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Abstract

We study a general model of occupational choice and optimal income taxation where

agents have private cost of work that differ across occupations and have both determin-

istic and random components. We apply our framework to study the work decisions of

couples in an extensive set up and give necessary and sufficient conditions under which

joint-working households should be subsidized compared to single-worker households.

1 Introduction

We lay down a discrete choice model in a continuum economy. Each agent must choose

one of a finite number of available alternatives, i.e. one of a finite number of occupations.

The agents differ in their private costs of fulfilling their tasks, so that the economy features

many dimensions of heterogeneity. The government knows the distribution of costs, but
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cannot observe the individual characteristics. However it sees the occupational choices of the

agents, and sets up taxes or subsidies conditional on these choices. We analyze the second

best government program. The first order conditions have interesting structural features that

generalizes the properties derived in the extensive model of labor supply, for instance in Choné

and Laroque (2011) and Choné and Laroque (2005). The vector of pairwise differences in

tax/subsidy across occupations satisfies a linear system featuring the social weights attached

to the various alternatives and the pairwise elasticities of migration from one occupation to

another.

Providing a general approach to optimal taxation and delivering general formulas for taxes

may have a few important advantages. Many recent works within the optimal taxation litera-

ture (e.g., taxation of couples) address questions that require frameworks with multiple dimen-

sions of heterogeneity. Due to the notorious technical complications of the multi-dimensional

screening problem, most analysis are performed imposing several additional assumptions with

unclear consequences on the final results.

We indeed apply the general setup to study the (extensive) labor supply decisions of

couples. There are four possibilities: nobody works, only the man works, only the woman

works, or both work. We focus on the comparison of the tax schedules faced by a member of

a household, depending on the activity of her/his partner. We call positive reinforcement the

situation when the financial incentives to work of an agent are larger when the partner is at

work compared to the case where he/she stays at home: secondary earnings are subsidized.

Conversely, negative reinforcement denotes the case where the incentives to work are smaller

when the partner works than when s/he is unemployed. In the symmetric case, where the two

partners have equal productivities while working, we derive a formula for reinforcement at

the optimum, involving the social weights and the migration elasticities mentioned above. We

find that there is a stronger case for subsidizing working couples than taxing them compared

to single earners.

Three strands of literature are linked to our results. First of all, our approach encompasses

recent models used to study optimal taxation in occupational choice models. These include:

Rothschild and Scheuer (2013) and Rothschild and Scheuer (2015), Ales, Kurnaz, and Sleet
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(2015) and Lockwood, Nathanson, and Weyl (forthcoming). The first two works focus on

general equilibrium effects and externalities across sectors while Ales et al. focus on the

effect of technical change on optimal taxation. They all assume that taxation is uniform

across sectors (as the income tax schedule is the same across sectors and sales taxes are not

considered). Gomes, Lozachmeur, and Pavan (2016) allow for occupation specific taxation and

show the optimality of having production inefficiencies in a context where skills are imperfectly

transferable across occupations. We use our model to address very different questions (optimal

taxation of couples).

Recently there has been a number of studies of couple taxation. These include: Frankel

(2014), Kleven, Kreiner, and Saez (2009), and Immervoll, Kleven, Kreiner, and Verdelin

(2011). Frankel (2014) studies a simple model where the individuals can be of one of two types,

low or high productivity. Their utility functions are linear in consumption. The government

wants to favour the couples who are both of the low type. He finds that negative reinforcement

is attenuated when the level of assortative mating increases. Our paper is complementary to

Kleven, Kreiner, and Saez (2009) along two main dimensions. First, they do not allow for

assortative mating (at least in the derivation of the analytical results). Second, they work with

an exogenous definition of primary and secondary earners in the household. This, in particular

rules out symmetric roles between partners within the couple. Our main contribution with

respect to this literature is that we study all participation margins allowing for joint deviations.

We allow for a ‘non-precise’ order among states for couples. In addition, we remove the

assumption of independence allowing for any sort of assortative mating. We study in detail

the symmetric case that has been ignored by the literature. Immervoll, Kleven, Kreiner, and

Verdelin (2011) has two main limitations compared to our analysis. They first of all assume

uni-dimensional heterogeneity by having a deterministic relationship between the productivity

of the two partners. Moreover, they leave out an important margin: the possibility of moving

from unemployment directly into employment for both partners. As we will explain below,

when positive reinforcement is an optimal policy the margin between unemployment and

employment for both partners is operative and crucial in shaping taxes. The generality of our

approach allows this crucial margin to be operative.
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Finally, our results can be related to the industrial organization (IO) literature, where

positive reinforcement can be seen as bundling discounts. It includes: Armstrong (2011),

McAfee, McMillan, and Whinston (1989), Spence (1980), Salinger (1995). There is an impor-

tant analogy between our analysis and that done in the IO literature, however there are more

relevant differences than what might appear at first sight. First of all, we do not only study

the Rawlsian case (corresponding to the monopolist problem considered in IO).1 Second, the

level of consumption and welfare when inactive in our model is an endogenous variable while

it is exogenously set (to zero) in IO. Another assumption typically made in IO is the nonneg-

ativity of profits in each product which - in our framework - would imply positive taxation to

single partners. This amounts to an implicit condition on Pareto weights in our framework

which we may not want to impose.

The paper is organized as follows. Section 2 lays down a general occupation model with a

finite number of choices. It derives the properties of the agents’ behavior and the first order

conditions associated with the program of the benevolent planner. Section 3 specializes the

model to the labour supply of couples. In this section we mainly study the situations where the

two partners in the couple are taxed equally. We provide a statistics whose sign is equal to that

of reinforcement at the optimum. We discuss the scope for positive reinforcement, depending

on the social weights given to couples where both work, on the elasticity of unemployment

with respect to the unemployment benefit and on the elasticity of the number of two-earners

couples with respect to their net incomes. Section 4 considers two extensions to this case. We

first keep the non-discriminatory condition and allow for multiple productivities. Then we

study the general case where the non-discriminatory condition is removed.

1A further difference here is that in our set up, the agent who is the worse off is endogenously determined

while it is exogenous in the IO literature.
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2 General Setup

There is a finite2 number of occupations i = 0, . . . , I, and a continuum of agents indexed by

their type α ∈ A ⊂ RN . The distribution of types is described by the continuous cumulate F

and the measure of the set A is 1. Occupation i yields a before tax production or income ωi,

i = 0, 1, 2, . . . I, which is observed by the government. Let c = (ci, i = 0, . . . I) be the vector

of net income levels. Since agent’s type is private information, after tax income ci cannot

depend on α but is a function of the observed decision i. The utility of agent α in occupation

i when facing the net income schedule c is ui(ci, α).

Assumption 1 ∀ (i, α), ui(·, α) is increasing and continuously differentiable.

Let ui1(c
i, α) be the derivative of ui with respect to the first argument evaluated at (ci, α).

Assumption 2 ∀ (i, ci), both ui(ci, ·) and ui1(c
i, ·) are continuous.

These assumptions are meant to provide regularity conditions to the problem, but they will

not be used in any specific proof. The key property that will be used throughout the paper is

the possibility of taking derivatives of the measure of the sets associated to each occupation,

µ(Ai(c)), with respect to each element of c.

2.1 Occupation Choice Functions (Labor Supply)

Consider a group of agents facing the net income schedule c := (ci, i = 0, . . . , I). The subset

of agents that chooses i is Ai(c):

Ai(c) := {α|ui(ci, α) > uj(cj, α) for all j 6= i}. (1)

We assume enough regularities in utilities and the distribution F so that we can put a strict

inequality sign, the measures of the sets are well defined and sum up to 1 over all the occu-

2It should be clear from what follows that considering countable many (or a continuum of) occupations is

mainly a matter of ‘techniques’. We believe that virtually nothing is lost in terms of economic intuition by

considering finitely many occupations.
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pations and are differentiable with respect to the after tax incomes.3 The number of agents

who choose i is the measure of the set Ai:

µ(Ai(c)) :=

∫
Ai(c)

dF (α).

Since everyone chooses one of the alternatives, and by assumption the measure of the points

at the borders of the sets is zero,
I∑
i=0

µ(Ai(c)) = 1.

Since for each i the utility function ui is increasing in ci - and it does not depend on cj,

j 6= i - it is easy to see that the set Ai(c) is non-decreasing in ci and non-increasing in cj for

j 6= i. When increasing ci, all the agents that join Ai come from the other sets:

∂µ(Ai(c))

∂ci
= −

I∑
j=0,j 6=i

∂µ(Aj(c))

∂ci
. (2)

2.2 The Planner Program and First Order Conditions

The benevolent planner maximizes a social objective subject to a budget constraint. The

program of the utilitarian planner has the following form
max
c

I∑
i=0

∫
Ai(c)

β(α)ψ(ui(ci, α))dF (α)

I∑
i=0

[
ωi − ci

]
µ(Ai(c)) = G,

(3)

where ψ is a weakly increasing function, and β(α) ≥ 0 with
∫
β(α)dF (α) = 1. Distributional

motives are typically captured by imposing concavity on ψ(·) or some monotonicity on β(·).

Recall that we assumed that the measures of the choice sets are differentiable with respect

to the after tax incomes. The second best program is typically a non convex program, where

the first order conditions are necessary, but may lead to local minima. The first order condi-

tions are nevertheless worth having and help to understand the trade-offs between equity and

efficiency.

3A simple case which we shall use later is one where α = (αi, i = 0, 1, . . . , I) and ui(ci, α) = ci−αi for all i.

The distribution of α has support on a product of intervals Πi=I
i=0[αi, α

i], αi < αi, and is absolutely continuous

with respect to the Lebesgue measure.
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Suppose that some coordinate ci of the government instruments is free to move locally.

With λ the Lagrange multiplier of the budget constraint, the first order condition is

∂L
∂ci

=

∫
Ai(c)

[β(α)ψ′(ui(ci, α))ui1(c
i, α)− λ]dF (α) + λ

I∑
j=0

(ωj − cj)∂µ(Aj(c))

∂ci
= 0, (4)

where ui1 indicates the derivative of ui with respect to the first argument (i.e., the net income

in state i) and all entries of the consumption vector c are at their optimal levels. In order to

lighten notation, we often mute the dependence of the sets Ai on the consumption vector c.

It is useful to divide through by λ and to introduce the average social weight of the agents

that choose state i (again, all values are computed at the optimal levels of consumption):

P (Ai) :=
1

µ(Ai)

∫
Ai

β(α)ψ′(ui(ci, α))ui1(c
i, α)

λ
dF (α).

We now want to discuss some general properties of the system of first order conditions for

this class of problems. We first consider the analysis that describes the tax levels, then the

difference in taxes.

Levels. The first order conditions (4), for i = 0, . . . , I, are

µ(Ai)[P (Ai)− 1] = −
I∑
j=0

∂µ(Aj(c))

∂ci
[ωj − cj] = −

I∑
j=0

∂µ(Aj(c))

∂ci
tj. (5)

where we denote by ti := ωi − ci the total tax paid in state i. The full problem looks for the

simultaneous solution of I+2 equations (the first order conditions plus the budget constraint)

with I+2 unknowns (the ti or ci and the multiplier λ). Acknowledging the endogeneity of the

Pareto weights, the measures of the sets and their derivatives, we will proceed as follows. We

take the Pareto weights, the measure of the sets, and the derivatives of the measures of the

sets as given, we solve for the system (5) of I+1 equations and I+1 unknowns. Then, if such

values are obtained at the optimum they must solve the budget constraint, which delivers the

value of the multiplier λ. The budget constraint of (3), written with the tax levels ti = ωi−ci,

becomes
I∑
i=0

tiµ(Ai(c)) = G.
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Note that ti = G for all i and P (Ai) = 1 for all i is a solution to the system of equations made

of the budget constraint and of the above first order conditions. This requires however that

the parameters, in particular the β(·)s, are compatible with the Pareto weights and that the

after tax incomes ci = ωi −G belong to the domain of ui.

Differences. In order to study the properties of the system when the aim is difference in

taxes, we can use (2) to eliminate some terms in the system (5). One possibility is to eliminate

the (own) derivative of µ(Ai) with respect to ci. We obtain:

µ(Ai)[P (Ai)− 1] =
I∑
j 6=i

∂µ(Aj(c))

∂ci
[ωi − ωj − (ci − cj)]. (6)

or, again using the tax definition

µ(Ai)[P (Ai)− 1] =
I∑
j 6=i

∂µ(Aj(c))

∂ci
[ti − tj]. (7)

We have again I + 2 equations and the same number of unknowns. Notice moreover, that

if we take as parameters the Pareto weights, the measures of the sets together with their

derivatives, system (6) is linear in the differences of taxes.

The left hand side of (6) represents the net value of increasing consumption to agents

in set Ai in the economy absent production considerations and incentives: at the margin,

this is given by the difference between the average Pareto weight for this group and the cost

of funds required to increase consumption to all agents in the set, multiplied by the size

of the population in the set. As it is clear from the definition of the Pareto weights, we

have normalized all values so that the cost of funds equals one, so the cost of funds is our

‘numeraire’.

The right hand side represents the budget effects induced by the changes of the sets Aj

shaped by the incentives. For example, agents moving from Aj to Ai because of the change

in ci will generate a gross (production) return/cost of ωi− ωj and a differential cost of ci− cj

for each agent moving. So the total budget effect is given by the difference between the two

effects (i.e., ti − tj) multiplied by the number of the migrants from Aj to Ai (i.e., ∂µ(Aj(c))
∂ci

).
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A second possibility is to use (2) to eliminate the derivative of one set with respect to each

consumption level, for example ∂µ(A0(c))/∂ci through

∂µ(A0(c))

∂ci
= −

I∑
j=1

∂µ(Aj(c))

∂ci
.

Substituting into (5) yields

µ(Ai)[P (Ai)− 1] = −
I∑
j=1

∂µ(Aj(c))

∂ci
[tj − t0].

Ignoring row 0, we have the following system of dimension I × I

µ(P − 1) = H∆t (8)

whereH is a square matrix with generic element hij = −∂µ(Aj)
∂ci

for j = 1, . . . , I and i = 1, . . . , I,

and ∆t is a I vector with generic element ti− t0 for i = 1, 2, . . . I. Note that from (8) we have

a sort of ’anything goes’ result since for any vector of tax differences, measures and Pareto

weights, we can always find a matrix H that solves condition (8).4 Assuming H invertible,

the vector of tax differences must solve:

∆t = H−1µ(P − 1), (9)

where µ(P−1) stands for the I vector of generic term µ(Ai)(P (Ai)−1). The budget constraint,

together with the first line, indexed 0, of the difference system, would serve to determine the

remaining unknowns, the tax t0 and the multiplier λ. The inverse matrix H−1 has an interest-

ing variational interpretation. When positive, each entry h
(−1)
ij of row i of H−1 represents the

element of proportionality that we should consider in the perturbation strategy for cj. The

perturbation implies an increase in the number of agents in occupation i and a decrease in

the number of agents in occupation 0 with factor of proportionality equal to 1. By adopting

such a perturbation strategy, all movements across occupations other than those in i or 0 fully

offset each other and hence equal zero.

4Of course, the second order conditions must be verified. They impose conditions on the changes of Pareto

weights and measures.
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The system (9) provides a general formula for taxes relative to unemployment. By following

the same steps, replacing A0 and c0 for Ai and ci respectively, we obtain a similar I×I system

delivering taxes with respect to state i.

A typical class of theoretical questions the literature on optimal taxation addresses is the

determination of the set of Pareto weights for which, given certain conditions on H and µ, a

specific property of the vector ∆t holds.

2.3 Special Cases and Interpretation

To interpret our general formulae, we apply them to some special cases that are known in

the literature. From now onwards let α(·) be a vector function α : A → RI+1 that maps the

random type α into a vector of costs of work. A special case of this function is the following.

Let N = I + 1 and α := (αi, i = 0, 1, 2, . . . , I). Then αi(α) may represent the projection

function on the i-th coordinate of the vector α.

Additive Separable Utility Suppose ui(ci, α) = u(c) − αi(α) and denote u1(·) = u′(·).

Since an increase of dci = ε/u′(ci) in the payment ci in occupation i changes utility by the

same amount ε in each occupation, it leaves the distribution of agents fixed. Hence from (3)

and the definition of P (Ai)

dL
λ

=
I∑
i=0

[
µ(Ai)P (Ai)dci − µ(Ai)dci

]
.

Therefore optimality requires:

I∑
i=0

µ(Ai)

u′(ci)
[P (Ai)− 1] = 0. (10)

Using the fact that the agents at the border between sets Ai and Aj satisfy the relation

u(ci)−αi(α) = u(cj)−αj(α), which is linear in utility of net income, if we denote ui := u(ci),

we have5

∂µ(Ai)

∂uj
=
∂µ(Aj)

∂ui
, (11)

5The proof follows from making explicit the definition of the sets and their variations when there is either

a change in ui or in uj . By definition Ai(u) =
{
α|ui − uj > αi − αj , for all j 6= i

}
. Consider a small change
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In our case, this condition can also be written as6

1

u′(cj)

∂µ(Ai(c))

∂cj
=

1

u′(ci)

∂µ(Aj(c))

∂ci
. (12)

Pecuniary Cost Model The pecuniary cost model is a special case of the additive model

where u(ci) = ci. In this model, alternative i entails a pecuniary cost αi(α), hence a net value

of ωi − αi(α) in the absence of government intervention. The assumption of pecuniary costs

rules out income effects so that aggregate supply satisfies a gross substitute property, which

follows from the behavior of the sets Ai defined in (1) specialized to this case. Conditions (12)

and (11) specialize to
∂µ(Ai)

∂cj
=
∂µ(Aj)

∂ci
, (13)

while condition (10) specializes to:7

I∑
i=0

µ(Ai)[P (Ai)− 1] = 0. (14)

Note that in both these models the specialization of the utility functions ui deliver both

consistency restrictions on the Pareto weights (namely, conditions (10) and (14)) and condi-

tions on cross derivatives (conditions (12) and (13)). This is intuitive. Recall that the system

of equations (8) defined by the first order conditions is made of I independent equations that

deliver the differences ti − t0 for i = 1, 2, . . . , I. It must be that the neglected first order con-

dition can be obtained as an identity by appropriately summing the I first order conditions.

duj = du. The corresponding change in Ai is

dAi(u)

duj
=
{
α|ui − uj − duj > αi − αj > ui − uj , ui − uh > αi − αh, for all h 6= i, j

}
.

Equivalently, taking dui = −duj , and replacing ui − αi with uj − αj with ±du:

dAi(u)

duj
=
{
α|uj − ui > αj − αi > uj − ui − dui, uj − uh > αj − αh, for all h 6= i, j

}
=

dAj(u)

dui
.

6The proof uses the fact that cj does not enter ui for j 6= i. Note indeed that the inequalities defining the

different sets are not only linear in the difference in utilities u(ci)− u(cj), an increase in ci induces changes to

the set Aj only because agents move into set Ai from set Aj , i 6= j.
7This condition can also be obtained directly by summing up the first order conditions using the symmetry

of the cross derivatives in (13).
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For this to happen, the elements in the matrix H must be somewhat related to each other,

and this relationship should be consistent with the relationship linking the elements of the

vector µ(P − 1). For the additive separable model (and its special case, the pecuniary model)

indeed, it can be directly verified that by summing up the elements on the left hand side and

on the right hand side of the system µ(P − 1) = H∆t one obtains the first order condition

for c0.

Extensive Margin (Choné & Laroque) The simplest case is when I = 1, i.e., the most

standard extensive model, in which case, we have only one tax rate t1 − t0 = ω − (c1 − c0),

and this rate solves (see condition (7) for i = 0, 1):

P (A1)− 1 =
∂µ(A0)
∂c1

µ(A1)
[t1 − t0] = −

∂µ(A1)
∂c1

µ(A1)
[t1 − t0];

P (A0)− 1 =
∂µ(A1)
∂c0

µ(A0)
[t0 − t1] =

∂µ(A0)
∂c0

µ(A0)
[t1 − t0],

where we used the specialization to the two states case of condition (2): ∂µ(A0)
∂c1

= −∂µ(A1)
∂c1

and

∂µ(A1)
∂c0

= −∂µ(A0)
∂c0

. Since own derivatives are positive (∂µ(A
i)

∂ci
> 0), the sign of t1 − t0 is fully

determined by the sign of P (A1)− 1 or, equivalently, the sign of 1−P (A0), with t1− t0 > 0 if

and only if P (A1) < 1. In the additive separable model, condition (10) together with the first

order conditions, implies

µ(A1)[P (A1)− 1]

u′(c1)
= −µ(A0)[P (A0)− 1]

u′(c0)
= −∂µ(A1)

∂u1
[t1 − t0] = −∂µ(A0)

∂u0
[t1 − t0]. (15)

Three states Immervoll, Kleven, Kreiner, and Verdelin (2011) study a model of couple

taxation with restrictions on the set of borders that make it effectively a simplified version

of our model with I = 2.8 In this case, each occupation has at most two interlinked borders.

8Immervoll, Kleven, Kreiner, and Verdelin (2011) also postulate that there is no agent in the border between

the set A2 and A0, that is ∂µ(A2)
∂c0 = ∂µ(A0)

∂c2 = 0. Guaranteeing this ‘no-border condition’ unconditional on the

payments is effectively requiring only one dimension of heterogeneity. This is hence a simplified version of the

Mirrlees model we discuss below.
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The matrix H takes the form:

H =

 −∂µ(A1)
∂c1

−∂µ(A2)
∂c1

−∂µ(A1)
∂c2

−∂µ(A2)
∂c2

 .
Assuming H invertible - namely, |H| := ∂µ(A1)

∂c1
∂µ(A2)
∂c2
− ∂µ(A2)

∂c1
∂µ(A1)
∂c2

6= 0 - (9) gives the following

necessary condition for tax rates:

t1 − t0 =
1

|H|

{
∂µ(A2)

∂c1
µ(A2)[P (A2)− 1]− ∂µ(A2)

∂c2
µ(A1)[P (A1)− 1]

}
t2 − t0 =

1

|H|

{
∂µ(A1)

∂c2
µ(A1)[P (A1)− 1]− ∂µ(A1)

∂c1
µ(A2)[P (A2)− 1]

}
The tax rate between occupations 1 and 2 can be obtained from t2 − t1 = t2 − t0 − (t1 − t0).

Immervoll, Kleven, Kreiner, and Verdelin (2011) consider the case where ∂µ(A2)
∂c0

= ∂µ(A0)
∂c2

= 0

and hence ∂µ(A1)
∂c2

= −∂µ(A2)
∂c2

. We can hence recover the expression for taxes in their paper:

t2 − t1 =
1

|H|

[
∂µ(A2)

∂c1
+
∂µ(A1)

∂c1

]
µ(A2)[1− P (A2)] =

µ(A2)
∂µ(A2)
∂c2

[1− P (A2)],

where we used the fact that, in this case, the determinant equals |H| =
[
∂µ(A2)
∂c1

+ ∂µ(A1)
∂c1

]
∂µ(A2)
∂c2

.

Intensive Margin (Mirrlees) Consider the following specialization of our model. We let

a gross income ωi represent the production of the worker in occupation i = 0, 1, . . . I(we are

considering a finite number of possible income levels). To simplify the discussion we assume

additive separability:

ui(ci, α) = u(ci)− αi(α),

with u increasing and concave. Assume that ωi is strictly increasing in i and, for each α, αi(α)

is strictly increasing in i. The index i hence represents a measure of ‘intensity’ in the space

of income.9

A crucial assumption in the optimal taxation literature is increasing difference. This

requires the definition of a (complete) order % on the space of types. The increasing difference

9We impose no conditions on ωi, but of course in order to have positive support for each occupation we

would need to make some regularity assumptions. We disregard occupations that are not chosen by any

worker. Appropriate re-labeling allows us to use our indexes without loss of generality.
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assumption (or single crossing of indifference curves) amounts to requiring that for all j > k

we have10

αj(α′)− αk(α′) ≤ αj(α)− αk(α) whenever α′ % α, with strict inequality whenever α′ � α.

Under the assumption of monotonicity of αi(α) in i and increasing difference it is easy to

show the following three facts. (a) net incomes ci increase in i; (b) occupation i has at most

two borders: i − 1 and i + 1; (c) if type α chooses occupation i then type α′ % α chooses

occupation j ≥ i.

The fact that the single crossing condition is based on a complete order on A suggests

that this model has only one true dimension of heterogeneity. Using the analogy to the utility

representation of preferences indeed, under some regularity assumptions in %, there exists a

function θ : A → R with the following property: θ(α′) ≥ θ(α) ⇐⇒ α′ % α. The function

θ is uniquely defined up to a monotone transformation. We can then redefine types in the

unidimensional codomain of θ.

Since only borders i− 1 and i+ 1 are possibly active, the general first order condition (7)

- i.e., when we eliminate the own derivative - for this model specializes to:

µ(Ai)[P (Ai)− 1] =
∂µ(Ai−1)

∂ci
[ti − ti−1] +

∂µ(Ai+1)

∂ci
[ti − ti+1].

We can now recover the optimal taxation formulas. The typical perturbation considered is

an increase in net income cs by u′(ci)
u′(cs)

ε for all s ≥ i. This perturbation implies that no agent

would change occupation for s > i.11 The condition requiring that such a perturbation not

improve on the optimal allocation reads:

ti − ti−1 =
u′(ci)
∂µ(Ai−1)

∂ci

I∑
s=i

µ(As)[P (As)− 1]

u′(cs)
=
µ(Ai)
∂µ(Ai)
∂ui

I∑
s=i

µ(As)[1− P (As)]

u′(cs)µ(Ai)
, (16)

where, again, ui is a shortcut for u(ci) and we use the identity ∂µ(Ai)
∂ci

1
u′(ci)

≡ ∂µ(Ai)
∂ui

. In the above,

we also used the fact that state i has at most two borders, so that condition (2) specialises to

10We could have considered a more general model. Single crossing would again require to define a complete

order over the type space such that uj(c, α)− uk(c, α) > uj(c, α′)− uk(c, α′) for all c, j > k, and α % α′.

11Mechanically, this perturbation allows to isolate the component ∂µ(Ai−1)
∂ci [ti − ti−1] in the first order con-

ditions by taking summation over s ≥ i.
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∂µ(Ai)
∂ci

= −∂µ(Ai−1)
∂ci

− ∂µ(Ai+1)
∂ci

. This formula is analogous to the one obtained in the literature

for the marginal tax rates; in our framework with finite income levels, we obtain expressions of

‘average taxes’ by dividing both sides by ωi−ωi−1. For each i, let Π(i) :=
∑I

s=i
µ(As)[1−P (As)]

u′(cs)
.

Note that Π(0) = 0 by construction. Moreover, the usual distributional motive suggests that

Π(i) increases with i and hence Π(i) > 0 implying that the average tax is always positive.

Similarly, if we increase consumption payment cs by u′(ci)
u′(cs)

for all s < i, so that no agent

would change state for s < i− 1, we obtain as optimality condition:

ti−1 − ti =
µ(Ai)
∂µ(Ai)
∂ui

i−1∑
s=0

µ(As)[1− P (As)]

u′(cs)µ(Ai)
.

The tight relationship between the two tax expressions generalizes the argument we made in

the I = 1 case (see equations (15)) and in this case, they are a corollary to condition (10)

rewritten as:
I∑
s=i

µ(As)[P (As)− 1]

u′(cs)
= −

i−1∑
s=0

µ(As)[P (As)− 1]

u′(cs)
.

Intensive and Extensive (Saez (2002)) Consider now the combination of the intensive

and extensive model, and maintain the separable utility assumption: u(ci) − αi(α). Suppose

that agents also have the border with the set A0.12 Since only borders i− 1, i+ 1, and 0 are

possibly active, the general first order condition (7) for this model specializes to:

µ(Ai)[P (Ai)− 1] =
∂µ(Ai−1)

∂ci
[ti − ti−1] +

∂µ(Ai+1)

∂ci
[ti − ti+1] +

∂µ(A0)

∂ci
[ti − t0].

12In terms of assumptions on the cost function αi(α) we amend the Mirrlees assumption as follows. We

maintain the increasing difference assumption as above for all j, k > 0. We impose no restriction on α0(·) in

terms of the order %. The single crossing condition implies that each agent α faces at most three borders.

Each type that chooses occupation i > 0 might be at the border with i− 1, or with i+ 1 or at the border with

occupation 0. Note indeed that the arguments excluding any other border for k > 0, k 6= i − 1, i + 1 apply

directly. This model admits two genuine dimensions of heterogeneity across agents.
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We can again recover the optimal taxation formula by considering a change in cs by the

amount 1
u′(cs)

for s ≥ i. This perturbation modifies formula (16) as follows:

ti − ti−1 =
u′(ci)
∂µ(Ai)
∂ci

I∑
s=i

µ(As)

u′(cs)

[
1− P (As) +

∂µ(A0)
∂cs

µ(As)
(ts − t0)

]

=
u′(ci)
∂µ(Ai)
∂ci

I∑
s=i

µ(As)

u′(cs)

[
1− P (As) +

∂µ(As)
∂c0

µ(As)

u′(cs)

u′(c0)
(ts − t0)

]

where in the last term in the square bracket we used (12). The average tax between i− 1 and

i gets modified by the additional term
∂µ(A0)
∂cs

µ(As)
(ts − t0) which is negative whenever ts − t0 > 0.

Note that this expression is analogous to that in Saez (2002), page 1055. It expresses the

tax rate ti − ti−1 implicitly, as a function of other tax rates: hence the difficulty to resolve

without understanding the determinants of the sign of ts− t0. Recall that when the matrix H

is invertible, from (9) we obtain the expression for the vector (ts − t0, s = 1, . . . , I) which can

be plugged directly into the above equation and express the tax rate ti− ti−1 as a function of

only elasticities and Pareto weights. In particular, the matrix H in this case takes the form:

H =



h11 h12 0 0 . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

. . . 0 hii−1 hii hii+1 0 . . .

. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . 0 0 hII−1 hII


,

where, recall, hij = −∂µ(Aj)
∂ci

. Any symbolic algebra program (such as Matlab, Maple, or

Mathematica) delivers the inverse as a relatively ugly expression, and the inverse times |H|

as a less ugly expression thanks to the many zeros in the matrix.

As we will see, the model allows for the couple labor supply decision interpretation. In

the next section, we will focus on the extensive margins for each spouse. In Section 4.3 we

will briefly discuss the case with intensive margins. The key element in the structure of the

problem, the one ultimately determining the expressions for optimal taxes, is the structure of

‘borders’ across occupations. Namely, formulas for optimal taxes are crucially shaped by the

set of occupations that have (at least) one common border with each occupation i.
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2.4 Elasticities, Average Taxes, and Income Effects

It is common in optimal taxation literature to express tax rates in terms of elasticities. The

‘consumption elasticity’ of the set Aj when payment i 6= j changes is defined as follows13

ηji := − ∂µ(Aj)

∂(ci − cj)
ci − cj

µ(Aj)
. (17)

Since for j 6= i, ∂µ(A
j)

∂ci
= ∂µ(Aj)

∂(ci−cj) ≤ 0,14 the sign of the elasticity depends on the sign of ci− cj.

If ωi 6= ωj we can define the average tax rate between state i and j as

τ i,j = τ j,i :=
ti − tj

ωi − ωj
,

so that (ci − cj)/(ωi − ωj) = 1− τ i,j, and we can rewrite the system of first order conditions

as:

P (Ai)− 1 = −
I∑
j 6=i

ηji
µ(Aj)

µ(Ai)

τ i,j

1− τ i,j
. (18)

In general, while we always have (by definition) τ i,j = τ j,i, the elasticity ηji is not directly

related to ηij. The main discrepancy might be imputed to ‘income effects’. In the pecuniary

cost model indeed, it is easy to show that, thanks to (13), ηij = ηji . In the additive case a

similar condition (i.e., η̂ij = η̂ji ) holds true for ’utility elasticities’ defined as:

η̂ji := −∂µ(Aj)

∂ui
u(ci)− u(cj)

µ(Aj)
= −∂µ(Aj)

∂ci
u(ci)− u(cj)

u′(ci)µ(Aj)
. (19)

In this paper we will work with tax levels (ti or ∆t) rather than with tax rates τ since incomes

ωi and ωj may be equal, making the tax rate undefined. In the model of Saez (2002)) η0i can be

interpreted as participation elasticities while ηii+1 can be interpreted as intensive elasticities.

13Note that although ci − cj is linear in the two consumption levels, in general the elasticity depends on

which of the two payments (ci or cj) changes. Indeed the changes in the measure of the sets are determined

by changes in utility (not in consumption) of the agents in the border between the two sets Ai and Aj .

However, note that as long as utilities are monotone in consumption, we cannot distinguish consumption

across agents with different α within a given state. This observation, together with the linearity of the budget

constraint in consumption justifies the choice of these elasticities. Note that the estimation of these elasticities

is complicated as they are not even symmetric. They would be symmetric in absence of income effects.
14The equality in the derivative is immediate since the derivatives are computes keeping cj constant.
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These numbers are not easy to obtain in the data. The estimated values of η0i depend both on

the sex of the participant and on the income. For males, η0i is around .2; for females, it ranges

between .6 and 1 (single mothers with low income have a participation elasticity of .6 while

for wives the elasticity may be as high as .9). These numbers decrease with income of the

household (perhaps they are even zero for households with earnings above the median). The

intensive elasticity for men is again approximately .2 while for married woman it is around

.25 for low income earners and up to .5 for middle and high income earners.

3 Taxation of couples

The model we presented in the previous section is well adapted to represent the labor supply

decisions of men and women in couples in as far as they involve multidimensional random

shocks. We specialize the setup into an extensive model. The economy is populated by couples

made of a man and of a woman. Every agent can either work full time or not work. The

couple therefore chooses one of the four states: i = 0 (no one works), 1 (man works, woman

does not), 2 (man does not work, woman does) or 3 (both work). The couple’s production is

ω0 when nobody works, respectively ω1 and ω2 when only one member of the couple works

and ω3 when both are working. We study a unitary model where the choices of the couple are

derived from the maximization of a utility function ui of total after-tax income ci.

We assume that the productivity of any member of the couple is independent of the activity

of her/his partner:

Assumption 3 (Additivity of production)

ω0 = 0, ω3 = ω1 + ω2.

The assumption ω0 = 0 is just a normalization (as all results would be identical if we increased

all ω′s and public expenditure G by the same quantity).
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3.1 Reinforcement

We want to discuss conditions under which the optimal program gives larger (resp. smaller)

incentives to work to the members of the couple when their partner works than when (s)he

does not work. This is the property of positive (resp. negative) reinforcement, which in our

setup comes down formally to the inequality

c3 + c0 ≥ c1 + c2 (positive reinforcement), (20)

c3 + c0 ≤ c1 + c2 (negative reinforcement). (21)

Consider a woman that decides to work in a family where the husband does not work. The

family financial incentive to work is given by the difference between c2 and c0. Consider now

the financial incentive to work for a woman when her husband already works. It is equal to

the difference between c3 and c1. So, if c2−c0 > c3−c1 the woman tax on income is larger (i.e.

the financial incentive to work is lower) when she belongs to a household where the husband

already works. Using the definition of taxes, ti = ωi − ci, we have

t1 + t2 − t3 − t0 = ω1 + ω2 − ω3 − ω0 − c1 − c2 + c3 + c0.

Now under Assumption 3, ω1+ω2−ω3−ω0 is equal to zero. Hence, if we define as reinforcement

term the net sum c3+c0−c1−c2, this term equals t1+t2−(t3+t0), and positive reinforcement

refers to the inequality t1− t0 > t3− t2 or, equivalently if we look at agent 2: t2− t0 > t3− t1.

Remark 1 Note that when the planner has no redistribution motives, that is when utilities

are linear and the welfare function does not have redistributional motives, then the problem

is to only maximize production efficiency. In this case, we have P (Ai) = 1 for i = 0, 1, 2, 3;

ωi − ci + c0 = 0 and c3 = ω3 + c0. When ω3 = ω1 + ω2 we get neither positive nor negative

reinforcement. Moreover, if in addition ω0 = 0 and we do not have any extra resources to pay

the unemployed agents (G = 0), we also have c0 = 0.
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3.2 Graphical representation in the linear case

Consider Figure 1 which provides a graphical representation of the sets Ai(c) in the model

where there are no income effects and N = I + 1 (i.e., ui(ci, α) = ci − αi(α) = ci − αi)

and α0(α) + α3(α) = α1(α) + α2(α) for all α. The plan describes the values taken by the

parameters α. The horizontal axis bears x = α1 − α0, equal to α3 − α2, while y = α2 − α0,

equal to α3 − α1, is on the vertical axis. For any consumption vector, each set Ai(c) is

defined by three linear inequalities in the αs.15 The two panels of Figure 1 represent the

two typical cases of positive and negative reinforcements, positive reinforcement on the left,

negative on the right. Recall indeed that negative reinforcement corresponds to the case

c3 + c0 < c1 + c2 ⇐⇒ c3− c1 < c2− c0 ⇐⇒ c3− c2 < c1− c0. A useful feature of this case

is that negative reinforcement implies that there is no border between the sets A3 and A0.16

15For instance, A0(c) is the set of αs such that

c0 − α0 > c1 − α1, c0 − α0 > c2 − α2, c0 − α0 > c3 − α3.

Using the equality α0 + α3 = α1 + α2, this can be rewritten as

c0 − c1 > α0 − α1 = −x, c0 − c2 > α0 − α2 = −y, c0 − c3 > α0 − α3 = −x− y,

which yields

x > c1 − c0, y > c2 − c0,

the final inequality being always satisfied if x + y > c1 + c2 − 2c0 > c3 − c0, or c1 + c2 > c0 + c3, the case of

negative reinforcement, while it binds when c1 + c2 < c0 + c3, the positive reinforcement case, where we need

to keep

x+ y > c3 − c0 = c3 − c2 + c2 − c0 = c3 − c1 + c1 − c0,

in the definition of the set A0(c).
16In Appendix B we describe a class of preferences - inclusive of the additive separable utility - that excludes

the possibility of any border between A3 and A0 when negative reinforcement holds, under similar restrictions

across the vectors of parameters α.
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α2 − α0 = α3 − α1

A3

A1 A0

A2

c1 − c0

c2 − c0

c3 + c0 > c1 + c2

c3 − c1

c3 − c2

Positive reinforcement

A3

A1 A0

A2

c3 + c0 < c1 + c2

α2 − α0 = α3 − α1

c2 − c0

c3 − c1

α1 − α0 =c1 − c0c3 − c2
α3 − α2

Negative reinforcement

Figure 1: The right figure represents the case with positive reinforcement (subsidizing working cou-

ples) while the left one represents the case with negative reinforcement (taxing working couples).

3.3 Optimality of subsidy to jointly working couples when single

working couples are taxed

As it is transparent from the first order optimality conditions, the Pareto weights play a

crucial role in delivering positive or negative reinforcement. For example, we expect that

positive reinforcement will be favoured by a government that attaches large weights to joint

working couples. This simple conjecture is confirmed by the next proposition.

Proposition 1 Assume the optimal payments are such that ωj − cj + c0 = tj − t0 ≥ 0 for

j = 1, 2 and that under negative enforcement ∂µ(A0(c))
∂c3

= 0. If at the optimum we have

P (A3) ≥ 1, then the program must display positive reinforcement.

Almost all proofs are reported in Appendix A.

Rawlsian Planner with no income effects To show positive reinforcement, the previ-

ous proposition assumes that working couples are taxed. This assumption is implicit in the
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A3

A1 A0

A2

α2 − α0 = α3 − α1

c2 − c0

α1 − α0 = α3 − α2c1 − c0

Figure 2: The symmetric case with independent taxation

nonnegative profit condition for each product in the industrial organization literature (e.g.,

Armstrong (2011)). More precisely, in the IO literature, it is assumed that the firm is making

positive profits on the product, namely ωi − ci ≥ 0, and that c0 = 0. These two assumptions

imply, in particular, ωi− ci + c0 ≥ 0. The IO literature also assumes Rawlsian planner and no

income effects.17 The proposition that follows builds on the analogy with the IO literature and

shows a first important result regarding the desirability of subsidizing joint working couples:

Proposition 2 Assume Rawlsian planner and no income effects. Then

ωi − ci + c0 > 0 for i = 1, 2, 3. (22)

If, in addition for i = 1, 2, the marginals Fi defined on αi − α0 for i = 1, 2, are independent

and log-concave, positive reinforcement is optimal.

The proof of this proposition is based on a generalized version of the independence assump-

tion we will make in Section 3.7 and in particular Lemma 11 in Appendix A. The intuition

17For details on the Rawlsian planner case see Appendix D.
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regarding the optimality of the positive reinforcement is given in Figure 2. There we have

drawn the optimal c1−c0 and c2−c0 lines in case the planner were aiming to maximize revenues

under independent taxation, that is under the restrictions c1−c0 = c3−c2 and c2−c0 = c3−c1.

The optimal level of taxes balances the cost of returns of any perturbation. In particular, con-

sider a decrease in both c1 and c3. At the optimum, in order to have zero effect on total

revenues, it must be that the reduction in revenues induced on the infra-marginals (those in

areas A1 and A3) is fully balanced by the increase in revenues generated by the additional

agents that from A0 will move into A1 (at the top of the figure) and from A2 will move into

A3. That is, the vertical line will marginally move to the right. The fact that the distribution

of α1−α0 - indicated as F1(·) in the proposition - is independent of the level of α2−α0 implies

that this aggregate argument is also valid line by line. Consider now the budget effects of a

marginal decrease in c3 alone. The area A3 will expand. The horizontal expansion will be

such that the reduction in budget is fully compensated by the new taxes paid by movers from

A2 into A3. This change however, also expands A3 vertically. There is hence a net increase in

tax revenues generated by the couples moving from A1 into A3. This argument implies that

a marginal decrease in c3 for the level that is optional under independent taxation, increases

revenues. The log concavity assumption implies that the argument is, in fact, global and at

the optimum we have c3 − c2 < c1 − c0.

3.4 Non Discriminatory Condition

Another case where we can analyze the occurrence of positive or negative reinforcement in

a relatively easy fashion is the situation where the two members of the couple pay the same

taxes when they are single earners: t1 = t2. This is likely to occur at the optimum when

the men and women have identical economic characteristics and therefore are treated equally

in any gender neutral tax scheme. The restriction t1 = t2 to the optimal contract simplifies

the mathematics and allows to concentrate on the fundamental aspects of reinforcement. In

Section 4.2 we will consider the general case.

Assumption 4 (Non discriminatory condition) The policy treats equally the single worker
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couples (gender neutral tax code) t2 = t1 := t.

When the distributions of costs (α0, α1, α3) and (α0, α2, α3) are identical and the two members

of the couple have symmetric productivities (i.e., ω1 = ω2 = ω, ω3 = 2ω), the assumption

t1 = t2 is without loss of generality. It turns out that we never formally use the symmetry of

the distribution and of productivities either in our derivations. We may still have it in mind

as a reference to give a simple economic interpretation to the non discriminatory condition.

Proposition 3 Suppose we restrict the tax scheme to have t1 = t2 = t. If (t3, t, t0) is an

optimal scheme, then the sign of the reinforcement term 2t− t3− t0 is the same as that of the

following expression (evaluated at the optimum):

R :=
µ(A3)

∂µ(A3)
∂c3
− ∂µ(A0)

∂c3

[P (A3)− 1] +
µ(A0)

∂µ(A0)
∂c0
− ∂µ(A3)

∂c0

[P (A0)− 1]. (23)

Remark 2 Note that when both P (A0) = 1 and P (A3) = 1, the optimal program has zero

reinforcement. Indeed, when the tax code is gender neutral, the two by two system of equations

of the proof implies X0 = X3 = 0 and hence t0 − t1 = t3 − t1 = 0, so that all couples face the

same taxes t = G.

The expression (23) for the reinforcement term R is a weighted sum of ‘corrected’ elas-

ticities for the measure of the sets µ(A3) and µ(A0). A nice intuition for the result - and

alternative line of proof - is the following. Suppose R > 0. Consider now an increase in

both c3 and c0 by 1
∂µ(A3)

∂c3
− ∂µ(A

0)

∂c3

and 1
∂µ(A0)

∂c0
− ∂µ(A

3)

∂c0

, respectively. If this change had no effects on

the budget, R > 0 implies that such perturbation would increase welfare. It can be verified

directly that this particular perturbation is such that the number of people moving into A3

from A1 ∪ A2 is the same as those moving into A0 (and all movements between A1 and A2

have no effects on the budget since t1 = t2). If negative reinforcement were true, by definition,

such perturbation would relax the BC violating optimality. As a consequence we cannot have

negative reinforcement when R > 0.

We now move to an interesting special case where the reinforcement term takes a simpler

form and it is even easier to describe intuitively.
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3.5 Exploring further the non discriminatory case

Recall the discussion around Figure 1. In the additive case, negative reinforcement implies

that both ∂µ(A3(c))
∂c0

= 0 and ∂µ(A0(c))
∂c3

= 0. This observation leads to the following sufficient

condition for positive reinforcement that comes as a corollary to Proposition 3.

Corollary 4 Assume that whenever the scheme has negative reinforcement we have ∂µ(A3(c))
∂c0

=

∂µ(A0(c))
∂c3

= 0. If at the optimum we have:18

R̂ :=
µ(A3)
∂µ(A3)
∂c3

[P (A3)− 1] +
µ(A0)
∂µ(A0)
∂c0

[P (A0)− 1] > 0, (24)

then the tax scheme displays positive reinforcement.

Proof. Start from the expression (23). If negative reinforcement implies ∂µ(A3(c))
∂c0

= ∂µ(A0(c))
∂c3

= 0,

negative reinforcement implies a negative R̂. But it cannot be. Since reinforcement is either negative

or positive, R̂ > 0 is a sufficient condition for positive reinforcement. Q.E.D.

The above condition bears obviously on endogenous variables. In Section 3.7 we provide

assumptions on primitives that imply condition (24). In any case, condition (24) has a simple

intuitive meaning we are going to describe. Have a look at the right panel of Figure 1. A nice

feature of not having a direct border between A3 and A0 is that we can consider separately two

key margins. We first have the margin where the household has to decide whether one partner

enters into the labor force or remains with the other member out of the labor force. The second

margin only regards couples that already have one partner working, and it regards the decision

on whether the second partner should work as well or not. The key financial incentive related

to the first margin is c− c0 while the financial incentive governing the second margin is c3− c.

Positive or negative reinforcement follows from the relationship between these two financial

incentives.

18From condition (2) together with ∂µ(A3(c))
∂c0 = ∂µ(A0(c))

∂c3 = 0, under negative reinforcement, we have:

2
∂µ(A)

∂c0
= −∂µ(A0)

∂c0
, and 2

∂µ(A)

∂c3
= −∂µ(A3)

∂c3
.

We hence could get an equivalent expression by replacing these terms in (24).
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In the standard setup, where one margin at a time is considered, the tax on workers would

solve:

[P (A0)− 1]
µ(A0)
∂µ(A0)
∂c0

= ω − (c− c0) = (t− t0).

Analogously, the ‘sequential margins model’ applied to the second decision, would deliver:

[P (A3)− 1]
µ(A3)
∂µ(A3)
∂c3

= −[ω3 − (c3 − c)] = −(t3 − t),

where, recall, t3 = ω3 − c3, t = ω − c, and t0 = −c0. Note that negative reinforcement is

defined as t3− t > t− t0, that is, the second margin is taxed more than the first margin. This

arrangement is optimal when, as in Proposition 4, we have

[P (A3)− 1]
µ(A3)
∂µ(A3)
∂c3

< −[P (A0)− 1]
µ(A0)
∂µ(A0)
∂c0

.

In other terms, negative reinforcement together with the lack of borders between A0 and

A3 (hence right panel of Figure 1) allows us to derive a necessary condition for negative

reinforcement (the negation of condition (24)) as a comparison between two conditions that

look identical to a model where margins can be analyzed in sequence, as in the standard

Mirrlees model. Negative reinforcement is hence analogous to ‘regressivity’, where high income

earners (earning ω3 = 2ω) pay a lower marginal tax on the last unit ω than the tax paid by

low income earners (earning only ω). We know that in the single margin case the ratio

[P (Aj)−1] µ(A
j)

∂µ(Aj)

∂cj

fully determines the sign of the tax, it is just natural that the relative size of

the tax is given by the ratio of these two conditions. That is, it is natural to have expressions

for the reinforcement term that are described as ratios between Pareto weights and elasticities.

That is precisely the way we restate Corollary 4 below:

Corollary 5 Define

r :=

µ(A0)

∂µ(A0)

∂c0

µ(A3)

∂µ(A3)

∂c3

=

∂ log µ(A3)

∂c3

∂ log µ(A0)

∂c0

≥ 0,

computed at the optimal program. If the Pareto weights satisfy

P (A3)− 1 ≥ −r[P (A0)− 1], (25)
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the optimal program exhibits positive reinforcement.

Remark 3 Under the conditions of Corollary 4, since r is positive, condition (25) implies

that when both P (A0) ≥ 1 and P (A3) ≥ 1, the optimal program has positive reinforcement.

Remark 3 indicates that we have positive reinforcement when the government cares a lot

for the unemployed (type 0) and fully working couples (type 3). It then probably tax single

worker families. This is confirmed by the optimality conditions. If we set P (A0) ≥ 1 in

the first order condition with respect to c0 and we assume t2 = t1, since ∂µ(A(c))
∂c0

< 0, implies

ω−(c−c0) = t−t0 ≥ 0, that is, single working households are taxed compared to non-working

households. Since P (A3) ≥ 1 implies t3 − t ≤ 0, we obtain positive reinforcement.

3.6 Pareto weights and reinforcement: a graphical representation

It is instructive to represent graphically the set of Pareto weights that lead to positive re-

inforcement, according to Remark 3, in the simple linear pecuniary setup excluding income

effects. This requires

µ(A0)[P (A0)− 1] + µ(A)[P (A)− 1] + µ(A3)[P (A3)− 1] = 0.

We provide two representations. The first one focuses on the weights of the unemployed

A0 and of the full working A3 households, using the identity to eliminate the single worker

households. The second uses a ‘Machina’ triangle and treats symmetrically A0, A and A3.

Figure 3 represents condition (25) in the (P (A0)− 1, P (A3)− 1) plane. The social weights

being non negative, the domain is contained in the orthant [P (A0)−1 ≥ −1, P (A3)−1 ≥ −1].

It is bounded above by the line

µ(A0)[P (A0)− 1]− µ(A) + µ(A3)[P (A3)− 1] ≤ 0,

or

µ(A0)P (A0) + µ(A3)P (A3) ≤ 1.

This is the dotted line in Figure 3. It joins the representative points R0 of Rawls where

P (A0)− 1 = 1−µ(A0)
µ(A0)

, and P (A) = P (A3) = 0 (hence P (A3)− 1 = −1); and the other extreme
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case where the social planner is only interested in the working couples, denoted as R3, where

P (A3) − 1 = 1−µ(A3)
µ(A3)

, and P (A) = P (A0) = 0 (hence P (A0) − 1 = −1). The feasible set

of social weights is the triangle comprised between the axes and the dotted line. Positive

reinforcement takes place in the portion of the domain delimited by the solid line defined by

(25). The slope of the solid line is −r while that of the dotted line is −µ(A0)/µ(A3), i.e. the

product of −r by the positive quantity

∂µ(A0)
∂c0

∂µ(A3)
∂c3

.

Interestingly, for P (A3) smaller than 1, even for P (A3) equal to zero, this domain is non-

empty. Moreover, it is easy to see that when P (A3) < 1 the set of P (A0) for which there is

positive reinforcement increases with r, all other things equal.

In Figure 4, we give an alternative presentation. The social weights are embedded into a

three dimensional positive orthant. The three dimensional space is intersected with the plan

µ(A0)P (A0) + µ(A)P (A) + µ(A3)P (A3) = 1.

Figure 4 represents this intersection. The three summits of the triangle are respectively

(0, 0, 1/µ(A3)), (1/µ(A0), 0, 0) and 0, 1/µ(A), 0). Equation (25) is a plan in the three dimen-

sional space: its trace on the triangle is the solid line. It intersects the side P (A0) = 0 of the

triangle at a point where P (A3) = 1 + r, according to (25), and the side P (A3) = 0 at a point

where P (A0) = 1 + 1/r. The region of positive reinforcement can be identified by computing

the direction of the inequality sign of (25) at the summits of the triangle.

3.7 The role of the distribution of costs: rawlsian planner, symme-

try and linear utilities

Corollary 5 and the remark that follows show that positive reinforcement is compatible with

a very small P (A3), even P (A3) = 0. A Rawlsian planner would take P (A) = P (A3) =

0. If in addition, we have no income effects then it must be that P (A0) = 1/µ(A0) and

hence P (A0) − 1 = [1 − µ(A0)]/µ(A0).19 In this case we have the following specialization of

19For details on the Rawlsian planner case see Appendix D.
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Figure 3: Two dimensional representation of sufficient conditions for positive reinforcement
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P (A3)

P (A0) P (A)

Positive
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∂µ(A0)/∂c0

µ(A0)
> ∂µ(A3)/∂c3

1−µ(A3)
implies positive reinforcement here

∂µ(A3)/∂c3

µ(A3)
> ∂µ(A0)/∂c0

1−µ(A0)
implies positive reinforcement here

P (A3) = 1 + r

P (A0) = 1 + 1/r

P
(A

0
)

=
0

P
(A

)
=

0

P (A3) = 0

Figure 4: A three dimensional representation of the social weights
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Proposition 3:

Remark 4 Consider the model with no income effects, and a Rawlsian planner. Positive

reinforcement is optimal whenever

r =

∂ log µ(A3)

∂c3

∂ log µ(A0)

∂c0

≥ µ(A0)

1− µ(A0)
.

Later in this section we give conditions on the distribution of α’s for the inequality to be

satisfied. A simple manipulation shows that the inequality can be rewritten as

∂ log µ(A3)

∂c3

−∂ log[1− µ(A0)]

∂c0

≥ 1 (26)

Positive reinforcement is therefore optimal when the semi-elasticity of the measure of the set

A3 with respect to c3 is larger than the opposite of the semi-elasticity of the measure of the set

A∪A3 with respect to c0. The interpretation for this inequality is better seen from considering

Figure 1. The numerator is equal to the semi-elasticity of the measure of the households in

A3 with respect to their after tax income c3. The denominator is the semi-elasticity of the

measure of the households in A ∪ A3 with respect to a decrease in c0, the after tax income

they would get if they decided to join the unemployed. The condition says that positive

reinforcement prevails when the numerator is larger than the denominator, the elasticity of

the smaller set is larger than the one of the bigger (inclusive) one.

Distributional Assumptions: Further Analysis We now investigate the meaning and

plausibility of restrictions on the semi elasticities in (26). Define the function

Φ(x, y) = Pr
{
α1 − α0≤x & α2 − α0≤x | α1 − α0≤y OR α2 − α0≤y

}
.

Note that Φ(x, y) ≤ 1.

Assumption 5 Assume that Φ(x, x+ ε) is (i) increasing [(ii) decreasing] in x for all ε ≥ 0.
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To give an interpretation of Assumption 5, note that

Φ(x, x+ ε) =
µ(A3)(x)

µ(A ∪ A3)(x+ ε)
,

which refers to the right panel of Figure 1 in the symmetric case, assuming that c1 = c2 hence

c3 − c1 = c3 − c2 = x and c1 − c0 = c2 − c0 = x + ε. Assumption 5(i) hence says that as

we increase c3 and decrease c0 by the same amount, the measure µ(A3)(x) increases with x

faster than the measure µ(A∪A3)(x+ ε). This condition can be interpreted as asserting that

assortative mating in couples increases with skills (we can interpret high skilled people those

with low working cost). Formally, we have

Lemma 6 Assume negative reinforcement, symmetry and Assumption 5 (i) [resp. (ii)], then

∂µ(A3(c))
∂c3

µ(A3(c))
−

∂µ(A0(c))
∂c0

1− µ(A0(c))
≥ 0 [resp. ≤ 0] for all c.

To repeat the interpretation, the meaning of condition:

∂µ(A3)
∂c3

µ(A3)
−

∂µ(A0)
∂c0

[1− µ(A0)]
≥ 0,

is as follows. The first term
∂µ(A3)

∂c3

µ(A3)
represents the (positive) hazard rate of joint working couples

with respect to the level of their after tax income. The second term −
∂µ(A0)

∂c0

[1−µ(A0)]
=

∑
j 6=0

∂µ(Aj)

∂c0

[1−µ(A0)]
=

∂[1−µ(A0)]

∂c0

[1−µ(A0)]
represents the (negative) hazard rate of the number of all working couples (with

either one member or both members at work) with respect to the level of unemployment

benefits. This condition speaks to perturbations that increase both c3 and c0 by the same

amount: it says that the first hazard rate dominates the second one.

Suppose now that Φ(x, x) is increasing in x. The question we ask is: what extra assump-

tions are required to get Assumption 5 (i)? We use the log separability of Φ.

Lemma 7 Assume Φ(·, ·) is increasing along the ray x = y. In addition, assume [1−µ(A0)](·)

is log-concave, or µ(A3)(·) is log-convex, or both. Then Assumption 5 (i) is satisfied.

As a corollary, we also have the case considered in Proposition 2.
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Corollary 8 Assume for i = 1, 2, that αi−α0 are distributed independently and symmetrically

and that the cumulate F is log concave. Then Assumption 5 (i) is satisfied.

We now get the same result with an alternative assumption.

Assumption 6 Define the following function:

Ψ(x, y) = Pr
{
α1 − α0≥x & α2 − α0≥x | α1 − α0≥y OR α2 − α0≥y

}
=

µ(A0)(x)

1− µ(A3)(y)
.

Assume Ψ(y + ε, y) (i) decreases [(ii) increases] with y for all ε ≥ 0.

Note that under independence Assumption 6(i) is satisfied for ε = 0.

Proposition 9 Suppose that Assumptions 7 (in Appendix B) and 3 hold and that P (A0) ≥ 1

[resp. P (A0) ≤ 1]. If in addition, Assumption 6 (i) [resp. Assumption 6 (ii)] holds and

µ(A3))P (A3) + (1− µ(A3))P (A0) ≥ 1 then only c3 + c0 > c1 + c2 (positive reinforcement) can

be optimal.

Remark 5 It is easy to see that we might be able to find some weakening of the condition

µ(A3))P (A3)+(1−µ(A3))P (A0) ≥ 1 using some appropriate weights γ0 and γ3. The condition

we just stated on the Pareto weights implies P (A0) ≥ µ(A1)P (A1)+µ(A2)P (A2)
µ(A1)+µ(A2)

that under symmetry

boils down to P (A0) ≥ P (A). See Lemma 11 in Appendix A for details.

4 Extensions

In this section we consider two generalizations to our results. The first one maintains the

assumption of non-discriminatory taxation and generalizes formula to the case with many

productivities and Assumption 4, which in this context can be interpreted as perfect assorta-

tive matching. In Section 4.2 we discuss the general solution to our model of couple taxation

allowing for asymmetry within the couple.
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4.1 The Case with Many Productivities

Consider now the possibility of households with heterogenous gross productivities. We assume

perfect assortative mating. This, together with Assumption 3, implies:20 ω0 = 0, ω1 = ω2 =

ω, ω3 = 2ω, where we abused in notation and use ω to indicate the family productivity.

Because of perfect assortative mating in the economy, whenever one partner works, all about

the family is known. On the other hand, when both partners are unemployed productivity is

not observable.

Proposition 10 Fix ω and assume t1(ω) = t2(ω). The sign of the reinforcement term for

agents ω is the same as that of the following expression:∑
i=1,2

[
∂µ(A3(ω))

∂ci(ω)
− ∂µ(A0)

∂ci(ω)

]
×RR(ω),

where

RR(ω) :=
µ(A3(ω))[P (A3(ω))− 1]

∂µ(A3(ω))
∂c3(ω)

− ∂µ(A0)
∂c3(ω)

+
µ(A(ω))[P (A(ω))− 1]∑
i=1,2

[
∂µ(A3(ω))
∂ci(ω)

− ∂µ(A0)
∂ci(ω)

] .
The intuition for the RR(ω) term is as in the single ω case. We just wrote it using the set

A(ω) = A1(ω) ∪ A2(ω) because the set A0 is common to all ω’s. The extra complication is

that now the sign of
∑

i=1,2

[
∂µ(A0(ω))
∂ci(ω)

− ∂µ(A3(ω))
∂ci(ω)

]
=
∑

i=1,2
∂µ(A(ω))
∂ci(ω)

+ 2∂µ(A
0(ω))

∂ci(ω)
is, in general,

indeterminate. Note that the difference ∂µ(A0(ω))
∂ci(ω)

− ∂µ(A3(ω))
∂ci(ω)

is related to the reinforcement

term since agents moving from A0 into A1 pay t− t0 while agents going from A1 into A3 cost

t3 − t. So this measures how many people have a net return of t− t0 − (t3 − t) - that is, the

negative of the reinforcement term - for the planner (in terms of budget consequences due to

behavioral reactions alone).

We can ask questions such as: is the reinforcement term increasing or decreasing with the

skill of the couple? Simulations would be valuable in this case and are left to the future.

4.2 General Solution

After gaining intuition on a few special cases, we turn to the general formula. The following

delivers the solution for the taxes and reinforcement. We now specialize the system (9) to the

20A similar analysis holds in a ‘gender gap’ model, where ω1 = κω2, with κ 6= 1 constant across families.
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case of optimal taxation of couples:

∆t = H−1(µ(P − 1)),

where ∆t :=
(
t1 − t0, t2 − t0, t3 − t0

)
, µ(P−1) :=

(
µ(A1)[P (A1)− 1], µ(A2)[P (A2)− 1], µ(A3)[P (A3)− 1]

)
,

and

H =


−∂µ(A1)

∂c1
−∂µ(A2)

∂c1
−∂µ(A3)

∂c1

−∂µ(A1)
∂c2

−∂µ(A2)
∂c2

−∂µ(A3)
∂c2

−∂µ(A1)
∂c3

−∂µ(A2)
∂c3

−∂µ(A3)
∂c3

 .
Recall that the value of µ(A0)[P (A0) − 1] and multiplier must be co-determined using the

budget constraints and the condition for the weighted sum of the Pareto weights in case of

income effects. The reinforcement term can be obtained by the following linear combination

of the three rows of the solution: (1, 1,−1). Note indeed that all these values can be seen as

differences with respect to t2, so t1 − t0 + t2 − t0 − (t3 − t0) = t1 − t0 − (t3 − t2), which is our

reinforcement term.

If we assume away income effects we gain some symmetries and the Hessian becomes

H =


a1 −b −e

−b a2 −d

−e −d a3

 ,
and hence

H−1 =
1

∆


a2a3 − d2 ed+ a3b a2e+ bd

ed+ a3b a1a3 − e2 a1d+ eb

a2e+ bd a1d+ eb a2a1 − b2

 .
Note that - of course- µ(A0)[P (A0) − 1] will not appear since it is residual as the weighted

sum of Pareto weight equals one when there are no income effects. As we discussed above, in

the pecuniary model we have:
∑

i=0,1,2,3 µ(Ai)[P (Ai)−1] = 0. Suppose now that property P is

satisfied. Under negative reinforcement we have ∂µ(A3)
∂c0

= 0 and hence ∂µ(A3)
∂c3

= ∂µ(A1)
∂c3

+ ∂µ(A2)
∂c3

.

In terms of our matrix H we have a3 = −(e + d) and hence the (reduced) matrix of the first
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order conditions becomes:

H =


a1 −b −e

−b a2 −d

−e −d −(e+ d)


and hence the expression for the inverse gets simplified accordingly.21

4.3 Couple Taxation with Intensive Margin (Kleven, Kreiner, and

Saez (2009))

In terms of notation, it will be better to consider both subscripts and superscripts. Suppose

the primary earner can choose among N occupations of increasing intensity of work, while

the secondary earner can only choose wether to work or not work. The primary earner’s level

of intensity will be indexed by i = 1, 2, 3, . . . , N while the occupation of the secondary earner

will be indexed by ` = 0, 1. Overall, we have 2 × N occupations. We will denote by ci` the

consumption associated to occupations (i, `). It will be natural to assume that the production

is additive, namely, the income generated in occupation (i, `) will be ωi` = ωi + ω`. We have

ωi − ci` − (ωi−1 − ci−1` ) := ti` − ti−1` . The concept of jointness in Kleven, Kreiner, and Saez

(2009)) regards determining a relationship between ti1 − ti−11 and ti0 − ti−10 which holds for all

i. In particular, they define positive jointness the situation where ti1− ti−11 > ti0− ti−10 for all i

and negative jointness when the inequality is reversed for all i. It is easy to see that the first

order condition with respect to ci` solves:

µ(Ai`)[P (Ai`)− 1] =
∂µ(Ai−1` )

∂ci`
[ti` − ti−1` ] +

∂µ(Ai+1
` )

∂ci`
[ti` − ti+1

` ] +
∑

k∈K(i,`)

∂µ(Ak−`)

∂ci`
[ti` − tk−`].

where−` indicates the complement of `, andK(i, `) is the set of occupations with a border with

(i, `). We can again recover the optimal tax formula proposed by the authors by considering a

21We have

H−1 =
1

∆


−d2 − a2d− a2e (d− b)e− bd a2e+ bd

(d− b)e− b ∗ d −e2 − a1e− a1d be+ a1d

a2e+ bd be+ a1d −b2 + a1a2

 .
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change in cs by the same amount for s ≥ i. Assuming linear utility, this perturbation delivers

our version of the formula in the paper:

ti` − ti−1` =
I∑
s=i

µ(As`)
∂µ(Ai`)

∂ci`

1− P (As`) +
∑

k∈K(s,`)

∂µ(Ak−`)

∂cs

µ(As`)
(ts` − tk−`)

 .
Again, our general formula will deliver expressions for taxes as functions of measures and

Pareto weights and not implicit as it is here. It would be just a matter of matrix inversion. It

is immediate to extend this to the case where the secondary earner is allowed to choose more

than two levels of intensity.
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A Proofs

Proof of Proposition 1. We will show it by contradiction. So assume negative reinforcement,

namely t3 − t1 − (t2 − t0) > 0. Recall the first order condition for c3 in (7) for I = 2. In the case of

negative reinforcement and the assumption in the proposition reads:

µ(A3)[P (A3)− 1] =
∑

j=0,1,2

∂µ(Aj(c))

∂c3
[t3 − tj ] (27)
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Now, since ∂µ(Aj(c))
∂c3

≤ 0, if P (A3) ≥ 1 it must be that for some j ∈ {1, 2}

t3 − tj ≤ 0. (28)

Suppose without loss of generality that j = 1. Since t2 − t0 ≥ 0, from (28), we have

t3 − t1 − (t2 − t0) ≤ 0,

which generates a contradiction to the assumed negative reinforcement. This hence implies that the

optimal contract must have positive reinforcement.

Proof of Proposition 2. See right after Lemma 11.

Proof of Proposition 3. The first order conditions (7) become

µ(A0)[P (A0)− 1] =
∂µ(A1)

∂c0
(t0 − t1) +

∂µ(A2)

∂c0
(t0 − t2) +

∂µ(A3)

∂c0
(t0 − t3)

µ(A1)[P (A1)− 1] =
∂µ(A0)

∂c1
(t1 − t0) +

∂µ(A2)

∂c1
(t1 − t2) +

∂µ(A3)

∂c1
(t1 − t3)

µ(A2)[P (A2)− 1] =
∂µ(A0)

∂c2
(t2 − t0) +

∂µ(A1)

∂c2
(t2 − t1) +

∂µ(A3)

∂c2
(t2 − t3)

µ(A3)[P (A3)− 1] =
∂µ(A0)

∂c3
(t3 − t0) +

∂µ(A1)

∂c3
(t3 − t1) +

∂µ(A2)

∂c3
(t3 − t2).

(29)

We rearrange the first and last rows in order to get rid of t2 (in the first row, we add to both sides

∂µ(A2)/∂c0(t2 − t1), in the last row we add ∂µ(A2)/∂c3(t2 − t1)) we get:

µ(A0)[P (A0)− 1] +
∂µ(A2)

∂c0
(t2 − t1) =

[
∂µ(A1)

∂c0
+
∂µ(A2)

∂c0

]
(t0 − t1) +

∂µ(A3)

∂c0
(t0 − t3)

µ(A3)[P (A3)− 1] +
∂µ(A2)

∂c3
(t2 − t1) =

∂µ(A0)

∂c3
(t3 − t0) +

[
∂µ(A1)

∂c3
+
∂µ(A2)

∂c3

]
(t3 − t1).

Let X0 = µ(A0)(P (A0) − 1) + ∂µ(A2)
∂c0

(t2 − t1) and X3 = µ(A3)(P (A3) − 1) + ∂µ(A2)
∂c3

(t2 − t1). The

system can be considered as a system of two equations in t0− t1 and t3− t1. A simple manipulation

yields

X0 =

[
∂µ(A1)

∂c0
+
∂µ(A2)

∂c0
+
∂µ(A3)

∂c0

]
(t0 − t1)− ∂µ(A3)

∂c0
(t3 − t1)

X3 = −∂µ(A0)

∂c3
(t0 − t1) +

[
∂µ(A0)

∂c3
+
∂µ(A1)

∂c3
+
∂µ(A2)

∂c3

]
(t3 − t1),
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or

∂µ(A0)

∂c0
(t0 − t1) +

∂µ(A3)

∂c0
(t3 − t1) = −X0

∂µ(A0)

∂c3
(t0 − t1) +

∂µ(A3)

∂c3
(t3 − t1) = −X3.

The solution of this two by two system is

t0 − t1 =
1

∆

[
−∂µ(A3)

∂c3
X0 +

∂µ(A3)

∂c0
X3

]
t3 − t1 =

1

∆

[
∂µ(A0)

∂c3
X0 − ∂µ(A0)

∂c0
X3

]
,

where ∆ is the determinant ∂µ(A0)/∂c0∂µ(A3)/∂c3 − ∂µ(A3)/∂c0∂µ(A0)/∂c3 > 0.22 If we force the

no-discriminatory condition t2 = t1 := t,23 the sum of the two equations yields

t3 − 2t+ t0 =

[(
∂µ(A3)
∂c0

− ∂µ(A0)
∂c0

)
µ(A3)[P (A3)− 1]

]
+
[(

∂µ(A0)
∂c3

− ∂µ(A3)
∂c3

)
µ(A0)[P (A0)− 1]

]
∆

,

If we divide both sides by the positive number

(
∂µ(A3)/∂c0 − ∂µ(A0)/∂c0

)
×
(
∂µ(A0)/∂c3 − ∂µ(A3)∂c3

)
we have shown our result.

Proof of Lemma 6. We show it for case (i). Since we are in the negative reinforcement case,

and symmetric, the number µ(A3) can be written as a sole function of one parameter.

µ(A3)(x) = Pr{α1 − α0 ≤ x & α2 − α0 ≤ x},

similarly, under negative reinforcement we can define the measure 1 − µ(A0) as a function of one

parameter,

[1− µ(A0)](y) = Pr{α1 − α0 ≤ y OR α2 − α0 ≤ y}.
22All cross-elements have negative sign while the own derivatives have positive sign. From equation (2) we

know that the cross elements are dominated by the own elements in absolute value.
23Note that if we impose the constraint t1 = t2 to the system, we would only have a multiplier in the second

and third rows of the first order conditions (of course entering with a different sign in the two lines), but the

first order conditions for c0 and c3 will not be affected.

40



Now, as mentioned above, our function Φ solves

Φ(x, y) =
µ(A3(x))

µ(A ∪A3(y))
.

In addition, Φ is log separable. According to this new notation, we have

∂µ(A3)(c)
∂c3

µ(A3)(c)
=

d

dc3
ln[µ(A3(c3 − c))] =

d

dx
ln
(
Φ(c3 − c, c− c0)

)
.

and
−∂µ(A0)(c)

∂c0

[1− µ(A0)(c)]
= − d

dc0
ln[1− µ(A0(c− c0))] =

d

dy
ln
(
Φ(c3 − c, c− c0)

)
Then we can write the required inequality as:

d

dx
ln
(
Φ(c3 − c, c− c0)

)
+

d

dy
ln
(
Φ(c3 − c, c− c0)

)
≥ 0.

Finally, if we define ε := c − c0 − (c3 − c) ≥ 0 we have that the above condition is guaranteed by

ln (Φ(x, x+ ε)) being increasing in x for all ε ≥ 0.

Proof of Lemma 7. For ε ≥ 0 we have

Φ(x, x+ ε) =
µ(A3)(x)

[1− µ(A0)](x+ ε)
.

Hence for ε ≥ 0
d

dx
ln (Φ(x, x+ ε)) ≥ d

dx
ln (Φ(x, x))

whenever d
dx ln[1− µ(A0)](x+ ε) decreases with ε.

Φ(y − ε, y) =
µ(A3)(y − ε)

[1− µ(A0)](y)
.

Hence for ε ≥ 0
d

dy
ln (Φ(y − ε, y)) ≥ d

dy
ln (Φ(y, y))

whenever d
dx lnµ(A3)(y − ε) increases with ε.

Proof of Lemma 8. Note that under independence (and symmetry) Φ(·, ·) is increasing along

the ray x = y. This is so since

Φ(x, x) =
[F (x)]2

1− [1− F (x)]2
=

[F (x)]2

2F (x)− [F (x)]2
=

F (x)

2− F (x).

Then
d

dx
Φ(x, x) =

f(x)

2− F (x)
+

F (x)f(x)

[2− F (x)]2
=

2f(x)

[2− F (x)]2
> 0.
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Proof of Proposition 9. The proof is exactly the same as the proof below for Proposition

10. Before summing over the first order conditions w.r.t. c3 and c0 (30), just divide by µ(A0) and

1− µ(A3) respectively.

Lemma 11 Suppose independence, Assumptions 3 and Property P. In addition, assume ωi−ci+c0 ≥

0 for i = 1, 2, and that Fi is log concave for i = 1, 2, and there exist two non negative numbers γ3 ≥ 1

and γ0 ≤ µ(A0)
1−µ(A0)

such that γ3[P (A3)−1]+γ0[P (A0)−1] ≥ 0. Then a program where c3+c0 < c1+c2

cannot be optimal.

Proof of Lemma 11 Under Property P the derivative of the Lagrangian with respect to c0 and

c3 at contracts satisfying condition (21) (i.e., negative reinforcement) are as follows (the other two

first order conditions do not change):

c3 : µ(A3)[P (A3)− 1]−
∑
j=1,2

∂µ(Aj(c))

∂c3
[ω3 − ωj − (c3 − cj)];

(30)

c0 : µ(A0)[P (A0)− 1]−
∑
j=1,2

∂µ(Aj(c))

∂c0
[−ωj − (c0 − cj)].

Divide now the first line of (30) by γ3µ(A3) and the second line of it by γ0[1− µ(A0)] and sum

them over, where γi = 1
p1

for i = 0, 3. Then we get the expressions

p3[P (A3)−1]+p0
µ(A0)

1− µ(A0)
(P (A0)−1)−

∑
j=1,2

∂µ(Aj(c))
∂c3

[ω3 − ωj − (c3 − cj)]
γ3µ(A3)

−
∑

j=1,2
∂µ(Aj(c))

∂c0
[−ωj − (c0 − cj)]

γ0[1− µ(A0)]
.

By assumption the first term is non-negative, we can now concentrate on the second and third terms.

If we write them explicitly and collect for the same ω’s, we get

(ω2 − c2 + c0)

{
∂µ(A2)
∂c0

γ0[1− µ(A0)]
−

∂µ(A1)
∂c3

γ3µ(A3)

}
(31)

+(ω1 − c1 + c0)

{
∂µ(A1)
∂c0

γ0[1− µ(A0)]
−

∂µ(A2)
∂c3

γ3µ(A3)

}
(32)

+
c3 + c0 − c1 − c2 − ω3 + ω1 + ω2

γ3µ(A3)

[
∂µ(A1)

∂c3
+
∂µ(A2)

∂c3

]
. (33)

The terms (31) and (32) have explicit developments given by (37) in Appendix C. Now, note that the

expression to the right hand side of the first line decreases with F1 and for F1 = 0 it takes the value
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f2(c2−c0)
F2(c2−c0) . Since by negative reinforcement we have c2 − c0 > c3 − c1 log concavity implies positivity

of (31). A similar derivation implies positivity of (32). To see it note that

−∂µ(A1)
∂c0

1− µ(A0)
=

f1(c
1 − c0)[1− F2(c

2 − c0)]
1− (1− F1(c1 − c0))(1− F2(c2 − c0))

−∂µ(A2)
∂c3

µ(A3)
=

f1(c
3 − c2)

F1(c3 − c2)
.

Again the top expression decreases with F2 and for F2 = 0 it takes the value f1(c1−c0)
F1(c1−c0) . Since by

negative reinforcement we have c1 − c0 > c3 − c2 log concavity implies positivity of (32). All this

implies that it cannot be that the derivative of the Lagrangian is zero at this point. We hence have

shown our result for p0 = p3 = 1. It is clear that the condition on p’s reinforce all our inequalities,

hence the result.

Proof of Proposition 2. Consider the case where the worse off household has both its members

unemployed, i.e. is in occupation 0. Under the assumption that ω0 = 0, using the identity linking

the measures of sets to eliminate µ(A0), the first order conditions reduce to

(ω1 − c1 + c0)
∂µ(A1)

∂c1
+ (ω2 − c2 + c0)

∂µ(A2)

∂c1
+ (ω3 − c3 + c0)

∂µ(A3)

∂c1
= µ(A1),

(ω1 − c1 + c0)
∂µ(A1)

∂c2
+ (ω2 − c2 + c0)

∂µ(A2)

∂c2
+ (ω3 − c3 + c0)

∂µ(A3)

∂c2
= µ(A2),

(ω1 − c1 + c0)
∂µ(A1)

∂c3
+ (ω2 − c2 + c0)

∂µ(A2)

∂c3
+ (ω3 − c3 + c0)

∂µ(A3)

∂c3
= µ(A3).

The (3×3) matrix ∂µ(Ai)/∂cj is symmetric dominant diagonal with positive diagonal terms, negative

off diagonal terms, and positive row sums. The symmetry is guaranteed by the no income effects.

The above equalities imply (22). The conclusion is hence an immediate consequence of Lemma 11.

Proof of Proposition 10. Recall that the first order conditions with heterogenous ω is the

same as the single ω for i 6= 0. We are not indicating the ω but note that if in the population there

is a fraction f(ω) of people with a given ω, we could think of a set A0(ω) with measure

µ(A0(ω)) = f(ω)−
∑

i=1,2,3

µ(Ai(ω)),
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where µ(Ai(ω)) are observed by us as someone works here. Of course, note importantly that with

this definition of A0(ω) we can keep the convenient equality for the the sum of the derivatives:

∑
i=0,1,2,3

∂µ(Ai(ω))

∂ck
= 0 ∀k.

On the other hand,
∑

i=0,1,2,3 µ(Ai(ω)[P (Ai(ω)− 1] is typically different from one even for the case

with no income effects. In addition, recall that in order to characterize the reinforcement term we

can neglect one first order condition. If we impose the no-discrimination condition t1 = t2, we denote

A := A2 ∪ A1 and for all ω, t3 = ω1 + ω2 − c3 and ti = ωi − ci, and since for all i dci = dti, we

consider a perturbation such that dc1 = dc2, the first order conditions (6) become:24

µ(A)[P (A)− 1] =
∑
i=1,2

∂µ(A0)

∂ci
(t− t0) +

∑
i=1,2

∂µ(A3)

∂ci
(t− t3)

µ(A3)[P (A3)− 1] =
∂µ(A0)

∂c3
(t3 − t0) +

∂µ(A)

∂c3
(t3 − t).

(34)

where we abused notation and used µ(A1)[P (A1)− 1] +µ(A2)[P (A2)− 1] := µ(A)[P (A)− 1]. Recall

that t3 − t0 = t3 − t+ t− t0, hence the system can be written as a 2X2 as follows

a(t− t0) + b(t3 − t) = X

c(t− t0) + d(t3 − t) = Y.

where a =
∑

i=1,2
∂µ(A0)
∂ci

b = −
∑

i=1,2
∂µ(A3)
∂ci

, c = ∂µ(A0)
∂c3

, d = ∂µ(A0)
∂c3

+ ∂µ(A)
∂c3

. The solution of this

two by two system is given by the inverse - which is the matrix d −b

−c a


divided by the determinat ∆ = ad−bc - multiplied by the vector (X,Y ) = (µ(A)[P (A)−1], µ(A3)[P (A3)−

1]); and it delivers:

t− t0 =
1

∆
[dX − bY ]

t3 − t =
1

∆
[aY − cX] ,

24Note importantly, that when there are wealth effects, the perturbation dc1 = dc2 might generate changes

of people across sets A1 and A2. The assumption t1 = t2 makes these changes irrelevant. They will be

multiplied by t1 − t2 = 0.
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with ∆ > 0.25 As a consequence, for each ω the reinforcement term is given by:

t− t0 − (t3 − t) =
(d+ c)X − (b+ a)Y

∆

=
µ(A)[P (A)− 1]

[
∂µ(A)
∂c3

+ 2∂µ(A
0)

∂c3

]
+ µ(A3)[P (A3)− 1]

∑
i=1,2

[
∂µ(A3)
∂ci

− ∂µ(A0)
∂ci

]
∆

=
µ(A)[P (A)− 1]

[
∂µ(A0)
∂c3

− ∂µ(A3)
∂c3

]
+ µ(A3)[P (A3)− 1]

∑
i=1,2

[
∂µ(A3)
∂ci

− ∂µ(A0)
∂ci

]
∆

where we used the fact that from ∂µ(A0)
∂c3

= −∂µ(A3)
∂c3
− ∂µ(A)

∂c3
we have ∂µ(A)

∂c3
+2∂µ(A

0)
∂c3

= ∂µ(A0)
∂c3
− ∂µ(A3)

∂c3
<

0. If we ignore the determinant and divide the whole expression by−
[
∂µ(A0)
∂c3

− ∂µ(A3)
∂c3

]
> 0, we obtain

the expression in the main statement.

B Special Cases: Property P and No Income Effects

We now show conditions that impose some structure to our problem. It is a joint assumption on

preferences and set of contracts.

Property 1 (P) Given the preferences of the individuals (ui, i = 1, 2, . . . , I), we say that the tuple

(c0, c1, c2, c3) satisfies Property P if for all α the following conditions hold:

• u3(c3, α) ≥ max{u1(c1, α), u2(c2, α)} ⇒ u3(c3, α) ≥ u0(c1 + c2 − c3, α)

• u0(c0, α) ≥ max{u1(c1, α), u2(c2, α)} ⇒ u0(c0, α) ≥ u3(c1 + c2 − c0, α).

Lemma 12 Whenever Property P holds, negative reinforcement (i.e, condition (21)) implies

∂µ(A3(c))

∂c0
=
∂µ(A0(c))

∂c3
= 0.

Immediate from Property P. Just note that the statement is true for c3 + c0 = c1 + c2 so - from

monotonicity - it holds a fortiori when condition (21) holds.

25Indeed we have: ∆ = ad− bc = −∂µ(A
3)

∂c3 × ∂µ(A0)
∂c + ∂µ(A3)

∂c × ∂µ(A0)
∂c3 > 0. This is so since the only positive

number among the four is ∂µ(A3)
∂c3 .
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B.1 Separable cost of work.

We now present an environment where Property P holds for all tuples (c0, c1, c2, c3) that satisfy

condition (21), i.e., negative reinforcement. Suppose, there are two increasing functions v and u,

with u weakly concave, such that for all i

ui(c, α) = v(u(c)− αi), (35)

where αi is the i-th entry of the vector α. This model includes in particular the pecuniary cost

model (for u linear) we discussed above but allows for wealth effects. Suppose moreover that for all

households in the economy:

Assumption 7

α3 + α0 ≥ α1 + α2, with α3 ≥ α1, α2 ≥ α0. (36)

This assumption recalls the increasing difference assumption and covers, for example, the case where

α0 = 0 and the cost of going to work is independent of the activity of the other member, so that

α3 = α1 +α2. More generally, it states that the cost for both members of the couple to work on the

market α3 is at least as large as the sum of the cost for one to go to work, say α1, plus the net cost

supported by the other to go on the market α2 after deducting the home production α0 gathered

when both are unemployed. Note that for each realization of (α1, α2) both α3 and α0 can still be

random.

Proposition 13 Assume the utilities ui can be represented by (35) and that Assumption 7 holds.

Then when payments satisfy negative reinforcement they satisfy Property P and

∂µ(A3(c))

∂c0
=
∂µ(A0(c))

∂c3
= 0.

Notice that since v is strictly monotone and the same function for all states, we can only work with

its argument u(ci) − αi. We will show that Property P holds whenever payments satisfy negative

reinforcement, hence the second part of the result will follow from Lemma 12.

We start with the first implication of Property P, i.e.

u(c3)− α3 ≥ max{u(c1)− α1, u(c2)− α2} ⇒ u(c3)− α3 ≥ u(c1 + c2 − c3)− α0.

We first show that the left hand inequality implies c3 ≥ max{c1, c2}. Indeed it implies that

u(c3) ≥ u(c1) + α3 − α1 ≥ u(c1),
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where we used α3 − α1 ≥ 0 from Assumption 7. By monotonicity of u we have c3 ≥ c1. Similarly,

one gets c3 ≥ c2.

We now prove the first implication defining Property P. The first inequality implies that 2u(c3)−

2α3 ≥ u(c1)+u(c2)−(α1+α2). If we use α3+α0 ≥ α1+α2 we get u(c3)−α3 ≥ u(c1)+u(c2)−u(c3)−α0.

To show the final inequality, it hence suffices to show that u(c1) + u(c2) − u(c3) ≥ u(c1 + c2 − c3)

or bringing u(c3) on the other side and dividing by 1
2 both sides we have: 1

2u(c1) + 1
2u(c2) ≥

1
2u(c1 + c2 − c3) + 1

2u(c3).

Now notice that since c3 ≥ max{c1, c2} the payments in the right hand side constitute a mean

preserving spread of those of the left hand side, where the lotteries have equal probability. Hence

the inequality is true by concavity of u.

The proof of the other implication of Property P must be divided in two steps. Consider first

the case where for all α we have u(c3)−α3 < max{u(c1)−α1, u(c2)−α2)}. In this case, the desired

implication follows trivially: u(c0)− α0 ≥ max{u(c1)− α1), u(c2)− α2)} > u(c3)− α3.

Finally, consider the case where for some α we have u3(c3, α) ≥ max{u1(c1, α), u2(c2, α)}. This is

the top inequality of Property (P) holding for α. As we saw above, this implies that c3 ≥ max{c1, c2}.

As a consequence, under negative reinforcement, we must have c0 ≤ c1 + c2 − c3 ≤ min{c1, c2}. The

proof is now essentially identical to that done above. Just note that in this case, the lottery: c1+c2−c0

with probability 1
2 and c0 with probability, 1

2 is a mean preserving spread of the lottery c1 or c2 with

equal probability.

Remark 6 It is easy to show that when u is linear, i.e., when there are no wealth effects, we can

dispense of the second part of Assumption 7 and only require α3 + α0 ≥ α1 + α2.

Figure 5 provides a graphical representation of the sets Ai in the pecuniary cost case where

α0 + α3 = α1 + α2. The plan describes the values taken by the parameters α. The horizontal axis

bears α1 − α0, equal to α3 − α2, while α2 − α0, equal to α3 − α1, is on the vertical axis.

The right panel of Figure 5 is a graphical representation of Lemma 12: Since the sets A3 and A0

have no borders in common, changing marginally c0 has no effect on A3 and, symmetrically, small

changes in c3 have no effect on A0.
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α2 − α0 = α3 − α1

A3

A1 A0

A2

c1 − c0

c2 − c0

c3 + c0 > c1 + c2

c3 − c1

c3 − c2

Positive reinforcement

A3

A1 A0

A2

c3 + c0 < c1 + c2

α2 − α0 = α3 − α1

c2 − c0

c3 − c1

α1 − α0 =c1 − c0c3 − c2
α3 − α2

Negative reinforcement

Figure 5: The right figure represents the case with positive reinforcement (subsidizing working cou-

ples) while the left one represents the case with negative reinforcement (taxing working couples).

C The Pecuniary case with Independent Distribution:

Computations

Consider the original system where to get the reduced matrix H instead of eliminating the row

corresponding to the first order conditions with respect to c0 we eliminate the row corresponding to

the first order conditions with respect to c2. When the α’s are independently distributed we have:

−∂µ(A2)
∂c0

1− µ(A0)
=

f2(c
2 − c0)[1− F1(c

1 − c0)]
1− (1− F1(c1 − c0))(1− F2(c2 − c0))

(37)

−∂µ(A1)
∂c3

µ(A3)
=

f2(c
3 − c1)

F2(c3 − c1)
. (38)

This follows directly from the proof of Lemma 12 where we saw that Assumption 3 and negative

reinforcement allow to simplify the expression describing the sets A0 and A3 into

A0 = {α|c0 − α0 > c2 − α2, c0 − α0 > c1 − α1},

A3 = {α|c3 − α3 > c2 − α2, c3 − α3 > c1 − α1}.
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Such a simplification does not occur in the expressions of the sets A1 and A2, which involve three

inequalities. However their ‘differential’ take a simple form. Indeed for A2:

∂A2

∂c0
:=
{
α|c2 − α2 ≥ c1 − α1; c2 − α2 ≥ c3 − α3; c2 − c0 ≤ α2 − α0 ≤ c2 − c0 + dc0

}
.

We can ignore the middle inequality, since by negative reinforcement, c3 ≤ c1 + c2 − c0, so that

c3 − α3 ≤ c1 + c2 − c0 − α1 − α2 + α0 ≤ c1 − α1 + dc0.

Also getting α2 − c2 from the last term on the right hand side and substituting in the first

∂A2

∂c0
=
{
α|c1 − c0 ≤ α1 − α0; c2 − c0 ≤ α2 − α0 ≤ c2 − c0 + dc0

}
.

A similar derivation can be made for the differential of A1 with respect to c3.

Suppose again that property P is satisfied. Recall that if we eliminate t2 and its related row, the

system of first order conditions become simpler. Under negative reinforcement the (reduced) matrix

of the first order conditions becomes:

H =


a0 −b 0

−b a1 −d

0 −d a3

 ,
where

a0 = f1(c
1 − c0)(1− F2(c

2 − c0)) + f2(c
2 − c0)(1− F1(c

1 − c0));

b = f1(c
1 − c0)(1− F2(c

2 − c0));

a1 =
∂µ(A1)

∂c1
= f2(c

3 − c2)F1(c
3 − c1) +

∫
· · ·+ f1(c

2 − c0)[1− F2(c
1 − c0),

d = F1(c
3 − c2)f2(c3 − c1),

a3 = f1(c
3 − c2)F2(c

3 − c1) + F1(c
3 − c2)f2(c3 − c1).

and hence

H−1 =
1

∆


a1a3 − d2 a3b bd

a3b a0a3 a0d

bd a0d a1a0 − b2

 .
So, the reinforcement term equals

R =
−1

∆

{[
d2 − a1a3 + a3b− bd

]
X0 + [−a3b+ a0a3 − a0d]X1 +

[
−bd+ a0d+ b2 − a0a1

]
X3

}
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where of course X2 does not appear since it is residual as the sum of Pareto weights equals one in

the pecuniary cost model. We also have:

∆ = a0a1a3 − a0d2 − a3b2;

d2 − a1a3 + a3b− bd = ...

−a3b+ a0a3 − a0d
A

=
f1(c

3 − c2)f2(c2 − c0)
F1(c3 − c2)(1− F2(c2 − c0))

− f1(c
1 − c0)f2(c3 − c1)

F2(c3 − c1)(1− F1(c1 − c0))
;

−bd+ a0d+ b2 − a0a1 = ....

where A = F2(c
3 − c1)(1− F1(c

1 − c0))F1(c
3 − c2)(1− F2(c

2 − c0)) > 0.

D Rawlsian Planner

We shall also study the behaviour of a Rawlsian government that aims at maximizing the welfare of

the worst off person in the economy. For concreteness, suppose that the distribution of α contains

a point α such that for all agents α, αi ≤ αi for all i. We claim that the agent α is the worst off

person in the economy. Indeed suppose that s/he chooses decision j. Then s/he is worse off that all

those that picked up j since with a cost αj larger than their αj . But s/he is also worse off than the

others, since by revealed preference, the choice i that they make brings them a net income at least

as good as selecting j.

The Rawlsian government selects the tax schedule c that maximizes this quantity subject to the

budget constraint.26

We use the transformation of the Rawlsian criterion suggested in footnote 26.

26In the situation where the worse off agents are indifferent between several decisions, the Rawlsian criterion

defined above may be difficult to manipulate. A possible transformation of the program consists in introducing

an element ρ in the simplex of RI+1, to give implicit weights to the various choices. The government then

chooses both c and ρ so as to maximize
I∑
i=1

ρi(ci − αi),

subject to the budget constraint with ρ in the simplex. The two programs are equivalent. Indeed the welfare

obtained in the initial program can be achieved in the second one, by concentrating the weights on the

optimal choices of the household. Conversely a solution of the second program is such that ρi > 0 implies

ci − αi ≥ cj − αj for all j and therefore gives the same value as the first program.
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max

I∑
i=0

ρi(ci − αi)dF (α)

I∑
i=0

ρi = 1,

ρi ≥ 0 for all i,
I∑
i=0

[
ωi − ci

]
µ(Ai(c)) = G.

(39)

A marginal equal change in all the ci’s shows that the Lagrange multiplier λ of the budget constraint

is equal to 1. The first order condition with respect to ci is

∂L
∂ci

= ρi − µ(Ai(c)) +

I∑
j=0

(ωj − cj)∂µ(Aj(c))

∂ci
= 0.

This implies that for all i

1− µ(Ai(c)) +

I∑
j=0

(ωj − cj)∂µ(Aj(c))

∂ci
≥ 0.

For the set of indices K such that the Rawlsian agent attains her optimum in occupation k, ρk is

positive so that

−µ(Ak(c)) +
I∑
j=0

(ωj − cj)∂µ(Aj(c))

∂ck
< 0.

On the complement of K, for all i in I −K, the first order conditions reduce to

−µ(Ai(c)) +

I∑
j=0

(ωj − cj)∂µ(Aj(c))

∂ci
= 0.

Counting unknowns and equations, we have I + 1 unknowns, the consumptions ci, i = 0, 1, . . . , I,

and I + 1 equations: the above I + 1−K first order conditions, the K − 1 equalities of the ck − αk

for k in K and the overall budget constraint.
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