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Abstract

Cross-validation is the most common data-driven procedure for choosing smooth-

ing parameters in nonparametric regression. For the case of kernel estimators with

iid or strong mixing data, it is well-known that the bandwidth chosen by cross-

validation is optimal with respect to the average squared error and other perfor-

mance measures. In this paper, we show that the cross-validated bandwidth con-

tinues to be optimal with respect to the average squared error even when the data-

generating process is a β-recurrent Markov chain. This general class of processes

covers stationary as well as nonstationary Markov chains. Hence, the proposed pro-

cedure adapts to the degree of recurrence, thereby freeing the researcher from the

need to assume stationary (or nonstationary) before inference begins. We study

finite sample performance in a Monte Carlo study. We conclude by demonstrat-

ing the practical usefulness of cross-validation in a highly-persistent environment,

namely that of nonlinear predictive systems for market returns.
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1 Introduction

The vast literature on unit roots and cointegration has largely focused on linear models.

While it is well-known that the limiting behavior of partial sums, and affine function-

als thereof, can be approximated by Gaussian processes, much less is known about the

asymptotic behaviour of functional estimators of nonstationary time series. Nonpara-

metric regression with nonstationary discrete-time processes has, in fact, been receiving

attention only in recent years.

Several financial time-series central to asset pricing, like the short-term rate, the

dividend-to-price ratio or, more generally, any financial ratio whose denominator depends

on the market’s price level, are highly persistent and often depend on their past in a non-

linear fashion. The joint presence of possibly nonstationary behaviour and nonlinearities

of unknown form provides econometric content to nonparametric regressions with possibly

nonstationary time series. The word “possibly” is an important qualifier. While strict

nonstationarity is, in many cases, economically unpalatable, allowing for stationary as

well as for nonstationary behaviour is a satisfactory (theoretical and empirical) way to

accommodate a broad range of levels, especially including very high levels, of persistence

in one unified framework.

Coherently with this observation, the literature on nonparametric autoregression has

focused on β-recurrent (stationary for β = 1 and nonstationary for β < 1) Markov chains.

In this framework, the number of regenerations of a recurrent chain has heavily been

used to derive the limiting behavior of the number of visits around a given point and

related estimators (see, e.g., Karlsen and Tjøstheim (2001), Moloche (2001), and Gao

et al. (2014)). Schienle (2010) considers the case of many regressors. Guerre (2004)

derives convergence rates for a general class of chains.

This succesful literature has established consistency and asymptotic mixed normality

for local constant and local linear kernel estimators of nonstationary autoregressions and

nonstationary cointegration. However, it has been largely silent about practical guidance

on bandwidth selection.

The two most common approaches for bandwidth selection in functional problems are

“plug-in” methods and cross-validation. In the β-recurrent case, the bandwidth condi-

tions for consistency and asymptotic mixed normality depend on the generally unknown

parameter β. In light of the slow (i.e., logarithmic) convergence rate of existing estimates
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of β (Karlsen and Tjøstheim (2001)), plug-in methods appear even more ad-hoc than in

the more classical stationary environment. On the other hand, bandwidths chosen by

cross-validation have been used broadly in empirical work. Nonetheless, their properties

have yet to be established in a (possibly) nonstationary context. This is the subject of

the current paper.

For the case of identically distributed and independent observations, it has been shown

that “leave-one-out” cross-validated bandwidths are optimal with respect to the Mean

Integrated Squared Error (MISE), see, e.g., Härdle and Marron (1985) and Härdle (1986).

More explicitly, the ratio of the cross-validated bandwidth and the infeasible bandwidth

that minimizes the estimator’s MISE converges in probability to one. Optimality with

respect to MISE has also been derived in the case of strong mixing observations (Härdle

and Vieu (1992), Kim and Cox (1996), and Xia and Li (2002)).

This paper shows that, for β-recurrent Markov chains, the bandwidth chosen via

“leave-one-out” cross-validation is asymptotically optimal with respect to the Average

Squared Error (ASE). In other words, the ratio of the cross-validated bandwidth and the

infeasible bandwidth that minimizes the ASE converges in probability to one. Differently

from stationary environments, the asymptotic equivalence between the random cross-

validated bandwidth sequence and a deterministic sequence minimizing the estimator’s

MISE does not hold. This is easily explained. In the β-recurrent case the effective sample

size is random, the asymptotic variance of conditional mean estimates is also random, so is

the MISE. Of course, should β = 1, the ASE would converge uniformly to a deterministic

limit, i.e., the MISE, and our findings would again deliver equivalence between an adaptive

random sequence and a deterministic sequence, optimal with respect to the MISE, as a

subcase of a more general result.

After studying the case of bandwidth selection both for the conditional mean function

and for the conditional variance function, we apply the methods to a (mean-variance)

portfolio allocation problem relying on (possibly) nonlinear stock-return predictability.

Even though the nonstationary behaviour of typical predictors, like the dividend-to-price

ratio, may be economically unpalatable, nonstationarity tests find it extremely hard to

reject the null hypothesis of nonstationarity. The very high persistence of these predictors

is a general feature of many macroeconomic and finance time series. It justifies our em-

phasis on bandwidth selection procedures capable of handling such a persistence, without

requiring the researcher to assume either stationarity or nonstationarity before inference
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begins.

The remainder of the paper is organized as follows. Section 2 defines the framework.

Section 3 reports our main result establishing optimality of cross-validation with respect

to the ASE. Here, we focus on the conditional mean function. Section 4 turns to the

conditional variance function. Section 5 reports the findings of a Monte Carlo study in

which we analyze the variance and bias of nonparametric kernel estimators based on cross-

validated bandwidths. In Section 6 we discuss an empirical illustration in which cross-

validated bandwidths are used in predictive systems for market returns and a nonlinear

(mean-variance) portfolio allocation problem. All proofs are gathered in the appendix.

2 The Model

Intuitively, one can estimate conditional moments, evaluated at a given point, only if

this specific point is visited infinitely often as the sample size grows. For this reason,

it is natural to focus attention on irreducible recurrent chains, i.e., chains satisfying the

property that, at any point in time, the neighborhood of each point has a strictly positive

probability of being visited and, eventually, will be visited an infinite number of times.

For positive recurrent (ergodic) chains, the expected time between two consecutive

visits is finite. Hence, the time spent in the neighborhood of a point grows linearly with

the sample size, n say. For null recurrent (nonstationary) chains, the expected time

between two consecutive visits is infinite. Therefore, the time spent in the neighborhood

of a point grows at a rate, generally unknown, which is slower than n.

Since, up to some mild regularity conditions, positive recurrent chains are strongly

mixing, consistency and asymptotic normality of the conditional moment estimates follow

by, e.g., the work of Robinson (1983). In this case, bandwidth selection may be imple-

mented by virtue of cross-validation, whose optimality properties have been thoroughly

established (Härdle and Vieu (1992) and Kim and Cox (1996), for kernel regressions, and

Xia and Li (2002), for local linear estimators).

Nonparametric regression with null recurrent chains, however, poses substantial theo-

retical challenges since the amount of time spent in the neighborhood of a point is not only

unknown but also random. In an influential contribution, Karlsen and Tjøstheim (2001)

derive consistency and mixed asymptotic normality for conditional moment estimators in

the case of recurrent Markov chains.
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Let {Xt, t ≥ 0} be a Markov chain and define µ(Xt−1) = E (Xt|Xt−1) and σ2(Xt−1) =

var (Xt|Xt−1) , so that Xt can be written as

Xt = µ(Xt−1) + σ(Xt−1)ut, (1)

where ut has conditional mean zero and conditional variance one. Eq. (1) allows for

nonlinearities of unknown form in both the conditional mean and the conditional variance.

When sampled over small time distances, given iid Gaussian shocks, the resulting time

series can also be interpreted as a “discretized” diffusion process. Gaussianity is never

assumed in this paper.

Consider the Nadaraya-Watson kernel estimator of µ(x):

µ̂hn (x) =

1
hn

∑n
i=2 XiK

(
Xi−1−x
hn

)
1
hn

∑n
i=2K

(
Xi−1−x
hn

) , (2)

where K is a kernel function and hn a bandwidth parameter. The limiting properties

of µ̂hn (x) have been established by Karlsen and Tjøstheim (2001, Theorem 5.4) under

Assumption 1 below, which largely corresponds to their Assumptions B0-B4.

Assumption 1. 1. {Xt, t ≥ 0} is a β-recurrent, φ-irreducible Markov chain on a

general state space (E, E) with transition probability P and β ∈ (0, 1].

2. For each y ∈ R, there exists a transition density p̃ so that P (y, dx) = p̃(y, x)dx.

Also, for each y, there exist (small enough) constants γ and δ ∈ (0, 1) independent

of y so that
∫

1{x∈R:p̃(y,x)≥γ}dx ≥ δ.

3. The invariant measure πs has a twice continuously differentiable density ps, which

is strictly positive and bounded on every small set1.

4. The kernel function K is a bounded density with compact support satisfying
∫
uK(u)du =

0 and K2 =
∫
K2(u)du < ∞. The set Nx = {y : K(y − x) 6= 0} is a small set for

all x.

1In the β-recurrent case, under rather general regularity conditions, compact sets are small sets (see,

e.g., Feigin and Tweedie (1985)). A set A is small, if there exists a positive measure λ, positive constant

b and an integer m ≥ 1, such that Pm ≥ 1{A}b ⊕ λ, where P is the measure governing the chain. For

a detailed description of small sets and related properties, see Nummelin (1984) or Section 3 in Karlsen

and Tjøstheim (2001).
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5. We have limh↓0 limy→xP (y, Ah) = 0 for all sets Ah ∈ E so that Ah ↓ ∅ when h ↓ 0.

6. The functions µ(x) and σ2(x) are twice continuously differentiable.

Let Assumption 1 hold. For x ∈ C, where C ⊆ E is a compact set, and if hnn
β−ε →∞

for some ε > 0, then(
hn

n∑
i=2

K

(
Xi−1 − x

hn

))1/2

(µ̂hn (x)− µ(x)− bhn(x))
d→ N

(
0, σ2(x)k2

)
, (3)

where k2 =
∫
K(u)2du and bhn(x) denotes a bias term that converges to zero under the

additional condition hnn
β/5+ε → 0 (Theorem 5.4 in Karlsen and Tjøstheim (2001)).

The bandwidth rate conditions (and, implicitly, the estimator’s convergence rate) de-

pend on the generally unknown degree of recurrence β. Although β can be estimated,

existing estimators only converge at a logarithmic rate and, thus, may not be overly useful

in practice (Remark 3.7 in Karlsen and Tjøstheim (2001)).

In essence, one remains with the problem of adaptively choosing the bandwidth hn.

Because β is unknown, in general, and cannot be estimated reliably, “plug-in” methods

cannot be implemented effectively. Cross-validation appears as a viable alternative, one

which is broadly employed in empirical work. In what follows, we set the stage for studying

the properties of cross-validated bandwidths in a (possibly) nonstationary environment,

i.e., for β ≤ 1.

Before doing so, we emphasize that our interest is not in the nonstationary (β < 1) case

per se. We are, instead, interested in being robust to deviations from stationarity. We are

also interested in allowing for potentially high levels of persistence, provided the process

is not transient. From an empirical standpoint, being agnostic about the stationarity

properties of the data is an important property. From a theoretical standpoint, after

excluding transience of the process, we operate under assumptions that are virtually

minimal to obtain consistent functional estimates (see, e.g., Yakowitz (1989)2). Bandi

(2002) employs a similar approach in continuous time.

Asymptotic mixed normality for β-recurrent chains is shown via split chains, i.e., by

splitting the chain into identically and independently distributed components (Nummelin

2In his 1989 paper, Yakowitz writes: “ ... in the Markov case, the mixing assumptions are not

essential ... Even in the absence of a stationary distribution, under conditions general enough to include

unbounded random walks and ARMA processes, [nonlinear] regression estimation is possible. We require

only stationarity of the transition law, not of the process.”
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(1984), Chapter 4). We will use split chains in what follows. Let Assumption 1 hold.

Write the denominator in Eq. (2) as

1

hn

n∑
i=2

K

(
Xi−1 − x

hn

)
= U0,x,hn +

Tn∑
k=1

Uk,x,hn + Un,x,hn .

We abbreviate Kx,h(y) = K((y − x)/h)/h and Uk,x,h = Uk(Kx,h), where, for any f ∈ F =

{f = hKx,h : x ∈ C, 0 < h ≤ 1},

Uk(f) =


∑τ0

j=1 f(Xj−1), k = 0∑τk
j=τk−1+1 f(Xj−1), 1 ≤ k < n∑n
j=τTn+1 f(Xj−1), k = n.

(4)

The random times τk, k = 0, . . . , n, are the regeneration times of the Markov chain and

Tn denotes the number of complete regenerations from time 0 to time n. Tn is a random

quantity playing the analogous role of the sample size in stationary problems. For any h

and x, the random variables Uk,x,h, k ≥ 1, can be shown to be independent and identically

distributed and, therefore, play a key role in the asymptotic theory for recurrent Markov

processes. Notice however, that, in general, Uk,x,h is not independent of the “effective”

sample size Tn.

For a compact set C, define

Tn(C) =
n∑
i=1

1 {Xi ∈ C} , (5)

which represents the random number of times the Markov process visits the set C. For

some constants 0 < c, c <∞, given 1
5
< η < η < 1 and 1− 2η + η > 0, let

Hn =
{
h ∈ R : c Tn(C)−η ≤ h ≤ c Tn(C)−η

}
(6)

be a set of bandwidths.

The set Hn is the feasible set over which the cross-validated bandwidth will be chosen.

This set is random. This is in contrast to the independent and the strong mixing case

in which it is a deterministic set that only depends on the sample size n. In both of

these cases, the time between two consecutive visits to any compact set is finite, and so

the number of visits to C, grows at the same rate as the sample size n. In the general

β-recurrent case, the “effective” sample size, given by the number of regenerations Tn, is

not observed. However, Tn(C) is observed and, by Remark 3.5 in Karlsen and Tjøstheim
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(2001), of the same almost-sure order as Tn (provided in Lemma 3.4 of Karlsen and

Tjøstheim (2001)). Therefore, we define the feasible bandwidth set in terms of Tn(C). This

definition ensures that any sequence of bandwidths in Hn satisfies the rate restrictions

(reported above and below Eq. (3)) sufficient for consistency, asymptotic normality, and

zero asymptotic bias of nonparametric conditional mean (and variance) estimators. We

note that the definition of Hn is analogous to the bandwidth set in Härdle and Marron

(1985) for the iid case when Tn(C) is of order n.3

We define the cross-validated bandwidth as

ĥn = arg min
h∈Hn

CVn(h), (7)

where

CVn(h) =
1

Tn(C)

n∑
j=2

(Xj − µ̂j,h(Xj−1))2 1 {Xj−1 ∈ C} (8)

is the cross-validation (CV) criterion, 1{A} is the indicator function that equals one if A

is true and zero otherwise, and

µ̂j,h(x) =

∑n
i=2,i 6=j XiKh (Xi−1 − x)∑n
i=2,i 6=jKh (Xi−1 − x)

for j = 2, . . . , n, (9)

is the “leave-one-out” estimator of µ(x). Notice that the cross-validation criterion does

not require knowledge of β nor does it require the researcher to know whether the process

{Xt} is stationary or nonstationary.

Remark 1. We emphasize that the CV-criterion is computed by averaging nonparametric

residuals over a compact set. This is analogous to the iid case (Härdle and Marron (1985)

or Härdle (1986)). �

3 Optimal Bandwidth for Conditional Mean Estimates

To state the properties of the CV-bandwidth ĥn in Eq. (7) we first introduce some

definitions and assumptions.

By a slight abuse of notation, we use the symbol P for probabilities calculated on

the probability space of the Markov chain as well as those calculated on the extended

3Our upper bound (η > 1
5 ) is slightly smaller than that in Härdle and Marron (1985) (η > 0), but the

lower bound η < 1 is the same.
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probability space of the corresponding split chain (see section 4.4 of Nummelin (1984) for

details).

Let E denote expectations with respect to πs the invariant measure of the Markov

chain {Xk : k ≥ 0}, i.e., πsg = EUk(g) for g ∈ L1(πs). For two functions l, u, let [l, u]

be the set of all functions f such that l ≤ f ≤ u. [l, u] is called an ε-bracket in Lp(πs),

p ≥ 1, if l, u ∈ Lp(πs) and πs|u− l|p ≤ εp. The bracketing number N[ ](ε,F , Lp(πs)) is the

smallest number of ε-brackets in Lp(πs) covering F . Let

F = {f : R2 → R : f(x1, x2) = x2hKx,h(x1), x ∈ C, 0 < h ≤ 1}.

This set has envelope F (x1, x2) = |x2|F (x1), i.e. |f | ≤ F for all f ∈ F , where F (x) =

c1{x ∈ D} and the constant c and the set D ∈ E are chosen such that F is the envelope

of F , i.e. f ≤ F for all f ∈ F . For any f ∈ F , define

Uk(f) =


∑τ0

j=1 f(Xj−1, Xj), k = 0∑τk
j=τk−1+1 f(Xj−1, Xj), 1 ≤ k < n∑n
j=τTn+1 f(Xj−1, Xj), k = n.

Assumption 2. 1. There are constants c1 and c2 so that N[ ](ε,F , L1(πs)) ≤ c1ε
−c2

for all ε ∈ (0, 1].

2. The innovations ut in Eq. (1) are iid with E (u2κ
t ) < ∞, where κ > β−ε

(β−ε)η−4ε
, η is

defined in Eq. (6), and ε, ε > 0 are arbitrarily small.

3. supf∈F E(Uk(f)2) <∞ and supf∈F E(Uk(f)2) <∞.

Assumption 2.1 on the bracketing number is standard and satisfied, for example, by

the Euclidean classes discussed in Nolan and Pollard (1987). To see this, consider the

stationary case, β = 1. The assumption is implied by a standard bracketing condition

on the space of bounded kernel functions. Let N[ ](ε,F , L1(P ) be the smallest number of

brackets [l, u] = {f : l ≤ f ≤ u} with E|u(Xk)−l(Xk)| < ε covering the space of bounded

kernel functions. Then, by Lemma 2.2 in Nolan and Pollard (1987), N[ ](ε,F , L1(πs)) ≤
c1ε
−c2 for some constants c1, c2 > 0. Therefore, Assumption 2.1 holds.

Following Härdle and Marron (1985, p. 1466), we define optimality of a bandwidth

sequence relative to a given criterion d(µ̂h, µ) that measures the distance between the
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estimator µ̂h and µ. Specifically, we say that ĥn is optimal with respect to d(µ̂h, µ) if∣∣∣∣∣ d
(
µ̂ĥn , µ

)
infh∈Hn d (µ̂h, µ)

∣∣∣∣∣ = op(1).

Intuitively, ĥn is optimal for d (µ̂h, µ) if it is equivalent to the argmin of the latter as the

sample size gets large.

The criterion we consider is the Average Squared Error (“ASE”):

dA,h (µ̂, µ) =
1

Tn(C)

n∑
j=2

(µ̂h(Xj−1)− µ(Xj−1))2 1 {Xj−1 ∈ C} . (10)

This criterion is natural in that it amounts to a least-squares metric, measuring squared

differences between the nonparametric estimates and the unknown true function. Its

argmin is defined as

h̃n = arg min
h∈Hn

dA,h (µ̂, µ) .

Remark 2. The cross-validated criterion in Eq. (8) and the ASE in Eq. (10) are de-

fined over a compact set C. This restriction is important in both the stationary and

the nonstationary case and analogous to the construction in Härdle and Marron (1985)

and Härdle (1986), for instance. In the stationary case, the cross-validated bandwidth

has been shown to be asymptotically equivalent to the random sequence minimizing the

ASE (defined there as Tn(C)
n
dA,h (µ̂, µ)) and the deterministic sequence minimizing the

mean-integrated squared error (MISE):

MISE (h)
asy∼ E

(∫ (
(µ̂h(x)− µ(x))2) f(x)w(x)dx

)
=

1

nh

∫
K2(u)du

∫
σ2(x)

1

f(x)
w(x)dx

+

∫ [∫
K(u) (µ(x− hu)− µ(x)) f(x− hu)du

]2
1

f(x)
w(x)dx, (11)

where f(x) is the stationary density of {Xt}. Under stationarity, if w(x) = 1 and the

support is the entire real line,
∫
R

1
f(x)

dx may however not be finite. Hence, the MISE

criterion (as well as the ASE criterion) would not be well-defined. On the other hand,

the MISE stays finite for weights with compact support. In practice, this restriction is

typically ignored and cross-validation is implemented over the whole state space of the

process {Xt}. �
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Remark 3. In nonstationary problems, the effective sample size Tn is a random variable.

Hence, there is a difference between our assumed bandwidth set Hn, which is random,

and the set assumed in stationary problems which is, instead, deterministic. �

Remark 4. Due to the random variance of the kernel estimator (see, e.g., Eq. (3)), the

MISE would not have a deterministic form in nonstationary environments. Therefore,

in general, one would not be able to show that the cross-validated bandwidth is, as in

the stationary case, asymptotically equivalent to a deterministic sequence minimizing the

estimator’s MISE. �

Before presenting our main result in Theorem 1 below, we introduce a series of four

Lemmas.

Lemma 1. Under Assumptions 1.1–1.4 and 2,

sup
x∈C, h∈Hn

|p̂h(x)− ps(x)| = oa.s.(1),

where ps(x) is defined in Assumption 1.2 and

p̂h(x) =
1

Tnh

n∑
j=1

K

(
Xj−1 − x

h

)
. (12)

Lemma 1 establishes uniform convergence of p̂h(x) to its deterministic counterpart,

i.e., the density associated to the invariant measure πs. This allows us to handle the

contribution of the denominator in Eq. (2) and work with µ̂h
p̂h
ps

rather than with µ̂h.

Lemma 2. Let

bC(x, h) =
1

ps(x)

(∫
K(u) (µ(x− hu)− µ(x)) ps(x− hu)du

)
and

Ωn =

{
$ : inf

h∈Hn

dA,h(µ̂, µ) ≥ αC inf
h∈Hn

(
1

hnβ+ε
+ inf

x∈C
b2
C(x, h)

)}
,

for some 0 < α ≤ 1 and some constant C. Denote by Ωc
n the complement of Ωn. Let

Assumptions 1 and 2 hold. Then

lim
n→∞

Pr {Ωc
n} = 0.
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Lemma 2 establishes a lower bound in probability for the ASE. This bound will prove

useful in handling the denominator in the ratio of the main quantities in Lemma 3 and

Lemma 4. Define

dA,h (µ̂, µ) =
1

Tn(C)

n∑
j=2

(µ̂j,h(Xj−1)− µ(Xj−1))2 1 {Xj−1 ∈ C} , (13)

with µ̂j,h(x) as in Eq. (9).

Lemma 3. Let Assumptions 1 and 2 hold. Then,

sup
h∈Hn

∣∣∣∣dA,h (µ̂, µ)− dA,h (µ̂, µ)

dA,h (µ̂, µ)

∣∣∣∣ = op(1),

with dA,h (µ̂, µ) and dA,h (µ̂, µ) defined as in Eq. (10) and Eq. (13), respectively.

Lemma 3 simply states that the average mean squared error criterion computed using

either µ̂h(Xj−1) or the “leave-one-out” estimator µ̂j,h(Xj−1) are asymptotically equivalent

(uniformly in h).

Lemma 4. Let Assumptions 1 and 2 hold. Define

Cross(h) = dA,h (µ̂, µ)− CV (h)− 1

Tn(C)

n∑
j=2

(Xj − µ(Xj−1))2 1 {Xj−1 ∈ C} , (14)

with CV (h) as in Eq. (8). Then,

sup
h∈Hn

∣∣∣∣ Cross(h)

dA,h (µ̂, µ)

∣∣∣∣ = op(1).

Note that Cross(h) = 2
Tn(C)

∑n
j=2 σ(Xj−1)uj (µ̂h,j(Xj−1)− µ(Xj−1)) . Lemma 4 estab-

lishes that this term converges to zero faster than the average squared error criterion.

Lemmas 1 through 4 lead to the following first main result of this paper:

Theorem 1. Let Assumptions 1 and 2 hold. Then, the cross-validated bandwidth ĥn in

Eq. (7) is asymptotically optimal with respect to dA,h (µ̂, µ), i.e.,∣∣∣∣∣ dA,ĥn (µ̂, µ)

infh∈Hn dA,h (µ̂, µ)
− 1

∣∣∣∣∣ = op(1).
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Theorem 1 shows that the ASE based on the cross-validated bandwidth, ĥn, is asymp-

totically equivalent to the minimum of the ASE. As mentioned above the convergence

rate of the conditional mean estimator µ̂h(x) and, thus, that of the ASE itself is ran-

dom and depends on the degree of recurrence, β. Remarkably, the optimality result of

Theorem 1 holds even though the implementation of cross-validated bandwidths does not

require knowledge of that convergence rate, knowledge of β, or knowledge of whether Xt

is stationary or not.

Corollary 1. Let Assumptions 1 and 2 hold. Then,∣∣∣∣∣ ĥnh̃n − 1

∣∣∣∣∣ = op(1),

where h̃n = arg minh∈Hn dA,h (µ̂, µ).

Corollary 1 shows that the cross-validated bandwidth not only leads to an ASE that

is asymptotically equivalent to its minimum, but also that the cross-validated bandwidth

itself is asymptotically equivalent to the infeasible minimizer of the ASE.

3.1 The regression case

The regression case, namely

Yt = g(Xt−j) + ut

with j ≥ 0 and ut iid and independent of Xt−j can be treated theoretically as the au-

toregressive model presented above. One such an example will be discussed in Section 6

which is devoted to an empirical application in which Yt is the future market return and

Xt−1 is the value of a persistent predictor over the previous period.

For a strictly nonstationary regressor Xt−j and j = 0, the regression can be interpreted

as a nonlinear cointegrating model (provided ut is stationary). Again, if the ut’s are iid

and independent of Xt, our proposed methods go through unchanged.

If, instead, the ut’s display dependence of Xt, or are only asymptotically uncorrelated

with Xt but are not strictly independent, then Lemma 4 would have to be modified

accordingly. As a consequence, the statement in Theorem 1 would not apply directly. We

leave the endogenous noise case for future work.

13



4 Optimal Bandwidth for Conditional Variance Es-

timates

In the previous section we established the optimality of the cross-validated bandwidth for

the conditional mean estimator. In practice, one frequently also needs to optimally select

the bandwidth for the conditional variance. One such example is provided in Section 6

below.

Even though the rate conditions for consistency and mixed normality of the conditional

mean and variance estimates are the same, the optimal bandwidth cannot be the same

because of the different functional form of the corresponding true functions. In the case of

the conditional variance, the additional difficulty is that the conditional mean is unknown

and ought to be estimated.

Define the feasible estimator

σ̂2
ξ (x) =

1

Tnξ

n∑
i=2

1

p̂ξ(x)
K

(
Xi−1 − x

ξ

)(
Xi − µ̂ĥn(Xi−1)

)2

and its infeasible counterpart, i.e.,

σ̃2
ξ (x) =

1

Tnξ

n∑
i=2

1

p̂ξ(x)
K

(
Xi−1 − x

ξ

)
(Xi − µ(Xi−1))2 ,

where ĥn is the cross-validated bandwidth for the conditional mean and p̂ξ(x) is defined

in Eq. (12). Similarly, we define the feasible cross-validation criterion

CVn (ξ) =
1

Tn(C)

n∑
j=2

((
Xj − µ̂ĥn(Xj−1)

)2 − σ̂2
j,ξ(Xj−1)

)
1 {Xj−1 ∈ C}

and its infeasible counterpart

C̃Vn (ξ) =
1

Tn(C)

n∑
j=2

(
(Xj − µ(Xj−1))2 − σ̃2

j,ξ(Xj−1)
)

1 {Xj−1 ∈ C} , (15)

where σ̂2
j,ξ(x) and σ̃2

j,ξ(x) are the “leave-one-out” versions of σ̂2
ξ (x) and σ̃2

ξ (x).

It is important to note that the estimation error of the conditional mean plays a twofold

role. It affects the conditional variance estimator, i.e. σ̂2
j,ξ(Xj−1) vs. σ̃2

j,ξ(Xj−1). It
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also directly affects the cross-validation criterion to be minimized through the term(
Xj − µ̂ĥn(Xj−1)

)2
versus (Xj − µ(Xj−1))2 .

Now, define the relevant cross-validated bandwidths, namely

ξ̂n = arg min
ξ∈Ξn

CVn (ξ)

and ˜̂
ξn = arg min

ξ∈Ξn

C̃Vn (ξ) ,

where

Ξn ≡
{
ξ
n
, ξn

}
=
{
cσTn(C)−η, cσTn(C)−η

}
,

with 0 < cσ, cσ <∞, and η, η as defined in Eq. (6), i.e. 1
5
< η < η < 1, and 1−2η+η > 0.

It is immediate to see that Ξn is of the same almost-sure order as Hn. We simply allow

cσ and cσ to differ from c and c.

Finally, we define the ASE criterion for the variance estimator, i.e.,

dA,ξ
(
σ̃2, σ

)
=

1

Tn(C)

n∑
j=2

(
σ̃2
ξ (Xj−1)− σ2(Xj−1)

)2
1 {Xj−1 ∈ C}

and its minimizer

ξ̃n = arg min
ξ∈Ξn

dA,ξ
(
σ̃2, σ

)
.

Our objective is to show that ξ̂n is asymptotically optimal with respect to dA,ξ (σ̃2, σ) ,

thereby yielding |ξ̂n/ξ̃n−1| = op(1). This is accomplished in two steps. First, we establish

the optimality of
˜̂
ξn for dA,ξ (σ̃2, σ) , i.e., we derive ASE optimality for the case in which

the true conditional mean is assumed known, leading to |˜̂ξn/ξ̃n − 1| = op(1). Second,

we show that conditional mean estimation does not affect this optimality result, i.e.,

|ξ̂n/
˜̂
ξn − 1| = op(1).

Let F̃ = {f : R2 → R : f(x1, x2) = x2
2hKx,h(x1), x ∈ C, 0 < h ≤ 1}. This set has

envelope F̃ (x1, x2) = x2
2F (x1), i.e. |f | ≤ F̃ for all f ∈ F̃ , where F is the envelope of F .

Assumption 3. 1. The innovations ut in Eq. (1) are iid with E (u4κ
t ) < ∞, κ >

β−ε
(β−ε)η−4ε

, η defined in Eq. (6), and ε, ε > 0 arbitrarily small.

2. supf∈F̃ E(Uk(f)2) <∞.
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This Assumption is very similar to Assumptions 2.2 and 2.3, and the same comments

apply here. Before deriving our main result in Theorem 2 below, we introduce the follow-

ing four lemmas.

Lemma 5. Let

bσC(x, ξ) =
1

ps(x)

(∫
K(u)

(
σ2(x− ξu)− σ2(x)

)
ps(x− ξu)du

)
and

Ωσ
n =

{
$ : inf

ξ∈Ξn

dA,ξ(σ̂
2, σ2) ≥ αC inf

ξ∈Ξn

(
1

ξnβ+ε
+ inf

x∈C
bσ2
C (x, ξ)

)}
,

for some 0 < α ≤ 1 and some constant C > 0. Denote by Ωσ,c
n the complement of Ωσ

n. Let

Assumptions 1, 2.1, 2.3 and 3 hold. Then

lim
n→∞

Pr {Ωσ,c
n } = 0.

Lemma 5 parallels Lemma 2 establishing a lower bound for our definition of the ASE

criterion for the variance estimator.

Lemma 6. Let Assumptions 1, 2.1, 2.3 and 3 hold. Then, the infeasible cross-validated

bandwidth
˜̂
ξn in Eq. (15) is asymptotically optimal with respect to dA,ξ (σ̃2, σ2), i.e.,∣∣∣∣∣ d

A,
˜̂
ξn

(σ̃2, σ2)

infξ∈Ξn dA,ξ (σ̃2, σ2)
− 1

∣∣∣∣∣ = op(1).

Lemma 6 establishes the asymptotic optimality of the bandwidth minimizing the in-

feasible CV criterion. Next, we show the same result for the feasible CV criterion. We

first need to control the probability order of the conditional mean’s estimation error. This

is done via Lemma 7.

Lemma 7. Let Assumptions 1, 2.1, 2.3 and 3 hold. Then,

sup
x∈C

((
µ̂ĥn(x)− µ(x)

)4
)

= op

(
dA,ĥn (µ̂, µ)

)
.

Now, we ought to isolate the component of C̃Vn (ξ) − CVn (ξ) which does not de-

pend on ξ and show that the remaining component is of smaller probabilty order than
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infξ∈Ξn dA,ξ (σ̃2, σ2) . This is accomplished in Lemma 8 below. Let

CV(ξ)− C̃V(ξ)

=
1

Tn(C)

n∑
j=2

(
µ̂j,ĥn(Xj−1)− µ(Xj−1)

)4

1 {Xj−1 ∈ C}

+
4

Tn(C)

n∑
j=2

(
(Xj − µ(Xj−1))

(
µ̂ĥn(Xj−1)− µ(Xj−1)

))2
1 {Xj−1 ∈ C}

+
1

Tn(C)

n∑
j=2

(
σ2(Xj−1)(u2

j − 1)
(
µ̂ĥn(Xj−1)− µ(Xj−1)

)2
)

1 {Xj−1 ∈ C}

− 4
1

Tn(C)

n∑
j=2

(Xj − µ(Xj−1))
(
µ̂ĥn(Xj−1)− µ(Xj−1)

)3
1 {Xj−1 ∈ C}

− 4
1

Tn(C)

n∑
j=2

(
σ2(Xj−1)(u2

j − 1)
(
µ̂ĥn(Xj−1)− µ(Xj−1)

))
1 {Xj−1 ∈ C}

+ Êrror(ξ), (16)

where

Êrror(ξ)

=
1

Tn(C)

n∑
j=2

(
σ̂2
j,ξ (Xj−1)− σ̃2

j,ξ(Xj−1)
)2

1 {Xj−1 ∈ C} (17)

+
2

Tn(C)

n∑
j=2

((
σ2(Xj−1)− σ̃2

j,ξ(Xj−1)
) (
µ̂ĥn(Xj−1)− µ(Xj−1)

)2
)

1 {Xj−1 ∈ C}

(18)

+
4

Tn(C)

n∑
j=2

((
σ2(Xj−1)− σ̃2

j,ξ(Xj−1)
)
σ(Xj−1)uj

(
µ̂ĥn(Xj−1)− µ(Xj−1)

))
1 {Xj−1 ∈ C}

(19)

− 2

Tn(C)

n∑
j=2

((
σ2(Xj−1)− σ̃2

j,ξ(Xj−1)
) (
σ̂2
j,ξ − σ̃2

j,ξ

))
1 {Xj−1 ∈ C} (20)

− 2

Tn(C)

n∑
j=2

(
σ2(Xj−1)(u2

j − 1)
(
σ̂2
j,ξ − σ̃2

j,ξ

))
1 {Xj−1 ∈ C} (21)
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+
1

Tn(C)

n∑
j=2

((
σ̂2
j,ξ − σ̃2

j,ξ

) (
µ̂ĥn(Xj−1)− µ(Xj−1)

)2
)

1 {Xj−1 ∈ C} (22)

+
1

Tn(C)

n∑
j=2

((
σ̂2
j,ξ − σ̃2

j,ξ

)
σ(Xj−1)uj

(
µ̂ĥn(Xj−1)− µ(Xj−1)

))
1 {Xj−1 ∈ C} . (23)

Lemma 8. Let Assumptions 1, 2.1, 2.3 and 3 hold. Then,

sup
ξ∈Ξn

∣∣∣∣∣ Êrror(ξ)

dA,ξ (σ̃2, σ2)

∣∣∣∣∣ = op(1).

Lemma 8 shows that the estimation error component of the cross-validation criterion

is of sufficiently small probability order. We can finally turn to the optimality of the

bandwidth minimizing the feasible criterion.

Theorem 2. Let Assumptions 1, 2.1, 2.3 and 3 hold. Then, the cross-validated bandwidth

ξ̂n is asymptotically optimal with respect to dA,ξ (σ̃2, σ2), i.e.,∣∣∣∣∣ dA,ξ̂n (σ̃2, σ2)

infξ∈Ξn dA,ξ (σ̃2, σ2)
− 1

∣∣∣∣∣ = op(1).

Corollary 2. Let Assumptions 1, 2.1, 2.3 and 3 hold. Then,∣∣∣∣∣ ξ̂nξ̃n − 1

∣∣∣∣∣ = op(1).

5 Simulations

In this section, we report the results of a simulation experiment illustrating the finite

sample performance of our proposed bandwidth selection procedure. We generate data

from four different models: an autoregressive process

Xt = µ(Xt−1) + ut,

with a linear, µ(x) = ρx, or a nonlinear, µ(x) = ρx2/10, mean function, and a nonlinear

predictive regression,

Yt = µ(Xt) + ut

Xt = ρXt−1 + εt
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with a linear, µ(x) = x, or a nonlinear4, µ(x) =
∑4

j=1(−1)j+1 sin(jπx)/j2, mean function.

For all four models, Xt is initialized at zero (X0 = 0) and (ut, εt) are independent, standard

normal random variables, iid across time.

We are interested in nonparametrically estimating the function µ(.). We vary the

sample size, T , and the degree of persistence, ρ, in the Xt process. All results are based

on 1, 000 Monte Carlo samples, the standard normal density kernel, and the set C chosen

to be equal to the range of the Xt data. The range of the data is, in general, not compact.

This choice is intended to avoid the selection of an additional variable (i.e., a compact

set C) and provide evidence for the satisfactory performance of the criterion when such a

selection is not made. We view this approach as being informative for applied work.

Since we are not aware of any other data-driven method for choosing the bandwidth

in nonstationary settings, we compare our estimator to a linear least-squares estimator

(“OLS”). Tables 1–4 present the bias, standard deviation (“stdev”) and root mean-square

error (“RMSE”) of the nonparametric estimator based on cross-validated bandwidth and

of the OLS estimator. The biases, standard deviations, and RMSEs are averaged values

over a grid of points. Figure 1 plots the cross-validation criterion function and the selected

bandwidth, each averaged over all Monte Carlo samples. Figure 2 plots the functional

estimates.

In the linear specifications, both the bias and the standard deviation of the non-

parametric estimates are larger than what is found for the least-squares estimates. As

expected, while the standard deviation of the latter decreases with the level of persistence,

the standard deviation of the former increases, due to a reduced number of visits of the

process to each evaluation point. In the nonlinear specifications, the reduced biases of

the nonparametric estimates more than offset some increases in dispersion with respect

to the least-squares counterparts, thereby yielding root mean-squared errors which are

considerably smaller than in the least-squares case.

In essence, the interaction of nonlinearities and increased levels of dependence may

lead to large biases and sizeable root mean-squared errors in the least-squares case. Not

only do cross-validated bandwidths satisfy meaningful optimality criteria in the presence

of (potential) nonstationarities, as shown by our theoretical results, they also appear to

lead to an empirically meaningful trade-off between bias and variance.

4This is the same nonlinear design as in Hall and Horowitz (2005) and Wang and Phillips (2009).
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6 Nonlinear Stock-Return Predictability

We apply our proposed bandwidth selection method to a prototypical portfolio allocation

problem. The investor computes optimal allocations to stocks (the market, in our case)

and bonds from (possibly) nonlinear predictions of the conditional mean and variance

of stock returns using the dividend-to-price ratio. We show the economic gains from

using our cross-validated nonparametric procedure for prediction as compared to linear

regression, something which is typical in the literature.

6.1 A Portfolio Allocation Problem

Consider an investor with quadratic utility

U(Wt) = Wt −
λ̃

2
W 2
t

over wealth Wt, who allocates a fraction ωt of wealth in period t to the market and a

fraction (1−ωt) to treasury bills. Let the investor’s planning horizon be τ periods, denote

by Rt,t+τ and Rf
t,t+τ the τ -period returns of the market and treasury bills, respectively.

The investor’s end-of-horizon wealth Wt+τ is

Wt+τ = ωtWtRt,t+τ + (1− ωt)WtR
f
t,t+τ .

Suppose the excess returns R̃t,t+τ = Rt,t+τ −Rf
t,t+τ evolve according to

R̃t,t+τ = µ(Xt) + σ(Xt)ut+τ (24)

whereXt is an assumed predictor and the errors ut+τ satisfy E[ut+τ |Ft] = 0 and E[u2
t+τ |Ft] =

1. Further, suppose the investor’s information set Ft at time t contains (Xs,Ws, R
f
s,s+τ )

for s ≤ t. Then, the period-t optimal allocation problem can be written as

ω = argmaxwE[U(Wt+τ (w))|Ft]

= argmaxw

{
− λ̃

2
Wt

(
σ2(Xt) + µ(Xt)

2
)
w2 +

(
1− λ̃WtR

f
t,t+τ

)
µ(Xt)w

}
. (25)

As is common in the literature (e.g. Fleming et al. (2001)) we facilitate comparisons across

portfolios by keeping the relative risk aversion γt = λ̃Wt/(1 − λ̃Wt) constant at a value
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γ. Thus, the optimal portfolio weights are independent of wealth. Let λ = γ/(1 + γ).

Conditional on Xt = x and Rf
t,t+τ = r, the optimal allocation of an investor solving Eq.

(25), i.e., a “nonlinear investor”, is

ωnon(x) =
(1− λr)µ(x)

λ(σ2(x) + µ(x)2)
.

A “linear investor” is one who assumes µ(x) = α + βx and σ(x) = σ, leading to the

optimal allocation

ωlin(x) =
(1− λr)(α + βx)

λ(σ2 + (α + βx)2)
.

The optimal portfolio allocations, therefore, depend on the way in which the investor

implements the predictive regression in Eq. (24), a problem which has received substantial

attention in the literature.

6.2 Motivating (possibly) nonstationary cross-validation

Our bandwidth selection procedure appears attractive in the context of predictive re-

gressions such as Eq. (24) because, as we now argue, the economics of stock return

predictability suggest (possible) nonlinearities in the conditional mean and variance, ex-

treme persistence of the predictor(s), and correlation between shocks to prices and shocks

to the predictor(s).

First, Campbell and Shiller (1988) justify the standard conceptual framework for re-

gressing stock returns on financial ratios. Their traditional log-linearization leads to a

linear predictive regression which, more generally, can be viewed as an approximation to

a more complex nonlinear model. Little is known about the quality of such an approxi-

mation, especially for longer horizons h > 1. In evaluating Eq. (24) using cross-validated

nonparametric methods, we are therefore robust to deviations from linearity. Further-

more, the early literature generally focused on the conditional mean and set σ(·) equal

to a constant. Recent implementations, however, treat the conditional variance similarly

to the conditional mean and allow it to be a nonlinear function of the predictor. The

survey by Brandt (2010) provides a discussion of nonlinear predictive models and their

implications for portfolio allocation. Eq. (24) accommodates nonlinear conditional second

moments as well.

Second, autoregressive models with local-to-unit roots are known to capture well the

persistence properties of financial ratios used for stock return prediction (e.g. Cavanagh
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et al. (1995), Torous and Valkanov (2000), Valkanov (2003)). We will show that the

assumed predictor, i.e., the dividend-to-price ratio, in Eq. (24) is very highly persistent,

nonstationarity tests supporting the null of nonstationarity.

Third, if Xt is the dividend-to-price ratio or, alternatively, any financial ratio whose

denominator depends on the market’s price level, its variation between time t−1 and time

t is necessarily correlated with the variation in Rt−1,t, the market return over the same

period. A positive shock to prices lowers Xt while increasing R̃t−1,t, thereby inducing

a negative correlation between R̃t−1,t and Xt. Stambaugh (1986, 1999) provides early

discussions of the importance of this correlation and its role in predictive models for stock

returns. The limiting properties of the cross-validated moment estimates in Eq. (24) are

not affected by this correlation.

6.3 Results

The data is obtained from CRSP and is the same as that in Lewellen (2004). We com-

pute excess returns from monthly continuously-compounded returns (Rt,t+1) on the value-

weighted NYSE index net of the one-month treasury bill rate (Rf
t,t+1). The predictor Xt is

the dividend-to-price ratio constructed as dividend paid during the previous year divided

by the current value of the value-weighted NYSE index. The τ -period excess returns

R̃t,t+τ are aggregates of 1-month excess returns: R̃t,t+τ =
∑τ−1

i=1 R̃t+i,t+i+1.

Figure 3 displays the data. As discussed, the dividend-to-price ratio is very highly

persistent. Conventional unit root tests, irrespective of whether the null is nonstationar-

ity, as in the Dickey-Fuller tradition, or stationarity, as proposed by Kwiatkowski et al.

(1992), find it hard not to exclude stationarity on purely statistical grounds. For exam-

ple, an augmented Dickey-Fuller test (implemented using a constant in the regression,

a maximum lag length of 20, and an automatic lag length selection using Schwartz in-

formation criterion) delivers a t-statistic of -1.47 for a corresponding 10% critical value

of -2.57, thereby leading to a failure to reject the nonstationarity null. The KPSS test,

instead, rejects the null of stationarity overwhelmingly at the 1% level. The value of the

statistic (when using a Newey-West automated bandwidth and a Bartlett kernel) is 1.04

and the 1% critical value is 0.74. While the reduced power of unit-root tests against local-

to-unity alternatives is well-known, these results point to the unit-root behavior of the

dividend-to-price ratio and its extreme persistence. Regardless of whether one believes in
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its stationarity (which is more economically plausible) or lack thereof, methods of infer-

ence, like the one we propose, which do not have to rely on either appear theoretically

and empirically warranted.

We implement the nonparametric kernel estimators introduced above together with

our proposed cross-validation criterion for choosing the bandwidth. For investment hori-

zons τ larger than one month, we modify the cross-validation criterion function so as to

leave out not only one observation, but also τ before and τ after a particular observation.

This modification controls the dependence structure of the regression residuals upon ag-

gregation. All calculations are based on the normal density kernel and, again, a set C
chosen to be equal to the range of the Xt data. We report results for the investment

horizons of one month (τ = 1), 3 years (τ = 36), and 5 years (τ = 60), and risk aversion

parameters γ ∈ {1, 5, 10}.
Figure 4 shows the cross-validation objective function, which is very flat near its

minimum when τ = 1, leading to large bandwidth choices, and possesses clearly separate

minima for horizons τ > 1, generating much smaller bandwidths. Figure 5 provides the

resulting nonparametric estimates and the asymptotic (pointwise) standard errors of the

conditional mean and variance functions. The conditional means are increasing in the

predictor and mildly nonlinear, with the nonlinearities being statistically significant at

the two higher horizons. As is well-known, a high dividend-to-price ratio should predict

high returns, low dividend growth, or decreasing prices. It generally predicts high returns.

It also generally does so strongly over longer horizons. Leaving nonlinearities aside, our

estimates exhibit overall shapes that confirm the findings in the literature. Similarly, at

the short horizon we find a flat conditional variance which is consistent with classical

parametric approaches in the predictability literature. However, variance appears to be

nonlinear, and decreasing, at longer horizons. When predicting over 3 and 5 years, a higher

conditional variance seems to be associated with higher prices relative to dividends. This

effect is interesting. In Figure 6, we report three scatterplots of squared de-meaned excess

returns, i.e. (
∑τ−1

i=1 R̃t+i,t+i+1 − µ̂ĥn(Xt))
2, against Xt, along with least-squares estimates

of the same relation. Again, the long-run conditional variance appears to decrease with

increases in the dividend-to-price ratio. A least-squares specification would capture these

effects while missing some nonlinearities around the mean dividend-to-price level.

We now evaluate the economic impact of taking into account the nonlinearities found

in the estimates of Figure 5. We quantify the economic gains for the investor employing
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a nonlinear rather than a linear specification by computing an annualized fee ∆ that

makes the nonlinear investor indifferent between the nonlinear and the linear specification.

Specifically, we follow Fleming et al. (2001) and define ∆ as the solution5 to

1

T

T∑
t=1

{
Rp
t,t+τ (ωnon(Xt))−∆− λ

2

(
Rp
t,t+τ (ωnon(Xt))−∆

)2
}

=
1

T

T∑
t=1

{
Rp
t,t+τ (ωlin(Xt))−

λ

2
Rp
t,t+τ (ωlin(Xt))

2

}
, (26)

where Rp
t,t+τ (ω) = ωRt,t+τ + (1 − ω)Rf

t,t+τ denotes the portfolio return for a weight ω.

Figure 7 shows the realized utilities of the nonlinear investor minus those of the linear

investor plotted over time. ∆ is the additional annualized return necessary for the non-

linear investor to have the same average realized utility as the linear investor. Table 5

reports the estimates of ∆. As expected, the annualized fees are small for short invest-

ment horizons for which we have already seen that the conditional mean and variance

are essentially linear. For the longer investment horizons, however, we found significant

nonlinearities in the conditional mean and variance, and therefore the nonlinear investor

requires large fees ∆ to be indifferent between the nonlinear and the linear specification.

The fees range from a 1.5% to a 6.2% annualized return in addition to the portfolio re-

turn to reach indifference. These fees indicate large economic gains from (cross-validated)

nonlinear predictability.

7 Conclusions

Cross-validation is the most widely used method of bandwidth selection in nonparamet-

ric econometrics. It is employed routinely in empirical work irrespective of the level of

persistence. We show that this common practice is theoretically justified. Even in the

nonstationary case, which is a sub-case of our broader framework, the cross-validated

bandwidth is optimal with respect to the averaged squared error criterion, i.e., the av-

eraged squared distance between the true function and its nonparametric counterpart.

Should stationarity be satisfied, the classical optimality with respect to the mean in-

tegrated squared error would be easily re-established. We provide a treatment which

5In general, there are two solutions to Eq. (26). We discard the one that moves the investor’s return

to the decreasing side of the utility function.
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covers both the conditional mean and the conditional variance estimator in the context

of (positive and null) recurrent Markov chain models.

Even though many economic time series may not be genuinely nonstationary, persis-

tence is a fact of life. While extreme forms of persistence lead us to re-consider the allowed

criterion for optimality, this paper shows that a meaningful notion of optimality continues

to be a fundamental property of cross-validated bandwidth choices. This is, in our view,

important information for nonparametric applied work in economics and finance.
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A Proofs

A.1 Proofs of Section 3

The proof of Lemma 1 is based on the following Proposition.

Proposition 1. Under Assumptions 1 and 2,

sup
x∈C, h∈Hn

∣∣∣∣∣ 1

Tn

Tn∑
k=1

Uk,x,h − E (Uk,x,h)

∣∣∣∣∣ = oa.s.(1) (27)

and

sup
x∈C, h∈Hn

∣∣∣∣∣∣ 1

Tn(C)

Tn(C)∑
k=1

Uk,x,h − E (Uk,x,h)

∣∣∣∣∣∣ = oa.s.(1). (28)

Proof. Consider some subsequence {an : n ≥ 1} of {n} such that an →∞ as n→∞. Let

H̃an,n =
{
h ∈ R : h̃an,n ≤ h ≤ h̃an,n

}
with h̃an,n = ca

−η
n and h̃an,n = ca−ηn . We first show that

Āan = sup
x∈C, h∈H̃an,n

∣∣∣∣∣ 1

an

an∑
k=1

Uk,x,h − E (Uk,x,h)

∣∣∣∣∣ = oa.s.(1). (29)

For a sequence of random variables A1, A2, . . ., define the empirical average PnAk = 1
an

∑an
k=1Ak. The

proof is organized in three steps.

Step (1): Define the truncated version of Uk(f) as Tk(f) = Uk(f)1{Uk(F )2 ≤ bn}, where bn =

a
2(1−η+η)
n and bn →∞ because η > η. Also, let Rn be the approximation error of Uk(f) by Tk(f):

Rn = sup
f∈Fan,n

{|Pn(Uk(f)− Tk(f))|+ |E[Uk(f)− Tk(f)]|} ,

where Fan,n = {f = hKx,h : x ∈ C, h ∈ H̃an,n} defines a sequence of subsets of F that incorporates rate

restrictions on the bandwidth h. Note that Uk(F )2 > bn and Uk(F ) ≥ 0 imply Uk(F ) < Uk(F )2/
√
bn.

We have

|PnTk(f)− PnUk(f)| = PnUk(f)1{Uk(F )2 > bn}

≤ PnUk(F )1{Uk(F )2 > bn}

≤ b−1/2
n PnUk(F )21{Uk(F )2 > bn}

≤ b−1/2
n PnUk(F )2. (30)

Taking expectations on both sides of Eq. (30) yields

|E(Tk(f))− E(Uk(f))| ≤ E|Tk(f)− Uk(f)| ≤ b−1/2
n E(Uk(F )2). (31)
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Eqs. (30) and (31) together with the fact that U1(f), U2(f), . . . are i.i.d. (p. 135 in Nummelin (1984)),

the strong law of large numbers, Assumption 2.3, and the definition of bn imply

Rn = Oa.s.(b
−1/2
n ) = oa.s.(1),

i.e. we can replace Uk(f) in Eq. (29) by the truncated variable Tk(f) since b
−1/2
n is a negligible higher-

order term.

Step (2): We now apply a standard bracketing argument to show that the truncated process PnTk(f)

converges almost surely to its expectation uniformly over Fan,n. To this end, notice that, for any ξ > 0:

P

(
sup

x∈C, h∈H̃an,n
|PnTk(Kx,h)− ETk(Kx,h)| > ξ

)

≤ P

(
sup

f∈Fan,n

1

h̃an,n
|PnTk(f)− ETk(f)| > ξ

)

= P

(
sup

f∈Fan,n
PnTk(f)− ETk(f) > ξh̃an,n

)
(32)

+ P

(
sup

f∈Fan,n
PnTk(f)− ETk(f) < −ξh̃an,n

)
. (33)

Consider Eq. (32). By Assumption 2.1, there is a collection of εh̃an,n-brackets B(εh̃an,n,Fan,n, L
1(πs))

of cardinality N[ ](εh̃an,n,Fan,n, L
1(πs)) ≤ N[ ](εh̃an,n,F , L

1(πs)) so that, for every f ∈ Fan,n, there is a

bracket [f l, fu] such that f l ≤ f ≤ fu and E[Uk(fu)− Uk(f l)] ≤ εh̃an,n. Therefore, for any f ∈ Fan,n,

E[Tk(fu)− Tk(f)] ≤ E
[
(Uk(fu)− Uk(f))1{Uk(F )2 ≤ bn}

]
≤ E [(Uk(fu)− Uk(f))] ≤ εh̃an,n

or, equivalently,

ETk(f) ≤ ETk(fu)− εh̃an,n. (34)

By Assumptions 1 and 2, we can apply Lemma 4.1 in Karlsen and Tjøstheim (1998) to get hE[Uk(Kx,h)2] =

O(1) and thus, for any f ∈ Fan,n, EUk(f)2 = O(h̃an,n). We use this fact together with Eq. (34) to bound

27



the term in Eq. (32) as follows: letting cj denote some constants,

P

(
sup

f∈Fan,n
Pn [Tk(f)− ETk(f)] > ξh̃an,n

)

≤ P

(
max

fu: [f l,fu]∈B(εh̃an,n,Fan,n,L
1(πs))

Pn [Tk(fu)− ETk(fu)] > (ξ + ε)h̃an,n

)
≤ N[ ](ε,Fan,n, L1(πs))

× max
fu: [f l,fu]∈B(εh̃an,n,Fan,n,L

1(πs))
P
(
PnTk(fu)− ETk(fu) > (ξ + ε)h̃an,n

)
≤ c1ε−c2 · exp

{
−

a2
n(ξ + ε)2h̃

2

an,n

anE[Tk(fu)2] + 1
3

√
bn(ξ + ε)h̃an,n

}

≤ c1ε−c2 · exp

{
−

a2
n(ξ + ε)2h̃

2

an,n

anE[Uk(fu)2] + (ξ + ε)o(1)

}

≤ c4 · exp

{
−
anh̃

2

an,n

h̃an,n

}
≤ c5 · exp

{
−a1−2η+η

n

}
→ 0,

where we use |Tk(f)| ≤
√
bn, the Bernstein inequality in Appendix B of Pollard (1984), and 1

5 < η < η < 1.

The term in Eq. (33) is bounded in a similar fashion. Therefore, the Borel-Cantelli Lemma implies

Āan → 0 a.s. as n→∞.

Step (3): By Lemma 3.2 in Karlsen and Tjøstheim (2001), we have that Tn(C)→∞ a.s. as n→∞.

Fix an ω such that Āan(ω)→ 0. Then ĀTn(C)(ω)→ 0 so that Eq. (28) follows because this happens for

all ω outside a null set. Eq. (27) follows because Tn(C)/Tn → πs1C a.s. as n→∞. Q.E.D.

Proof of Lemma 1. The estimator p̂h(x) can be decomposed as

p̂h(x) =
1

Tn
U0,x,h +

1

Tn

Tn∑
k=1

Uk,x,h +
1

Tn
Un,x,h, (35)

Consider the middle term first. By Proposition 1,

sup
x∈C, h∈Hn

∣∣∣∣∣ 1

Tn

Tn∑
k=1

Uk,x,h − E (Uk,x,h)

∣∣∣∣∣ = oa.s.(1). (36)

Following the same steps as in the method of proof of Theorem 4.1 in Gao et al. (2014), we have

E (Uk,x,h) =

∫
1

h
K

(
u− x
h

)
dπs(u) =

∫
K(u)ps(x+ hu)d(u),

Therefore, by Assumption 1.2, supx∈C ps(x) <∞ and, thus,

sup
x∈C, h∈Hn

|E (Uk,x,h)− ps(x)| = o(1). (37)
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By Eq. (36) and Eq. (37), it remains to show that the boundary terms supx∈C,h∈Hn |
1
Tn
U0,x,h| and

supx∈C,h∈Hn |
1
Tn
Un,x,h| are negligible. To this end, notice that Proposition 1 holds with Tn replaced

by Tn + 1 so that supx∈C,h∈Hn |
1
Tn
Un,x,h| = oa.s.(1). The negligibility of supx∈C,h∈Hn |

1
Tn
U0,x,h| follows

similarly as in the proof of Theorem 5.1 in Karlsen and Tjøstheim (2001, p. 405-406). Q.E.D.

Let

Uk,x,h =


1
h

∑τ0
i=1 uiK

(
Xi−1−x

h

)
when k = 0

1
h

∑τk
i=τk−1+1 uiK

(
Xi−1−x

h

)
for 1 ≤ k < n

1
h

∑n
τ
Tn

+1 uiK
(
Xi−1−x

h

)
for k = n

,

where ui = σ(Xi)ui.

Proposition 2. Under Assumptions 1 and 2,

sup
x∈C, h∈Hn

∣∣∣∣∣ 1

Tn

Tn∑
k=1

Uk,x,h

∣∣∣∣∣ = oa.s.(1) (38)

and

sup
x∈C, h∈Hn

∣∣∣∣∣∣ 1

Tn(C)

Tn(C)∑
k=1

Uk,x,h

∣∣∣∣∣∣ = oa.s.(1). (39)

Proof. The proof of this proposition is very similar to the one of Proposition 1. By the same argument

as in Example (4.3) of Pollard (1986), F is Euclidean for the envelope F . Therefore, there is a collection

of εh̃an,n-brackets B(εh̃an,n,Fan,n, L
1(πs)) of cardinality

N[ ](εh̃an,n,Fan,n, L
1(πs)) ≤ N[ ](εh̃an,n,Fan,n, L

1(µ)) ≤ N[ ](εh̃an,n,F , L
1(µ)),

where µ is the measure that has density |x| with respect to πs and

Fan,n = {f : R2 → R : f(x1, x2) = x2hKx,h(x1), x ∈ C, h ∈ H̃an,n}.

The truncation and bracketing argument in the proof of Lemma 1 therefore applies here as well. Q.E.D.

Proposition 3. Under Assumptions 1 and 2:

sup
x∈C, h∈Hn

|µ̂h(x)− µ(x)| = oa.s.(1).

Proof. The statement follows from Lemma 1 and a similar calculation as in Eq. (37) to show that the

bias is negligible. Q.E.D.

Proof of Lemma 2. Since

µ̂h (x)− µ(x) = (µ̂h (x)− µ(x))
p̂h(x)

ps(x)
− (µ̂h (x)− µ(x))

(
p̂h(x)− ps(x)

ps(x)

)
,
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we have

dA,h (µ̂h, µ) =
1

Tn(C)

n∑
j=1

(
(µ̂h (Xj−1)− µ(Xj−1))

p̂h(Xj−1)

ps(Xj−1)

)2

1 {Xj−1 ∈ C}

+
1

Tn(C)

n∑
j=1

(
(µ̂h (Xj−1)− µ(Xj−1))

(p̂h(Xj−1)− ps(Xj−1))

ps(Xj−1)

)2

1 {Xj−1 ∈ C}

+ cross

= In,h + IIn,h + IIIn,h. (40)

Letting µ̃h(x) = µ̂h(x) p̂h(x)
ps(x) and µ∗(x) = µ(x) p̂h(x)

ps(x) , the term In,h writes

In,h =
1

Tn(C)

n∑
j=2

(µ̃h(Xj−1)− E (µ̃h(Xj−1)))
2

1 {Xj−1 ∈ C}

+
1

Tn(C)

n∑
j=2

(E (µ̃h(Xj−1))− µ∗(Xj−1)))
2

1 {Xj−1 ∈ C}

+
2

Tn(C)

n∑
j=2

(E (µ̃h(Xj−1))− µ∗(Xj−1)) (µ̃h(Xj−1)− E (µ̃h(Xj−1))) 1 {Xj−1 ∈ C}

= IAn,h + IBn,h + ICn,h.

Thus,

IAn,h =
1

Tn(C)

n∑
j=2

E (µ̃h(Xj−1)− E (µ̃h(Xj−1)))
2

1 {Xj−1 ∈ C}

+
1

Tn(C)

n∑
j=2

(
(µ̃h(Xj−1)− E (µ̃h(Xj−1)))

2
1 {Xj−1 ∈ C}

−E (µ̃h(Xj−1)− E (µ̃h(Xj−1)))
2

1 {Xj−1 ∈ C}
)

= IA1
n,h + IA2

n,h.

Define the set Ω1,n = {ω : nβ−ε � Tn � nβ+ε}, where the symbol “�” is used to denote smaller order.

By Lemma 3.4 in Karlsen and Tjøstheim (2001), we have

P
(

lim
n→∞

Ω1,n

)
= 1.

Now, working conditionally on Ω1,n, we have

IA1
n,h ≥ inf

x∈C
E
(
(µ̃h(x)− E(µ̃h(x)))2

) 1

Tn(C)

n∑
j=2

1 {Xj−1 ∈ C}

= inf
x∈C

E
(
(µ̃h(x)− E(µ̃h(x)))2

)
≥ inf

x∈C
σ2(x)

1

supx∈C p
2
s(x)

1

nβ+εh

∫
K2(u)du (1 + o(1))

≥ O

(
1

nβ+εh

)
, (41)
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uniformly in h, where the expression of the variance term derives from Eq. (3) and the final order (driven

by Tn(C)) derives from the fact that Tn and Tn(C) are of the same almost-sure order (c.f. Remark 3.5 in

Karlsen and Tjøstheim (2001)). We now show that IA2
n,h is of smaller order of magnitude than IA1

n,h. Write

IA2
n,h =

1

Tn(C)

Tn(C)∑
j=2

(
(µ̃h(Xj−1)− E (µ̃h(Xj−1)))

2 − E (µ̃h(Xj−1)− E (µ̃h(Xj−1)))
2
)
.

It suffices to show that

√
var
(
IA2
n,h

)
= o

(
1

nβ+εh

)
. We have,

var
(
IA2
n,h

)
∼ 1

T 2
n(C)

Tn(C)∑
j=2

E
(

(µ̃h(Xj−1)− E (µ̃h(Xj−1)))
2 − var (µ̃h(Xj−1))

)2

+
1

T 2
n(C)

Tn(C)∑
j=2

Tn(C)∑
i=2

E
(

1 {|Xi−1 −Xj−1| ≤ h}
(

(µ̃h(Xj−1)− E (µ̃h(Xj−1)))
2 − var (µ̃h(Xj−1))

)
(

(µ̃h(Xi−1)− E (µ̃h(Xi−1)))
2 − var (µ̃h(Xi−1))

))
= An,h +Bn,h,

where the symbol “∼” denotes “asymptotic equivalence.” Write,

An,h =
1

T 2
n(C)

Tn(C)∑
j=2

E
(

(µ̃h(Xj−1)− E (µ̃h(Xj−1)))
4
)
− 1

T 2
n(C)

Tn(C)∑
j=2

var2 (µ̃h(Xj−1)) .

Recalling that Uk,h,x =
τk∑

j=τk−1

1
hK

(
Xj−1−x

h

)
uj , we have

1

T 2
n(C)

Tn(C)∑
j=2

E (µ̃h(Xj−1)− E (µ̃h(Xj−1)))
4 ≤ 1

Tn(C)
sup
x∈C

E (µ̃h(Xj−1)− E (µ̃h(Xj−1)))
4

≤ 1

Tn(C)
1

infx∈C p4
s(x)

sup
x∈C

E

(
1

Tn

Tn∑
k=1

Uk,h,x

)4

. (42)

Working now with the same subsequence {an : n ≥ 1} as in Proposition 1 and defining h, again, on

H̃an,n =
{
h ∈ R : h̃an,n ≤ h ≤ h̃an,n

}
with h̃an,n = ca

−η
n and h̃an,n = ca−ηn , we have

sup
x∈C

{
1

a4
n

an∑
k=1

E
(
U

4

k,h,x

)
+

1

a4
n

an∑
k=1

an∑
i=1

E
(
U

2

k,h,x

)
E
(
U

2

i,h,x

)}
= O

(
1

a3nh
3

)
+O

(
1

a2nh
2

)
= O

(
1

a2nh
2

)
(1 + o(1)) , (43)

uniformly in h ∈ Hn, with the order terms in the last two lines deriving from Lemma B.3 in Gao et al.

(2014). Combining now Eq. (42) and Eq. (43), and using the fact that nβ−ε � an and nβ−ε � Tn(C),
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we have

1

T 2
n(C)

Tn(C)∑
j=2

E (µ̃h(Xj−1)− E (µ̃h(Xj−1)))
4

= O

(
1

n3(β−ε)h2

)
(1 + o(1)) .

Similarly, it is now immediate to see that

1

T 2
n(C)

Tn(C)∑
j=2

var2 (µ̃h(Xj−1)) ≤ 1

Tn(C)
sup
x∈C

var2 (µ̃h(x)) = O

(
1

n3(β−ε)h2

)

and, thus, An,h = O
(

1
n3(β−ε)h2

)
, uniformly in h. Turning to Bn,h, write

Bn,h

=
1

T 2
n(C)

Tn(C)∑
j=2

Tn(C)∑
i=2

E
(

1 {|Xi−1 −Xj−1| ≤ h} (µ̃h(Xj−1)− E (µ̃h(Xj−1)))
2

(µ̃h(Xi−1)− E (µ̃h(Xi−1)))
2
)

+
1

T 2
n(C)

Tn(C)∑
j=2

Tn(C)∑
i=2

E (1 {|Xi−1 −Xj−1| ≤ h}) var (µ̃h(Xj−1)) var (µ̃h(Xi−1)) + cross terms. (44)

Now, using the same methods as for Eq. (42), we obtain

1

T 2
n(C)

Tn(C)∑
j=2

Tn(C)∑
i=1

E
(

1 {|Xi−1 −Xj−1| 1C ≤ h} (µ̃h(Xj−1)− E (µ̃h(Xj−1)))
2

(µ̃h(Xi−1)− E (µ̃h(Xi−1)))
2
)

≤ 1

T 2
n(C)

Tn(C)∑
j=2

Tn(C)∑
i=1

√
E (1 {|Xi−1 −Xj−1| 1C ≤ h})×

×
√

E
(

(µ̃h(Xj−1)− E (µ̃h(Xj−1)))
4

(µ̃h(Xi−1)− E (µ̃h(Xi−1)))
4
)

≤ 1

T 2
n(C)

Tn(C)∑
j=2

Tn(C)∑
i=1

√
E (1 {|Xi−1 −Xj−1| 1C ≤ h})×

×E
(

(µ̃h(Xj−1)− E (µ̃h(Xj−1)))
8
)1/4

×
(

E (µ̃h(Xi−1)− E (µ̃h(Xi−1)))
8
)1/4

= O

( √
h

n2(β−ε)h2

)
,

since

E (1 {|Xi−1 −Xj−1| ≤ h} 1C) = O(h),

uniformly in h. Also, as from Eq. (41), we have

1

T 2
n(C)

Tn(C)∑
j=2

Tn(C)∑
i=2

E (1 {|Xi−1 −Xj−1| ≤ h}) var (µ̃h(Xj−1)) var (µ̃h(Xi−1))

≤ Ch sup
x1,x2∈C

var (µ̃h(x1)) var (µ̃h(x2)) = O

(
h

n2(β−ε)h2

)
.
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Therefore, Bn,h = O
( √

h
n2(β−ε)h2

)
, uniformly in h. Finally,

IA2
n,h = max

{
O

(
h1/4

n(β−ε)h

)
, O

(
1

n
3
2 (β−ε)h

)}
= o

(
1

n(β+ε)h

)
,

uniformly in h, if β > 5ε and if

1
nβ−εh3/4

1
nβ+εh

= n2εh1/4 → 0.

The latter condition becomes

n2εn−
1
4 (β−ε)η → 0

which, for uniformity, ought to be satisfied in the worst case scenario, i.e., η = 1
5 . We have that

n2εn−
1
20 (β−ε) → 0

if β > 41ε, which is, of course, stronger than β > 5ε, but it always satisfied for a β bounded away from

zero. Now, notice that

IBn,h ≥ inf
x∈C

(E(µ̃h(x)− µ∗(x))) .

By a similar argument as that in Appendix A in Gao et al. (2014), for any x ∈ C, x ∈ C,

E(µ̃h(x)− µ∗(x)) = E

 1

ps(x)

 1

Tnh

n∑
j=1

K

(
Xj−1 − x

h

)
(µ(Xj−1)− µ(x))


= Eυ

 1

ps(x)

 1

h

τ0∑
j=0

K

(
Xj−1 − x

h

)
(µ(Xj−1)− µ(x))


=

1

ps(x)

∫
K

(
u− x
h

)
(µ(x− hu)− µ(x)) υGs,υdu

=
1

ps(x)

∫
K(u) (µ(x− hu)− µ(x)) ps(x− hu)du,

where υ is a probability measure and s is a small function so that P t ≥ s⊗ υ for an integer t ≥ 1. Also,

Gs,υ =
∑∞
i=0 (P − s⊗ υ)

i
. Thus, uniformly over h ∈ Hn,

IBn,h ≥ inf
x∈C

1

p2
s(x)

(∫
K(u) (µ(x− hu)− µ(x)) ps(x− hu)du

)2

.

Now, because In,h is positive, the cross product (ICn,h) is either positive (in which case the lower bound

is simply given by the sum of IAn,h and IBn,h) or, if negative, it is bounded by the sum of the other two

terms. Hence, there is an α with 0 < α ≤ 1, so that

lim
n→∞

Pr

{
$ : inf

h∈Hn
In,h ≥ α inf

h∈Hn
(IAn,h + IBn,h)

}c
= 0.
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Now, we turn to IIn,h. Given Lemma 1, it is clear that IIn,h = op (In,h). Finally, consider the cross-

product term IIIn,h. By Cauchy-Schwartz’s inequality

IIIn,h =
1

Tn(C)

n∑
j=1

(
(µ̂h (Xj−1)− µ(Xj−1))

(p̂h(Xj−1)− ps(Xj−1))

ps(Xj−1)

)
×

×
(

(µ̂h (Xj−1)− µ(Xj−1))
p̂h(Xj−1)

ps(Xj−1)

)
1 {Xj−1 ∈ C}

≤

√√√√ 1

Tn(C)

n∑
j=1

(
(µ̂h (Xj−1)− µ(Xj−1))

(p̂h(Xj−1)− ps(Xj−1))

ps(Xj−1)

)2

1 {Xj−1 ∈ C}×

×

√√√√ 1

Tn(C)

n∑
j=1

(
(µ̂h (Xj−1)− µ(Xj−1))

p̂h(Xj−1)

ps(Xj−1)

)2

1 {Xj−1 ∈ C}

≤
√
In,h

√
IIn,h

= op(In,h).

Q.E.D.

Proof of Lemma 3. By simple arithmetic,

dA,h (µ̂, µ) = dA,h (µ̂, µ) +
1

Tn(C)

n∑
j=2

(µ̂h,j(Xj−1)− µ̂h(Xj−1))
2

1{Xj−1 ∈ C}︸ ︷︷ ︸
An

+ 2
1

Tn(C)

n∑
j=2

(µ̂h,j(Xj−1)− µ̂h(Xj−1)) (µ̂h(Xj−1)− µ(Xj−1)) 1{Xj−1 ∈ C}︸ ︷︷ ︸
Bn

. (45)

Therefore, by Lemma 2, we need to show that

sup
h∈Hn

l−1
n,h|An +Bn| = op (1) , (46)

with ln,h = c
hnβ+ε

+ infx∈C |b2C(x, h)|. Consider An first. Define

µ̃h,j(Xj−1) =
1
Tn

∑n
i=2,i6=j XiKh (Xi−1 −Xj−1)

1
Tn

∑n
i=2Kh (Xi−1 −Xj−1)

= µ̂h,j(Xj−1)
p̂h,j(Xj−1)

p̂h(Xj−1)
,

with p̂h,j(x) = 1
Tn

∑n
i=2,i6=j Kh (Xi−1 − x). Note that

(µ̂h,j(Xj−1)− µ̂h(Xj−1))
2

= (µ̂h,j(Xj−1)− µ̃h,j(Xj−1))
2

+ (µ̃h,j(Xj−1)− µ̂h(Xj−1))
2

+2 (µ̂h,j(Xj−1)− µ̃h,j(Xj−1)) (µ̃h,j(Xj−1)− µ̂h(Xj−1)) .
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We first show that

sup
h∈Hn

∣∣∣∣∣∣ 1

Tn(C)

n∑
j=2

(µ̂h,j(Xj−1)− µ̃h,j(Xj−1))
2
w(Xj−1) (µ̂, µ)

∣∣∣∣∣∣ = op

(
T−1+η
n + T

−2η
n

)
. (47)

Write,

µ̂h,j(Xj−1)− µ̃h,j(Xj−1) =
1

Tn

n∑
i=2,i6=j

XiKh (Xi−1 −Xj−1)

(
p̂h(Xj−1)− p̂h,j(Xj−1)

p̂h,j(Xj−1)p̂h(Xj−1)

)

=
1

Tnh
K(0)

1

Tn

n∑
i=2,i6=j

XiKh (Xi−1 −Xj−1)

p̂h,j(Xj−1)p̂h(Xj−1)
.

By Lemma 1 and Assumption 1.2, we have supx∈C p̂h,j(Xj) > 0 and supx∈C p̂h(Xj) > 0. Therefore,

1

Tn(C)

n∑
j=2

(µ̂h,j(Xj−1)− µ̃h,j(Xj−1))
2

1{Xj−1 ∈ C}

=
1

T 2
nh

2
K2(0)

1

Tn(C)

n∑
j=2

 1

Tn

n∑
i=2,i6=j

XiKh (Xi−1 −Xj−1)

p̂h,j(Xj−1)p̂h(Xj−1)

2

1{Xj−1 ∈ C}

≤ 1

T 2
nh

2
K2(0)

1

Tn(C)

n∑
j=2

(
µ(Xj−1)

ps(Xj)

)2

1{Xj−1 ∈ C}

+
1

T 2
nh

2
K2(0)

1

Tn(C)

n∑
j=2


 1

Tn

n∑
i=2,i6=j

XiKh (Xi−1 −Xj−1)

p̂h,j(Xj−1)p̂h(Xj−1)

2

−
(
µ(Xj−1)

ps(Xj)

)2

 1{Xj−1 ∈ C}

=
1

T 2
nh

2
K2(0) (Op(1) + op(1)) ,

where the last line uses Proposition 3. Eq. (47) follows since, by Lemma 2, dA,h (µ̂, µ) is of larger

probability order than 1/(Tnh)2, uniformly in h ∈ Hn. Now,

µ̃h,j(Xj−1)− µ̂h(Xj−1) =
1

p̂h(Xj−1)
K(0)

1

Tnh
Xj (48)

and so

1

Tn(C)

n∑
j=2

(µ̂h,j(Xj−1)− µ̃h,j(Xj−1)) (µ̃h,j(Xj−1)− µ̂h(Xj−1)) 1{Xj−1 ∈ C}

= K2(0)
1

T 2
nh

2

1

Tn(C)

n∑
j=2

 1

Tn

n∑
i=2,i6=j

XiKh (Xi−1 −Xj−1)

p̂h,j(Xj−1)p̂h(Xj−1)

 Xj

p̂h(Xj−1)
1{Xj−1 ∈ C}

= op (dA,h (µ̂, µ)) ,

uniformly in h ∈ Hn, because of, again, Lemma 2, Proposition 3 and the definition of Hn. From Eq. (48)
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it is now immediate to see that

1

Tn(C)

n∑
j=2

(µ̃h,j(Xj−1)− µ̂h(Xj−1))
2

1{Xj−1 ∈ C}

= K2(0)
1

T 2
nh

2

1

Tn(C)

n∑
j=2

X2
j

p̂2
h(Xj−1)

1{Xj−1 ∈ C}

= op (dA,h (µ̂, µ))

uniformly in h ∈ Hn. Hence, An in Eq. (45) is op (dA,h (µ̂, µ)) uniformly in h ∈ Hn, because of

Assumption 2.1 and Lemma 2. As for Bn, by Cauchy-Schwartz’s inequality,∣∣∣∣∣∣ 1

Tn(C)

n∑
j=2

(µ̂h,j(Xj−1)− µ̂h(Xj−1)) (µ̂h(Xj−1)− µ(Xj−1)) 1{Xj−1 ∈ C}

∣∣∣∣∣∣
≤

 1

Tn(C)

n∑
j=2

(µ̂h(Xj−1)− µ(Xj−1))
2

1{Xj−1 ∈ C}

1/2

×

 1

Tn(C)

n∑
j=2

(µ̂h,j(Xj−1)− µ̂h(Xj−1))
2

1{Xj−1 ∈ C}

1/2

=
√
dA,h (µ̂, µ)op

(√
dA,h (µ̂, µ)

)
= op (dA,h (µ̂, µ))

uniformly in h ∈ Hn so that (46) follows. Q.E.D.

Proof of Lemma 4. For Cross(h) defined as in Eq. (14) and uj defined as in Eq. (1), write

Cross(h)

=
2

Tn(C)

n∑
j=2

(µ̂h,j(Xj−1)− µ(Xj−1))σ(Xj−1)uj1{Xj−1 ∈ C}

=
2

Tn(C)

n∑
j=2

 1

Tn

n∑
i=2,i6=j

Kh (Xi−1 −Xj−1)σ(Xi−1)ui

σ(Xj−1)uj
1{Xj−1 ∈ C}
p̂h,j(Xj−1)

+
2

Tn(C)

n∑
j=2

 1

Tn

n∑
i=2,i6=j

Kh (Xi−1 −Xj−1) (µ(Xi−1)− µ(Xj−1))

σ(Xj−1)uj
1{Xj−1 ∈ C}
p̂h,j(Xj−1)

= An,h +Bn,h.

Let Ãn,h and B̃n,h be defined as An,h and Bn,h but with p̂h,j(Xj−1) replaced by ps(Xj−1). Given Lemma

1, it is enough to show that

sup
h∈Hn

∣∣∣∣∣ Ãn,h
dA,h (µ̂, µ)

∣∣∣∣∣ = op(1) (49)
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and

sup
h∈Hn

∣∣∣∣∣ B̃n,h
dA,h (µ̂, µ)

∣∣∣∣∣ = op(1), (50)

where h ∈ Hn. Using the split chain decomposition,

Ãn,h

=
Tn

Tn(C)
1

T 2
n

Tn∑
k=1

Tn∑
k′=1

 1

h

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,ik′ 6=jk

K

(
Xik′−1 −Xjk−1

h

)

σ(Xik′−1)uik′σ(Xjk−1)ujk
1{Xjk−1

∈ C}
ps(Xjk−1

)

)
and

B̃n,h =
Tn

Tn(C)
1

T 2
n

Tn∑
k=1

Tn∑
k′=1

 1

h

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,ik′ 6=jk

K

(
Xik′−1 −Xjk−1

h

)
(
µ(Xik′−1)− µ(Xjk−1)

)
σ(Xjk−1)ujk

1{Xjk−1
∈ C}

ps(Xjk−1
)

)
.

We introduce the same subsequence {an : n ≥ 1} as in Proposition 1 and define h, again, on H̃an,n ={
h ∈ R : h̃an,n ≤ h ≤ h̃an,n

}
with h̃an,n = ca

−η
n and h̃an,n = ca−ηn . Define an bandwidths h∗ partitioning

the space H̃an,n so that |h∗ − h| ≤ a−1
n (a−ηn − a

−η
n ), for every h and at least one h∗. The partition defines

balls Han,j so that H̃an,n = ∪anj=1Han,j .

We begin by evaluating Ãn,h. By Boole’s and Markov’s inequality,

Pr

(
sup

h∈H̃an,n

∣∣∣∣∣ Ãn,h
dA,h (µ̂, µ)

∣∣∣∣∣ > ζ

)
≤ Pr

(
max

1≤j≤an
sup

h∈Han,j

∣∣∣∣∣ Ãn,h
dA,h (µ̂, µ)

∣∣∣∣∣ > ζ

)

≤ an Pr

(
sup

h∈Han,j

∣∣∣∣∣ Ãn,hj
dA,h (µ̂, µ)

∣∣∣∣∣ > ζ

)
≤ ζ−2κanE

(
sup

h∈Han,j

∣∣∣∣∣ Ãn,h
dA,h (µ̂, µ)

∣∣∣∣∣
)2κ

. (51)

Conditioning now on the ω’s in Ωn,h, where Ωn,h was defined in the statement of Lemma 2, we have

E

(
sup

h∈Han,j

∣∣∣∣∣ Ãn,h
dA,h (µ̂, µ)

∣∣∣∣∣
)2κ

= E

(
sup

h∈Han,j

∣∣∣Ãn,h∣∣∣ 1

dA,h (µ̂, µ)
1 {ω ∈ Ωn,h}

)2κ

Pr (Ωn,h)

+E

(
sup

h∈Han,j

∣∣∣Ãn,h∣∣∣ 1

dA,h (µ̂, µ)
1
{
ω ∈ Ωcn,h

})2κ

Pr
(
Ωcn,h

)
= E

(
sup

h∈Han,j

∣∣∣Ãn,h∣∣∣ 1

dA,h (µ̂, µ)
1 {ω ∈ Ωn,h}

)2κ

Pr (Ωn,h) (1 + o(1)) .
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Let ln,h = c
hnβ+ε

+ infx∈C |b2C(x, h)|, as in Lemma 2. Thus,

E

(
sup

h∈Hn,j

∣∣∣Ãn,h∣∣∣ 1

dA,h (µ̂, µ)
1 {ω ∈ Ωn,h}

)2κ

Pr (Ωn,h)

≤ sup
h∈Hn,j

(
1

l2κn,h

)
E

(
sup

h∈Hn,j

∣∣∣Ãn,h∣∣∣)2κ

(1 + o(1)).

Letting uσik′ = σ(Xik′−1)uik′ and uσjk = σ(Xjk−1)ujk , write

Ãn,h =
1

a2
n

an∑
k=1

an∑
k′=1

 1

h

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

K

(
Xik′−1 −Xjk−1

h

)
uσik′u

σ
jk

1{Xjk−1
∈ C}

ps(Xjk−1
)

 .

As in the proof of Lemma 4 in Härdle and Marron (1985), we employ Theorem 2 of Whittle (1960):

E
(∣∣∣Ãn,h∣∣∣)2κ

= E

(
E
(∣∣∣Ãn,h∣∣∣)2κ ∣∣∣Xik′−1

, Xjk−1, τk, τk′ , k, k
′ ≤ an

)
≤ CE

(
1

a4
n

an∑
k=1

an∑
k′=1 1

h

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

K

(
Xik′−1 −Xjk−1

h

)
σ(Xik′−1)σ(Xjk−1)

1{Xjk−1
∈ C}

ps(Xjk−1
)

2

κ

≤ Ca−4κ
n h−2κa2κ

n

E

 τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

K

(
Xik′−1 −Xjk−1

h

)
σ(Xik′−1)σ(Xjk−1)

1{Xjk−1
∈ C}

ps(Xjk−1
)

2

κ

≤ Ca−4κ
n h−2κa2κ

n h
κ

≤ Ca−2κ
n h−κ,

where the second to last inequality derives from the fact that

E

 τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

K

(
Xik′−1 −Xjk−1

h

)
σ(Xik′−1)σ(Xjk−1)

1{Xjk−1
∈ C}

ps(Xjk−1
)

2

κ

= h2κ

E

 τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

h−1K

(
Xik′−1 −Xjk−1

h

)
σ(Xik′−1)σ(Xjk−1)

1{Xjk−1
∈ C}

ps(Xjk−1
)

2

κ

≤ Chκ,

38



since, by Lemma B1 (page 935), in Gao et al. (2014), E
(∑τk′

ik′=τk′−1+1,i′k 6=jk
h−1K

(
Xi
k′−1−x
h

))2

≤ C̃h−1

where C̃ does not depend on either x or h and since the number of terms in the sum
∑τk
jk=τk−1+1 is finite

almost surely. We also use the fact that σ(x) is bounded for x ∈ C given Assumption 1.5. Thus,

Pr

(
sup

h∈Han,j

∣∣∣∣∣ Ãn,h
dA,h (µ̂, µ)

∣∣∣∣∣ > ζ

)

≤ ζ−2κanE

(
sup

h∈Hn,j

∣∣∣∣∣ Ãn,h
dA,h (µ̂, µ)

∣∣∣∣∣
)2κ

≤ ζ−2κan
a−2κ
n h−κ

h−2κn−2k(β+ε)

≤ ζ−2κ a1−2κ
n hκ

n−2κ(β+ε)
.

Now, because an >> nβ−ε, we have that the bound becomes

ζ−2κ a1−2κ
n hκ

n−2κ(β+ε)
≤ ζ−2κn

(1−2κ)(β−ε)h
κ

n−2κ(β+ε)
≤ ζ−2κnβ+(4κ−1)εh

κ ≤ ζ−2κnβ+(4κ−1)εn−κ(β−ε)η → 0

for κ > β−ε
(β−ε)η−4ε (which we assume in Assumption 2.2) and η defined in Eq. (4). The statement in Eq.

(49) then follows. We now turn to B̃n,h. It suffices to show that

sup
h∈Hn

∣∣∣∣∣∣
˜̃
Bn,h

dA,h (µ̂, µ)

∣∣∣∣∣∣ = op(1),

where

˜̃
Bn,h =

1

a2
n

an∑
k=1

an∑
k′=1

 1

h

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

K

(
Xik′−1 −Xjk−1

h

)
(
µ(Xik′−1)− µ(Xjk−1)

)
σ(Xjk−1)ujk1{Xjk ∈ C}

)
.

Using, again, Theorem 2 of Whittle (1960), we have

E

(∣∣∣∣ ˜̃Bn,h∣∣∣∣)2κ

= E

(
E

(∣∣∣∣ ˜̃Bn,h∣∣∣∣)2κ ∣∣∣Xik′−1
, Xjk−1, τk, τk′ , k, k

′ ≤ an

)

≤ CE

 1

a4
n

an∑
k=1

an∑
k′=1

 1

h

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

K

(
Xik′−1 −Xjk−1

h

)(
µ(Xik′−1)− µ(Xjk−1)

)
σ(Xjk−1)1{Xjk ∈ C}

)2
)κ

. (52)
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The right hand-side of the inequality in Eq. (52) is majorized by

a−4κ
n h−2κ

2κ∑
l=2

alnE

 τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

K

(
Xik′−1 −Xjk−1

h

)
(
µ(Xik′−1)− µ(Xjk−1)

)
σ(Xjk−1)1{Xjk ∈ C}

)l
≤ Ca−2κ

n h−2κE

 τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,ik′ 6=jk

K

(
Xik′−1 −Xjk−1

h

)
σ(Xjk−1)

1{Xjk−1
∈ C}

ps(Xjk−1
)

2

κ

,

where the last inequality follows from the fact that, forXjk−1 ∈ C, both σ(Xjk−1) and
(
µ(Xik′−1)− µ(Xjk−1)

)l
are bounded. The statement in Eq. (50) derives from the same argument used to prove Eq. (49).

Q.E.D.

Proof of Theorem 1. Define

ĥ = arg min
h

[CV (h)] ,

h = arg min
h

[
CV (h)

]
= arg min

h

CV (h) +
1

Tn(C)

n∑
j=2

(Xj − µ(Xj−1))
2

1 {Xj−1 ∈ C}

 .
It follows that h

a.s.
= ĥ, since the second term in the argmin does not depend on the bandwidth. Now,

write ∣∣∣∣ CV (h)

infh∈Hn dA,h (µ̂, µ)
− 1

∣∣∣∣ = sup
h∈Hn

∣∣∣∣∣dA,h (µ̂, µ)− Cross(h)

dA,h (µ̂, µ)
− 1

∣∣∣∣∣
≤ sup

h∈Hn

∣∣∣∣∣dA,h (µ̂, µ)

dA,h (µ̂, µ)
− 1

∣∣∣∣∣+ sup
h∈Hn

∣∣∣∣ Cross(h)

dA,h (µ̂, µ)

∣∣∣∣
= op(1), (53)

by Lemmas 3 and 4. Finally,∣∣∣∣∣ dA,h (µ̂, µ)

infh∈Hn dA,h (µ̂, µ)
− 1

∣∣∣∣∣ =

∣∣∣∣∣∣
CV (h) + Cross(h)−

(
dA,h (µ̂, µ)− dA,h (µ̂, µ)

)
infh∈Hn dA,h (µ̂, µ)

− 1

∣∣∣∣∣∣
≤

∣∣∣∣ CV (h)

infh∈Hn dA,h (µ̂, µ)
− 1

∣∣∣∣+ sup
h∈Hn

∣∣∣∣ Cross(h)

dA,h (µ̂, µ)

∣∣∣∣
+ sup
h∈Hn

∣∣∣∣∣dA,h (µ̂, µ)− dA,h (µ̂, µ)

dA,h (µ̂, µ)

∣∣∣∣∣
= op(1),

by Eq. (53) and Lemmas 3–4. Q.E.D.
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A.2 Proofs of Section 4

Proof of Lemma 5. Because of Lemma 1, we can write

sup
x∈C, ξ∈Ξn

∣∣∣∣σ̃2
ξ (x)

p̂ξ(x)

ps(x)
− σ̃2

ξ (x)

∣∣∣∣ = oa.s.(1)

and, thus, we can prove the statement in the lemma by replacing σ̃2
ξ (x) with ˜̃σ2

ξ(x) = σ̃2
ξ (x)

p̂ξ(x)
ps(x) and

σ2(x) with σ2∗(x) = σ2(x)
p̂ξ(x)
ps(x) . The result then follows from an analogous argument as that in the proof

of Lemma 2. Q.E.D.

Proof of Lemma 6. Let

dA,ξ
(
σ̃2, σ2

)
=

1

Tn(C)

n∑
j=2

(
σ̃2
ξ (Xj−1)− σ2(Xj−1)

)
1 {Xj−1 ∈ C} ,

dA,ξ
(
σ̃2, σ2

)
=

1

Tn(C)

n∑
j=2

(
σ̃2
ξ,j(Xj−1)− σ2(Xj−1)

)
1 {Xj−1 ∈ C} .

By a similar argument as that in the proof of Lemma 3,

sup
ξ∈Ξn

∣∣∣∣∣dA,ξ
(
σ̃2, σ2

)
− dA,ξ

(
σ̃2, σ2

)
dA,ξ (σ̃2, σ2)

∣∣∣∣∣ = op(1). (54)

Now,

C̃V (ξ) = dA,ξ
(
σ̃2, σ2

)
− 1

Tn(C)

n∑
j=2

(
σ2(Xj−1)

(
u2
j − 1

))2
1 {Xj−1 ∈ C}

− 2

Tn(C)

n∑
j=2

(
σ̃2
j,ξ(Xj−1)− σ2(Xj−1)

) (
σ2(Xj−1)

(
u2
j − 1

))
1 {Xj−1 ∈ C}

= dA,ξ
(
σ̃2, σ2

)
− 1

Tn(C)

n∑
j=2

(
σ2(Xj−1)

(
u2
j − 1

))2
1 {Xj−1 ∈ C}+ C̃ross(ξ), (55)

and, by a similar argument as that in the proof of Lemma 4,

sup
ξ∈Ξn

∣∣∣∣∣ C̃ross(ξ)

dA,ξ (σ̃2, σ2)

∣∣∣∣∣ = op(1).

The statement then follows from the proof of Theorem 1. Q.E.D.

Proof of Lemma 7. By the triangle inequality,

sup
x∈C

∣∣∣µ̂ĥn(x)− µ(x)
∣∣∣4 ≤ C (sup

x∈C

∣∣∣µ̂ĥn(x)− E
(
µ̂ĥn(x)

)∣∣∣4 + sup
x∈C

∣∣∣E(µ̂ĥn(x)
)
− µ(x)

∣∣∣4) .
Following the proof of Lemma 2, we have∣∣∣E(µ̂ĥn(x)− µ(x)

)∣∣∣ =

∣∣∣∣ 1

ps(x)

∫
K(u)

(
µ(x− ĥnu)− µ(x)

)
ps(x− ĥnu)du

∣∣∣∣ .
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Finally, using the limiting orders in Lemma 3.4 of Karlsen and Tjøstheim (2001),

sup
x∈C

∣∣∣µ̂ĥn(x)− E
(
µ̂ĥn(x)

)∣∣∣4 = Op

(
1

n2(β−ε)ĥ2
n

)
.

Then, by Lemma 2, we have

sup
x∈C

∣∣∣µ̂ĥn(x)− µ(x)
∣∣∣4 = O

(
sup
x∈C

b4C(x, ĥn)

)
+Op

(
1

n2(β−ε)ĥ2
n

)
= op

(
dA,ĥn (µ̂, µ)

)
.

Q.E.D.

Proof of Lemma 8. We need to show that the terms in Eqs. (17)-(23) are op
(
dA,ξ

(
σ̃2, σ2

))
uniformly

in ξ. We begin with Eq. (17). Because of Lemma 1, we replace the density estimator in the denominators

with the true density. Hence, uniformly in ξ ∈ Ξn, we have

σ̂2
j,ξ(Xj−1)− σ̃2

j,ξ(Xj−1)

=

 1

Tnξ

n∑
i 6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)(
µ̂ĥn(Xi−1)− µ(Xi−1)

)2

− 2

Tnξ

n∑
i6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)
σ(Xi−1)ui

(
µ̂ĥn(Xi−1)− µ(Xi−1)

) (1 + oa.s.(1)) .(56)

Neglecting the smaller order term,

1

Tn(C)

n∑
j=2

(
σ̂2
j,ξ (Xj−1)− σ̃2

j,ξ(Xj−1)
)2

1 {Xj−1 ∈ C}

=
1

Tn(C)

n∑
j=2

 1

Tnξ

n∑
i6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)(
µ̂ĥn(Xi−1)− µ(Xi−1)

)2

2

1 {Xj−1 ∈ C}

+
1

Tn(C)

n∑
j=2

 2

Tnξ

n∑
i 6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)
σ(Xi−1)ui

(
µ̂ĥn(Xi−1)− µ(Xi−1)

)2

1 {Xj−1 ∈ C}

− 2

Tn(C)

n∑
j=2

 1

Tnξ

n∑
i 6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)(
µ̂ĥn(Xi−1)− µ(Xi−1)

)2

× 2

Tnξ

n∑
i6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)
σ(Xi−1)ui

(
µ̂ĥn(Xi−1)− µ(Xi−1)

) 1 {Xj−1 ∈ C}

= A1n,ξ +B1n,ξ + C1n,ξ.

Now, write

A1n,ξ ≤ sup
x∈C

(
µ̂ĥn(Xi−1)− µ(Xi−1)

)4

Op(1) = op

(
dA,ĥn (µ̂, µ)

)
= op

(
inf
ξ∈Ξn

dA,ξ
(
σ̃2, σ2

))
,
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where the first equality follows from Lemma 7 and the last equality follows from Lemma 5. As for B1n,ξ,

write

B1n,ξ =
1

Tn(C)

n∑
j=2

 2

Tnξ

n∑
i 6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)
σ(Xi−1)ui

× 1

Tnĥn

n∑
k=1

1

ps(Xj−1)
K

(
Xk−1 −Xi−1

ĥn

)
σ(Xk−1)uk

)2

1 {Xj−1 ∈ C}

+
1

Tn(C)

n∑
j=2

 2

Tnξ

n∑
i 6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)
σ(Xi−1)ui

× 1

Tnĥn

n∑
k=1

1

ps(Xj−1)
K

(
Xk−1 −Xi−1

ĥn

)
(µ(Xk−1)− µ(Xi−1))

)2

1 {Xj−1 ∈ C}

+ cross term.

Now, B1n,ξ is of smaller probability order than Cross(h) as defined at the beginning of the proof of

Lemma 4. Hence, it is op (infh∈Hn dA,h (µ̂, µ)) = op
(
infξ∈Ξn dA,ξ

(
σ̃2, σ2

))
. Also, C1n,ξ = op

(
infξ∈Ξn dA,ξ

(
σ̃2, σ2

))
by Cauchy-Schwartz inequality. This proves that the term in Eq. (17) is op

(
infξ∈Ξn dA,ξ

(
σ̃2, σ2

))
. As

for the term in Eq. (18), given Lemma 7, we have

1

Tn(C)

n∑
j=2

((
σ2(Xj−1)− σ̃2

j,ξ(Xj−1)
) (
µ̂ĥn(Xj−1)− µ(Xj−1)

)2
)

1 {Xj−1 ∈ C}

≤

 1

Tn(C)

n∑
j=2

(
σ2(Xj−1)− σ̃2

j,ξ(Xj−1)
)2

1 {Xj−1 ∈ C}

1/2

×

 1

Tn(C)

n∑
j=2

(
µ̂ĥn(Xj−1)− µ(Xj−1)

)4

1 {Xj−1 ∈ C}

1/2

= Op

(√
dA,ξ (σ̃2, σ2)

)
sup
x∈C

(
µ̂ĥn(x)− µ(x)

)2

= op
(
dA,ξ

(
σ̃2, σ2

))
.
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Turning to Eq. (20),

1

Tn(C)

n∑
j=2

((
σ2(Xj−1)− σ̃2

j,ξ(Xj−1)
) (
σ̂2
j,ξ − σ̃2

j,ξ

))
1 {Xj−1 ∈ C}

≤

 1

Tn(C)

n∑
j=2

(
σ2(Xj−1)− σ̃2

j,ξ(Xj−1)
)2

1 {Xj−1 ∈ C}

1/2

×

 1

Tn(C)

n∑
j=2

(
σ̂2
j,ξ − σ̃2

j,ξ

)2
1 {Xj−1 ∈ C}

1/2

=
(
dA,ξ

(
σ̃2, σ2

))1/2
op

(√
dA,ξ (σ̃2, σ2)

)
= Op

(
dA,ξ

(
σ̃2, σ2

)1/2)
op

(√
dA,ξ (σ̃2, σ2)

)
,

where the last equality derives from Eq. (54). As for Eq. (22), recalling Lemma 7, we obtain

1

Tn(C)

n∑
j=2

((
σ̂2
j,ξ − σ̃2

j,ξ

) (
µ̂j,ĥn(Xj−1)− µ(Xj−1)

)2
)

1 {Xj−1 ∈ C}

≤

 1

Tn(C)

n∑
j=2

(
σ̂2
j,ξ − σ̃2

j,ξ

)2
1 {Xj−1 ∈ C}

1/2

×

 1

Tn(C)

n∑
j=2

(
µ̂j,ĥn(Xj−1)− µ(Xj−1)

)4

1 {Xj−1 ∈ C}

1/2

= op

(√
dA,ξ (σ̃2, σ2)

)
op

(√
dA,ĥn (µ̂, µ)

)
= op

(√
dA,ξ (σ̃2, σ2)

)
op

(√
inf
ξ∈Ξn

dA,ξ (σ̃2, σ2)

)
= op

(
dA,ξ

(
σ̃2, σ2

))
.
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We now turn to Eq. (21), which, given Eq. (56), writes as

2

Tn(C)

n∑
j=2

(
σ2(Xj−1)(u2

j − 1)
(
σ̂2
j,ξ(Xj−1)− σ̃2

j,ξ(Xj−1)
))

1 {Xj−1 ∈ C}

=
2

Tn(C)

n∑
j=2

(
σ2(Xj−1)(u2

j − 1) 1

Tnξ

n∑
i6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)(
µ̂ĥn(Xi−1)− µ(Xi−1)

)2

 1 {Xj−1 ∈ C}

+
2

Tn(C)

n∑
j=2

σ2(Xj−1)(u2
j − 1)

1

Tnξ

n∑
i6=j

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)
σ(Xi−1)ui

(
µ̂ĥn(Xi−1)− µ(Xi−1)

))
1 {Xj−1 ∈ C}

= In,ξ + IIn,ξ.

Now, using the split chain decomposition, we have

IIn,ξ =
2

Tn(C)

n∑
i 6=j

 1

Tnξ

n∑
j=2

1

ps(Xj−1)
K

(
Xi−1 −Xj−1

ξ

)
σ2(Xj−1)(u2

j − 1)σ(Xi−1)ui

(
µ̂ĥn(Xi−1)− µ(Xi−1)

)
1 {Xj−1 ∈ C}

)
=

2Tn
Tn(C)

1

T 2
n

Tn∑
k=1

Tn∑
k′=1

1

ξ

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,ik′ 6=jk

1

ps(Xjk−1)
K

(
Xik′−1 −Xjk−1

ξ

)
σ2(Xjk−1)(u2

jk
− 1)σ(Xik′−1)uik′

(
µ̂ĥn

(
Xik′−1

)
− µ

(
Xik′−1

))
1 {Xjk−1 ∈ C}

)
and

sup
ξ∈Ξn

E

((
IIn,ξ

dA,ξ (σ̃2, σ2)

)2κ
)

≤ sup
ξ∈Ξn

E

 supx∈C

(
µ̂ĥn(x)− µ(x)

)
dA,ξ (σ̃2, σ2)

 2Tn
Tn(C)

1

T 2
n

Tn∑
k=1

Tn∑
k′=1

1

ξ

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

1

ps(Xjk−1)

K

(
Xik′−1 −Xjk−1

ξ

)
σ2(Xj−1)(u2

j − 1)σ(Xi−1)ui

))
1 {Xj−1 ∈ C}

)2κ

= op(1),

since the term

2Tn
Tn(C)

1

T 2
n

Tn∑
k=1

Tn∑
k′=1

1

ξ

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

1

ps(Xjk−1)
K

(
Xik′−1 −Xjk−1

ξ

)
×

×σ2(Xj−1)(u2
j − 1)σ(Xi−1)ui
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is of the same order as An,h in the proof of that Lemma 4 and

sup
x∈C

(
µ̂ĥn(x)− µ(x)

)
= op

((
dA,ĥn (µ̂, µ)

)1/4
)

by Lemma 7. As for In,ξ, we have

In,ξ =
2Tn
Tn(C)

1

T 2
n

Tn∑
k=1

Tn∑
k′=1

1

ξ

τk∑
jk=τk−1+1

τk′∑
ik′=τk′−1+1,i′k 6=jk

1

ps(Xjk−1)
K

(
Xik′−1 −Xjk−1

ξ

)

σ2(Xjk)(u2
jk
− 1)

(
µ̂ĥn(Xik′−1)− µ(Xik′−1)

)2

1 {Xjk−1 ∈ C}
)

= op(IIn,ξ)

because of Lemma 7. The terms in Eq. (19) and in Eq. (23) are op
(
dA,ξ

(
σ̃2, σ2

))
by a similar argument.

Q.E.D.

Proof of Theorem 2.

CV (ξ) = C̃V (ξ) +
1

Tn(C)

n∑
j=2

(
σ2(Xj−1)

(
u2
j − 1

))2
1 {Xj−1 ∈ C}

= CV (ξ) + Êrror(ξ) + Êrror +
1

Tn(C)

n∑
j=2

(
σ2(Xj−1)

(
u2
j − 1

))2
1 {Xj−1 ∈ C}

= CV (ξ) + Êrror(ξ),

where Êrror denotes the first five terms in Eq. (16). We can write

ξ = arg min
ξ
CV (ξ)

a.s.
= arg min

ξ
CV (ξ).

For C̃ross(ξ) defined as in Eq. (55), we have∣∣∣∣∣ CV (ξ)

infξ∈Ξn dA,ξ (σ̃2, σ2)
− 1

∣∣∣∣∣ = sup
ξ∈Ξn

∣∣∣∣∣∣dA,ξ
(
σ̃2, σ2

)
+ Êrror(ξ)− C̃ross(ξ)

dA,ξ (σ̃2, σ2)
− 1

∣∣∣∣∣∣
≤ sup
ξ∈Ξn

∣∣∣∣∣dA,ξ
(
σ̃2, σ2

)
dA,ξ (σ̃2, σ2)

− 1

∣∣∣∣∣+ sup
ξ∈Ξn

∣∣∣∣∣ C̃ross(ξ)

dA,ξ (σ̃2, σ2)

∣∣∣∣∣+ sup
ξ∈Ξn

∣∣∣∣∣ Êrror(ξ)

dA,ξ (σ̃2, σ2)

∣∣∣∣∣
= op (1) (57)

by the results in the proofs of Lemma 6 and Lemma 8. Now, write∣∣∣∣∣ dA,ξ
(
σ̃2, σ2

)
infξ∈Ξn dA,ξ (σ̃2, σ2)

− 1

∣∣∣∣∣
=

∣∣∣∣∣∣
CV (ξ) + C̃ross(ξ)−

(
dA,ξ

(
σ̃2, σ2

)
− dA,ξ

(
σ̃2, σ2

))
infξ∈Ξn dA,ξ (σ̃2, σ2)

− 1

∣∣∣∣∣∣
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=

∣∣∣∣∣∣
CV (ξ)− Êrror(ξ) + C̃ross(ξ)−

(
dA,ξ

(
σ̃2, σ2

)
− dA,ξ

(
σ̃2, σ2

))
infξ∈Ξn dA,ξ (σ̃2, σ2)

− 1

∣∣∣∣∣∣
≤

∣∣∣∣∣ CV (ξ)

infξ∈Ξn dA,ξ (σ̃2, σ2)
− 1

∣∣∣∣∣+ sup
ξ∈Ξn

∣∣∣∣∣ Êrror(ξ)

dA,ξ (σ̃2, σ2)

∣∣∣∣∣
+ sup
ξ∈Ξn

∣∣∣∣∣ C̃ross(ξ)

dA,ξ (σ̃2, σ2)

∣∣∣∣∣+ sup
ξ∈Ξn

∣∣∣∣∣dA,ξ
(
σ̃2, σ2

)
− dA,ξ

(
σ̃2, σ2

)
dA,ξ (σ̃2, σ2)

∣∣∣∣∣
= op (1) ,

by Eq. (57). Q.E.D.
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linear autoregression

nonparametric OLS

T ρ bias stdev RMSE bias stdev RMSE

200 0.1 0.161 0.249 0.203 0.014 0.174 0.121

0.5 0.215 0.323 0.264 0.003 0.153 0.109

0.9 0.157 0.297 0.199 0.009 0.088 0.054

0.99 0.104 0.822 0.267 0.012 0.050 0.021

1 0.150 1.185 0.372 0.010 0.045 0.015

500 0.1 0.126 0.186 0.151 0.001 0.113 0.078

0.5 0.150 0.227 0.186 0.001 0.096 0.068

0.9 0.095 0.159 0.118 0.005 0.051 0.033

0.99 0.048 0.387 0.156 0.004 0.022 0.011

1 0.072 0.980 0.252 0.004 0.016 0.006

1, 000 0.1 0.095 0.142 0.118 0.004 0.081 0.057

0.5 0.108 0.174 0.137 0.001 0.070 0.047

0.9 0.065 0.114 0.086 0.004 0.035 0.023

0.99 0.025 0.167 0.105 0.002 0.013 0.008

1 0.046 0.842 0.200 0.002 0.008 0.003

Table 1: Linear autoregression: bias, standard deviation (“stdev”), and root mean-square

error (“RMSE”) of estimates of µ(x), averaged over a grid x-values. “CV” denotes the

nonparametric estimator using the cross-validated bandwidth and “OLS” the standard

linear least-squares estimator.
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Figure 1: Cross-validation objective function (solid line) together with the selected band-

width (dashed line), both averaged over all Monte Carlo samples, for T = 500 and ρ = 0.9.
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Figure 2: Estimated regression functions together with pointwise empirical confidence

intervals. “np” refers to the nonparametric estimator with the cross-validated bandwidth

and “OLS” to the linear least-squares estimator, each averaged over all Monte Carlo

samples, for T = 500 and ρ = 0.9.
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nonlinear autoregression

nonparametric OLS

T ρ bias stdev RMSE bias stdev RMSE

200 0.1 0.016 0.114 0.066 0.022 0.105 0.075

0.5 0.059 0.127 0.087 0.129 0.106 0.130

0.9 0.095 0.139 0.116 0.243 0.111 0.243

0.99 0.101 0.142 0.123 0.263 0.113 0.263

1 0.102 0.143 0.123 0.265 0.113 0.265

500 0.1 0.012 0.074 0.044 0.023 0.068 0.050

0.5 0.048 0.088 0.067 0.123 0.069 0.123

0.9 0.065 0.107 0.088 0.241 0.072 0.241

0.99 0.066 0.111 0.088 0.267 0.073 0.267

1 0.066 0.111 0.088 0.269 0.073 0.269

1, 000 0.1 0.014 0.051 0.030 0.024 0.049 0.038

0.5 0.044 0.066 0.057 0.124 0.049 0.124

0.9 0.056 0.089 0.069 0.241 0.052 0.241

0.99 0.057 0.086 0.070 0.266 0.052 0.266

1 0.057 0.086 0.070 0.268 0.052 0.268

Table 2: Nonlinear autoregression: bias, standard deviation (“stdev”), and root mean-

square error (“RMSE”) of estimates of µ(x), averaged over a grid x-values. “CV” denotes

the nonparametric estimator using the cross-validated bandwidth and “OLS” the standard

linear least-squares estimator.
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linear cointegrating regression

nonparametric OLS

T ρ bias stdev RMSE bias stdev RMSE

200 0.1 0.269 0.534 0.397 0.005 0.180 0.128

0.5 0.219 0.424 0.311 0.002 0.155 0.110

0.9 0.107 0.242 0.165 0.001 0.084 0.054

0.99 0.058 0.603 0.197 0.000 0.038 0.023

1 0.104 0.823 0.262 0.000 0.030 0.016

500 0.1 0.200 0.347 0.281 0.001 0.114 0.079

0.5 0.143 0.271 0.205 0.000 0.101 0.070

0.9 0.070 0.147 0.104 0.003 0.050 0.032

0.99 0.031 0.272 0.123 0.001 0.020 0.012

1 0.059 0.703 0.180 0.000 0.011 0.006

1, 000 0.1 0.147 0.271 0.209 0.005 0.080 0.055

0.5 0.127 0.197 0.166 0.003 0.067 0.046

0.9 0.058 0.103 0.082 0.002 0.034 0.024

0.99 0.017 0.128 0.083 0.002 0.012 0.007

1 0.033 0.610 0.149 0.000 0.006 0.003

Table 3: Linear cointegrating regression: bias, standard deviation (“stdev”), and root

mean-square error (“RMSE”) of estimates of µ(x), averaged over a grid x-values. “CV”

denotes the nonparametric estimator using the cross-validated bandwidth and “OLS” the

standard linear least-squares estimator.
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nonlinear cointegrating regression

nonparametric OLS

T ρ bias stdev RMSE bias stdev RMSE

200 0.1 0.069 0.178 0.132 0.724 0.044 0.724

0.5 0.070 0.190 0.133 0.728 0.039 0.728

0.9 0.114 0.234 0.174 0.731 0.021 0.731

0.99 0.154 0.416 0.263 0.731 0.010 0.731

1 0.193 0.521 0.324 0.731 0.007 0.731

500 0.1 0.046 0.118 0.084 0.722 0.029 0.722

0.5 0.051 0.122 0.093 0.729 0.025 0.729

0.9 0.058 0.158 0.112 0.730 0.012 0.730

0.99 0.099 0.262 0.181 0.731 0.005 0.731

1 0.141 0.461 0.257 0.731 0.003 0.731

1, 000 0.1 0.029 0.091 0.065 0.724 0.019 0.724

0.5 0.036 0.095 0.070 0.730 0.017 0.730

0.9 0.046 0.121 0.091 0.731 0.008 0.731

0.99 0.064 0.194 0.138 0.731 0.003 0.731

1 0.108 0.418 0.213 0.731 0.001 0.731

Table 4: Nonlinear cointegrating regression: bias, standard deviation (“stdev”), and root

mean-square error (“RMSE”) of estimates of µ(x), averaged over a grid x-values. “CV”

denotes the nonparametric estimator using the cross-validated bandwidth and “OLS” the

standard linear least-squares estimator.

55



100 200 300 400 500 600

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

NYSE (h=1)

100 200 300 400 500 600

−0.4

−0.2

0

0.2

0.4

0.6

NYSE (h=36)

100 200 300 400 500 600
−0.5

0

0.5

1
NYSE (h=60)

100 200 300 400 500 600

0.02

0.03

0.04

0.05

0.06

0.07

dividend yield

Figure 3: NYSE and dividend yield sample.
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γ = 1 γ = 5 γ = 10

τ = 1 0.0021 0.0012 0.0011

τ = 36 0.0619 0.0343 0.0309

τ = 60 0.0422 0.0179 0.0148

Table 5: Annualized fee ∆.
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Figure 4: CV criterion functions.
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Figure 5: Nonparametric (“np”) estimates µ̂ĥ1,n(x) and σ̂ĥ2,n(x) of µ(x) and σ(x) compared

to linear least-squares (“OLS”) estimates.
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Figure 6: Scatter plots of squared de-meaned excess returns against the dividend-price

ratio Xt, together with OLS regression fit.
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Figure 7: Difference of nonlinear and linear investors’ realized utilities over time for

γ = 10.
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