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1 Introduction

The study of sorting in the marriage market has recently attracted renewed attention because of

its potential role in determining changing inequality and because college attainment has changed

substantially, with implications for the marriage market. More broadly, sorting has consequences

for family formation and intergenerational transmission of human capital so understanding how it is

changing can be central to the study of inequality and intergenerational mobility. For example, to the

extent that male and female human capital are complementary in raising children and determining

their abilities, an increase in sorting will likely lead to increased inequality in human capital in future

generations. On the other hand, it is precisely these complementarities and the well documented

increase in the returns to human capital that may underlie the increased sorting.

Whatever the reason for the potential changes in sorting, and indeed whatever its implications,

it is important to be able to measure it. It turns out that establishing the presence of sorting is

relatively straightforward since it just requires that more people marry similar rather than different

types of individuals to themselves in the dimension we are considering (e.g. education), relative to

what would occur if they were matched randomly. Establishing how sorting has changed without

reference to a specific model of the marriage market, however, turns out to be difficult and subject

to a number of pitfalls. Generally, one would prefer to use a nonparametric approach to measure

these changes, that is not mediated by a specific model of the marriage market and not dependent

on assumptions about preferences. On the other hand, sorting depends on the structure of the gains

from matching with alternative types and changes in sorting depend on how this structure changes.

Constructing a link between the marital surplus, whose structure determines sorting, and the

observed matching frequencies will in general depend on the structure of the model assumed to

underlie the formation of matches. In this paper we consider alternative approaches to measuring

changes in sorting. We will focus on sorting by education level, although the specific characteristic

people sort on is not important for our argument; we do consider however sorting only by one single

characteristic, which is assumed to have a discrete distribution.

The difficulty in measuring changes in sorting stems from changes in the marginal distributions

of education for men and women. This is particularly pertinent because the proportion of people

obtaining a college degree has increased substantially over time, differentially for men and women
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so that there are now more women college graduates than men in the US and in other countries

(Chiappori et al., 2009).

A first contribution of this paper is to discuss, from a methodological perspective, the way

changes in sorting can (and should) be measured. We start by establishing two intuitive criteria that

all measures should satisfy if they are to meaningfully measure changes in sorting. We then propose

a new index of assortativeness that explicitly links observed marital patterns to the underlying

forces driving sorting in marriage, defined by the value of two people marrying each other relative

to marrying someone else or remaining single.

Building upon previous contributions by Choo and Siow (2006) and Chiappori et al. (2017) (see

also Dupuy and Galichon (2014), Chiappori et al. (2018), Chiappori et al. (2020) and Ciscato and

Weber (2020)), we develop the empirical version of this measure in a matching model under the

separable extreme value assumption (SEV). We call it the ‘SEV index’. The SEV model provides

a direct link between the deterministic component of marital surplus and the observed marital

frequencies. Positive assortative matching occurs when the surplus is supermodular; increases in

sorting happen when supermodularity increases, giving stronger incentives to sort. While this

measure depends on distributional assumptions on the unobserved heterogeneity term in the SEV

model, namely that preferences for type by marital partners are extreme value, it can readily be

extended to other distributions (see Galichon and Salanié (2019)). We also propose a general

criterion, called Generalized Separability (GS), that extends the previous approaches by imposing

that the assortativeness ranking remains constant for all distributions of unobserved heterogeneity.

We provide a full characterization of this criterion. The cost of this general nonparametric approach

is that it does not rely on a particular index; in particular, the order relationship it provides on

sorting patterns is not complete, in the sense that there exist alternative patterns that cannot be

ranked. Thus some ambiguity may remain about whether sorting has changed or not.

The SEV index, as well as its possible extensions and the GS criteria, satisfy our two intuitive

criteria. We show that the same property holds for almost all indices used in the literature, such

as the standard correlation approach adopted by Greenwood et al. (2003, 2014) or its equivalent χ2

version, the minimum distance criterion introduced by Fernández and Rogerson (2001) and recently

used by Abbott et al. (2019) and the weighted sum criterion of Eika et al. (2019). One exception,

however, is a likelihood index also introduced in the latter article, which violates one of them. We
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discuss how such a violation may generate spurious conclusions when comparing assortativeness in

two populations.

We study changes in assortativeness across cohorts in the US using data from the March extract

of the Current Population Survey for the years 1962 to 2019. In a companion paper (Chiappori et al.,

2020), we studied assortativeness in the UK using the SEV index. Here we go further, providing

an explicit theoretical foundation for that measure, introducing other measures and considering the

properties of some existing ways of measuring changes in sorting. We also show results on changes

in assortativeness in the US based on a variety of indices, including our SEV index, the generalized

version thereof and existing measures from the literature.

Comparing the birth cohorts of the 1930s and 1970s, we find that unambiguous changes in

assortativeness, which can be detected by generalised separability approach, are extremely difficult

to find in practice. However, both the SEV index and the other measures that have so far been used

in the literature show overwhelmingly that marital assortativeness by education increased across

the two cohorts. For one single group, that of high-school graduates, we find ambiguous results.

We exploit the structural interpretation of the marital sorting patterns revealed by the SEV ap-

proach for counterfactual analysis in order to shed further light on the ways in which assortativeness

has changed across the two cohorts. In our counterfactual exercise, we compare observed marital

patters for the birth cohort of the 1970s with what they would have been had the value of marriage

and assortativeness by education stayed at the 1930s level. We show that the value of marrying

declined for all groups with the exception of college educated women, and that the decline was

particularly sharp among women with high-school degrees. We also show that changes in the value

of different unions between these two cohorts led to higher concentration of marriages in the main

diagonal for all education groups except high-school graduates. Moreover, changes in the value of

marrying different spouses led to an increase in the proportion of couples where the wife is more

educated than the husband and a drop in the the proportion of couples where the husband is more

educated.

In the next section we discuss the definition of assortative matching and we introduce the con-

ditions that an index of assortativeness should satisfy if it is to offer a coherent way of measuring

changes in sorting. Section 3 introduces the SEV index, which provides a fully structural interpre-

tation of changes in sorting, and section 4 introduces the distribution free generalised criteria. We
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then discuss some alternative measures of sorting that have been used in the literature and inves-

tigate their properties in section 5. These include the correlation coefficient and the χ2 criterion,

the likelihood criterion and the weighted sum index. Up to this point, our discussion focuses on

identifying assortativeness and changes thereof locally, studying separately the sorting between each

combination of two types from the distribution of matching traits; this analysis also disregards the

possibility of remaining single. In section 6 we discuss how to extend our analysis to consider all

marital options as well as singlehood. We then present our empirical results, starting in Section

7 with a brief discussion of the CPS data, followed by the study of how assortativeness changed

between the birth cohorts of the 1930s and 1970s in Sections 8 and 9. Section 10 shows how sorting

patterns would have been for the 1970s cohort had the value of marriage not changed from the

1930s. A final section concludes.

2 Assortative matching: an introductory example

While the concept of assortative matching is reasonably clear, comparing two different matching

distributions leads to unexpected difficulties when the marginal distributions of the characteristic

upon which people match change over time. Trivially, if there are are many more college graduates

now than in the past we are very likely to end up with an increasing number of couples where

both are college graduates, unless of course the incentives to remain single change dramatically.

However, deciding whether sorting has increased, while accounting for differences in the marginals

is less than obvious. We will start with a very simple example to illustrate the difficulties with

measuring changes in sorting.

Consider an economy where there is an equal mass of men and women, each normalized to 1.

We will abstract from singles at this point - everybody gets matched. The matching pattern in this

population is summarized by Table 1.

Table 1: 2× 2 Matching Table (m,n, r)

w\ h C HS

C r m− r

HS n− r 1− n−m+ r

5



In the Table, n and m are the proportion of male and female college graduates respectively,

while r are the proportion of couples where both spouses are college graduates. In practice, such

a matching table is defined by the three numbers (m,n, r); we shall refer to it as ‘Table (m,n, r)’.

Note that the numbers are non negative and must satisfy:

max (0,m+ n− 1) ≤ r ≤ min (m,n)

As in this example, in most of our analysis we will consider matching based on only two types

of men and two types of women, such as education with two levels: college graduates (C) and less

than college (HS).

The general case (involving any number of categories, as well as singles) will be discussed later

on. Note, however, that assortativeness is in general a local phenomenon. For instance, it is easy

it is easy to provide examples where AM is positive (or increasing) at one end of the distribution

while negative (or decreasing) at the other end. This implies that assortativeness measures will have

to be local, in the sense that they focus on the marital patterns between two groups and involve

considering a (series of) 2×2 case(s) similar to Table (m,n, r). The term ‘local’ here does not mean

that only adjacent groups in terms of the matching trait can be considered; indeed one can study

marital sorting between, say, college graduates and high school dropouts using the same tools we

develop here for the analysis of marital patterns among college and high school graduates.

2.1 Defining Positive Assortative Matching

We say that a Table T exhibits Positive Assortative Matching (PAM) if the proportion of couples

with equal education (the ‘diagonal’ of the Table) is larger than what would obtain under random

matching. Under random matching the proportion of couples where both are college graduates

(respectively less than college) will simply be mn (respectively (1− n) (1−m)), which implies that

the Table would become:

Then we have PAM if and only if

r ≥ mn
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Table 2: Random Matching

w\ h C HS

C mn m (1− n)

HS n (1−m) (1− n) (1−m)

Table (m,n,mn): Random Matching.

which also implies that:

1− n−m+ r ≥ (1− n) (1−m)

In other words PAM arises when extra forces generate more matches between equally educated

people than would happen for other random reasons.

Now consider two Tables T1 = (m,n, r) and T2 = (m̄, n̄, r̄). Under what conditions can we

conclude that say T1 is more assortative than T2? We start with two specific situations in which

there exists a natural answer - i.e., in which one can unambiguously assert that a Table displays

more AM than another. This will lead to the definition of two Properties; we submit that any

acceptable criterion should satisfy these properties.

2.2 Defining ‘increases in Assortative Matching’: two required properties

The case of constant proportions of educated men and women. The first case obtains

when comparing two Tables (m,n, r) and (m̄, n̄, r̄) that have identical marginal distributions - i.e.,

the same proportion of educated men and the same proportion of educated women, in which case

m = m̄ and n = n̄. Then the first natural property is the following:

Property 1 (Monotonicity) With m and n fixed (i.e. when the marginal distributions do not

change), an increase in AM is equivalent to an increase in r (i.e., more people in each diagonal cell)

In other words, Table (m,n, r) exhibits more AM than Table (m,n, r̄) if and only if

r ≥ r̄

which also implies that:

1− n−m+ r ≥ 1− n−m+ r̄
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The motivation for this property is straightforward: if m = m̄ and n = n̄ then r ≥ r̄ means that,

for any level of education, a larger fraction of individuals marry their own type in Table (m,n, r)

than in Table (m,n, r̄). This is the exact definition of increased assortative matching.

The case of perfect sorting. A second polar case obtains when the entire population is concen-

trated on the diagonal - i.e., m = n = r, corresponding to Table (m,m,m):

Table 3: Perfect Assortative Matching

w\ h C HS

C m 0

HS 0 1−m

In that case, the matching is perfectly (positive) assortative: all individuals marry a spouse

with the same education and there are no ‘cross-marriages’. Intuitively, matching cannot possibly

be more assortative than in a Table such as (m,m,m). This leads to a second natural property:

Property 2 (Perfectly Assortative Matching) For all possible proportions of educated

women m ∈ [0, 1], no Table can display strictly more AM than Table (m,m,m).

2.2.1 Formal requirements

We can use these two criteria to define the properties that any index of sorting should satisfy. Thus

we now propose that any acceptable criterion for ‘increased AM’ should be compatible with these

two properties. That is, any reasonable criterion should be such that:

• When comparing two Tables with identical marginals, it should boil down to: ‘A Table displays

more AM if and only if it has more people on the diagonal’.

• A Table in which the entire population is concentrated on the diagonal displays the maximum

level of AM.

A formal translation would be the following. We define a matching table as a 2 × 2 matrix,

the coefficients of which are non-negative and add up to 1, with each cell giving the frequency of

occurrence of that match combination; as mentioned above, such a table can be fully summarized
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by three numbers (m,n, r). Our goal is to define a preorder �AM on the set of matching tables,

where (m,n, r) �AM (m̄, n̄, r̄) reads as ‘(m,n, r) displays more AM than (m̄, n̄, r̄)’. According to

the previous discussion, the preorder must satisfy two conditions:

1. (Monotonicity) For all (m,n, r, r̄),

(m,n, r) �AM (m,n, r̄) if and only if r ≥ r̄

2. (Perfectly Assortative Matching) For all m, (m,m,m) is a maximal element of the pre-

order

A preorder satisfying the two criteria need not be complete, in the sense that there may exist

tables that cannot be ranked using the preorder. In particular, condition 2 does not imply that

(m,m,m) displays more AM than any table, but only that no table can display strictly more

AM than (m,m,m). However, some criteria commonly used in the literature rely on an index of

assortativeness I(m,n, r) that quantifies the ‘degree of assortativeness’ as a function of m, n and r.

In that case, the preorder relationship is implied by this index:

(m,n, r) �AM (m̄, n̄, r̄) if and only if I (m,n, r) ≥ I (m̄, n̄, r̄)

and is complete. But the question is whether it satisfies our two conditions. Specifically, condition

1 requires that I (m,n, r) be increasing in r, while condition 2 requires:

I (m,m,m) ≥ I (m̄, n̄, r̄) for all (m, m̄, n̄, r̄)

We now describe some of the criteria that have been used most frequently in the literature. We

start with a specific family of indices that are based on a structural interpretation, following the

seminal approach by Choo and Siow (2006); next, we discuss several alternative indices.

3 The Separable Extreme Value (SEV) approach and its extensions

Starting with Becker (1981) it is well understood that sorting in the marriage market arises as a

consequence of complementarities between the characteristics of the partners in the value function
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of the household. Building on this idea the seminal contribution of Choo and Siow (2006) offers

a structural interpretation of assortative matching in a context where cross marriages can and do

occur. Their approach ignores search or other frictions, and relates sorting to the underlying force

that drives matching, namely the properties of the surplus of the match, which reflects the gains

from two people with certain characteristics matching together instead of partnering with alternative

types or perhaps remaining single. The framework is general enough to allow matching on both

observable and unobservable characteristics and to allow for idiosyncratic preferences for types of

spouses. The model is similar in structure to random utility models such as the one presented in

Berry et al. (1995).

The demands of men and women need to be made consistent. Given preferences and the structure

of the surplus, the equilibrium is achieved by setting the share of the surplus enjoyed by men and

women in each type of match (say HS,C) so that male and female demands are made consistent.

In the equilibrium that results – a stable matching equilibrium – no person matched would rather

be single and no two people not matched to each other would rather be together than remaining in

their current situation. In a transferable utility context this equilibrium maximizes social welfare.

Changes in sorting are linked directly to changes in the structure of the surplus: if this becomes

more supermodular, meaning that the complementarities are stronger, then there will be more pos-

itive sorting. The key point is that the SEV model, given distributional assumptions on preferences

provides a direct link between changes in the matching probabilities and changes in the extent to

which the surplus is supermodular. We now use these ideas to derive explicitly a criterion that will

allow us to rank alternative matching tables.

3.1 The basic framework

3.1.1 Frictionless matching under TU

In the SEV model, individuals play a frictionless, bipartite matching game under Transferable Utility

(TU).1 In such a game, men X and women Y may either remain single or match with a member of

the opposite sex. A match between Ms. i and Mr. j generates a gain sij that must be allocated

between spouses; and the TU assumption requires that the utility of Ms. i, ui, and the utility of

1See Chiappori (2017) for a precise description of frictionless matching models.
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Mr. j, vj , must add up to that gain:

ui + vj = sij

The matching game is fully defined by the two sets X and Y , endowed each with a finite measure,

and the gain sij for each potential pair (i ∈ X, j ∈ Y ). In general, singles’ utilities are normalized to

zero; then sij can be interpreted as a surplus representing the total benefit generated by the match

over and above what i and j could obtain as singles.

Finally, a matching thus defined is stable if (i) no matched individual would be better off as

single, and (ii) no pair (i, j) would both prefer being matched together better than their current

situation (the latter condition may be interpreted as ‘divorce at will’).

3.1.2 The SEV model

Starting from this framework, the SEV model relies on several additional assumptions:

1. The sets X and Y include a ‘large’ number of people but these people can be classified into a

‘small’ number of observable classes, I ∈ {1, ..., N}; in what follows, these will be interpreted

for clarity as education levels.

2. The surplus generated by the matching of i ∈ I and j ∈ J is the sum of two components:

sij = ZIJ + γij (1)

where ZIJ is a deterministic component depending only on the individuals’ education classes,

and γij is a random term reflecting unobserved heterogeneity to be interpreted as the preference

that the individuals have for each other beyond the economic value of the match that is driven

by the observable characteristics. A natural (although not exclusive) interpretation is that

γij reflects the impact of some traits that influence the gain generated by the match but are

not observed by the econometrician. Similarly, the utility of Ms. i (resp. Mr. j) as single

(denoted by ∅) is

si∅ = ε∅i and s∅j = ν∅j

Under an adequate normalization (which amounts to imposing that the deterministic part of
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the surplus of singles is always nil), the matrix Z =
([
ZIJ

])
thus represents the systematic

influence of education on matching patterns, whereas all other effects (including idiosyncratic

components) are summarized by the random terms
(
ε∅i , ν

∅
j , γij

)
.

The ‘supermodular cores’ of matrix Z are defined, for all I < K and J < L, as the double

difference:

S = ZIJ + ZKL − ZIL − ZKJ .

As we shall see, these play a key role in the characterization of assortativeness.

3. The random term γij is separable (S):

γij = εJi + νIj (2)

where εJi and νIj are individual-specific random terms that exclusively depend on the partner’s

education. Intuitively, εJi can be interpreted either as an unobservable trait of Ms. i which

is valued differently by spouses with different educations, or as Ms. i’s idiosyncratic (and

unobservable) preference for her spouse’s education.

4. Finally, SEV assume that the εs and the νs are independent and type 1 extreme value (EV),

implying that the differences εJi − εKi and νIj − νKj follow a logistic distribution for all i, j and

all I, J,K.

3.1.3 Properties

Under these assumptions, several results can be derived. The first one provides an exact character-

ization of individual utilities.

Proposition 1 (Chiappori et al., 2017; Choo and Siow, 2006) Under assumptions 1, 2 and

3 above, there exists 2 × N2 deterministic values U IJ , V IJ , I, J = 1, ..., N , with ZIJ = U IJ + V IJ

for all (I, J), such that for any matched pair (i, j) at a stable matching, with i ∈ I and j ∈ J ,

individual utilities are equal to:

ui = U IJ + εJi and vj = V IJ + νIj (3)
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The significance of this result is that each individual benefits from their own unobserved pref-

erence for type of partner, and does not share this. Only the deterministic component is shared,

which also drives the extent of sorting.

A second property is that the SEV model is exactly identified from matching patterns. Here,

matching patterns are fully described by a set M =
(
µIJ I, J = ∅, 1, ..., N

)
where µIJ denotes the

fraction of couples where the wife has education I and the husband has education J , and µI∅ (resp.

µ∅J) the fraction of single women (men) with education I (J) and2

∑
I,J

µIJ = 1

Then we have the following result which defines the relationship between the observed matching

patterns (who marries whom) and the value of that match that accrues to each partner. This result

is the same as the one underlying McFadden’s conditional choice probabilities in discrete choice

problems (McFadden, 1981).

Proposition 2 (Choo and Siow, 2006) Under assumptions 1, 2, 3 and 4 above, for any M

there exist exactly one vector Z =
(
ZIJ I, J = 1, ..., N

)
such that the probability that, at a stable

matching, a woman i ∈ I has a husband in J (resp. is single) is µIJ/
∑

K µ
IK (resp. µI∅/

∑
K µ

IK)

and the probability that, at a stable matching, a man j ∈ J has a wife in I (resp. is single) is

µIJ/
∑

K µ
KJ (resp. µ∅J/

∑
K µ

KJ).

The intuition underlying this result is simple. Note, first, that by Proposition 1, Ms. i ∈ I will

marry a husband in class J if and only if

U IJ + εJi ≥ U IK + εKi for all K

This is a standard discrete choice model, where the εs are moreover extreme value distributed. It

follows that a multi-logistic regression will exactly identify the U IJ for all J (under the normalization

U I∅ = 0). The same is true for all education levels I; and the V IJ can similarly be recovered from

multi-logistic regressions of husband’s marital choices. Finally, ZIJ = U IJ + V IJ for all (I, J).

2Under the normalizations µ∅∅ = 0
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3.2 The SEV assortativeness index for two classes of people

3.2.1 Characterization

The previous results directly apply to the 2 × 2 examples discussed in the previous section. For

the time being, we closely follow the spirit of these examples by omitting singles and concentrat-

ing on matching patterns among married couples. As a result, the uniqueness of the structural

matrix
([
ZIJ

])
no longer obtains: different structural matrices may generate identical matching

patterns among married couples, although they produce different percentages of singles. However,

this indeterminacy is irrelevant for the analysis of assortativeness.

Formally:

Proposition 3 Table (m,n, r) can be generated by any SEV model such that its supermodular core

satisfies

Z11 + Z22 − Z12 − Z21 = 2 ln

(
r (1 + r −m− n)

(n− r) (m− r)

)
In particular, one of the structural matrices that would generate Table (m,n, r) is simply:

Z = 2

 ln r ln (m− r)

ln (n− r) ln (1 + r −m− n)


Proof. In the appendix

In the 2× 2 case, the the supermodular core of the matrix Z is unique. As mentioned above, it

plays a crucial role in the analysis of assortativeness. A standard theoretical result of the matching

literature is that assortative matching is related to supermodularity of the surplus function. We now

proceed to show that this intuition extends to our context: supermodularity of the deterministic

(‘structural’) part of the surplus (the Zs), which is equivalent to its supermodular core being positive,

directly translates into assortativeness of matching patterns. Specifically, let us first define the SEV

assortativeness index ISEV :

Definition 4 The SEV assortativeness index ISEV corresponding to Table (m,n, r) is defined by:

ISEV (m,n, r) = ln

(
r (1 + r −m− n)

(n− r) (m− r)

)
14



In words, the index is the log of a ratio, the numerator of which is equal to the product of

diagonal cells while the denominator is the product of off-diagonal cells.

This index satisfies the two required key properties:

Proposition 5 The index ISEV (m,n, r):

1. is increasing in r (form and n constant) and equal to 0 for r = mn. In particular, ISEV (m,n, r) ≥

0 if and only if r ≥ mn

2. goes to +∞ when either r → m or r → n

These properties, in turn, have direct economic interpretations. To see how, note, first, that

the index equals zero under random matching (if r = mn), and is positive if and only if the Table

exhibits PAM. Secondly, the supermodular core of the deterministic (‘structural’) part of the surplus

is:

Z11 + Z22 − Z12 − Z21 = 2ISEV (m,n, r)

In particular, the matrix Z is supermodular if and only if ISEV (m,n, r) ≥ 0. It follows that

Table (m,n, r) displays PAM (defined as r ≥ mn) if and only if ISEV (m,n, r) ≥ 0 - i.e., if and only

if the structural matrix Z is supermodular.

Finally, for the matrix (m,m,m) (which corresponds to Perfectly Assortative Matching), we

have ISEV (m,m,m) = +∞; therefore the index ISEV (m,n, r) satisfies the second requirement of

Section 4.3

3.2.2 Comparing Assortative Matching

The previous results suggest a first criterion for comparing Assortative Matching (AM) across tables:

Definition 6 Table (m,n, r) displays more AM than Table (m̄, n̄, r̄) in the SEV sense if and only

if

ISEV (m,n, r) ≥ ISEV (m̄, n̄, r̄)

From the previous results, an equivalent definition is the following:
3In fact, the index satisfies an even stronger property: ΦCS (m,n, r) = +∞ whenever r = min (m,n), so that the

index is maximal as soon as one off-diagonal element of the Table is equal to zero.
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Definition 7 Table (m,n, r) displays more AM than Table (m̄, n̄, r̄) in the SEV sense if and only

if the structural matrix corresponding to (m,n, r) is more supermodular than that corresponding to

(m̄, n̄, r̄), in the sense that

Z11 + Z22 − Z12 − Z21 ≥ Z̄11 + Z̄22 − Z̄12 − Z̄21

In other words, a given Table displays more AM than another if and only if the supermodular

core of its structural matrix is larger. By Proposition 3, there is a one-to-one correspondence

between a table and the supermodular core of its structural matrix, which proves that the definition

is consistent.

The SEV criterion has (implicitly) been used in several contributions, among which Choo and

Siow (2006) and Chiappori et al. (2017). The main advantage of this definition is that it is directly

related to a structural model; in particular, it creates a natural link between the empirical notion

of ‘assortativeness’ and its theoretical interpretation in terms of supermodularity of the surplus

function. The separability assumption (2) requires in particular that the stochastic terms, which

reflects unobserved heterogeneity, do not introduce any super- (or sub-) modularity; thus the model

imposes that assortativeness be directly related to supermodularity of the deterministic component.

The disadvantage is that it depends on specific assumptions on the distribution of preferences, which

in this context at least cannot be tested. We discuss in the next section how the results can be

sensitive to these assumptions, and how a distribution free criterion can be constructed.

3.3 Extensions of SEV: relaxing the extreme value assumption

A recent literature (Galichon and Salanié, 2019) has relaxed the last assumption of the standard

SEV model (assumption 4 in subsection 3.1.2). Indeed, while assuming extreme value distributions

may seem natural in this context, it is by no means necessary; in fact, any (known) distributions

can be used. Moreover, the main conclusions of the previous section remain valid for any specific

distribution. Proposition 1 does not require the extreme value assumption to hold; and one can

readily show that, if the distribution of the random terms is known ex ante, then there is a one-to-

one correspondence between the marital patterns (including singles) and the underlying structural

matrix whatever the particular (known) distributions.
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Of particular importance in practice is the relationship between supermodularity of the struc-

tural part of the surplus and assortativeness of matching patterns. Indeed, a result by Graham

(2011, 2013), further generalized by Chiappori (2017), establishes that supermodularity of the de-

terministic part of the surplus (the Zs) directly translates into assortativeness of the matching

patterns, irrespective of the distributions of the random terms. Specifically, consider the matching

tables generated by two models with the same distributions of the random terms εs and νs and

the same marginals (m = m̄ and n = n̄) but different structural matrices, say Z and Z̄. Then the

matching table generated by Z displays more AM that that generated by Z̄ (in the sense, discussed

above, that the former has more people on the diagonal that the latter) if and only if Z is more

supermodular than Z̄.

Formally, we replace assumption 4 of subsection 3.1.2 by the following:

Assumption 4’ The individual random vectors
(
ε1i , ε

2
i

)
(resp.

(
ν1j , ν

2
j

)
) are drawn from some

distribution Fε (resp. Gν) on R2. They are independent of each other and independent of the

individual’s education; moreover, the distribution of
(
ε1i − ε2i

)
(resp.

(
ν1j − ν2j

)
) is symmetric.

Note that we do not assume that ε1i and ε2i (or ν1j and ν2j ) are independent from each other -

the distributions Fε and Gν can display any correlation structure; nor do we suppose that the two

distributions are identical.

The result is the following:

Proposition 8 (Chiappori, 2017; Graham, 2011, 2013) Consider two matching Tables (m,n, r)

and (m̄, n̄, r̄), generated by two models that both satisfy assumptions 1, 2, 3 and 4’. Assume that

the random distributions Fε and Fν are the same in the two models, while the structural matrices

Z and Z̄ are different. Assume, moreover, that m = m̄ and n = n̄. Then r ≥ r̄ if and only if Z is

more supermodular than Z̄:

Z11 − Z12 − Z21 + Z22 ≥ Z̄11 − Z̄12 − Z̄21 + Z̄22 (4)

Proof. See Appendix

The result by Graham (2011) states that, in a model of this type, the matching patterns display

PAM (i.e. more people are on the diagonal than would obtain under random matching) if and
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only if the supermodular core of the corresponding deterministic structure is positive. In addition,

proposition 8 allows the comparison of any two tables according to the same criterion so long as

the marginal distribution of the characteristics are the same, i.e. in our example the proportion of

men and women in each education group are the same in each table. Since zero supermodularity

(defined by Z11 + Z22 − Z12 − Z21 = 0) gives random matching, Proposition 8 implies Graham’s

result.

The economic implication of Proposition 8 is clear. If we apply a separable approach with

arbitrary distributions for the random term, it remains true that, when comparing two matching

tables with identical marginals, a table displays more AM (i.e., it has more people on the diagonal)

than the other if and only if its structural matrix is more supermodular.

This suggests the following definition:

Definition 9 For any given distributions of the εs and νs satisfying Assumption 4’, we say that

table (m,n, r) displays more AM than (m̄, n̄, r̄) for these distributions if and only if, for these

distributions, the supermodular core associated to (m,n, r) is larger than the supermodular core

associated to (m̄, n̄, r̄):

Z11 + Z22 − Z12 − Z21 ≥ Z̄11 + Z̄22 − Z̄12 − Z̄21

It is crucial to note at this point that, for a given matching table, the estimation of the super-

modular core of the structural component depends on the random distributions. In other words, for

any specific choice of the distributions, marital patterns exactly determine the supermodular core

of the underlying, structural matrix; but this correspondance varies with the distributions at stake.

4 The Generalized Separable (GS) approach

4.1 Definition

We have seen in Subsection 3.3 that a separable approach could use pretty much any distribution for

the stochastic terms. That fact, however, points to a clear weakness of the SEV approach, because

its conclusions regarding variations in assortativeness typically depend on the distribution of the

random term. We may empirically find that Table (m,n, r) displays more AM than Table (m̄, n̄, r̄),
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but this conclusion remains contingent on the specific choice of the distributions of the random

term - i.e., in the standard SEV framework, on the extreme value assumption. This is particularly

unsatisfactory because these distributions cannot be empirically identified from the sole observation

of matching patterns, but have to be assumed ex ante. The conclusion thus partly relies on the

arbitrary choice of the distribution. In particular, it may well be the case that, when comparing

two Tables using an extended separable model, one Table displays more PAM than the other for

some choices of the random distributions of the εs and νs, while the opposite is true for other

distributions.

Assume, however, that the tables to be compared are such that a separable criterion would

conclude that one displays more AM (in the sense of Definition 9) for all possible distributions

satisfying Assumption 4’; then one could reliably conclude that AM has increased.

This suggests the following Definition:

Definition 10 We say that Table (m,n, r) displays more AM than Table (m̄, n̄, r̄) in the GS sense:

(m,n, r) �GS (m̄, n̄, r̄)

if and only if, for any choice of the distributions of the εs and νs satisfying Assumption 4’, Table

(m,n, r) displays more AM than Table (m̄, n̄, r̄) for these distributions.

From a formal perspective, this criterion defines a preorder relationship �GS on the set of

matching tables. Importantly, this preorder is not complete; indeed, Table (m,n, r) may display

more AM than (m̄, n̄, r̄) for some distributions but less for others, in which case the two Tables

cannot be compared in the GS sense.

4.2 Characterization

We now provide a simple and tractable characterization of the previous definition.

Proposition 11 Under the same assumptions as for Proposition 8, assume that Table (m,n, r) and

(m̄, n̄, r̄), which both display PAM, are such that:

r

m
≥ r̄

m̄
,
r

n
≥ r̄

n̄
,

1− n−m+ r

1− n
≥ 1− n̄− m̄+ r̄

1− n̄
(5)
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and
1− n−m+ r

1−m
≥ 1− n̄− m̄+ r̄

1− m̄
(6)

Then (m,n, r) displays more AM than (m̄, n̄, r̄) in the GS sense.

Conversely, if one of these inequalities is violated, then it is possible to find random distributions

such that (m̄, n̄, r̄) displays more AM than (m,n, r) for these distributions.

Proof. See Appendix

The inequalities in Proposition 11 have a simple interpretation; namely, the proportion of each

diagonal term increases within the corresponding row and column. If that’s the case, then for any

choice of stochastic distributions, the surplus corresponding to (m,n, r) will be more supermodular

than the surplus corresponding to (m̄, n̄, r̄). Moreover, the condition is also necessary: if one of

these inequalities is violated, then one can find distributions such that the conclusion is reversed.

One can easily show that the GS preorder satisfies the two Properties described in Subsection

4. Proposition 8 shows that the first condition is satisfied. Regarding the second, assume that we

have

(m̄, n̄, r̄) �GS (m,m,m)

for somem, m̄, n̄, r̄. By Proposition 11, this requires that at least one of the four ratios in Proposition

11 is strictly larger for (m̄, n̄, r̄) than for (m,m,m). But this is impossible, since these ratios are

all less than or equal to 1 by construction and they are all equal to 1 for (m,m,m).4 Incidentally,

this argument shows that Proposition 11 implies a stronger version of the Perfectly Assortative

Matching condition: not only is (m,m,m) an extremal element, but it directly dominates any other

Table. That is, although the preorder �GS is not complete, we have:

(m,m,m) �GS (m̄, n̄, r̄)

for all m, m̄, n̄, r̄:

4Alternatively, one cannot find (m̄, n̄, r̄) that displays more AM than (m,n, r) for all distributions, since that
would hold in particular for the extreme value distributions used in the SEV approach; but that is impossible since
ΦSEV (m,m,m) = +∞.
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5 Alternative measures of Assortativeness

There have been a number of approaches to measure assortativeness in the literature, that are not

necessarily based on some underlying structural model, at least explicitly. We now examine some

common or influential measures, based on the criteria we have developed.

5.1 Correlation and χ2

Probably the simplest way of measuring the degree of assortativeness is to compute the correlation

between husband’s and wife’s educations. This has been used in various contributions (for instance

Greenwood et al., 2003, 2014), either explicitly or through a linear regression framework.5

In our 2 × 2 setting, we can consider female (resp. male) education as a Bernoulli random

variable taking the value E with probability m (resp. n). Then the correlation is simply:

ICorr (m,n, r) =
r −mn√

mn (1−m) (1− n)

which leads to the following definition:

Definition 12 A Table (m,n, r) displays more AM than (m̄, n̄, r̄) in the correlation sense if and

only if

ICorr (m,n, r) ≥ ICorr (m̄, n̄, r̄)

In other words, according to that criterion, one can state that AM has increased if and only

if the correlation between spouses’ educations has increased. One can readily check that the two

Properties described in Subsection 4 are satisfied. The correlation is nil for r = mn and increasing

in r; it follows that when comparing tables with the same marginals, the table with more people on

the diagonal will have a larger correlation. Moreover, if m = n = r then ICorr (m,m,m) = 1, which

5An abundant sociological literature, starting with Mare (1991) and including Schwartz and Mare (2005), consider
the so-called ‘log-linear model’, based on regressions of the (log) size of each cell on the (log) size of the corresponding
row and column. This approach, however, generates methodological problems. For one thing, while the various
regressions should satisfy adding up restrictions (since the cell sizes of a given row add up to the size of the row),
no simple condition on the corresponding regression parameters can guarantee that these properties are satisfied.
Moreover, whether such a ‘matching function’ can at all be deduced from a structural matching model is not clear;
for instance, in any structural model the number of people in a given cell would depend on the size of all rows and
columns, not only on the size of that cell’s row and column. See for instance chapter 4 in Chiappori (2017) for a
detailed discussion.
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is the maximum value the correlation can take, which proves that the criterion satisfies the Perfect

Assortative Matching condition.

One can, equivalently, consider the χ2 distance between observed matching patterns and what

would obtain under random matching. For the above Table, the corresponding statistic is just the

square of the correlation:

χ2 =
1

mn

(r −mn)2

(1−m) (1− n)

implying that when comparing Tables that both display PAM, Table (m,n, r) displays more AM

than Table (m̄, n̄, r̄) in the correlation sense if and only if it displays more AM than Table (m̄, n̄, r̄)

in the χ2 sense.

5.2 The minimum distance approach

An alternative approach can be found for instance in Fernández and Rogerson (2001) and Abbott

et al. (2019). The main idea can be described as follows. Starting from a given matrix, consider

two extreme matrices with the same marginals: one corresponds to random matching, the other

to perfectly assortative matching. Then one can construct the convex combination of these two

extreme cases that minimizes the distance with the initial matrix; the corresponding weight can be

used as an indicator of AM, which is equal to zero under random matching and to 1 for perfectly

assortative matching.

We illustrate the idea in Table 4 where the top panel shows random matching, the second panel

is perfect assortative matching for the case where then are more college educated women than men,

and the lowest panel is the convex combination, where λ ∈ [0, 1] must be chosen to provide the

closest approximation to the actual marriage patterns (here, we assume, without loss of generality,

that m ≥ n).

Then λ is chosen to minimize the distance (in the standard, geometric sense) between this convex

combination and the initial matrix; we thus consider the problem:

min
λ

[λn+ (1− λ)mn− r]2 + [λ (m− n) + (1− λ)m (1− n)− (m− r)]2

+ [(1− λ)n (1−m)− (n− r)]2

+ [λ (1−m) + (1− λ) (1−m) (1− n)− (1− n−m+ r)]2
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Table 4: The Fernandez and Rogerson index

Random Matching

w\ h C HS

C mn m (1− n)

HS n (1−m) (1− n) (1−m)

Perfect Assortative Matching

w\ h C HS

C n m− n

HS 0 1−m

Convex Combination

w\ h C HS

C λn+ (1− λ)mn λ (m− n) + (1− λ)m (1− n)

HS (1− λ)n (1−m) λ (1−m) + (1− λ) (1−m) (1− n)

The solution to this minimization problem is the minimum distance index; here, it is equal to:

IMD (m,n, r) =
r −mn
n−mn

which satisfies both the monotonicity criterion and the Perfect Assortative Matching condition.

This suggests the following definition:

Definition 13 A Table (m,n, r) displays more AM than (m̄, n̄, r̄) in the minimum distance sense

if and only if

IMD (m,n, r) ≥ IMD (m̄, n̄, r̄)

5.2.1 Shen’s Perfect-Random Normalization

In a recent contribution, Shen (2019), exploiting an initial suggestion by Liu and Lu (2006), suggests

yet another index, defined by normalizing ‘the random matching counterfactual to equal 0 and

the perfect matching counterfactual to equal 1’ and asking ‘where in between these two bounds

the observed’ (p.14 in Shen (2019)). In other words, the idea is again to compare the existing
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distribution to two benchmarks, namely random and perfectly assortative matchings, by computing

for each diagonal cell the ratio:
observed - random
perfect - random

Although the criterion independently considers each education level, its value, in our 2× 2 case, is

the same for both levels, and equal to (still assuming m ≥ n):

IPRN (m,n, r) =
r −mn
n−mn

which exactly coincides with the minimum distance.

5.3 The likelihood approach

Recent contributions (for instance Eika et al., 2019) refer to yet another criterion. They measure

marital sorting between men of education level I and women of education level J “as the observed

probability that a husband with education level I is married to a wife with education level J, relative

to the probability under random matching with respect to education” (page 2804). This criterion is

justified as follows: “positive (negative) educational assortative mating is defined as men and women

with the same level of education marrying more (less) frequently than what would be expected under

a marriage pattern that is random in terms of education.” (p. 2796, footnote 1).

5.3.1 The likelihood ratios

In practice, this leads to computing two different ratios. One is specific to each education level; in

the 2× 2 case, this approach boils down to using a specific index, namely the likelihood ratio:

IL (m,n, r) =
r

nm

The corresponding preorder becomes:

(m,n, r) �L (m̄, n̄, r̄) if and only if
r

mn
≥ r̄

m̄n̄
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Using this criterion, assortative matching has increased from table (m̄, n̄, r̄) to table (m,n, r) if and

only if the corresponding ratio is larger for table (m,n, r). Using this criterion, Eika et al. (2019)

conclude in particular that, in the US over the last decades, AM has decreased at the top of the

distribution by education.

5.3.2 The weighted sum index

A second index, also used in Eika et al. (2019), considers the weighted sum of likelihood ratios along

the diagonal; the weights, here, may be the probabilities of each education level in either the female

or the male marginal distributions of education - or any convex combination of these two marginals.

In the 2× 2 case, thus, take any weighting function φ (m,n) ∈ [0, 1] such that

min (m,n) ≤ φ (m,n) ≤ max (m,n)

which implies in particular that φ (m,m) = m, and consider the index

ILφ (m,n, r) =
r

nm
× φ (m,n) +

1 + r −m− n
(1−m) (1− n)

× (1− φ (m,n))

For instance, if the weight is simply the fraction of women in each education class, φ (m,n) = m

which gives:

ILF =
r

n
+

1 + r −m− n
1− n

while using the fraction of men in each education class, φ (m,n) = n, gives

ILM =
r

m
+

1 + r −m− n
1−m

Finally, using the average:

φ (m,n) =
m+ n

2

we have that

ILA =
1

2
ILF +

1

2
ILM
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5.3.3 Properties

Interestingly, the properties of these two indices are quite different. Both obviously satisfy the

monotonicity Property defined above. The second, Perfect Assortative Matching condition is also

satisfied by the weighted index, as stated by the following result

Proposition 14 For any φ (m,n) ∈ [0, 1] such that φ (m,m) = m, ILφ (m,n, r) ≤ 2. Moreover,

ILφ (m,m,m) = 2

Proof. Assume for instance that m ≥ n. Then

ILφ (m,n, r) ≤ r

nm
× n+

1 + r −m− n
(1−m) (1− n)

× (1−m) =
r

m
+

1 + r −m− n
1− n

and since r ≤ n

ILφ (m,n, r) ≤
(

1

m
+

1

1− n

)
n+

1

n− 1
(m+ n− 1)

The right hand side expression is increasing in n and decreasing in m; under m ≥ n, its maximum

obtains for m = n, in which case it is equal to 2. Finally, one can readily check that ILφ (m,m,m) =

2.

On the contrary, the non weighted index obviously violates that condition, as it will become

clear from the example in Section 5.5.

5.4 Comparing the indices

A natural question, at that point, relates to the relationships that may exist between the various

criteria defined so far. In particular, the GS criterion introduced above generalizes the various

separable indices that are based on a specific random distribution, in the sense that if Table A

displays more AM than Table B in the GS sense, it also does for any separable criterion. Is this

conclusion also valid for other indices? In other words, is it true that if Table A displays more AM

than Table B in the GS sense, it also does for the correlation (or the χ2), the minimum distance

and the likelihood indices?

Regarding the correlation - χ2 criterion, a positive answer is given by the following result:
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Proposition 15 If a change in (m,n, r) increases AM in the GS sense then it must increase the

χ2 statistic. However, the converse is false: one can find changes that increase the χ2 but do not

increase AM in the GS sense, implying that they decrease AM for some specific distributions of the

random terms.

Proof. See Appendix.

A similar result obtains for the minimum distance criterion:

Proposition 16 If a change in (m,n, r) increases AM in the GS sense then it must increase the

minimum distance index. However, the converse is false: one can find changes that increase the

minimum distance index but do not increase AM in the GS sense, implying that they decrease AM

for some specific distributions of the random terms

Proof. See Appendix.

We now consider the Likelihood criterion. We know that for the simple unweighted likelihood

index, the answer must be negative, since this index does not satisfy the Perfect Assortative Match-

ing condition: any perfectly assortative matching is a maximum element of the GS preorder, while

it may be strictly dominated according to the IL index, as illustrated by the example below.

Regarding the weighted sum index, we only consider the most natural weights, i.e. either male

marginal, female marginal or the average of the two. In all cases, one can easily check that any

change in (m,n, r) that increases AM in the GS sense also increase the weighted likelihood.

5.5 A simple example

We remain in the 2× 2 case and still ignore singles. Assume we compare two tables as in Table 5,

corresponding for instance to two different cohorts in the same economy.

The matching tables are represented in Table 5. In economic terms, between cohorts A and

B, the number of educated people has drastically increased (from 10% to 50%). In cohort A,

matching is positive assortative in the usual sense (more people on the diagonal than would obtain

under random matching); yet, 70% of college graduate men (women) marry a less educated spouse.

Cohort B, on the contrary, displays perfect assortative matching: all college men marry college

women, and conversely.

27



Table 5: Changes in Assortative Matching - An Example

A: Table (.1, .1, .03)

w\h C HS

C .03 .07

HS .07 .83

B: Table (.5, .5, .5)

w\h C HS

C .5 0

HS 0 .5

In such a setting, the Perfect Assortative Matching condition would require that the degree of

PAM is found to increase (or at least not to decrease) when moving from A to B. We now consider

how the various criteria developed above assess the variation.

Standard SEV We start with the basic SEV framework. For cohort A,

ISEV (.1, .1, .03) = 1. 625

which is positive, indicating PAM; regarding cohort B, the index is infinite. Therefore B displays

more AM than A in the SEV sense - as expected from the fact that the SEV criterion satisfies the

Perfect Assortative Matching condition.

Generalized Separable The relevant ratios are for cohort A are

r

m
=
r

n
= .3,

1− n−m+ r

1− n
=

1− n−m+ r

1−m
= .92
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while for cohort B we obtain

r

m
=
r

n
=

1− n−m+ r

1− n
=

1− n−m+ r

1−m
= 1

The four inequalities are satisfied, and we conclude that B displays more AM than A in the GS

sense.

The χ2 criterion Regarding the χ2 criterion, cohort A gives

χ2 (A) = 4. 94× 10−2

while for cohort B

χ2 (B) = 1

and the degree of PAM increases from A to B - reflecting again the fact that the χ2 criterion satisfies

the Perfect Assortative Matching condition.

Minimum distance and perfect-random normalization A similar conclusion obtains with

the minimum distance index (which coincides here with the perfect-random normalization criterion).

For Table A, we have

IMD (.1, .1, .03) = 0.22

while for cohort B

IMD (.5, .5, .5) = 1

Again, the degree of PAM increases from A to B, due to the fact that the minimum distance criterion

satisfies the Perfect Assortative Matching condition.

The likelihood criterion The weighted likelihood criterion gives similar results. Due to sym-

metry, the three usual weightings give the same weighted index of 1.22 for Table A; all indices are

equal to 2 for Table B.
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However, the unweighted criterion gives an opposite answer. Indeed, the indices are

IL (.1, .1, .03) = 3 and IL (.5, .5, .5) = 2

According to that criterion, therefore, cohort B displays less assortative matching than A.

Discussion The previous example illustrates a clear dichotomy between the various criteria under

consideration. All measures but one conclude that AM has increased from A to B, while the

unweighted Likelihood criterion concludes the opposite.

How can this discrepancy be explained? A major challenge faced by any comparison of assorta-

tiveness between matching tables is to disentangle the mechanical effect of changes in the marginals

(i.e., in our case, the distribution of men and women across education classes) from genuine shifts

in economic motivations for educational assortative mating. The SEV criterion and its various gen-

eralizations achieve this by referring to an explicit model; in particular, changes in ‘preferences for

assortativeness’ directly translate into changes in the supermodularity of the structural matrix Z,

irrespective of the distribution of education by genders. Neither the χ2 nor the minimum distance

nor the weighted likelihood criteria rely on a similar, structural interpretation. Yet, their basic,

qualitative properties are similar to those of the separable approaches; in particular, they satisfy

the two properties defined above. From that perspective, the status of the unweighted Likelihood

approach appears to be somewhat problematic. That a matching table characterized by perfect

assortative matching can be found to display strictly less AM than one that does not clearly raises

a serious issue in terms of its ability to measure changes in AM.

6 Beyond the 2× 2 case

The previous approaches can be extended to take singles into account, and generalized to any

(‘small’) number of categories, although this generalization raises specific issues.

6.1 The k × k case

Consider first the case of more educational categories. As mentioned earlier, assortativeness is a

local property; matching patterns can be assortative at the top of the distribution but not at the
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bottom (or conversely). In particular, a comparison of assortativeness between two k × k Tables

can be performed in various ways, potentially leading to different conclusions.

The issue can readily be illustrated in a 3×3 context; as it turns out, all the difficulties generated

in the general case are already present in this setting. Keeping the same interpretation as before,

assume three possible levels of education: college graduates and above (C), high school graduates

(HS) and high school drop-outs (D). The matching patterns conditional on marriage are given in

Table 6, the Table is now: Here, m1 (resp. n1) denotes the fraction of college educated women

Table 6: The k × k case

w\h C HS D

C r1 a n1 − r1 − a

HS b r2 n2 − r2 − b

D m1 − r1 − b m2 − r2 − a 1 + r1 + r2 + a+ b− (m1 +m2 + n1 + n2)

(men), and m2 (n2) of high-school graduates women (men). There are r1 (resp. r2) couples where

both spouses are college (HS) graduates, and total population size is again normalized to 1.

6.1.1 Subtables

When it comes to comparing assortativeness, several perspectives can be adopted. One may concen-

trate on the more educated categories (C and HS) and ask whether, among couples whose spouses

both belong to this set, we see more assortative matching. This amounts to considering the top left

diagonal subtable: and applying any of the previously defined criteria. For the SEV framework, for

Table 7: The 2 × 2 case

w\h C HS

C r1 a

HS b r2

instance, one would compute the (sub)index:

IC,HS = ln
(r1r2
ab

)
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Of course, one could also consider any alternative, diagonal subtable, and define the subindices:

IHS,D = ln

(
r2 (1 + r1 + r2 + a+ b− (m1 +m2 + n1 + n2))

(m2 − r2 − a) (n2 − r2 − b)

)

and IC,D = ln

(
r1 (1 + r1 + r2 + a+ b− (m1 +m2 + n1 + n2))

(m1 − r1 − b) (n1 − r1 − a)

)

The value of these indices can change independently of each other. When comparing two Tables A

and B, for instance, we may find that IC,HS is larger for A (suggesting that A displays more PAM

than B, in the SEV sense, at the top of the distribution) while IHS,D is larger for B (suggesting

the opposite conclusion at the bottom).

6.1.2 Merged tables

Alternatively, one could exclusively concentrate on one particular education category - say, college

and above - and ‘merge’ the remaining categories into a single, ‘everybody else’ class. This would

lead to the following, 2 × 2 merged table: Using for instance the standard SEV approach, the

Table 8: The College versus Others

w\h C Others

C r1 n1 − r1

Others m1 − r1 1 + r1 −m1 − n1

(‘C-specific’) index would then be:

IC = ln

(
r1 (1 + r1 −m1 − n1)
(m1 − r1) (n1 − r1)

)

Here, an increase in IC could be interpreted as ‘college educated people are more likely to marry

their own’ - as opposed to marrying anybody else.

Of course, the previous constructs are by no means specific to the SEV criterion. Whatever crite-

rion is applied, one can consider the 3 (or, in the k× k case, the k (k − 1) /2) diagonal submatrices,

as well as the 3 (or k) category-specific merged matrices, and either compute the corresponding

indices or, in the GS approach, compare the corresponding ratios. Yet, the SEV context, unlike the
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others, offers a precise, structural interpretation of these constructs, that is described in the next

subsection.

6.1.3 Relationships

A natural question, at this point, is whether there exists a relationship between these various

indices. In particular, assume that, when comparing two 3 × 3 tables A and B, we find that the

three subindices IC,HS , IHS,D and IC,D are larger in Table A. Does it imply that A displays more

PAM than B? In particular, should we expect college educated people to be more likely to marry

their own in Table A - that is, the C-specific index IC to be larger for A?

Even in the standard SEV case and the 3× 3 context, the answer to that question happens to

be negative. A counterexample is provided in the next subsection; but it is useful, at this point, to

provide a more theoretical intuition for this result in the SEV case.

Note, first, that in the SEV context merged matrices have a structural interpretation. Consider

a woman i with college education, who can choose between a husband in C,HS or D. As we have

seen, this amounts to choosing the maximum between UCC+ εCi , U
CHS+ εHSi and UCD+ εDi , where

the εXi (X = C,HS,D) are EV distributed.

If we mergeHS andD, the choice is now between UCC+ εCi and max
{
UCHS + εHSi , UCD + εDi

}
.

By a standard property of the EV distribution, this max is itself extreme value distributed. That is,

the choice is now between UCC+ εCi and UCO+ εOi , where ε
O
i follows an extreme value distribution

and where

UCO = ln
(
exp

(
UCHS

)
+ exp

(
UCD

))
It follows that the 2× 2 merged table can be analyzed under the same assumptions as in Section 2.

Actually, as long as we disregard singles, a similar argument can be directly applied to the Z

matrices themselves. To see why, simply note that, following Proposition 3, the 3 × 3 initial table
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can be generated by the structural matrix:

Z =



ln r1 ln a ln (n1 − r1 − a)

ln b ln r2 ln (n2 − r2 − b)

ln (m1 − r1 − b) ln (m2 − r2 − a) ln

 1 + r1 + r2 + a+ b

− (m1 +m2 + n1 + n2)




while the 2× 2 merged table can be generated by the 2× 2 structural matrix:

Z̄ =

 ln r1 ln (n1 − r1)

ln (m1 − r1) ln (1 + r1 −m1 − n1)


In particular, one can check that:

Z̄CO = ln (n1 − r1) = ln
(
expZCHS + expZCD

)
,

and that a similar relationship obtains for the other coefficients.

While an explicit relationship exists between the Zs and the Z̄s, this relationship is highly non

linear; and there is no reason to expect that supermodularity of some of the submatrices in Z would

imply supermodularity of Z̄. Indeed, the following subsection provides a counterexample to this

claim.

6.1.4 A counterexample

Consider the 3× 3 Tables

w\h C HS D

C .2 .1 .1

HS .1 .21 .09

D .1 .09 .01

and

w\h C HS D

C .18 .11 .1

HS .11 .29 .01

D .1 .01 .09

Table A Table B
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For Table A, we get

IC,HS = 1. 435, IC,D = −1. 609, IHS,D = −1. 35 and IC = 0.693

while for Table B:

IC,HS = 1. 462, IC,D = .482, IHS,D = 5.565 and IC = 0.490

All diagonal subindices are larger for B than for A; yet, the C-specific index IC is smaller.

6.2 Introducing singles

Secondly, one can take into account singles as well as married couples. In the standard, SEV model,

the conclusion is clear: taking singles into account does not change the value of any of indices

just defined. The argument is straightforward. The structural matrix
(
ZIJ

)
is estimated from

global matching patterns, including singlehood. The estimation process thus provides values of

the structural parameters ZIJ that depend on the whole marital pattern, including the number of

singles in each category; these estimates would vary should the number of singles change, even when

the (conditional) table of matched couples remains unchanged. The specific properties of extreme

value distributions however imply that the estimate of the supermodular cores - i.e., the second

cross differences ZIJ + ZKL − ZIL − ZKJ for all 1 ≤ I < K ≤ k and all 1 ≤ J < L ≤ k - only

depend on the distribution of matched couples, not on the distribution of singles. Since the SEV

indices are directly related to these supermodular cores, they are not affected either. In practice,

the formal expression of the indices defined above only depend on the number of married couples

in each of the four cells of the matching table; the index conditional on marriage is the same as the

unconditional index.

This property, however, is specific to the extreme value case. For general distributions, changes

in the number of singles affect the estimated supermodular core, therefore the corresponding as-

sortativeness indices. In other words, unconditional matching patterns do not necessarily coincide

with matching patterns conditional on marriage. When it comes to comparing assortativeness be-

tween different tables, two claims like ‘educated people are more likely to marry their own’ and
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‘educated people who marry are more likely to marry their own’ should be distinguished - unless

one is adopting the SEV criterion.

In summary, when comparing two Tables A and B, consider the following three claims:

1. College educated people are more likely to marry their own in A than in B

2. College educated people who marry are more likely to marry their own in A than in B

3. College educated people who marry a (College or High School) educated partner are more

likely to marry their own in A than in B

For the SEV criterion, claims 1 and 2 are equivalent, but they neither imply nor are implied

by claim 3. For other criteria, the three claims are independent. They correspond to different

perspectives, and therefore may well lead to different conclusions.

7 The Data

We bring evidence on changes in assortativeness in marriage by education using the March extract

from the US Current Population Survey (CPS) for the years 1962 to 2019. The survey records socio-

demographic information for all adults in the household, including date of birth, gender, education,

marital status at the time of the interview, as well as unique identifiers for individuals and their

spouses, which allows us to link married couples. We study the changing sorting patterns across

10-year birth cohorts born in the 30s through to the 70s.

One first practical issue is how to define marriage. CPS reports whether households see them-

selves as married; we use this information to identify married couples. We then discard observations

for married couples where the spouses are not living together, which happens in fewer than 2.5%

of all married couples, and where the identifier for spouse is missing, another 0.5% of all couples.

Other family types, including divorced individuals, widows and those never married are classified

as singles. The implication is that cohabiting spouses not reporting themselves as married are also

classified as singles. From 1995 onwards these can be identified from information on the relationship

between any two members of the family; we find that these unions would increase the number of

married couples by about 8.5%.
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Ideally we would like to see the long-lasting marital circumstances that reflect the most relevant

family arrangements for each individual. However, CPS only provides a snapshot of the life of each

respondent, making it difficult to assess the stability of family arrangements. One issue we need to

address is that marriages take place over a long age range and tend to happen later in life among

the more educated. This implies that the sorting patterns observed early in life provide a biased

picture of marital sorting. To minimise this bias, we select the sub-sample of individuals observed at

or past 35 years of age, by which marital rates have stabilised for all education groups as shown in

Figure 1. To keep the age distribution across cohorts comparable while maximising the gap between

the earliest and latest cohorts, we also capped the age range from above, at 44. The latest cohort,

born in the 70s, is truncated in birth year 1975 so that the youngest in that cohort are 44 years old

in the last observation year.

Figure 1: Marital rates by age, education and gender
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We select the sample of married couples with at least one spouse from the respective cohort and

observed while aged 35-44; to that sample we add singles in the same demographic groups. Column

1 of Table 9 shows sample sizes by cohort. Columns 2 and 3 show that the number of single women

exceeds the number of single men, consistent with the fact that women are slightly more populous

in this age group, especially for the earlier cohorts.

In this paper we study sorting patterns by education split into four groups: High-School

Dropouts, which accounts for those who leave education before finishing their 12th grade without
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Table 9: Sample sizes by birth cohort

birth cohort all families single men single women

1930-39 116,899 8,555 13,326

1940-49 147,398 16,815 21,802

1950-59 173,239 28,277 33,069

1960-69 160,474 29,983 33,345

1970-75 85,851 16,096 17,712

any qualifications, High-School graduates, who complete their 12th grade, Some College, represent-

ing those who attended college but did not graduate from a 4-year degree, and College graduates,

for 4-year or more college graduates.6

Figure 2 shows how the distribution of education changed over time, by gender. Some marked

changes in education attainment are evident from the figure, with the share of college educated

individuals increasing sharply for both men and women. Moreover, the concentration of women in

the top education group is lower than that of men at the start of the period, while the reverse is

true by the end of it. These changes imply that direct comparisons of sorting patters across cohorts

do not reveal the direction of change in assortativeness in marriage by education.

8 Marital sorting by education

Marital rates have dropped markedly over time, particularly for those with lower levels of formal

education. Figure 3 shows this. Marital rates are slightly lower for women than for men reflecting a

relative shortage of men that is more pronounced in the earlier part of the period, for older cohorts.

The fall in marital rates has been less pronounced for college graduates, and came to an halt in

the early 2000s. As a consequence, by the end of the period marital rates were about 15% higher

among college graduates than for other education groups.

Figure 4 depicts the rate of homogamous marriages over time among those who marry. The

6In a separate set of results, we also split the latter group further, into 4-year College degrees and Post-graduate
degrees. The results are in all similar to those in the paper. Estimates available from the authors upon request.
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Figure 2: Distribution of education among those aged 35-44 over time, by gender
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Figure 3: Marital rates among 35-44 years old over time, by education and gender
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figure shows an initial drop in the proportion of marriages of like with like, which reverses into

a sharp increase from the end of the 1980s that continues today (Shen (2019) reports a similar

finding). The earliest cohort we consider is 35-44 years old in calendar years 1965-83, precisely

when the probability of homogamous marriages is at its lowest. So our focus will be on the period

of rapid increase in the probablity of marrying one’s own type. Of course, this figure is no proof

of increasing assortativeness. In part, it can be driven by the very substantial changes in the

distribution of education on both sides of the marriage market. It may also be driven by changes in

who gets married, as suggested by the growing divergence in marital rates between college educated
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Figure 4: Rate of homogamous marriages among 35-44 years old over time, conditional on marriage
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individuals and those with lower levels of education shown in Figure3.

The increasing concentration of marriage among more educated individuals stands out very

clearly in the sorting matrices conditional on marriage shown in Table 16. To be concise, the Table

focuses on the two cohorts that are furthest apart, born in the 30s and 70s respectively; similar

figures for the other cohorts can be found in the Online Appendix. The Table reveals a sharp increase

in the proportion of marriages at the high end of the distribution of education, with couples where

both spouses are college graduates amounting to 28% of all couples in the latest cohort. In contrast,

the proportion of couples where both spouses have no qualifications declined from 18.4% to 4.5%

of all unions over the period.

Interestingly, the proportions marrying outside their education class changed very differently for

men and women. In particular, it became much less common for college educated men to marry less

educated women then themselves, but the same is not true for women. For instance, the probability

that a married man with college degree is matched to a wife who is less educated than him dropped

from 60% to 25% across the two cohorts; for women, however, the probability of a college graduate

marrying down actually increased across the two cohorts, from 28% to 33%. So younger high-

educated married women are more likely to be more educated than their spouses in younger than

in older cohorts, while the opposite is true for high educated men.7 We now investigate the extent

7In another paper (Chiappori et al., 2020), we estimated sorting patterns for the UK for the 1945-55 and 1965-75
cohorts. Our results for the UK show similar patterns.
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Table 10: Sorting patterns by education and birth cohort for individuals observed aged 35-45, CPS
data

wife’s education

husband’s High school High Some 4+ years

education dropouts school Coll college

Birth cohort 1930-39

High school dropout 18.4 11.3 1.1 0.4

High school 7.5 24.1 3.3 1.3

Some college 1.4 7.0 3.1 1.4

4+years college 0.6 6.2 5.1 7.8

Birth cohort 1970-79

High school dropout 4.5 2.4 1.2 0.5

High school 2.0 13.5 7.8 5.1

Some college 0.6 4.9 11.5 8.3

4+years college 0.2 2.5 6.5 28.4

to which these patterns reflect changes in assortativeness.

9 Empirical results on changing assortativeness in marriage

Existing evidence on the direction of change in assortativeness in marriage over the recent past is

inconclusive. Most studies use US data and some find evidence of increase in assortativeness by

education and earnings capacity (Chiappori et al., 2017; Greenwood et al., 2014), others find that

assortativeness changed differentially across the distribution of education and declined at the top

(Eika et al., 2019), and a recent paper finds that assortativeness did not change monotonically over

time, having first dropped until the turn of the millennium, and then increased. The comparison

across cohorts, however, is confounded by large changes in the distribution of education that we

document above. We have argued that changes in the composition of the marriage market limit
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our ability to assess changes in assortativeness without relying on specific assumptions about the

structure of the matching model. Here we apply the measures we discussed to bring new evidence

on changes in assortativeness in the US marriage market and what drives them.

To keep the results concise while highlighting the most relevant sorting patterns, we will show

estimates for changes in assortativeness along the main diagonal only. In practice, this means that

we will study the entire subset of 2 × 2 sub-matrices that keep same education marriages in the

main diagonal. To this, we will add comparisons for the merged sorting tables, conditional and

unconditional on marriage as described in Section 6.

To be precise, for a sorting matrix over 4 levels of education (1 to 4) as follows

man\woman 1 2 3 4

1 s11 s12 s13 s14

2 s21 s22 s13 s24

3 s31 s32 s33 s14

4 s41 s42 s43 s44

we will study changes in assortativeness for each of the following 2× 2 submatrices

sII sIJ

sJI sJJ

for (I, J) = (1, 2), (2, 3), (3, 4), (1, 3), (2, 4), (1, 4)

and for each of the merge matrices

sII
∑

J 6=I sIJ∑
J 6=I sJI

∑
J,K 6=I sJK

for I = 1, . . . , 4.

The latter set of matrices can be constructed both including and excluding singles as part of the

outside option for marrying one’s like.

For each of these matrices we calculate indices of assortativeness and compare changes across

cohorts. As before, we confine attention to the change in sorting patterns between the oldest and

youngest cohorts, born in the 30s and 70s respectively. The full set of comparisons can be found in

the Online Appendix.
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9.1 The generalised separable approach

We first investigate what can be learned from the generalised criteria set out in Proposition 11. This

approach has the advantage of being independent of distributional assumptions about unobserved

preference components for type of partner, unlike the SEV approach that depends on the extreme

value assumption to have a structural interpretation.

Table 11 shows estimated probabilities of homogamous marriages for women and men of different

education levels in the earliest and latest birth cohorts, in columns 1 to 4 and 5 to 8, respectively.

It includes estimates for all the 2 × 2 submatrices along the main diagonal in the top panel, and

for the merged matrices describing the probabilities of marrying your like versus marrying anyone

else excluding and including the option of remaining singles, in the middle and bottom panels,

respectively. An unambiguous, distribution free, increase (decrease) in assortativeness in a 2 × 2

matrix corresponds to the case where the probability of marrying a spouse with the same education

as oneself increases (decreases) for both men and women in each of the 2 education groups. In prac-

tice, these probabilities are defined as ratios and we look at the direction of change in each of them;

changes in the same direction of all four ratios identify an unambiguous change in assortativeness.

What is clear from the tables is that unambiguous changes in assortativeness are very uncommon.

Indeed, the comparison of the four ratios is inconclusive in all cases. In one single case, shown in

the first row of the Table corresponding to the submatrix describing sorting between high-school

dropouts and high school graduates, there is strong evidence of an increase in assortativeness:

all indices increase except for the one in columns 1 and 5, but the drop there is small and not

statistically significant at usual levels. For other groups, the most general set of structural criteria

is inconclusive.

To advance, we further impose that the random component of preferences for the education of

the spouse follows an extreme value distribution. Under this assumption, Proposition 3 and the

discussion that follows it relate changes in the supermodular core of a 2 × 2 surplus matrix to

changes in the SEV index: an increase in that index identifies more assortativeness, while a drop

identifies less assortativeness. We then compare the results from the SEV approach to those from

other indices that have no structural interpretation.

43



44

Table 11: Generalised structural criteria - proportion of homogamous marriages

Birth cohort 1930-39 Birth cohort 1970-75 Clear

low educ high educ low educ high educ change?
woman man woman man woman man woman man

(1) (2) (3) (4) (5) (6) (7) (8) (9)

2×2 sub-matrices

HSD & HS 0.71 0.62 0.68 0.76 0.70 0.65 0.85 0.87 no
(0.003) (0.003) (0.003) (0.003) (0.008) (0.008) (0.004) (0.003)

HSD & SC 0.93 0.95 0.74 0.68 0.88 0.79 0.91 0.95 no
(0.002) (0.002) (0.007) (0.007) (0.006) (0.007) (0.004) (0.003)

HSD & C 0.97 0.98 0.96 0.93 0.95 0.91 0.98 0.99 no
(0.001) (0.001) (0.002) (0.003) (0.004) (0.006) (0.001) (0.001)

HS & SC 0.77 0.88 0.48 0.30 0.73 0.63 0.60 0.70 no
(0.002) (0.002) (0.006) (0.005) (0.005) (0.005) (0.005) (0.005)

HS & C 0.79 0.95 0.86 0.56 0.84 0.73 0.85 0.92 no
(0.002) (0.001) (0.004) (0.004) (0.004) (0.005) (0.003) (0.002)

SC & C 0.38 0.69 0.85 0.61 0.64 0.58 0.77 0.81 no
(0.006) (0.007) (0.004) (0.005) (0.005) (0.005) (0.003) (0.003)

Merged matrix, excl singles

HSD 0.58 0.59 0.81 0.81 0.51 0.53 0.96 0.95 no
(0.003) (0.003) (0.002) (0.002) (0.007) (0.007) (0.001) (0.001)

HS 0.57 0.67 0.79 0.71 0.44 0.48 0.78 0.76 no
(0.003) (0.003) (0.002) (0.002) (0.004) (0.004) (0.003) (0.003)

SC 0.17 0.24 0.88 0.83 0.36 0.46 0.80 0.73 no
(0.003) (0.004) (0.001) (0.001) (0.004) (0.004) (0.003) (0.003)

C 0.28 0.40 0.84 0.76 0.43 0.75 0.73 0.40 no
(0.002) (0.004) (0.002) (0.002) (0.001) (0.003) (0.005) (0.005)

Merged matrix, incl singles

HSD 0.53 0.54 0.82 0.81 0.37 0.38 0.95 0.95 no
(0.003) (0.003) (0.002) (0.002) (0.006) (0.006) (0.001) (0.001)

HS 0.53 0.62 0.81 0.75 0.32 0.34 0.79 0.77 no
(0.002) (0.003) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002)

SC 0.16 0.22 0.89 0.85 0.28 0.34 0.82 0.78 no
(0.003) (0.004) (0.001) (0.001) (0.003) (0.004) (0.002) (0.002)

C 0.27 0.37 0.86 0.79 0.39 0.63 0.82 0.62 no
(0.002) (0.004) (0.001) (0.002) (0.001) (0.003) (0.002) (0.003)

The indices in columns 1 to 4 and 5 to 8 are defined in Proposition 11, calculated for the earliest birth cohort (1930-39) and for

the latest (1070-75), respectively. The top panel shows estimates for all 2×2 submatrices along the main diagonal; the middle

panel shows estimates for the matrices comparing marrying ones equal versus marrying anyone else; the bottom panel includes

singles in the outside option. ‘HSD’, ‘HS’, ‘SC’ and ‘C’ are short-hand for high-school dropouts, high school, some college and

college graduates, respectively. Bootstraped standard errors in parentheses.



9.2 The SEV approach

Panel A of Table 12 reports the differences in the supermodular core of all submatrices that keep

homogamous unions in the main diagonal. The two bottom panels report similar differences for

the merged matrices, first excluding singles from the outside option of homogamous marriages at

each education level in Panel B, and then including singles in Panel C. The Tables also report the

p-value for the two-sided significance test, corrected for multiple hypothesis using the stepdown

method (Romano and Wolf (2005), Romano et al. (2008), Romano and Wolf (2016)). The test used

bootstrapped standard errors based on 1,000 repetitions.

Table 12: Testing changes in marital assortativeness by education between birth cohorts 1930-39
and 1970-75 using the separable extreme value index

Panel A: 2× 2 submatrices

HSD & HS HS & SC SC & C HSD & SC HS & C HSD & C

diff. across cohorts 0.893 0.246 0.580 0.645 0.216 0.470

adjusted p-value 0.000 0.000 0.000 0.000 0.000 0.001

Panel B: merged tables excl. singles

HSD HS SC C

diff. across cohorts 1.312 -0.559 0.396 -0.013

adjusted p-value 0.000 0.000 0.000 0.690

Panel B: merged tables incl. singles

HSD HS SC C

diff. across cohorts 0.841 -1.010 0.108 0.267

adjusted p-value 0.000 0.000 0.003 0.000

‘HSD’, ‘HS’, ‘SC’ and ‘C’ are labels for the 4 education groups, respectively high-school dropouts, high school, some college and

college graduates. Panel A describes test results for the comparison of all 2 × 2 submatrices keeping homogamous couples in the

main diagonal. The columns’ labels for the panel identify the two education groups being contrasted. Panels B and C describe test

results for the merge tables along the main diagonal, respectively excluding and including singles in the outside option of marrying

one’s equal. The columns’ labels identify the separate category. In each panel, first row shows estimates of the difference in the

SEV index between the latest and earliest cohorts. The next row shows the p-values for 2-sided significance testing adjusted for

multiple hypothesis considering all 14 tests together. The test uses bootstrapped standard errors based on 1,000 repetitions.
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Tests for the 2 × 2 submatrices indicate that assortativeness has increased significantly on all

margins being compared. The figures, however, are not as clear once the merged tables are com-

pared, something we show can happen in Section 6.1.3. Whether or not singles are included, these

comparisons show a drop in the odds of high-school graduates to marry their like. For all other

education groups, however, the odds of homogamous marriages have either increased significantly

or not changed significantly over the period.

9.3 Other measures of assortativeness

Table 20 shows similar comparisons using each of the other indices of assortativeness discussed

before. The first six columns in the Table display estimates for each of the 2 × 2 sumbmarices

keeping homogamous marriages in the main diagonal. These results are fully aligned with those

obtained for the SEV index, reinforcing the view that assortativeness increased in all these margins

over the period.
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Table 13: Testing changes in marital assortativeness by education birth cohorts 1930-39 and 1970-75 using other indices

2×2 submatrices merged matrices

HSD HS SC HSD HS HSD conditional on marriage including singles

& HS & SC & C & SC & C & C HSD HS SC C HSD HS SC C

Panel A: X2

diff. across cohorts 0.135 0.064 0.097 0.162 0.112 -0.009 0.066 -0.084 0.026 0.005 -0.015 -0.110 0.008 0.033

adjusted p-value 0.000 0.000 0.000 0.000 0.000 0.336 0.000 0.000 0.000 0.025 0.010 0.000 0.000 0.000

Panel B: Minimum Distance

diff. across cohorts 0.123 0.097 0.022 0.139 -0.036 0.004 0.079 -0.178 0.131 0.106 -0.022 -0.280 0.049 0.165

adjusted p-value 0.000 0.000 0.181 0.000 0.000 0.462 0.000 0.000 0.000 0.000 0.011 0.000 0.000 0.000

Panel C: Likelihood ratio

diff. across cohorts 0.785 0.241 0.299 1.621 1.009 5.024 4.101 -0.029 0.109 -0.304 3.305 -0.347 -0.024 -0.127

adjusted p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.244 0.001 0.000 0.000 0.000 0.417 0.000

Panel D: Weighted sum index

diff. across cohorts 0.147 0.114 0.144 0.115 0.086 -0.005 0.077 -0.141 0.113 0.016 -0.022 -0.243 0.047 0.090

adjusted p-value 0.000 0.000 0.000 0.000 0.000 0.349 0.000 0.000 0.000 0.032 0.011 0.000 0.000 0.000

‘HSD’, ‘HS’, ‘SC’ and ‘C’ are labels for the 4 education groups, respectively high-school dropouts, high school, some college and college graduates. Estimates in the

first 6 columns are for the comparison of all 2 × 2 submatrices keeping homogamous couples in the main diagonal; the next 4 columns show test results for merged

tables excluding singles and the last 4 columns show similar test results including singles. In each panel, the first row shows estimates of the difference in the respective

index between the latest and earliest cohorts. The second row shows the p-values for 2-sided significance testing adjusted for multiple hypothesis considering all 14 tests

together. The test uses bootstrapped standard errors based on 1,000 repetitions.
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The next 8 columns detail results from the comparison of merged tables. Here the figures are

consistent with those obtained for the SEV index in most but not all cases. Specifically, there is

supporting evidence of a drop in the probability of homogamous marriages among HS graduates and

an increase among those with some but not completed college education. The evidence for other

education groups is more mixed. Accounting for singles leads to negative changes in most indices

for high-school dropouts, although the change is small (but nevertheless statistically significant at

conventional levels) in all negative cases. For college graduates, the likelihood ratio test also suggests

a drop in the probability of marrying their own, in line with findings reported in Eika et al. (2019).

This evidence, however, is not corroborated by any of the other measures.

10 Counterfactual analysis

One key advantage of the structural approach, highlighted in Ciscato and Weber (2020) and Chiap-

pori et al. (2020), is that it explicitly links the observed marital patterns with the economic drivers

of sorting, which are the values of matching one’s like as compared to marrying someone else or

not marrying. Under the SEV assumptions, the deterministic surplus from marriage and how it is

shared between the two spouses can be determined from the equilibrium sorting patterns. In turn,

the surplus matrix can be used to determine the sorting patterns in equilibrium. What this allows

us to do is to determine the matching patterns that would result from combining the preferences and

incentives implicit in the sorting patterns of one population, call it cohort 1, and the distribution

of education of another population, cohort 2. We say that the sorting matrix obtained with such

an exercise has the same level of assortativeness as the original sorting matrix for cohort 1 because

it is generated by the same preferences. The two matrices, however, will not be identical if the

distribution of education is different across the two cohorts.

To demonstrate how we construct the counterfactual sorting matrix for cohort 2 using preferences

from cohort 1, suppose there are N education types indexed by I for men and J for women, with

0 representing remaining single.8 Denote by pIJ the proportion of men who are type I and marry

a woman of type J for I = 1, . . . , N and J = 0, . . . , N . Similarly, qIJ is the proportion of women

who are type J and marry a man of type I for I = 0, . . . , N and J = 1, . . . , N . Under the SEV

8For alternative structural approaches to measuring the effects of changes in sorting and empirical results in other
contexts see Fernández (2002); Fernández et al. (2005) amongst others.
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conditions, it is easy to show that the surplus of a match (I, J) is

ZIJ = ln

(
pIJqIJ
pI0q0J

)
for I, J = 1, . . . , N (7)

under the normalization ZI0 = Z0J = 0.

Let (Tm, Tw) be the number of men and women in the market, respectively. Then qIJ equals

pIJTm/Tw and we can rearrange equation 7 to obtain

pIJ = exp

{
ZIJ

2

}
√
pI0
√
q0J

√
Tw
Tm

(8)

and qIJ = exp

{
ZIJ

2

}
√
pI0
√
q0J

√
Tm
Tw

. (9)

Denote by PI and QJ the measure of men of type I and women of type J , respectively. These

can be expressed as follows:

PI = pI0 +

N∑
J=1

pIJ

QJ = q0J +

N∑
I=1

qIJ

Using equations 8 and 9 to replace (pIJ , qIJ) in the above yields

pI0 +
N∑
J=1

exp

{
ZIJ

2

}
√
pI0
√
q0J

√
Tw
Tm
− PI = 0 for I = 1, . . . , N (10)

q0J +
N∑
I=1

exp

{
ZIJ

2

}
√
pI0
√
q0J

√
Tm
Tw
−QJ = 0 for J = 1, . . . , N (11)

which is a system of 2N equations in 2N unknowns, (pI0, q0J , I, J = 1, . . . , N). Equations 8 to

11 determine the sorting patterns (pIJ , qIJ) for all I and J from the structural surplus matrix

Z, the marginal distributions of education (PI , QJ) and the ratio of men to women Tm/Tw. One

can, therefore, combine the preferences of one population, described by Z, with the distributions

of education and gender of another population, described by (PI , QJ) and Tm/Tw, to construct

counterfactual sorting matrices.

Using this procedure, we provide further evidence on changes in assortativeness by comparing
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the sorting patterns for the cohort born in the 70s with what it would have been had preferences

and incentives for sorting been equal to those shown by the 30s cohort. In this exercise, we keep

the distributions of education and gender fixed at the level of the 70s cohort.

Table 14 shows that the value of marriage dropped markedly between the earliest and the latest

cohorts. Indeed, while almost 24% of men born in the 70s are not married at ages 35-44 (last row of

Table, column 1), only half of those would be singles had preferences for marriage remained at the

levels observed for the 30’s cohort. Similar changes are observed for women. Low educated women

experienced especially pronounced drops in the value of marriage. This is revealed by the difference

between the observed and counterfactual singlehood rates for them: had preferences remained intact,

the likelihood of them remaining single would be between a fifth and a seventh of what actually

happened. The one exception is college educated women, who would be 20% more likely to be single

had the value of marriage not increased for them.

Table 14: Counterfactual simulations – rate of singlehood by education

Counterfactual
using

1970’s cohort 1930’s preferences

men women men women

High school dropout 27.58 31.27 12.39 6.57

High school 28.80 30.23 15.18 3.95

Some college 25.75 28.91 16.44 13.71

4+years college 16.40 18.48 6.18 22.67

all 23.62 25.39 12.16 14.17

‘HSD’, ‘HS’, ‘SC’ and ‘C’ are labels for the 4 education groups, respectively high-

school dropouts, high school, some college and college graduates.

Table 14 shows how sorting patterns conditional on marriage have changed as a consequence of

changes in the value of marrying different classes of spouses. The most significant differences are

for marriages with at least one spouse being a college graduate. The contrast between observed

and counterfactual patterns shows that homogamous marriages between college graduates would
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have been 5% less frequent had preferences for marrying different types not changed. The Table

also clearly shows that college graduated men are less likely to marry women who are less educated

than themselves than they would in the counterfactual scenario, while the opposite is true for college

graduated women. This pattern is also evident for other education groups, with the sorting patterns

under 1930’s preferences showing less concentration of marriages above the main diagonal relative to

the observed patterns for the 1970s birth cohort, and more concentration below the main diagonal.

This shows how changes in the value of marrying different spouses led to a drop in the frequency

of ‘classical households’, where the husband is more educated than the wife, and an increase in the

frequency of ‘modern households’, where the wife is more educated.

Table 15: Conterfactual simulations – marital sorting conditional on marriage

Counterfactual using
1970’s cohort 1930’s preferences

HSD HS SC C HSD HS SC C

High school dropout 4.50 2.44 1.17 0.46 4.02 3.31 1.12 0.56

High school 1.96 13.53 7.79 5.11 3.42 14.68 7.17 4.13

Some college 0.63 4.90 11.55 8.28 0.98 6.57 10.25 7.01

4+years college 0.23 2.51 6.52 28.42 0.23 3.41 9.96 23.16

‘HSD’, ‘HS’, ‘SC’ and ‘C’ are labels for the 4 education groups, respectively high-school dropouts, high

school, some college and college graduates.

11 Concluding Remarks

There has been an increased interest in understanding how sorting in the marriage market has

changed. Specifically, is it the case that the tendency to marry someone with a similar level of

education has increased? While this question should be easy to answer it turns out that it is

anything but that. The complications arise from the change in the distribution of education among

both men and women. For example, the proportion of college graduated women now exceeds that

of men. Indeed, various ad hoc indices of changes in sorting have led to opposing conclusions,

particularly at the top of the education distribution.
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To address these issues we develop a structural approach to measuring changes in sorting. We

note that changes in sorting are directly linked to changes in the benefits of marrying ones own type

relative to marrying a different type - i.e. it relates to the structure of the surplus. Based on that

observation and building on Choo and Siow (2006), we derive a parametric criterion for changes in

sorting that relates directly to a model of the marriage market. We then consider a more general

distribution-free index, also linked directly to a structural interpretation. The nonparametric nature

of our index only leads to a partial ordering of matching patterns.

Based on our structural approach, and recognizing the fact that simple indices not directly

related to a model can be useful and indeed widely used, we derive two minimal criteria that any

index should satisfy. We show that most such indices do satisfy these criteria and indeed provide

similar conclusions to our structural index when we consider changes in the data. One exception is

the Likelihood criterion, which violates one of our conditions, and also leads to opposite conclusions

about changes in sorting at the top of the distribution.

Our empirical analysis considers long term changes in marital sorting by education in the US

based on CPS data. First, we apply our index and others that have been suggested in the literature

to compare changes in between the 1930’s cohort and the 1970’s. With all the indices that provide

a complete ordering, other than the likelihood one, we find that sorting right at the top of the

distribution has increased. Our generalized distribution-free index, however gives ambiguous results,

meaning that it is not possible to rank the two matching patterns independently of any assumptions

on the distribution of the random component of preferences.

We then follow an alternative approach where we keep preferences and incentives to sort the

same as they were for the 1930s cohort and we simulate how sorting would have looked like under

the current distribution of education. Again we find that under the 1930s preferences and incentives

we should obtain less sorting at the top.

Understanding how sorting changes is critically important for many key economic and social

issues, including inequality and the intergenerational transmission of human capital. However, it is

important to view sorting through the lens of a model to avoid important pitfalls in its measurement.
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12 Online Appendix

13 Proof of Proposition 3

Proposition 1 implies that for any woman i ∈ I, the probability PIJ of being matched with a man
in category J is given by:

PIJ = Pr
(
U IJ + εJi ≥ U IK + εKi

)
∀K

= Pr
(
εJi − εKi ≥ U IK − U IJ

)
∀K

Symmetrically, that for any man j ∈ J , the probability QIJ of being matched with a woman in
category I is given by:

QIJ = Pr
(
V IJ + νIj ≥ V KJ + νKj

)
∀K

= Pr
(
νIj − νKj ≥ V KJ − V IJ

)
∀K

Using the logistic assumption:

PIJ =
expU IJ∑
K expU IK

and QIJ =
expV IJ∑
K expV KJ

where the U IJ (resp. V IJ) are defined up to 2N normalizations; here, N = 2, which gives 4
normalizations. For Table (m,n, r), these relationships give

P11 =
r

m
=

expU11

expU11 + expU12
, P12 = 1− P11

P21 =
n− r
1−m

=
expU21

expU21 + expU22
, P22 = 1− P21

which, after the normalization U11 = U21 = 0, can be inverted as:

U12 = ln

(
m− r
r

)
,

U22 = ln

(
1 + r −m− n

n− r

)
Similarly,

Q11 =
r

n
=

expV 11

expV 11 + expV 21
, Q21 = 1−Q11

Q12 =
m− r
1− n

=
expV 21

expV 12 + expV 22
, Q22 = 1−Q12

which, after the same normalization V 11 = V 12 = 0, can be inverted as:

V 21 = ln

(
n− r
r

)
,

V 22 = ln

(
1 + r −m− n

m− r

)
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In the end:

Z11 = 0, Z22 = ln

(
(1 + r −m− n)2

(n− r) (m− r)

)
,

Z12 = ln

(
m− r
r

)
and Z21 = ln

(
n− r
r

)
Finally, one can readily see that any alternative normalization than the one used here (U11 = U21 =
V 11 = V 12 = 0) would give different values for the Zij , but would not change the cross difference
Z11 + Z22 − Z12 − Z21. For instance, the form

Z11 = 2 ln r, Z12 = 2 ln (m− r) , Z21 = 2 ln (n− r)
and Z22 = 2 ln (1 + r −m− n)

generates the same matching patterns.

14 Proof of Proposition 8

Define F and G as the cdf of
(
ε1i − ε2i

)
and

(
ν1j − ν2j

)
. With the same notations as above:

P11 = 1− F
(
U12 − U11

)
⇒ U12 − U11 = F−1 (1− P11)

P21 = 1− F
(
U22 − U21

)
⇒ U22 − U21 = F−1 (1− P21)

and under the normalization U11 = U21 = 0

P11 = 1− F
(
U12

)
⇒ U12 = H (1− P11)

P21 = 1− F
(
U22

)
⇒ U22 = H (1− P21)

where H = F−1 is an increasing function mapping R to [0, 1].
Similarly, under the normalization V 11 = V 12 = 0

Q11 = 1−G
(
V 21

)
⇒ V 21 = K (1−Q11)

Q12 = 1−G
(
V 22

)
⇒ V 22 = K (1−Q12)

where K = G−1 is also increasing from R to [0, 1].
Let ∆ denote the supermodular core, which for given m and n depends on r; we thus have that:

∆ (r) = U22 + V 22 − U12 − V 21

= H (1− P21) +K (1−Q12)−H (1− P11)−K (1−Q11)

Here,
P11 =

r

m
, P21 =

n− r
1−m

,Q11 =
r

n
and Q12 =

m− r
1− n

so that

∆ (r) = H

(
1 + r −m− n

1−m

)
+K

(
1 + r −m− n

1− n

)
−H

(
m− r
m

)
−K

(
n− r
n

)
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For given m and n, this expression is increasing in r; therefore ∆ (r) ≥ ∆ (r̄) if and only if r ≥ r̄,
which closes the proof.

15 Proof of Proposition 11

We want to show that shifting from (m,n, r) to (m̄, n̄, r̄) increases Γ , where, as above:

Γ (m,n, r) = H

(
1 + r −m− n

1−m

)
−H

(
m− r
m

)
+K

(
1 + r −m− n

1− n

)
−K

(
n− r
n

)
= D (m,n, r) + E (m,n, r)

where

D (m,n, r) = H

(
1− n− r

1−m

)
−H

(
1− r

m

)
and

E (m,n, r) = K

(
1 + r −m− n

1− n

)
−K

(
n− r
n

)
Since H is increasing, the inequalities in Proposition 11 imply that

H

(
1− n− r

1−m

)
≥ H

(
1− n̄− r̄

1− m̄

)
≥ H

(
1− r̄

m̄

)
≥ H

(
1− r

m

)
where the second inequality comes from Positive Assortative Matching. Therefore

D (m,n, r) ≥ D (m̄, n̄, r̄)

The same holds for E.
Conversely, assume that one of the previous inequalities is violated - say,

H

(
1− n− r

1−m

)
< H

(
1− n̄− r̄

1− m̄

)
Then one can find some small enough δ such that

H

(
1− n− r

1−m

)
< H

(
1− n̄− r̄

1− m̄

)
− 3δ

and one can choose two increasing functions H and K such that

H
(

1− r̄

m̄

)
≥ H

(
1− r

m

)
− δ

K

(
1− m̄− r̄

1− n̄

)
≥ K

(
1− m− r

1− n

)
− δ and

K
(

1− r̄

n̄

)
≥ K

(
1− r

n

)
− δ

It follows that

D (m,n, r) < D (m̄, n̄, r̄)− 2δ and E (m,n, r) ≤ E (m̄, n̄, r̄) + 2δ
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therefore
Γ (m,n, r) < Γ (m̄, n̄, r̄)

16 Proof of Proposition 15

Define:
x =

r

m
, y =

r

n
, z =

1− n−m+ r

1−m
then

m =
y (1− z)

x+ y − xy − yz
, n =

x (1− z)
x+ y − xy − yz

, r =
xy (1− z)

x+ y − xy − yz
and let R be the last ratio:

R =
1− n−m+ r

1− n
=

xz (1− y)

y − xy + xz − yz

We want Positive Assortative Matching, implying :

r ≥ mn⇒ z ≥ 1− x

We therefore define the set S as

S =
{

(x, y, z) ∈ R3 such that x ≥ 0, y ≥ 0, z ≥ 0 and x+ z ≥ 1
}

Note in particular that any change (dx, dy, dz) belonging to S increases the first three ratios of
Proposition 11.

With these notations,

χ2 =
y (1− y) (x+ z − 1)2

y − xy + xz − yz
and we consider an infinitesimal increase (dx, dy, dz) ∈ S such that R does not decrease, i.e. such
that:

(dx, dy, dz)′ .R = yz (1− y) (1− z) dx− xz (1− x) (1− z) dy + xy (1− x) (1− y) dz ≥ 0

We need to check that for any infinitesimal increase (dx, dy, dz) in S that does not decrease R, χ2

increases as well. Here:

∂
(
χ2
)

∂x
=

y (1− y) (x+ z − 1)

(y − xy + xz − yz)2
(
y + z − xy + xz − yz − z2

)
≥ 0

∂
(
χ2
)

∂y
=

(x+ z − 1)2

(y − xy + xz − yz)2
(
xy2 + y2z + xz − y2 − 2xyz

)
∂
(
χ2
)

∂z
=

y (1− y) (x+ z − 1)

(y − xy + xz − yz)2
(
x+ y − xy + xz − yz − x2

)
≥ 0

Note that ∂χ2/∂x and ∂χ2/∂z are both nonnegative on S, whereas ∂χ2/∂y may be positive or
negative.
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Define the vectors:

V ′ = (R)′ =

 yz (1− y) (1− z)
−xz (1− x) (1− z)
xy (1− x) (1− y)


W ′ =

(
χ2
)′

=

 yz (1− y)
(
y + z − xy + xz − yz − z2

)
(x+ z − 1)

(
xy2 + y2z + xz − y2 − 2xyz

)
y (1− y)

(
x+ y − xy + xz − yz − x2

)


Figure 5: Vectors V and W

We want that for any vector v with positive components,

v′V ≥ 0⇒ v′W ≥ 0;

this is equivalent to showing thatW belongs to the convex cone generated by (1, 0, 0) , (0, 1, 0) , (0, 0, 1)
and V . If we intersect the cone with the horizontal plan Z = 1 (Figure 5), which is equivalent to
considering the vectors

V̄ =

(
z (1− z)
x (1− x)

,−z (1− z)
y (1− y)

, 1

)
and

W̄ =

((
y + z − xy + xz − yz − z2

)
(x+ y − xy + xz − yz − x2)

,
(x+ z − 1)

(
xy2 + y2z + xz − y2 − 2xyz

)
y (1− y) (x+ y − xy + xz − yz − x2)

, 1

)

then we want W̄ to belong to the convex cone generated by the first unit vector and vector V̄
(Figure 6).

This is equivalent to

(x+ z − 1)
(
xy2 + y2z + xz − y2 − 2xyz

)
y (1− y) (y + z − xy + xz − yz − z2)

> −x (1− x)

y (1− y)
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Figure 6: Vectors V̄ and W̄

therefore
(x+ z − 1)

(
xy2 + y2z + xz − y2 − 2xyz

)
(y + z − xy + xz − yz − z2)

+ x (1− x) ≥ 0

It can readily be checked that the left hand side expression is non negative over S.
Conversely, one can easily find changes (dx, dy, dz) that increase the χ2 but do not increase all

ratios in Proposition 11.

17 Proof of Proposition 16

Here,
IMD (m,n, r) =

r −mn
n−mn

Again, define:

x =
r

m
, y =

r

n
, z =

1− n−m+ r

1−m
then

IMD =
1

x
y (x+ z − 1)

which is increasing in x, y and z on S. It follows that a change in (m,n, r) that increases AM in the
GS sense, therefore increases x, y and z, must increase the minimum distance index. The converse
is obviously false; for instance, if one decreases x and increases z by the same ε, IMD increases, but
the new Table does not display more AM than the initial one in the GS sense since x is smaller.
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18 Sorting Tables for 10-year birth cohorts from the 1930s to the 1970s

Table 16: Sorting patterns by education and birth cohort for individuals observed aged 35-45, CPS
data

wife’s education
husband’s High school High Some 4+ years
education dropouts school Coll college

Birth cohort 1930-39
High school dropout 18.4 11.3 1.1 0.4
High school 7.5 24.1 3.3 1.3
Some college 1.4 7.0 3.1 1.4
4+years college 0.6 6.2 5.1 7.8

Birth cohort 1940-49
High school dropout 8.7 7.2 0.9 0.32
High school 5.0 23.5 4.7 2.11
Some college 1.1 8.5 5.8 2.76
4+years college 0.4 6.3 7.5 14.76

Birth cohort 1950-59
High school dropout 4.7 3.8 1.0 0.26
High school 3.0 19.9 7.1 2.96
Some college 0.9 9.0 10.8 4.84
4+years college 0.2 4.9 8.1 17.93

Birth cohort 1960-69
High school dropout 4.3 3.0 1.1 0.36
High school 2.5 7.4 8.7 4.26
Some college 0.7 6.7 12.0 6.23
4+years college 0.2 3.4 7.1 21.60

Birth cohort 1970-75
High school dropout 4.5 2.4 1.2 0.5
High school 2.0 13.5 7.8 5.1
Some college 0.6 4.9 11.5 8.3
4+years college 0.2 2.5 6.5 28.4
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19 Changes in assortativeness across birth cohorts, from the 1930s to the 1970s

Table 17: Testing changes in marital assortativeness by education birth cohorts 1930-39 and 1940-49 using various indices

2×2 submatrices merged matrices
HSD HS SC HSD HS HSD conditional on marriage including singles
& HS & SC & C & SC & C & C HSD HS SC C HSD HS SC C

Panel A: SEV
diff. across cohorts 0.080 0.049 0.189 0.204 0.075 0.337 0.332 0.014 -0.042 -0.308 0.270 -0.107 -0.072 -0.291
adjusted p-value 0.013 0.358 0.000 0.006 0.199 0.002 0.000 0.590 0.339 0.000 0.000 0.000 0.083 0.000

Panel B: X2

diff. across cohorts -0.001 0.020 0.028 0.124 0.076 0.030 -0.002 0.001 0.001 -0.010 -0.015 -0.019 0.000 -0.009
adjusted p-value 0.834 0.000 0.000 0.000 0.000 0.000 0.936 0.928 0.452 0.000 0.000 0.000 0.935 0.000

Panel C: Minimum Distance
diff. across cohorts -0.006 0.029 0.019 0.070 -0.013 0.008 -0.002 0.003 0.011 -0.044 -0.022 -0.033 0.004 -0.036
adjusted p-value 0.772 0.016 0.590 0.000 0.289 0.332 0.738 0.819 0.309 0.000 0.000 0.000 0.866 0.000

Panel D: Likelihood ratio
diff. across cohorts 0.304 0.046 0.101 0.375 0.201 1.153 0.992 0.021 -0.085 -0.285 0.957 0.008 -0.111 -0.302
adjusted p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.087 0.002 0.000 0.000 0.554 0.000 0.000

Panel E: Weighted sum index
diff. across cohorts -0.001 0.040 0.048 0.089 0.058 0.016 -0.002 0.002 0.008 -0.045 -0.022 -0.028 0.003 -0.037
adjusted p-value 0.870 0.000 0.000 0.000 0.000 0.000 0.938 0.924 0.461 0.000 0.000 0.000 0.942 0.000

Notes: ‘HSD’, ‘HS’, ‘SC’ and ‘C’ are labels for the 4 education groups, respectively high-school dropouts, high school, some college and college graduates. Estimates in
the first 6 columns are for the comparison of all 2 × 2 submatrices keeping homogamous couples in the main diagonal; the next 4 columns show test results for merged
tables excluding singles and the last 4 columns show similar test results including singles. In each panel, the first row shows estimates of the difference in the respective
index between the latest and earliest cohorts. The second row shows the p-values for 2-sided significance testing adjusted for multiple hypothesis considering all 14 tests
together. The test uses bootstrapped standard errors based on 1,000 repetitions.
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Table 18: Testing changes in marital assortativeness by education birth cohorts 1940-49 and 1950-59 using various indices

2×2 submatrices merged matrices
HSD HS SC HSD HS HSD conditional on marriage including singles
& HS & SC & C & SC & C & C HSD HS SC C HSD HS SC C

Panel A: SEV
diff. across cohorts 0.347 -0.005 0.178 0.146 -0.064 0.278 0.523 -0.210 0.125 0.072 0.259 -0.449 0.071 0.205
adjusted p-value 0.000 0.845 0.000 0.063 0.118 0.040 0.000 0.000 0.000 0.002 0.000 0.000 0.015 0.000

Panel B: X2

diff. across cohorts 0.038 0.015 0.041 0.008 0.022 -0.002 0.015 -0.034 0.007 0.004 -0.020 -0.057 0.004 0.011
adjusted p-value 0.000 0.000 0.000 0.683 0.000 0.737 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel C: Minimum Distance
diff. across cohorts 0.030 -0.010 0.002 0.008 -0.056 -0.008 0.018 -0.066 0.046 0.034 -0.032 -0.125 0.026 0.060
adjusted p-value 0.000 0.413 0.861 0.613 0.000 0.275 0.032 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel D: Likelihood ratio
diff. across cohorts 0.467 0.087 -0.048 1.024 0.164 1.863 1.837 -0.009 0.015 0.003 1.315 -0.152 0.007 0.106
adjusted p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.775 0.778 0.911 0.000 0.000 0.736 0.000

Panel E: Weighted sum index
diff. across cohorts 0.046 0.026 0.059 0.005 0.017 -0.001 0.018 -0.049 0.039 0.018 -0.031 -0.106 0.025 0.044
adjusted p-value 0.000 0.000 0.000 0.681 0.000 0.737 0.011 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes: ‘HSD’, ‘HS’, ‘SC’ and ‘C’ are labels for the 4 education groups, respectively high-school dropouts, high school, some college and college graduates. Estimates in
the first 6 columns are for the comparison of all 2 × 2 submatrices keeping homogamous couples in the main diagonal; the next 4 columns show test results for merged
tables excluding singles and the last 4 columns show similar test results including singles. In each panel, the first row shows estimates of the difference in the respective
index between the latest and earliest cohorts. The second row shows the p-values for 2-sided significance testing adjusted for multiple hypothesis considering all 14 tests
together. The test uses bootstrapped standard errors based on 1,000 repetitions.
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Table 19: Testing changes in marital assortativeness by education birth cohorts 1950-59 and 1960-69 using various indices

2×2 submatrices merged matrices
HSD HS SC HSD HS HSD conditional on marriage including singles
& HS & SC & C & SC & C & C HSD HS SC C HSD HS SC C

Panel A: SEV
diff. across cohorts 0.219 0.067 0.167 0.170 0.064 -0.187 0.177 -0.353 0.323 0.304 0.049 -0.439 0.224 0.313
adjusted p-value 0.000 0.057 0.000 0.056 0.178 0.193 0.000 0.000 0.000 0.000 0.174 0.000 0.000 0.000

Panel B: X2

diff. across cohorts 0.039 0.011 0.029 0.011 0.017 -0.024 0.015 -0.045 0.020 0.019 -0.004 -0.032 0.009 0.024
adjusted p-value 0.000 0.008 0.000 0.342 0.022 0.001 0.030 0.000 0.000 0.000 0.450 0.000 0.000 0.000

Panel C: Minimum Distance
diff. across cohorts 0.040 0.023 -0.010 0.040 -0.021 0.001 0.018 -0.098 0.080 0.117 -0.007 -0.109 0.046 0.097
adjusted p-value 0.000 0.005 0.365 0.000 0.001 0.788 0.047 0.000 0.000 0.000 0.448 0.000 0.000 0.000

Panel D: Likelihood ratio
diff. across cohorts 0.105 0.046 0.094 0.291 0.200 0.902 0.597 -0.125 0.175 0.071 0.307 -0.230 0.162 0.151
adjusted p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Panel E: Weighted sum index
diff. across cohorts 0.044 0.019 0.038 0.008 0.013 -0.013 0.017 -0.080 0.070 0.067 -0.007 -0.098 0.042 0.067
adjusted p-value 0.000 0.008 0.000 0.320 0.024 0.001 0.030 0.000 0.000 0.000 0.448 0.000 0.000 0.000

Notes: ‘HSD’, ‘HS’, ‘SC’ and ‘C’ are labels for the 4 education groups, respectively high-school dropouts, high school, some college and college graduates. Estimates in
the first 6 columns are for the comparison of all 2 × 2 submatrices keeping homogamous couples in the main diagonal; the next 4 columns show test results for merged
tables excluding singles and the last 4 columns show similar test results including singles. In each panel, the first row shows estimates of the difference in the respective
index between the latest and earliest cohorts. The second row shows the p-values for 2-sided significance testing adjusted for multiple hypothesis considering all 14 tests
together. The test uses bootstrapped standard errors based on 1,000 repetitions.
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Table 20: Testing changes in marital assortativeness by education birth cohorts 1960-69 and 1970-75 using various indices

2×2 submatrices merged matrices
HSD HS SC HSD HS HSD conditional on marriage including singles
& HS & SC & C & SC & C & C HSD HS SC C HSD HS SC C

Panel A: SEV
diff. across cohorts 0.247 0.135 0.047 0.126 0.141 0.042 0.280 -0.010 -0.010 -0.080 0.263 -0.014 -0.116 0.040
adjusted p-value 0.000 0.001 0.457 0.511 0.003 0.985 0.000 0.760 0.941 0.075 0.000 0.976 0.000 0.329

Panel B: X2

diff. across cohorts 0.059 0.019 -0.001 0.019 -0.003 -0.013 0.039 -0.007 -0.001 -0.008 0.024 -0.002 -0.005 0.007
adjusted p-value 0.000 0.001 0.869 0.459 0.866 0.491 0.000 0.242 0.915 0.001 0.000 0.231 0.000 0.000

Panel C: Minimum Distance
diff. across cohorts 0.060 0.056 0.012 0.022 0.054 0.003 0.044 -0.019 -0.007 -0.001 0.039 -0.012 -0.027 0.044
adjusted p-value 0.000 0.000 0.372 0.141 0.000 0.841 0.000 0.085 0.788 0.956 0.000 0.150 0.000 0.000

Panel D: Likelihood ratio
diff. across cohorts -0.090 0.062 0.152 -0.069 0.443 1.106 0.675 0.085 0.005 -0.094 0.725 0.028 -0.082 -0.083
adjusted p-value 0.030 0.000 0.000 0.239 0.000 0.000 0.000 0.000 0.801 0.000 0.000 0.264 0.000 0.000

Panel E: Weighted sum index
diff. across cohorts 0.058 0.029 -0.001 0.013 -0.002 -0.007 0.043 -0.014 -0.004 -0.023 0.038 -0.011 -0.022 0.016
adjusted p-value 0.000 0.001 0.880 0.451 0.918 0.502 0.000 0.256 0.913 0.002 0.000 0.242 0.000 0.000

Notes: ‘HSD’, ‘HS’, ‘SC’ and ‘C’ are labels for the 4 education groups, respectively high-school dropouts, high school, some college and college graduates. Estimates in
the first 6 columns are for the comparison of all 2 × 2 submatrices keeping homogamous couples in the main diagonal; the next 4 columns show test results for merged
tables excluding singles and the last 4 columns show similar test results including singles. In each panel, the first row shows estimates of the difference in the respective
index between the latest and earliest cohorts. The second row shows the p-values for 2-sided significance testing adjusted for multiple hypothesis considering all 14 tests
together. The test uses bootstrapped standard errors based on 1,000 repetitions.
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