)
seS seS
W[ZD ()/n— 3 [Vt (n(s)/n — p(s)) + Da(s)/n] | +0p(1) (A-5)
seS seES

where the fourth equality follows from

Vi (I p(5) /1) = Vs (5)/m = )/2) = V(06 ) =) 4+ 0401

Vn(ni(s)/n —p(s)/2) = Op(1) and v/n (n(s)/n —p(s)) = Op(1). The result follows from the fact that the term in
brackets in (A-55) is numerically equal to zero, after using > _sp(s) =1 and > _gn(s) =n.

Step 2: Show that v/n(2 327 | 44;Y; — 0(Q)) = 2Rn,1 + 2Rn 3 + 0p(1). Note that

Vi S ad o 24A Yi — ib(@ ZZ s (a0)

seSz 1
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Consider the first two terms. Use that 24; = A; + 1 and the definition of Y; to get
IZALAY Vno(Q IZAY—F\FZY Vno(Q)
—n Z [(Vi(1) = 1) Ai — (¥i(0) = uo)(1 — A)] + —= v
Z i1 — Ai)po) — vnlp — po)
f2Rn1+2Rn5+2Rn2+fZY+IZ (11 + o)) (A-57)

where the last equality follows from the proof of Lemma B.1. Now consider the third term in (A-56) and use that

2n1()/n(2) = Da(s)/n(s) + 1

ZZQ’“ I{S; = s}V = — ZZD w8 rs = s+ 2 ZZI{S = s}Y;

5651 1 sES'L 1 seSz 1
:ZD:;%S)”Q” 121{5 — s)Yi+ an
seS =1
= Dn(S) 2n ]ﬁ ma mo =S O
-3 7 2P s+ o+ Bl (2) 4 mo(2)15 = 5] + 0,1
ﬁi_i“
:2Rn,2+%zy§+\/>z (1 + po)] + 0p(1) (A-58)

where the third equality follows from £ 37" | I{S; = s}V; = p(s [u1 + po + E[mi(Z) + mo(2)|S = s]] + 0p(1), and
the last equality follows from n/n(s) = 1/p( ) + 0p(1), Dn(s )/f = Op(1), and the definition of R, 2 in (B-65).
Invoking (A-57), (A-58), and (A-56), we conclude that v/7(Bn — 0(Q)) = 2Rn1 + 2R3 + 0p(1). The proof of part I
is completed by invoking (B-67) and (B-68) in the proof of Lemma B.1 which give 2R, 1 + 2R3 4 N (O, Uf; +o%).

Part II. We first prove the result for homoskedasticity-only standard errors, i.e.,
. 12\ (ChCa\ ™" 5 2
Vhomo = | — i e = 05 , A-59
' <”2u>( "y von (459

where C,, is a n X |S| + 1 matrix with the treatment assignment vector A, in the first row and the strata indicators

vector in the rest of the rows, and 4; is the least squares residual of the regression in (29).

Next note that %(C;L(Cn 2 ¢ where

(12 L) e - 1e(S) ] [+ 2 2 . 2 ]
ip(1)  p(1) 0o - 0 -2 1+45m5 1 - 1
Se=| dp2) Do |amdugt=] 2 0 |- (a0)
sp(Sh 0 e p(ISh) L —2 1 o 1 sy

The convergence in probability follows from 1 "  A; 5172, na(s)/n B p(s)/2, and n(s)/n 2 p(s) for all s € S.
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The second result follows from analytically computing the inverse matrix, which we omit here. It follows that the
[1,1] component of Ecl equals 4. By Lemma B.11, we know n~! > TS (Uf; + 0’,%.1) /4, and the result in (A-59)

immediately follows.

We now prove the result for heteroskedasticity-robust standard errors, i.e.,

g | (ChCa ) (Chdiag({aTHi)Ca (CoCa\ ™| 5 2 2 (A-61)
¢ n n n Y -
[1,1]
First note that

rL A ST BAL{S =1} - Y @AI{S = [S]}

C, diag({a2})C, 1 | Zim@AN{Si =1} YL, @{S =1} - 0

" = . . - .
i 1“12A I{S = [S[} 0 > 1“12[{5 =[S}

It follows from Lemma B.11 that
C;, diag({a7}1=1)C

LN o) A-62
- - (A-62)

where each component of the matrix €2 corresponds to the respective limits in Lemma B.11. It follows that

’ -1 o ~2 1N ’ -1

n n n

2 2
U)}"!‘UH Vi

) (A_63)

12 Va2
where V2 is an |S| X 1 matrix with sth element equal to
2 2 2 2
_(O'{, + O'H)/2 + 0'{,(1)(5) — O‘{,(O)(S) s
and Vs is an [S] X |S| matrix with (s, §)th element equal to

(0% +oh) +% [‘712?((»( ) = 0% )(s )} * % [ HOIORENC )] 2 (JY“)( )+U%(°>(§))

+I{5= 5}%1)(5) [(Emi(Z) —mo(2)|S =3)°] .

]

From here, (A-61) follows immediately. Putting together the results of parts I and II completes the proof of the

theorem.

Appendix B Auxiliary Results
Lemma B.1. Let Assumptions 2.1 and 2.2 hold. Then,
= Do) = ) As = (Vi0) = o)1 = 4] 5 N, (03 + 0%+ 75)/4)

where 02, 0%, and 0% are defined in Table 3.

Y
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Proof. Let Yi(a) = Yi(a) — E[Yi(a)|Si], ma(Zi) = E[Yi(a)|Zi] — fta, and consider the following derivation,

- - 1 <
D> [m)Ai ~Vi(0)(1 - A + o Z [E[ma(Z:)|Si A — Elmo(Z:)|S:](1 - A:)]
= R,, ZA [ZEml )|Si = s]I{S; —s}—l—ZE[mo Z)|Si = s|I{S; = s}]
seS seS
Z[ZEml )|Ss = s|TI{S: = s} = > E[mo(Z:)|S; = s]I{S; = s}]
i=1 se€8S seS
=Rn1+ Rn2+ Rns,
where we used A; = (1 + A*)/2 and the following definitions,
Rt = % i}[f’i(l)Ai —V(0)(1— A, (B-64)
Rnz =3 Z [E[ (2)|S = 5] + E[mo(2)|S = s]] , (B-65)
Rns = ($N[E[M1(2)|S = 5] — E[mo(2)]S = s]] . (B-66)
seS

The result follows from the continuous mapping theorem once we show that R, = (Rn,1, Rn,2, R

) (CR17CR27 CR:«))
where {Cr,,Cr,, Ry} are independent and satisfy (r, ~ N(0,0% /4), (r, ~ N(0,0%/4), and (r, ~ N (0,07 /4).

Start with R, ;. Conditionally on {S™ AM™} {V;(1)A; — Y;(0)(1 — A;) : 1 < i < n} is an independent sequence
with mean zero that, by Lemma B.4, satisfies the Lyapunov condition a.s. Then, the Lyapunov CLT implies that

S [Ta0A - Vi) (1 - 4)]
\/ S Var[Y; (1) Ai + Yi(0)(1 — A;)|S™), A

S A™ L 4 N(0,1) as
]

By using Slutsky’s theorem and Lemma B.2,

{Rn,1|s(n)7 A(n)} 4 Cr, ~ N(O, 037/4) a.s.

(B-67)
where 03 = = 2(Var[Y (1)] + Var[Y (0)]). For R, 2, Assumption 2.2.(c) implies that
{RualS™} 5 oy~ N3 3 0h () [Elma(2)]S = 5] + Elmo(2)]S = sI]*) as

SGS

For Ry, note that n(s)/n =n"' 3" | I{S; = s}, so that by W™ being i.i.d. and the CLT, it follows that

{vi("2-ne)} S w09,

n s€S

where X, 51 = p(s)I{s = 5} — p(s)p(5). In turn, this implies that

Ros % Cry ~ N(0, 3 3 p(s) (Blma(2)]8 = 5] Elmo(2)|S = 5))) (B-68)
SES
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To conclude the proof, we show that R, = (Rn,1, Rn,2, Rn,3) 4 (¢Rr15CRo,CRy) With {Cr,,CR,, R, } independent
random variables. In what follows fix h = (h1, ha, hs) € R3 s.t. P{Cr, < h1}P{Cr, < h2} P{Cr; < h3} is continuous.
Notice that P{(r, < hi} is continuous, so discontinuities could be caused by discontinuities of P{(r, < h2} or

P{Cr; < h3}. According to these possibilities, we divide the proof into cases.

First, suppose that both P{(r, < -} and P{Cr, < -} are continuous at (hz, h3). Conditional on {S™, A}
R, 2 and R, 3 are non-stochastic and, hence, conditionally, Ry 1, Rn,2, and Ry 3 are independent. Then, P{R, <
h|S™, A™Y = P{R,1 < h1|S™, A™YP{R, 2 < ha|S™  A™YP{R,, 3 < h3|S™, A™}. Our previous derivations
show that {R,:|S™, A} 2 Cry a.s. and {R,2|S™} N Cr, a.s. Then, repeated applications of the dominated

convergence theorem and some algebra imply that

P{Rn < h} = P{Cr, < hi}P{Cr, < ho}P{(rs < ha}+o(1) .

Second, suppose P{(Cr, < -} is discontinuous at hs. Since (g, is normally distributed, the discontinuity at hs
implies that Var[Cr,] = 0 (this occurs if and only if E[m1(Z)|S = s] = E[mo(Z)|S = s] for all s € S). This implies
that Rn,3 = (ry; = 0 and hs = 0 and so,

P{R, < h} = P{(r, < h}P{Cr, < ha} +0(1) = P{Cr, < h}P{Cr, < h2}P{Crs < hs}+o(1),

where we have used that P{(r, < hs} = P{Rn,3 < h3} = 1 and the convergence follows from the same argument as

in the first case.

Third, suppose P{(r, < -} is discontinuous at hy and P{(r, < -} is continuous at hs. The fact that P{(r, <
h1}P{Cr, < h2}P{Cr, < hs} is continuous at h implies that P{Cr, < h2} = 0. Since (g, is normally distributed, the
discontinuity at ke implies that Var[Cr,] = 0 (this occurs if and only if 0% (s) [E[m1(Z)|S = s] + E[mo(Z)|S = s]]> =0
for all s € §). This implies that (g, = 0 and he = 0, but then P{(r, < h2} = 1, which is a contradiction. This

completes the proof for the last case. B

Lemma B.2. Let Assumptions 2.1 and 2.2 hold. Then,

% > Var[Yi(1)A; + Y;(0)(1 — A)[S™, A™] %3~ (Var[V (1)] + Var[Y (0)]) .

1
2

Proof. For any random variable X, let 0% (S;) = Var[X|S;]. Now note that

Var[Yi(1)A; + Yi(0)(1 — A)|S™, AT] = E[Vi(1)*4; + Yi(0)*(1 — Ai) + 24i(1 — A)Vi(1)¥:(0)]S™, A™)]

where have used Assumption 2.2.(a) and E[Y;i(a)|S;] = 0. The result then follows by proving that

1 ~ 2 a.s. 1 <
— Az Iy 7 - Y 1 5
ng 0% 1) (81) 3 5 VarlY (1)]

2
Y (1)

random variables and with finite variance by Assumption 2.1 and the fact that S is a finite set. For any n € N, let

since the second terms involves similar arguments. Note that {A;0% ., (Si) : 1 < ¢ < n} is a sequence of nonnegative
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v, = L Aio S;) and so, for any n,7n € NU {0} with n > 7,

y<1)(

B~ Wal = 35 Bl ) ()15 = s3] = 30 37 BlAS: = slo ) (s)p(s) < (n— o (1/2 4 C)

i=n s€S i=n s€S

for some constant C', where we used UY(l) =3 s a%(l)(s)p(s) and F[A;|S; =s] =1/24+ O(n™") from Assumption

D)
2.2.(b). For fi = 0, this derivation shows that E[n™" 31" Aiaz?(l)(Si)] = 0’%,(0/24-00,,3(71_1) X (1)/2 as n — oo.

2
Y

Next, note that for s,5 € S with s # §, the Cauchy-Schwarz inequality gives

COV[i AI{S; = s},iAjI{sj = 5}] < (Var( ZA I{S; = s}) Var( ZA I{S; = 5})'/?

I /\

Z\/p(S)(l —2())Vp(3) (1~ p(3)) , (B-69)

where the last step follows from Assumption 2.2.(d). Therefore,

o (Z Aia%’(l)(‘s")> = Var (Z 0327(1)(8) Z AJ{S; = s})

seES
= (0% (s)* Var (ZA I{S; = s}> + ) 050y (8)0% 1) (3) Cov > AJ{S: = s}, > AGI{S; = §}]
sES s#S§ i=1 j=1
< % > (0% 1) ()?p(s)(1 = p(s)) + 1 N 0% 0902y VEE) A — p(5)VPEA — p(3) |
seS S#S

where we used (B-69). From here, we conclude that,

n

- 1 2 2 2 -
2V <ZAMY<1> > < 81" maxd (o3 ) () p(s N2 <

By combining these findings and using the theorem in Petrov (2011), the desired result follows. B

Lemma B.3. Let Assumptions 2.1 and 2.2 hold. Then,
—Z — i)A; £ (Y:(0) — o)1~ A)] B0 .
Proof. By similar steps to those in the proof of Lemma B.1, it follows that
—Z — p1)A; + (Yi(0) — po)(1 — Ai)] = Rujy + Ru2+ Rus

where R,,1 = Ry,1/v/M, Ru2 = Ru2/\/n, Ruz = Ru3/v/n, and (Rn,1, Ry 2, Ra3) are defined in (B-64)-(B-66). Note
that {Z; : 1 <4 < n} isiid. and, hence, so is {I{S; = s} : 1 < i < n}scs with mean {p(s)}ses. The SLLN implies
that R, 3 “3 0. Second, {{Dn(s)/v/n}ses|S™} < ¢p a.s. implies that {R,2|S™} 5 0 a.s. which implies Ry, 2 = 0.
Finally, by Lemma B.1 we know {R, 1|S™, A™} = 0,(1) a.s., and this immediately implies R,,1 — 0. B

Lemma B.4. Let Assumptions 2.1 and 2.2 hold. Then, conditional on {S™, A}, {A;Y;(1) + (1 — 4,)Yi(0): 1 <

i < n} satisfies the Lyapunov condition, i.e.,

(Zrs BIAT(D) + (1= A)Ti(0)7]5¢), A

(S0, Var{ATi() + (1 - A)Fi(0)]s, a0])

) 1/(2496)

0.
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Proof. By Assumption 2.2.(a) and W™ consisting of n i.i.d. observations, conditionally on S;, (¥;(1),Yi(0)) is
independent of {S (o8 A(”)}. It follows from Minkowski’s inequality and Assumptions 2.1 and 2.2.(a) that
E[|Y (a)5™, A™] < 2" B|Yi(a) T[S, A™] + 2" B[ E[Yi(a)|Si] P05, A™)]
= 2" (B[Yi(a)**|Si] + E[| E[Yi()|Si]|**°|Si]) < o0 , (B-70)

where we have used that S is a finite set. We thus conclude that

E[JAYi(1) + (1 = A)Yi(0)]**°|s™), A™) < ag%%)i}E[Iﬁ(a)\Q“lS("),A(")] < o0 (B-71)

and

LS BIATI) + (1 A)Ti(0)F 15, A < oo
=1

By combining the previous equation with the result in Lemma B.2, it follows that the expression in the statement of

the lemma is Oa,s,(n*‘;/“*%)) =04.5.(1). W

Lemma B.5. Let {U;}i>1 be an arbitrary sequence of random variables s.t. E|U;|**® < B < oo for some 6, B > 0.
Then,

Lo Lo 1+48/2
. 2 2 —
Proof. First we show that
Lo Lo 146/2 Lo 1448/2
E=NU?-E(=Y U? <2E [|=Y U?
Define ¥, = 1 3°"  U?. By the triangle and Hélder’s inequality,
5 1+6/2 14+6/2 1+6/2
(W — B (W) < (|00 + | E[W.])) < C(|Wal +IEW] ),

where C = 2(1+8/2)(1-1/(1+6/2)) Taking expectations on both side implies

146/

E [\\I/n - E[an]|1+5/2] <CE [\q/nf“/z] +C (B[ < 20E [\xpnf”/?] , (B-72)
where we used E[V,,] < E|¥,| and Holder’s inequality.
Second, note that
1 n , 1+6/2 n 1 2468 1 5/2 1 n 2o
E |- U; <FkE —U; == E |- U; , B-73
e I RO ORI o

where the inequality follows Holder’s inequality (for the counting measure). Using (B-72), (B-73), and E|U;|**® < B,

we conclude that,

1468/2

n

1\%? |1 s
<20( = E|= fka
<20 (%) {nEZMH

i=1

1\ %72
E <2C (7) B.
n

1 — 1 —
Be-e(ine)

By taking limits as n — oo, the result follows. B
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Lemma B.6. For any s € S, let Q(s) = 3Q1(s) + 3Qo(s) where Q1(s) is the conditional on S = s distribution of
Yi(1) — 0(Q) and Qo(s) is the conditional on S = s distribution of Y;(0). Let V™ = {V; : 1 < i < n} be an i.i.d.

sequence of random variables such that

[ViIS™} £ (VilSi} ~ Q(S1) = 5Qa(S0) + 5 Q0(S1) (B-74)

Then, the conditional mean and variance of Vi are given by,

BVAIS™) = 2 (o + Blmo(Z:)|:) + 3 (i — 0(Q) + Blma (2)]5:])

—_

n 1
Var[Vi[S™] = 2(0% 1) (80) + 030, (S:)) + § (Elma(Z:)|S:] — Elmo(Z:)|5:))° .
Proof. Let u(P) and ¢*(P) denote the mean and variance of a distribution P, and note that for a € {0, 1},
#(Qa(5)) = ha + E[ma(2)|S = s] = 6(Q)I{a = 1} and 6*(Qa(s)) = o) (s) -

The expression for E[V;|S(™)] follows immediately after noticing E[V;|S™] = E[Vi|S;].

For the conditional variance of V;, let C; be a random variable that selects whether V; ~ Qo(S;) or Vi ~ Q1(S:).

By the law of total variance,

Var[Vi|S™] = E[Var[V;|Ci, $™]|8™] 4 Var[E[V;|Ci, $™]|5™)] .

Let’s first consider the expectation of the variance,

E[Var[Vi|Ci, S™]|S™] = %Var[VHCi —1,8M) + %Var[vi\ci —0,5™)

1
= 5(03(1)(31') + U%’(O)(Si))

1, 5

= 5(0{/(1)(&') + Uf’/(o)(Si)) )

where in the last step we used U%(Q)(Si) = a%,(a)(Si) for Yi(a) = Yi(a) — E[Yi(a)|S:] and a € {0,1}.

The expression for the variance of the expectation below completes the proof,

Var B[VA|C1, S™S) = 5 — (@) + Elima (Z)[S)* + 5 (1o + Elmo(Z0)15.))’

- 51 = 0(Q) + Elms (Z)|S:] + o + Elmo(Z0)|S.))*
= i(E[ml(ZiNSi] — E[mo(Z:)|Si])* .
|

Lemma B.7. Let Assumptions 2.1 and 2.2 hold and define

7Y (x™) = ﬁ(nil SV - ni SOVl = A) = 0(Q)) = V- S (¥ — (@) A: - ni Vil - A)) - (B75)

ny &

It follows that
TY(X™) 4 N(0,02 + % +03) , (B-76)
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where X™ = {(Vi, Ay, Z;) -1 <i <n}, VW = {Vi : 1 <i < n} are the random variables defined in Lemma B.6,

and a%,, 0%, and 0% are defined in Table 3.

Proof. Since TY (X ™) in (B-75) is invariant under the same shift for all the observations in Y™ = {Y; : 1 <i < n},
we can assume without loss of generality that E[V;] = %(uo + p1 — 0(Q)) = 0. Commputing 7,/ (-) with the sample
XM we get,

g™y = vn Vil — AL) = 2 LSy g Do 1oy,
To (X m;VA 0;vz(l A = T Dy {IZVZAA nﬁZm}

- % VAL 4 0,(1) (B-77)

where we used A] = 24; — 1 and D, /n = 0,(1). Adding and subtracting the conditional mean derived in Lemma

B.6, we get
TU X(n) Z V" A 1n Z(E[mo(zzﬂ&]) + E[m1(Zz)|Sz])A: + Op(l) ) (B'78)

where V;* = V; — 2(E[mo(Z:)|Si]) + E[m1(Z:)|Si]) has mean zero conditional on S™. Denote by RY ; and RY , the

first and second term in (B-78), respectively.

We first find the limit distribution of R,[{,l. Lemma B.6 and similar arguments to those in Lemma B.2 show that
1 n
- > Varl2v|S™, AM] ¢ 0 4oy (B-79)

using Var[V;*] = E[Var[V;*|S:]]. Conditional on {S™, A} {V;*:1 <i < n} is an independent sequence with mean

zero that, by arguments similar to those in Lemma B.4, satisfies the Lyapunov condition a.s. It follows that

{RI,]8™, 4™} 5 N(0,0% +0%) as.
We now find the limit distribution of R%g. First note that,

Ryls= WZA Y (Elmo(2)|S = s]) + Elma(2)|S = s))I{S: = s}

SES

ZZA I{Si = s} [(E[mo(Z)|S = s]) + E[m1(Z)|S = s])]

SESl 1

[mo(2)|S = s] + E[mi(Z)|S = ¢]] .

sES

Assumption 2.2.(c) then implies that
{Rg,2|5(n)} 4 N(0, Ui) a.s.

By similar arguments to those is the proof of Lemma B.1, we conclude that (B-76) follows. B

Lemma B.8. Let Assumption 2.1 and 2.2 hold and define

LSy VA B n(n Vap)2(1— A7) . (B-80)

non
i=1 0 7o

TEHx™) = | 21
" ni1 N1
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It follows that
Tf(j((n)) ﬁ) 2(0—52/(1) + 0'%/(0)) 5

where X = {(Vi,As, Z;) : 1 <i<n} and v = {Vi: 1 <i < n} are the random variables defined in Lemma B.G.

Proof. Let Vy, = n—lo S Vi(l— A) and Vy, = n% >, ViAs, so that

THX ™M) = J (3)2% ST(Vi = iy )2A; + (1)2% STV = Vig)2(1 = A))

n n
1 i—1 0 i—1

We focus on the first term in the above expression, since the second follows analogous arguments. Since T (X™) is
invariant under the same shift for all the observations in Y™ = {V; : 1 < i < n}, we can assume without loss of

generality that E[V;] = % (uo + 1 — 0(Q)) = 0, which implies po = 0 and p1 = 6(Q) by virtue of 6(Q) = p1 — po.

Re-write this term as n " "
1 _ 1 51
LD USRS DT ) oS 1)
i=1 i=1 i=1

Note that V; and A; are independent conditional on S by Assumption 2.2.(a), so that

RS n 1 ¢ n n 1 PN n
E {nE :vai]S( >] =~ EVS™MEAS™] = (5 + On 1));2 jE[vﬂs( )]
i=1 =1

:<§+oa.s.<n—1>>%z{§E[<m<1>— (@15 + JEO)1s™] |
= (1 + O™ Z{ay 1)(80) + BIYi(1) ~ 0(Q)ISI + 0 o) (1) + E[Yi(0)|5:]°}
= i(Ugfu) +0%0) 5

where the second equality follows from Assumption 2.2.(b), the fourth equality follows from po = 0, p1 = 6(Q), and

the law of total variance, and the last step from arguments similar to those in the proof of Lemma B.2.

It remains to be shown that the second term in (B-81) is 0,(1). In order to see this, note that

1 n
E;vmi

™ 4| — LN~ 4 BV 1™ 4™
s, — > AE[V|S™, AM)]

i=1

fZA { (1 —G(Q)-I-E[ml(ZiNSiD-i-%(M0+E[mo(Zi)|Si])}

50 a.s. s

and

=5 > Ay Var[Vi[ s, AU]

=1

ZA { (0% (1)(8i) + 0% 0y (S:)) + %(E[ml(Z¢)|S,'] - E[mo(Z¢)|Si])2}

Var

l Z Vi A; g 4™
nia 7

50 a.s. R
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where the convergence holds by arguments similar to those in the proof of Lemma B.2. Then,

= n 1 - D
Vo= 2= W4, Bo,

where we used n/n1 = 2 + 0,(1). Combining the previous steps,

n .ol - = 12 n 2 . 2 2
—) = i — V) A =(—)" (= TA =V,
)ni:ZI(V Viy) (m)(n;‘/ Viy 2

Ai) = U?’(l) + U%/(o) )

(

ni
and the result follows. B

Lemma B.9. Let G and G™' be two independent random transformations from Gy (S(”>), also independent from

XM Let L, and T, be sequences of random variables satisfying
L, (G(”)X(”)) 2L , (B—82)

and
(T (G™ X)), T, (G X ™)) 4 (1,1) (B-83)

where T and T’ are independent, each with common cdf FT() Then, the randomization distribution of L.,T,

converges to L'T' in probability, i.e.,

F7 () m Z HLn(gX ™) Tu(gX ™) <t} B FM (1) (B-84)

gEGL(S())

if FET s continuous at t, where FET denotes the corresponding c.d.f. of LT.

Proof. The proof of this lemma is a simple adaptation of the one in Chung and Romano (2013, Lemma A.3) that
allows for L = 0 and so we omit it here. H

Lemma B.10. Let Assumptions 2.1 and 2.2 hold and v = (B,61,...,0|s|)" be the parameters in the regression (29).

Let 4y, be the least squares estimator of v. Then,

0(Q)
to + E[mi(2) + mo(2)|S =1]/2

§>
1=
2
I

to + Elmi(Z) + mo(2)|S = |S]]/2

Proof. First note that 4, = (C},C,,) *C,Y,, where C,, is an n x |S| + 1 matrix with the treatment assignment vector
A, in the first row and the strata indicators vector in the rest of the rows, and Y, is an n x 1 vector of outcomes.
The (s + 1)th element of LC}, Y, equals £ 37" | A;Y; if s =0 and 237 | I{S; = s}V for s € S. In turn, this last
term satisfies

n(s) mis)

%ZI{SZ = S}Y; = nléS) (,Ul + E[ml(Z)|S = S]) +(

) (1o + E[mo(2)S = s])

1

+ % ZHIAJ{SZ- =sPVi(1)+ =) (1 — Ai) I{S; = s}Y;(0)

M= =

n -
i=1

57(5) g + pio + Elm1 (2) + mo(2)1S = ) + 0,(1) .
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where in the last step we used ni(s)/n 2 p(s)/2, n(s)/n = p(s), and that n=' 3" A;1{S; = s}Yi(a) 5 0 for

a € {0,1} by similar arguments to those in the proof of Lemma B.3. Analogous arguments show that,
1« 1
o ZAz‘Yi =gt t op(1) ,
=1

so that we conclude that

M1
p(D)(p1 + po + E[mi(2) + mo(2)|S = 1])

p(ISN) (k1 + po + E[mi(Z) + mo(Z)]S = |S[])
The result then follows from the above display, (A-60), and some additional algebra. B

Lemma B.11. Let Assumptions 2.1 and 2.2 hold, C; = [A;, I{S; = 1},...,I{S; = |S|}]’ be the ith row of the matriz
C,, formed by stacking the treatment assignment vector A,, in the first row and the strata indicators vector in the rest
of the rows, i; be the least squares residuals of the regression in (29), and 4, be the least squares estimator of the

regression coefficients v = (B,61,...,8s)’. Then,

Qi = % ZI{SZ- = sYATE [m1(Z) —mo(Z)|S = 8] + Yi(1) A + Yi(0)(1 — A;) + Ci(y — 4n) -
SES

Furthermore,

1 . 1
; 2 ’U;f ﬂ) 1(0'?/ + U%{)
1< 1 1
ﬁ 2 U?AZ ﬁ) gO'%I + 5(7'?",(1)
1~ 1
=SS = s} B 1p(s) [(BIma(2) —mo(2)IS = s))” +2(0% ) (5) + 0 o) (3))]
=1
L~ 2 p 1 1 2, 2
=S @IS = st A B 1p(s) | 5 (B mi(2) —mo(2)]S = 5))° + 203 (3)] -
=1

Proof. Consider the following derivation,

Y; = Yi(1)Ai + Yi(0)(1 - Ai) = 6(Q)Ai + Yi(1)Ai + Yi(0)(1 — A;)

£ 3180 = ) o + Blma(2) +mo(2)[S = s1/2] + 5 3" 1{80 = s} B lma(2) ~ mo(2)[S = 5] .
sES seS

Using Lemma B.10 and some algebra shows that

wi= Y — Ciy = % SIS = s}AIE [ma(2) — mo(2)|S = 5] + V(1) As + Vi(0) (1 — A7) (B-85)
SES

and since @; = u; + Ci(y — 4»n), this proves the first part of the lemma.

To prove the second part we note that for any univariate random variable X; such that

% > [CiC @ Xi] = 0,(1) and % D CiuiXi = 0,(1), (B-86)
i=1 i=1
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it follows that

%Zﬁf){z ZuX+’y An) %g CC@X (v = An) + 2(y = An) = ZCUzX— ;u?XiJrOp(l)’

where we used (7 — 4») = 0 from Lemma B.10. Since the condition in (B-86) certainly holds for X; = 1, I{S; = s},

and A;, we can focus on averages involving u? as opposed to 42 in what follows. We therefore need an expression for

u?. Using (B-85) and some algebra shows that,

= LSS = s} (BIm(2) - mo(2)]S = s))? + (1) As + Vi(0)? (1 - A)

sES

+ Y I{Si = s}ATE [ma(Z) — mo(2)|S = s] Vi(1) A

seS
+ Y I{Si = s}ATE[ma(Z) — mo(2)]S = s] Vi (0)(1 — Ay) .
seS
We now use this expression to prove the four last statements of the lemma. In all cases, the convergence in probability

holds from similar arguments to those used in the proof of Lemma B.1 so we omit them here.

The first average satisfies,

72 g 42;0 O(Z)‘S:‘SDQ"'%(Uf‘/u)‘*‘af‘/(o))‘l-op(l)

sES

1
(0% + i) +op(1) .

The second average satisfies,

%Zu?Ai _ i 3 % S I{S: = s} A (B [ma(2) — mo(2)|S = 5]) + %Znu)%

sES i=1 i=1

+Z ZY VAI{S; = s}ATE [m1(Z) — mo(Z)|S = s]

SES

1 ! )
= 80H + 997 (1) +0p(1) .

The third average satisfies,
LS~ 2706 — st — LN~ Jrg _ — o)
2 TS = sk = 1 38 = s} (Blm(2) - mo(2)IS = 5?4

P LS S RS = A = a)

ace{0,1} i=1
+% ;};f{si:s}Ai‘E[ml(Z) mo(Z)|S = s] Yi(a)I{A; = a}
= 2 [(B [ (2) — mo(2)IS = s1)* +2 (0% 1) (8) + 00y ()] + (1)

The last average is similar to the third one and so we omit it here. This completes the proof. B
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