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Motivation (1) Euler Equations 
• Models of economic agents’ dynamic optimization problems are work horses of modern 

macroeconomics, public finance, etc.  
• Since Hall (1978), first order conditions (Euler Equations) used to test models and 

estimate preference parameters 
o life-cycle model of consumption (Attanasio et. al. 1999) 
o investment behaviour of firms (Bond and Meghir 1994, or Mulligan, 2004) 
o asset pricing (Mehra and Prescott, 1985) 

• Euler equation approach removes need to  
o model agents’ expectations  
o observe wealth  

 contrast to estimation of consumption function 
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Motivation (2) Problems with Euler Equation Estimation 
• Estimation on aggregate data leads to biased parameter estimates and false rejections 
of the underlying models (Attanasio and Weber, 1993)  
• Measurement error is endemic to micro (survey) data; in the presence of 
measurement error, standard non-linear GMM methods yield inconsistent estimates 
(Amemiya 1986)  
• Standard solution: apply standard linear IV and GMM techniques to a first-, or 
possibly second-order approximation to the Euler equation  
• New problem: higher order terms that are ignored in the approximation are 
potentially correlated with the typical instruments (lagged variables) 
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Motivate (3) Existing Literature 
A series of papers: 

1. Solve and simulate a life-cycle consumption model  
2. Monte-carlo experiments with the simulated data 
 
• Ludvigson and Paxson (2001) use a second order approximation to estimate the 
relative prudence parameters in an environment with a fixed interest rate and impatient 
agents. Conclude the estimation strategy doesn’t work. 
• Carroll (2001) “Death to the log-linearized Euler Equation..”) reaches the same 
conclusion for the elasticity of intertemporal substitution (EIS) in an environment with 
cross-sectional variation in interest rates  
• Attanasio and Low (2004) argue that with sufficiently long sample periods and 
enough time-series variation in the intertemporal price (interest rate), good estimates of 
the EIS can be obtained with linearized Euler equations 
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Our Contribution 
• Another Monte Carlo study 
• Attempt to reconcile the conclusions reached by different researchers  
• Emphasize that key differences in assumed economic environments; previous papers 
emphasized differences in available data. 

o We solve and simulate 6 different variants of a life-cycle consumption model 
with CRRA preferences, (aggregate) interest rate uncertainty, and an uninsurable 
idiosyncratic income risk 

• Working hypothesis:  
o problems with instrument validity are related to the severity of the 
approximation bias 
o the severity of approximation bias is determined by the curvature of the 
underlying policy functions 
o the curvature of the policy functions follows from assumptions made in 
specifying the economic environment  
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Our Contribution (2) 
• We are assessing not only instrument validity but also instrument relevance  
• Yogo (2004) discusses instrument relevance for consumption Euler equations 
estimated on aggregate data  
• To our knowledge, has not been taken up in the micro literature. 
• We preliminary results suggest two tradeoffs:  

o The instruments typically used to estimate consumption Euler equations tend to 
be strongly relevant in economic environments where they are less valid, and 
possibly weak in environments in environments where they have greater predictive 
power 
o Using a second-order approximation reduces problems with instrument 
validity, but may introduce weak instrument problems 
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Outline of the Talk 
   

1. Motivation 
2. The Econometrics of Euler Equation Estimation 
3. Models, Variants and Simulation Details 
4. Monte Carlo Results 
5. Conclusions 
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The Econometrics of Euler Equation Approximation 
First order condition (no liquidity constraints): 
 

 1 1( ) [(1 ) ( )]t t t tU C E R U Cβ− −′ ′= +  (1) 

 
Sub-utility function is the iso-elastic form: 
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• ( 1
γ

) is the Elasticity of Intertemporal Substitution (EIS) ( γ  is the coefficient of relative 

risk aversion and 1γ +  is the coefficient of relative prudence.) 
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Exact Euler equation: 
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• tε  expectation error (the innovation in discounted marginal utility), orthogonal to 
variables in the information set at time t-1  
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Multiplicative measurement error:  
 0

t t tC Cη=  (4) 
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• The composite error term does not have a conditional expectation of unity, even tη  and tε  
are independent: 
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• Runkle (1991) estimates 76% of the variation in the growth rate of food consumption in 
the PSID is noise.  

• Alan and Browning (forthcoming) obtain an even higher estimate of 86%.   
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(Log) Linearized Euler Equation:   
 

௛,௧ ൌܿ݃݋݈∆  ߙ  ൅ ଵఊ ሺ1݃݋݈ ൅ ܴ௧ሻ ൅ ఊାଵଶ  ൫∆݈ܿ݃݋௛,௧ ൯ଶ ൅ ݁௛,௧ (6) 

 
• α contains the discount rate and the unconditional means of the third (and higher order) 

moments of the expectation error tε  

• The residual term te  contains the measurement error and also the time varying component 
of approximation error. 

• The time varying component of approximation error consist  of time varying components 
of the higher conditional moments (conditional on past information) of the expectation 
error 

• Literature uses twice lagged instruments because the measurement error induces a MA(1) 
component in the residuals 
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Models 
Basic setup 

• Agents face two types of income shocks, permanent and transitory. 
 , , ,h t h t h tY P U=  (7) 

• ,h tU  is an iid lognormal transitory shock with unit mean and constant variance ( )2

1ueσ −   

• ,h tP  is permanent income which follows a log random walk process: 

 , , 1 ,h t h t h tP GP Z−=  (8) 

• ,h tZ  is an iid lognormal permanent shock with unit mean and constant variance ( )2

1zeσ −   

• Innovations to income are independent across individuals; we abstract from aggregate 
shocks to income  

• The real rate follows an AR(1) process (aggregate shock)   



 

13 
 

Table 1: Parameter Values 

 

 
 

Parameter Value 
Coefficient of Risk Aversion ( )γ  4 

Discount Rate            1=( )-1δ
β

⎛ ⎞
⎜ ⎟
⎝ ⎠

 0.03 and 0.07 

Standard Deviation of Permanent Income Shocks (ߪ௭ሻ 0.05 
Standard Deviation of Transitory Income Shocks ( )uσ  0.1 

Unconditional Mean of Interest Rate Process ( )μ  0.03 

AR(1) Coefficient of Interest Rate Process ( )ρ  0.6 

Standard Deviation of Interest Rate Process ( )εσ  0.025 

Probability of Zero Income (Models 3 and 4) 0.01 
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Variants 
• The 6 models (or environments) we study differ by  

o degree of impatience (discount rate)  
o the presence or absence of a borrowing constraint (apart from the natural borrowing 

constraint).  
• Model 1 is the environment studied by Attanasio and Low (2004). Model 2 is similar but 

agents are more impatient.  
• In Model 3 and Model 4 transitory income shocks, with some small probability (0.01), 

can take a ‘0’ value in any period. This addition to the model strengthens agents’ 
precautionary motive. Model 4 is very like the “buffer-stock” model studied by Carroll 
(2001). Model 3 is similar, but agents are less impatient.  

• Model 5 and 6 follow Deaton (1991): individuals are explicitly prevented from 
borrowing. Agents are more impatient in Model 6. 
o Motivated by the observation that there are asset levels of zero are observed in the 

real data 
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Table 2: Variants 
 
 

 
 
 
 
 

 
  

Model Impatient Patient
Borrowing 
Constraint 

 

1 - Yes No Attanasio and Low 
2 Yes - No  
3 - Yes Implicit  
4 Yes - Implicit Carroll 
5 - Yes Explicit  
6 Yes - Explicit  
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Simulation and Experiments 

• Models solved by standard methods 
• A simulated population of 10,000 individuals is generated after solving each life cycle 

model 
• Generated 80 periods of consumption paths for ex-ante identical consumers then removed 

the first 20 periods and the last 20 periods 
• Monte Carlo experiments performed using the simulated consumption paths of 1000 

individuals (observed 40 periods) drawn from the population of 10,000 individuals with 
replacement 
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Predicting Failure 
• Hypothesis: efficacy of linearized Euler equation estimation depends on the effective 

curvature of policy functions (which in turn depends on parameter values).  
o More curvature means more approximation error ∆݈ܿ݃݋௛,௧ ൌ ߙ  ൅ ଵఊ ሺ1݃݋݈ ൅ ܴ௧ሻ ൅ ఊାଵଶ  ൫∆݈ܿ݃݋௛,௧ ൯ଶ ൅ ݁௛,௧ (9) 

• Policy functions have similar shape; what is really different is where agents locate in the 
state space (asset levels) 

• We use the simulated data to characterize each variant’s “effective curvature” 
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• We measure the effective curvature by weighting the curvature of underlying policy 
function (at a given age) at every point by the ex-post density of normalized cash-on-
hand.  

• Estimate (non-parametrically): 

[ ]| , ( )i i i A iE c x A g x=   

• Calculate curvature measure ''( )
'( )

g x x
g x

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠

at every x point.  

• Take the  weighted average of this measure:   

 
''( )   = ( )
'( )

g xEffective Average Curvature f x x
g x

⎛ ⎞
− −⎜ ⎟⎜ ⎟

⎝ ⎠
∫ (10) 

• Like an average derivative 
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Figure 1: Consumption Functions and Simulated Distribution of Cash-on-Hand 
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Model 3 Model 4 
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Table 3:  Moments of Expectation Errors 
 
 

 

 

 

 
 
  

• Suggests the link between effective curvature and approximation bias through the 
distribution of expectation errors  

• As the effective curvature increases higher order moments tend to increase 
  

Model 
Effective 

Curvature Var Skw Krt 
1 0.0395 0.03 0.522 3.55 
2 0.4928 0.061 1.01 6.11 
3 0.0735 0.039 14.56 2233 
4 1.658 0.237 55.38 5788 
5 0.0407 0.03 0.523 3.55 
6 2.250 0.047 0.914 5.8 
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Results 
Instrument Validity and Relevance 

• Construct the true residuals of the first and second order log-linearized models using the 
true parameter values.  

௛,௧ െܿ݃݋݈∆  ଵସ ሺ1݃݋݈ ൅ ܴ௧ሻ ൌ ߙ  ൅ ݁௛,௧ (11) 

௛,௧ െܿ݃݋݈∆  ଵସ ሺ1݃݋݈ ൅ ܴ௧ሻ െ ସାଵଶ  ൫∆݈ܿ݃݋௛,௧ ൯ଶ ൌ ߙ ൅ ݁௛,௧ (12) 

 
• Instrument validity: regression of true residuals on instruments  
• Instrument relevance: F statistic, Cragg-Donald statistic (minimum eigen value) 
• Instruments: lagged interest rate, lagged consumption growth and lagged income 

(Attanasio and Low, 2004)  
• Add lagged consumption growth squared to the instrument set for the second order 

approximation.  
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Table 4:  
• Patient agents, low effective curvature, no evidence that instruments are invalid 
• Impatient agents, high effective curvature, instruments invalid 
• Deaton variants (5,6) are an exception: dropping observations with zero assets at t-1. 
• Instrument relevance not an issue for the first-order approximations (Stock, Wright and 

Yogo suggest F>10 rule of thumb). 
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Table 4: Instrument Validity and Relevance Results, First Order Approximation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

௧ାଵ௛ܥ݃݋݈∆ ൌ ߙ ൅ ߛ1 ሺ1݃݋݈ ൅ ܴ௧ାଵሻ ൅ ݁௧ାଵ௛  

 Instrument Validity
Instrument 
Relevance 

ߙ  ൅ ݁௧ାଵ௛ ൌ ௧ାଵ௛ܥ݃݋݈∆ െ 14 ሺ1݃݋݈ ൅ ܴ௧ାଵሻ F 

 Mean t stat  [10% , 90%] 

 log(1 )tR+  log h
tCΔ  log h

ty  Mean R²  
Model 1 -0.916 -0.459 0.655 0.00004 7438 
(0.0395)     [7431 , 7447] 
Model 2 -1.042 -6.746 -4.774 0.00175 7457 
(0.4928)     [7442 , 7478] 
Model 3 0.448 -0.754 0.619 0.00004 7362 
(0.0735)     [7321 , 7402] 
Model 4 -0.928 -18.254 1.58 0.00914 7362 
(1.658)     [7320 , 7402] 

Model 5 -0.957 -0.476 0.673 0.00004 7438 
(0.0406)     [7431 , 7447] 
Model 6 -1.614 -1.424 -1.074 0.00015 6962 
(2.250)     [6853 , 7076] 
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Table 5: Second Order Approximations 

• Reduce approximation error 
• Direct estimation of the relative prudence parameter (potentially a test of CRRA) 
• At low effective curvature, instruments are valid but may be weak 
• Instruments may have more predictive power when effective curvature is higher, but are 

then more often invalid  
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Table 5: Instrument Validity and Relevance Results, Second Order Approximation 
௧ାଵ௛ܥ݃݋݈∆  ൌ ߙ ൅ ߛ1 ሺ1݃݋݈ ൅ ܴ௧ାଵሻ ൅ ߛ ൅ 12 ൫∆݈ܥ݃݋௧ାଵ௛ ൯ଶ ൅ ݁௧ାଵ௛  

 Instrument Validity Instrument  Relevance 

ߙ   ൅ ݁௧ାଵ௛ ൌ ௧ାଵ௛ܥ݃݋݈∆ െ ଵସ ሺ1݃݋݈ ൅ ܴ௧ାଵሻ െ ସାଵଶ ൫∆݈ܥ݃݋௧ାଵ௛ ൯ଶ
   Cragg-Donald  statistic

 Mean t stat  
[10% , 90%] 

 log(1 )tR+  log h
tCΔ  log h

ty  ( )2
log h

tCΔ  Mean R² 

Model 1 -2.002 -0.537 -0.149 -0.41 0.000127 7.49 
(0.0395)      [1.774 , 15.329] 
Model 2 -1.817 -4.209 -2.41 2.917 0.000929 92.843 
(0.4928)      [50.507 , 163.971] 
Model 3 -0.417 0.276 -0.208 -4.316 0.004666 409.125 
(0.0735)      [3.289 , 5308] 
Model 4 0.001 -3.062 -0.103 -4.811 0.00277 2008.187 
(1.658)      [555.01 , 5400] 

Model 5 -2.024 -0.544 -0.105 -0.521 0.000133 7.457
(0.0406)      [1.999 , 15.525] 
Model 6 -0.971 -0.917 -0.938 0.34 0.000075 2.636 
(2.250)      [.156 , 9.437] 
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Estimates of the EIS 
• Small sample results from the GMM and LIML estimation of first and second order 

approximate Euler equations 
• Report mean parameter estimate, mean standard error, and % of confidence intervals 

containing the true value 
• Table 6: first order approximate Euler equations 

o Estimates much better when agents are patient (effective curvature is low). 
• Table 7: second order approximations 

o In addition to EIS we also estimate the prudence parameter (the true value is 2.5).  
o Results for the EIS are quite similar to those from the first order approximation.  
o Results for the prudence parameter are quiet different across models  
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Table 6: Monte Carlo Results for the First Order Approximation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Estimates of the EIS using First Order Approximation ∆݈ܥ݃݋௧ାଵ௛ ൌ ߙ ൅ ߛ1 ሺ1݃݋݈ ൅ ܴ௧ାଵሻ ൅ ݁௧ାଵ௛  

True Value of EIS 
1
γ
⎛ ⎞
⎜ ⎟
⎝ ⎠

 is 0.25 

                       Linear GMM      LIML 
Model 1 .239 .2389 
(0.0395) (.012) (.0119) 

 83.1 83.4 
Model 2 .2341 .2389 
(0.4928) (.0169) (.0167) 

 85.2 90.8 
Model 3 .2545 .2546 
(0.0735) (.0117) (.0117) 

 93.2 93 
Model 4 .2237 .2203 
(1.658) (.0151) (.0148) 

 59.9 48.5 
Model 5 .2385 .2384 
(0.0406) (.012) (.0119) 

 84.7 84.8 
Model 6 .2246 .2247 
(2.250) (.0156) (.0153) 

 64.9 63.8 
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Table 7: Monte Carlo Results for the Second Order Approximation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Estimates of the EIS and Prudence Using Second Order Approximation ∆݈ܥ݃݋௧ାଵ௛ ൌ ߙ ൅ ߛ1 ሺ1݃݋݈ ൅ ܴ௧ାଵሻ ൅ ߛ ൅ 12  ൫∆݈ܥ݃݋௧ାଵ௛ ൯ଶ ൅ ݁௧ାଵ௛  

 EIS Prudence 

Real Value 
1 0.25
γ
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 
1 2.5

2
γ +⎛ ⎞ =⎜ ⎟

⎝ ⎠
 

    Linear GMM           LIML         Linear GMM           LIML       
Model 1 0.2295 0.23 1.705 1.532 
(0.0395) (0.0207) (0.023) (3.069) (3.558) 

 83.6 83.8 95.7 95.3 
Model 2 0.2051 0.205 5.928 5.969 
(0.4928) (0.0195) (0.0196) (0.7667) (0.6943) 

 36 36.8 0.2 0.2 
Model 3 0.2459 0.2458 1.973 2.021 
(0.0735) (0.0147) (0.0145) (1.705) (1.669) 

 93.1 92.7 79.6 76 
Model 4 0.2463 0.2446 2.526 2.341 
(1.658) (0.0198) (0.0185) (0.3673) (0.0708) 

 92.3 90.1 78.9 19 
Model 5 0.2296 0.2303 1.646 1.505 
(0.0406) (0.0207) (0.0224) (3.095) (3.448) 

 82.1 82.9 96.2 95.3 
Model 6 0.2489 0.2593 6.49 9.856 
(2.250) (0.0326) (0.8925) (6.397) (167) 

 93.8 96.6 99.2 98.6 
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Additional comments and experiments 
• Lower risk aversion (and hence lower cash on hand) can make things worse (experiments 

with crra = 2) 
• Shorter panels (14 years rather than 40) can make things worse (and note that we don’t 

have aggregate income shocks) 
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Conclusion 
• Apparent success/failure of approximate Euler equations estimation related to 

assumptions about economic environment/parameter values, in a fairly coherent way 
• There seem to be  environments where approximate Euler equation estimation can yield 

good estimates, as well as environments in which the approximate Euler equation works 
quite badly)  

• Effective curvature good predictor of failure within classes of models, less good for very 
different models 

• Not just instrument validity but  also instrument relevance may be  a problem 
(particularly for 2nd order approximation) 

• Where does this leave us? 
o Refine effective curvature measure/look for other ways to generalize results 
o More carefully look at weak instrument problems? 
o Impose restrictions? 
o Emerging evidence that key parameters heterogeneous  (Alan and Browning, 

forthcoming, Guvenen, JME 2006) may be insurmountable problem for Euler 
Equation approach? 

 
 


