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Abstract

We consider a two-period Bayesian trading game where in each period informed agents

decide whether to buy an asset (“government debt”) after observing an idiosyncratic signal

about the prospects of default. While second-period buyers only need to forecast default,

first-period buyers pass the asset to the new agents in the secondary market, and thus need

to form beliefs about the price that will prevail at that stage. We provide conditions such

that coarser information in the hands of second-period agents makes the price of debt more

resilient to bad shocks not only in the last period, but in the first one as well. We use

this model to study the consequences of issuing debt denominated in domestic vs. foreign

currency: we interpret the former as subject to inflation risk and the latter as subject to

default risk, with inflation driven by the information of a less-sophisticated group of agents

endowed with less precise information, and default by the information of sophisticated bond

traders. Our results can be used to account for the behavior of debt prices across countries

following the 2008 financial crisis, and also provide a theory of “original sin.”
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1 Introduction

The sovereign borrowing experience of advanced economies in the aftermath of the financial

crisis of 2008 has once again highlighted the important role of the currency in which debt is

denominated. Countries which had control over their monetary policy, such as the United States,

the United Kingdom, and Japan, were able to borrow at extremely low rates throughout the

episode, even though they experienced very high deficit/GDP ratios (the UK) or debt/GDP

ratios (Japan). In contrast, peripheral Eurozone countries were either unable to borrow from the

market (Portugal, Ireland) or faced volatile interest rates when doing so (Italy, Spain).1

In previous crises, such as Latin America in the 1980s and Asia in 1998, currency mismatch

was identified as a source of instability, and hence many authors have studied the role of the

“original sin” or other causes of financial underdevelopment that led to the mismatch. In the

presence of nominal rigidities, having an own currency may allow for a quick devaluation as a

means to adjust to domestic shocks, preserving the country’s economy and ability to repay its

debt, but only if this debt is denominated in domestic currency.2

Compared to those crises, 2008 presents some important differences. First, financial underde-

velopment of the debt market was not a cause of the Eurozone countries’ difficulties, since they

all had an ample and liquid market for government debt denominated in their home currency

before joining the Euro. Second, it is not clear that the ability to devalue and thereby spare

the economy from a deeper recession was a major factor in explaining the different behavior of

interest rates: while it is true that the United Kingdom depreciated the Pound in the wake of the

recession, the Yen appreciated substantially against the Euro, exacerbating the slump in Japan.

Our goal is to dig deeper in the source of frictions that may make the price of a country’s

debt less sensitive to adverse news on the government solvency. A premise of our analysis is

1See e.g. Plender [35] and De Grauwe [21].
2Krugman [30, 31] sketches a theory whereby an asymmetry arises because defaults would lead to larger real

haircuts for bondholders than inflation. While it is true that a default is a discrete event and inflation erodes the

value of repayments over time, it is not a priori obvious that the cumulative losses would be different in the two

scenarios. We consider a benchmark in which losses are the same. Our mechanism would of course remain at

work even if inflation were less costly for creditors, as the two channels would complement each other.
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that a domestic currency partially insulates a country from default risk, as the government may

be able to lean on the central bank to act as a residual claimant on government debt securities.

However, the resulting increase in the money supply would be bound to generate inflation, so

that default risk would be replaced by inflation risk and we might expect interest rates to spike

similarly under the two scenarios. Yet in practice inflation expectations, as well as the behavior

of actual inflation, are very sluggish compared to the speed with which default crises, such as

Greece’s, unfold.

To reconcile these facts, we study an economy where private agents have dispersed and hetero-

geneous information about the government’s ability to repay its debt. Public debt is purchased

by overlapping generations of “bond traders”, a segment of the population which is more at-

tentive to economic news. In contrast, a much larger fraction of the population abstains from

trading in public debt, but uses nominal contracts in their everyday transactions. This larger

class, which we call the “workers,” are less sophisticated and receive noisier information about

government finances. We contrast two economies: in the first one, contracts are denominated

in an outside currency (the “Euro”), and the government is forced to outright default when its

tax revenues fall short of debt promises, while in the second one a domestic currency is present

(the “Yen”), and the government resorts to the printing press and eventual inflation to cover

any shortfalls. Other than this difference, we impose as much symmetry as possible between

the two economies: agents start with identical priors over government solvency, bond traders

receive signals with equal precision across the two economies, and the haircut upon default is

matched to the loss in value due to inflation. All these assumptions allow us to concentrate on

the consequences of heterogeneous information. When debt is denominated in Euros, there is no

interaction between bond traders and workers: when bond traders wish to sell their debt on the

secondary market, they need to find other (relatively well-informed) traders to buy. In contrast,

when debt is denominated in Yen, its nominal payoff is risk-free, and the relevant measure of risk

is captured by the purchasing power of the Yen. Since workers are assumed to be a much larger

group, they determine this price, based on their noisier information. In the special case in which

past prices are unobserved to current strategic participants, it is straightforward to prove that
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noisier information implies that the debt price is less responsive to incoming information about

government solvency, so Yen-denominated debt is more resilient to bad news. The anticipation

of this resilience in the secondary market in turn spills over to the primary market as well: even

well-informed traders are less responsive to their signals if they anticipate the future price to be

more weakly affected by fundamentals. We then show that, with some qualifications, this result

extends when the primary-market price is taken into account by future traders and workers.

In sum, our results confirm that heterogeneity between a small sophisticated group of bond

traders and a large, less informed population that drives the aggregate price level can explain

why domestic-currency debt may be less information-sensitive than foreign-currency debt (or

debt denominated in a common currency not directly controlled by the domestic central bank).

This result can account for why a country which starts from a favorable prior condition may

be able to better withstand the arrival of bad news. Conversely, our results also suggest that a

country who is perceived as very likely to default may find it easier to borrow in foreign currency

in the few instances in which its fundamentals are comparatively more favorable: sophisticated

bond traders would find it easier to spot the presence of such conditions, while a pessimistic

population may immediately fear (and trigger) hyperinflation. This could be an alternative

explanation for the “original sin.” Finally, while less information sensitivity may be good when

incoming news suggest worse fundamentals than prior information, ex ante this insurance comes

at a cost: only under special conditions can we unambiguously establish that ex-ante expected

interest rates are lower for countries issuing debt denominated in their domestic currency.

Our paper is related to the vast literature that has used the global-games approach pioneered

by Carlsson and van Damme [17] to study the fragility of regimes subject to infrequent crises.

Their methods were first applied to currency attacks by Morris and Shin [32]. The role of

signaling in this environment has been studied by Angeletos, Hellwig, and Pavan [7], and the

efficiency of information acquisition has been further analyzed by Angeletos and Pavan [9, 10].

Dasgupta [20] and Angeletos, Hellwig and Pavan [8] studied learning in dynamic global games.

In a more general context of dispersed information, Amador and Weill [5, 6] considered learning

from aggregate prices in stylized macroeconomic models. Allen, Morris, and Shin [4] studied
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an environment in which an asset goes through multiple rounds of trade, as is our case. They

emphasized the dampening effect of higher-order beliefs on price movements and conversely the

greater emphasis that public signals take in that context. In our environment, as in theirs,

it is true that the response of the primary-market price to fundamentals is dampened by the

presence of a second round of trading. However, we emphasize a different force: we take as

given the presence of multiple rounds and consider the consequences of heterogeneous quality of

information in later rounds.3

The structure of our model is closely related to Hellwig, Mukherji, and Tsyvinski [27] and

Albagli, Hellwig, and Tsyvinski [3], where a flexible specification of noisy information aggregation

in market prices is developed. Our paper considers a version of their model in which trade occurs

repeatedly. Our theorems are also related to Iachan and Nenov [28], whose paper presents a

systematic analysis of comparative statics results with respect to the precision of information in

global games.

On the international-economics side, the role of currency mismatch has been studied ex-

tensively, particularly in the years that follow the 1998 Asian crisis. Eichengreen and Haus-

mann [23] review competing theories about the origins of the mismatch, with an eye towards its

consequences and policies. Examples of theories of crises based on mismatch appear in Aghion,

Bacchetta, and Banerjee [1] and Calvo, Izquierdo, and Talvi [16]. Particularly relevant for our

analysis is Bordo and Meissner [13]: they show that currency mismatch and “original sin” are

not necessarily harbingers of more frequent crises, provided fundamentals are managed correctly.

This is reminiscent of our result, in which it is not necessarily the unconditional probability

of eventual default or inflation that increases when debt is denominated in foreign currency:

fragility manifests itself instead as a greater volatility of debt prices. While we are not aware of

other papers linking imperfect information to the choice of denomination of government debt,

imperfect information in sovereign debt markets plays an important role in Sandleris [36], where

a default reveals adverse information about the state of the economy, with negative consequences

for private investment, and in Gu and Stangebye [26], where endogenous time-varying informa-

3In a static context, Corsetti et al. [19] consider a global game with a single large player who may be differ-

entially well informed from a continuum of small players.
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tion precision generates variation in risk premia.

Finally, the information sensitivity of assets play a major role in the work of Gorton and

Ordoñez [25]. While combining their forces and ours in a self-contained model is beyond the scope

of our project, their theory and our work are complementary in accounting for sudden sovereign

crises: as debt becomes more information-sensitive through the channels that we emphasize,

Gorton and Ordoñez’ forces would lead first-period agents to invest in even greater information

acquisition, leading to further volatility and possibly market freezes.

We proceed by describing the setup in Section 2, which also shows that the economy maps

into a two-stage Bayesian trading game. In Section 3 we analyze the simplest case: here, second-

period buyers cannot observe the first-period price. In Section 4 we tackle the harder (but more

realistic) case in which the first-period price is observed. Section 5 extends the result to cases in

which the default threshold may depend on the price of debt in the primary market, and Section

6 concludes.

2 The Setup

We consider an economy that lasts for three periods. There is a single consumption good in each

period. We consider two alternative scenarios: in the first one, the unit of account is exogenously

fixed (the “Euro”) and the price of the consumption good is normalized to 1. In the second case,

the value of a unit of account (the “Yen”) is endogenous.

The economy is populated by multiple generations of four types of agents: strategic workers,

noise workers, strategic bond traders, and noise bond traders. In addition, a government is also

present.

Workers are born in period 2 and die in period 3.4 Strategic workers are endowed with one

unit of the consumption good in period 2 and wish to consume in period 3; they are risk neutral

and have access to a storage technology which has a yield normalized to zero. Negative storage

is not allowed. Noise workers demand one unit of consumption in period 2, and can produce

4We could add workers that live in periods 1 and 2, but these would not interact with bond traders, and so

their presence would not have any effect on our results.
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exclusively in period 3. To consume, they trade with strategic workers using nominal contracts,

denominated in Euros or Yen, depending on the regime.5 The relative mass of noise vs. strategic

workers is Φ(εw2 ), where Φ is the normal cumulative distribution function and εw2 is i.i.d. with

a normal distribution having mean zero and variance 1/ψw2 . Neither strategic workers nor noise

workers have access to the bond market. Their asset position is limited to storage, trade credit

with each other, and cash, which they may acquire from the bond traders.6

Under the Euro scenario, workers do not interact with bond traders, and their interaction

with the government is limited to paying a lump-sum tax which is a negligible fraction of their

endowment.

Bond traders live for two periods, and there will be overlapping generations of them. Their

mass is negligible compared to workers; hence, when the two groups trade, the price is set

by the workers. Bond traders are endowed with goods in the first period of their life,7 which

they want to consume in the second period. Strategic traders can store their endowment at a

return normalized to 0. Alternatively, they can sell some of their endowment in exchange for a

government bond, which in period 1 can be purchased from the primary market and in period

2 from the secondary market, soon to be described. To preserve tractability, we assume that

holdings of government debt are limited to {0, 1}.8 Noise traders do not get a choice; they absorb

a fraction Φ(εbt) of the government bonds supplied to the market, where εbt is i.i.d. with a normal

distribution having mean zero and variance 1/ψbt .

We next describe the government. We normalize its positions in per capita terms with respect

5We do not model the reason why workers coordinate on nominal contracts. Euro contracts are equivalent

to real contracts in our setup. Yen-denominated contracts favor strategic workers, as they can reap information

rents at the expense of noise workers.
6The assumption that workers cannot buy government bonds could be justified by indivisibility constraints as

in Wallace [38].
7We assume that their endowment is always sufficient to buy one unit of government bonds.
8The lower bound of 0 is equivalent to a short-selling constraint. Provided θ is sufficiently high, the upper

bound is equivalent to an indivisibility assumption, which implies that traders cannot hold a non-integer position

and do not have enough resources to buy two units. Consistently with the indivisibility assumption, we impose

that their holdings must be either 0 or 1, but risk neutrality implies that the analysis is unchanged if traders are

instead allowed any position in [0, 1].
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to one cohort of strategic bond traders. In the first period, the government issues nominal

bonds, backed by taxes that will be collected in period 3.9 Revenues from bond issuance are

spent in a public good which does not affect the marginal utility of private consumption. When

government bonds are denominated in Euros, they mature only in period 3, when the government

has access to tax revenues. When instead the Yen is present, bonds are repaid in cash in period

2, and period-3 revenues are used to repurchase cash, as in Cochrane [18]. This arrangement

corresponds to one of the important observations from which we started: that inflation is often

sluggish in advanced countries and workers often do not realize immediately that the government

is resorting to the printing press to cover its fiscal needs.10 In period 1, the government auctions

one unit of bonds with a promised repayment ŝ(q1) in period 3, where q1 := 1/(1 + R1) and R1

is the nominal interest rate. Two examples of the function ŝ are the following:

• ŝ(q1) ≡ ŝ ≡ 1, corresponding to the Eaton-Gersovitz [22] timing, in which the government

offers bonds making a fixed unit future repayment in period 3, and q1 represents the first-

period discount;

• ŝ(q1) ≡ 1/q1, corresponding to the Calvo [15] timing, in which the government offers bonds

to raise a fixed amount of revenues (one) in period 1 and 1/q1 − 1 represents promised

interest payments in period 3.

The ability of the government to raise revenues without a default in period 3 is limited by a

single random variable s. If s ≥ ŝ(q1), revenues from current and future taxes are sufficient to

repay the debt in full (under the Euro interpretation) or to maintain the price of goods pegged

at parity with the Yen (when the government has its own currency). When instead s < ŝ(q1),

tax revenues are insufficient to avoid explicit default or inflation. In this case, we assume that

9Since the relative mass of traders is small compared to the mass of workers, the amount of these taxes per

worker is negligible, and no issue about worker solvency arises.
10We view this assumption as particularly appropriate for a government who has in the past established a

reputation for stability. There are examples in history where this assumption would be violated. Sargent [37]

discusses cases in which inflation responded quickly to fiscal news, and other, more recent cases in which doubts

about the fiscal stance led to sluggish adjustments.
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the government imposes an exogenous haircut and only repays θŝ(q1) units of the consumption

good in period 3. When debt is denominated in Euros, this is implemented directly as a haircut

upon default. When instead debt is denominated in Yen, the revenues θŝ(q1) are available to

repurchase Yen, implying that the price level at which Yen are withdrawn becomes 1/θ.

Nature draws s from the prior distribution N(µ0, 1/α0). Each strategic trader i in period t

receives a private signal xbi,t = s + ξbi,t/
√
βbt , where ξbi,t is distributed according to N(0, 1) for

all i, t pairs and we assume that a law of large numbers across agents applies as in Judd [29].

Similarly, each strategic worker receives a private signal xwi,t = s+ ξwi,t/
√
βwt , where ξwi,t has again

a standard normal distribution.11 Signals are independent of the number of noise traders present

in the market. Strategic agents submit price-contingent demand schedules, so the equilibrium

debt price in each period conveys information on the realization of the fundamental variable s.12

Noise agents account for the additional, stochastic demand that is needed in rational-expectation

models to have a non-degenerate equilibrium.

2.1 Trading in the Euro Economy

In the Euro economy, there is no uncertainty about the value of nominal contracts, which is

fixed at 1. At these prices, strategic workers are indifferent between storing their endowment

or lending it at a rate zero to the noise workers. Hence, they will absorb all of the demand

Φ(εw2 ) ∈ (0, 1) with no effect on their lending rate.

Next, we consider bond trading in the secondary market (period 2). Bond supply is fixed

at one: both strategic and noise traders who purchased the bond in period 1 must sell it to

consume.

Strategic bond traders born in period 2 must choose whether to store their entire endowment

or purchase a government bond in the secondary market.13 Defining q2 := 1/(1 +R2), where R2

11We assume that the law of large numbers applies here too.
12Given that we assume risk neutrality, the optimal demand schedule will take the form of a reservation price,

below which strategic agents are willing to buy government debt.
13They could also lend to noise workers at the same rate as storage; since their mass is negligible compared to

workers, this would not affect the market-clearing condition for trade credit between periods 2 and 3.
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Govt Traders1 Traders2 SW NW

t = 1 issue e1

t = 2 c2 e2 e2 c2

t = 3 repay c3 c3 e3

Figure 1: Markets in the Euro scenario. Goods (solid black); Bonds (dashed blue); Storage

(dotted black). e stands for endowment and c for consumption.

is the nominal interest rate (yield to maturity) in the secondary market, the expected net profit

from buying the bond is

ŝ(q1)
[
θ + (1− θ)E(1− δ|Ibi,2)− q2

]
, (1)

where δ = 1 when s < ŝ(q1) (the states in which the government defaults) and Ibi,t is the

information available to bond trader i in period t. We denote by Db
t the demand for bonds by

strategic bond traders in period t; this demand depends on the price qt, but also on the details of

available information, which vary across the cases of Sections 3-5. Second-period strategic bond

traders must absorb a fraction 1−Φ(εb2) of bonds in equilibrium, with the balance purchased by

noise traders. Market clearing will then require

Db
2 = 1− Φ(εb2). (2)

Going back to period 1, strategic bond traders born at that time must choose whether to store

their entire endowment or purchase a government bond in the primary market. The expected

profit from buying a bond is

ŝ(q1)
{
E[q2|Ibi,1]− q1

}
.

Market clearing in the first period requires

Db
1 = 1− Φ(εb1). (3)
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Govt Traders1 SW/Traders2 NW

t = 1 issue e1

t = 2 repay c2 e2 c2

t = 3 buy back c3 e3

Figure 2: Markets in the Yen scenario. Goods (solid black); Bonds (dashed blue); Cash (dot-

dashed green); Storage (dotted black). e stands for endowment and c for consumption.

The equilibrium is therefore characterized by the primary- and secondary-market interest rates

on government debt, which are summarized by the discount factors q1 and q2.

2.2 Trading in the Yen Economy

In the Yen economy, there is no uncertainty about the nominal repayment from government

bonds, which happens in cash in period 2. However, the terminal value of cash in period 3

depends on tax revenues. Strategic workers must decide whether to store their endowment until

period 3 or to sell their goods in period 2 for cash or trade credit, at a price P2. Noise workers

will demand goods in period 2 in exchange for trade credit, in a fixed amount Φ(εw2 ) ∈ (0, 1).

Traders born in period 1 will also use their cash to buy goods in period 2; by assumption, their

demand is negligible compared to that of the workers.

The payoff for a strategic worker of selling a unit of goods right away relative to storing it is

E
(

1

P3

|Iwi,2
)
− 1

P2

, (4)

where Iwi,2 is the information available to the worker and P3 is the nominal price in period 3,
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which is either 1 or 1/θ, depending on whether s ≥ ŝ(q1). Hence, equation (4) becomes14

θ + (1− θ)E(1− δ|Iwi,2)−
1

P2

. (5)

Letting Dw
2 be the fraction of strategic workers selling the goods in period 2 (demanding cash or

trade credit), market clearing in period 2 requires

Dw
2 = Φ(εw2 ) = 1− Φ(−εw2 ). (6)

Since there is no secondary market for government bonds in period 2, noise traders are not

active.15 Strategic traders face the same choice as the workers: either store their endowment or

sell it for cash or trade credit. Since their mass is negligible relative to that of the workers, their

choice has no effect on market clearing and prices.

Going back to period 1, the problem of strategic bond traders in period 1 is similar to the

Euro economy, except that their payoff is now a fixed amount of Yen with uncertain value rather

than an uncertain amount of Euros. The expected profit from buying a bond is

ŝ(q1)

{
E[

1

P2

|Ibi,1]− q1
}
,

and market clearing is still given by (3).

The equilibrium is now characterized by the primary-market interest rate on government debt,

summarized by the discount factor q1, and the nominal price level P2.

2.3 Comparing the Two Economies

The construction of an equilibrium in the two economies is very similar. The only difference

between the two concerns the identity of the marginal agent in period 2. In the Euro scenario,

this is a bond trader active in the secondary market, while in the case of Yen-denominated debt it

is a worker selling her goods in exchange for nominal payments. This is seen comparing equations

(1) and (2) for the Euro economy with equations (5) and (6) of the Yen economy.

14δ is the same indicator function as in the Euro model, except that now it indicates states of high inflation in

period 3 rather than default.
15Recall that we assumed that the demand from noise traders is a fraction of the supply of bonds.
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Euro Lira

Identity of bond

marginal buyer trader worker

Goods given up ŝ(q1)q2 1

Goods received:

w/o default/inflation: ŝ(q1) P2/P3 = P2

with default/inflation: θŝ(q1) P2/P3 = θP2

Return:

w/o default/inflation: 1/q2 P2

with default/inflation: θ/q2 θP2

Table 1: Comparison of the payoffs of strategic agents in period 2.

The parameters of interest are thus the relative information that workers and second-period

traders have about the government’s ability to raise taxes in the final period. Our key assumption

is that bond traders are more informed than workers, that is, they have a more precise signal

(βb2 > βw2 ) and face less market noise (ψb2 > ψw2 ).16

Table 1 highlights the symmetry between the two scenarios, which we exploit to collapse the

two cases into a single problem. Accordingly, we drop the superscripts referring to workers and

traders, we define q2 := 1/P2 in the case of the Yen, and we refer to “demand” by second-period

strategic agents as their real demand for risky assets, which is their supply of goods: in the case

of the Euro, traders acquire government bonds in the secondary market, whereas in the case of

the Yen workers acquire cash or trade credit.17

16We state our results separately for β2 and ψ2, but in practice their effect is quite similar, and what matters

for characterizing the equilibrium are only their products β2ψ2 and β2(1 + ψ2).
17As we discuss later, individual demand will take the form of a reservation price. This convention preserves

the feature that strategic agents will want to “demand” the asset (and supply goods) when q2 is low. In the case

of the bond traders, q2 is the price of the bond, which they want to acquire only below their reservation price; in

the case of workers q2 is the inverse of the price level, and workers choose to sell their goods for nominal claims

when P2 is sufficiently high relative to their expectations about P3.
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We thus proceed by analyzing a single problem, in which we drop the superscripts referring

to workers and traders, and studying comparative statics with respect to β2 and ψ2.
18

3 The Simplest Case: No Recall of Past Prices

In this section, we study the simpler case in which agents buying in period two do not have any

information on the equilibrium price from period one and ŝ(q1) ≡ ŝ is constant. This allows

us to derive particularly transparent intuition. In Section 4, we move to the case in which the

first-period price is observable to second-period agents, and in Section 5 we further add the

possibility that the default threshold depends on the interest rate paid by the government at

issuance (letting ŝ vary with q1). Let d(xi,t, qt) denote demand schedules in each period, forming

a mapping d : R2 → {0, 1} from signal-price pairs (xi,t, qt) into risky asset holdings. Given that

we assume risk neutrality, the optimal demand schedule will take the form of a reservation price.

3.1 Strategies, Beliefs and Equilibrium

Definition 1. A Perfect Bayesian Equilibrium consists of bidding strategies d(xi,t, qt) for strate-

gic players, price functions qt(s, εt) and posterior beliefs pt(xi,t, qt) such that

(i) d(xi,t, qt) is optimal given beliefs pt(xi,t, qt),

(ii) qt(s, εt) clears the market for all (s, εt), and

(iii) pt(xi,t, qt) satisfies Bayes’ Law for all market clearing prices qt.

To characterize the equilibrium we work backwards, starting from period 2. The derivation of

the second-period equilibrium follows Albagli, Hellwig, and Tsyvinski [3]. Second-period agent i’s

expected payoff of buying the risky asset is ŝ[θ+ (1− θ)Prob(s ≥ ŝ|xi,2, q2)− q2]. Since posterior

beliefs over s are increasing in xi,2 in the sense of first-order stochastic dominance,19 agents’

18We exploit the symmetry of the normal distribution in equation (6) and renormalize ε2 = −εw2 in the case of

the Yen economy.
19See Proposition 6 in the appendix.
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expected payoffs are an increasing function of xi,2. This implies that agents follow monotone

strategies of the form

d(xi,2, q2) = 1[xi,2 ≥ x̂2(q2)], (7)

where 1 is the indicator function and x̂2(q2) is a threshold which is endogenous to the equilibrium.

Integrating strategic players’ demand schedules over the signal distribution, the market clear-

ing condition in either period t = 1, 2 is∫
d(x, qt)

√
βtφ[

√
βt(x− s)]dx+ Φ(εt) = 1, (8)

where φ is the density of a standard normal distribution. In general, this equation characterizes

the equilibrium price qt(s, εt). Using equation (7), the aggregate demand of strategic agents is

Prob[xi,2 ≥ x̂2(q2)|s], and the market clearing condition becomes

z2 := s+
ε2√
β2

= x̂2(q2). (9)

Henceforth we will focus on equilibria where the price is a continuous function of s and ε2. In

this case, Proposition 7 proves that conditioning beliefs about s (and other exogenous events)

on q2 is equivalent to conditioning them on z2. This simplifies the analysis in that z2 is itself

exogenous. Second-period agents’ posterior beliefs in an equilibrium are given by

s|xi,2, z2 ∼ N

(
α0µ0 + β2xi,2 + β2ψ2z2

α0 + β2(1 + ψ2)
,

1

α0 + β2(1 + ψ2)

)
. (10)

An agent whose private signal is at the threshold x̂2(q2) must be indifferent in equilibrium

between buying risky claims or storing. Combining this with equation (9), q2(z2) must satisfy

the indifference condition

q2(z2) = θ + (1− θ)Prob(s ≥ ŝ|xi,2 = z2, z2) = θ + (1− θ)Φ
(

(1− wS)µ0 + wSz2 − ŝ
σS

)
, (11)

where wS = β2(1+ψ2)
α0+β2(1+ψ2)

is the Bayesian weight on z2, that summarizes new private and public

information for the marginal second-period agent, and σS is the standard deviation of the condi-

tional beliefs of secondary-market participants, which in this case is (α0 + β2(1 + ψ2))
−1/2 from

equation (10). As it’s clear from Equation (11), q2 exists and is unique for all z2 ∈ R.20

20This will apply to the more general cases where second-period agents also observe q1, and ŝ = ŝ(q1).
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Having defined equilibrium price and strategies in the second period, we can move to the

first period and derive strategic bond traders’ behavior. The analysis follows that of period

two quite closely. Traders i’s expected payoff of buying government bonds in period one is

E[q2(z2)|xi,1, q1] − q1. Since q2(z2) is increasing in z2 and Proposition 6 applies to first-period

agents’ beliefs as well, they optimally follow monotone strategies which, given risk neutrality,

will be described by a threshold signal of the form d(xi,1, q1) = 1[xi,1 ≥ x̂1(q1)].

Repeating the steps that led to (9), the market clearing condition in the first period can be

rewritten as

z1 := s+
ε1√
β1

= x̂1(q1) (12)

As in period two, we focus on equilibria where the price is a continuous function of s and ε1, in

which case conditioning on q1 or the observable state variable z1 is equivalent for forming beliefs

about s. In any such equilibrium, traders’ posterior beliefs on s are given by

s|xi,1, z1 ∼ N

(
α0µ0 + β1xi,1 + β1ψ1z1

α0 + β1(1 + ψ1)
,

1

γ1
:=

1

α0 + β1(1 + ψ1)

)
. (13)

However note that the payoff-relevant variable that traders need to predict is not just s, but

z2, because the latter is what determines the resale price in period two. Since z2|(xi,1, z1) =

s|(xi,1, z1) + ε2/
√
β2, the marginal bond trader’s posterior beliefs on z2 are given by

z2|(xi,1 = z1, z1) ∼ N

(
α0µ0 + β1(1 + ψ1)z1

γ1
, σ2

S|B :=
1

γ1
+

1

ψ2β2

)
(14)

where σ2
S|B is the variance of the second-period agents’ sufficient statistic z2 conditional on first-

period bond traders’ information.

The marginal agent whose private signal is at the threshold x̂1(q1) must be indifferent in

equilibrium between buying government bonds or storage. Let us denote the Bayesian weight

she puts on z1 when forecasting s as

wB :=
β1(1 + ψ1)

α0 + β1(1 + ψ1)
. (15)
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Then market clearing (12) and the indifference condition can be used to solve for q1:

q1(z1) = E[q2(z2)|xi,1 = z1, z1]

= θ + (1− θ)
∫

Φ

(
(1− wS)µ0 + wSz2 − ŝ

σS

)
1

σS|B
φ

(
z2 − (1− wB)µ0 + wBz1

σS|B

)
dz2

= θ + (1− θ)Φ

 [1− wSwB]µ0 + wSwBz1 − ŝ√
w2
Sσ

2
S|B + σ2

S

 .
(16)

Since we assume ŝ exogenous, existence and uniqueness of q1(z1) here are guaranteed.

3.2 Comparative Statics

We now expose our main result, that states that a government that faces a bad shock realization

compared to its prior would benefit from a decrease in secondary agents’ information precision.

That is, the “Euro” scenario would prove more adverse in such a situation. In the case of the

second-period price q2, this result is straightforward from equation (11): the more informed are

the second-period agents (higher β2), the more they will trust their signal; furthermore, the

more informed are their trading partners (by symmetry, this is also due to higher β2) or the

less market noise is present (higher ψ2), the more the price will aggregate the strategic agents’

information. Both of these forces lead the strategic agents to put less weight on the prior, so

that their demand will be more responsive to incoming bad news. Mathematically, the result

follows from two effects:

1. second-period mean weight channel: an increase in β2 or ψ2 increases the weight

of z2 in second-period agents’ beliefs on s. This effect appears from the term wS at the

numerator of (11).

2. second-period information precision channel: an increase in β2 or ψ2 decreases the

noise over s for second-period agents, thus making q2 more responsive to the state because

information on it is more precise. This effect appears from the term σS in the denominator.
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Figure 3: Effect of a Change in Second-Period Information Precision β2 or ψ2 on Debt Price q1.

The more interesting result concerns the first period. Even when the second-period price is set

by relatively uninformed agents, as it happens in our Yen scenario, bonds are still purchased by

well-informed traders in the first period. What we need to show is that these sophisticated traders

will also find it optimal to be less responsive to incoming news when they anticipate being able to

offload their position onto a less-informed party. This is established by the following propositions:

Proposition 1. There exists a cutoff level ẑβ1 ∈ R such that when z1 < ẑβ1 , a decrease in β2

improves the issuance price q1, whereas the reverse occurs for z1 > ẑβ1 .

Proposition 2. There exists a cutoff level ẑψ1 ∈ R such that when z1 < ẑψ1 , a decrease in ψ2

improves the issuance price q1, whereas the reverse occurs for z1 > ẑψ1 .

Figure (3) illustrates these results with an example. We analyze the components of q1(z1)

more in detail and provide some intuition. The formal proofs of the propositions are in the
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appendix. We can rewrite q1 as

q1 = θ + (1− θ)Φ


µ0 − ŝ+

1︷︸︸︷
wS wB(z1 − µ0)√√√√√ w2

S︸︷︷︸
3

(
1

γ1
+

1

β2ψ2

)
︸ ︷︷ ︸

4

+ σ2
S︸︷︷︸
2


. (17)

We can decompose the effect of a change in β2 and ψ2 on q1 into the four different channels we

highlight in equation (17):

1. second-period mean weight channel: this is the same as described for q2. In the

context of the first-period price, it is multiplied by wB, because that is the weight first-

period traders give to z1 when forecasting z2.
21

2. second-period information precision channel: this second effect is also what we de-

scribed for q2. It is now only one of the elements driving the denominator in equation

(17).

3. first-period variance weight channel: as β2 or ψ2 increase, the first two channels make

q2 more responsive to z2; however, z2 is affected by noise agents as well as fundamentals,

and this channel alone would decrease the first-period traders’ ability to predict the second-

period price through z1. This effect is represented by w2
S in the denominator and would go

in the direction of making the price less responsive to z1.

4. first-period guess precision channel: closely related to the previous point, β2 and ψ2

affect the precision of the endogenous price signal in period two: in particular, as we see in

equation (9), an increase in β2 or ψ2 implies that z2 becomes more closely correlated with s

and thus z1, while the importance of the noise agents is correspondingly diminished. This

effect appears from the term
(

1
γ1

+ 1
β2ψ2

)
in the denominator.22

21The presence of wB reflects the attenuation emphasized in Allen, Morris, and Shin [4]. In our comparative

statics exercise, wB remains the same across the Yen and Euro economy, while wS changes.
22Combining effects (3) and (4) alone, we would get an ambiguous result. An increase in β2 or ψ2 increases
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The proofs in the appendix show that the channels (1), (2), and (4) always dominate channel

(3). Hence, when the realization of z1 is low, the price q1 is more resilient if second-period agents

are less well informed (lower β2 or ψ2).
23

According to our interpretation, lower values of β2 and ψ2 arise when debt is denominated

in a currency over which the country has control, which allows recourse to inflation rather

than outright default. In this case, second-period agents are workers setting their prices in the

local currency. In contrast, when inflation is not an option and debt is subject to the risk of

outright default, second-period agents correspond to a new cohort of well-informed bond traders.

Propositions 1 and 2 then state that the price of debt will be more resilient to bad shocks in the

former case. We view this result as particularly relevant for countries that start from a favorable

prior: for them, there is limited upside from further confirming the creditors’ belief that there

is ample fiscal space, while there is substantial downside risk should they find out that fiscal

constraints are tighter than they appeared. This is a good description of Eurozone countries in

2008, as well as other major developed economies, all of which paid very low interest rates before

the onset of the crisis.

Our result also highlights a potentially opposite conclusion for a country that starts from an

adverse prior. For such a country, issuing domestically-denominated debt may immediately lead

workers to expect high inflation, and this pessimism will spill over to the traders who underwrite

the debt, through the channels that we emphasize. When realized fiscal space is indeed limited,

as will happen often if the prior is correct, there is not much that can be done to sustain the

price of debt. However, in the event that fundamentals are more favorable, well-informed traders

will be better placed to detect the situation, and debt will correspondingly fetch a higher price

when issued in foreign currency. We view this as more relevant for countries such as those of

Latin America and this may be another explanation for their past inclination to issue dollar-

the weight given to z2, which can only be partially forecasted, but decreases the variance of such guess. As an

example, on their own, these two channels would go in the direction opposite of Proposition 1 close to β2 = 0:

around that point, an increase in second-period precision decreases the predictability of q2 given z1.
23A bad realization of z1 can be driven either by a low value of fiscal capacity s or small demand from noise

traders (low ε1). Both represent an adverse event for the government. When first-period traders are well informed,

this realization will be mostly driven by fiscal capacity.
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denominated debt.24

4 What if there is Recall of the Primary-Market Price?

In the previous section, we have examined the case where agents in the second period do not

observe q1. We now study what happens in the more likely scenario in which q1 is known

by second-period agents as well. Other than this, we retain the same structure as described

in the previous section. In particular, we maintain the assumption that the default threshold

is independent of the first-period price; in Section 5 we will show that the same results hold

when the threshold is endogenous, as long as complementarities are not as strong as to generate

equilibrium multiplicity.

4.1 Strategies and Equilibrium

The equilibrium structure of the modified game is largely identical to that of Section 3. We rele-

gate the definition of an equilibrium to the appendix. Posterior beliefs over s are still increasing

in xi,2 in the sense of first-order stochastic dominance,25 and agents follow monotone strategies

of the form

d(xi,2, q1, q2) = 1[xi,2 ≥ x̂2(q1, q2)].

Using the same steps as in Section 3, the market-clearing condition becomes

z2 = s+
ε2√
β2

= x̂2(q1, q2). (18)

We focus once more on equilibria where conditioning beliefs on the prices (q1, q2) is equivalent

to conditioning them on the exogenous state state variables (z1, z2) as defined in equations (12)

and (9), and where conditioning beliefs on q1 is equivalent to conditioning them on z1. For these

equilibria we obtain

s|xi,2, z2, z1 ∼ N

(
α0µ0 + β1ψ1z1 + β2xi,2 + β2ψ2z2

α0 + β1ψ1 + β2(1 + ψ2)
,

1

α0 + β1ψ1 + β2(1 + ψ2)

)
(19)

24This reason is complementary to the time-inconsistency forces emphasized by Calvo [14], Bohn [12], Aguiar

et al. [2], Engel and Park [24], and Ottonello and Perez [33].
25See Proposition 6 in the appendix.
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and the marginal agent’s indifference condition becomes

q2(z1, z2) = θ + (1− θ)Φ
[

(1− w1,S − w2,S)µ0 + w1,Sz1 + w2,Sz2 − ŝ
σS

]
, (20)

where w1,S = β1ψ1

α0+β1ψ1+β2(1+ψ2)
, w2,S = β2(1+ψ2)

α0+β1ψ1+β2(1+ψ2)
are the Bayesian weights given by the

marginal second-period agent to first- and second-period information respectively, and, from

(19), the standard deviation of conditional beliefs is

σS =

√
1

α0 + β1ψ1 + β2(1 + ψ2)
.

It is easy to see that q2(z1, z2) is unique and exists for all (z1, z2) ∈ R2. In Section 3, the prior

was the only information element that was mutual common knowledge between period-1 and

period-2 agents. Here, period-2 agents condition their demand on the first-period price q1 as

well, which creates a new source of common knowledge. This common information is the source

of differences between the results of this section and the previous one.

Since the information set of first-period traders is the same of the previous section, their

posterior beliefs on z2 conditional on xi,1 and z1 are still given by (14). From the indifference

condition of the marginal trader we can derive the equilibrium price function

q1(z1) = E[q2(z1, z2)|xi,1 = z1, z1]

= θ + (1− θ)
∫

Φ

[
µ0(1− w1,S − w2,S) + w1,Sz1 + w2,Sz2 − ŝ

σS

]
· 1

σS|B
φ

(
z2 − (1− wB)µ0 − wBz1

σS|B

)
dz2

= θ + (1− θ)Φ

µ0

(
1− w1,S − w2,SwB

)
+ z1

(
w1,S + w2,SwB

)
− ŝ√

w2
2,S

(
1
γ1

+ 1
β2ψ2

)
+ σ2

S

 ,
(21)

where wB and σ2
S|B continue to be defined as in (14) and (15).

Much of the intuition behind equation (21) follows that in (17). There we highlighted that

a second-period agent’s information set included prior information (common to first-period

traders), and period-2 information (that first-period traders do not observe and must forecast
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using their information set). Here, the same dichotomy holds, with the difference that the in-

tersection between primary and secondary agents’ information sets now includes the first-period

price, in addition to the prior. This is reflected in the weight given by first-period traders to

state z1 in the numerator, w1,S + w2,SwB. w1,S represents the weight second-period agents give

to z1, a fact that is then taken into account by first-period traders. w2,S represents the weight

second-period agents put on z2, which traders predict using prior and first-period information

with weight 1− wB and wB respectively.

4.2 Comparative Statics

We now prove results analogous to Propositions 1 and 2. While comparative statics for ψ2 are

the same as in Section 3, an increase in β2 sharpens the sensitivity of the price to information

for a smaller set of the parameter space, due to the more complex information structure of the

current specification.

To build intuition, we rewrite q1 as

q1(z1) = θ + (1− θ)Φ

 µ0 − ŝ√
w2

2,Sσ
2
S|B + σ2

S

+K(z1 − µ0)

 , (22)

with

K :=

1︷ ︸︸ ︷
(w1,S + w2,SwB)√√√√√w2

2,S︸︷︷︸
3

(
1

γ1
+

1

β2ψ2

)
︸ ︷︷ ︸

4

+ σ2
S︸︷︷︸
2

. (23)

The key difference between the case we analyze here and the one we considered in Section 3 is

that now second-period agents form a posterior based on the first-period price as well as on their

prior and their idiosyncratic signal. When β2 or ψ2 increase, they will rely less on the prior, which

does not react to bad shocks, but also less on the first-period price. While second-period signals

are aggregated through the second-period price, which first-period agents can only imperfectly

forecast, the first-period price is effectively observable to them, as they are allowed to submit a

conditional demand schedule. Hence, when the second-period posterior weight shifts from the
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first-period price to second-period signals, the correlation between the two prices will decrease

and this may make first-period agents less responsive to their information. The further difference

between the results for β2 and ψ2 stems from an asymmetry in the way these precisions enter

in the problem of first- and second-period agents. Specifically, from the perspective of both, the

product of β2 and ψ2 determines the precision of the second-period price as an aggregator of

information. In addition to this, β2 has a further role as the precision of the idiosyncratic signal

observed by the marginal agent in the second period, which generates additional movement in

the weight w2,S and the precision σS.26

From a mathematical perspective, the single-crossing condition illustrated in Figure 3 is driven

by K, as defined in (23), which is the coefficient of z1 in (22): when it is bigger, the first-

period price becomes more responsive to the aggregate shock z1. Comparing this expression with

(17) from the previous section, the same four channels that we previously highlighted remain

active. The first-period guess precision channel (channel 4) remains exactly as before, since the

information set of first-period agents is unaffected. The second-period information precision and

first-period variance weight channels (channels 2 and 3) also remain similar, although the new

expressions for w2,S and σS imply a weaker response to increases in β2 and ψ2 because the second-

period agents now substitute away from the first-period price when their signal becomes more

precise or the second-period price better aggregates information. The biggest difference emerges

in the second-period mean weight channel (channel 1). When second-period agents receive more

precise information on the fundamentals, the shift away from the unconditional prior continues

to be a force increasing the impact of changes in fundamentals on the price; however, if the

first-period price is sufficiently informative, a shift away from z1 and towards z2 would decrease

the responsiveness of q2 to fundamentals instead. Moreover, z1 is known to first-period traders,

whereas they can only predict z2 with noise: hence, when q2 responds less to z1 directly and more

to z2, they respond themselves less aggressively.27 While an increase in β2 or ψ2 continues to

26This asymmetry is discussed extensively in Albagli, Hellwig, and Tsyvinski [3].
27Mathematically, while the second-period agents’ weight on z2 (w2,S) is multiplied by wB , representing the

imperfect ability of first-period traders to predict it, the weight second-period agents give on z1 passes through

to first-period traders without any dampening.
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Figure 4: Examples of coefficient K as a function of β2.

increase responsiveness of the price through the second-period mean weight channel, this channel

is now weakened, which matters when we combine all of the effects in equation (23).

In the case of Section 3, the coefficient of z1 in (17) is globally increasing in both β2 and ψ2.

Here, the analogous coefficient K remains globally increasing in ψ2, as we prove in Proposition 3,

but it is not necessarily globally increasing in β2. In the appendix, we prove that this coefficient

is either monotonically increasing in β2, or it has a single interior minimum, as illustrated in the

two panels of Figure 4. In this latter case, it is possible that, starting from a situation in which

second-period agents have no signal of their own, providing them with a very noisy signal would

decrease the sensitivity of the first-period price to the aggregate shock z1.

Our main case of interest is comparing the situation in which second-period agents are bond

traders in the secondary market with the case in which they are less-informed price setters

accepting local currency in exchange for goods. In this comparison, it would be natural to start

from the case in which first and second-period bond traders are symmetric, in that they have

a signal of equal precision. If anything, we would expect the second-period traders to receive

more precise signals, as the passage of time could only reveal more information (in addition
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to the first-period price). Starting from such a situation, any move in the direction of lower

second-period precision (whether it is a small local perturbation or a large deviation) decreases

the sensitivity of the first-period price. This is illustrated in the right panel of Figure 4.

Formally, the following propositions apply:

Proposition 3. There exists a cutoff level ẑψ1 ∈ R such that when z1 < ẑψ1 , a decrease in ψ2

improves the issuance price q1, whereas the reverse occurs for z1 > ẑψ1 .

Proposition 4. Assume that ψ2 ≥ ψ1 and βA2 ≥ β1. Let βB2 < βA2 . Then there exists a cutoff

level ẑβ1 ∈ R such that when z1 < ẑβ1 , q1 evaluated at βA2 is smaller than at βB2 , whereas the

reverse occurs for z1 > ẑβ1 , holding all other parameters fixed.

We conclude that our main result is robust to the case in which the first-period price is

observed by second-period agents: it remains the case that a government which starts from a

good prior, but has a negative realization would fetch a better price for its debt when it is issued

in local currency than when it is denominated in a currency over which it has no control.

5 Endogenous Default Threshold

In the previous section we maintained the assumption that the government’s default cutoff is ex-

ogenous and independent of the primary-market price. We now relax this assumption as well and

consider the case in which the default threshold is given by a function ŝ(q1). As an example, this

happens if the debt auction follows the same structure as in Calvo [15]: the government requires

a given debt auction revenue, which we normalize to unity, while its repayment obligations at

the end of the second period depend on the interest rate and are given by 1/q1. A default occurs

in this case if and only if s < 1/q1, so in this case ŝ(q1) = 1/q1.

The introduction of an endogenous default threshold creates a new source of complementarity

and could potentially generate multiple equilibria if information is sufficiently precise (Hellwig,

Mukherji and Tsyvinski [27], Angeletos and Werning [11]). We study the case where a unique

equilibrium is maintained, which happens when information is sufficiently dispersed.
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The construction of an equilibrium is very similar to what we did in Section 4. All the steps

up to equation (20) remain the same, where ŝ is replaced by ŝ(q1). As of period 2, ŝ(q1) is a

given, so that existence and uniqueness given q1 are established as before. The main difference

arises in equation (21), where now the endogenous threshold implies that q1(z1) is only implicitly

characterized by the solution to the following equation:

q1 = θ + (1− θ)Φ

 µ0 − ŝ(q1)√
w2

2,Sσ
2
S|B + σ2

S

+K(z1 − µ0)

 , (24)

where K is given by the same expression as in the case of an exogenous threshold, as defined in

equation (23).

Assumption 1. At any equilibrium price, the slope of the right-hand side of (24) with respect

to q1 is smaller than one.

Assumption 1 is necessary and sufficient to guarantee the uniqueness of the equilibrium price

function q1(z1). As an example, for the Calvo threshold ŝ(q1) = 1/q1, a sufficient condition for

Assumption 1 to hold is √
w2

2,Sσ
2
S|B + σ2

S >
1− θ
θ2

1√
2π
,

that is, the total amount of information in the economy should not be too high. In this specifica-

tion, the price q1 affects equilibrium equation (24) in two ways: it represents the cost of buying

government bonds (left-hand side), and it affects the repayment probabilities via its impact on

the default cutoff (right-hand side). The latter effect is amplified by information precision since

it acts through posterior beliefs. When information precision is very high, locally it may happen

that this default cutoff effect is strong enough to generate multiple equilibria. We instead con-

sider the case in which there is enough noise that the curve describing how q1 varies in response

to z1 does not bend backwards, so that q1 remains a well-defined (and increasing) function of z1.

In Section 4, we could establish results about the sensitivity of the price to z1 by simply

studying the properties of the coefficient K. Now, the analysis is complicated by the fact that

q1 appears on the right-hand side through its effect on the default threshold. We prove in the

appendix that this does not change our results for the comparative statics when ψ2 varies, so

that Proposition 3 continues to hold.
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Concerning β2, in Section 4 we could always rely on the fact that two price functions drawn

for different values would cross only once, with the direction dictated by the magnitude of K.

We can no longer prove this here. However, even if single-crossing fails, prices will move in the

same way as described in Proposition 4 following tail events. Formally:

Proposition 5. Assume that ψ2 ≥ ψ1 and βA2 ≥ β1, and let Assumption 1 hold. Let βB2 < βA2 .

Then there exist two cutoffs level ẑL1 ≤ ẑH1 ∈ R such that when z1 < ẑL1 , q1 evaluated at βA2 is

smaller than at βB2 , whereas the reverse occurs for z1 > ẑH1 , holding all other parameters fixed.

The intuition behind Proposition 5 is that, for z1 large in absolute value, the dominant force

determining how the price moves with β2 remains K, for which we already proved theorems in

the previous section.

6 Conclusion

Inflation risk and default risk affect the real value of maturing government debt in a similar way.

However, the general price level is driven by the interaction among a much larger fraction of

the population than the restricted group of people who actively participate in the government

debt market. To the extent that information about government finances is unevenly distributed

within the population, we have shown that this asymmetry has important implications for the

resilience of debt prices in the face of adverse shocks.

In this paper, we emphasized one reason why inflation reacts sluggishly to fundamentals. Our

results would also apply in different contexts where other frictions force a slower adjustment in

the prices of goods relative to asset prices, such as sticky-price models.

Our analysis opens a new dimension for the study of optimal debt management, in addition

to the traditional channels of fiscal hedging and time consistency. The next step in this direction

is to further develop a full theory of the optimal denomination of debt. Such a theory would

take into account the insurance aspect that we have studied here, together with the effects of

different structures of debt on the ex ante expected borrowing costs.28

28As emphasized in Albagli, Hellwig, and Tsyvinski [3], in the context of the model that we adopt, the rela-
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Appendix A Proofs

Proposition 6 (Belief Stochastic Dominance). In each period, agents’ posterior beliefs over s

are increasing in their private signal in the sense of first-order stochastic dominance.

Proof of Proposition 6. We prove this for the more complex case of Sections 4 and 5; the

proof for the Section 3 economy is simpler and follows the same steps.

Denote with F (s|xi,2, q1, q2) the cumulative distribution function (cdf) of the posterior beliefs

on s for a second-period agent with private signal xi,2, after observing primary-market price

q1 and when the equilibrium secondary-market price is q2. Similarly, let h(x|s, q1, q2) be the

probability density function of the second-period idiosyncratic signal conditional on (s, q1, q2),

and G(s|q1, q2) be the conditional cdf of s given q1 and q2. By Bayes’ rule,

F (s|x, q1, q2) =

∫ s
−∞ h(x|y, q1, q2)dG(y|q1, q2)∫ +∞
−∞ h(x|y, q1, q2)dG(y|q1, q2)

. (25)

To prove first-order stochastic dominance, we show that, if x2 < x̂2, then F (s|x2,q1,q2)
F (s|x̂2,q1,q2) > 1 whenever

the two cdf’s are strictly between 0 and 129. First, note that the ratio converges to 1 as s→ +∞.

We obtain

F (s|x2, q1, q2)
F (s|x̂2, q1, q2)

=

∫ s
−∞ h(x2|y, q1, q2)dG(y|q1, q2)∫ s
−∞ h(x̂2|y, q1, q2)dG(y|q1, q2)

·
∫ +∞
−∞ h(x̂2|y, q1, q2)dG(y|q1, q2)∫ +∞
−∞ h(x2|y, q1, q2)dG(y|q1, q2)

.

The second fraction on the right-hand side is independent of s. h(·|s, q1, q2) is independent of

(q1, q2) and normally distributed, so that h(x2|y)
h(x̂2|y) >

h(x2|s)
h(x̂2|s) for all y < s. We next prove that

W (s) :=
∫ s
−∞ h(x2|y,q1,q2)dG(y|q1,q2)∫ s
−∞ h(x̂2|y,q1,q2)dG(y|q1,q2) is decreasing in s, and strictly so in regions of positive proba-

bility. This completes the proof, since we know that F (s|x2,q1,q2)
F (s|x̂2,q1,q2) converges to 1 in the limit. Let

tionship between the expected price of a security and its fundamental expected value ex ante is driven by the

concavity or convexity of the payoff as a function of the underlying fundamental. In our case, the payoff of

the first-period traders takes the shape of a normal cumulative distribution function, with both a convex and a

concave piece that play against each other, so that we cannot establish a definite ranking.
29Since h is a normal density (with unbounded support), equation (25) implies that F (·|x2, q1, q2) and

F (·|x̂2, q1, q2) are absolutely continuous with respect to each other, for any values x2 and x̂2; hence, the sets

on which they are 0 and 1 coincide.
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s2 > s1 such that G(s1|q1, q2) > 0,30 then

W (s2)−W (s1) =

∫
y≤s1 h(x2|y)dG(y|q1, q2) +

∫ s2
s1
h(x2|y)dG(y|q1, q2)∫

y<s1
h(x̂2|y)dG(y|q1, q2) +

∫ s2
s1
h(x̂2|y)dG(y|q1, q2)

−
∫
y≤s1 h(x2|y)dG(y|q1, q2)∫
y<s1

h(x̂2|y)dG(y|q1, q2)
=∫ s2

s1
h(x2|y)dG(y|q1, q2)

∫
y≤s1 h(x̂2|y)dG(y|q1, q2)−

∫
y≤s1 h(x2|y)dG(y|q1, q2)

∫ s2
s1
h(x̂2|y)dG(y|q1, q2)∫

y≤s2 h(x̂2|y)dG(y|q1, q2)
∫
y≤y1 h(x̂2|y)dG(y|q1, q2)

≤

h(x̂2|y)

h(x2|y)
∫
y≤s2 h(x̂2|y)dG(y|q1, q2)

∫
y≤y1 h(x̂2|y)dG(y|q1, q2)

·[∫ s2

s1

h(x2|y)dG(y|q1, q2)
∫
y≤s1

h(x2|y)dG(y|q1, q2)−
∫ s2

s1

h(x2|y)dG(y|q1, q2)
∫
y≤s1

h(x2|y)dG(y|q1, q2)
]

= 0,

where the inequality is strict if G has positive mass on (s1, s2]. The posterior beliefs on s of a

first-period trader with private signal xi,1 are given by F (s|xi,1, q1). Proving these are increasing

in xi,1 in the sense of first-order stochastic dominance follows the same steps used above for

second-period beliefs.

Proposition 7 (Informational Equivalence of z and q in the case of no recall (Section 3)).

Assume that in equilibrium the price q1 is a continuous function of (s, ε1) and the second-period

price q2 is a continuous function of (s, ε2). Let Σ1 be the σ-algebra generated by the π-system

{q ∈ R : q1 ≤ q} and Σ̂1 by {z ∈ R : z1 ≤ z}, with z1 as defined in (12). Similarly, let Σ2 be

the σ-algebra generated by the π-system {q ∈ R : q2 ≤ q} and Σ̂2 by {z ∈ R : z2 ≤ z}, with z2 as

defined in (9). Then Σ1 = Σ̂1 and Σ2 = Σ̂2.

Proof of Proposition 7. First, note that equation (9) follows directly from Proposition 6 and

risk neutrality. Second, note that the function x̂2(q2) is defined via the indifference condition

θ + (1− θ)Prob(s ≥ ŝ|xi,2 = x̂2, q2) = q2. (26)

Consider interior prices q2 ∈ (θ, 1). Since conditional repayment probabilities are strictly in-

creasing in the private signal x̂2, it follows that x̂2(q2) exists and is unique.31 Then the market

30If G(s1|q1, q2) = 0, then F (s1|x, q1, q2) = 0 for all x.
31Existence follows because, when q2 ∈ (θ, 1), the price does not reveal fully whether s ≥ ŝ. Bayes’ rule then

implies that the left-hand side converges to θ as x̂2 → −∞ and to 1 as x̂2 →∞.
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clearing condition (9) is a single-valued mapping from the price q2 to the linear combination of

shocks z2 := s+ ε2/
√
β2 = x̂2(q2).

Next, we use the property above to prove that corner prices cannot arise with positive prob-

ability in equilibria in which the price is continuous in (s, ε2). Suppose by contradiction that

a positive-probability set H can be found for which q2 is equal to θ.32 Since H has positive

probability, we can find two pairs (sA, εA2 ) and (sB, εB2 ) that correspond to two different val-

ues of z2: z
A
2 and zB2 . Next, consider the price as a function of s moving along the two lines

s + ε2/
√
β2 = zA2 and s + ε2/

√
β2 = zB2 . As s increases along the lines, the price will eventually

have to increase, since a price of θ implies that H must lie below ŝ almost surely. Since q2 is

continuous, there must be two points (s̃A, ε̃A2 ) and (s̃B, ε̃B2 ) on the two lines where the price is

interior and the same. This contradicts what we have proved, since we showed that, whenever

the price is interior, z2 = x̂2(q2), with x̂2 being single valued.

Having established that the price is almost surely interior, we return to market clearing and

notice that x̂2 is continuous in (s, ε2). Given that q2 is also continuous in (s, ε2) by assumption, x̂2

must be a measurable function of q2 and thus it is measurable with respect to Σ2 (i.e., x̂2 is known

to somebody who knows the realization of q2). This then implies that z2 is also Σ2-measurable.

We next prove that q2 is Σ̂2-measurable. This proof follows the arguments of Pálvölgyi and

Venter [34]. By contradiction, suppose that (on a set of positive measure) there are two vectors

(sC , εC2 ) 6= (sD, εD2 ) that lie on the same straight line indexed by z2 but that correspond to

different prices qC and qD, i.e. such that

sC + εC2 /
√
β2 = z2, and q2(s

C , εC2 ) = qC

sD + εD2 /
√
β2 = z2, and q2(s

D, εD2 ) = qD

Since q2 is continuous, the intermediate value theorem ensures that, for any curve that connects

(sC , εC2 ) to (sD, εD2 ), there must be at least one point (s, ε2) such that q2(s, ε2) = qC+qD

2
. First we

apply the theorem to the curve represented by the straight line connecting (sC , εC2 ) to (sD, εD2 ),

and denote with (ŝ, ε̂2) the point on such line such that q2(ŝ, ε̂2) = (qC + qD)/2. Along this

32The same logic applies to the case in which q2 = 1.
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line z2 remains constant. Second, we apply the theorem to any other curve which intersects

our straight line z2 only at (sC , εC2 ) and (sD, εD2 ), again such that (s̃, ε̃2) lies on the curve and

q2(s̃, ε̃2) = (qC + qD)/2. It follows that we have found two different points, (ŝ, ε̂2) and (s̃, ε̃2),

that correspond to the same price but are such that ŝ+ ε̂2/
√
β2 6= s̃+ ε̃2/

√
β2. This contradicts

the necessary market clearing condition (9).

The proof for the first period repeats the same steps as above.

Lemma 1. Let us denote a general version of the primary-market price as

q1(z1) = θ + (1− θ)Φ
[
µ0 − ŝ
S

+K(z1 − µ0)

]
,

where S :=
√
w2
SσS|B + σ2

S and K := wSwB/S for Section 3, while S :=
√
w2

2,Sσ
2
S|B + σ2

S and

K is defined by (23) for Section 4. The partial derivatives of q1(z1) with respect to β2 and ψ2

respectively are given by

∂q1(z1)

∂β2
= (1− θ)φ

(
µ0 − ŝ
S

+K(z1 − µ0)

)[
(z1 − µ0)

∂K

∂β2
−
(
µ0 − ŝ
S2

)
∂S

∂β2

]
∂q1(z1)

∂ψ2

= (1− θ)φ
(
µ0 − ŝ
S

+K(z1 − µ0)

)[
(z1 − µ0)

∂K

∂ψ2

−
(
µ0 − ŝ
S2

)
∂S

∂ψ2

]
.

(27)

Proof of Proposition 1. Formally the proposition states that

sign

(
∂q1(z1)

∂β2

)
= sign(z1 − ẑβ1 )

where ẑβ1 ∈ R depends on all the parameters of the economy. From Lemma 1 and

∂K

∂β2
=
β1(1 + ψ1)(1 + ψ2) [2α0ψ2 + β2(1 + 3ψ2 + 2ψ2

2)]

2γ1ψ2σ
−4
S

√
σ−2S β2(1 + ψ2)2σ2

S|B

> 0

it follows that sign
(
∂q1(z1)
∂β2

)
= sign(z1 − ẑβ1 ), where

ẑβ1 = µ0 +

(
µ0 − ŝ
S2

)(
∂K

∂β2

)−1
∂S

∂β2
.
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Proof of Proposition 2. Formally the proposition states that

sign

(
∂q1(z1)

∂ψ2

)
= sign(z1 − ẑψ1 )

where ẑψ1 ∈ R depends on all the parameters of the economy. From Lemma 1 and

∂K

∂ψ2

=
β1β2(1 + ψ1)

[
2ψ2σ

−2
S + β2(2 + 2ψ2)

]
2ψ2

√
σ−2S + β2

2(1 + ψ2)2σ2
S|B

(
ψ2[α0γ1 + β2

2(1 + ψ2)2] + γ1β2(1 + ψ2)(1 + 2ψ2)
) > 0

it follows that sign
(
∂q1(z1)
∂ψ2

)
= sign(z1 − ẑψ1 ), where

ẑψ1 = µ0 +

(
µ0 − ŝ
S2

)(
∂K

∂ψ2

)−1
∂S

∂ψ2

. (28)

Definition 2 (Definition of an equilibrium when the first-period price is known in the second

period). A Perfect Bayesian Equilibrium consists of bidding strategies d(xi,1, q1) and d(xi,2, q1, q2)

for strategic players, price functions q1(s, ε1) and q2(s, ε1, ε2), and posterior beliefs p1(xi,1, q1) and

p2(xi,2, q1, q2) such that

(i) d(xi,1, q1) and d(xi,2, q1, q2) are optimal given beliefs p1(xi,1, q1) and p2(xi,2, q1, q2) respec-

tively;

(ii) q1(s, ε1) and q2(s, ε1, ε2) clear the market for all (s, ε1, ε2); and

(iii) p1(xi,1, q1) and p2(xi,2, q1, q2) satisfy Bayes’ Law for all market clearing prices q1 and q2.

Proof of Proposition 3. By the same arguments of the proof of Proposition 2, qA1 and qB1

satisfy the single-crossing condition and intersect at ẑψ1 , function of all parameters of the Section 4

economy. Then qA1 crosses qB1 from below if and only if ∂K
∂ψ2

> 0, which is always true.

We now prove that the same result also holds in the case of Section 5, where the government

default threshold is endogenous. First, consider any of the (potentially multiple) intersections

between qA1 and qB1 , where ψA2 > ψB2 , and let us denote them with (ẑψ1 , q̂
ψ
1 ). The slope of the

price function q1(z1) at any of such points is given by

∂q1(z1)

∂z1

∣∣∣∣
(ẑψ1 ,q̂

ψ
1 )

=
(1− θ)φ

(
µ0−ŝ(q̂ψ1 )

S
+K(ẑψ1 − µ0)

)
K

1 + (1− θ)φ
(
µ0−ŝ(q̂ψ1 )

S
+K(ẑψ1 − µ0)

)
ŝ′(q̂ψ1 )

S

.
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Since ŝ′(q) < 0 and K and S are respectively increasing and decreasing in ψ2, we can con-

clude that at all intersections qA1 crosses qB1 from below. This implies that (i) there can only

exist one crossing point (ẑψ1 , q̂
ψ
1 ), and (ii) the direction of the crossing is indeed as described in

Proposition 3.

To explicitly characterize ẑψ1 , let us rearrange equation (24) to get SΦ−1
(
q1−θ
1−θ

)
= µ0− ŝ(q1) +

KS(z1 − µ0): evaluated at (ẑψ1 , q̂
ψ
1 ), this must hold when ψ2 is equal to either ψA2 or ψB2 . Sub-

tracting and rearranging we can characterize the crossing further:

q̂ψ1 = θ + (1− θ)Φ
[
KASA −KBSB

SA − SB
(ẑψ1 − µ0)

]
. (29)

where KA, SA correspond to the case where ψ2 = ψA2 , while KB, SB correspond to the case where

ψ2 = ψB2 . It is then possible to plug equation (29) into (24) and solve for the value of ẑψ1 .

Proof of Proposition 4. By the same arguments of the proof of Proposition 1, qA1 and qB1

satisfy the single-crossing condition and intersect at ẑβ1 , function of all parameters of the Section 4

economy. Then qA1 crosses qB1 from below if and only if K(βA2 ), the coefficient of z1 evaluated at

βA2 , is larger than K(βB2 ).

Note that condition ∂K
∂β2

> 0 is equivalent to

β2(1 + ψ2)(1 + ψ1 + 2ψ2)− β1ψ1(1 + ψ1) + α0(ψ1 − 2ψ2) > 0 (30)

which is linear and increasing in β2, and equals zero at β̂2 = β1ψ1(1+ψ1)+α0(ψ1−2ψ2)
(1+ψ2)(1+ψ1+2ψ2)

. The left panel

of Figure 4 is an example of β̂2 ≤ 0, in which case K(βA2 ) > K(βB2 ) for all 0 < βB2 < βA2 . The right

panel instead represents the scenario where β̂2 > 0 and K(β2) is not monotone increasing. To

prove the Proposition it is sufficient to show that K(β2 = β1) > K(β2 → 0), which is equivalent

to
β1[γ1 + β1(1 + ψ1)(ψ1 + ψ2)]√

γ1(γ1 + β1ψ2){α0ψ2 + β1[1 + (3 + ψ1)ψ2 + ψ2
2]}/ψ2

>
β1ψ1√

α0 + β1ψ1

.

When ψ2 ≥ ψ1, this is always satisfied and concludes the proof.

Proof of Proposition 5. Examine the argument of the cumulative distribution function on

the right-hand side of (24). The second term is linear in z1 with coefficient K, while the first
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term is a bounded function of z1 since ŝ(q1) ∈ (ŝ(1), ŝ(θ)). It follows that when z1 is sufficiently

large in absolute value, the response of q1 to changes in information precision will be driven solely

by ∂K
∂β2

as defined in (23) and characterized in (30).
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