The Anatomy of the Wage Distribution

 How do Gender and Immigration Matter?Rasmus Lentz Suphanit Piyapromdee Jean-Marc Robin
UW-Madison, UCL\&IFS, Sciences Po

Introduction

Determinants of wage and mobility outcomes

- Matched employer-employee data provide wage outcomes in matches for different combinations of workers and firms.
- What are the sources of wage inequality between (i) men and women (ii) immigrants and natives?
- What are the determinants of wages and mobility?

Introduction

Wage models with double sided unobserved heterogeneity for MEE data.

- Abowd, Kramarz, Margolis (ECMA, 1999):

$$
\ln w_{i t}=x_{i t}^{\top} \beta+\alpha_{i}+\psi_{j(i, t)}+u_{i t}
$$

- Restrictive: Additive effects.
- OLS for fixed-effects estimation: small- T biases. Addressed by Andrews, Gil, Schank, and Upward (JRSS, 2008).
- Bonhomme, Lamadon, Manresa (2015): Version of the AKM model with discrete worker and firm types.
- Nonparametrically identified with $T=2$.
- Firm classification in first step by k-means. Then identify discrete mixture over worker side by EM algorithm.

Our contribution

- We adopt a discrete mixture approach as in BLM.
- Contrary to BLM we use a parametric model of wage distributions and job-to-job mobility
- Do women have lower wages because they have different offer arrival probability or because they rank jobs differently?
- These transition probabilities are nonlinear but we develop an MM-algorithm.
- Our estimation algorithm uses both wage and mobility data to update firm classification.
- We present Monte Carlo analyses and estimation on Danish match employer-employee data.

Data observation

- Workers: $i \in\{1, \ldots, l\}$. Firms: $j \in\{1, \ldots, J\} . j=0$ denotes non-employment.
- Observation for worker i in week $t,\left(w_{i t}, j_{i t}, x_{i t}\right), t=1,2, \ldots, T_{i}$.
- $j_{i t} \equiv j(i, t) \in\{0,1, \ldots, J\}$ is the ID of the firm employing worker i in week t.
- $x_{i t}$ are observed worker controls.
- $w_{i t}$ is the workers wage rate at time t.

Classification

- Firms clustered into L different groups indexed by $\ell \in\{0,1, \ldots, L\}$, where non-employment is $\ell=0$.
- Workers clustered into K different groups indexed by $k \in\{1, \ldots, K\}$.
- Unobserved firm types ℓ are treated as fixed effects (parameters).
- Unobserved worker types k are treated as random effects, drawn from a distribution.
- Let $\pi=\left(\pi_{1}, \ldots, \pi_{K}\right)$ denote the proportions of workers' types in the population.

Wages

- Let $f_{k \ell}(w)$ denote the wage density, conditional on worker type k and employer type ℓ.
- Wages are assumed lognormal,

$$
f_{k \ell}(w)=\frac{1}{\sigma_{k \ell}} \varphi\left(\frac{w-\mu_{k \ell}}{\sigma_{k \ell}}\right),
$$

- We assume $w_{i t}$ and $w_{i t^{\prime}}$ of a type k worker are independent conditional on $\left(\ell_{j i t}, \ell_{j_{i t^{\prime}}}\right)$.
- Straightforward to include controls in $f_{k l}(w)$.

Mobility

- $M_{k \ell \ell^{\prime}}$ is probability that a type k worker moves from a type ℓ to type ℓ^{\prime} firm.
- $\bar{M}_{k \ell}=1-\sum_{\ell^{\prime}=0}^{L} M_{k \ell \ell^{\prime}}$ is probability of staying with same employer.
- $m_{k \ell}$ is probability that a type k worker is matched with a type ℓ firm.
- Assume stationarity,

$$
m_{k \ell}=m_{k \ell} \bar{M}_{k \ell}+\sum_{\ell^{\prime}=0}^{L} m_{k \ell^{\prime}} M_{k \ell^{\prime} \ell}, \forall(k, \ell)
$$

This allows us to make inference about mobility parameters from worker flows and the initial allocation of workers to jobs.

Empirical specification

Transition probabilities

- The probability that a type k transitions from a type ℓ to a type ℓ^{\prime} firm is

$$
M_{k \ell \ell^{\prime}}=\lambda_{\ell} \nu_{\ell^{\prime}} P_{k \ell \ell^{\prime}}, \quad \lambda_{\ell}, \nu_{\ell^{\prime}} \in[0,1], \quad \sum_{\ell^{\prime}=0}^{L} \nu_{\ell^{\prime}}=1
$$

- λ_{ℓ} probability of a meeting with an outside employer when the current firm type is ℓ.
- $\nu_{\ell^{\prime}}$ probability that the outside draw is of type ℓ^{\prime}.
- $P_{k \ell \ell^{\prime}}$ probability that the transition from ℓ to ℓ^{\prime} becomes effective where $\gamma_{k \ell}$ measures the quality of the match (k, ℓ). We assume a Bradley-Terry specification (Hunter's , 2004 MM-algorithm) with $P_{k 00}=0$ and

$$
P_{k \ell \ell^{\prime}}=\frac{\gamma_{k \ell^{\prime}}}{\gamma_{k \ell}+\gamma_{k \ell^{\prime}}}, \quad \sum_{\ell=0}^{L} \gamma_{k \ell}=1 .
$$

Likelihood with observed firm types and stationarity

- Let $\ell_{i t}$ be the type of worker i's employer in period t.
- Indicate an employer change between t and $t+1$ by,

$$
D_{i t}= \begin{cases}1 & \text { if } j_{i(t+1)} \neq j_{i t} \\ 0 & \text { if } j_{i(t+1)}=j_{i t}\end{cases}
$$

- For model parameters $\beta=(f, M, \pi)$ and a classification \mathcal{L} of firms, the likelihood for one worker i is

$$
\sum_{k=1}^{K} L_{i}(k ; \beta, \mathcal{L})
$$

where $L_{i}(k ; \beta, \mathcal{L})$ is the worker type k individual likelihood,

$$
L_{i}(k ; \beta, \mathcal{L})=\pi_{k} m_{k \ell_{i 1}} \prod_{t=1}^{T_{i}-1} f_{k \ell_{i t}}\left(w_{i t}\right) \prod_{t=1}^{T_{i}-1} \bar{M}_{k l_{i t}}^{1-D_{i t}} M_{k \ell_{i t} i_{i, t+1)}}^{D_{i t}},
$$

EM elements

- Given (β, \mathcal{L}), the posterior probability that worker i is type k is

$$
p_{i}(k ; \beta, \mathcal{L})=\frac{L_{i}(k ; \beta, \mathcal{L})}{\sum_{k=1}^{K} L_{i}(k ; \beta, \mathcal{L})}
$$

- Worker i's expected wage log-likelihood,

$$
Q_{i}(f ; \beta, \mathcal{L})=\sum_{k=1}^{K} p_{i}(k ; \beta, \mathcal{L})\left[\sum_{t=1}^{T_{i}} \ln f_{k \ell_{i t}}\left(w_{i t}\right)\right]
$$

and worker i 's expected mobility log-likelihood,

$$
\begin{aligned}
H_{i}(M ; \beta, \mathcal{L})= & \sum_{k=1}^{K} \\
& p_{i}(k ; \beta, \mathcal{L})\left[\ln m_{k \ell_{i 1}}+\right. \\
& \left.\sum_{t=1}^{T_{i}-1}\left\{\left(1-D_{i t}\right) \ln \bar{M}_{k \ell_{i t}}+D_{i t} \ln M_{k \ell_{i t} \ell_{i(t+1)}}\right\}\right] .
\end{aligned}
$$

A CEM algorithm

C-step First, rank firms by average wage divide the firms equi-proportionately into L groups.
E-step For $\beta^{(m)}=\left(f^{(m)}, M^{(m)}, \pi^{(m)}\right)$ and \mathcal{L} calculate posterior probabilities $p_{i}\left(k ; \beta^{(m)}, \mathcal{L}\right)$.
M-step Update $\beta^{(m)}$ by maximizing
$\sum_{\text {that is }} \sum_{k} p_{i}\left(k ; \beta^{(m)}, \mathcal{L}\right) \ln L_{i}(k ; \beta, \mathcal{L})$ subject to $\sum_{k} \pi_{k}=1$,

$$
\begin{aligned}
f^{(m+1)} & =\arg \max _{f} \sum_{i=1}^{l} Q_{i}\left(f ; \beta^{(m)}, \mathcal{L}\right) \\
M^{(m+1)} & =\arg \max _{M} \sum_{i=1}^{l} H_{i}\left(M ; \beta^{(m)}, \mathcal{L}\right) \\
\pi_{k}^{(m+1)} & =\frac{1}{l} \sum_{i=1}^{l} p_{i}\left(k ; \beta^{(m)}, \mathcal{L}\right)
\end{aligned}
$$

Firm re-classification (C-step)

- Disregarding the part of the likelihood that involves mobility between firms, we suggest to update $\mathcal{L}^{(m)}$ separately for each firm j as,

$$
\begin{aligned}
& \ell_{j}^{(m+1)}=\arg \max _{\ell_{j}}\left\{\sum_{i=1}^{1} \sum_{k=1}^{K} p_{i}\left(k ; \beta^{(m)}, \mathcal{L}^{(m)}\right) \sum_{\substack{t=1 \\
j(i, t)=j}}^{T_{i}} \ln f_{k \ell_{j}}^{(m+1)}\left(w_{i t}\right)\right. \\
& \quad+\sum_{i=1}^{l} \sum_{k=1}^{K} p_{i}\left(k ; \beta^{(m)}, \mathcal{L}^{(m)}\right) \sum_{\substack{t=1 \\
j(i, t)=j}}^{T_{i}-1}\left\{\left(1-D_{i t}\right) \ln \bar{M}_{k \ell_{j}}^{(m+1)}+\right. \\
& \left.\left.D_{i t}\left[\mathbb{1}\left\{\ell_{j(i, t+1)}=0\right\} \ln M_{k \ell_{j} 0}^{(m+1)}+\mathbb{1}\left\{\ell_{j(i, t+1)} \neq 0\right\} \ln \sum_{\ell^{\prime}=1}^{L} M_{k \ell_{j} \ell^{\prime}}^{(m+1)}\right]\right\}\right\} .
\end{aligned}
$$

- Iterate between C-E-M until we have convergence.

M-step details

Wage distribution

- Given normality assumption, the M-step update takes the following form for wage parameters:

$$
\begin{aligned}
\mu_{k \ell}^{(m+1)} & =\frac{\sum_{i=1}^{l} p_{i}\left(k ; \beta^{(m)}\right) \sum_{t=1}^{T_{i}} \mathbb{1}\{j(i, t)=\ell\} w_{i t}}{\sum_{i=1}^{l} p_{i}\left(k ; \beta^{(m)}\right) \sum_{t=1}^{T_{i}} \mathbb{1}\{j(i, t)=\ell\}} \\
\sigma_{k \ell}^{(m+1)} & =\frac{\sum_{i=1}^{l} p_{i}\left(k ; \beta^{(m)}\right) \sum_{t=1}^{T_{i}} \mathbb{1}\{j(i, t)=\ell\}\left[w_{i t}-\mu_{k \ell}^{(m+1)}\right]^{2}}{\sum_{i=1}^{l} p_{i}\left(k ; \beta^{(m)}\right) \sum_{t=1}^{T_{i}} \mathbb{1}\{j(i, t)=\ell\}} .
\end{aligned}
$$

- Mobility parameters are estimated using the Minorize-maximization (MM) algorithm
- update λ, ν, γ using formulas and maximize the mobility likelihood until convergence.

Preliminary estimates

- We use the matched employer-employee data from Denmark from 1985-2011.
- Wages are reported at annual frequency and adjusted for the aggregate trend.
- Mobility data of workers are reported at a weekly frequency.

Preliminary estimates

All men, aged 30-34, 5 years

- 1,089,764 workers and 253,150 firms
- In this case, clear evidence of a firm ladder.

Monte Carlo simulations

- We illustrate the performance of the estimator by its ability to recover the estimated parameters of men aged 30-34.
- The sample has 1,089,764 workers and 253,150 firms, 5 years/260 weeks. Not a toy simulation!
- Each estimation takes about 25 minutes (FORTRAN, some parallelization).
- Compare iterated CEM to EM based on initial firm classification.

Simulation with firm proportions $\eta_{\ell}=\{0.1,0.5,0.3,0.1\}$

Estimated σ_{w} with $\hat{K}, \hat{L}=4,4$

Estimated γ with $\hat{K}, \hat{L}=4,4$

After about 4 iterations of the C-step, the proportion of misclassified firms reduces from 46 to $\mathbf{3 \%}$.

Simulation with firm proportions $\eta_{\ell}=\{0.23,0.30,0.26,0.21\}$

Estimated μ_{w} with $\hat{K}, \hat{L}=4,4$

Estimated σ_{w} with $\hat{K}, \hat{L}=4,4$

Estimated γ with $\hat{K}, \hat{L}=4,4$

- The initial wage clustering results in 24% of misclassified firm types.
- After about 4 iterations of the CEM algorithm, this proportion of misclassified firm types reduces to 1% along with an improvement in the likelihood function.

Wrong number of types $K=L=2$ (1 simulation)

Estimated μ_{w} with $\hat{K}, \hat{L}=2,2$

Estimated γ with $\hat{K}, \hat{L}=2,2$

Wrong number of types $K=L=6$ (1 simulation)

Estimated γ with $\hat{K}, \hat{L}=6,6$

When $\hat{K}=\hat{L}=6$, the algorithm assigns very small probabilities to type 4 workers and type 2 firms.

Stratified estimates

- Model estimation done flexibly with respect to observable worker characteristics:
- Focus on working age (30-50)
- Stratified by gender and education: High (>12 yrs), Medium (=12 yrs), Low (<12 yrs).
- Split data into five-year periods 1985-1989, 1990-1994, ...

Mean wage of high ed workers

Top panel: 1985-1989 and bottom panel: 2004-2009

Male

Estimated μ_{w} with $\mathrm{K}, \mathrm{L}=6,4$

Estimated μ_{w} with $\mathrm{K}, \mathrm{L}=6,4$

Female
Estimated μ_{w} with $\mathrm{K}, \mathrm{L}=6,4$

Estimated μ_{w} with $\mathrm{K}, \mathrm{L}=6,4$

Mobility of high ed workers

Top panel: 1985-1989 and bottom panel: 2004-2009

Values of jobs for high ed workers

Top panel: 1985-1989 and bottom panel: 2004-2009

Male

Estimated γ with K,L=6,4

Estimated γ with $\mathrm{K}, \mathrm{L}=6,4$

Female

Estimated γ with $K, L=6,4$

Estimated γ with $\mathrm{K}, \mathrm{L}=6,4$

Male workers: regression of μ_{w} on k and ℓ dummies, no interaction

Top panel: 1985-1989 and bottom panel: 2004-2009

Concluding remarks

- Following discrete mixture approach in BLM, we present a CEM algorithm for the flexible estimation of wage and mobility parameters.
- Fast estimation of mobility parameters from MM algorithm in M-step.
- C-step improves performance of estimator.
- Main Findings
- Some evidence of "memory" coming out of nonemployment.
- Men more positively sorted over time than women.
- Complementarity between firm and worker types for both males and females.
- Mobility patterns show evidence of upward movement on firm ladder for male workers.

Minorize-maximization galore

EM algorithm

The EM algorithm itself is based on minorization of the individual likelihood in the point $\beta^{(m)}$,

$$
L_{i}(\beta, \mathcal{L})=\ln \sum_{k=1}^{K} L_{i}(k ; \beta, \mathcal{L}) \geq \hat{L}_{i}\left(\beta ; \beta^{(m)}, \mathcal{L}\right)
$$

with equality for $\beta=\beta^{m}$, where

$$
\hat{L}_{i}\left(\beta ; \beta^{(m)}, \mathcal{L}\right)=L_{i}\left(\beta^{(m)}, \mathcal{L}\right)+\sum_{k=1}^{K} p_{i}\left(k ; \beta^{(m)}, \mathcal{L}\right) \ln \frac{L_{i}(k ; \beta, \mathcal{L})}{L_{i}\left(k ; \beta^{(m)}, \mathcal{L}\right)}
$$

which provides the algorithm where the log-likelihood of the data always improves from step m to $(m+1)$,

$$
\beta^{(m+1)}=\arg \max _{\beta} \sum_{i=1}^{I} \sum_{k=1}^{K} p_{i}\left(k ; \beta^{(m)}, \mathcal{L}\right) \ln L_{i}(k ; \beta, \mathcal{L})
$$

Minorize-maximization galore

M-step, transition mobilities - 1

- Update mobility parameters based on mobility part of $\ln L_{i}(k ; \beta, \mathcal{L})$ (excluding steady state). Count stays and moves to rewrite as,

$$
\widetilde{H}\left(M ; \beta^{(m)}, \mathcal{L}^{(m)}\right) \equiv \sum_{k=1}^{K} \sum_{\ell=0}^{L}\left\{\bar{n}_{k \ell}^{(m)} \ln \bar{M}_{k \ell}+\sum_{\ell^{\prime}=0}^{L} n_{k \ell \ell^{\prime}}^{(m)} \ln M_{k \ell \ell^{\prime}}\right\}
$$

where

$$
\begin{aligned}
& \bar{n}_{k \ell}^{(m)}=\sum_{i} p_{i}\left(k ; \beta^{(m)}\right) \#\left\{t: D_{i t}=0, \ell_{i t}^{(m)}=\ell\right\} \\
& n_{k \ell \ell^{\prime}}^{(m)}=\sum_{i} p_{i}\left(k ; \beta^{(m)}\right) \#\left\{t: D_{i t}=1, \ell_{i t}^{(m)}=\ell, \ell_{i(t+1)}^{(m)}=\ell^{\prime}\right\}
\end{aligned}
$$

Minorize-maximization galore

M-step, transition mobilities - 2

- Find minorization that is additive in controls. Using Jensen's inequality, probability of staying is minorized in $M^{(s)}$ by,

$$
\begin{aligned}
\ln \bar{M}_{k \ell} \geq & \frac{1-\lambda_{\ell}^{(s)}}{\bar{M}_{k \ell}^{(s)}} \ln \left(\frac{1-\lambda_{\ell}}{1-\lambda_{\ell}^{(s)}} \bar{M}_{k \ell}^{(s)}\right)+ \\
& \sum_{\ell^{\prime}=0}^{L} \frac{\lambda_{\ell}^{(s)} \nu_{\ell^{\prime}}^{(s)}\left(1-P_{k \ell \ell^{\prime}}^{(s)}\right)}{\bar{M}_{k \ell}^{(s)}} \ln \left(\frac{\lambda_{\ell} \nu_{\ell^{\prime}}\left(1-P_{k \ell \ell^{\prime}}\right)}{\lambda_{\ell}^{(s)} \nu_{\ell^{\prime}}^{(s)}\left(1-P_{k \ell \ell^{\prime}}^{(s)}\right)} \bar{M}_{k \ell}^{(s)}\right) .
\end{aligned}
$$

- This provides log-additivity. Still need to deal with $\ln P_{k \ell^{\prime} \ell}=\ln \gamma_{k \ell^{\prime}}-\ln \left(\gamma_{k \ell}+\gamma_{k l^{\prime}}\right)$. For this, use Hunter (2004) minorization,

$$
-\ln \left(\gamma_{k \ell}+\gamma_{k \ell^{\prime}}\right) \geq 1-\ln \left(\gamma_{k \ell}^{(s)}+\gamma_{k \ell^{\prime}}^{(s)}\right)-\frac{\gamma_{k \ell}+\gamma_{k \ell^{\prime}}}{\gamma_{k \ell}^{(s)}+\gamma_{k \ell^{\prime}}^{(s)}}
$$

Minorize-maximization galore

M-step, transition mobilities - 3

- From this $M^{(m+1)}$ is found through an MM-algorithm where updates are,

$$
\begin{aligned}
\gamma_{k \ell}^{(s+1)} & \propto \frac{\sum_{\ell^{\prime}=0}^{L}\left(\widetilde{n}_{k k \ell^{\prime}}^{(s, m)}+n_{k \ell^{\prime} \ell}\right)}{\sum_{\ell^{\prime}=0}^{L} \frac{\tilde{n}_{k \ell \ell^{\prime}}^{(s, m)}+n_{k \ell \ell^{\prime}}+\tilde{n}_{k \ell^{\prime} \ell}^{s, m)}+n_{k \ell^{\prime} \ell}}{\gamma_{k \ell}^{(s)}+\gamma_{k \ell^{\prime}}^{(s)}}} \\
\lambda_{\ell}^{(s+1)} & =\frac{\sum_{k=1}^{K} \sum_{\ell^{\prime}=0}^{L}\left(\widetilde{n}_{k \ell \ell^{\prime}}^{(s, m)}+n_{k \ell \ell^{\prime}}^{(s)}\right)}{\sum_{k=1}^{K}\left(\bar{n}_{k \ell}^{(s)} \frac{1-\lambda_{\ell}^{(s)}}{\bar{M}_{k \ell}^{(s)}}\right)+\sum_{k=1}^{K} \sum_{\ell^{\prime}=0}^{L}\left(\widetilde{n}_{k \ell \ell^{\prime}}^{(s, m)}+n_{k \ell \ell^{\prime}}^{(s)}\right)} \\
\nu_{\ell}^{(s+1)} & \propto \sum_{k=1}^{K} \sum_{\ell^{\prime}=0}^{L}\left[\widetilde{n}_{k \ell^{\prime} \ell}^{(s, m)}+n_{k \ell^{\prime} \ell}^{(s)}\right] .
\end{aligned}
$$

- Use this as long as log-likelihood is improved. Otherwise, use numerical optimizer to improve on $\sum_{i=1}^{l} H_{i}\left(M ; \beta^{m}, \mathcal{L}^{m}\right)$.

