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TESTING MANY MOMENT INEQUALITIES

VICTOR CHERNOZHUKOV, DENIS CHETVERIKOV, AND KENGO KATO

Abstract. This paper considers the problem of testing many moment
inequalities where the number of moment inequalities, denoted by p,
is possibly much larger than the sample size n. There are variety of
economic applications where the problem of testing many moment in-
equalities appears; a notable example is a market structure model of
Ciliberto and Tamer (2009) where p = 2m+1 with m being the num-
ber of firms. We consider the test statistic given by the maximum of
p Studentized (or t-type) statistics, and analyze various ways to com-
pute critical values for the test statistic. Specifically, we consider critical
values based upon (i) the union bound combined with a moderate devia-
tion inequality for self-normalized sums, (ii) the multiplier and empirical
bootstraps, and (iii) two-step and three-step variants of (i) and (ii) by
incorporating selection of uninformative inequalities that are far from
being binding and novel selection of weakly informative inequalities that
are potentially binding but do not provide first order information. We
prove validity of these methods, showing that under mild conditions,
they lead to tests with error in size decreasing polynomially in n while
allowing for p being much larger than n; indeed p can be of order exp(nc)
for some c > 0. Importantly, all these results hold without any restric-
tion on correlation structure between p Studentized statistics, and also
hold uniformly with respect to suitably large classes of underlying dis-
tributions. Moreover, when p grows with n, we show that all of our tests
are (minimax) optimal in the sense that they are uniformly consistent
against alternatives whose “distance” from the null is larger than the
threshold (2(log p)/n)1/2, while any test can only have trivial power in
the worst case when the distance is smaller than the threshold. Finally,
we show validity of a test based on block multiplier bootstrap in the
case of dependent data under some general mixing conditions.
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1. Introduction

In recent years, the moment inequalities framework has developed into a
powerful tool for analyzing partially identified models. Many papers studied
models with a finite and fixed (and so asymptotically small) number of both
conditional and unconditional moment inequalities; see the list of references
below. In practice, however, the number of moment inequalities implied by
the model is often large. For example, one of the main classes of partially
identified models arise from problems of estimating games with multiple
equilibria, and even relatively simple static games typically produce a large
set of moment inequalities; see, for example, Theorem 1 in Galichon and
Henry (2011). More complicated dynamic models, including dynamic games
of imperfect information, produce even larger sets of moment inequalities.
Researchers therefore had to rely on ad hoc, case-specific, arguments to
select a small subset of moment inequalities to which the methods available
in the literature so far could be applied. In this paper, we develop systematic
methods to treat many moment inequalities. Our methods are universally
applicable in any setting leading to many moment inequalities.1

There are variety of economic applications where the problem of test-
ing many moment inequalities appears. One example is the discrete choice
model where a consumer is selecting a bundle of products for purchase and
moment inequalities come from a revealed preference argument (see Pakes,
2010). In this example, one typically has many moment inequalities because
the number of different combinations of products from which the consumer
is selecting is huge. Another example is a market structure model of Cilib-
erto and Tamer (2009) where the number of moment inequalities equals the
number of possible combinations of firms presented in the market, which is
exponentially large in the number of firms that could potentially enter the
market. Yet another example is a dynamic model of imperfect competition
of Bajari, Benkard, and Levin (2007), where deviations from optimal policy
serve to define many moment inequalities. Other prominent examples lead-
ing to many moment inequalities are studied in Beresteanu, Molchanov, and
Molinari (2011), Galichon and Henry (2011), Chesher, Rosen, and Smolinski

1In some special settings, such as those studied in Theorem 4 of Galichon and Henry
(2011), the number of moment inequalities can be dramatically reduced without blow-
ing up the identified set (and so without any subjective choice). However, there are no
theoretically justified procedures that would generically allow to decrease the number of
moment inequalities in all settings.

In addition, it is important to note that in practice, it may be preferable to use more
inequalities than those needed for sharp identification of the model. Indeed, selecting
inequalities for statistical inference and selecting a minimal set of inequalities that suffice
for sharp identification are rather different problems since the latter problem relies upon
the knowledge of the inequalities and does not take into account the noise associated with
estimation of inequalities. For example, if a redundant inequality can be estimated with
high precision, it may be beneficial to use it for inference in addition to inequalities needed
for sharp identification since such an inequality may improve finite sample statistical
properties of the inferential procedure.
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(2013), and Chesher and Rosen (2013) where moment inequalities are used
to provide sharp identification regions for parameters in partially identified
models.

Many examples above have a very important feature – the large num-
ber of inequalities generated are “unstructured” in the sense that they can
not be viewed as some unconditional moment inequalities generated from a
small number of conditional inequalities with a low-dimensional condition-
ing variable. This means that the existing inference methods for conditional
moment inequalities, albeit fruitful in many cases, do not apply to this type
of framework, and our methods are precisely aimed at dealing with this im-
portant case. We thus view our methods as strongly complementary to the
existing literature.2

There are also many empirical studies where many moment inequalities
framework could be useful. Among others, these are Ciliberto and Tamer
(2009) who estimated the empirical importance of firm heterogeneity as a
determinant of market structure in the US airline industry,3 Holmes (2011)
who estimated the dynamic model of Wal-Mart expansion,4 and Ryan (2012)
who estimated the welfare costs of the 1990 Amendments to the Clean Air
Act on the U.S. Portland cement industry.5

2A small number of conditional inequalities gives rise to a large number of unconditional
inequalities, but these have certain continuity and tightness structure, which the literature
on conditional moment inequalities heavily exploits/relies upon. Our approach works even
if such structure is not available and can handle many unstructured moment inequalities.
In addition, when such structure is available, our bootstrap methods automatically exploit
it leading to powerful tests of structured moment inequalities arising from conversion of a
small or large number of conditional moment inequalities.

3Ciliberto and Tamer (2009) had 2742 markets and used four major airline companies
and two aggregates of medium size and low cost companies that lead to 24+2+1 = 128
moment inequalities. However, as established in Theorem 1 of Galichon and Henry
(2011), sharp identification bounds in the Ciliberto and Tamer model would require around

22
4+2

= 264 inequalities. In addition, using techniques developed in this paper, it would
be possible to estimate a more detailed model, with a larger set of airline companies taken
individually and using the Ciliberto and Tamer type inequalities.

4Holmes (2011) derived moment inequalities from ruling out deviations from the ob-
served Wal-Mart behavior as being suboptimal. He considered the set of potential de-
viations where the opening dates of some Wal-Mart stores are reordered, and explicitly
acknowledged that this leads to the enormous number of inequalities (in fact, this is a num-
ber of permutations of 3176 Wal-Mart stores, up-to a restriction that the stores opened in
the same year can not be permuted). Therefore, he restricted attention to deviations con-
sisting of pairwise resequencing where each deviation switches the opening dates of only
two stores. However, one could argue that deviations in the form of block resequencing
where the opening dates of blocks of stores are switched are also informative since one of
the main features of the Wal-Mart strategy is to pack stores closely together, so that it is
easy to set up a distribution network and save on trucking costs.

5Ryan (2012) adapted an estimation strategy proposed in Bajari, Benkard, and Levin
(2007). He had 517 market-year observations and considered 1250 alternative policies to
generate a set of inequalities.
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To formally describe the problem, let X1, . . . , Xn be a sequence of in-
dependent and identically distributed (i.i.d.) random vectors in Rp, where
Xi = (Xi1, . . . , Xip)

T . For 1 ≤ j ≤ p, write µj := E[X1j ]. We are interested
in testing the null hypothesis

H0 : µj ≤ 0 for all j = 1, . . . , p, (1)

against the alternative

H1 : µj > 0 for some j = 1, . . . , p. (2)

We refer to (1) as the moment inequalities, and we say that the jth moment
inequality is satisfied (violated) if µj ≤ 0 (µj > 0). ThusH0 is the hypothesis
that all the moment inequalities are satisfied. The primal feature of this
paper is that the number of moment inequalities p is allowed to be larger or
even much larger than the sample size n.

We consider the test statistic given by the maximum over p Studentized
(or t-type) statistics (see (13) ahead for the formal definition), and propose
a number of methods for computing critical values. Specifically, we consider
critical values based upon (i) the union bound combined with a moderate
deviation inequality for self-normalized sums, and (ii) bootstrap methods.
We will call the first option the SN method (SN refers to the abbreviation
of “Self-Normalized”). Among bootstrap methods, we consider multiplier
and empirical bootstrap procedures abbreviated as MB and EB methods.
The SN method is analytical and is very easy to implement. As such, the
SN method is particularly useful for grid search when the researcher is in-
terested in constructing the confidence region for the identified set in the
parametric model defined via moment inequalities as in Section 6. Boot-
strap methods are simulation-based and computationally harder.6 However,
an important feature of bootstrap methods is that they take into account
correlation structure of the data and yield lower critical values leading to
more powerful tests than those obtained via the SN method. In particular,
if the researcher incidentally repeated the same inequality twice or, more
importantly, included inequalities with very similar informational content
(that is, highly correlated inequalities), the MB/EB methods would be able
to account of this and would automatically disregard or nearly disregard
these duplicated or nearly duplicated inequalities, without inflating the crit-
ical value.

We also consider two-step methods by incorporating inequality selection
procedures. The two-step methods get rid of most of uninformative inequal-
ities, that is inequalities j with µj < 0 if µj is not too close to 0. By dropping
the uninformative inequalities, the two-step methods produce more power-
ful tests than those based on one-step methods, that is, methods without
inequality selection procedures.

6In fact, the MB and EB methods are computationally also rather simple. For example,
it took us only about 2 hours to conduct all the Monte Carlo experiments described in
Section 8, which is remarkably small time for Monte Carlo experiments in our experience.
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Moreover, we develop novel three-step methods by incorporating dou-
ble inequality selection procedures. The three-step methods are suitable in
parametric models defined via moment inequalities and allow to drop weakly
informative inequalities in addition to uninformative inequalities.7 Specifi-
cally, consider the model E[gj(ξ, θ)] ≤ 0 for all j = 1, . . . , p where ξ is a vector
of random variables, θ a vector of parameters, and g1, . . . , gp a set of func-
tions. Suppose that the researcher is interested in testing the null hypothesis
θ = θ0 against the alternative θ ̸= θ0 based on the i.i.d. data ξ1, . . . , ξn, so
that the problem reduces to (1)-(2) by setting Xij = gj(ξi, θ0). We say that
the inequality j is weakly informative if the function θ 7→ E[gj(ξ, θ)] is flat
or nearly flat at θ = θ0. Dropping weakly informative inequalities allows
us to derive tests with higher local power since these inequalities can only
provide a weak signal of violation of the null hypothesis when θ is close to
θ0.

We prove validity of these methods for computing critical values, uni-
formly in suitable classes of common distributions of Xi. We derive non-
asymptotic bounds on the rejection probabilities, where the qualification
“non-asymptotic” means that the bounds hold with fixed n (and p, and all
the other parameters), and the dependence of the constants involved in the
bounds are stated explicitly. Notably, under mild conditions, these methods
lead to the error in size decreasing polynomially in n, while allowing for p
much larger than n; indeed, p can be of order exp(nc) for some c > 0. In
addition, we emphasize that although we are primarily interested in the case
with p (much) larger than n, our methods remain valid when p is small or
comparable to n.

We also show optimality of our tests from a minimax point of view.8

Specifically, we consider the alternative hypotheses whose “distance” from
the null is r > 0 in the sense that H1,r : max1≤j≤p(µj/σj) ≥ r, where
σ2j := Var(X1j). Intuitively, the smaller r > 0 is, the more difficult to
distinguish H1,r from H0 is. We show that, when p = pn → ∞ as n → ∞,
any test can only have trivial power against H1,rn in the worst case where

rn = (1− ϵn)
√

2(log pn)/n and where ϵn is any positive sequence with ϵn →
0 sufficiently slowly, while all of our tests described above are uniformly
consistent against H1,rn where rn = (1 + ϵn)

√
2(log pn)/n.

An important feature of our methods is that increasing the set of moment
inequalities has no or little effect on the critical value. In particular, our
critical values are always bounded by a slowly varying function (log p)1/2

(up-to a constant). This implies that instead of making a subjective choice
of inequalities, the researcher can use all (or at least a large set of) available
inequalities, and the results will be not-too-different from those based only

7The same methods can be extended to nonparametric models as well. In this case, θ
appearing below in this paragraph should be considered as a sieve parameter.

8See, for example, Ingster (1993) and Ingster and Suslina (2003) for the minimax
approach to hypothesis testing in nonparametric statistical models.
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on the inequalities that violate H0 (the latter procedure is of course infea-
sible, and the slow growth of the critical value can be thought of as a small
cost of data-driven adaptation to the inequalities that violate H0). This
feature of our methods is akin to that in modern high dimensional/big data
techniques like Lasso and Dantzig selector that allow for variable selection
in exchange for small cost in precision of model estimates; see, for example,
Bickel, Ritov, and Tsybakov (2009) for analysis and discussion of methods
of estimating high dimensional models.

Moreover, we consider two extensions of our results in Section 7. In the
first extension, we consider testing many moment inequalities for dependent
data. Specifically, we prove validity of a test based on the (block) multiplier
bootstrap under β-mixing conditions; see Section 7 for the definitions. As
in other parts of the paper, our results allow p to be potentially much larger
than n. Our results complement the set of impressive results in Zhang and
Cheng (2014) who, independently from us and around the same time, consid-
ered the case of the functionally dependent time series data (the concept of
functional dependence was introduced in Wu (2005) and is different from β-
mixing). Thus, both our paper and Zhang and Cheng (2014) extend Gauss-
ian approximation and bootstrap results of Chernozhukov, Chetverikov, and
Kato (2013a) to the case of dependent data but under different dependence
conditions (that do not nest each other). The results obtained in these two
papers are strongly complementary and, taken together, cover a wide variety
of dependent data processes, thereby considerably expanding the applicabil-
ity of the proposed tests. In the second extension, we allow for approximate
inequalities to account of the case where an approximation error arises ei-
ther from estimated nuisance parameters or from the need to linearize the
inequalities. Both of these extensions are important for inference in dynamic
models such as those considered in Bajari, Benkard, and Levin (2007).

The problem of testing moment inequalities described above is “dual” of
that of constructing confidence regions for identifiable parameters in par-
tially identified models where identified sets are given by moment inequali-
ties, in the sense that any test of size (approximately) α ∈ (0, 1) for the for-
mer problem will lead to a confidence region for the latter problem with cov-
erage (approximately) at least 1−α (see Romano and Shaikh, 2008). There-
fore, our results on testing moment inequalities are immediately transferred
to those on construction of confidence regions for identifiable parameters
in partially identified models. That is, our methods for computing critical
values lead to methods of construction of confidence regions with coverage
error decreasing polynomially in n while allowing for p ≫ n. Importantly,
these coverage results hold uniformly in suitably large classes of underlying
distributions, so that the resulting confidence regions are (asymptotically)
honest to such classes (see Section 6 for the precise meaning).

The literature on testing (unconditional) moment inequalities is large; see
Chernozhukov, Hong, and Tamer (2007), Romano and Shaikh (2008), Rosen
(2008), Andrews and Guggenberger (2009), Andrews and Soares (2010),
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Canay (2010), Bugni (2011), Andrews and Jia-Barwick (2012), and Romano,
Shaikh, and Wolf (2013). However, these papers deal only with a finite (and
fixed) number of moment inequalities. There are also several papers on
testing conditional moment inequalities, which can be treated as an infinite
number of unconditional moment inequalities; see Andrews and Shi (2013),
Chernozhukov, Lee, and Rosen (2013), Lee, Song, and Whang (2013a,b),
Armstrong (2011), Chetverikov (2011), and Armstrong and Chan (2012).
However, when unconditional moment inequalities come from conditional
ones, they inherit from original inequalities certain correlation structure
that facilitates the analysis of such moment inequalities. In contrast, we
are interested in treating many moment inequalities without assuming any
correlation structure, motivated by important examples such as those in
Cilberto and Tamer (2009), Bajari, Benkard, and Levin (2007), and Pakes
(2010). Menzel (2009) considered inference for many moment inequalities,

but with p growing at most as n2/7 (and hence p being much smaller than
n). Also his approach and test statistics are different from ours. Finally,
Allen (2014) recently suggested further extensions and refinements of our
new methods. In particular, he noticed that the truncation threshold for
our selection procedures can be taken slightly lower (in absolute value) than
what we use; he studied an iterative procedure based on Chetverikov (2011);
and he considered moment re-centering procedure similar to that developed
in Romano, Shaikh, and Wolf (2013). The latter two possibilities were
already noted in the previous versions of our paper.9

The remainder of the paper is organized as follows. In the next section,
we discuss several motivating examples. In Section 3, we build our test
statistic. In Section 4, we derive various ways of computing critical values
for the test statistic, including the SN, MB, and EB methods and their two-
step and three-step variants discussed above, and prove their validity. In
Section 5, we show asymptotic minimax optimality of our tests. In Section
6, we present the corresponding results on construction of confidence regions
for identifiable parameters in partially identified models. In Section 7, we
present two extensions discussed above. All the technical proofs are deferred
to the Appendix. Finally, the Supplemental Material discusses some details
on the dynamic model of imperfect competition example discussed in Section
2.

1.1. Notation and convention. For an arbitrary sequence {zi}ni=1, we
write En[zi] = n−1

∑n
i=1 zi. For a, b ∈ R, we use the notation a ∨ b =

max{a, b}. For any finite set J , we let |J | denote the number of elements
in J . The transpose of a vector z is denoted by zT . Moreover, we use
the notation Xn

1 = {X1, . . . , Xn}. In this paper, we (implicitly) assume
that the quantities such as X1, . . . , Xn and p are all indexed by n. We are
primarily interested in the case where p = pn → ∞ as n → ∞. However,
in most cases, we suppress the dependence of these quantities on n for the

9See the 2013 version of our paper at arXiv:1312.7614v1.
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notational convenience, and our results also apply to the case with fixed p.
Finally, throughout the paper, we assume that n ≥ 2 and p ≥ 2.

2. Motivating examples

In this section, we provide three examples that motivate the framework
where the number of moment inequalities p is large and potentially much
larger than the sample size n. In these examples, one actually has many
conditional rather than unconditional moment inequalities. Therefore, we
emphasize that our results cover the case of many conditional moment in-
equalities as well.10 As these examples demonstrate, there is a variety of eco-
nomic models leading to the problem of testing many unconditional and/or
many conditional moment inequalities to which the methods available in
the literature so far can not be applied, and which, therefore, requires the
methods developed in this paper.

2.1. Market structure model. This example is based on Ciliberto and
Tamer (2009). Let m denote the number of firms that could potentially
enter the market. Let m-tuple D = (D1, . . . , Dm) denote entry decisions
of these firms; that is, Dj = 1 if the firm j enters the market and Dj = 0
otherwise. Let D denote the set of possible values of D. Clearly, the number
of elements d of the set D is |D| = 2m.

Let X and ε denote (exogenous) characteristics of the market as well
as characteristics of the firms that are observed and not observed by the
researcher, respectively. The profit of the firm j is given by

πj(D,X, ε, θ),

where the function πj is known up to a parameter θ. Assume that both X
and ε are observed by the firms and that a Nash equilibrium is played, so
that for each j,

πj((Dj , D−j), X, ε, θ) ≥ πj((1−Dj , D−j), X, ε, θ),

where D−j denotes decisions of all firms excluding the firm j. Then one can
find set-valued functions R1(d,X, θ) and R2(d,X, θ) such that d is the unique

10Indeed, consider conditional moment inequalities of the form

E[gj(Y ) | Z] ≤ 0 for all j = 1, . . . , p′ (3)

where (Y,Z) is a pair of random vectors and g1, . . . , gp′ is a set of functions with p′ being

large. Let Z be the support of Z and assume that Z is a compact set in Rl. Then,
following Andrews and Shi (2013), one can construct an infinite set I of instrumental
functions I : Z → R such that I(z) ≥ 0 for all z ∈ Z and (3) holds if and only if

E[gj(Y )I(Z)] ≤ 0 for all j = 1, . . . , p′ and all I ∈ I.

In practice, one can choose a large subset In of I and consider testing p = p′|In| moment
inequalities

E[gj(Y )I(Z)] ≤ 0 for all j = 1, . . . , p′ and all I ∈ In. (4)

If In is large enough and grows sufficiently fast with n, the test of (3) based on (4) will
be consistent.
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equilibrium whenever ε ∈ R1(d,X, θ), and d is one of several equilibria
whenever ε ∈ R2(d,X, θ). When ε ∈ R1(d,X, θ) for some d ∈ D, we know
for sure that D = d but when ε ∈ R2(d,X, θ), the probability that D =
d depends on the equilibrium selection mechanism, and, without further
information, can be anything in [0, 1]. Therefore, we have the following
bounds

E [1{ε ∈ R1(d,X, θ) | X] ≤ E [1{D = d} | X]

≤ E [1{ε ∈ R1(d,X, θ) ∪R2(d,X, θ)} | X] ,

for all d ∈ D. Further, assuming that the conditional distribution of ε given
X is known (alternatively, it can be assumed that this distribution is known
up to a parameter that is a part of the parameter θ), both the left- and
the right-hand sides of these inequalities can be calculated. Denote them by
P1(d,X, θ) and P2(d,X, θ), respectively, to obtain

P1(d,X, θ) ≤ E [1{D = d} | X] ≤ P2(d,X, θ) for all d ∈ D. (5)

These inequalities can be used for inference about the parameter θ. Note
that the number of inequalities in (5) is 2|D| = 2m+1, which is a large
number even if m is only moderately large. Moreover, these inequalities
are conditional on X. For inference about the parameter θ, each of these
inequalities can be transformed into a large and increasing number of un-
conditional inequalities as described above. Also, if the firms have more
than two decisions, the number of inequalities will be even (much) larger.
Therefore, our framework is exactly suitable for this example.

2.2. Discrete choice model with endogeneity. Our second example is
based on Chesher, Rosen, and Smolinski (2013). The source of many mo-
ment inequalities in this example is different from that in the previous ex-
ample. Consider an individual who is choosing an alternative d from a set
D of available options. LetM = |D| denote the number of available options.
Let D denote the choice of the individual. From choosing an alternative d,
the individual obtains the utility

u(d,X, V ),

where X is a vector of observable (by the researcher) covariates and V is
a vector of unobservable (by the researcher) utility shifters. The individual
observes both X and V and makes a choice based on utility maximization,
so that D satisfies

u(D,X, V ) ≥ u(d,X, V ) for all d ∈ D.
The object of interest in this model is the pair (u, PV ) where PV denotes
the distribution of the vector V .

In many applications, some components of X may be endogenous in the
sense that they are not independent of V . Therefore, to achieve (partial)
identification of the pair (u, PV ), following Chesher, Rosen, and Smolinski
(2013), assume that there exists a vector Z of observable instruments that
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are independent of V . Let V denote the support of V , and let τ(d,X, u)
denote the subset of V such that D = d whenever X = x and V ∈ τ(d, x, u),
so that

V ∈ τ(D,X, u). (6)

Then for any set S ⊂ V,
E [1{V ∈ S}] = E [1{V ∈ S} | Z] ≥ E [1{τ(D,X, u) ⊂ S} | Z] , (7)

where the equality follows from independence of V from Z, and the inequal-
ity from (6). Note that the left-hand side of (7) can be calculated (for fixed
distribution PV ) and equals PV (S), so that we obtain

PV (S) ≥ E [1{τ(D,X, u) ⊂ S} | Z] for all S ∈ S, (8)

where S is some collection of sets in V. Inequalities (8) can be used for
inference about the pair (u, PV ). A natural question then is what collection
of sets S should be used in (8). Chesher, Rosen, and Smolinski (2013) showed
that sharp identification of the pair (u, PV ) is achieved by considering all
unions of sets on the support of τ(D,X, u) with the property that the union
of the interiors of these sets is a connected set. When X is discrete with the
support consisting of m points, this implies that the class S may consist of
M ·2m sets, which is a large number even for moderately large m. Moreover,
as in our previous example, inequalities in (8) are conditional giving rise to
even a larger set of inequalities when transformed into unconditional ones.
Therefore, our framework is again exactly suitable for this example.

Also, we note that the model described in this example fits as a special
case into a Generalized Instrumental Variable framework set down and an-
alyzed by Chesher and Rosen (2013), where the interested reader can find
other examples leading to many moment inequalities.

2.3. Dynamic model of imperfect competition. This example is based
on Bajari, Benkard, and Levin (2007). In this example, many moment
inequalities arise from ruling out deviations from best responses in a dynamic
game. Consider a market consisting ofN firms. Each firm j makes a decision
Ajt ∈ A at time periods t = 0, 1, 2, . . . ,∞. Let At = (A1t, . . . , ANt) denote
the N -tuple of decisions of all firms at period t. The profit of the firm j at
period t, denoted by πj(At, St, νjt), depends on the N -tuple of decisions At,
the state of the market St ∈ S at period t, and the firm- and time-specific
shock νjt ∈ V. Assume that the state of the market St follows a Markov
process, so that St+1 has the distribution function P (St+1|At, St), and that
νjt is i.i.d. across firms j and time periods t with the distribution function
G(νjt). In addition, assume that when the firm j is making a decision Ajt at
period t, it observes St and νjt but does not observe ν−jt, the specific shocks
of all its rivals, and that the objective function of the firm j at period t is
to maximize

E

[ ∞∑
τ=t

βτ−tπj(Aτ , Sτ , νjt) | St

]
,
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where β is a discount factor. Further, assume that a Markov Perfect Equi-
librium (MPE) is played in the market. Specifically, let σj : S × V → A
denote the MPE strategy of firm j, and let σ := (σ1, . . . , σN ) denote the
N -tuple of strategies of all firms. Define the value function of the firm j in
the state s ∈ S given the profile of strategies σ, Vj(s, σ), by the Belmann
equation:

Vj(s, σ) := Eν

[
πj(σ(s, ν), s, νj) + β

∫
Vj(s

′, σ)dP (s′ | σ(s, ν), s)
]
,

where σ(s, ν) = (σ1(s, ν1), . . . , σN (s, νN )), and expectation is taken with
respect to ν = (ν1, . . . , νN ) consisting of N i.i.d. random variables νj with
the distribution function G(νj). Then the profile of strategies σ is an MPE
if for any j = 1, . . . , N and σ′j : S × V → A, we have

Vj(s, σ) ≥ Vj(s, σ
′
j , σ−j)

= Eν

[
πj(σ

′
j(s, νi), σ−j(s, ν−j), s, νj)

+ β

∫
Vj(s

′, σ′j , σ−j)dP (s
′ | σ′j(s, νj), σ−j(s, ν−j), s)

]
,

where σ−j is strategies of all rivals of the firm j in the profile σ.
For estimation purposes, assume that the functions πj(At, St, νjt) and

G(νjt) are known up-to a finite dimensional parameter θ, that is we have
πj(At, St, νjt) = πj(At, St, νjt, θ) and G(νjt) = G(νjt, θ), so that the value
function Vj(s, σ) = Vj(s, σ, θ) also depends on θ, and the goal is to estimate
θ. Assume that the data consist of observations on n similar markets for a
short span of periods or observations on one market for n periods. In the
former case, assume also that the same MPE is played in all markets.11

In this model, Bajari, Benkard, and Levin (2007) suggested a computa-
tionally tractable two stage procedure to estimate the structural parame-
ter θ. An important feature of their procedure is that it does not require
point identification of the model. The first stage of their procedure con-
sists of estimating transition probability function P (St+1|St, At) and policy
functions (strategies) σj(s, νj). Following their presentation, assume that
these functions are known up-to a finite dimensional parameter α, that is
P (St+1|St, At) = P (St+1|St, At, α) and σj(s, νj) = σj(s, νj , α), and that the
first stage yields a

√
n-consistent estimator α̂n of α. Using α̂n, one can esti-

mate transition probability function by P (St+1|St, At, α̂n), and then one can
calculate the (estimated) value function of the firm j at every state s ∈ S,
V̂j(s, σ

′, θ), for any profile of strategies σ′ and any value of the parameter θ
using forward simulation as described in Bajari, Benkard, and Levin (2007).

11In the case of data consisting of observations on one market for n periods, one has
to use techniques for dependent data developed in Section 7.1 of this paper. It is also
conceptually straightforward to extend our techniques to the case when the data consist
of observations on many markets for many periods, as happens in some empirical studies.
We leave this extension for future work.
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Here we have V̂j(s, σ
′, θ) instead of Vj(s, σ

′, θ) because forward simulations
are based on the estimated transition probability function P (St+1|St, At, α̂n)
instead of the true functions P (St+1|St, At, α). Then, on the second stage,
one can test equilibrium conditions

Vj(s, σj , σ−j , θ) ≥ Vj(s, σ
′
j , σ−j , θ)

for all j = 1, . . . , N , s ∈ S, and σ′j ∈ Σ for some set of strategies Σ by
considering inequalities

V̂j(s, σj(α̂n), σ−j(α̂n), θ) ≥ V̂j(s, σ
′
j , σ−j(α̂n), θ) (9)

where σj(α̂n) and σ−j(α̂n) are estimated policy functions for the firm j and
all of its rivals, respectively. Inequalities (9) can be used to test hypotheses
about parameter θ. The number of inequalities is determined by the number
of elements in Σ. Assuming that A, S, and V are all finite, we obtain
|Σ| = |A||S|·|V|, so that the total number of inequalities is N · |S| · |Σ|, which
is a very large number in all but trivial empirical applications.

Inequalities (9) do not fit directly into our testing framework (1)-(2). One
possibility to go around this problem is to use a jackknife procedure. In a
nutshell, assuming that the data consist of observations on n i.i.d mar-

kets, the procedure is as follows. Let α̂−i
n , V̂ −i

j (s, σj(α̂
−i
n ), σ−j(α̂

−i
n ), θ),

and V̂ −i
j (s, σ′j , σ−j(α̂

−i
n ), θ) denote the leave-market-i-out estimates of α,

Vj(s, σj(α), σ−j(α), θ), and Vj(s, σ
′
j , σ−j(α), θ), respectively. Define

X̃ij(s, θ) := nV̂j(s, σj(α̂n), σ−j(α̂n), θ)

− (n− 1)V̂ −i
j (s, σj(α̂

−i
n ), σ−j(α̂

−i
n ), θ)

and

X̃ ′
ij(s, σ

′
j , θ) := nV̂j(s, σ

′
j , σ−j(α̂n), θ)

− (n− 1)V̂ −i
j (s, σ′j , σ−j(α̂

−i
n ), θ).

Also, define

X̂ij(s, σ
′
j , θ) := X̃ ′

ij(s, σ
′
j , θ)− X̃ij(s, θ).

Then under some regularity conditions including smoothness of the value
function Vj(s, σ), one can show that

X̂ij(s, σ
′
j , θ) = Xij(s, σ

′
j , θ) +OP (n

−1/2) (10)

where
E[Xij(s, σ

′
j , θ)] = Vj(s, σ

′
j , σ−j , θ)− Vj(s, σ, θ) (11)

and Xij(s, σ
′
j , θ)’s are independent across markets i = 1, . . . , n. We provide

some details on the derivation of (10) in the Supplemental Material. Now we
can use results of Section 7.2 on testing approximate moment inequalities to
do inference about the parameter θ if we replace Xij(s, σ

′
j , θ) by the “data”

X̂ij(s, σ
′
j , θ) and we use

√
n(V̂j(s, σ

′
j , σ−j(α̂n), θ)− V̂j(s, σj(α̂n), σ−j(α̂n), θ))

instead of
√
nµ̂j = n−1/2

∑n
i=1 X̂ij(s, σ

′
j , θ) in the numerator of our test
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statistic defined in (13). Thus, this example fits into our framework as
well.12

3. Test statistic

We begin with preparing some notation. Recall that µj = E[X1j ]. We
assume that

E[X2
1j ] <∞, σ2j := Var(X1j) > 0, j = 1, . . . , p. (12)

For j = 1, . . . , p, let µ̂j and σ̂2j denote the sample mean and variance of
X1j , . . . , Xnj , respectively, that is,

µ̂j = En[Xij ] =
1

n

n∑
i=1

Xij , σ̂
2
j = En[(Xij − µ̂j ])

2] =
1

n

n∑
i=1

(Xij − µ̂j)
2.

Alternatively, we can use σ̃2j = (1/(n − 1))
∑n

i=1(Xij − µ̂j)
2 instead of σ̂2j ,

which does not alter the overall conclusions of the theorems ahead. In all
what follows, however, we will use σ̂2j .

There are several different statistics that can be used for testing the null
hypothesis (1) against the alternative (2). Among all possible statistics, it is
natural to consider statistics that take large values when some of µ̂j are large.
In this paper, we focus on the statistic that takes large values when at least
one of µ̂j is large. One can also consider either non-Studentized or Studen-
tized versions of the test statistic. For a non-Studentized statistic, we mean
a function of µ̂1, . . . , µ̂p, and for a Studentized statistic, we mean a function
of µ̂1/σ̂1, . . . , µ̂p/σ̂p. Studentized statistics are often considered preferable.
In particular, they are scale-invariant (that is, multiplying X1j , . . . , Xnj by
a scalar value does not change the value of the test statistic), and they typ-
ically spread power evenly among different moment inequalities µj ≤ 0. See
Romano and Wolf (2005) for a detailed comparison of Studentized versus
non-Studentized statistics in a related context of multiple hypothesis testing.
In our case, Studentization also has an advantage that it allows us to derive
an analytical critical value for the test under weak moment conditions. In
particular, for our SN critical values, we will only require finiteness (exis-
tence) of E[|X1j |3] (see Section 4.1.1). As far as MB/EB critical values are
concerned, our theory can cover a non-Studentized statistic but Studentiza-
tion leads to easily interpretable regularity conditions. For these reasons, in
this paper we study the Studentized version of the test statistic.

12The jackknife procedure described above may be computationally intensive in some
applications but, on the other hand, the required computations are rather straightforward.
In addition, this procedure only involves the first stage estimation, which is typically
computationally simple. Moreover, bootstrap procedures developed in this paper do not
interact with the jackknife procedure, so that the latter procedure has to be performed
only once.
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To be specific, we focus on the following test statistic:

T = max
1≤j≤p

√
nµ̂j
σ̂j

. (13)

Large values of T indicate that H0 is likely to be violated, so that it would
be natural to consider the test of the form

T > c⇒ reject H0, (14)

where c is a critical value suitably chosen in such a way that the test has
approximately size α ∈ (0, 1). We will consider various ways for calculating
critical values and prove their validity.

Rigorously speaking, the test statistic T is not defined when σ̂2j = 0 for
some j = 1, . . . , p. In such cases, we interpret the meaning of “T > c” in
(14) as

√
nµ̂j > cσ̂j for some j = 1, . . . , p, which makes sense even if σ̂2j = 0

for some j = 1, . . . , p. We will obey such conventions if necessary without
further mentioning.

Other types of test statistics are possible. For example, one alternative is
the test statistic of the form

T ′ =

p∑
j=1

(
max{

√
nµ̂j/σ̂j , 0}

)2
.

The statistic T ′ has an advantage that it is less sensitive to outliers. However,
T ′ leads to good power only if many inequalities are violated simultaneously.
In general, T ′ is preferable against T if the researcher is interested in detect-
ing deviations when many inequalities are violated simultaneously, and T is
preferable against T ′ if the main interest is in detecting deviations when at
least one moment inequality is violated too much. When p is large, as in our
motivating examples, the statistic T seems preferable over T ′ because the
critical value for the test based on T grows very slowly with p (at most as

(log p)1/2) whereas one can expect that the critical value for the test based
on T ′ grows at least polynomially with p.

Another alternative is the test statistic of the form

T ′′ = min
t≤0

n(µ̂− t)T Σ̂−1(µ̂− t),

where µ̂ = (µ̂1, . . . , µ̂p)
T , t = (t1, . . . , tp)

T ≤ 0 means tj ≤ 0 for all j =

1, . . . , p, and Σ̂ is some p by p symmetric positive definite matrix. This
statistic in the context of testing moment inequalities was first studied by
Rosen (2008) when the number of moment inequalities p is fixed; see also
Wolak (1991) for the analysis of this statistic in a different context. Typi-

cally, one wants to take Σ̂ as a suitable estimate of the covariance matrix of
X1, denoted by Σ. However, when p is larger than n, it is not possible to
consistently estimate Σ without imposing some structure (such as sparsity)
on it. Moreover, the results of Bai and Saranadasa (1996) suggest that the
statistic T ′ or its variants may lead to higher power than T ′′ even when p
is smaller than but close to n. For the rest of the paper, we focus on the
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statistic T and do not provide critical values for the tests based on T ′ and
T ′′.

4. Critical values

In this section, we study several methods to compute critical values for
the test statistic T so that under H0, the probability of rejecting H0 does
not exceed size α approximately. The methods are essentially ordered by
increasing computational complexity, increasing strength of required condi-
tions, but also increasing power. We note, however, that all our methods
require only mild conditions on the underlying distributions and are rather
simple in computation and implementation.

The basic idea for construction of critical values for T lies in the fact that
under H0,

T ≤ max
1≤j≤p

√
n(µ̂j − µj)/σ̂j , (15)

where the equality holds when all the moment inequalities are binding, that
is, µj = 0 for all j = 1, . . . , p. Hence in order to make the test to have size
α, it is enough to choose the critical value as (a bound on) the (1 − α)-
quantile of the distribution of max1≤j≤p

√
n(µ̂j − µj)/σ̂j . We consider two

approaches to construct such critical values: self-normalized and bootstrap
methods. We also consider two- and three-step variants of the methods by
incorporating inequality selection.

We will use the following notation. Pick any α ∈ (0, 1/2). Let

Zij = (Xij − µj)/σj , and Zi = (Zi1, . . . , Zip)
T . (16)

Observe that E[Zij ] = 0 and E[Z2
ij ] = 1. Define

Mn,k = max
1≤j≤p

(
E[|Z1j |k]

)1/k
, k = 3, 4, Bn =

(
E
[
max
1≤j≤p

Z4
1j

])1/4
.

Note that by Jensen’s inequality, Bn ≥ Mn,4 ≥ Mn,3 ≥ 1. In addition, if
Zij ’s are all bounded by a constant C almost surely, we have C ≥ Bn. These
inequalities are useful to get a sense of various conditions on Mn,3, Mn,4,
and Bn imposed in the theorems below.

4.1. Self-Normalized methods.

4.1.1. One-step method. The self-normalized method (abbreviated as the
SN method in what follows) we consider is based upon the union bound
combined with a moderate deviation inequality for self-normalized sums.
Because of inequality (15), under H0,

P(T > c) ≤
p∑

j=1

P(
√
n(µ̂j − µj)/σ̂j > c). (17)

At a first sight, this bound may look too crude when p is large since, as long
as Xij has polynomial tails, the value of c that makes the sum on the right-
hand side of the inequality above bounded by size α depends polynomially on
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p, which would make the test too conservative. However, we will exploit the
self-normalizing nature of the quantity

√
n(µ̂j −µj)/σ̂j so that the resulting

critical value depends on p only through its logarithm. In addition, in spite
of the fact that the SN method is based on the union bound, we will show
in Section 5 that the resulting test is asymptotically minimax optimal when
p = pn → ∞ as n→ ∞.

For j = 1, . . . , p, define

Uj =
√
nEn[Zij ]/

√
En[Z2

ij ].

By simple algebra, we see that

√
n(µ̂j − µj)/σ̂j = Uj/

√
1− U2

j /n,

where the right-hand side is increasing in Uj as long as Uj ≥ 0. Hence under
H0,

P(T > c) ≤
p∑

j=1

P
(
Uj > c/

√
1 + c2/n

)
, c ≥ 0. (18)

Now, the moderate deviation inequality for self-normalized sums of Jing,
Shao, and Wang (2003) (see Lemma A.1 in the Appendix) implies that for
moderately large c ≥ 0,

P
(
Uj > c/

√
1 + c2/n

)
≈ P

(
N(0, 1) > c/

√
1 + c2/n

)
even if Zij only have 2 + δ finite moments for some δ > 0. Therefore, we
take the critical value as

cSN (α) =
Φ−1(1− α/p)√

1− Φ−1(1− α/p)2/n
, (19)

where Φ(·) is the distribution function of the standard normal distribution,
and Φ−1(·) is its quantile function. We will call cSN (α) the (one-step) SN
critical value with size α as its derivation depends on the moderate deviation
inequality for self-normalized sums. Note that

Φ−1(1− α/p) ∼
√

log(p/α),

so that cSN (α) depends on p only through log p.
The following theorem provides a non-asymptotic bound on the probabil-

ity that the test statistic T exceeds the SN critical value cSN (α) under H0

and shows that the bound converges to α under mild regularity conditions,
thereby validating the SN method.

Theorem 4.1 (Validity of one-step SN method). Suppose that Mn,3Φ
−1(1−

α/p) ≤ n1/6. Then under H0,

P(T > cSN (α)) ≤ α
[
1 +Kn−1/2M3

n,3{1 + Φ−1(1− α/p)}3
]
, (20)
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where K is a universal constant. Hence if there exist constants 0 < c1 < 1/2
and C1 > 0 such that

M3
n,3 log

3/2(p/α) ≤ C1n
1/2−c1 , (21)

then under H0,

P(T > cSN (α)) ≤ α+ Cn−c1 , (22)

where C is a constant depending only on c1, C1. Moreover, this bound holds
uniformly with respect to the common distribution of Xi for which (12) and
(21) are verified.

Comment 4.1 (Relaxing conditions of Theorem 4.1). The theorem assumes
that max1≤j≤p E[|X1j |3] < ∞ (so that Mn,3 < ∞) but allows this quantity
to diverges as n→ ∞ (recall p = pn). In principle, Mn,3 that appears in the

theorem could be replaced by max1≤j≤p(E[|Z1j |2+ν ])1/(2+ν) for 0 < ν ≤ 1,
which would further weaken moment conditions; however, for the sake of
simplicity of presentation, we do not explore this generalization.

4.1.2. Two-step method. We now turn to combine the SN method with in-
equality selection. We begin with stating the motivation for inequality se-
lection.

Observe that when µj < 0 for some j = 1, . . . , p, inequality (15) becomes
strict, so that when there are many j for which µj are negative and large
in absolute value, the resulting test with one-step SN critical values would
tend to be unnecessarily conservative. Hence it is intuitively clear that, in
order to improve the power of the test, it is better to exclude j for which µj
are below some (negative) threshold when computing critical values. This
is the basic idea behind inequality selection.

More formally, let 0 < βn < α/3 be some constant. For generality, we
allow βn to depend on n; in particular, βn is allowed to decrease to zero as
the sample size n increases. Let cSN (βn) be the SN critical value with size

βn, and define the set ĴSN ⊂ {1, . . . , p} by

ĴSN :=
{
j ∈ {1, . . . , p} :

√
nµ̂j/σ̂j > −2cSN (βn)

}
. (23)

Let k̂ denote the number of elements in ĴSN , that is,

k̂ = |ĴSN |.
Then the two-step SN critical value is defined by

cSN,2S(α) =


Φ−1(1−(α−2βn)/k̂)√

1−Φ−1(1−(α−2βn)/k̂)2/n
, if k̂ ≥ 1,

0, if k̂ = 0.
(24)

The following theorem establishes validity of this critical value.

Theorem 4.2 (Validity of two-step SN method). Suppose that supn≥1 βn ≤
α/3 and there exist constants 0 < c1 < 1/2 and C1 > 0 such that

M3
n,3 log

3/2(p/βn) ≤ C1n
1/2−c1 , and B2

n log
2(p/βn) ≤ C1n

1/2−c1 . (25)
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Then there exist positive constants c, C depending only on α, c1, C1 such that
under H0,

P(T > cSN,2S(α)) ≤ α+ Cn−c.

Moreover, this bound holds uniformly with respect to the common distribu-
tion of Xi for which (12) and (25) are verified.

Comment 4.2 (Comparing conditions of one-step and two-step SN meth-
ods). Observe that the condition (25) required for the validity of the two-step
SN method in Theorem 4.2 is stronger than the condition (21) required for
the validity of the one-step SN method in Theorem 4.1.

4.2. Bootstrap methods. In this section, we consider bootstrap methods
for calculating critical values. Specifically, we consider Multiplier Bootstrap
(MB) and Empirical (nonparametric, or Efron’s) Bootstrap (EB) methods.
The methods studied in this section are computationally harder than those
in the previous section but they lead to less conservative tests. In particular,
we will show that when all the moment inequalities are binding (that is,
µj = 0 for all 1 ≤ j ≤ p), the asymptotic size of the tests based on these
methods coincides with the nominal size.

4.2.1. One-step method. We first consider the one-step method. Recall that,
in order to make the test to have size α, it is enough to choose the critical
value as (a bound on) the (1− α)-quantile of the distribution of

max
1≤j≤p

√
n(µ̂j − µj)/σ̂j .

The SN method finds such a bound by using the union bound and the moder-
ate deviation inequality for self-normalized sums. However, the SN method
may be conservative as it ignores correlation between the coordinates in Xi.

Alternatively, we consider here a Gaussian approximation. Observe first
that under suitable regularity conditions,

max
1≤j≤p

√
n(µ̂j − µj)/σ̂j ≈ max

1≤j≤p

√
n(µ̂j − µj)/σj = max

1≤j≤n

√
nEn[Zij ],

where Zi = (Zi1, . . . , Zip)
T are defined in (16). When p is fixed, the central

limit theorem guarantees that as n→ ∞,

√
nEn[Zi]

d→ Y, with Y = (Y1, . . . , Yp)
T ∼ N(0,E[Z1Z

T
1 ]),

which, by the continuous mapping theorem, implies that

max
1≤j≤p

√
nEn[Zij ]

d→ max
1≤j≤p

Yj .

Hence in this case it is enough to take the critical value as the (1−α)-quantile
of the distribution of max1≤j≤p Yj .

When p grows with n, however, the concept of convergence in distribution
does not apply, and different tools should be used to derive an appropriate
critical value for the test. One possible approach is to use a Berry-Esseen
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theorem that provides a suitable non-asymptotic bound between the dis-
tributions of

√
nEn[Zi] and Y ; see, for example, Götze (1991) and Bentkus

(2003). However, such Berry-Esseen bounds require p to be small in compar-
ison with n in order to guarantee that the distribution of

√
nEn[Zi] is close

to that of Y . Another possible approach is to compare the distributions
of max1≤j≤p

√
nEn[Zij ] and max1≤j≤p Yj directly, avoiding the comparison

of distributions of the whole vectors
√
nEn[Zi] and Y . Our recent work

(Chernozhukov, Chetverikov, and Kato, 2013a, 2014b) shows that, under
mild regularity conditions, the distribution of max1≤j≤p

√
nEn[Zij ] can be

approximated by that of max1≤j≤p Yj in the sense of Kolmogorov distance
even when p is larger or much larger than n.13 This result implies that we
can still use the (1 − α)-quantile of the distribution of max1≤j≤p Yj even
when p grows with n and is potentially much larger than n.14

Still, the distribution of max1≤j≤p Yj is typically unknown because the
covariance structure of Y is unknown. Hence we will approximate the dis-
tribution of max1≤j≤p Yj by one the following two bootstrap procedures:

Algorithm (Multiplier bootstrap).

1. Generate independent standard normal random variables ϵ1, . . . , ϵn
independent of the data Xn

1 = {X1, . . . , Xn}.

2. Construct the multiplier bootstrap test statistic

WMB = max
1≤j≤p

√
nEn[ϵi(Xij − µ̂j)]

σ̂j
. (26)

3. Calculate cMB(α) as

cMB(α) = conditional (1− α)-quantile of WMB given Xn
1 . (27)

Algorithm (Empirical bootstrap).

1. Generate a bootstrap sample X∗
1 , . . . , X

∗
n as i.i.d. draws from the

empirical distribution of Xn
1 = {X1, . . . , Xn}.

2. Construct the empirical bootstrap test statistic

WEB = max
1≤j≤p

√
nEn[X

∗
ij − µ̂j ]

σ̂j
. (28)

3. Calculate cEB(α) as

cEB(α) = conditional (1− α)-quantile of WEB given Xn
1 . (29)

13The Kolmogorov distance between the distributions of two random variables ξ and
η is defined by supt∈R |P(ξ ≤ t)− P(η ≤ t)|.

14Some applications of this result can be found in Chetverikov (2011, 2012), Wasser-
man, Kolar and Rinaldo (2013), and Chazal, Fasy, Lecci, Rinaldo, and Wasserman (2013).
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We will call cMB(α) and cEB(α) the (one-step) Multiplier Bootstrap (MB)
and Empirical Bootstrap (EB) critical values with size α. In practice con-
ditional quantiles of WMB or WEB can be computed with any precision by
using simulation.

Intuitively, it is expected that the multiplier bootstrap works well since
conditional on the data Xn

1 , the vector(√
nEn[ϵi(Xij − µ̂j)]

σ̂j

)
1≤j≤p

has the centered normal distribution with covariance matrix

En

[
(Xij − µ̂j)

σ̂j

(Xik − µ̂k)

σ̂k

]
, 1 ≤ j, k ≤ p, (30)

which should be close to the covariance matrix of the vector Y . Indeed, by
Theorem 2 in Chernozhukov, Chetverikov, and Kato (2013b), the primary
factor for the bound on the Kolmogorov distance between the conditional
distribution of W and the distribution of max1≤j≤p Yj is

max
1≤j,k≤p

∣∣∣∣En

[
(Xij − µ̂j)

σ̂j

(Xik − µ̂k)

σ̂k

]
− E[Z1jZ1k]

∣∣∣∣ ,
which we show to be small under suitable conditions even when p≫ n.

In turn, the empirical bootstrap is expected to work well since conditional
on the data Xn

1 , the maximum of the random vector(√
nEn[X

∗
ij − µ̂j ]

σ̂j

)
1≤j≤p

can be well approximated in distibution by the maximum of a random vector
with centered normal distribution with covariance matrix (30) even when
p≫ n.

The following theorem formally establishes validity of the MB and EB
critical values.

Theorem 4.3 (Validity of one-step MB and EB methods). Let cB(α) stand
either for cMB(α) or cEB(α). Suppose that there exist constants 0 < c1 <
1/2 and C1 > 0 such that

(M3
n,3 ∨M2

n,4 ∨Bn)
2 log7/2(pn) ≤ C1n

1/2−c1 . (31)

Then there exist positive constants c, C depending only on c1, C1 such that
under H0,

P(T > cB(α)) ≤ α+ Cn−c. (32)

If µj = 0 for all 1 ≤ j ≤ p, then

|P(T > cB(α))− α| ≤ Cn−c. (33)

Moreover, all these bounds hold uniformly with respect to the common dis-
tribution of Xi for which (12) and (31) are verified.
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Comment 4.3 (High dimension bootstrap CLT). The result (33) can be
understood as a high dimensional bootstrap CLT for maxima of studen-
tized sample averages. It shows that such maxima can be approximated
either by multiplier or empirical bootstrap methods even if maxima is taken
over (very) many sample averages. Moreover, the distributional approxima-
tion holds with polynomially (in n) small error. This result complements
a high dimensional bootstrap CLT for non-studentized sample averages de-
rived in Chernozhukov, Chetverikov, and Kato (2013a) and Chernozhukov,
Chetverikov, and Kato (2014b), and may be of interest in many other set-
tings, well beyond the problem of testing many moment inequalities.

Comment 4.4 (Other bootstrap procedures). There exist many different
bootstrap procedures in the literature, each with its own advantages and
disadvantages. In this paper, we focused on multiplier and empirical boot-
straps, and we leave analysis of more general exchangeably weighted boot-
straps, which include many existing bootstrap procedures as a special case
(see, for example, Praestgaard and Wellner (1993)), in the high dimensional
setting for future work.

Comment 4.5 (Comparing conditions of two-step SN method and one-step
MB/EB methods). Observe that the condition (31) required for the validity
of the one-step MB/EB methods in Theorem 4.3 is stronger than the con-
dition (25) required for the validity of the two-step SN method in Theorem
4.2.

4.2.2. Two-step methods. We now consider to combine bootstrap methods
with inequality selection. To describe these procedures, let 0 < βn < α/2
be some constant. As in the previous section, we allow βn to depend on n.
Let cMB(βn) and c

EB(βn) be one-step MB and EB critical values with size

βn, respectively. Define the sets ĴMB and ĴEB by

ĴB := {j ∈ {1, . . . , p} :
√
nµ̂j/σ̂j > −2cB(βn)}

where B stands either forMB or EB. Then the two-step MB and EB critical
values, cMB,2S(α) and cEB,2S(α), are defined by the following procedures:

Algorithm (Multiplier bootstrap with inequality selection).

1. Generate independent standard normal random variables ϵ1, . . . , ϵn
independent of the data Xn

1 .
2. Construct the multiplier bootstrap test statistic

W
ĴMB

=

{
max

j∈ĴMB

√
nEn[ϵi(Xij−µ̂j)]

σ̂j
, if ĴMB is not empty,

0 if ĴMB is empty.

3. Calculate cMB,2S(α) as

cMB,2S(α) = conditional (1− α+ 2βn)-quantile of W
ĴMB

given Xn
1 . (34)

Algorithm (Empirical bootstrap with inequality selection).
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1. Generate a bootstrap sample X∗
1 , . . . , X

∗
n as i.i.d. draws from the

empirical distribution of Xn
1 = {X1, . . . , Xn}.

2. Construct the empirical bootstrap test statistic

W
ĴEB

=

{
max

j∈ĴEB

√
nEn[X∗

ij−µ̂j ]

σ̂j
, if ĴEB is not empty,

0 if ĴEB is empty.

3. Calculate cEB,2S(α) as

cEB,2S(α) = conditional (1− α+ 2βn)-quantile of W
ĴEB

given Xn
1 . (35)

The following theorem establishes validity of the two-step MB and EB
critical values.

Theorem 4.4 (Validity of two-step MB and EB methods). Let cB,2S(α)
stand either for cMB,2S(α) or cEB,2S(α). Suppose that the assumption of
Theorem 4.3 is satisfied. Moreover, suppose that supn≥1 βn < α/2 and
log(1/βn) ≤ C1 logn. Then there exist positive constants c, C depending
only on c1, C1 such that under H0, P(T > cB,2S(α)) ≤ α+ Cn−c. If µj = 0
for all 1 ≤ j ≤ p, then P(T > cB,2S(α)) ≥ α − 3βn − Cn−c, so that if in
addition βn ≤ C1n

−c1, then |P(T > cB,2S(α)) − α| ≤ Cn−c. Finally, all
these bounds hold uniformly with respect to the common distribution of Xi

for which (12) and (31) are verified.

Comment 4.6. The selection procedure used in the theorem above is most
closely related to those in Chernozhukov, Lee, and Rosen (2013) and in
Chetverikov (2011). Other selection procedures were suggested in the liter-
ature in the framework when p is fixed. Specifically, Romano, Shaikh, and
Wolf (2013) derived an inequality selection method based on the construc-
tion of rectangular confidence sets for the vector (µ1, . . . , µp)

T . To extend
their method to high dimensional setting considered here, note that by (33),
we have that µj ≤ µ̂j + σ̂jc

MB(βn)/
√
n for all 1 ≤ j ≤ p with probability

1 − βn asymptotically. Therefore, we can replace (15) with the following
probabilistic inequality: under H0,

P

(
T ≤ max

1≤j≤p

√
n(µ̂j − µj + µ̃j)

σ̂j

)
≥ 1− βn + o(1),

where

µ̃j = min
(
µ̂j + σ̂jc

MB(βn)/
√
n, 0
)
.

This suggests that we could obtain a critical value based on the distribution
of the bootstrap test statistic

Ŵ = max
1≤j≤p

√
nEn[ϵi(Xij − µ̂j)] +

√
nµ̃j

σ̂j
.

For brevity, however, we leave analysis of this critical value for future re-
search. □
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4.3. Hybrid methods. We have considered the one-step SN, MB, and EB
methods and their two-step variants. In fact, we can also consider “hybrids”
of these methods. For example, we can use the SN method for inequality
selection, and apply the MB or EB method for the selected inequalities,
which is a computationally more tractable alternative to the two-step MB
and EB methods. For convenience of terminology, we will call it the Hybrid
(HB) method. To formally define the method, let 0 < βn < α/2 be some

constants, and recall the set ĴSN ⊂ {1, . . . , p} defined in (23). Suppose we
want to use the MB method on the second step. Then the hybrid MB critical
value, cMB,H(α) is defined by the following procedure:

Algorithm (Multiplier Bootstrap Hybrid method).

1. Generate independent standard normal random variables ϵ1, . . . , ϵn
independent of the data Xn

1 .
2. Construct the bootstrap test statistic

W
ĴSN

=

{
max

j∈ĴSN

√
nEn[ϵi(Xij−µ̂j)]

σ̂j
, if ĴSN is not empty,

0 if ĴSN is empty.

3. Calculate cMB,H(α) as

cMB,H(α) = conditional (1− α+ 2βn)-quantile of W
ĴSN

given Xn
1 . (36)

A similar algorithm can be defined for the EB method on the second step,
which leads to the hybrid EB critical value cEB,H(α). The following theorem
establishes validity of these critical values.

Theorem 4.5 (Validity of hybrid two-step methods). Let cB,H(α) stand
either for cMB,H(α) or cEB,H(α). Suppose that there exist constants 0 <
c1 < 1/2 and C1 > 0 such that (31) is verified. Moreover, suppose that
supn≥1 βn ≤ α/3 and log(1/βn) ≤ C1 log n. Then all the conclusions of

Theorem 4.4 hold with cB,MS(α) replaced by cB,H(α).

4.4. Three-step method. In empirical studies based on moment inequal-
ities, one typically has inequalities of the form

E[gj(ξ, θ)] ≤ 0 for all j = 1, . . . , p, (37)

where ξ is a vector of random variables, θ ∈ R a vector of parameters, and
g1, . . . , gp a set of (known) functions. In these studies, inequalities (1)-(2)
arise when one tests the null hypothesis θ = θ0 against the alternative θ ̸= θ0
on the i.i.d. data ξ1, . . . , ξn by setting Xij := gj(ξi, θ0) and µj := E[X1j ].
So far in this section, we showed how to increase power of such tests by
employing inequality selection procedures that allow the researcher to drop
uninformative inequalities, that is inequalities j with µj < 0 if µj is not too
close to 0. In this subsection, we seek to combine these selection procedures
with another selection procedure that is suitable for the model (37) and that
can increase local power of the test of θ = θ0 by dropping weakly informative
inequalities, that is inequalities j with the function θ 7→ E[gj(ξ, θ)] being flat
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or nearly flat around θ = θ0. When the tested value θ0 is close to some θ
satisfying (37), such inequalities can only provide a weak signal of violation
of the hypothesis θ = θ0 in the sense that they have µj ≈ 0. For brevity
of the paper, we only consider weakly informative inequality selection based
on the MB and EB methods and note that similar results can be obtained
for the self-normalized method. Also, we only consider the case when the
functions θ 7→ gj(ξ, θ) are almost surely continuously differentiable, and
leave the extension to non-differentiable functions to future work.

We start with preparing necessary notation. Let ξ1, . . . , ξn be a sample
of observations from the distribution of ξ. Suppose that we are interested
in testing the null hypothesis

H0 : E[gj(ξ, θ0)] ≤ 0 for all j = 1, . . . , p,

against the alternative

H1 : E[gj(ξ, θ0)] > 0 for some j = 1, . . . , p,

where θ0 is some value of the parameter θ. Suppose that θ is a vector in Rr.
Denote

mj(ξ, θ) :=
∂gj(ξ, θ)

∂θ
so that mj(ξ, θ) = (mj1(ξ, θ), . . . ,mjr(ξ, θ))

T . Further, let Xij := gj(ξi, θ0),

µj := E[X1j ], σj := (Var(X1j))
1/2, Vijl := mjl(ξi, θ0), µ

V
jl := E[V1jl], and

σVjl := (Var(V1jl))
1/2. We assume that

E[X2
1j ] <∞, σj > 0, j = 1, . . . , p, (38)

E[V 2
1jl] <∞, σVjl > 0, j = 1, . . . , p, l = 1, . . . , r. (39)

In addition, let

µ̂j = En[Xij ] and σ̂j =
(
En[(Xij − µ̂j)

2]
)1/2

be estimators of µj and σj , respectively, and let

µ̂Vjl = En[Vijl] and σ̂
V
jl =

(
En[(Vijl − µ̂Vjl)

2]
)1/2

be estimators of µVjl and σ
V
jl , respectively.

Weakly informative inequality selection that we derive is based on the
bootstrap methods similar to those described in Section 4:

Algorithm (Multiplier bootstrap for gradient statistic).

1. Generate independent standard normal random variables ϵ1, . . . , ϵn
independent of the data ξn1 = {ξ1, . . . , ξn}.

2. Construct the multiplier bootstrap gradient statistic

W V
MB = max

j,l

√
n|En[ϵi(Vijl − µ̂Vjl)]|

σ̂Vjl
. (40)
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3. For γ ∈ (0, 1), calculate cMB,V (γ) as

cMB,V (γ) = conditional (1− γ)-quantile of W V
MB given ξn1 . (41)

Algorithm (Empirical bootstrap for gradient statistic).

1. Generate a bootstrap sample V ∗
1 , . . . , V

∗
n as i.i.d. draws from the

empirical distribution of V n
1 = {V1, . . . , Vn}.

2. Construct the empirical bootstrap gradient statistic

W V
EB = max

j,l

√
n|En[V

∗
ijl − µ̂Vjl]|
σ̂Vjl

. (42)

3. For γ ∈ (0, 1), calculate cEB,V (γ) as

cEB,V (γ) = conditional (1− γ)-quantile of W V
EB given ξn1 . (43)

Let φn be a sequence of constants satisfying c2 ≤ φn log n ≤ C2 for some
strictly positive constants c2 and C2, and let βn be a sequence of constants
satisfying 0 < βn < α/2 and log(1/(βn − φn)) ≤ C2 log n where α is the
nominal level of the test. Define three estimated sets of inequalities:

ĴB :=
{
j ∈ {1, . . . , p} :

√
nµ̂j/σ̂j > −2cB(βn)

}
,

Ĵ ′
B :=

{
j ∈ {1, . . . , p} :

√
n|µ̂Vjl/σ̂Vjl | > 3cB,V (βn − φn) for all l = 1, . . . , r

}
,

Ĵ ′′
B :=

{
j ∈ {1, . . . , p} :

√
n|µ̂Vjl/σ̂Vjl | > cB,V (βn + φn) for all l = 1, . . . , r

}
,

where B stands either for MB or EB.
Importantly, the weakly informative inequality selection procedure that

we derive requires that both the test statistic and the critical value depend
on the estimated sets of inequalities. Let TB and cB,3S(α) denote the test
statistic and the critical value for B = MB or EB depending on which

bootstrap procedure is used. If the set Ĵ ′
B is empty, set the test statistic

TB = 0 and the critical value cB,3S(α) = 0. Otherwise, define the test
statistic

TB = max
j∈Ĵ ′

B

√
nµ̂j
σ̂j

,

and define the three-step MB/EB critical values, cB,3S(α) for the test by

the same bootstrap procedures as those for cB,2S(α) with ĴB replaced by

ĴB ∩ Ĵ ′′
B, and also 2βn replaced by 4βn (in (34) and (35)) (Algorithms “Mul-

tiplier bootstrap with inequality selection” and “Empirical bootstrap with
inequality selection”). The test rejects H0 if TB > cB,3S(α).

To state the main result of this section, we need the following additional
notation. Let

ZV
ijl := (Vijl − µVjl)/σ

V
jl .
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Observe that E[ZV
ijl] = 0 and E[(ZV

ijl)
2] = 1. Let

MV
n,k := max

j,l

(
E[|ZV

1jl|k]
)1/k

, k = 3, 4, BV
n :=

(
E
[
max
j,l

(ZV
1jl)

4
])1/4

.

We have the following theorem:

Theorem 4.6 (Validity of three-step MB and EB methods). Let TB and
cB,3S(α) stand either for TMB and cMB,3S(α) or for TEB and cEB,3S(α).
Suppose that there exist constants 0 < c1 < 1/2 and C1 > 0 such that(
M3

n,3 ∨M2
n,4 ∨Bn ∨ (MV

n,3)
3 ∨ (MV

n,4)
2 ∨BV

n

)2
log7/2(prn) ≤ C1n

1/2−c1 .
(44)

Moreover, suppose that supn≥1 βn < α/2, log(1/(βn − φn)) ≤ C2 log n, and
c2 ≤ φn log n ≤ C2. Then there exist positive constants c, C depending only
on c1, C1, c2, and C2 such that under H0, P(T

B > cB,3S(α)) ≤ α+Cn−c. In
addition, the bound holds uniformly with respect to the common distribution
of ξi for which (38), (39), and (44) are verified.

Comment 4.7 (On the choice of φn). Inspecting the proof of the theorem
shows that the result of the theorem remains valid if we replace condition
c2 ≤ φn log n ≤ C2 for some c2, C2 by weaker conditions φn → 0 and
φn ≥ Cn−c for some constants c, C that can be chosen to depend only on
c1, C1. In practice, however, it is difficult to track the dependence of c, C on
c1, C1. Therefore, in the main text we state the result with the condition
c2 ≤ φn log n ≤ C2.

Comment 4.8 (Comparing conditions of one-step, two-step, and three-step
MB/EB methods). Observe that the condition (44) required for the validity
of the three-step MB/EB methods in Theorem 4.6 is stronger than the
condition (31) required for the validity of the one-step and two-step MB/EB
methods in Theorem 4.3.

5. Minimax optimality

In this section, we show that the tests developed in this paper are asymp-
totically minimax optimal when p = pn → ∞ as n → ∞. We begin with
deriving an upper bound on the power any procedure may have in testing
(1) against (2).

Lemma 5.1 (Upper bounds on power). Let X1, . . . , Xn ∼ N(µ,Σ) be i.i.d.
where Σ = diag{σ21, . . . , σ2p} and σ2j > 0 for all 1 ≤ j ≤ p, and con-
sider testing the null hypothesis H0 : max1≤j≤p µj ≤ 0 against the alter-
native H1 : max1≤j≤p(µj/σj) ≥ r with r > 0 a constant. Denote by Eµ[·]
the expectation under µ. Then for any test ϕn : (Rp)n → [0, 1] such that
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Eµ[ϕn(X1, . . . , Xn)] ≤ α for all µ ∈ Rp with max1≤j≤p µj ≤ 0, we have

inf
max1≤j≤p(µj/σj)≥r

Eµ[ϕn(X1, . . . , Xn)]

≤ α+ E
[
|p−1∑p

j=1e
√
nrξj−nr2/2 − 1|

]
, (45)

where ξ1, . . . , ξp ∼ N(0, 1) i.i.d. Moreover if p = pn → ∞ as n → ∞, we
have

lim
n→∞

E
[
|p−1

n

∑pn
j=1e

√
nrnξj−nr2n/2 − 1|

]
= 0,

where rn = (1 − ϵn)
√

2(log pn)/n, and ϵn > 0 is any sequence such that
ϵn → 0 and ϵn

√
log pn → ∞ as n→ ∞.

Going back to the general setting described in Section 1, assume (12)
and consider the test statistic T defined in (13). Pick any α ∈ (0, 1/2) and
consider in general the test of the form

T > ĉ(α) ⇒ reject H0,

where ĉ(α) is a possibly data-dependent critical value which makes the test
to have size approximately α.

Lemma 5.2 (Lower bounds on power). In the setting described above, for
every ϵ ≥ 0, there exist ϵ > 0 and δ ∈ (0, 1) such that whenever

max
1≤j≤p

(µj/σj) ≥ (1 + δ)(1 + ϵ+ ϵ)

√
2 log(p/α)

n
,

we have

P(T > ĉ(α)) ≥1− 1

2(1− δ)2ϵ2 log(p/α)

− max
1≤j≤p

P(|σ̂j/σj − 1| > δ)− P
(
ĉ(α) > (1 + ϵ)

√
2 log(p/α)

)
.

From this lemma, we have the following corollary:

Corollary 5.1 (Asymptotic minimax optimality). Let ĉ(α) be any one of
cSN (α), cSN,2S(α), cMB(α), cMB,2S(α), cEB(α), cEB,2S(α), cMB,H(α), or
cEB,H(α) where we assume supn≥1 βn ≤ α/3 whenever inequality selection
is used. Suppose there exist constants 0 < c1 < 1/2 and C1 > 0 such that

M2
n,4 log

1/2 p ≤ C1n
1/2−c1 , and log3/2 p ≤ C1n. (46)

Then there exist constants c, C > 0 depending only on α, c1, C1 such that for
every ϵ ∈ (0, 1), whenever

max
1≤j≤p

(µj/σj) ≥ (1 + ϵ+ C log−1/2 p)

√
2 log(p/α)

n
,

we have

P(T > ĉ(α)) ≥ 1− C

ϵ2 log(p/α)
− Cn−c.
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Therefore when p = pn → ∞, for any sequence ϵn satisfying ϵn → 0 and
ϵn
√
log pn → ∞, as n→ ∞, we have (with keeping α fixed)

inf
max1≤j≤p(µj/σj)≥rn

Pµ(T > ĉ(α)) ≥ 1− o(1), (47)

where rn = (1 + ϵn)
√

2(log pn)/n and Pµ is the probability under µ. More-
over, the above asymptotic result (47) holds uniformly with respect to the
sequence of common distributions of Xi for which (12) and (46) are verified
with given c1, C1.

Comparing the bounds in Lemma 5.1 and Corollary 5.1, we see that the
tests developed in this paper are asymptotically minimax optimal when
p = pn → ∞ as n→ ∞ under mild regularity conditions.

6. Honest confidence regions for identifiable parameters in
partially identified models

In this section, we consider the related problem of constructing confi-
dence regions for identifiable parameters in partially identified models. Let
ξ1, . . . , ξn be i.i.d. random variables taking values in a measurable space
(S,S) with common distribution P ; let Θ be a parameter space which is a
Borel measurable subset of a metric space (usually a Euclidean space), and
let g : S × Θ → Rp, (ξ, θ) 7→ g(ξ, θ) = (g1(ξ, θ), . . . , gp(ξ, θ))

T , be a jointly
Borel measurable map. We consider the partially identified model where the
identified set Θ0(P ) is given by

Θ0(P ) = {θ ∈ Θ : EP [gj(ξ1, θ)] ≤ 0 for all j = 1, . . . , p}.

Here EP means that the expectation is taken with respect to P (similarly
PP means that the probability is taken with respect to P ). We consider the
problem of constructing confidence regions Cn(α) = Cn(α; ξ1, . . . , ξn) ⊂ Θ
such that for some constant c, C > 0, for all n ≥ 1,

inf
P∈Pn

inf
θ∈Θ0(P )

PP (θ ∈ Cn(α)) ≥ 1− α− Cn−c, (48)

while allowing for p > n (indeed we allow p to be much larger than n),
where 0 < α < 1/2 and Pn is a suitable sequence of classes of distributions
on (S,S). We call confidence regions Cn(α) for which (48) is verified asymp-
totically honest to Pn with a polynomial rate, where the term is inspired by
Li (1989) and Chernozhukov, Chetverikov, and Kato (2014a).

We first state the required restriction on the class of distributions Pn. We
assume that for every P ∈ Pn,

Θ0(P ) ̸= ∅, and EP [g
2
j (ξ1, θ)] <∞, σ2j (θ, P ) := VarP (gj(ξ1, θ)) > 0,

for all j = 1, . . . , p, and all θ ∈ Θ0(P ).
(49)

We construct confidence regions based upon duality between hypoth-
esis testing and construction of confidence regions. For any given θ ∈
Θ, consider the statistic T (θ) = max1≤j≤p

√
nµ̂j(θ)/σ̂j(θ), where µ̂j(θ) =
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En[gj(ξi, θ)], σ̂
2
j (θ) = En[(gj(ξi, θ)− µ̂j(θ))2]. This statistic is a test statistic

for the problem of testing

Hθ : µj(θ, P ) ≤ 0, for all j = 1, . . . , p,

against the alternative

H ′
θ : µj(θ, P ) > 0, for some j = 1, . . . , p,

where µj(θ, P ) := EP [gj(ξ1, θ)]. Pick any α ∈ (0, 1/2). We consider the
confidence region of the form

Cn(α) = {θ ∈ Θ : T (θ) ≤ c(α, θ)}, (50)

where c(α, θ) is a critical value such that Cn(α) contains θ with probability
(approximately) at least 1− α whenever θ ∈ Θ0(P ).

Recall cSN (α) defined in (19), and let cSN,2S(α, θ), cMB(α, θ), cMB,2S(α, θ),
cEB(α, θ), cEB,2S(α, θ), cMB,H(α, θ), and cEB,H(α, θ) be the two-step SN,
one-step MB, two-step MB, one-step EB, two-step EB, MB hybrid, and EB
hybrid critical values defined in Section 4 with Xi = (Xi1, . . . , Xip)

T re-
placed by g(ξi, θ) = (g1(ξi, θ), . . . , gp(ξi, θ))

T . Moreover, let CSN
n (α) be the

confidence region (50) with c(α, θ) = cSN (α); define

CSN,2S
n (α), CMB

n (α), CMB,2S
n (α), CEB

n (α), CEB,2S
n (α), CMB,H

n (α), CEB,H
n (α)

analogously. Finally, define

Mn,k(θ, P ) := max
1≤j≤p

(EP [|(gj(ξ1, θ)− µj(θ, P ))/σj(θ, P )|k])1/k, k = 3, 4,

Bn(θ, P ) :=

(
EP

[
max
1≤j≤p

|(gj(ξ1, θ)− µj(θ, P ))/σj(θ, P )|4
])1/4

.

Let 0 < c1 < 1/2, C1 > 0 be given constants. The following theorem is the
main result of this section.

Theorem 6.1. Let PSN
n be the class of distributions P on (S,S) for which

(49) and (21) are verified withMn,3 replaced byMn,3(θ, P ) for all θ ∈ Θ0(P );

let PSN,2S
n be the class of distributions P on (S,S) for which (49) and (25)

are verified with Mn,3, Bn replaced by (respectively) Mn,3(θ, P ), Bn(θ, P ) for
all θ ∈ Θ0(P ); and let PB

n be the class of distributions P on (S,S) for
which (49) and (31) are verified with Mn,k, Bn replaced by (respectively)

Mn,k(θ, P ), Bn(θ, P ) for all θ ∈ Θ0(P ).
15 Moreover, suppose that supn≥1 βn ≤

α/3 and log(1/βn) ≤ C1 log n whenever inequality selection is used. Then
there exist positive constants c, C depending only on α, c1, C1 such that

inf
P∈Pn

inf
θ∈Θ0(P )

PP (θ ∈ Cn(α)) ≥ 1− α− Cn−c

where (Pn, Cn) is one of the pairs (PSN
n , CSN

n ), (PSN,2S
n , CSN,2S

n ), (PB
n , CMB

n ),

(PB
n , C

MB,2S
n ), (PB

n , CEB
n ), (PB

n , C
EB,2S
n ), (PB

n , C
MB,H
n ) or (PB

n , C
EB,H
n ).

15For example, PSN
n = {P : (49) is verified, and M3

n,3(θ, P ) log3/2(p/α) ≤
C1n

1/2−c1 , ∀θ ∈ Θ0(P )}.
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7. Extensions

7.1. Dependent data. In this section we consider the case whereX1, . . . , Xn

are dependent. To avoid technical complication, we focus here on the non-
Studentized version of T :

Ť = max
1≤j≤p

√
nµ̂j .

We consider a version of the multiplier bootstrap, namely the block multi-
plier bootstrap, to calculate critical values for Ť , where a certain blocking
technique is used to account for dependency among X1, . . . , Xn.

16

LetX1, . . . , Xn be possibly dependent random vectors in Rp with identical

distribution (that is, Xi
d
= X1, for all i = 1, . . . , n), defined on the proba-

bility space (Ω,A,P). We follow the basic notation introduced in Section 3.
For the sake of simplicity, assume that there exists a constant Dn ≥ 1 such
that |Xij − µj | ≤ Dn a.s. for 1 ≤ i ≤ n, 1 ≤ j ≤ p.

For any integer 1 ≤ q ≤ n, define

σ2(q) := max
1≤j≤p

max
I

Var

(
q−1/2

∑
i∈I

Xij

)
,

σ2(q) := min
1≤j≤p

min
I

Var

(
q−1/2

∑
i∈I

Xij

)
,

where maxI and minI are taken over all I ⊂ {1, . . . , n} of the form I =
{i+ 1, . . . , i+ q}. For any sub σ-fields A1,A2 ⊂ A, define

β(A1,A2) :=
1

2
sup

{∑
i

∑
j

P(Ai ∩Bj)− P(Ai)P(Bj)| :

{Ai} is any finite partition of Ω in A1,

{Bj} is any finite partition of Ω in A2

}
.

Define the kth β-mixing coefficient for Xn
1 = {X1, . . . , Xn} by

bk = bk(X
n
1 ) = max

1≤l≤n−k
β(σ(X1, . . . , Xl), σ(Xl+k, . . . , Xn)), 1 ≤ k ≤ n− 1,

where σ(Xi, i ∈ I) with I ⊂ {1, . . . , n} is the σ-field generated by Xi, i ∈ I.17

We employ Bernstein’s “small-block and large-block” technique and de-
compose the sequence {1, . . . , n} into “large” and “small” blocks. Let q > r
be positive integers with q + r ≤ n/2 (q, r depend on n: q = qn, r = rn, and
asymptotically we require qn → ∞, qn = o(n), rn → ∞, and rn = o(qn)),
and let I1 = {1, . . . , q}, J1 = {q + 1, . . . , q + r}, . . . , Im = {(m− 1)(q + r) +

16We refer to Lahiri (2003) as a general reference on resampling methods for dependent
data.

17We refer to Fan and Yao (2003), Section 2.6, as a general reference on mixing.
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1, . . . , (m−1)(q+r)+q}, Jm = {(m−1)(q+r)+q+1, . . . ,m(q+r)}, Jm+1 =
{m(q+r), . . . , n}, wherem = mn = [n/(q+r)] (the integer part of n/(q+r)).

Then the block multiplier bootstrap is described as follows: generate
independent standard normal random variables ϵ1, . . . , ϵm, independent of
Xn

1 . Let

W̌ = max
1≤j≤p

1
√
mq

m∑
l=1

ϵl
∑
i∈Il

(Xij − µ̂j),

and consider

ĉBMB(α) = conditional (1− α)-quantile of W̌ given Xn
1 ,

which we call the BMB (Block Multiplier Bootstrap) critical value.

Theorem 7.1 (Validity of BMB method). Work under the setting described
above. Suppose that there exist constants 0 < c1 ≤ C1 and 0 < c2 < 1/4
such that c1 ≤ σ2(q) ≤ σ2(r)∨σ2(q) ≤ C1,max{mbr, (r/q) log2 p} ≤ C1n

−c2,

and qDn log
5/2(pn) ≤ C1n

1/2−c2. Then there exist positive constants c, C
depending only on c1, c2, C1 such that under H0, P(Ť > ĉBMB(α)) ≤ α +
Cn−c. If µj = 0 for all 1 ≤ j ≤ p, then |P(Ť > ĉBMB(α))− α| ≤ Cn−c.

Comment 7.1 (Connection to tapered block bootstrap). The BMB method
can be considered as a variant of the tapered block bootstrap (see Paparodi-
tis and Politis, 2001, 2002; Andrews, 2004) applied to non-overlapping blocks
with a rectangular tapering function. The difference is that in the original
tapered block bootstrap the multipliers are multinomially distributed, while
in the BMB the multipliers are independent standard normal.

7.2. Approximate moment inequalities. As shown in a dynamic model
of imperfect competition example in Section 2.3, in some applications, ran-
dom vectors X1, . . . , Xn satisfying inequalities (1) with µj = E[X1j ] are not

observed. Instead, the data consist of random vectors X̂1, . . . , X̂n that ap-
proximate vectors X1, . . . , Xn. In that example, the approximation error
arises from the need to linearize original inequalities. Another possibility
leading to nontrivial approximation error is that where the data contain
estimated parameters. In this section, we derive a set of conditions that
suffice for the same results as those obtained in Section 4 when we use the
data X̂1, . . . , X̂n as if we were using exact vectors X1, . . . , Xn. For brevity,
we only consider two-step MB/EB methods.

We use the following notation. Let µ̂j,0 := En[Xij ] and σ̂
2
j,0 := En[(Xij −

µ̂j,0)
2] denote (infeasible) estimators of µj = E[X1j ] and σ

2
j = Var(X1j). In

addition, assume that we have estimates µ̂j that appropriately approximate
µ̂j,0 for j = 1, . . . , p. In the context of Section 2.3, for example, these esti-

mates would take the form V̂j(s, σ
′
j , σ−j(α̂n), θ) − V̂j(s, σj(α̂n), σ−j(α̂n), θ).

Moreover, let σ̂2j := En[(Xij − µ̂j)
2] be a (feasible) estimator of σ2j .

Define the test statistic T by (13); that is, T = max1≤j≤p
√
nµ̂j/σ̂j . Define

the critical value cB,2S(α) for B = MB or EB by the same algorithms as
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those used in Section 4 with Xij replaced by X̂ij for all i and j (and using
µ̂j and σ̂2j as defined in this section). We have the following theorem:

Theorem 7.2 (Validity of two-step MB/EB methods for approximate in-
equalities). Let cB,2S(α) stand either for cMB,2S(α) or cEB,2S(α). Suppose
that the assumption of Theorem 4.3 is satisfied. Moreover, suppose that
supn≥1 βn ≤ α/2 and log(1/βn) ≤ C1 log n. In addition, suppose that

there exists a sequence ζn1 satisfying ζn1 log p ≤ C1n
−c1 and such that

P(max1≤j≤p
√
n|µ̂j − µ̂j,0| > ζn1) ≤ C1n

−c1 and P(max1≤j≤p(En[(X̂ij −
Xij)

2])1/2 > ζn1) ≤ C1n
−c1. Moreover, if the EB method is used, suppose

that P(
√
log pmaxi,j |X̂ij −Xij | >

√
nζn,1) ≤ C1n

−c1. Finally, assume that
σj ≥ c1 for all j = 1, . . . , p. Then all the conclusions of Theorem 4.4 hold
with T , cMB,2S(α), and cEB,2S(α) defined in this section.

8. Monte Carlo Experiments

In this section, we provide results of a small Monte Carlo simulation
study. Our simulations demonstrate that the methods developed in this
paper, on the one hand, have good size control and, on the other hand, have
good power properties even though we use experimental setups with large
number of moment inequalities.

Throughout all the experiments, we consider i.i.d. samples of size n =
400. Depending on the experiment, the number of moment inequalities is
p = 200, 500, or 1000. Thus, we consider models where the number of
moment inequalities p is comparable, larger, or substantially larger than the
sample size n.

We consider eight different experimental designs. Designs 1-4 satisfy the
null hypothesis H0 but Designs 5-8 do not. Designs 1, 2, 5, and 6 are based
on equicorrelated data where Xi = µ+AT εi with εi := (εi1, . . . , εip)

T being
a vector consisting of i.i.d. random variables, Σ := Var(Xi) = ATA being
a matrix defined by Σjj = 1 and Σjk = ρ for 1 ≤ j, k ≤ p and j ̸= k, and

µ = (µ1, . . . , µp)
T being a non-stochastic vector representing the mean of Xi.

Designs 3, 4, 7, and 8 are based on autocorrelated data where Xi = µ+AT εi
with εi and µ as above and Σ := Var(Xi) = ATA being a matrix defined by

Σjk = ρ|j−k| for 1 ≤ j, k ≤ p. Depending on the experiment, we set ρ = 0,
0.5, or 0.9, and we consider εij either having the normalized Student’s t
distribution with 4 degrees of freedom (we normalized the distribution to
have variance one by dividing it by

√
2; in the tables below, this distribution

is denoted as t(4)/
√
2) or having the uniform distribution on the interval

(−
√
3,
√
3) (in the tables below, this distribution is denoted as

√
3U(−1, 1)).

Thus, in all cases Var(Xij) = 1 for all 1 ≤ j ≤ p.
In Designs 1 and 3, we set µj = 0 for all 1 ≤ j ≤ p. In Designs 2 and 4, we

set µj = 0 for 1 ≤ j ≤ γp and µj = −0.8 for γp+ 1 ≤ j ≤ p. Thus, Designs
1-4 satisfy H0. In Designs 5 and 7, we set µj = 0.05 for all 1 ≤ j ≤ p.
In Designs 6 and 8, we set µj = 0.05 for 1 ≤ j ≤ γp and µj = −0.75 for
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γp+1 ≤ j ≤ p. Thus, Designs 5-8 do not satisfy H0. In all experiments, we
set γ = 0.1, so that in Designs 6 and 8, only 10% of inequalities violate H0.

We consider self-normalized (SN), multiplier bootstrap (MB), and empir-
ical bootstrap (EB) critical values, with and without inequality selection.
In all experiments, we set the nominal level of the test α = 5% and for tests
with inequality selection, we set β = 0.1%. We present results based on
1000 simulations for each design and we use B = 1000 bootstrap samples
for each bootstrap procedure.

Results on the probabilities of rejecting H0 in all the experiments are
presented in Tables 1-4. The first observation that can be taken from these
tables is that MB and EB methods give similar results. Therefore, in what
follows we discuss and compare SN and bootstrap (MB and EB) critical
values.

Tables 1 and 2 give results for Designs 1-4, where H0 holds, and demon-
strate that all of our tests have good size control. The largest over-rejection
occurs in Design 3 with autocorrelated data, uniform εij ’s, p = 1000, and
ρ = 0.5 where the MB and EB tests without inequality selection reject H0

with probability 7.6% and 8.0% against the nominal level α = 5%, respec-
tively. As expected, the self-normalized test tend to under-reject H0 but the
bootstrap tests take the correlation structure of the data into account, and
have rejection probability close to nominal level α = 5% in Designs 1 and 3,
where inequalities hold as equalities. The most striking difference between
the SN and bootstrap tests in this dimension perhaps can be seen in Design
1 with equicorrelated data, uniform εij ’s, p = 1000, and ρ = 0.9 where the
MB and EB tests with selection reject H0 with probability 5.3% and 5.4%,
which is very close to the nominal level α = 5%, but the SN test with se-
lection only rejects H0 with probability 0.0%. Observe also that when the
correlation in the data is not too large, the SN tests also have size rather
close to the nominal level; see results for Design 3 with autocorrelated data
and ρ = 0 or 0.5.

Tables 3 and 4 give results for designs 5-8, where H0 does not hold, and
demonstrate power properties of our tests. To understand the results, note
first that there are no other tests in the literature that could be used in
our experiments since we have (very) large number of moment inequalities
p. As a benchmark, we thus compare the rejection probabilities with those
we would obtain should we had only one moment inequality to test. For
these purposes, we have chosen the mean-value µj = 0.05 for the moment

inequalities j violating H0 so that 0.05 = (Var(Xij)/n)
1/2 since n = 400 and

Var(Xij) = 1. This is a typical value of the moment that one needs to obtain
a non-trivial power when only one moment inequality is tested. Indeed, the
standard one-sided t-test would reject H0 with probability approximately
25% in this case. Tables 3 and 4 thus show that our tests have good power.
In particular, the rejection probability for the bootstrap tests with selection
never falls below 25% and in some cases approaches 100%; see results for
Designs 5 and 7 with p = 1000 and ρ = 0. The SN tests have rejection
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probabilities close to those for the bootstrap tests when ρ = 0 or even when
ρ = 0.5 for Designs 7 and 8 with autocorrelated data. Our tests have good
power even though we have a large number of moment inequalities p and in
some cases (Designs 6 and 8) only a small fraction (10%) of these inequalities
violate H0. Further, the bootstrap tests substantially improve upon the SN
test in cases with large correlation in the data; see, for example, results
for Design 5 with equicorrelated data, εij having Student’s t-distribution,
p = 1000 and ρ = 0.5, where the SN tests rejectH0 with probability 19% and
the MB and EB tests reject H0 with probability 37-39%. Finally, selection
procedures yield important power improvements; see, for example, results
for Design 8 with autocorrelated data, εij having Student’s t-distribution,
p = 1000 and ρ = 0.5, where the MB test without selection rejects H0 with
probability 17% and the MB test with selection rejects H0 with probability
66%.

Appendix A. Proofs

In what follows, let ϕ(·) denote the density function of the standard nor-
mal distribution, and let Φ̄(·) = 1−Φ(·) where recall that Φ(·) is the distri-
bution function of the standard normal distribution.

A.1. Technical tools. We state here some technical tools used to prove
the theorems. The following lemma states a moderate deviation inequality
for self-normalized sums.

Lemma A.1. Let ξ1, . . . , ξn be independent centered random variables with
E[ξ2i ] = 1 and E[|ξi|2+ν ] < ∞ for all 1 ≤ i ≤ n where 0 < ν ≤ 1.

Let Sn =
∑n

i=1 ξi, V
2
n =

∑n
i=1 ξ

2
i , and Dn,ν = (n−1

∑n
i=1 E[|ξi|2+ν ])1/(2+ν).

Then uniformly in 0 ≤ x ≤ n
ν

2(2+ν) /Dn,ν ,∣∣∣∣P(Sn/Vn ≥ x)

Φ̄(x)
− 1

∣∣∣∣ ≤ Kn−ν/2D2+ν
n,ν (1 + x)2+ν ,

where K is a universal constant.

Proof. See Theorem 7.4 in Lai, de la Peña, and Shao (2009) or the original
paper, Jing, Shao, and Wang (2003). □

The following lemma states a Fuk-Nagaev type inequality, which is a
deviation inequality for the maximum of the sum of random vectors from
its expectation.

Lemma A.2 (A Fuk-Nagaev type inequality). Let X1, . . . , Xn be indepen-
dent random vectors in Rp. Define σ2 := max1≤j≤p

∑n
i=1 E[X

2
ij ]. Then for
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every s > 1 and t > 0,

P

(
max
1≤j≤p

∣∣∣ n∑
i=1

(Xij − E[Xij ])
∣∣∣ ≥ 2E

[
max
1≤j≤p

∣∣∣ n∑
i=1

(Xij − E[Xij ])
∣∣∣]+ t

)

≤ e−t2/(3σ2) +
Ks

ts

n∑
i=1

E

[
max
1≤j≤p

|Xij |s
]
,

where Ks is a constant depending only on s.

Proof. See Theorem 3.1 in Einmahl and Li (2008). Note that Einmahl and
Li (2008) assumed that s > 2 but their proof applies to the case where
s > 1. More precisely, we apply Theorem 3.1 in Einmahl and Li (2008) with
(B, ∥·∥) = (Rp, | · |∞) where |x|∞ = max1≤j≤p |xj | for x = (x1, . . . , xp)

T , and
η = δ = 1. The unit ball of the dual of (Rp, |·|∞) is the set of linear functions
{x = (x1, . . . , xp)

T 7→
∑p

j=1 λjxj :
∑p

j=1 |λj | ≤ 1}, and for λ1, . . . , λp with∑p
j=1 |λj | ≤ 1, by Jensen’s inequality,∑n

i=1 E
[
(
∑p

j=1 λjXij)
2
]
=
∑n

i=1 E
[
(
∑p

j=1 |λj |sign(λj)Xij)
2
]

≤
∑p

j=1 |λj |
∑n

i=1 E[X
2
ij ] ≤ max1≤j≤p

∑n
i=1 E[X

2
ij ] = σ2,

where sign(λj) is the sign of λj . Hence in this case Λ2
n in Theorem 3.1 of

Einmahl and Li (2008) is bounded by (and indeed equal to) σ2. □
In order to use Lemma A.2, we need a suitable bound on the expectation

of the maximum. The following lemma is useful for that purpose.

Lemma A.3. Let X1, . . . , Xn be independent random vectors in Rp with p ≥
2. Define M := max1≤i≤nmax1≤j≤p |Xij | and σ2 := max1≤j≤p

∑n
i=1 E[X

2
ij ].

Then

E

[
max
1≤j≤p

∣∣∣ n∑
i=1

(Xij − E[Xij ])
∣∣∣] ≤ K(σ

√
log p+

√
E[M2] log p),

where K is a universal constant.

Proof. See Lemma 8 in Chernozhukov, Chetverikov, and Kato (2013b). □
For bounding E[M2], we will frequently use the following inequality: let

ξ1, . . . , ξn be arbitrary random variables with E[|ξi|s] < ∞ for all 1 ≤ i ≤ n
for some s ≥ 1. Then

E[ max
1≤i≤n

|ξi|] ≤ (E[ max
1≤i≤n

|ξi|s])1/s

≤ (
∑n

i=1E[|ξi|
s])1/s ≤ n1/s max

1≤i≤n
(E[|ξi|s])1/s.

For centered normal random variables ξ1, . . . , ξn with σ2 = max1≤i≤n E[ξ
2
i ],

we have

E

[
max
1≤j≤p

ξi

]
≤
√

2σ2 log p.



36 CHERNOZHUKOV, CHETVERIKOV, AND KATO

See, for example, Proposition 1.1.3 in Talagrand (2003).

Lemma A.4. Let (Y1, . . . , Yp)
T be a normal random vector with E[Yj ] = 0

and E[Y 2
j ] = 1 for all 1 ≤ j ≤ p. (i) For α ∈ (0, 1), let c0(α) denote the

(1−α)-quantile of the distribution of max1≤j≤p Yj. Then c0(α) ≤
√
2 log p+√

2 log(1/α). (ii) For every t ∈ R and ϵ > 0, P(|max1≤j≤p Yj − t| ≤ ϵ) ≤
4ϵ(

√
2 log p+ 1).

Proof. Part (ii) follows from Theorem 3 in Chernozhukov, Chetverikov, and
Kato (2013b) together with the fact that

E

[
max
1≤j≤p

Yj

]
≤
√

2 log p. (51)

For part (i), by the Borell-Sudakov-Tsirelson inequality (see Theorem A.2.1
in van der Vaart and Wellner (1996)), for every r > 0,

P

(
max
1≤j≤p

Yj ≥ E
[
max
1≤j≤p

Yj

]
+ r

)
≤ e−r2/2,

by which we have

c0(α) ≤ E

[
max
1≤j≤p

Yj

]
+
√

2 log(1/α). (52)

Combining (52) and (51) leads to the desired result. □

A.2. Proof of Theorem 4.1. The first assertion follows from inequality
(18) and Lemma A.1 with ν = 1. To prove the second assertion, we first

note the well known fact that 1−Φ(t) ≤ e−t2/2 for t > 0, by which we have

Φ−1(1 − α/p) ≤
√

2 log(p/α).18 Hence if M3
n,3 log

3/2(p/α) ≤ C1n
1/2−c1 , it

is straightforward to verify that the right side on (20) is bounded by Cn−c1

for some constant C depending only on c1, C1. □

A.3. Proof of Theorem 4.2. We first prove the following technical lemma.
Recall that Bn = (E[max1≤j≤p Z

4
1j ])

1/4.

Lemma A.5. For every 0 < c < 1,

P

(
max
1≤j≤p

|σ̂j/σj − 1| > K(n−(1−c)/2B2
n log p+ n−3/2B2

n log
2 p)

)
≤ K ′n−c,

where K,K ′ are universal constants.

18The inequality 1−Φ(t) ≤ e−t2/2 for t > 0 can be proved by using Markov’s inequality,
P(ξ > t) ≤ e−λtE[eλξ] for λ > 0 with ξ ∼ N(0, 1), and optimizing the bound with respect

to λ > 0; there is a sharper inequality, namely 1 − Φ(t) ≤ e−t2/2/2 for t > 0 (see, for
example, Proposition 2.1 in Dudley, 1999), but we do not need this sharp inequality in
this paper.
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Proof. Here K1,K2, . . . denote universal positive constants. Note that for
a > 0, |

√
a− 1| = |a− 1|/(

√
a+ 1) ≤ |a− 1|, so that for r > 0,

P

(
max
1≤j≤p

|σ̂j/σj − 1| > r

)
≤ P

(
max
1≤j≤p

|σ̂2j /σ2j − 1| > r

)
.

Using the expression σ̂2j /σ
2
j − 1 = (En[Z

2
ij ]− 1)− (En[Zij ])

2, we have

P

(
max
1≤j≤p

|σ̂2j /σ2j − 1| > r

)
≤ P

(
max
1≤j≤p

|En[Z
2
ij ]− 1| > r/2

)
+ P

(
max
1≤j≤p

|En[Zij ]| >
√
r/2

)
.

We wish to bound the two terms on the right-hand side by using the Fuk-
Nagaev inequality (Lemma A.2) combined with the maximal inequality in
Lemma A.3.

By Lemma A.3 (with the crude bounds E[Z4
1j ] ≤ B4

n and E[maxi,j Z
4
ij ] ≤

nB4
n), we have

E

[
max
1≤j≤p

|En[Z
2
ij ]− 1|

]
≤ K1B

2
n(log p)/

√
n,

so that by Lemma A.2, for every t > 0,

P

(
max
1≤j≤p

|En[Z
2
ij ]− 1| > 2K1B

2
n log p√
n

+ t

)
≤ e−nt2/(3B4

n) +K2t
−2n−1B4

n.

Taking t = n−(1−c)/2B2
n with 0 < c < 1, the right-hand side becomes e−nc/3+

K2n
−c ≤ K3n

−c. Hence we have

P

(
max
1≤j≤p

|En[Z
2
ij ]− 1| > K4n

−(1−c)/2B2
n(log p)

)
≤ K3n

−c. (53)

Similarly, using Lemma A.3, we have

E

[
max
1≤j≤p

|En[Zij ]|
]
≤ K5(n

−1/2
√

log p+ n−3/4Bn log p), (54)

so that by Lemma A.2, for every t > 0,

P

(
max
1≤j≤p

|En[Zij ]| > 2K5(n
−1/2

√
log p+ n−3/4Bn log p) + t

)
≤ e−nt2/3 +K6t

−4n−3B4
n.

Taking t = n−1/4Bn, the right-hand side becomes e−n1/2Bn/3 + K6n
−2 ≤

K7n
−2. Hence we have

P

(
max
1≤j≤p

|En[Zij ]| > K8(n
−1/4Bn

√
log p+ n−3/4Bn log p)

)
≤ K7n

−2. (55)

Combining (53) and (55) leads to the desired result. □
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Proof of Theorem 4.2. Here c, C denote generic positive constants depend-
ing only on α, c1, C1; their values may change from place to place. Define

J1 = {j ∈ {1, . . . , p} :
√
nµj/σj > −cSN (βn)}, Jc

1 = {1, . . . , p}\J1. (56)

For k ≥ 1, let

cSN,2S(α, k) =
Φ−1(1− (α− 2βn)/k)√

1− Φ−1(1− (α− 2βn)/k)2/n
.

Note that cSN,2S(α) = cSN,2S(α, k̂) when k̂ ≥ 1. We divide the proof into
several steps.

Step 1. We wish to prove that with probability larger than 1−βn−Cn−c,
µ̂j ≤ 0 for all j ∈ Jc

1 .

Observe that

µ̂j > 0 for some j ∈ Jc
1 ⇒ max

1≤j≤p

√
n(µ̂j − µj)/σj > cSN (βn),

so that it is enough to prove that

P

(
max
1≤j≤p

√
n(µ̂j − µj)/σj > cSN (βn)

)
≤ βn + Cn−c. (57)

Since whenever σj/σ̂j − 1 ≥ −r for some 0 < r < 1,

σj = σ̂j(1 + (σj/σ̂j − 1)) ≥ σ̂j(1− r),

the left-hand side of (57) is bounded by

P

(
max
1≤j≤p

√
n(µ̂j − µj)/σ̂j > (1− r)cSN (βn)

)
(58)

+ P

(
max
1≤j≤p

|(σj/σ̂j)− 1| > r

)
, (59)

where 0 < r < 1 is arbitrary.
Take r = rn = n−(1−c1)/2B2

n log p. Then rn < 1 for large n, and since

|a− 1| ≤ r

r + 1
⇒ |a−1 − 1| ≤ r,

we see that by Lemma A.5, the probability in (59) is bounded by Cn−c.
Consider the probability in (58). It is not difficult to see that

P

(
max
1≤j≤p

√
n(µ̂j − µj)/σ̂j > (1− r)cSN (βn)

)
≤ P

(
max
1≤j≤p

Uj > (1− r)Φ−1(1− βn/p)

)
≤

p∑
j=1

P
(
Uj > (1− r)Φ−1(1− βn/p)

)
. (60)
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Note that (1 − r)Φ−1(1 − βn/p) ≤
√

2 log(p/βn) ≤ n1/6/Mn,3 for large n.
Hence, by Lemma A.1, the sum in (60) is bounded by

pΦ̄
(
(1− r)Φ−1(1− βn/p)

) [
1 + n−1/2CM3

n,3

{
1 + (1− r)Φ−1(1− βn/p)

}3]
≤ pΦ̄

(
(1− r)Φ−1(1− βn/p)

) [
1 + n−1/2CM3

n,3{1 + Φ−1(1− βn/p)}3
]
.

Observe that n−1/2M3
n,3{1 + Φ−1(1− βn/p)}3 ≤ Cn−c1 . Moreover, putting

ξ = Φ−1(1− βn/p), we have by Taylor’s expansion for some r′ ∈ [0, r],

pΦ̄ ((1− r)ξ) = βn + rpξϕ
(
(1− r′)ξ

)
≤ βn + rpξϕ ((1− r)ξ) .

Using the inequality (1 − r)2ξ2 = ξ2 + r2ξ2 − 2rξ2 ≥ ξ2 − 2rξ2, we have

ϕ ((1− r)ξ) ≤ erξ
2
ϕ(ξ). Since βn < α/2 < 1/4 and p ≥ 2, we have ξ ≥

Φ−1(1 − 1/8) > 1, so that by Proposition 2.1 in Dudley (1999), we have
ϕ(ξ) ≤ 2ξ(1− Φ(ξ)) = 2ξβn/p.

19 Hence

pΦ̄ ((1− r)ξ) ≤ βn(1 + 2rξ2erξ
2
).

Recall that we have taken r = rn = n−(1−c1)/2B2
n log p, so that

rξ2 ≤ 2n−(1−c1)/2B2
n log

2(p/βn) ≤ Cn−c1/2.

Therefore, the probability in (58) is bounded by βn+Cn
−c for large n. The

conclusion of Step 1 is verified for large n and hence for all n by adjusting
the constant C.

Step 2. We wish to prove that with probability larger than 1−βn−Cn−c,

ĴSN ⊃ J1.

Observe that

P(ĴSN ̸⊃ J1) ≤ P

(
max
1≤j≤p

[√
n(µj − µ̂j)− (2σ̂j − σj)c

SN (βn)
]
> 0

)
. (61)

Since whenever 1− σj/σ̂j ≥ −r for some 0 < r < 1,

2σ̂j − σj = σ̂j(1 + (1− σj/σ̂j)) ≥ σ̂j(1− r),

the right-hand side on (61) is bounded by

P

(
max
1≤j≤p

√
n(µj − µ̂j)/σ̂j > (1− r)cSN (βn)

)
+ P

(
max
1≤j≤p

|(σj/σ̂j)− 1| > r

)
,

where 0 < r < 1 is arbitrary. By the proof of Step 1, we see that the sum
of these terms is bounded by βn +Cn−c with suitable r, which leads to the
conclusion of Step 2.

19Note that the second part of Proposition 2.1 in Dudley (1999) asserts that ϕ(t)/t ≤
P(|N(0, 1)| > t) = 2(1− Φ(t)) when t ≥ 1, so that ϕ(t) ≤ 2t(1− Φ(t)).
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Step 3. We are now in position to finish the proof of Theorem 4.2.
Consider first the case where J1 = ∅. Then by Step 1, with probability
larger than 1− βn − Cn−c, T ≤ 0, so that

P(T > cSN,2S(α)) ≤ βn + Cn−c ≤ α+ Cn−c.

Suppose now that |J1| ≥ 1. Observe that

{T > cSN,2S(α)} ∩
{
max
j∈Jc

1

µ̂j ≤ 0

}
⊂
{
max
j∈J1

√
nµ̂j/σ̂j > cSN,2S(α)

}
.

Moreover, as cSN,2S(α, k) is non-decreasing in k,{
max
j∈J1

√
nµ̂j/σ̂j > cSN,2S(α)

}
∩ {ĴSN ⊃ J1}

⊂
{
max
j∈J1

√
nµ̂j/σ̂j > cSN,2S(α, |J1|)

}
.

Therefore, by Steps 1 and 2, we have

P(T > cSN,2S(α))

≤ P

(
max
j∈J1

√
nµ̂j/σ̂j > cSN,2S(α, |J1|)

)
+ 2βn + Cn−c

≤ P

(
max
j∈J1

√
n(µ̂j − µj)/σ̂j > cSN,2S(α, |J1|)

)
+ 2βn + Cn−c. (62)

By Theorem 4.1, we see that

P

(
max
j∈J1

√
n(µ̂j − µj)/σ̂j > cSN,2S(α, |J1|)

)
≤ α− 2βn + Cn−c. (63)

Combining (62) and (63) completes the proof of the theorem. □

A.4. Proof of Theorem 4.3. Here c, C denote generic positive constants
depending only on c1, C1; their values may change from place to place. Let
W stand for WMB or WEB, depending on which bootstrap procedure is
used. Define

T̄ := max
1≤j≤p

√
n(µ̂j − µj)

σ̂j
, and T0 := max

1≤j≤p

√
n(µ̂j − µj)

σj
.

In addition, define

W̄MB := max
1≤j≤p

√
nEn[ϵi(Xij − µ̂j)]

σj
, W̄EB := max

1≤j≤p

√
nEn[(X

∗
ij − µ̂j)]

σj
,

and let W̄ stand for W̄MB or W̄EB depending on which bootstrap procedure
is used. Further, let

(Y1, . . . , Yp)
T ∼ N(0,E[Z1Z

T
1 ])
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and for γ ∈ (0, 1), denote by c0(γ) the (1− γ)-quantile of the distribution of
max1≤j≤p Yj . Finally, define

ρn := sup
t∈R

∣∣∣∣P(T0 ≤ t)− P

(
max
1≤j≤p

Yj ≤ t

)∣∣∣∣ ,
ρBn := sup

t∈R

∣∣∣∣P(W̄ ≤ t | Xn
1 )− P

(
max
1≤j≤p

Yj ≤ t

)∣∣∣∣ .
Observe that under the present assumptions, we may apply Proposition 2.1
in Chernozhukov, Chetverikov, and Kato (2014b) so that we have

ρn ≤ Cn−c; (64)

while applying Corollary 4.2 and Proposition 4.3 in Chernozhukov, Chetverikov,
and Kato (2014b) to the MB and EB procedures, respectively, we have for
some νn := Cn−c,

P(ρBn < νn) ≥ 1− Cn−c. (65)

We divide the rest of the proof into three steps. Step 1 establishes a relation
between cB(·) and c0(·). Step 2 proves the assertion of the theorem. Step
3 provides auxiliary calculations. In particular, Step 3 shows that for some
ζn1 and ζn2 satisfying ζn1

√
log p+ ζn2 ≤ Cn−c, we have

P(|T̄ − T0| > ζn1) ≤ Cn−c, (66)

P(P(|W − W̄ | > ζn1 | Xn
1 ) > ζn2) ≤ Cn−c. (67)

Step 1. We wish to prove that

P(cB(α) ≥ c0(α+ ζn2 + νn + 8ζn1
√

log p)) ≥ 1− Cn−c, (68)

P(cB(α) ≤ c0(α− ζn2 − νn − 8ζn1
√

log p)) ≥ 1− Cn−c. (69)

To establish (68), observe that for any t ∈ R,

P(W ≤ t | Xn
1 ) ≤ P(W̄ ≤ t+ ζn1 | Xn

1 ) + P(|W − W̄ | > ζn1 | Xn
1 ) (70)

≤ P

(
max
1≤j≤p

Yj ≤ t+ ζn1

)
+ ρBn + P(|W − W̄ | > ζn1 | Xn

1 ). (71)

By Lemma A.4, for any γ ∈ (0, 1−8ζn1
√
log p) (note that 1−8ζn1

√
log p > 0

for sufficiently large n),

P

(
max
1≤j≤p

Yj ≤ c0(γ + 8ζn1
√

log p) + ζn1

)
≤ P

(
max
1≤j≤p

Yj ≤ c0(γ + 8ζn1
√

log p)

)
+ 2ζn1(

√
2 log p+ 1)

≤ P

(
max
1≤j≤p

Yj ≤ c0(γ + 8ζn1
√

log p)

)
+ 8ζn1

√
log p

= 1− γ − 8ζn1
√
log p+ 8ζn1

√
log p = 1− γ,
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where the third line follows from p ≥ 2, so that
√
2 log p ≥ 1, and the fourth

line from the fact that the distribution of max1≤j≤p Yj has no point masses.
Hence

c0(γ + 8ζn1
√

log p) + ζn1 ≤ c0(γ). (72)

Therefore, setting t = c0(α+ ζn2 + νn + 8ζn1
√
log p) in (70)-(71), we obtain

P(W ≤ c0(α+ ζn2 + νn + 8ζn1
√

log p) | Xn
1 )

≤ 1− α− ζn2 − νn + ρBn + P(|W − W̄ | > ζn1 | Xn
1 ) < 1− α

on the event that ρBn < νn and P(|W − W̄ | > ζn1 | Xn
1 ) ≤ ζn2, which

holds with probability larger than 1− Cn−c by (65) and (67). This implies
(68). By a similar argument, we can establish that (69) holds as well. This
completes Step 1.

Step 2. Here we prove the asserted claims. Observe that under H0,

P(T > cB(α)) ≤ P(T̄ > cB(α))

≤ P(T0 > cB(α)− ζn1) + P(|T̄ − T0| > ζn1)

≤ P(T0 > c0(α+ ζn2 + νn + 8ζn1
√

log p)− ζn1) + Cn−c

≤ P(T0 > c0(α+ ζn2 + νn + 16ζn1
√

log p)) + Cn−c

≤ P( max
1≤j≤p

Yj > c0(α+ ζn2 + νn + 16ζn1
√

log p)) + ρn + Cn−c

= α+ ζn2 + νn + 16ζn1
√

log p+ ρn + Cn−c ≤ α+ Cn−c,

where the third line follows from (66) and (68), the fourth line from (72),
and the last line from (64) and construction of νn, ζn1, and ζn2. Hence, (32)
follows. To prove (33), observe that when µj = 0 for all 1 ≤ j ≤ p, T = T̄ ,
and so

P(T > cB(α)) = P(T̄ > cB(α))

≥ P(T0 > cB(α) + ζn1)− P(|T̄ − T0| > ζn1)

≥ P(T0 > c0(α− ζn2 − νn − 8ζn1
√

log p) + ζn1)− Cn−c

≥ P(T0 > c0(α− ζn2 − νn − 16ζn1
√

log p))− Cn−c

≥ P( max
1≤j≤p

Yj > c0(α− ζn2 − νn − 16ζn1
√

log p))− ρn − Cn−c

= α− ζn2 − νn − 16ζn1
√

log p− ρn − Cn−c ≥ α− Cn−c,

where the third line follows from (66) and (69), the fourth line from (72), and
the equality in the last line from the fact that the distribution of max1≤j≤p Yj
has no point masses. Hence (33) follows. This completes Step 2.

Step 3. We wish to prove (66) and (67). We wish to verify these condi-
tions with

ζn1 := n−(1−c1)/2B2
n log

3/2 p, and ζn2 := C ′n−c′ ,
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where c′, C ′ are suitable positive constants that depend only on c1, C1. We
note that because of the assumption that B2

n log
7/2(pn) ≤ C1n

1/2−c1 , these
choices satisfy ζn1

√
log p+ ζn2 ≤ Cn−c.

We first verify (66). Observe that

|T̄ − T0| ≤ max
1≤j≤p

|(σj/σ̂j)− 1| × max
1≤j≤p

|
√
nEn[Zij ]|.

By Lemma A.5 and the simple fact that |a− 1| ≤ r/(r+1) ⇒ |a−1 − 1| ≤ r
(r > 0), we have

P

(
max
1≤j≤p

|(σj/σ̂j)− 1| > n−1/2+c1/4B2
n log p

)
≤ Cn−c. (73)

Moreover, by Markov’s inequality and (54),

P

(
max
1≤j≤p

|
√
nEn[Zij ]| > nc1/4

√
log p

)
≤ Cn−c.

Hence (66) is verified (note that n−1/2+c1/4B2
n(log p)× nc1/4

√
log p = ζn1).

To verify (67), let An be the event such that

An :=

{
max
1≤j≤p

|(σ̂j/σj)− 1| ≤ (n−1/2+c1/4B2
n log p) ∧ (1/4)

}
.

We have seen that P(An) > 1−Cn−c. We consider MB and EB procedures
separately.

Consider the MB procedure first, so that W = WMB and W̄ = W̄MB.
Observe that

|WMB − W̄MB| ≤ max
1≤j≤p

|(σ̂j/σj)− 1| × |WMB|.

Conditional on the data Xn
1 , the vector (

√
nEn[ϵi(Xij − µ̂j)/σ̂j ])1≤j≤p is

normal with mean zero and all the diagonal elements of the covariance ma-
trix are one. Hence E[|WMB| | Xn

1 ] ≤
√

2 log(2p), so that by Markov’s
inequality, on the event An,

P(|WMB−W̄MB| > ζn1 | Xn
1 ) ≤ (1/ζn1) max

1≤j≤p
|(σ̂j/σj)−1|×E[|WMB| | Xn

1 ],

which is bounded by Cn−c1/4, so that (67) for the MB procedure is verified.
Now consider the EB procedure. On the event An∩{P(|WMB−W̄MB| >

ζn1 | Xn
1 ) ≤ ζn2} ∩ {ρMB

n < νn} ∩ {ρEB
n < νn}, which holds with probability

larger than 1− Cn−c,

P(|WEB − W̄EB| > ζn1 | Xn
1 )

≤ P( max
1≤j≤p

|(σj/σ̂j)− 1| × |W̄EB| > ζn1 | Xn
1 )

≤ P( max
1≤j≤p

|(σj/σ̂j)− 1| × |W̄MB| > ζn1 | Xn
1 ) + ρEB

n + ρMB
n

≤ P( max
1≤j≤p

|(σ̂j/σj)− 1| × |WMB| > ζn1/4 | Xn
1 ) + ρEB

n + ρMB
n ≤ Cn−c,

so that (67) for the EB procedure is verified. This completes the proof. □
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A.5. Proof of Theorem 4.4. Here c, C denote generic positive constants
depending only on c1, C1; their values may change from place to place. Let

ĴB stand either for ĴMB or ĴEB depending on which bootstrap procedure
is used. Let

(Y1, . . . , Yp)
T ∼ N(0,E[Z1Z

T
1 ]).

For γ ∈ (0, 1), denote by c0(γ) the (1 − γ)-quantile of the distribution of
max1≤j≤p Yj . Recall that in the proof of Theorem 4.3, we established that
with probability larger than 1 − Cn−c, cB(α) ≥ c0(α + φn) and cB(α) ≤
c0(α− φn) for some 0 < φn ≤ Cn−c; see (68) and (69). Define

J2 := {j ∈ {1, . . . , p} :
√
nµj/σj > −c0(βn + φn)}, Jc

2 = {1, . . . , p}\J2.

We divide the proof into several steps.

Step 1. We wish to prove that with probability larger than 1−βn−Cn−c,
µ̂j ≤ 0 for all j ∈ Jc

2 .

Like in the proof of Theorem 4.2, observe that

µ̂j > 0 for some j ∈ Jc
2 ⇒ max

1≤j≤p

√
n(µ̂j − µj)/σj > c0(βn + φn),

so that it is enough to prove that

P

(
max
1≤j≤p

√
n(µ̂j − µj)

σj
> c0(βn + φn)

)
≤ βn + Cn−c.

But this follows from Proposition 2.1 in Chernozhukov, Chetverikov, and
Kato (2014b) (and the fact that φn = C ′n−c′). This concludes Step 1.

Step 2. We wish to prove that with probability larger than 1−βn−Cn−c,

ĴB ⊃ J2.

Like in the proof of Theorem 4.2, observe that

P(ĴB ̸⊃ J2)

≤ P

(
max
1≤j≤p

[√
n(µj − µ̂j)− (2σ̂jc

B(βn)− σjc0(βn + φn))
]
> 0

)
.

Since whenever cB(βn) ≥ c0(βn+φn) and σ̂j/σj − 1 ≥ −r/2 for some r > 0,

2σ̂jc
B(βn)− σjc0(βn + φn) ≥ (2σ̂j − σj)c0(βn + φn)

= σj(1 + 2(σ̂j/σj − 1))c0(βn + φn) ≥ (1− r)σjc0(βn + φn),

we have

P(ĴB ̸⊃ J2) ≤ P

(
max
1≤j≤p

√
n(µj − µ̂j)

σj
> (1− r)c0(βn + φn)

)
(74)

+ P
(
cB(βn) < c0(βn + φn)

)
+ P

(
max
1≤j≤p

|(σ̂j/σj)− 1| > r/2

)
.
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By Proposition 2.1 in Chernozhukov, Chetverikov, and Kato (2014b), the
probability on the right-hand side of (74) is bounded by

P

(
max
1≤j≤p

Yj > (1− r)c0(βn + φn)

)
+ Cn−c.

Moreover, by Lemma A.4,

P

(
max
1≤j≤p

Yj > (1− r)c0(βn + φn)

)
≤ βn + φn + 2r

(√
2 log p+ 1)(

√
2 log p+

√
2 log(1/(βn + φn))

)
,

which is bounded by βn + φn + Cr log(pn). Thus,

P(ĴB ̸⊃ J2) ≤ βn + P

(
max
1≤j≤p

|(σ̂j/σj)− 1| > r/2

)
+ C(r log(pn) + n−c).

Choosing r = rn = n−(1−c1)/2B2
n log p, we see that, by Lemma A.5, the

second term on the right-hand side of the inequality above is bounded by
Cn−c, and

r log(pn) ≤ n−(1−c1)/2B2
n log

2(pn) ≤ C1n
−c1/2,

because of the assumption that B2
n log

7/2(pn) ≤ C1n
1/2−c1 . This leads to

the conclusion of Step 2.

Step 3. We are now in position to finish the proof of the theorem. Assume
first that J2 = ∅. Then by Step 1 we have that T ≤ 0 with probability larger
than 1 − βn − Cn−c. But as cB,2S(α) ≥ 0 (recall that α < 1/2), we have
P(T > cB,2S(α)) ≤ βn + Cn−c ≤ α + Cn−c. Now consider the case where
J2 ̸= ∅. Define cB,2S(α, J2) by the same bootstrap procedure as cB,2S(α)

with ĴB replaced by J2. Note that cB,2S(α) ≥ cB,2S(α, J2) on the event

ĴB ⊃ J2. Therefore, arguing as in Step 3 of the proof of Theorem 4.2,

P(T > cB,2S(α)) ≤ P

(
max
j∈J2

√
nµ̂j/σ̂j > cB,2S(α)

)
+ βn + Cn−c

≤ P

(
max
j∈J2

√
nµ̂j/σ̂j > cB,2S(α, J2)

)
+ 2βn + Cn−c

≤ P

(
max
j∈J2

√
n(µ̂j − µj)/σ̂j > cB,2S(α, J2)

)
+ 2βn + Cn−c

≤ α− 2βn + 2βn + Cn−c = α+ Cn−c.

This gives the first assertion of the theorem.
Moreover, when µj = 0 for all 1 ≤ j ≤ p, we have J2 = {1, . . . , p}. Hence

by Step 2, cB,2S(α) = cB,2S(α, J2) with probability larger than 1−βn−Cn−c.
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Therefore,

P(T > cB,2S(α)) = P

(
max
1≤j≤p

√
n(µ̂j − µj)/σ̂j > cB,2S(α)

)
≥ P

(
max
1≤j≤p

√
n(µ̂j − µj)/σ̂j > cB,2S(α, J2)

)
− βn − Cn−c

≥ α− 3βn − Cn−c.

This gives the second assertion of the theorem. Finally, the last assertion
follows trivially. This completes the proof of the theorem. □

A.6. Proof of Theorem 4.5. Recall the set J1 ⊂ {1, . . . , p} defined in
(56). By Steps 1 and 2 in the proof of Theorem 4.2, we see that

P(µ̂j ≤ 0 for all j ∈ Jc
1) > 1− βn − Cn−c,

P(ĴSN ⊃ J1) > 1− βn − Cn−c,

where c, C are some positive constants depending only on c1, C1. The rest
of the proof is completely analogous to Step 3 in the proof of Theorem 4.4
and hence omitted. □

A.7. Proof of Theorem 4.6. Here c, C denote generic positive constants
depending only on c1, C1, c2, C2; their values may change from place to place.
Define

J2 :=
{
j ∈ {1, . . . , p} :

√
nµj/σj > −c0(βn + φn)

}
, Jc

2 := {1, . . . , p}\J2,
J3 :=

{
j ∈ {1, . . . , p} :

√
n|µVjl/σVjl | > 2cV0 (βn) for all l = 1, . . . , r

}
where c0(βn + φn) is defined as in the proof of Theorem 4.4 and cV0 (βn) is
the (1 − βn)-quantile of the distribution of maxj,l Y

V
jl where {Y V

jl , 1 ≤ j ≤
p, 1 ≤ l ≤ r} is a sequence of Gaussian random variables with mean zero
and covariance E[Y V

jl Y
V
j′l′ ] = E[ZV

1jlZ
V
1j′l′ ].

By the same arguments as those used in Steps 1 and 2 of the proof of
Theorem 4.4, we have

P(J2 ⊂ ĴB) ≥ 1− βn − Cn−c,

P(J3 ⊂ Ĵ ′′
B) ≥ 1− βn − Cn−c,

P(Ĵ ′
B ⊂ J3) ≥ 1− βn − Cn−c,

P(µ̂j ≤ 0, for all j ∈ Jc
2) ≥ 1− βn − Cn−c.

Define cB,3S(α, J2 ∩ J3) by the same bootstrap procedure as cB,3S(α) with

ĴB∩Ĵ ′′
B replaced by J2∩J3. Then inequalities above imply that cB,3S(α, J2∩

J3) ≤ cB,3S(α) with probability larger than 1− 2βn − Cn−c. Therefore, by
an argument similar to that used in Step 3 of the proof of Theorem 4.4, with
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maximum over empty set understood as 0, we have

P(T > cB,3S(α)) ≤ P

(
max

j∈J2∩Ĵ ′
B

√
nµ̂j/σ̂j > cB,3S(α)

)
+ βn + Cn−c

≤ P

(
max

j∈J2∩Ĵ ′
B

√
nµ̂j/σ̂j > cB,3S(α, J2 ∩ J3)

)
+ 3βn + Cn−c

≤ P

(
max

j∈J2∩J3

√
nµ̂j/σ̂j > cB,3S(α, J2 ∩ J3)

)
+ 4βn + Cn−c

≤ α− 4βn + 4βn + Cn−c = α+ Cn−c.

This completes the proof of the theorem. □

A.8. Proof of Lemma 5.1. Denote Xn
1 = (X1, . . . , Xn). Let ϕn : Rpn →

[0, 1], Xn
1 7→ ϕn(X

n
1 ), be a test such that Eµ[ϕn(X

n
1 )] ≤ α for all µ ∈ Rp

with max1≤j≤p µj ≤ 0. Let µ[j] be the vector in Rp such that only the j-th
element is nonzero and equals rσj . Denote by E0[·] the expectation under
µ = 0, and denote by Ej [·] the expectation under µ = µ[j]. Then we have

inf
max1≤j≤p(µj/σj)≥r

Eµ[ϕn(X
n
1 )]− α ≤ 1

p

p∑
j=1

Ej [ϕn(X
n
1 )]− E0[ϕn(X

n
1 )]. (75)

Further,

Ej [ϕ(X
n
1 )] = E0[e

nrµ̂j/σj−nr2/2ϕn(X
n
1 )]

where µ̂j = En[Xij ]. Hence the right-hand side of (75) is written as

E0

{1
p

p∑
j=1

enrµ̂j/σj−nr2/2 − 1
}
ϕn(X

n
1 )

 ≤ E0

∣∣∣1
p

p∑
j=1

enrµ̂j/σj−nr2/2 − 1
∣∣∣
 .

Note that under µ = 0,
√
nµ̂1/σ1, . . . ,

√
nµ̂p/σp ∼ N(0, 1) i.i.d. Hence we

obtain the assertion (45).
The second assertion follows from application of Lemma 6.2 in Dümbgen

and Spokoiny (2001). This completes the proof of the lemma. □

A.9. Proof of Lemma 5.2. Let j∗ ∈ {1, . . . , p} be any index such that
µj∗/σj∗ = max1≤j≤p(µj/σj). Let An,1 and An,2 be the events that |σ̂j∗/σj∗−
1| ≤ δ and ĉ(α) ≤ (1 + ϵ)

√
2 log(p/α), respectively. Then on the event

An,1 ∩An,2,

T ≥
√
nµ̂j∗/σ̂j∗ =

√
nµj∗/σ̂j∗ +

√
n(µ̂j∗ − µj∗)/σ̂j∗

≥ (1/(1 + δ)) ·
√
nµj∗/σj∗ +

√
n(µ̂j∗ − µj∗)/σ̂j∗

≥ (1 + ϵ+ ϵ)
√

2 log(p/α) +
√
n(µ̂j∗ − µj∗)/σ̂j∗ ,

so that
√
n(µ̂j∗ − µj∗)/σ̂j∗ > −ϵ

√
2 log(p/α) ⇒ T > ĉ(α).
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Hence we have

P(T > ĉ(α)) ≥ P ({T > ĉ(α)} ∩An,1 ∩An,2)

≥ P
({√

n(µ̂j∗ − µj∗)/σ̂j∗ > −ϵ
√

2 log(p/α)
}
∩An,1 ∩An,2

)
≥ P

({√
n(µ̂j∗ − µj∗)/σj∗ > −(1− δ)ϵ

√
2 log(p/α)

}
∩An,1 ∩An,2

)
≥ P

(√
n(µ̂j∗ − µj∗)/σj∗ > −(1− δ)ϵ

√
2 log(p/α)

)
− P(An,1)− P(An,2).

By Markov’s inequality, we have

P
(√

n(µ̂j∗ − µj∗)/σj∗ > −(1− δ)ϵ
√

2 log(p/α)
)

= 1− P
(√

n(µj∗ − µ̂j∗)/σj∗ ≥ (1− δ)ϵ
√

2 log(p/α)
)

≥ 1− 1

2(1− δ)2ϵ2 log(p/α)
.

This completes the proof. □

A.10. Proof of Corollary 5.1. Here c, C denote generic positive constants
depending only on α, c1, C1; their values may change from place to place.
We begin with noting that since M2

n,4 log
1/2 p ≤ C1n

1/2−c1 , by Markov’s

inequality, there exists δn ≤ min{C log−1/2 p, 1/2} such that

max
1≤j≤p

P (|σ̂j/σj − 1| > δn) ≤ Cn−c.

Hence, by Lemma 5.2, we only have to verify that

P(ĉ(α) > (1 + C log−1/2 p)
√

2 log(p/α)) ≤ Cn−c. (76)

To this end, since βn ≤ α/3, we note that

cSN,2S(α) ≤ cSN (α/3), cB,2S(α) ∨ cB,H(α) ≤ cB(α/3)

where B =MB or EB, so that it suffices to verify (76) with ĉ(α) = cSN (α),
cMB(α), and cEB(α).

For ĉ(α) = cSN (α), since Φ−1(1−p/α) ≤
√

2 log(p/α) and log3/2 p ≤ C1n,

it is straightforward to see that (76) is verified. For ĉ(α) = cMB(α), it follows

from Lemma A.4 that cMB(α) ≤
√
2 log p +

√
2 log(1/α), so that (76) can

be verified by simple algebra.
Now consider ĉ(α) = cEB(α). It is established in Step 1 of the proof of

Theorem 4.3 that there exists a sequence φn ≥ 0 such that φn ≤ Cn−c and
P(cEB(α) > c0(α − φn)) ≤ Cn−c where c0(α − φn) is the (1 − α + φn)th
quantile of the distribution of max1≤j≤p Yj and (Y1, . . . , Yp)

T is a normal
vector with mean zero and all diagonal elements of the covariance matrix
equal to one. By Lemma A.4,

c0(α− φn) ≤
√

2 log p+
√

2 log(1/(α− φn)).
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In addition, simple algebra shows that

(1 + C log−1/2 p)
√

2 log(p/α) >
√

2 log p+
√

2 log(1/(α− φn))

if C is chosen sufficiently large (and depending on α). Combining these
inequalities gives (76). This completes the proof. □

A.11. Proof of Theorem 6.1. The theorem readily follows from Theorems
4.1-4.5. □

A.12. Proof of Theorem 7.1. Here c, c′, C, C ′ denote generic positive con-
stants depending only on c1, c2, C1; their values may change from place
to place. It suffices to show that |P(Ť ≤ ĉBMB(α)) − α| ≤ Cn−c when
µj = 0, 1 ≤ ∀j ≤ p. Suppose that µj = 0, 1 ≤ ∀j ≤ p. We use the extensions
of the results in Chernozhukov, Chetverikov, and Kato (2013a) to dependent
data proved in Appendix B ahead. Note that since log(pn) ≤ C

√
q (which

follows from (r/q) log2 p ≤ C1n
−c2),

√
qDn log

7/2(pn) ≤ CqDn log
5/2(pn) ≤

C ′n1/2−c2 , so that by Theorem B.1 in Appendix B,

sup
t∈R

|P(Ť ≤ t)− P( max
1≤j≤p

Y̌j ≤ t)| ≤ Cn−c, (77)

where Y̌ = (Y̌1, . . . , Y̌p)
T is a centered normal random vector with covariance

matrix E[Y̌ Y̌ T ] = (1/(mq))
∑m

l=1 E[(
∑

i∈Il Xi)(
∑

i∈Il Xi)
T ]. Note that c1 ≤

σ2(q) ≤ E[Y̌ 2
j ] ≤ σ2(q) ≤ C1, 1 ≤ ∀j ≤ p.

Let W̌0 = max1≤j≤p(1/
√
mq)

∑m
l=1 ϵl

∑
i∈Il Xij . Then by Theorem B.2,

with probability larger than 1− Cn−c,

sup
t∈R

|P(W̌0 ≤ t | Xn
1 )− P( max

1≤j≤p
Y̌j ≤ t)| ≤ C ′n−c′ .

Observe that |W̌ − W̌0| ≤ max1≤j≤p |
√
nµ̂j | · |m−1

∑m
l=1 ϵl|. Here since

q ≤ Cn1/2−c2 , we have m ≥ n/(4q) ≥ C−1n1/2−c2 , so that by Markov’s

inequality, P(|m−1
∑m

l=1 ϵl| > Cn−1/4+5c2/8) ≤ n−c2/8. On the other hand,
by applying Theorem B.1 to (Xi1, . . . , Xip,−Xi1, . . . ,−Xip)

T , we have

sup
t∈R

|P( max
1≤j≤p

|
√
nµ̂j | ≤ t)− P( max

1≤j≤p
|Y̌j | ≤ t)| ≤ Cn−c.

Since E[max1≤j≤p |Y̌j |] ≤ C
√
log p, we conclude that

P( max
1≤j≤p

|
√
nµ̂j | > Cnc2/8

√
log p) ≤ C ′n−c.

Hence with probability larger than 1− Cn−c,

P(|W̌ − W̌0| > ζn | Xn
1 ) ≤ n−c′ ,

where ζn = C ′n−1/4+3c2/4
√
log p. Note that since qDn log

5/2(pn) ≤ C1n
1/2−c2 ,

n−1/4+c2/2 log p ≤ Cq−1/2 ≤ C ′n−c2/2 (the second inequality follows from

(r/q) log2 p ≤ C1n
−c2 so that q−1 ≤ Cn−c2), and hence ζn

√
log p ≤ Cn−c2/4.
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Using the anti-concentration property of max1≤j≤p Y̌j (see Step 3 in the proof
of Theorem B.1), we conclude that with probability larger than 1− Cn−c,

sup
t∈R

|P(W̌ ≤ t | Xn
1 )− P( max

1≤j≤p
Y̌j ≤ t)| ≤ C ′n−c′ .

The desired assertion follows from combining this inequality with (77). □

A.13. Proof of Theorem 7.2. Here c, C denote generic positive constants
depending only on c1, C1; their values may change from place to place. De-
fine

T̄ := max
1≤j≤p

√
n(µ̂j − µj)

σ̂j
, T0 := max

1≤j≤p

√
n(µ̂j,0 − µj)

σj
,

WMB := max
1≤j≤p

√
nEn[ϵi(X̂ij − µ̂j)]

σ̂j
, W̄MB := max

1≤j≤p

√
nEn[ϵi(Xij − µ̂j,0)]

σj
,

WEB := max
1≤j≤p

√
nEn[X̂

∗
ij − µ̂j ]

σ̂j
, W̄EB := max

1≤j≤p

√
nEn[X

∗
ij − µ̂j,0]

σj
,

where X̂∗
1 , . . . , X̂

∗
n is an empirical bootstrap sample from X̂1, . . . , X̂n, and

X∗
1 , . . . , X

∗
n is an empirical bootstrap sample from X1, . . . , Xn. Observe

that the critical values cMB,2S(α) and cEB,2S(α) are based on the bootstrap
statistics WMB and WEB.

We divide the proof into several steps. In Steps 1, 2, and 3, we prove that

P
(
|T̄ − T0| > ζ ′n1

)
≤ Cn−c, (78)

P(P(|WMB − W̄MB| > ζ ′n1 | Xn
1 ) > Cn−c) ≤ Cn−c, (79)

P(P(|WEB − W̄EB| > ζ ′n1 | Xn
1 ) > Cn−c) ≤ Cn−c, (80)

respectively, for some ζ ′n1 satisfying ζ ′n1
√
log p ≤ Cn−c. In Step 4, we prove

an auxiliary result that

P

(
max
1≤j≤p

|1− σ̂j/σ̂j,0| > Cζn1

)
≤ Cn−c. (81)

Given results (78)-(80), the conclusions of the theorem follow by repeating
the arguments used in the proofs of Theorems 4.3 and 4.4.

In the proof, we will frequently use the following implications of Lemma
A.5 (recall that σ̂j in Lemma A.5 is denoted as σ̂j,0 in this proof):

P

(
max
1≤j≤p

(σj/σ̂j,0)
2 > 2

)
≤ Cn−c, (82)

P

(
max
1≤j≤p

(σ̂j,0/σj)
2 > 2

)
≤ Cn−c. (83)
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Step 1. Here we wish to prove (78). Define T ′
0 := max1≤j≤p

√
n(µ̂j,0 −

µj)/σ̂j . Observe that

|T̄ − T ′
0| ≤ max

1≤j≤p

∣∣∣∣√n(µ̂j − µ̂j,0)

σ̂j

∣∣∣∣ ≤ C max
1≤j≤p

∣∣∣∣√n(µ̂j − µ̂j,0)

σj

∣∣∣∣
≤ C max

1≤j≤p
|
√
n(µ̂j − µ̂j,0)| ≤ Cζn1

with probability larger than 1−Cn−c where the second inequality in the first
line follows from (81) and (82) and the second line follows from assumptions.
Also,

|T ′
0 − T0| ≤ max

1≤j≤p
|σj/σ̂j − 1| × max

1≤j≤p
|
√
nEn[Zij ]|,

where Zij = (Xij −µj)/σj . As shown in Step 3 of the proof of Theorem 4.3,

P

(
max
1≤j≤p

|
√
nEn[Zij ]| > nc1/4

√
log p

)
≤ Cn−c.

In addition, using an elementary inequality |ab−1| ≤ |a||b−1|+ |a−1| with
a = σj/σ̂j,0 and b = σ̂j,0/σ̂j , we obtain from (73) in the proof of Theorem
4.3, (81), and (82) that

P

(
max
1≤j≤p

|σj/σ̂j − 1| > C(n−1/2+c1/4B2
n log p+ ζn1)

)
≤ Cn−c

(remember that σ̂j in the proof of Theorem 4.3 corresponds to σ̂j,0 here).

Therefore, the claim of this step holds with ζ ′n1 := C(n−1/2+c1/2B2
n(log p)

3/2+

ζn1n
c1/4

√
log p) for sufficiently large C.

Step 2. Here we wish to prove (79). Let ŴMB := max1≤j≤p
√
nEn[ϵi(Xij−

µ̂j,0)]/σ̂j . By (81) and (82), with probability larger than 1− Cn−c,

|WMB − ŴMB| ≤ max
1≤j≤p

|
√
nEn[ϵi(X̂ij −Xij − µ̂j + µ̂j,0)]|

σ̂j

≤ C max
1≤j≤p

|
√
nEn[ϵi(X̂ij −Xij − µ̂j + µ̂j,0)]|

σj

≤ C max
1≤j≤p

|
√
nEn[ϵi(X̂ij −Xij − µ̂j + µ̂j,0)]|,

where the third inequality follows from the assumption that σj ≥ c1 for all

j = 1, . . . , p. Conditional on Xn
1 , the vector (

√
nEn[ϵi(X̂ij − Xij − µ̂j +

µ̂j,0)])1≤j≤p is normal with mean zero and all diagonal elements of the co-

variance matrix bounded by max1≤j≤p En[(X̂ij − Xij − µ̂j + µ̂j,0)
2]. As

established in in Step 4 below, the last quantity is bounded by Cζ2n1 with
probability larger than 1− Cn−c. Therefore,

P(P(|WMB − ŴMB| > Cζn1
√

log p | Xn
1 ) > Cn−c) ≤ Cn−c. (84)

Moreover

|ŴMB − W̄MB| ≤ max
1≤j≤p

|σj/σ̂j − 1| × W̄MB.
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Now observe that W̄MB = max1≤j≤p
√
nEn[ϵi(Xij − µ̂j,0)/σj ] and condi-

tional on the data Xn
1 , the vector (

√
nEn[ϵi(Xij − µ̂j,0)/σj ])1≤j≤p is normal

with mean zero and all diagonal elements of the covariance matrix bounded
by max1≤j≤p(σ̂

2
j,0/σ

2
j ). By (83), the last quantity is bounded by 2 with

probability larger than 1− Cn−c. Therefore,

P(P(|ŴMB − W̄MB| > ζ ′n1 | Xn
1 ) > Cn−c) ≤ Cn−c (85)

where ζ ′n1 is defined in Step 1. Combining (84) and (85) leads to the assertion
of this step.

Step 3. Here we wish to prove (80). Let ŴEB := max1≤j≤p
√
nEn[X

∗
ij −

µ̂j,0]/σ̂j . By (81) and (82), with probability larger than 1− Cn−c,

|WEB − ŴEB| ≤ max
1≤j≤p

|
√
nEn[X̂

∗
ij −X∗

ij − µ̂j + µ̂j,0]|
σ̂j

≤ C max
1≤j≤p

|
√
nEn[X̂

∗
ij −X∗

ij − µ̂j + µ̂j,0]|
σj

≤ C max
1≤j≤p

|
√
nEn[X̂

∗
ij −X∗

ij − µ̂j + µ̂j,0]|,

where the third inequality follows from the assumption that σj ≥ c1 for all
1 ≤ j ≤ p. Applying Lemma A.3 conditional on the data Xn

1 , we have

E

[
max
1≤j≤p

|
√
nEn[X̂

∗
ij −X∗

ij − µ̂j + µ̂j,0]| | Xn
1

]
≤ C

(
max
1≤j≤p

(En[(X̂ij −Xij)
2] log p)1/2 +max

i,j
|X̂ij −Xij |(log p)/

√
n

)
.

Therefore, by Markov’s inequality, we have

P(P(|WEB − ŴEB| > Cζn1n
c1/4
√

log p | Xn
1 ) > Cn−c) ≤ Cn−c. (86)

Moreover
|ŴEB − W̄EB| ≤ max

1≤j≤p
|σj/σ̂j − 1| × W̄EB.

Applying Lemma A.3 conditional on the data Xn
1 once again, we have

E[W̄EB | Xn
1 ] ≤ C

(
max
1≤j≤p

(σ̂j,0/σj) + max
i,j

|Xij − µj |
σj

(log p)/
√
n

)
.

By (83), max1≤j≤p(σ̂j,0/σj) ≤
√
2 with probability larger than 1 − Cn−c.

Here for Zij = (Xij − µj)/σj ,

E

[
max
1≤j≤p

|Zij |
]
≤
(
E

[
max
i,j

|Zij |4
])1/4

≤
(
E

[
n max

1≤j≤p
|Zij |4

])1/4

= n1/4Bn.

Hence, by Markov’s inequality and the assumption that B2
n log

7/2(pn) ≤
C1n

1/2−c1 , we have maxi,j(|Xij − µj |/σj)(log p)/
√
n ≤ C

√
log p with proba-

bility larger than 1− Cn−c for sufficiently large C. Therefore,

P(P(|ŴEB − W̄EB| > Cζn1
√

log p | Xn
1 ) > Cn−c) ≤ Cn−c. (87)
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Combining (86) and (87) leads to the assertion of this step.

Step 4. Here we wish to prove (81). Using (82), we obtain that with
probability larger than 1− Cn−c, for all j = 1, . . . , p,∣∣∣∣1− σ̂j

σ̂j,0

∣∣∣∣ ≤ ∣∣∣∣1− ( σ̂jσ̂j,0
)2∣∣∣∣ = 1

σ̂2j,0

∣∣σ̂2j − σ̂2j,0
∣∣ ≤ 2

σ2j

∣∣σ̂2j − σ̂2j,0
∣∣

=
2

σ2j

∣∣∣En[(X̂ij − µ̂j)
2 − (Xij − µ̂j,0)

2]
∣∣∣ .

Since a2 − b2 = (a − b)2 + 2b(a − b) for any a, b ∈ R, we have, by the
Cauchy-Schwarz inequality,

|En[(X̂ij − µ̂j)
2 − (Xij − µ̂j,0)

2]| ≤ En[(X̂ij −Xij − µ̂j + µ̂j,0)
2]

+ 2σ̂j,0

(
En[(X̂ij −Xij − µ̂j + µ̂j,0)

2]
)1/2

.

Also,(
En[(X̂ij −Xij − µ̂j + µ̂j,0)

2]
)1/2

≤ (En[(X̂ij −Xij)
2])1/2 + |µ̂j − µ̂j,0|,

which is further bounded by Cζn1 with probability larger than 1 − Cn−c.
Taking these inequalities together, we conclude that with probability larger
than 1− Cn−c, for all j = 1, . . . , p,∣∣∣∣1− σ̂j

σ̂j,0

∣∣∣∣ ≤ 2(Cζn1)
2

σ2j
+

4σ̂j,0Cζn1
σ2j

≤ Cζn1,

where the last inequality follows from the assumption that σj ≥ c1 for all
j = 1, . . . , p and inequality (83). This leads to the assertion of Step 4 and
completes the proof of the theorem. □

Appendix B. High dimensional CLT under dependence

In this appendix, we extend the results of Chernozhukov, Chetverikov,
and Kato (2013a) to dependent data. Let X1, . . . , Xn be possibly dependent
random vectors in Rp with mean zero, defined on the probability space
(Ω,A,P), and let Ť = max1≤j≤p

√
nEn[Xij ]. For the sake of simplicity, we

assume that there is some constant Dn ≥ 1 such that

|Xij | ≤ Dn, a.s., 1 ≤ i ≤ n; 1 ≤ j ≤ p.

We follow the other notation used in Section 7.1. In addition, define

Sl =
∑
i∈Il

Xi, S
′
l =

∑
i∈Jl

Xi,

and let {S̃l}ml=1 and {S̃′
l}ml=1 be two independent sequences of random vectors

in Rp such that

S̃l
d
= Sl, S̃

′
l

d
= S′

l, 1 ≤ l ≤ m.

Moreover, let Y̌ = (Y̌1, . . . , Y̌p)
T be a centered normal random vector with

covariance matrix E[Y̌ Y̌ T ] = (1/(mq))
∑m

l=1 E[SlS
T
l ].
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Theorem B.1 (High dimensional CLT under dependence). Suppose that
there exist constants 0 < c1 ≤ C1 and 0 < c2 < 1/4 such that c1 ≤ σ2(q) ≤
σ2(r) ∨ σ2(q) ≤ C1, (r/q) log

2 p ≤ C1n
−c2, and

max{qDn log
1/2 p, rDn log

3/2 p,
√
qDn log

7/2(pn)} ≤ C1n
1/2−c2 .

Then there exist constants c, C > 0 depending only on c1, c2, C1 such that

sup
t∈R

|P(Ť ≤ t)− P( max
1≤j≤p

Y̌j ≤ t)| ≤ Cn−c + 2(m− 1)br.

Proof. In this proof, c, C denote generic positive constants depending only
on c1, c2, C1; their values may change from place to place. We divide the
proof into several steps.

Step 1. (Reduction to independence). We wish to show that

P

(
max
1≤j≤p

1√
n

m∑
l=1

S̃lj ≤ t− Cn−c log−1/2 p

)
− n−c − 2(m− 1)br

≤ P(Ť ≤ t)

≤ P

(
max
1≤j≤p

1√
n

m∑
l=1

S̃lj ≤ t+ Cn−c log−1/2 p

)
+ n−c + 2(m− 1)br.

We only prove the second inequality; the first inequality follows from the
analogous argument. Observe that

∑n
i=1Xi =

∑m
l=1 Sl +

∑m
l=1 S

′
l + S′

m+1,
so that

| max
1≤j≤p

n∑
i=1

Xij − max
1≤j≤p

m∑
l=1

Slj | ≤ max
1≤j≤p

|
m∑
l=1

S′
lj |+ max

1≤j≤p
|S′

m+1,j |.

By Corollary 2.7 in Yu (1994) (see also Eberlein, 1984), we have

sup
t∈R

∣∣∣∣∣P
(

max
1≤j≤p

m∑
l=1

Slj ≤ t

)
− P

(
max
1≤j≤p

m∑
l=1

S̃lj ≤ t

)∣∣∣∣∣ ≤ (m− 1)br,

sup
t>0

∣∣∣∣∣P
(

max
1≤j≤p

|
m∑
l=1

S′
lj | > t

)
− P

(
max
1≤j≤p

|
m∑
l=1

S̃′
lj | > t

)∣∣∣∣∣ ≤ (m− 1)bq.

Hence for every δ1, δ2 > 0,

P(Ť ≤ t) ≤ P

(
max
1≤j≤p

1√
n

m∑
l=1

S̃lj ≤ t+ δ1 + δ2

)

+ P

(
max
1≤j≤p

| 1√
n

m∑
l=1

S̃′
lj | > δ1

)
+ P

(
max
1≤j≤p

|S′
m+1,j | >

√
nδ2

)
+ 2(m− 1)br

= I + II + III + IV.

Since |Sm+1,j | ≤ (q + r − 1)Dn a.s., by taking δ2 = 2(q + r − 1)Dn/
√
n (≤

Cn−c log−1/2 p), we have III = 0. Moreover, for every ϵ > 0, by Markov’s

inequality, with δ1 = ϵ−1E[max1≤j≤p |n−1/2
∑m

l=1 S̃
′
lj |], II ≤ ϵ. It remains to
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bound the magnitude of E[max1≤j≤p |n−1/2
∑m

l=1 S̃
′
lj |]. Since S̃′

l, 1 ≤ l ≤ m,

are independent with |S̃′
lj | ≤ rDn a.s. and Var(S̃′

lj) ≤ rσ2(r), 1 ≤ l ≤ m, 1 ≤
j ≤ p, by Lemma A.3, we have

E

[
max
1≤j≤p

| 1√
n

m∑
l=1

S̃′
lj |

]
≤ K

(√
(r/q)σ2(r) log p+ n−1/2rDn log p

)
.

where K is universal (here we have used the simple fact that m/n ≤ 1/q),

so that the left side is bounded by Cn−2c log−1/2 p (by taking c sufficiently
small). The conclusion of this step follows from taking ϵ = n−c so that

δ1 ≤ Cn−c log−1/2 p.

Step 2. (Normal approximation to the sum of independent blocks). We
wish to show that

sup
t∈R

∣∣∣∣∣P
(

max
1≤j≤p

1√
n

m∑
l=1

S̃lj ≤ t

)
− P

(
max
1≤j≤p

√
(mq)/nY̌j ≤ t

)∣∣∣∣∣ ≤ Cn−c.

Since S̃l, 1 ≤ l ≤ m, are independent, we may apply Corollary 2.1 in
Chernozhukov, Chetverikov, and Kato (2013a) (note that the covariance

matrix of
√

(mq)/nY̌ is the same as that of n−1/2
∑m

l=1 S̃l). We wish to
verify the conditions of the corollary to this case. Observe that

1√
n

m∑
l=1

S̃lj =
1√
m

m∑
l=1

S̃lj√
n/m

,

and
√
q ≤

√
n/m ≤ 2

√
q (recall that q + r ≤ n/2). Hence

c1/4 ≤ σ2(q)/4 ≤ Var
(
S̃lj/

√
n/m

)
≤ σ2(q) ≤ C1,

and |S̃lj/
√
n/m| ≤ √

qDn a.s., so that the conditions of Corollary 2.1 (i) in
Chernozhukov, Chetverikov, and Kato (2013a) are verified withBn =

√
qDn,

which leads to the assertion of this step (note that q ≤ Cn1−c so that
m ≥ n/(4q) ≥ C−1nc).

Step 3. (Anti-concentration). We wish to verify that, for every ϵ > 0,

sup
t∈R

P

(∣∣∣ max
1≤j≤p

Y̌j − t
∣∣∣ ≤ ϵ

)
≤ Cϵ

√
1 ∨ log(p/ϵ).

Indeed, since Y̌ is a normal random vector with

c1 ≤ σ2(q) ≤ Var(Y̌j) ≤ σ2(q) ≤ C1, 1 ≤ ∀j ≤ p,

the desired assertion follows from application of Corollary 1 in Chernozhukov,
Chetverikov, and Kato (2013b).

Step 4. (Conclusion). By Steps 1-3, we have

sup
t∈R

∣∣∣∣P(Ť ≤ t)− P

(
max
1≤j≤p

√
(mq)/nY̌j ≤ t

)∣∣∣∣ ≤ Cn−c.
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It remains to replace
√

(mq)/n by 1 on the left side. Observe that

1−
√

(mq)/n ≤ 1− (mq)/n ≤ 1− (n/(q + r)− 1)(q/n) = r/(q + r) + q/n,

and the right side is bounded by Cn−c log−1 p. With this c, by Markov’s
inequality,

P

(∣∣∣∣max
1≤j≤p

Y̌j

∣∣∣∣ > nc/2
√

log p

)
≤ Cn−c/2,

as E[|max1≤j≤p Y̌j |] ≤ C
√
log p, so that with probability larger than 1 −

Cn−c/2,

(1−
√

(mq)/n)

∣∣∣∣max
1≤j≤p

Y̌j

∣∣∣∣ ≤ C ′n−c/2 log−1/2 p.

By using the anti-concentration property of max1≤j≤p Y̌j (see Step 3), we
conclude that

sup
t∈R

∣∣∣∣P(max
1≤j≤p

√
(mq)/nY̌j ≤ t

)
− P

(
max
1≤j≤p

Y̌j ≤ t

)∣∣∣∣ ≤ Cn−c.

This leads to the conclusion of the theorem. □

An inspection of the proof of the above theorem leads to the following
corollary on high dimensional CLT for block sums, where the regularity
conditions are weaker than those in Theorem B.1.

Corollary B.1 (High dimensional CLT for block sums). Suppose that there
exist constants C1 ≥ c1 > 0 and 0 < c2 < 1/2 such that c1 ≤ σ2(q) ≤
σ2(q) ≤ C1, and

√
qDn log

7/2(pn) ≤ C1n
1/2−c2. Then there exist constants

c, C > 0 depending only on c1, c2, C1 such that

sup
t∈R

∣∣∣∣∣P
(

max
1≤j≤p

1
√
mq

m∑
l=1

Sil ≤ t

)
− P( max

1≤j≤p
Y̌j ≤ t)

∣∣∣∣∣ ≤ Cn−c + (m− 1)br.

The following theorem is concerned with validity of the block multiplier
bootstrap.

Theorem B.2 (Validity of block multiplier bootstrap). Let ϵ1, . . . , ϵm be
independent standard normal random variables, independent of the data Xn

1 .
Suppose that there exist constants 0 < c1 ≤ C1 and 0 < c2 < 1/2 such

that c1 ≤ σ2(q) ≤ σ2(q) ≤ C1 and qDn log
5/2 p ≤ C1n

1/2−c2. Then there
exist constants c, c′, C, C ′ > 0 depending only on c1, c2, C1 such that, with
probability larger than 1− Cn−c − (m− 1)br,

sup
t∈R

∣∣∣∣∣P
(

max
1≤j≤p

1
√
mq

m∑
l=1

ϵiSil ≤ t | Xn
1

)
− P( max

1≤j≤p
Y̌j ≤ t)

∣∣∣∣∣ ≤ C ′n−c′ . (88)

Proof. Here c, c′, C, C ′ denote generic positive constants depending only on
c1, c2, C1; their values may change from place to place. By Theorem 2
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in Chernozhukov, Chetverikov, and Kato (2013b), the left side on (88) is

bounded by C∆̂1/3{1 ∨ log(p/∆̂)}2/3, where

∆̂ = max
1≤j,k≤p

|(1/(mq))
∑m

l=1(SljSlk − E[SljSlk])|.

Hence it suffices to prove that P(∆̂ > C ′n−c′ log−2 p) ≤ Cn−c + (m − 1)br
with suitable c, c′, C, C ′. By Corollary 2.7 in Yu (1994), for every t > 0,

P(∆̂ > t) ≤ P(∆̃ > t) + (m− 1)br,

where ∆̃ = max1≤j,k≤p |(1/(mq))
∑m

l=1(S̃ljS̃lk−E[SljSlk])| (recall that S̃l, 1 ≤
l ≤ m, are independent with S̃l

d
= Sl). Observe that |S̃ljS̃lk| ≤ q2D2

n a.s.

and E[(S̃ljS̃lk)
2] ≤ q3D2

nσ
2(q). Hence by Lemma A.3, we have

E[∆̃] ≤ C(n−1/2qDn

√
log p+ n−1q2D2

n log p).

Since qDn log
5/2 p ≤ C1n

1/2−c2 , the right side is bounded by C ′n−c2 log−2 p.
The conclusion of the theorem follows from application of Markov’s inequal-
ity. □
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Table 1. Results of Monte Carlo experiments for rejection prob-
ability. Equicorrelated data, that is var(Xi) = Σ where Σjk = 1 if
j = k and Σjk = ρ if j ̸= k. Design 1: E[Xij ] = 0 for all j. Design
2: E[Xij ] = 0 for j ≤ 0.1p and E[Xij ] = −0.8 for j > 0.1p.

Design 1: Null Hypothesis is True

Density p ρ
test type, with (yes) or without (no) selection

SN, no SN, yes MB, no MB, yes EB, no EB, yes

t(4)

200
0 .047 .044 .065 .064 .056 .055
0.5 .021 .020 .060 .058 .057 .056
0.9 .001 .001 .053 .051 .056 .053

500
0 .042 .042 .061 .059 .048 .046
0.5 .018 .017 .048 .044 .045 .043
0.9 .003 .003 .052 .051 .049 .047

1000
0 .029 .028 .046 .045 .037 .033
0.5 .018 .018 .065 .065 .062 .059
0.9 0 0 .055 .055 .052 .050

U(−
√
3,
√
3)

200
0 .048 .047 .058 .056 .063 .062
0.5 .019 .018 .063 .059 .064 .063
0.9 .001 .001 .056 .055 .057 .056

500
0 .041 .037 .055 .054 .054 .053
0.5 .020 .018 .058 .055 .059 .055
0.9 .003 .003 .047 .046 .054 .049

1000
0 .035 .034 .056 .054 .057 .057
0.5 .021 .021 .057 .055 .062 .058
0.9 0 0 .054 .053 .056 .054

Design 2: Null Hypothesis is True

Density p ρ
test type, with (yes) or without (no) selection

SN, no SN, yes MB, no MB, yes EB, no EB, yes

t(4)

200
0 .006 .049 .007 .060 .006 .058
0.5 .003 .033 .011 .050 .010 .051
0.9 .001 .004 .022 .047 .024 .044

500
0 .003 .048 .006 .057 .005 .051
0.5 .002 .021 .009 .042 .007 .040
0.9 .002 .003 .034 .057 .034 .053

1000
0 .004 .042 .005 .054 .004 .046
0.5 .003 .023 .015 .041 .012 .043
0.9 0 .003 .037 .053 .034 .055

U(−
√
3,
√
3)

200
0 .008 .048 .010 .049 .009 .050
0.5 .002 .028 .014 .047 .011 .048
0.9 0 .003 .023 .038 .024 .040

500
0 .006 .049 .009 .056 .009 .056
0.5 .004 .026 .012 .053 .013 .053
0.9 0 .005 .026 .044 .026 .046

1000
0 .005 .047 .005 .058 .006 .053
0.5 .001 .020 .011 .052 .010 .049
0.9 0 .003 .033 .059 .035 .059
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Table 2. Results of Monte Carlo experiments for rejection prob-
ability. Autocorrelated data, that is var(Xi) = Σ where Σjk =

ρ|j−k|. Design 3: E[Xij ] = 0 for all j. Design 4: E[Xij ] = 0 for
j ≤ 0.1p and E[Xij ] = −0.8 for j > 0.1p.

Design 3: Null Hypothesis is True

Density p ρ
test type, with (yes) or without (no) selection

SN, no SN, yes MB, no MB, yes EB, no EB, yes

t(4)

200
0 .042 .039 .052 .052 .046 .045
0.5 .037 .034 .049 .047 .044 .041
0.9 .021 .020 .057 .056 .059 .057

500
0 .032 .031 .039 .036 .035 .034
0.5 .044 .041 .058 .057 .052 .051
0.9 .035 .033 .076 .072 .074 .072

1000
0 .041 .039 .058 .057 .049 .046
0.5 .037 .033 .051 .050 .049 .047
0.9 .033 .031 .065 .062 .064 .060

U(−
√
3,
√
3)

200
0 .039 .038 .055 .049 .057 .055
0.5 .040 .037 .055 .055 .052 .049
0.9 .016 .014 .042 .041 .044 .042

500
0 .042 .042 .053 .050 .056 .052
0.5 .037 .036 .056 .056 .057 .052
0.9 .033 .031 .062 .061 .066 .064

1000
0 .040 .040 .063 .060 .065 .060
0.5 .054 .051 .076 .072 .080 .077
0.9 .028 .027 .066 .065 .064 .063

Design 4: Null Hypothesis is True

Density p ρ
test type, with (yes) or without (no) selection

SN, no SN, yes MB, no MB, yes EB, no EB, yes

t(4)

200
0 .003 .031 .003 .036 .003 .032
0.5 .002 .037 .002 .051 .002 .050
0.9 .002 .020 .006 .049 .005 .046

500
0 .004 .031 .006 .037 .005 .034
0.5 .002 .043 .005 .057 .006 .047
0.9 .003 .016 .003 .041 .003 .045

1000
0 .004 .035 .006 .046 .004 .035
0.5 .003 .035 .003 .048 .003 .044
0.9 .002 .022 .003 .057 .005 .058

U(−
√
3,
√
3)

200
0 .004 .033 .005 .039 .005 .045
0.5 .006 .042 .006 .051 .006 .055
0.9 .003 .016 .005 .043 .005 .039

500
0 .008 .050 .010 .059 .010 .060
0.5 .004 .046 .006 .053 .005 .052
0.9 .002 .017 .005 .038 .006 .038

1000
0 .004 .048 .005 .059 .005 .059
0.5 .006 .037 .008 .043 .007 .044
0.9 .002 .022 .007 .039 .006 .039
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Table 3. Results of Monte Carlo experiments for rejection prob-
ability. Equicorrelated data, that is var(Xi) = Σ where Σjk = 1
if j = k and Σjk = ρ if j ̸= k. Design 5: E[Xij ] = 0.05 for all j.
Design 6: E[Xij ] = 0.05 for j ≤ 0.1p and E[Xij ] = −0.75 for

j > 0.1p.
Design 5: Null Hypothesis is False

Density p ρ
test type, with (yes) or without (no) selection

SN, no SN, yes MB, no MB, yes EB, no EB, yes

t(4)

200
0 .696 .692 .749 .739 .729 .722
0.5 .244 .242 .403 .388 .390 .384
0.9 .060 . 058 .284 .279 .286 .278

500
0 .795 .786 .873 .862 .831 .820
0.5 .206 .197 .393 .380 .373 .365
0.9 .042 .041 .320 .312 .314 .301

1000
0 .816 .808 .887 .879 .843 .837
0.5 .195 .193 .387 .385 .380 .369
0.9 .028 .026 .280 .275 .276 .273

U(−
√
3,
√
3)

200
0 .711 .695 .782 .768 .781 .773
0.5 .231 .228 .374 .368 .380 .372
0.9 .054 .051 .271 .264 .272 .267

500
0 .770 .759 .850 .839 .859 .852
0.5 .215 .212 .388 .384 .395 .387
0.9 .034 .032 .288 .283 .284 .278

1000
0 .812 .797 .879 .869 .882 .876
0.5 .211 .209 .416 .404 .413 .408
0.9 .023 .022 .287 .285 .285 .281

Design 6: Null Hypothesis is False

Density p ρ
test type, with (yes) or without (no) selection

SN, no SN, yes MB, no MB, yes EB, no EB, yes

t(4)

200
0 .095 .480 .118 .509 .106 .503
0.5 .069 .254 .141 .334 .144 .329
0.9 .023 .103 .182 .302 .180 .288

500
0 .138 .584 .169 .637 .152 .607
0.5 .064 .245 .151 .345 .148 .332
0.9 .018 .073 .210 .278 .201 .280

1000
0 .170 .630 .210 .697 .189 .660
0.5 .050 .210 .149 .361 .146 .339
0.9 .015 .056 .224 .303 .211 .301

U(−
√
3,
√
3)

200
0 .115 .486 .127 .520 .134 .515
0.5 .061 .253 .128 .354 .128 .360
0.9 .021 .095 .181 .266 .183 .261

500
0 .112 .564 .139 .609 .147 .608
0.5 .074 .251 .166 .357 .163 .362
0.9 .021 .070 .187 .274 .183 .274

1000
0 .149 .607 .180 .672 .189 .660
0.5 .077 .240 .182 .367 .183 .362
0.9 .014 .057 .205 .266 .203 .272
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Table 4. Results of Monte Carlo experiments for rejection prob-
ability. Autocorrelated data, that is var(Xi) = Σ where Σjk =

ρ|j−k|. Design 7: E[Xij ] = 0.05 for all j. Design 8: E[Xij ] = 0.05
for j ≤ 0.1p and E[Xij ] = −0.75 for j > 0.1p.

Design 7: Null Hypothesis is False

Density p ρ
test type, with (yes) or without (no) selection

SN, no SN, yes MB, no MB, yes EB, no EB, yes

t(4)

200
0 .728 .717 .791 .782 .769 .755
0.5 .666 .658 .721 .711 .701 .693
0.9 .364 .362 .535 .525 .539 .528

500
0 .765 .755 .826 .818 .795 .787
0.5 .747 .733 .814 .807 .803 .789
0.9 .437 .428 .663 .652 .659 .648

1000
0 .826 .813 .900 .898 .862 .852
0.5 .793 .785 .873 .866 .850 .840
0.9 .529 .517 .731 .718 .727 .718

U(−
√
3,
√
3)

200
0 .695 .680 .756 .748 .763 .751
0.5 .658 .644 .733 .725 .735 .725
0.9 .356 .348 .544 .532 .536 .533

500
0 .751 .740 .825 .814 .829 .820
0.5 .737 .730 .806 .799 .816 .805
0.9 .464 .455 .662 .655 .651 .644

1000
0 .789 .779 .886 .880 .885 .876
0.5 .763 .752 .855 .846 .856 .843
0.9 .503 .498 .734 .721 .729 .719

Design 8: Null Hypothesis is False

Density p ρ
test type, with (yes) or without (no) selection

SN, no SN, yes MB, no MB, yes EB, no EB, yes

t(4)

200
0 .103 .545 .128 .577 .115 .567
0.5 .106 .409 .122 .460 .124 .455
0.9 .051 .191 .087 .341 .088 .348

500
0 .125 .555 .154 .605 .143 .573
0.5 .129 .519 .167 .575 .157 .558
0.9 .060 .234 .105 .396 .104 .390

1000
0 .148 .644 .201 .685 .169 .663
0.5 .137 .584 .168 .656 .163 .627
0.9 .085 .298 .141 .474 .141 .466

U(−
√
3,
√
3)

200
0 .113 .466 .127 .501 .131 .510
0.5 .106 .414 .128 .465 .126 .461
0.9 .054 .189 .092 .312 .093 .323

500
0 .158 .581 .192 .628 .185 .632
0.5 .125 .494 .146 .552 .148 .558
0.9 .050 .237 .103 .375 .100 .378

1000
0 .148 .562 .188 .630 .189 .637
0.5 .149 .577 .195 .641 .196 .633
0.9 .074 .282 .130 .445 .132 .449
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Appendix D. Details on equations (10) and (11) in the main text

In this section, we continue discussion of the “Dynamic model of imperfect
competition” example presented in Section 2. In particular, we explain how
the jackknife procedure leads to equations (10) and (11), which are needed
for inference in that example. We continue to assume that the data consist
of observations on n i.i.d. markets.

The validity of the jackknife procedure and equations (10) and (11) relies
upon the following linear expansions:

√
n(V̂j(s, σj(α̂n), σ−j(α̂n), θ)− Vj(s, σj , σ−j , θ))

=
1√
n

n∑
k=1

ψkj(s, σj , σ−j , θ) +OP

(
1

n

)
and

√
n(V̂j(s, σ

′
j , σ−j(α̂n), θ)− Vj(s, σ

′
j , σ−j , θ))

=
1√
n

n∑
k=1

ψ′
kj(s, σ

′
j , σ−j , θ) +OP

(
1

n

)
where ψkj and ψ′

kj are influence functions depending only on the data for
the market k and satisfying

E[ψij(s, σj , σ−j , θ)] = 0 and E[ψ′
ij(s, σ

′
j , σ−j , θ)] = 0. (89)

These are standard expansions that hold in many settings, so for brevity,
we do not discuss the regularity conditions behind them. Further, con-

sidering leave-market-i-out estimates α̂−i
n , V̂ −i

j (s, σj(α̂
−i
n ), σ−j(α̂

−i
n ), θ), and

V̂ −i
j (s, σ′j , σ−j(α̂

−i
n ), θ) from the main text, we obtain

√
n− 1(V̂ −i

j (s, σj(α̂
−i
n ), σ−j(α̂

−i
n ), θ)− Vj(s, σj , σ−j , θ))

=
1√
n− 1

n∑
k=1; k ̸=i

ψkj(s, σj , σ−j , θ) +OP

(
1

n− 1

)
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and
√
n− 1(V̂ −i

j (s, σ′j , σ−j(α̂
−i
n ), θ)− Vj(s, σ

′
j , σ−j , θ))

=
1√
n− 1

n∑
k=1; k ̸=i

ψ′
kj(s, σ

′
j , σ−j , θ) +OP

(
1

n− 1

)
.

Hence, we have for all i = 1, . . . , n,

X̃ij(s, θ) := nV̂j(s, σj(α̂n), σ−j(α̂n), θ)

− (n− 1)V̂ −i
j (s, σj(α̂

−i
n ), σ−j(α̂

−i
n ), θ)

= Vj(s, σj , σ−j , θ) + ψij(s, σj , σ−j , θ) +OP (n
−1/2)

and

X̃ ′
ij(s, σ

′
j , θ) := nV̂j(s, σ

′
j , σ−j(α̂n), θ)

− (n− 1)V̂ −i
j (s, σ′j , σ−j(α̂

−i
n ), θ)

= Vj(s, σ
′
j , σ−j , θ) + ψ′

ij(s, σ
′
j , σ−j , θ) +OP (n

−1/2).

Conclude that

X̂ij(s, σ
′
j , θ) := X̃ ′

ij(s, σ
′
j , θ)− X̃ij(s, θ) = Xij(s, σ

′
j , θ) +Op(n

−1/2)

where

Xij(s, σ
′
j , θ) :=Vj(s, σ

′
j , σ−j , θ)− Vj(s, σj , σ−j , θ)

+ ψ′
ij(s, σ

′
j , σ−j , θ)− ψij(s, σj , σ−j , θ).

Combining these equalities with (89) implies (10) and (11) from the main
text and completes the derivation.
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