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Abstract

This paper surveys some of the recent literature on inference in partially identified models.

After reviewing some basic concepts, including the definition of a partially identified model and

the identified set, we turn our attention to the construction of confidence regions in partially

identified settings. In our discussion, we emphasize the importance of requiring confidence

regions to be uniformly consistent in level over relevant classes of distributions. Due to space

limitations, our survey is mainly limited to the class of partially identified models in which the

identified set is characterized by a finite number of moment inequalities or the closely related

class of partially identified models in which the identified set is a function of a such a set. The

latter class of models most commonly arise when interest focuses on a subvector of a vector-

valued parameter, whose values are limited by a finite number of moment inequalities. We then

rapidly review some important parts of the broader literature on inference in partially identified

models and conclude by providing some thoughts on fruitful directions for future research.

KEYWORDS: Partially Identified Model, Confidence Regions, Uniform Asymptotic Validity, Mo-
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1 Introduction

A partially identified model is a model in which the parameter of interest is not uniquely determined

by the distribution of the observed data. Instead, as we will explain further below, the parameter of

interest is only limited by the distribution of the observed data to a set of possible values, commonly

referred to as the identified set. Such models have a surprisingly long history: early contributions

include the analysis of linear regressions with mismeasured regressors by Frisch (1934) and the

analysis of Cobb-Douglas production functions by Marschak and Andrews (1944). Now, partially

identified models are common in virtually all parts of economics and econometrics: measurement

error (Klepper and Leamer, 1984; Horowitz and Manski, 1995), missing data (Manski, 1989, 1994;

Horowitz and Manski, 1998; Manski and Tamer, 2002), industrial organization (Tamer, 2003; Haile

and Tamer, 2003; Ho and Pakes, 2014; Pakes et al., 2015), finance (Hansen and Jagannathan, 1991;

Hansen et al., 1995), labor economics (Blundell et al., 2007; Kline et al., 2013; Kline and Tartari,

2015), program evaluation (Manski, 1990, 1997; Manski and Pepper, 2000; Heckman and Vytlacil,

2001; Bhattacharya et al., 2008, 2012; Shaikh and Vytlacil, 2011), and macroeconomics (Faust,

1998; Canova and De Nicolo, 2002; Uhlig, 2005). The references above are far from exhaustive and

simply illustrate the widespread popularity these types of models now enjoy in economics. A more

detailed account of this history and further references are provided in the excellent summary in

Tamer (2012) as well as the accompanying paper in this volume by Ho and Rosen (2016). The rise

in the popularity of such models is in no small part due to the advocacy of Charles Manski, who, in

a series of books and articles, argued forcefully that partially identified models enable researchers

to make more credible inferences by allowing them to relax untenable assumptions used to obtain

identification. In addition to aforementioned references, see the book-length treatments in Manski

(1995, 2003, 2007, 2013).

In the remainder of this paper, we do not discuss further any examples of partially identified

models. Instead, we focus on the problem of conducting inference in such models. Following the

literature on this topic, we focus further on the construction of confidence regions in partially

identified models. To facilitate our discussion, we begin in Section 2 by defining the notion of a

partially identified model and the identified set for a parameter of interest more formally. Using the

notation developed in that section, we then discuss in Section 3 two different generalizations of the

usual notion of a confidence region in identified settings to partially identified settings – confidence

regions for points in the identified set and confidence regions for the identified set itself. In order to
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keep our discussion of a manageable length, we subsequently restrict attention to confidence regions

for points in the identified set, which have thus far received the most attention in the literature,

but note that both types of confidence regions may be of interest. Our discussion emphasizes

the importance of requiring confidence regions to have asymptotic validity that holds uniformly

(in the distribution of the observed data) over relevant sets of distributions. As noted by Imbens

and Manski (2004), in partially identified settings, näıve constructions of confidence regions may

have asymptotic validity that only holds pointwise (in the distribution of the observed data) over

relevant classes of distributions. These confidence regions may, as a consequence, behave poorly

in finite samples. In our discussion, we illustrate this phenomenon by means of a simple example

adapted from Imbens and Manski (2004).

In Section 4, we turn our attention to specific methods for constructing confidence regions for

points in the identified set in a large class of partially identified models. The class of models we

consider is the one in which the identified set is defined by (a finite number of) moment inequalities.

Such models have numerous applications, including many of those referenced above. Several differ-

ent approaches to inference in such models have been developed. Following our discussion above,

we limit attention to those that exhibit uniformly asymptotic validity over a large set of relevant

distributions for the observed data. Along the way, we highlight some closely related results in

the context of a Gaussian setting that shed light on the finite-sample properties of some of these

approaches. We then discuss in Section 5 recently developed methods for inference in the closely

related class of partially identified models in which the identified set is a function of a set defined

by (a finite number of) moment inequalities. Such models most commonly arise when interest fo-

cuses on a subvector of a vector-valued parameter, whose values are limited by (a finite number of)

moment inequalities, so we again limit our discussion to this leading special case. A distinguishing

feature of our discussion in these two sections is the use of common notation throughout so as to

make both the differences and similarities between the various approaches transparent.

The material described above is, of course, only a small subset of the ever-expanding liter-

ature on inference in partially identified models. In Section 6, we very briefly highlight several

important strands of this literature that, as a consequence of space constraints, we are unable to

include in greater detail – the literatures on “many” moment inequalities, conditional moment in-

equalities, random set-theoretic approaches to inference in partially identified models, and Bayesian

approaches to inference in partially identified models. Finally, in Section 7, we conclude by provid-
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ing some thoughts on fruitful directions for future research.

2 Partially Identified Models

In order to define the notion of a partially identified model more formally, suppose that a researcher

observes data with distribution P ∈ P ≡ {Pγ : γ ∈ Γ}. The set P, consisting of distributions

completely characterized by the (possibly infinite-dimensional) parameter γ, constitutes the model

for the distribution of the observed data. In this notation, the identified set for γ is defined to be

Γ0(P ) ≡ {γ ∈ Γ : Pγ = P} .

In most cases, however, the researcher is not interested in γ itself, but rather a function of γ, say

θ = θ(γ). The identified set for θ is simply defined to be

Θ0(P ) ≡ θ(Γ0(P )) = {θ(γ) : γ ∈ Γ0(P )} . (1)

If Θ0(P ) is a singleton for all P ∈ P, then, similar to Matzkin (2007), the parameter θ is said

to be identified (relative to P); if Θ0(P ) = Θ for all P ∈ P, then the parameter θ is said to be

unidentified (relative to P); otherwise, θ is said to be partially identified.

While not essential for much of our discussion, in the remainder of the paper, we assume that

the observed data consists of n i.i.d. observations Wi, i = 1, . . . , n and that P denotes the common

(marginal) distribution of these observations (rather than the joint distribution of the observations).

Remark 2.1. The identified set for θ defined in (1) is by construction “sharp” in the sense that

each possible value for θ in the identified set is in fact compatible with the distribution of the

observed data, i.e., for each value of θ ∈ Θ0(P ) there exists γ ∈ Γ with Pγ = P and θ(γ) = θ. This

terminology is sometimes used in the literature in order to draw a distinction with “non-sharp”

sets Θ̃0(P ) that only satisfy Θ̃0(P ) ⊇ Θ0(P ) for all P ∈ P. These larger sets may still be useful

when it is difficult to characterize Θ0(P ) directly, but obviously do not exhaust all restrictions on

θ in the model P.

Remark 2.2. To help make some of these abstract ideas more concrete, it is useful to describe
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them in the context of the familiar linear model. To this end, suppose

Y = θ′X + ε . (2)

Here, the distribution of the observed data, P , is the distribution of (Y,X). The model for the

distribution of the observed data, P, consists of distributions Pγ for (Y,X) specified by γ =

(θ, PX,ε) ∈ Γ, where PX,ε is a possible distribution for (X, ε), and (2). Often Γ is restricted so

that EPγ [εX] = 0 and EPγ [XX ′] is nonsingular for each γ ∈ Γ. Under these assumptions, γ is

identified (relative to P). In particular, as is well known, θ = θ(γ) is identified (relative to P)

because it may be expressed as θ(γ) = EPγ [XX ′]−1EPγ [XY ], which clearly does not vary over the

set Γ0(P ). Incidentally, in this case, γ is also identified (relative to P).

3 Types of Confidence Regions

The literature on inference in partially identified models has largely focused on the construction

of confidence regions, which here we denote by Cn. Some exceptions include Manski (2007) and

Manski (2013), which have instead treated the problem from a decision-theoretic perspective. Two

distinct notions of confidence regions have been proposed in the literature. The first notion requires

that the random set Cn covers each point in the identified set with some pre-specified probability

1− α, i.e.,

lim inf
n→∞

inf
P∈P

inf
θ∈Θ0(P )

P{θ ∈ Cn} ≥ 1− α . (3)

For convenience, we henceforth refer to such confidence regions as confidence regions for points

in the identified set that are uniformly consistent in level (over P ∈ P and θ ∈ Θ0(P )). Such

confidence regions have also been referred to as confidence regions for identifiable parameters that

are uniformly consistent in level, as in Romano and Shaikh (2008). The second notion requires that

the random set Cn covers the entire identified set with some pre-specified probability 1− α, i.e.,

lim inf
n→∞

inf
P∈P

P{Θ0(P ) ⊆ Cn} ≥ 1− α . (4)

For convenience, we henceforth refer to such confidence regions as confidence regions for the iden-

tified set that are uniformly consistent in level (over P ∈ P), as in Romano and Shaikh (2010).
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Importantly, when θ is identified (relative to P), then both (3) and (4) reduce to

lim inf
n→∞

inf
P∈P

P{θ0(P ) ∈ Cn} ≥ 1− α ,

where θ0(P ) is such that Θ0(P ) = {θ0(P )} for all P ∈ P. In this sense, both (3) and (4) generalize

the usual notion of a confidence region for parameters that are identified.

As emphasized by Imbens and Manski (2004), confidence region satisfying (4) of course satisfy

(3) as well, so confidence regions for points in the identified set are typically smaller than confidence

regions for the identified set. Imbens and Manski (2004) argue further that confidence regions for

points in the identified set are generally of greater interest than confidence regions for the identified

set itself, as there is still only one “true” value for θ in the identified set. Other authors, however,

have argued that in some instances confidence regions for the identified set are more desirable.

See, for example, Henry and Onatski (2012). Nevertheless, in this review, we focus on confidence

regions satisfying (3), which are the type that have received the most attention in the literature

on inference in partially identified models. Notable exceptions include Chernozhukov et al. (2007),

Bugni (2010), and Romano and Shaikh (2010).

Confidence regions satisfying (3) can be constructed by exploiting the well-known duality be-

tween confidence regions and inverting tests of each of the individual null hypotheses

Hθ : θ ∈ Θ0(P ) (5)

versus the unrestricted alternative hypothesis that control appropriately the usual probability of a

Type 1 error at level α ∈ (0, 1). More specifically, suppose that for each θ a test of Hθ, φn(θ), is

available that satisfies

lim sup
n→∞

sup
P∈P

sup
θ∈Θ0(P )

EP [φn(θ)] ≤ α . (6)

It follows that Cn equal to the set of θ ∈ Θ for which Hθ is accepted satisfies (3).

Confidence regions satisfying (4) can also be constructed using the duality between hypothesis

testing and constructing confidence regions. However, in this case the tests φn(θ) for the family

of null hypotheses Hθ indexed by θ ∈ Θ are required to control appropriately the familywise error

rate, i.e., the probability of even one false rejection under P . See Romano and Shaikh (2010) for

further details.
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3.1 Uniform vs. Pointwise Consistency in Level

The terminology introduced above for confidence regions satisfying (3) and (4) is intended to

distinguish them, respectively, from confidence regions for points in the identified set that are

pointwise consistent in level (over P ∈ P and θ ∈ Θ0(P )), i.e., those only satisfying

lim inf
n→∞

P{θ ∈ Cn} ≥ 1− α for all P ∈ P and θ ∈ Θ0(P ) , (7)

and confidence regions for the identified set that are pointwise consistent in level (over P ∈ P), i.e.,

those only satisfying

lim inf
n→∞

P{Θ0(P ) ⊆ Cn} ≥ 1− α for all P ∈ P . (8)

For confidence regions only satisfying (7), the probability of covering some points in the identified

set may be too small under certain distributions P ∈ P even for arbitrarily large sample sizes.

Indeed, the requirement (7) by itself does not even rule out, for example, that for arbitrarily large

values of n and every ε > 0, there is P = P (n, ε) ∈ P and θ = θ(ε, n) ∈ Θ0(P ) such that

P{θ ∈ Cn} < ε .

In this sense, inferences based off of confidence regions only satisfying (7) may be very misleading in

finite samples. Analogous statements apply to confidence regions that only satisfy (8). These types

of behavior are prohibited for confidence regions satisfying the stronger coverage requirements (3)

and (4).

In many well-behaved problems, the distinction between confidence regions that are uniformly

consistent in level and confidence regions that are pointwise consistent in level is entirely a tech-

nical issue: most constructions of confidence regions that are pointwise consistent in level are also

uniformly consistent in level provided, for example, that P is assumed to satisfy some additional

moment restrictions. In the case of confidence regions for the mean with i.i.d. data, for instance,

the usual constructions are uniformly consistent in level provided that P satisfies a weak uniform

integrability condition instead of simply requiring that a second moment exist. For further discus-

sion, see Bahadur and Savage (1956) and Romano (2004). In less well-behaved problems, however,

such as inference in partially identified models, the distinction between confidence regions that are

pointwise consistent in level versus those that are uniformly consistent in level is less trivial: some
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seemingly natural constructions may only achieve uniform consistency in level by restricting P in

ways that rule out relevant distributions. Before proceeding, we illustrate this point in the context

of a simple example.

Example 3.1. Let Wi = (Li, Ui), i = 1, . . . , n be an i.i.d. sequence of random variables with

distribution P ∈ P on R2. For ease of exposition, we assume that

P = {N(µ,Σ) : µ = (µL, µU ) ∈ R2 with µL < µU} ,

where Σ is a known covariance matrix with unit variances. The identified set for the parameter of

interest θ is assumed to be

Θ0(P ) = [µL(P ), µU (P )] .

Consider the confidence region

Cn =

[
L̄n −

z1−α√
n
, Ūn +

z1−α√
n

]
, (9)

where L̄n and Ūn denote sample averages of Li, i = 1, . . . , n and Ui, i = 1, . . . , n, respectively. It

follows that

P{θ ∈ Cn} = Φ(z1−α +
√
n(µU (P )− θ))− Φ(−z1−α −

√
n(θ − µL(P )))

for any P ∈ P and θ ∈ Θ0(P ), where Φ is the standard normal c.d.f. and z1−α = Φ−1(1−α). From

this expression, it is straightforward to verify that Cn satisfies (7). However, it is also clear that

inf
P∈P

inf
θ∈Θ0(P )

P{θ ∈ Cn} = 1− 2α < 1− α , (10)

so Cn fails to satisfy (3). In other words, for every n, there exists P and θ ∈ Θ0(P ) (with µL(P ) and

µU (P ) close enough together relative to n) under which P{θ ∈ Cn} ≈ 1−2α. Here, by close enough

together relative to n we mean that
√
n(µU (P ) − µL(P )) is small. Importantly, this requirement

depends on both n and µU (P ) − µL(P ). In particular, even if one were willing to assume further

that

inf
P∈P

µU (P )− µL(P ) = ∆ > 0 ,

the sample size required for the approximation to be “good” will still diverge as ∆→ 0.
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Remark 3.1. Imbens and Manski (2004) first highlighted the point made in Example 3.1 in the

context of a closely related missing data example. In their setting, Wi = (XiZi, Zi), i = 1, . . . , n is

an i.i.d. sequence of random variables with distribution P ∈ P on [0, 1]×{0, 1}. Because Xi is only

observed if Zi = 1, the setting is a simple example of missing data. The parameter of interest is

θ = θ(Q) ≡ EQ[Xi] ,

where Q is the distribution of (Xi, Zi). Using the fact that

XiZi ≤ Xi ≤ XiZi + 1− Zi ,

it is straightforward to show that the identified set for θ is given by

Θ0(P ) = [EP [XiZi], EP [XiZi + 1− Zi]] .

By arguing as in Example 3.1, it is possible to show that the natural counterpart to Cn in (9)

satisfies both (7) and (10) provided that

inf
P∈P

P{Zi = 1} = 0 ,

i.e., the case in which (nearly) all the data is observed is not a priori ruled out.

4 Inference for Moment Inequalities

In this section, we review several approaches that have been proposed in the literature for inference

in models in which the identified set for θ is defined by moment inequalities, i.e.,

Θ0(P ) = {θ ∈ Θ : EP [m(Wi, θ)] ≤ 0} . (11)

Here, m is a function taking values in Rk and the inequality is interpreted component-wise. We

focus on the construction of confidence regions satisfying (3). As explained in Section 3, such

confidence regions may be constructed by inverting tests of the null hypotheses (5) in a way that
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satisfies (6). In the setting considered here, these null hypotheses may be written as

Hθ : EP [m(Wi, θ)] ≤ 0 . (12)

A variety of different tests for (12) have been proposed in the literature. In order to describe

these tests succinctly, it is useful to introduce some common notation. To this end, define

µ(θ, P ) = EP [m(Wi, θ)]

Ω(θ, P ) = CorrP [m(Wi, θ)]

D(θ, P ) = diag(σj(θ, P ) : 1 ≤ j ≤ k) ,

where

σ2
j (θ, P ) = VarP [mj(Wi, θ)]

for mj(Wi, θ) equal to the jth component of m(Wi, θ). Similarly, define

m̄n(θ) = µ(θ, P̂n)

Ω̂n(θ) = Ω(θ, P̂n)

D̂n(θ) = D(θ, P̂n) ,

where P̂n is the empirical distribution of Wi, i = 1, . . . , n.

All of the tests we discuss below reject Hθ for large values a test statistic

Tn(θ) ≡ T (D̂−1
n (θ)

√
nm̄n(θ), Ω̂n(θ)) , (13)

where T is a real-valued function that is weakly increasing in each component of its first argument,

continuous in both arguments, and satisfies some additional conditions that mainly control how T

behaves when some of the components of its first argument are very large in magnitude and negative.

See, for example, Andrews and Soares (2010) for a detailed description of these conditions. Some

common examples of statistics satisfying all of the required conditions are the modified method of
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moments, maximum, and adjusted quasi-likelihood ratio statistics, given by

Tmmm
n (θ) =

∑
1≤j≤k

max

{√
nm̄n,j(θ)

σ̂n,j(θ)
, 0

}2

(14)

Tmax
n (θ) = max

{
max

1≤j≤k

√
nm̄n,j(θ)

σ̂n,j(θ)
, 0

}
(15)

T ad,qlr
n (θ) = inf

t∈Rk:t≤0

(
D̂−1
n (θ)

√
nm̄n(θ)− t

)′
Ω̃n(θ)−1

(
D̂−1
n (θ)

√
nm̄n(θ)− t

)
, (16)

where m̄n,j(θ) equals the jth component of m̄n(θ), σ̂n,j(θ) ≡ σj(θ, P̂n), and

Ω̃n(θ) = max{ε− det(Ω̂n(θ)), 0}Ik + Ω̂n(θ)

for some fixed ε > 0, with Ik denoting the k-dimensional identity matrix. The adjustment referred

to in the adjusted quasi-likelihood ratio statistic refers to use of Ω̃n(θ) instead of Ω̂n(θ). The use

of this modification stems from the desire to accommodate situations in which Ω(θ, P ) is (nearly)

singular. In the example described in Remark 3.1, this situation arises naturally when the identified

set is (nearly) a singleton.

In order to describe different ways of constructing critical values with which to compare Tn(θ),

it is useful to introduce

Jn(x, s(θ), θ, P ) = P{T (D̂−1
n (θ)

√
n(m̄n(θ)− µ(θ, P )) + D̂−1

n (θ)s(θ), Ω̂n(θ)) ≤ x} . (17)

In terms of (17), the distribution of Tn(θ) itself is simply

Jn(x,
√
nµ(θ, P ), θ, P ) = P{T (D̂−1

n (θ)
√
nm̄n(θ), Ω̂n(θ)) ≤ x} . (18)

It is straightforward to derive useful estimators of (17) for a fixed value of s(θ). For example,

one may use the usual nonparametric bootstrap estimator, Jn(x, s(θ), θ, P̂n), or the estimator

Jn(x, s(θ), θ, P̃n(θ)), where m(Wi, θ) ∼ N(m̄n(θ), Σ̂n(θ)) under P̃n(θ). On the other hand, it is

difficult to derive useful estimators of (18) because it is not possible to estimate
√
nµ(θ, P ) consis-

tently. Indeed, its natural estimator,
√
nm̄n(θ), satisfies

|
√
nm̄n(θ)−

√
nµ(θ, P )| d→ |N(0,Σ(θ, P ))|

11



under any fixed θ ∈ Θ0(P ) and P ∈ P, where Σ(θ, P ) = VarP [m(Wi, θ)]. The different tests we

discuss below are mainly distinguished by the way in which they circumvent this difficulty.

Remark 4.1. Even though the first-order or even higher-order asymptotic properties of the tests

described below do not depend on whether Jn(x, s(θ), θ, P̂n) or Jn(x, s(θ), θ, P̃n(θ)) is used as an

estimator of (17), Andrews and Barwick (2012) find in a simulation study that Jn(x, s(θ), θ, P̂n)

appears to yield some improvements in finite samples over Jn(x, s(θ), θ, P̃n(θ)) in terms of power.

On the other hand, our experience suggests it is much faster to compute Jn(x, s(θ), θ, P̃n(θ))

than Jn(x, s(θ), θ, P̂n), so, depending on the scale of the problem, it may be convenient to use

Jn(x, s(θ), θ, P̃n(θ)) instead of Jn(x, s(θ), θ, P̂n).

Remark 4.2. Note that moment equalities may be included Θ0(P ) defined in (11) simply by

including both the moment and the negative of the moment as components of m. Doing so,

of course, imposes very strong dependence between the corresponding components of m, but it

does not affect the validity of the inferential methods discussed below, as none of them impose

any restrictions on Ω(θ, P ). However, in some cases, it may be possible to further improve the

procedure by exploiting this additional structure. See, for example, Remark 4.10 below.

Remark 4.3. With an appropriate choice of m, the identified set in Example 3.1 may be written

in the form given in (11). In particular, it suffices to choose

m(Wi, θ) =

 Li − θ

θ − Ui

 .

Many other examples of partially identified models can also be accommodated in this framework.

See, for example, the discussion of entry models in Ho and Rosen (2016).

4.1 Five Methods for Inference for Moment Inequalities

In this section, we describe five different tests for (12). Each of these tests satisfy (6) provided that

the following uniform integrability requirement holds:

lim sup
t→∞

sup
P∈P

sup
θ∈Θ0(P )

EP

[(
mj(Wi, θ)− µ(θ, P )

σj(θ, P )

)2

I

{
mj(Wi, θ)− µ(θ, P )

σj(θ, P )
> t

}]
= 0 . (19)
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Note that a sufficient condition for (19) is that

sup
P∈P

sup
θ∈Θ0(P )

EP

[(
mj(Wi, θ)− µ(θ, P )

σj(θ, P )

)2+δ
]
<∞

for some δ > 0. This mildly stronger condition has been used in much of the literature in order to

achieve uniform consistency in level.

4.1.1 Least Favorable Tests

Least favorable tests are based off of the following observation: since T is increasing in each

component of its first argument and
√
nµ(θ, P ) ≤ 0

for any θ and P such that θ ∈ Θ0(P ),

J−1
n (1− α,

√
nµ(θ, P ), θ, P ) ≤ J−1

n (1− α, 0k, θ, P ) ,

where 0k is a k-dimensional vector of zeros. In this sense, 0k is the least favorable value of the

nuisance parameter
√
nµ(θ, P ). It follows that least favorable tests of the form

φlf
n(θ) ≡ I{Tn(θ) > Ĵ−1

n (1− α, 0k, θ)} ,

where Ĵn(x, 0k, θ) equals either Jn(x, 0k, θ, P̂n) or Jn(x, 0k, θ, P̃n(θ)), satisfy (6). Such tests or closely

related ones have a long history in the statistics and econometrics literature. See, for example, Kudo

(1963), Wolak (1987) and Wolak (1991). For inference in partially identified models, their use has

been proposed, for example, by Rosen (2008) and Andrews and Guggenberger (2009).

Such tests are often regarded as being “conservative” in that they compute the critical value

under the assumption that all moments are “binding,” i.e., µ(θ, P ) = 0. It is therefore worth

highlighting the fact that the tests corresponding to these tests in a Gaussian setting are in fact

admissible and some are even enjoy certain types of optimality among a restricted class of tests.

Before proceeding, we elaborate on these points briefly in the following example.

Example 4.1. Let Xi, i = 1, . . . , n be an i.i.d. sequence of random variables on Rk with distribution

N(µ,Σ), where µ ∈ Π ≡ Rk and Σ is a known, invertible covariance matrix. Consider the problem
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of testing

H0 : µ ∈ Π0 versus H1 : µ ∈ Π1 , (20)

where Π0 = {µ ∈ Π : µ ≤ 0} and Π1 = Π \ Π0. By sufficiency, we may without loss of generality

assume that n = 1. Hence, the data consists of a single random variable X distributed according

to a multivariate Gaussian distribution with unknown mean µ and known, invertible covariance

matrix Σ. Here, it is possible to obtain some finite-sample results, so we restrict attention to tests

φ that satisfy

sup
µ∈Π0

Eµ[φ] ≤ α . (21)

It is well known that there is no uniformly most powerful test in this setting. This follows, for

example, from the derivation in Romano et al. (2014) of the (unique) most powerful test of (20)

against the alternative hypothesis that µ = a ∈ Π1. This most powerful test is a non-trivial function

of a and has power equal to

1− Φ

(
z1−α − inf

t∈Rk:t≤0

√
(t− a)′Σ−1(t− a)

)
, (22)

where Φ is the standard normal c.d.f. and z1−α = Φ−1(1− α). Since (22) depends on a, it follows

that there is no uniformly most powerful test. Furthermore, restricting attention to unbiased or

similar tests is not helpful. See, Lehmann (1952) and Andrews (2012). On the other hand, Romano

and Shaikh (2015) show that there are a wide variety of admissible tests. In order to describe these

results precisely, it is useful to recall the concepts of α-admissibility and d-admissibility, specialized

to the current testing problem. A test φ satisfying (21) is α-admissible if for any other test φ̃

satisfying (21),

Eµ[φ̃] ≥ Eµ[φ] for all µ ∈ Π1 (23)

implies that Eµ[φ̃] = Eµ[φ] for all µ ∈ Π1. A test φ satisfying (21) is d-admissible if for any other

test φ̃, (21), (23) and

Eµ[φ̃] ≤ Eµ[φ] for all µ ∈ Π0

imply that Eµ[φ̃] = Eµ[φ] for all µ ∈ Π. In this language, Romano and Shaikh (2015) establish

that φ is d-admissible if it satisfies (21) and its acceptance region is a closed, convex subset of Rk

containing Π0. If, in addition, the supremum in (21) is attained at some µ ∈ Π0 and the inequality

holds with equality, then φ is α-admissible. From these two results, it follows that the counterparts
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to the least favorable tests based on the three test statistics (14) – (16) are all α-admissible and

d-admissible. Romano and Shaikh (2015) go on to show further that the counterpart to the least

favorable test based on (15) even enjoys certain types of optimality among a restricted class of

tests. The restricted class of tests are non-randomized tests φ that satisfy (21) and are monotone

in the sense that φ(x) = 1 implies that φ(x′) = 1 for all x′ ≥ x. For the testing problem under

consideration, the restriction to monotone tests does not at first appear unreasonable. Among this

class of tests, the least favorable test based on (15) maximizes

inf
µ∈A(ε)

Eµ[φ]

for any ε > 0, where A(ε) = {µ ∈ Π : µj ≥ ε for some 1 ≤ j ≤ k} . In the case where k = 2,

this result was established previously by Lehmann (1952). Generalizations to k > 2 can be found

in Lehmann et al. (2012), but there the joint distribution of X is additionally required to be

exchangeable.

Despite these seemingly attractive properties, it may not be desirable to construct confidence

regions by inverting least favorable tests tests. While it is not possible to construct tests that are

unambiguously better than such tests, other tests that incorporate information in the data about
√
nµ(θ, P ) when constructing critical values may have much better power over many alternatives

at the expense of only marginally worse power at other alternatives. From the perspective of

constructing confidence regions that are small, these tests will therefore be more desirable than

least favorable tests.

4.1.2 Subsampling

Subsampling-based tests use the subsampling estimate of the distribution of interest (18). In order

to define the subsampling estimate of this distribution, we require some further notation. To this

end, let 0 < b = bn < n be a sequence of integers such that b → ∞ and b/n → 0. Let Nn =
(
n
bn

)
and index by 1 ≤ ` ≤ Nn the distinct subsets of Wi, i = 1, . . . , n of size b. Denote by Tb,`(θ) the

quantity Tb(θ) computed using the `th subset of data of size b. Using this notation, the subsampling

estimate of Jn(x,
√
nµ(θ, P ), P ) is given by

Ln(x, θ) =
1

Nn

∑
1≤`≤Nn

I{Tb,`(θ) ≤ x} ,
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and the corresponding test is given by

φsub
n (θ) = I{Tn(θ) > L−1

n (1− α, θ)} .

It is possible to show that these tests satisfy (6). In order to gain an appreciation for this result,

we sketch some of the main components of a rigorous argument. First note that Ln(x) is a “good”

estimator of

Jb(x,
√
bµ(θ, P ), θ, P ) = P{T (D̂b(θ)

−1
√
b(m̄b(θ)− µ(θ, P )) + D̂b(θ)

−1
√
bµ(θ, P ), Ω̂b(θ)) ≤ x} .

Indeed, as shown by Romano and Shaikh (2012), for any ε > 0, Ln(x, θ) satisfies

sup
x∈R

sup
P∈P

sup
θ∈Θ0(P )

P

{
sup
x∈R
|Ln(x, θ)− Jb(x,

√
bµ(θ, P ), θ, P )| > ε

}
→ 0 .

Next, in order to link Jb(x,
√
bµ(θ, P ), θ, P ) with Jn(x,

√
bµ(θ, P ), θ, P ), note that

sup
P∈P

sup
θ∈Θ0(P )

sup
s≤0
|Jb(x, s, θ, P )− Jn(x, s, θ, P )| → 0 . (24)

The convergence in (24) can be established using a subsequencing argument and Polya’s Theorem,

as in Romano and Shaikh (2008). Finally, since T is increasing in each component of its first

argument and
√
bµ(θ, P ) ≥

√
nµ(θ, P )

for any θ and P such that µ(θ, P ) ≤ 0,

J−1
n (1− α,

√
nµ(θ, P ), θ, P ) ≤ J−1

n (1− α,
√
bµ(θ, P ), θ, P ) .

As with “least favorable” tests described in the preceding section, the validity of this test hinges on

the weak monotonicity of T . This type of result has been established in the literature by Romano

and Shaikh (2008) and Andrews and Guggenberger (2009).

Remark 4.4. In practice, implementing subsampling of course requires the choice of a subsample

size b = bn. In simulation studies, subsampling appears to work well for an appropriately chosen

subsample size, but may behave poorly in finite samples for other choices of the subsample size.

See, for example, the simulation study in Bugni (2014). Some data-dependent rules for choosing
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the subsample size are described in Politis et al. (1999). For an empirical application that make

use of subsampling, see the study of the airline industry by Ciliberto and Tamer (2010).

4.1.3 Generalized Moment Selection

Generalized moment selection tests are tests of the form

φgms
n (θ) ≡ I{Tn(θ) > Ĵ−1

n (1− α, ŝgms
n (θ), θ)} ,

where Ĵn(x, ŝgms
n (θ), θ) equals either Jn(x, ŝgms

n (θ), θ, P̂n) or Jn(x, ŝgms
n (θ), θ, P̃n(θ)) and

ŝgms
n (θ) = (ŝgms

n,1 (θ), . . . , ŝgms
n,k (θ))′

is a function that “selects” which moments are binding. While a wide variety of such functions are

possible, below we assume that

ŝgms
n,j (θ) =


0 if

√
nm̄n,j(θ)
σ̂n,j(θ)

> −κn

−∞ otherwise

, (25)

where

0 < κn →∞ and κn/
√
n→ 0 , (26)

e.g., κn = log n. To see why this terminology is appropriate, note that

√
nm̄n,j(θ)

σ̂n,j(θ)
=

√
n(m̄n,j(θ)− µj(θ, P ))

σ̂n,j(θ)
+

√
nµj(θ, P )

σ̂n,j(θ)
. (27)

For θ and P such that µj(θ, P ) ≤ 0, the first term on right-hand side of (27) is OP (1), whereas

the second term either equals zero or diverges in probability to −∞ depending, respectively, on

whether µj(θ, P ) = 0 or µj(θ, P ) < 0. Hence, for such θ and P , with probability approaching one,

ŝgms
n,j (θ) equals 0 or −∞ depending, respectively, on whether µj(θ, P ) = 0 or µj(θ, P ) < 0. In this

sense, ŝgms
n,j (θ) “selects” whether µj(θ, P ) = 0 or µj(θ, P ) < 0.

It is possible to show that these tests also satisfy (6). In order to gain an appreciation for this

result, we sketch some of the main components of a rigorous argument. As before, the argument

hinges on the weak monotonicity of T , but together with the an additional insight related to what
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features of
√
nµ(θ, P ) can be consistently estimated. To this end, first note that to establish (6), it

is enough to consider the rejection probability under any sequence {(θn, Pn) : θn ∈ Θ0(Pn)}n≥1. By

considering a further subsequence if necessary, one may restrict attention to sequences such that

Ω̂n(θn)
P→ Ω∗ and

√
nµ(θn, Pn) → s∗, where s∗ may have some components equal to −∞. While

consistent estimation of s∗ is not possible for the reasons mentioned before, note that ŝgms
n (θ) con-

sistently estimates those components that are equal to −∞ and otherwise estimates the components

with 0, which is at worst too large, i.e., ŝgms
n (θn)

P→ sgms,∗, where sgms,∗ is such that

sgms,∗
j ≡


0 if s∗j > −∞

−∞ if s∗j = −∞
.

Furthermore, under such sequences,

 Tn(θn)

Ĵ−1
n (1− α, ŝgms

n (θn), θn)

 d→

 T (Z + s∗,Ω∗)

J−1(1− α, sgms,∗,Ω∗)


where Z ∼ N(0,Ω∗) and J(x, s,Ω∗) = P{T (Z+s,Ω∗) ≤ x}. Thus, the limiting rejection probability

of the generalized moment selection test under such a sequence equals

P{T (Z + s∗,Ω∗) > J−1(1− α, sgms,∗,Ω∗)} .

The validity of generalized moment selection tests thus follows from the fact that sgms,∗ ≥ s∗. This

type of result was first established in the literature by Andrews and Soares (2010), though related

results can also be found in Canay (2010) and Bugni (2014).

Remark 4.5. The idea behind generalized moment selection tests bears some resemblance to the

idea behind Hodge’s superefficient estimator. Indeed, the proposed test would remain valid if (25)

were replaced with

ŝgms,alt
n,j (θ) =


0 if

√
nm̄n,j(θ)
σ̂n,j(θ)

> −κn
√
nm̄n,j(θ)
σ̂n,j(θ)

otherwise

, (28)

as this modification would only further increase the critical value. In this form, the connection

to Hodge’s estimator is clear. It is, of course, well known that Hodge’s estimator has undesirable

properties from an estimation perspective. More specifically it obtains its improved performance
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at zero at the expense of arbitrarily worse performance at points near zero. As an estimator of

√
nµj(θ, P )

σj(θ, P )
,

(28) also suffers from these shortcomings, but, due to the weak monotonicity of T , it remarkably

leads to tests that satisfy (6) when used in the way described above.

Remark 4.6. Andrews and Soares (2010) compare the limiting power of subsampling tests and

generalized moment selection tests against certain local alternatives. The comparison depends on

the relationship between κn and bn. In particular, if

lim
n→∞

κn
√
bn√
n

= 0 , (29)

then the limiting power of generalized moment selection tests exceeds the limiting power of subsam-

pling tests against these local alternatives, but this ordering may be reversed when (29) does not

hold. Importantly, for bn that is optimal in terms of the order of the error in rejection probability

under the null hypothesis and typical choices of κn, (29) holds.

4.1.4 Refined Moment Selection

Refined moment selection tests, proposed by Andrews and Barwick (2012), are motivated by the

following unattractive feature of generalized moment selection tests: κn is only restricted to satisfy

(26), so the choice of κn for a given sample size n is indeterminate. Unfortunately, given that κn

satisfies (26), none of the first-order asymptotic properties of generalized moment selection tests

depend on κn. Indeed, as shown by Bugni (2014), even the higher-order asymptotic properties of

generalized moment selection tests do not depend on κn. It is therefore difficult to use asymptotic

considerations to determine a rule for κn. On the other hand, it is clear that for a given sample

of size n, a smaller choice of κn would be more desirable in terms of power. In an effort to

ameliorate this drawback, Andrews and Barwick (2012) study generalized moment selection tests

in which κn is replaced with a non-negative constant, κ. With this modification, even the first-order

asymptotic properties of the test depend on κ, which, as we will explain below, ultimately enables

the development of data-dependent choices κ̂n of κ.
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To this end, first consider

Ĵ−1
n (1− α, ŝrms

n (θ), θ) ,

where Ĵn(x, ŝrms
n (θ), θ) equals Jn(x, ŝrms

n (θ), θ, P̂n) or Jn(x, ŝrms
n (θ), θ, P̃n(θ)) and

ŝrms
n (θ) = (ŝrms

n,1 (θ), . . . , ŝrms
n,k (θ))′

is again a function that “selects” which moments are binding. As before, while a wide variety of

such functions are possible, below we assume that

ŝrms
n,j (θ) =


0 if

√
nm̄n,j(θ)
σ̂n,j(θ)

> −κ

−∞ otherwise

, (30)

where κ is a non-negative constant. Using (27), we see that ŝrms
n,j (θ) still equals −∞ with probability

approaching one for any θ and P such that µj(θ, P ) < 0, but no longer equals 0 with probability

approaching one for any θ and P such that µj(θ, P ) = 0. As a result, the test that simply rejects

Hθ when Tn(θ) exceeds Ĵ−1
n (1−α, ŝrms

n (θ), θ)} does not satisfy (6). Indeed, it is undersized, as can

be seen by considering the case where θ and P are such that µ(θ, P ) = 0. For that reason, refined

moment selection tests are tests of the form

φrms
n (θ) ≡ I{Tn(θ) > Ĵ−1

n (1− α, ŝrms
n (θ), θ) + η̂n(θ)} ,

where η̂n(θ) is an additional size-correction factor.

In order to determine an appropriate size-correction factor, consider the test

φ̃rms
n (θ) ≡ I{Tn(θ) > Ĵ−1

n (1− α, ŝrms
n (θ), θ) + η}

for an arbitrary non-negative constant η. Arguing as before in the case of generalized moment

selection tests, it is possible to show that the limiting rejection probability of this test under

appropriate sequences {(θn, Pn) : θn ∈ Θ0(Pn)}n≥1 equals

P{T (Z + s∗,Ω∗) > J−1(1− α, srms,∗(Z + s∗),Ω∗) + η} ,

where, again, s∗ is the limit of
√
nµ(θn, Pn), Ω∗ is the limit in probability of Ω̂n(θn), Z ∼ N(0,Ω∗),
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J(x, s,Ω∗) = P{T (Z + s,Ω∗) ≤ x}, and srms,∗(Z + s∗, κ) is such that

srms,∗
j (Z + s∗, κ) =


0 if Zj + s∗j > κ

−∞ otherwise

. (31)

The appropriate size-correction factor is thus

η∗(Ω∗, κ) ≡ inf

{
η > 0 : sup

s∗∈Rk:s∗≤0

P{T (Z + s∗,Ω∗) >

J−1(1− α, srms,∗(Z + s∗, κ),Ω∗) + η} ≤ α

}
, (32)

which may be consistently estimated as η̂n(θ) ≡ η∗(Ω̂n(θ), κ).

With η̂n(θ) computed in this way, it follows immediately that refined moment selection tests

satisfy (6). In order to choose κ in a data-dependent fashion, Andrews and Barwick (2012) propose

choosing it to maximize some notion of power. Given κ and a finite set of (local) alternatives of

interest, A, it follows from the above that the limiting (equally-weighted) average power of the test

is
1

|A|
∑
a∈A

P{T (Z + a,Ω∗) > J−1(1− α, srms,∗(Z + a, κ),Ω∗) + η∗(Ω∗, κ)} , (33)

where srms,∗(Z + a, κ) is defined analogously to (31). As usual, the use of local alternatives is

necessary to obtain non-degenerate limiting average power. Denote by κ∗(Ω∗) a (near) maximizer

of (33). The data-dependent choice of κ is thus given by its consistent estimator, κ̂n(θ) = κ∗(Ω̂n(θ)).

Remark 4.7. The determination of η∗(Ω∗, κ) is complicated by the fact that there is no explicit

solution to the supremum in (32). Even for a single value of κ, computing η∗(Ω∗, κ) is computa-

tionally prohibitive for large values of k. Finding, κ∗(Ω∗), a (near) maximizer of (33) is therefore

even more computationally demanding, as it involve computing this quantity for many values of

κ. In order to alleviate the computational burden, Andrews and Barwick (2012) restrict attention

to k ≤ 10 and approximate the supremum in (32) with the maximum over s∗ ∈ {−∞, 0}k. The

authors provide extensive numerical evidence, but no proof, in favor of this approximation. While

they do not apply to the moment selection function in (30), McCloskey (2015) has recently justified

this type of approximation for other moment selection functions. Andrews and Barwick (2012)

also provide numerical evidence suggesting that κ∗(Ω∗) and η∗(Ω∗, κ∗(Ω∗)) are well approximated
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by functions that only depend on k and the smallest off-diagonal element of Ω∗. Based on this

evidence, they tabulate suggested values of these quantities for k ≤ 10 and α = 5%

4.1.5 Two-step Tests

Motivated in part by the computational difficulties described in Remark 4.7, Romano et al. (2014)

propose a two-step testing procedure that, like refined moment selection, does not rely on an

asymptotic framework that can perfectly discriminate between binding and non-binding moments,

but remains computationally feasible even for large values of k. Such values of k appear in many

applications, including, for example, the applications in Ciliberto and Tamer (2010) and Bajari

et al. (2006). Furthermore, as shown in a small simulation study in Romano et al. (2014), the

procedure compares favorably in terms of power with the testing procedures described above.

In the first step of the procedure, a confidence region for
√
nµ(θ, P ) that is uniformly consistent

in level (over θ ∈ Θ0(P ) and P ∈ P) is constructed, i.e., a random set Mn(θ, 1− β) such that

lim inf
n→∞

inf
P∈P

inf
θ∈Θ0(P )

P{
√
nµ(θ, P ) ∈Mn(θ, 1− β)} ≥ 1− β . (34)

While it is not possible to consistently estimate
√
nµ(θ, P ), it is possible to construct such a

confidence region. In order to describe a specific construction that satisfies (34) and, as we will see

below, also leads to attractive computational features, define

Kn(x, θ, P ) ≡ P
{

max
1≤j≤k

√
n(µj(θ, P )− m̄n(θ))

σ̂n,j(θ)
≤ x

}
.

Using this notation, an upper rectangular confidence region that satisfies (34) is given by

Mn(θ, 1− β) ≡
{
µ ∈ Rk : max

1≤j≤k

√
n(µj − m̄n(θ))

σ̂n,j(θ)
≤ K̂−1

n (1− β, θ)
}
, (35)

where K̂n(x, θ) equals either Kn(x, θ, P̂n) or Kn(x, θ, P̃n(θ)).

In the second step of this procedure, the confidence region is used to restrict the possible values

of
√
nµ(θ, P ) when constructing the critical value with which to compare the test statistic Tn(θ).
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This idea leads us to consider the critical value

sup
s∈Mn(θ,1−β)∩Rk

−

Ĵ−1
n (1− α+ β, s, θ) , (36)

where Rk
− = {x ∈ Rk : x ≤ 0} and Ĵn(x, s, θ) equals Jn(x, s, θ, P̂n) or Jn(x, s, θ, P̃n(θ)). The

addition of β to the quantile is necessary to account for the possibility that
√
nµ(θ, P ) may not lie

in Mn(θ, 1 − β). It may be removed by allowing β to tend to zero with the sample size, but this

would lead to a testing procedure more akin to generalized moment selection, rather than refined

moment selection.

Remarkably, whenMn(θ, 1−β) is given by (35), the calculation of (36) is straightforward even for

large values of k. Because T is increasing in each component of its first argument, Ĵ−1
n (1−α+β, s, θ)

is increasing in each component of s. Hence, (36) is simply

Ĵ−1
n (1− α+ β, ŝts

n (θ), θ) ,

where ŝts
n (θ) = (ŝts

n,1(θ), . . . , ŝts
n,k(θ))

′ is such that

ŝts
n,j(θ) = min{

√
nm̄n(θ) + σ̂n,j(θ)K̂

−1
n (1− β, θ), 0} .

With this simplification, two-step tests are tests of the form

φts
n (θ) ≡ I{Tn(θ) > Ĵ−1

n (1− α+ β, ŝts
n , θ)} .

Romano et al. (2014) establish that these tests satisfy (6). The result relies on the following

inequality:

P{Tn(θ) > Ĵ−1
n (1− α+ β, ŝts

n (θ), θ)} ≤

P{Tn(θ) > Ĵ−1
n (1− α+ β,

√
nµ(θ, P ), θ)}+ P{

√
nµ(θ, P ) 6∈Mn(θ, 1− β)} .

It is straightforward to show that

lim sup
n→∞

sup
P∈P

sup
θ∈Θ0(P )

P{Tn(θ) > Ĵ−1
n (1− α+ β,

√
nµ(θ, P ), θ)} ≤ α− β .
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From (34), we have further that

lim sup
n→∞

sup
P∈P

sup
θ∈Θ0(P )

P{
√
nµ(θ, P ) 6∈Mn(θ, 1− β)} ≤ β .

The validity of the two-step test thus follows. It is in fact possible to show further that

lim sup
n→∞

sup
P∈P

sup
θ∈Θ0(P )

P{Tn(θ) > Ĵ−1
n (1− α+ β, ŝts

n (θ), θ)} ≥ α− β .

Similar methods have been proposed for some parametric testing problems in the statistics

literature (Berger and Boos, 1994; Silvapulle, 1996). It has also appeared earlier in the econometrics

literature on instrumental variables (Staiger and Stock, 1997) and nonlinear panel data models

(Chernozhukov et al., 2013b). Finally, the idea has recently been introduced in a general context

by McCloskey (2012).

Remark 4.8. Note that β may be also chosen in a data-dependent way analogous to the way in

which κ is chosen in the preceding section. Romano et al. (2014) find, however, that the simple

rule of choosing β = α/10 works well in their simulations.

Remark 4.9. In Romano et al. (2014), the test is restricted to only reject Hθ when Mn(θ, 1− β)

is not contained in Rk
−. If the test statistic is such that Tn(θ) = 0 whenever m̄n(θ) ≤ 0, as in the

test statistics considered in this paper, then this restriction is redundant.

Remark 4.10. Note that in all of the methods discussed so far, moment equalities can be ac-

commodated simply by including both the moment and its negative in the definition of m. In the

case of two-step tests discussed in this section, additional improvements are possible when moment

equalities are present by exploiting their structure when constructing Mn(1−β) in (35). To explain

further, write m = (m(eq),m(ineq)), where m(eq) are the pairs of moment inequalities corresponding

to moment equalities and m(ineq) are the other moment inequalities. Define M
(ineq)
n (1− β) accord-

ing to the right-hand side of (35) with m(ineq) in place of m and let M
(eq)
n (1 − β) = {0}dim(m(eq)).

Finally, replace Mn(1 − β) with M
(eq)
n (1 − β) ×M (ineq)

n (1 − β). The remainder of the procedure

may now be followed without modification.
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5 Subvector Inference for Moment Inequalities

In this section, we review several approaches that have been proposed in the literature for inference

in models in which the identified set is given by

Λ0(P ) = λ(Θ0(P )) = {λ(θ) : θ ∈ Θ0(P )} ,

where Θ0(P ) is defined as in (11) and λ : Θ → Λ. In the most common example, Θ ⊆ Rdθ ,

Λ ⊆ Rdλ , and λ is a function that selects a subvector of θ ∈ Θ, such as a single component. For

ease of exposition, we focus on this special case in the remainder of our discussion. As in the

preceding section, our aim is to construct confidence regions for points in the identified set that are

uniformly consistent in level. Such confidence regions may again be constructed by exploiting the

duality between confidence regions and inverting tests of each of the individual null hypotheses

Hλ : λ ∈ Λ0(P )

versus the unrestricted alternative hypothesis that control appropriately the usual probability of a

Type I error at level α. In the setting considered here, these null hypotheses may be written as

Hλ : ∃ θ ∈ Θ(λ) with EP [m(Wi, θ)] ≤ 0 , (37)

where

Θ(λ) = {θ ∈ Θ : λ(θ) = λ} .

Given tests φn(λ) of Hλ for each λ satisfying

lim sup
n→∞

sup
P∈P

sup
λ∈Λ0(P )

EP [φn(λ)] ≤ α , (38)

Cλn equal to the set of λ ∈ Λ for which Hλ is accepted satisfies

lim inf
n→∞

inf
P∈P

inf
λ∈Λ0(P )

P{λ ∈ Cλn} ≥ 1− α . (39)

As before, a variety of different tests of (37) have been proposed in the literature. In order to

describe these tests succinctly, we will make use of much of the notation introduced in the preceding
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section. It is additionally useful to define a “profiled” test statistic

T prof
n (λ) = inf

θ∈Θ(λ)
Tn(θ) ,

where Tn(θ) is as in (13). Most of the tests we discuss below reject Hλ for large values of T prof
n (λ).

It is also useful to introduce

Jn,λ(x, s(·), λ, P ) = P

{
inf

θ∈Θ(λ)
T (D̂−1

n (θ)
√
n(m̄n(θ)− µ(θ, P )) + D̂−1

n (θ)s(θ), Ω̂n(θ)) ≤ x
}
. (40)

In terms of (40), the distribution of T proj
n (λ) itself is simply

Jn,λ(x,
√
nµ(·, P ), λ, P ) = P

{
inf

θ∈Θ(λ)
T (D̂−1

n (θ)
√
nm̄n(θ), Ω̂n(θ)) ≤ x

}
. (41)

When λ is the identity function, (40) and (41) reduce to (17) and (18), respectively. For the

same reasons discussed in Section 4, it is difficult to derive useful estimators of (41), but it is

straightforward to derive useful estimators of (40) for a fixed value of s(·). An important distinction

in the present setting, however, is that s(·) is a function over the set Θ(λ).

Remark 5.1. Note that by choosing the function λ to be a constant function that always equals

the same value, the above framework includes as a special case testing the null hypothesis that

there exists θ ∈ Θ such that EP [m(Wi, θ)] ≤ 0. A test of such a null hypothesis is typically referred

to as a specification test. See Romano and Shaikh (2008), Andrews and Soares (2010), and Bugni

et al. (2015) for examples of such tests, which may all be viewed as special cases of the methods

we describe below.

5.1 Four Methods for Subvector Inference for Moment Inequalities

In this section, we describe three different tests for (37). As before, in order to satisfy (38), each

of these tests require the uniform integrability condition (19) to hold, but, in some cases, require

further conditions as well. While we refrain from describing these additional conditions in detail,

we highlight when they become necessary as we go along.
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5.1.1 Projection

Projection tests are tests of the form

φproj
n (λ) = inf

θ∈Θ(λ)
φn(θ) , (42)

where φn(θ) may be any test satisfying (6), such as those described in Section 4. Provided that

φn(θ) satisfies (6), the projection test φproj
n (λ) defined in (42) satisfies (38). To see this, first note

that

EP [φproj
n (λ)] ≤ EP [φn(θ)] (43)

for any θ ∈ Θ(λ). Furthermore, for any P ∈ P and λ ∈ Λ0(P ), we have that there exists θ ∈ Θ(λ)

with EP [m(Wi, θ)] ≤ 0. In particular, for any such P and λ, there exists θ ∈ Θ0(P ) such that (43)

holds. Hence,

sup
P∈P

sup
λ∈Λ0(P )

EP [φproj
n (λ)] ≤ sup

P∈P
sup

θ∈Θ0(P )
EP [φn(θ)] ,

from which the desired conclusion follows.

Such tests are discussed in Andrews and Guggenberger (2009) and Andrews and Soares (2010).

For examples of their use in empirical research, see Ciliberto and Tamer (2010) and Grieco (2014).

As noted by Romano and Shaikh (2008), while they are valid whenever φn(θ) satisfies (6), a

drawback of such tests is that they may be quite conservative in the sense that the left-hand side

of (39) is much greater than 1 − α. In particular, this may be the case even if the left-hand side

of (3) equals 1− α. Furthermore, the minimization in (42) may be unnecessarily computationally

burdensome.

Remark 5.2. The confidence region Cλn that results from inverting tests φproj
n (λ) in (42) can be

described succinctly in terms of the confidence region that results from inverting the corresponding

tests φn(θ) that appear on the right-hand side of (42). In particular,

Cλn = λ(Cn) = {λ(θ) : θ ∈ Cn} . (44)

From this characterization, the description of these tests as “projection” tests is clear.

Remark 5.3. In recent work, Kaido et al. (2016) propose a confidence set Cn for θ ∈ Θ0(P ) with

the property that Cλn defined in (44) is not conservative in the sense that the left-hand side of (39)
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equals 1 − α. The construction of such a Cn is obtained by comparing Tmax
n (θ) defined in (15)

with an appropriate critical value ĉn(θ). The construction of ĉn(θ) involves several novel ideas to

increase computational tractability. As in generalized moment selection, it also requires the choice

of κn satisfying (26) as well as the additional choice of ρ > 0, which does not depend on n. For

further details, we refer the reader to Kaido et al. (2016).

5.1.2 Least Favorable Tests

In this section and the following two sections, we consider tests that reject Hλ for large values of

T prof
n (λ). As in Section 4.1.1, least favorable tests can again be derived using the observation that T

is increasing in each component of its first argument. On the other hand, it is more difficult in the

present setting to derive the least favorable value of the nuisance parameter,
√
nµ(·, P ) as a function

over Θ(λ). In particular, 0k is no longer the least favorable value for the nuisance parameter. In

fact, there is no longer a single, least favorable value, but rather a family of least favorable values

for the nuisance parameter indexed by θ ∈ Θ(λ). To see this, note that for λ and P such that

λ ∈ Λ0(P ), the only restriction on
√
nµ(·, P ) as a function over Θ(λ) is that

√
nµ(θ, P ) ≤ 0k for

some θ ∈ Θ(λ). Hence, for each θ ∈ Θ(λ), slf
θ (·) defined by

slf
θ (θ̃) =


0k if θ = θ̃

+∞k otherwise

,

where +∞k is a k-dimensional vector whose components all equal +∞, is a least favorable value for

the nuisance parameter. Note that there is no “largest” value among these possible least favorable

values. As a result, for λ and P such that λ ∈ Λ0(P ), we have that

J−1
n,λ(1− α,

√
nµ(·, P ), λ, P ) ≤ sup

θ∈Θ(λ)
J−1
n,λ(1− α, slf

θ (·), λ, P )

= sup
θ∈Θ(λ)

J−1
n (1− α, 0k, θ, P ) ,

where the equality can be straightforwardly verified by inspection. It follows that least favorable

tests of the form

φlf
n(λ) = I

{
T prof
n (λ) > sup

θ∈Θ(λ)
Ĵ−1
n (1− α, 0k, θ)

}
,
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where Ĵn(x, 0k, θ) equals either Jn(x, 0k, θ, P̂n) or Jn(x, 0k, θ, P̃n(θ)), satisfy (38). To the best of our

knowledge, such tests have not been explicitly discussed in the literature for this testing problem,

though the idea is essentially contained in a number of earlier papers. See, for example, the

discussion in Perlman et al. (1999) as well as the more recent applications in Romano and Wolf

(2013) and Machado et al. (2013). As with the least favorable tests discussed in Section 4.1.1, such

tests might be considered “conservative,” but, as before, the tests corresponding to these tests in

a Gaussian setting are in fact admissible and enjoy certain types of optimality among a restricted

class of tests. Nevertheless, for the same reasons discussed at the end of Section 4.1.1, it may not

be desirable to construct confidence regions by inverting such tests. Instead, it is sensible to try

to incorporate information in the data about the nuisance parameter when constructing critical

values.

5.1.3 Subsampling

Subsampling-based tests use the subsampling estimate of the distribution of interest (41). Using

the additional notation introduced in Section 4.1.2, the subsampling estimate of the distribution of

T prof
n (λ) is given by

Ln,prof(x, λ) =
1

Nn

∑
1≤`≤Nn

I

{
inf

θ∈Θ(λ)
Tb,`(θ) ≤ x

}
,

and the corresponding test is given by

φsub
n (λ) ≡ I{Tn(λ) > L−1

n,prof(1− α, λ)} . (45)

Such tests were first proposed in Romano and Shaikh (2008), who provide high-level conditions

under which φsub
n (λ) satisfies (38). They additionally verify those conditions in some specific ex-

amples, but it is possible to show that φsub
n (λ) may fail to satisfy (38) if only (19) is imposed. The

failure is related to the fact described in the previous section that 0k is no longer an upper bound

on the nuisance parameter for λ and P such that λ ∈ Λ0(P ).

Remark 5.4. As described earlier, implementing subsampling of course requires a choice of sub-

sample size b = bn. The discussion in Remark 4.4 again applies here.
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5.1.4 Minimum Resampling

As in the preceding two sections, minimum resampling tests, proposed by Bugni et al. (2014), also

reject Hλ for large values of T prof
n (λ). In order to describe their construction of a critical value with

which to compare T prof
n (λ), it is useful to first note that a näıve application of generalized moment

selection does not in general lead to tests satisfying (38) in the present setting. To see this, recall

from the discussion in Section 5.1.2 that 0k is not a least favorable value of the nuisance parameter,
√
nµ(·, P ) over Θ(λ). In particular, it may be the case that for P and λ such that λ ∈ Λ0(P ) that

√
nµj(θ, P ) > 0 for some 1 ≤ j ≤ k and θ ∈ Θ(λ) . (46)

Since ŝgms
n (θ) ≤ 0k, it follows that (46) may hold with ŝgms

n,j (θ) in place of 0. As a result, it is not

reasonable to expect that using an estimate of

J−1
n,λ(1− α, ŝgms

n (·), λ, P )

would lead to a test satisfying (38). In fact, Bugni et al. (2014) provide an explicit counterexample.

Motivated by the failure of a näıve implementation of generalized moment selection in this set-

ting, Bugni et al. (2014) consider two different remedies. Each remedy involves replacing ŝgms
n (·)

with an alternative function that does provide an asymptotic upper bound on the nuisance param-

eter,
√
nµ(·, P ) as a function over Θ(λ), in the sense described at the end of Section 4.1.3. In order

to describe the first such function, note that ŝgms
n (θ) does provide an asymptotic upper bound on

the nuisance parameter over the subset of Θ(λ) contained in Θ0(P ). This observation leads Bugni

et al. (2014) to consider the function

ŝ(1),bcs
n (θ) = (ŝ

(1),bcs
n,1 (θ), . . . , ŝ

(1),bcs
n,k (θ))′

where

ŝ
(1),bcs
n,j (θ) =


ŝgms
n,j (θ) if θ ∈ Θ̂n

+∞ otherwise

(47)

and Θ̂n is a set satisfying

inf
P∈P

P{Θ̂n ⊆ Θ(λ) ∩Θ0(P )log κn} → 1 , (48)
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where Θ0(P )log κn is a log κn “neighborhood” of Θ0(P ) and κn satisfies (26). Bugni et al. (2014)

specifically propose using

Θ̂n = {θ ∈ Θ(λ) : Tn(θ) ≤ T prof
n (λ)} , (49)

i.e., the set of minimizers of Tn(θ). The second function is simply given by

ŝ(2),bcs
n (θ) = (ŝ

(2),bcs
n,1 (θ), . . . , ŝ

(2),bcs
n,k (θ))′

where

ŝ
(2),bcs
n,j (θ) =

κ−1
n

√
nm̄n,j(θ)

σ̂n,j(θ)

and κn satisfies (26). Note that, unlike ŝgms
n,j (θ), which takes values in [−∞, 0], both ŝ

(1),bcs
n,j (θ) and

ŝ
(2),bcs
n,j (θ) take values in [−∞,+∞].

Using arguments similar to those given in Section 4.1.3, it is possible to provide conditions

under which using either J−1
n,λ(1 − α, ŝ(1),bcs

n (·), λ, P̂n) or J−1
n,λ(1 − α, ŝ(2),bcs

n (·), λ, P̂n) leads to tests

satisfying (38), but, by combining these two approaches, it is possible to construct an even smaller

critical value that also leads to valid tests. In order to describe this improved construction, define

Jn,bcs(x, s
(1)(·), s(2)(·), λ, P ) = P{min{Rn(s(1)(·), λ, P ), Rn(s(2)(·), λ, P )} ≤ x} ,

where

Rn(s(·), λ, P ) = inf
θ∈Θ(λ)

T (D̂−1
n (θ)

√
n(m̄n(θ)− µ(θ, P )) + D̂−1

n (θ)s(θ), Ω̂n(θ)) .

Using this notation, the “minimum resampling” test Bugni et al. (2014) propose is given by

φbcs
n (λ) = I{T prof

n (λ) > J−1
n,bcs(1− α, ŝ

(1),bcs
n (·), ŝ(2),bcs

n (·), λ, P̂n)} . (50)

Bugni et al. (2014) provide assumptions under which φbcs
n (λ) defined in this way satisfies (38).

Importantly, in addition to (19), these assumptions include additional conditions under which Θ̂n

defined in (49) satisfies (48).

Remark 5.5. Bugni et al. (2014) show that the test of Hλ that rejects whenever T prof
n (λ) exceeds

J−1
n,λ(1 − α, ŝ(1),bcs

n (·), λ, P̂n) is more powerful in finite samples than the corresponding projection

test implemented using the same selection function that appears on the right-hand side of (47).

Bugni et al. (2014) also compare the limiting power of the test of Hλ that rejects whenever T prof
n (λ)
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exceeds J−1
n,λ(1− α, ŝ(2),bcs

n (·), λ, P̂n) and the subsampling test of Hλ defined in (45) against certain

local alternatives. As in Remark 4.6, the comparison depends on the relationship between κn and

bn. In particular, if

lim sup
n→∞

κn
√
bn√
n
≤ 1 , (51)

then the limiting power of the the test of Hλ that rejects whenever T prof
n (λ) exceeds J−1

n,λ(1 −

α, ŝ
(2),bcs
n (·), λ, P̂n) exceeds the limiting power of subsampling tests against these local alternatives,

but this ordering may be reversed when (51) does not hold. On the other hand, as in Remark

4.6, for bn that is optimal in terms of the order of the error in rejection probability under the

null hypothesis and typical choices of κn, (51) holds. Importantly, the test φbcs
n (λ) defined in (50),

whose critical value is smaller than both J−1
n,λ(1−α, ŝ(1),bcs

n (·), λ, P̂n) and J−1
n,λ(1−α, ŝ(2),bcs

n (·), λ, P̂n),

inherits both of these power comparisons.

6 Important Omissions

Regrettably, our review of inference in partially identified models has necessarily been selective.

In this section, we rapidly review some of the most important omissions in our discussion of the

literature on inference in partially identified models.

6.1 Inference for “Many” Moment Inequalities

As emphasized above, in many applications k may be large, which motivates considering asymptotic

frameworks in which k = kn tends to infinity with the sample size n. Such an approach, which

requires asymptotic approximations for normalized sums with increasing dimensions, was recently

developed by Chernozhukov et al. (2013a). More concretely, Chernozhukov et al. (2013a) consider

inference in models defined by (12) where the number of moment inequalities kn is allowed to be

of the same order as exp(nδ) for some δ > 0. The tests proposed by the authors could be one-step

or two-step and take the form of those described in Section 4. One-step tests involve a “max”-type

test statistic

T̃max
n (θ) = max

1≤j≤k

√
nm̄n,j(θ)

σ̂n,j(θ)
,
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and the following critical value

ĉcckn,k(1− α, θ) =
Φ−1(1− α/k)√

1− Φ−1(1− α/k)2/n
.

Here, Φ(·) denotes the distribution function of the standard normal distribution. This critical value

arises by using Bonferonni’s inequality and a moderate deviation inequality for self-normalized

sums. In the same spirit as the tests described in Sections 4.1.2 – 4.1.5, two-step tests improve on

one-step tests by incorporating information about
√
nµ(θ, P ) when constructing the critical value

using a preliminary “selection” step. In the first step, the number of binding moments is estimated

to be

k̂n =

k∑
j=1

ŝcck
n,j (θ) ,

where

ŝcck
n,j (θ) = I

{√
nm̄n,j(θ)

σ̂n,j(θ)
> −2ĉcckn,k(1− β, θ)

}
and 0 < β < α

3 ; in the second step, T̃max
n (θ) is compared with ĉcck

n,k̂n
(1−α, θ). The formal justification

of this test, together with bootstrap counterparts, are in Chernozhukov et al. (2013a).

In a related paper, Menzel (2014) also considers inference for moment inequalities in a context

where k grows with the sample size n. However, in contrast to Chernozhukov et al. (2013a), the

asymptotic framework is one where kn is assumed to be smaller than n; specifically, kn = O(n2/7).

6.2 Inference for Conditional Moment Inequalities

In many applications the identified set for θ is determined by conditional moment inequalities, in

which case

Θ0(P ) = {θ ∈ Θ : EP [m(Wi, θ)|Zi] ≤ 0 P -a.s.} , (52)

where, as before, m is a function taking values in Rk and the inequality is interpreted component-

wise. Two seminal papers on inference in conditional moment inequality models are Andrews and

Shi (2013) and Chernozhukov et al. (2013d). Below we briefly summarize these two papers.

The approach put forward by Andrews and Shi (2013) consists in transforming the conditional

moment inequalities in (52) into an infinite number of unconditional moment inequalities. This can
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be done by choosing a set of weighting functions G with the property that

Θ0,G(P ) = {θ ∈ Θ : EP [m(Wi, θ)g(Zi)] ≤ 0 for all g ∈ G} (53)

is equal to Θ0(P ) in (52). One of the simplest examples of such a set of functions is the set Gbox of

indicators of a rich set of hyperrectangles. In order to define this set of functions more formally, let

Cbox ≡
{
×dzl=1(zl − rl, zl + rl] : z ∈ Rdz , r ∈ (0, r̄)dz

}
,

where r̄ > 0, i.e., Cbox is the set of hyperrectanges in Rdz whose sides all have length no greater

than 2r̄. Using this notation,

Gbox ≡ {I{z ∈ C} : C ∈ Cbox} . (54)

Other examples of collections G that have the property Θ0,G(P ) = Θ0(P ) are discussed in Andrews

and Shi (2013).

Similarly to Section 4, confidence regions satisfying (3) may be constructed by inverting tests

of the null hypotheses

Hθ : EP [m(Wi, θ)g(Zi)] ≤ 0 for all g ∈ G . (55)

The test proposed by Andrews and Shi (2013) represents an extension of generalized moment

selection to models with infinitely many unconditional moment inequalities. Specifically, the test

rejects Hθ in (55) for large values of

Tn(θ) ≡
∫
Tn(θ, g)dQ(g) ,

where Tn(θ, g) is test statistic for testing EP [m(Wi, θ)g(Zi)] ≤ 0 analogous to those introduced

in 4 and Q is a probability measure on G. The construction of the critical value is conceptually

similar to the generalized moment selection approach discussed in Section 4.1.3. For details on the

implementation of this test and a proof that it satisfies (6), see Andrews and Shi (2013).

An alternative approach for inference in models where the set Θ0(P ) is defined by conditional

moment inequalities, as in (52), is the “intersection bounds” method proposed by Chernozhukov
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et al. (2013d). In order to describe the test formally, let

V ≡ {(z, j) : z ∈ Z, 1 ≤ j ≤ k} ,

where Z ⊆ Rdz denotes the compact support of Z. For each v ∈ V, let

µ̃(θ, P, v) = EP [mj(Wi, θ)|Zi = z]

and denote by m̄n(θ, v) a suitable estimator of µ̃(θ, P, v). This estimator could be parametric or

nonparametric, including series or kernel-type estimators. The choice of an estimator determines

an appropriate standard error for m̄n(θ, v), which we denote here by σ̂n(θ, v).

Using this notation, the null hypotheses can be written as

Hθ : sup
v∈V

µ̃(θ, P, v) ≤ 0 . (56)

The test proposed by Chernozhukov et al. (2013d) rejects Hθ when

Tn(θ) = sup
v∈V
{m̄n(θ, v)− ĉn(α, θ, v)σ̂n(θ, v)} (57)

is strictly positive. The construction of the critical value ĉn(α, θ, v) is delicate and a clear exposition

requires introducing significantly more notation, so we refer the reader to Chernozhukov et al.

(2013d). Notably, the intersection bounds approach can be easily implemented in Stata for certain

problems using the package developed by Chernozhukov et al. (2013c).

Other papers studying the problem of inference in conditional moment inequality models include

Kim (2008); Ponomareva (2010); Lee et al. (2013); Chetverikov (2013); Armstrong (2014b,a, 2015),

and Armstrong and Chan (2014). Importantly, the results in Armstrong (2014b) show that the tests

in Armstrong and Chan (2014) and Chetverikov (2013) are rate optimal among available procedures

in certain smoothness classes. These results also show that the test in Chernozhukov et al. (2013d)

is rate optimal under appropriate bandwidth choices for the kernel estimator m̄n(θ, v).
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6.3 Inference for Partially Identified Models using Random Set Theory

Random set theory provides a mathematical framework to study random objects whose realizations

are sets. In the context of partially identified models, this theory has proven to be useful for

identification and inference in situations where the object of interest is the identified set Θ0(P ) in

(2), as opposed to points in such set. Even though random set theory is a well-developed area of

mathematics that dates back at least to the 1950s, its first application to the problem of inference

in partially identified models appeared in Beresteanu and Molinari (2008).

Beresteanu and Molinari (2008) exploit the theory of random sets to carry out inference on the

identified set Θ0(P ). The method applies to situations where Θ0(P ) is a compact and convex set

that is the Aumann expectation of a set-valued random variable, a generalization of the expectation

of a random variable to random sets. For a given compact and convex set Ψ, the main inferential

problem considered in the paper is testing

H0 : Θ0(P ) = Ψ

versus the unrestricted alternative. The test rejects for large values of the normalized Hausdorff

distance between Ψ and a sample analog of Θ0(P ), and the authors develop bootstrap procedures

for constructing critical values. Importantly, inverting such tests leads to confidence regions for the

identified set rather than confidence regions for points in the identified set.

More generally, random set theory is especially useful in problems where the identified set Θ0(P )

is a convex set. This usefulness stems from the fact that in such cases Θ0(P ) can be unambiguously

characterized by its support function, which is defined as

SFq(Θ0(P )) ≡ sup
θ∈Θ0(P )

q′θ , (58)

for any q ∈ Rdθ such that ||q|| = 1. Indeed, Kaido (2012) extends the domain of applicability of the

approach in Beresteanu and Molinari (2008) by establishing a duality between level set estimators

of Θ0(P ) based on convex criterion functions and the support function of such estimators. This

provides a justification for the use of Hausdorff-based statistics beyond those cases where Θ0(P )

is the Aumann expectation of a random closed set. In subsequent work, Kaido and Santos (2014)

examine the efficient estimation of Θ0(P ) in (11) when EP [m(Wi, θ)] are convex functions of θ.
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They derive conditions under which the support function admits
√
n-consistent regular estimators

and provide a characterization of the semiparametric efficiency bound.

Random set theory has proved to be particularly useful in providing tractable characterizations

of (sharp) identified sets in partially identified models. See, for example, Beresteanu et al. (2011),

Bontemps et al. (2012), Chesher and Rosen (2014) and Chesher et al. (2013). Incidentally, these

tools are also connected to the literature of optimal transportation theory and its application to

partially identified models, see Galichon and Henry (2011, 2013). Finally, for a recent comprehensive

summary of applications of random set theory to econometrics see Molchanov and Molinari (2014).

6.4 Bayesian Inference for Partially Identified Models

In well-behaved, identified models it is often the case that frequentist confidence sets and Bayesian

credible sets about a given parameter of interest coincide, at least asymptotically. Such equiva-

lence breaks down in the context of partially identified models, as shown by Moon and Schorfheide

(2012). In fact, prior information about a partially identified parameter θ “influences” the usual

posterior inference statements concerning θ even asymptotically. Credible sets for partially iden-

tified parameters thus tend to be asymptotically smaller than confidence sets satisfying (3). See

Moon and Schorfheide (2012, Corollary 1) for details. It follows that from the Bayesian perspective,

frequentist confidence sets are too wide, while from the frequentist perspective, Bayesian credible

sets are too narrow.

The lack of asymptotic harmony between the Bayesian and frequentist inference is less severe

when the object of interest is the identified set Θ0(P ) rather than θ ∈ Θ0(P ). In the context of a

partially identified model with a well-defined likelihood function, Kitagawa (2012) introduces a ro-

bust Bayesian approach with the goal of reconciling Bayesian and frequentist statements. Kitagawa

(2012) notes that when parameters are not identified, the prior distribution of the model parameters

can be decomposed into a component that is updated by data (revisable prior) and a component

that cannot be updated by the data (unrevisable prior). He therefore considers a prior class in

such a way that it shares a single prior distribution for the revisable prior, but allows for arbitrary

prior distributions for the unrevisable prior. This leads to “bounds” on the posterior distribution

for a partially identified parameter due to the presence of a class of priors rather than a single one.

Kitagawa (2012, Theorem 5.1) goes further and shows that a credible set from the robust Bayes

37



perspective is also a valid frequentist confidence set for Θ0(P ), provided the frequentist confidence

set is only required to satisfy (8) rather than (4).

More recently, Kline and Tamer (2015) consider a class of partially identified models with the

property that the identified set is a known function of identified parameters, as for instance, in

Example 3.1. By focusing on this class of models and inference statements about Θ0(P ), Kline

and Tamer (2015) establish a method for Bayesian inference that results in posterior inference

statements that do not depend on the prior information asymptotically. As a result, under certain

conditions, the (1−α)-level credible set for Θ0(P ) is also a (1−α)-level frequentist confidence set for

Θ0(P ) satisfying (8) (see Kline and Tamer, 2015, Theorem 5). Therefore, the results in Kitagawa

(2012) and Kline and Tamer (2015) show that inference about the identified set may exhibit asymp-

totic equivalence between Bayesian and frequentist approaches to inference in partially identified

models, as long as the frequentist confidence set is required to satisfy (8) as opposed to (4). As

explained in Section 3, such confidence regions share the undesirable feature that the probability

of covering Θ0(P ) may be well below 1− α under certain distributions P ∈ P, even for arbitrarily

large sample sizes.

7 Conclusion

As our preceding discussion has hopefully made clear, the literature on inference in partially identi-

fied models has advanced significantly in the past decade. Nevertheless, important questions, both

theoretical and practical in nature, remain unresolved. Even in simple partially identified models,

certain questions of optimality remain open to the best of our knowledge. For instance, in the set-

ting described in Example 3.1, it would be of interest to characterize confidence intervals that are

“shortest” in an appropriate sense. Of course, for the reasons discussed in Example 4.1, providing

an answer to this question may be challenging. Consider also our discussion of subvector inference

for moment inequalities. An obvious omission from our discussion is methods for inference with

asymptotic frameworks more like those in Sections 4.1.3 and 4.1.5 for inference for moment in-

equalities. Furthermore, extensions of these methods to other classes of partially identified models,

such as the ones in which the underlying parameter is limited by conditional moment inequalities,

remain unavailable. Such problems are the subject of current research. See, for example, Canay

et al. (2015), who treat these problems and others as special cases of a more general framework for-
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mulated in terms of unions of functional moment inequalities. Finally, while methods for inference

in such models have made some inroads in empirical research, their adoption could be facilitated by

the development of methods that are computationally feasible in problems of more realistic com-

plexity. For this purpose, it may be useful to consider special classes of partially identified models,

where it may be possible to exploit linearity or other structure to gain computational tractability.
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