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Introduction
Determinants of wage and mobility outcomes

Matched employer-employee data provide wage outcomes in

matches for di�erent combinations of workers and �rms.

What are the sources of wage inequality between (i) men and

women (ii) immigrants and natives?

What are the determinants of wages and mobility?
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Introduction
Wage models with double sided unobserved heterogeneity for MEE data.

Abowd, Kramarz, Margolis (ECMA, 1999):

lnwit = x>it β + αi + ψj(i ,t) + uit .

Restrictive: Additive e�ects.

OLS for �xed-e�ects estimation: small-T biases. Addressed by
Andrews, Gil, Schank, and Upward (JRSS, 2008).

Bonhomme, Lamadon, Manresa (2015): Version of the AKM model

with discrete worker and �rm types.

Nonparametrically identi�ed with T = 2.
Firm classi�cation in �rst step by k-means. Then identify discrete
mixture over worker side by EM algorithm.
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Our contribution

We adopt a discrete mixture approach as in BLM.

Contrary to BLM we use a parametric model of wage distributions

and job-to-job mobility

Do women have lower wages because they have di�erent o�er arrival
probability or because they rank jobs di�erently?

These transition probabilities are nonlinear but we develop an

MM-algorithm.

Our estimation algorithm uses both wage and mobility data to

update �rm classi�cation.

We present Monte Carlo analyses and estimation on Danish match

employer-employee data.
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Data observation

Workers: i ∈ {1, ..., I}. Firms: j ∈ {1, ..., J}. j = 0 denotes

non-employment.

Observation for worker i in week t, (wit , jit , xit), t = 1, 2, . . . ,Ti .

jit ≡ j(i , t) ∈ {0, 1, ..., J} is the ID of the �rm employing worker i in
week t.
xit are observed worker controls.
wit is the workers wage rate at time t.
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Classi�cation

Firms clustered into L di�erent groups indexed by ` ∈ {0, 1, . . . ,L},
where non-employment is ` = 0.

Workers clustered into K di�erent groups indexed by k ∈ {1, ...,K}.
Unobserved �rm types ` are treated as �xed e�ects (parameters).

Unobserved worker types k are treated as random e�ects, drawn

from a distribution.

Let π = (π1, ..., πK ) denote the proportions of workers' types in the

population.
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Wages

Let fk`(w) denote the wage density, conditional on worker type k

and employer type `.

Wages are assumed lognormal,

fk`(w) =
1

σk`
ϕ

(
w − µk`
σk`

)
,

We assume wit and wit′ of a type k worker are independent

conditional on
(
`jit , `jit′

)
.

Straightforward to include controls in fkl (w).
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Mobility

Mk``′ is probability that a type k worker moves from a type ` to type

`′ �rm.

Mk` = 1−
∑L

`′=0Mk``′ is probability of staying with same employer.

mk` is probability that a type k worker is matched with a type ` �rm.

Assume stationarity,

mk` = mk`Mk` +
L∑

`′=0

mk`′Mk`′`, ∀(k , `),

This allows us to make inference about mobility parameters from

worker �ows and the initial allocation of workers to jobs.
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Empirical speci�cation
Transition probabilities

The probability that a type k transitions from a type ` to a type `′

�rm is

Mk``′ = λ`ν`′Pk``′ , λ`, ν`′ ∈ [0, 1],
L∑

`′=0

ν`′ = 1

λ` probability of a meeting with an outside employer when the

current �rm type is `.

ν`′ probability that the outside draw is of type `′.

Pk``′ probability that the transition from ` to `′ becomes e�ective

where γk` measures the quality of the match (k , `). We assume a

Bradley-Terry speci�cation (Hunter's ,2004 MM-algorithm) with

Pk00 = 0 and

Pk``′ =
γk`′

γk` + γk`′
,

L∑
`=0

γk` = 1.
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Likelihood with observed �rm types and stationarity

Let `it be the type of worker i 's employer in period t.

Indicate an employer change between t and t + 1 by,

Dit =

{
1 if ji(t+1) 6= jit

0 if ji(t+1) = jit .

For model parameters β = (f ,M, π) and a classi�cation L of �rms,

the likelihood for one worker i is

K∑
k=1

Li(k ;β,L),

where Li(k ;β,L) is the worker type k individual likelihood,

Li(k ;β,L) = πkmk`i1

Ti−1∏
t=1

fk`it (wit)

Ti−1∏
t=1

M
1−Dit

k`it
M

Dit

k`it`i(,t+1)
,
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EM elements

Given (β,L), the posterior probability that worker i is type k is

pi(k ;β,L) =
Li(k ;β,L)∑K
k=1 Li(k ;β,L)

.

Worker i 's expected wage log-likelihood,

Qi(f ;β,L) =
K∑

k=1

pi(k ;β,L)

[
Ti∑
t=1

ln fk`it (wit)

]
and worker i 's expected mobility log-likelihood,

Hi(M;β,L) =
K∑

k=1

pi(k ;β,L)

[
lnmk`i1+

Ti−1∑
t=1

{
(1−Dit) lnMk`it +Dit lnMk`it`i(t+1)

}]
.
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A CEM algorithm

C-step First, rank �rms by average wage divide the �rms

equi-proportionately into L groups.

E-step For β(m) =
(
f (m),M(m), π(m)

)
and L calculate posterior

probabilities pi
(
k ;β(m),L

)
.

M-step Update β(m) by maximizing∑
i

∑
k pi
(
k ;β(m),L

)
lnLi(k ;β,L) subject to

∑
k πk = 1,

that is

f (m+1) = argmax
f

I∑
i=1

Qi(f ;β
(m),L),

M(m+1) = argmax
M

I∑
i=1

Hi(M;β(m),L),

π
(m+1)
k =

1

I

I∑
i=1

pi(k ;β
(m),L).
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Firm re-classi�cation (C-step)

Disregarding the part of the likelihood that involves mobility between

�rms, we suggest to update L(m) separately for each �rm j as,

`
(m+1)
j = argmax

`j

{
I∑

i=1

K∑
k=1

pi
(
k ;β(m),L(m)

) Ti∑(
t=1

j(i ,t)=j

) ln f (m+1)
k`j

(wit)

+
I∑

i=1

K∑
k=1

pi
(
k ;β(m),L(m)

) Ti−1∑(
t=1

j(i ,t)=j

)
{
(1−Dit) lnM

(m+1)
k`j

+

Dit

[
1{`j(i ,t+1) = 0} lnM(m+1)

k`j0
+1{`j(i ,t+1) 6= 0} ln

L∑
`′=1

M
(m+1)
k`j `′

]}}
.

Iterate between C-E-M until we have convergence.
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M-step details
Wage distribution

Given normality assumption, the M-step update takes the following

form for wage parameters:

µ
(m+1)
k` =

∑I
i=1 pi(k ;β

(m))
∑Ti

t=1 1{j(i , t) = `}wit∑I
i=1 pi(k ;β

(m))
∑Ti

t=1 1{j(i , t) = `}

σ
(m+1)
k` =

∑I
i=1 pi(k ;β

(m))
∑Ti

t=1 1{j(i , t) = `}[wit − µ
(m+1)
k` ]2∑I

i=1 pi(k ;β
(m))

∑Ti

t=1 1{j(i , t) = `}
.

Mobility parameters are estimated using the Minorize-maximization

(MM) algorithm

update λ, ν, γ using formulas and maximize the mobility likelihood
until convergence.
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Preliminary estimates
Data

We use the matched employer-employee data from Denmark from

1985-2011.

Wages are reported at annual frequency and adjusted for the

aggregate trend.

Mobility data of workers are reported at a weekly frequency.
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Preliminary estimates
All men, aged 30-34, 5 years

4

3

Estimated µw with K,L=4,4

ℓ

2

11

2
k

3

4.2

3.8

4.4

3.6

4

4.6

4.8

4

e
st
im

a
te
d
µ
w

4
3

Estimated γ with K,L=4,4

2

ℓ

1
01

2
k

3

0.8

0.2

0.4

0.6

0
4

e
st
im

a
te
d
γ

1,089,764 workers and 253,150 �rms

In this case, clear evidence of a �rm ladder.

Lentz, Piyapromdee, and Robin (2016), "The Anatomy of the Wage Distribution" 16 / 27



Monte Carlo simulations

We illustrate the performance of the estimator by its ability to

recover the estimated parameters of men aged 30-34.

The sample has 1,089,764 workers and 253,150 �rms, 5 years/260

weeks. Not a toy simulation!

Each estimation takes about 25 minutes (FORTRAN, some

parallelization).

Compare iterated CEM to EM based on initial �rm classi�cation.
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Simulation with �rm proportions η` = {0.1, 0.5, 0.3, 0.1}
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After about 4 iterations of the C-step, the proportion of misclassi�ed

�rms reduces from 46 to 3%.
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Simulation with �rm proportions

η` = {0.23, 0.30, 0.26, 0.21}
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The initial wage clustering results in 24% of misclassi�ed �rm types.

After about 4 iterations of the CEM algorithm, this proportion of

misclassi�ed �rm types reduces to 1% along with an improvement in

the likelihood function.
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Wrong number of types K = L = 2 (1 simulation)
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Wrong number of types K = L = 6 (1 simulation)

6
5

4

Estimated µw with K̂ ,L̂=6,6

L̂

3
2

10

2

K̂

4

3.5

4

4.5

5

6

e
st
im

a
te
d
µ
w

8
6

Estimated γ with K̂ ,L̂=6,6

4

L̂

2
00

2

K̂

4

0

0.2

0.4

0.6

0.8

6

e
st
im

a
te
d
γ

When K̂ = L̂ = 6, the algorithm assigns very small probabilities to type 4

workers and type 2 �rms.
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Strati�ed estimates

Model estimation done �exibly with respect to observable worker

characteristics:

Focus on working age (30-50)
Strati�ed by gender and education: High (>12 yrs), Medium (=12
yrs), Low (<12 yrs).
Split data into �ve-year periods 1985-1989, 1990-1994, ...
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Mean wage of high ed workers
Top panel: 1985-1989 and bottom panel: 2004-2009
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Mobility of high ed workers
Top panel: 1985-1989 and bottom panel: 2004-2009
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Values of jobs for high ed workers
Top panel: 1985-1989 and bottom panel: 2004-2009
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Male workers: regression of µw on k and ` dummies, no

interaction
Top panel: 1985-1989 and bottom panel: 2004-2009

Male Female
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Concluding remarks

Following discrete mixture approach in BLM, we present a CEM

algorithm for the �exible estimation of wage and mobility

parameters.

Fast estimation of mobility parameters from MM algorithm in M-step.
C-step improves performance of estimator.

Main Findings

Some evidence of �memory� coming out of nonemployment.
Men more positively sorted over time than women.
Complementarity between �rm and worker types for both males and
females.
Mobility patterns show evidence of upward movement on �rm ladder
for male workers.
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Minorize-maximization galore
EM algorithm

The EM algorithm itself is based on minorization of the individual

likelihood in the point β(m),

Li(β,L) = ln

K∑
k=1

Li(k ;β,L) ≥ L̂i(β;β
(m),L),

with equality for β = βm, where

L̂i(β;β
(m),L) = Li(β

(m),L) +
K∑

k=1

pi(k ;β
(m),L) ln Li(k ;β,L)

Li(k ;β(m),L)
,

which provides the algorithm where the log-likelihood of the data always

improves from step m to (m + 1),

β(m+1) = argmax
β

I∑
i=1

K∑
k=1

pi(k ;β
(m),L) lnLi(k ;β,L).

back



Minorize-maximization galore
M-step, transition mobilities - 1

Update mobility parameters based on mobility part of lnLi(k ;β,L)
(excluding steady state). Count stays and moves to rewrite as,

H̃(M;β(m),L(m)) ≡
K∑

k=1

L∑
`=0

{
n
(m)
k` lnMk` +

L∑
`′=0

n
(m)
k``′ lnMk``′

}
,

where

n
(m)
k` =

∑
i

pi(k ;β
(m))#

{
t : Dit = 0, `

(m)
it = `

}
,

n
(m)
k``′ =

∑
i

pi(k ;β
(m))#

{
t : Dit = 1, `

(m)
it = `, `

(m)
i(t+1) = `′

}
.

back



Minorize-maximization galore
M-step, transition mobilities - 2

Find minorization that is additive in controls. Using Jensen's

inequality, probability of staying is minorized in M(s) by,

lnMk` ≥
1− λ(s)`
M

(s)
k`

ln

(
1− λ`
1− λ(s)`

M
(s)
k`

)
+

L∑
`′=0

λ
(s)
` ν

(s)
`′ (1− P

(s)
k``′)

M
(s)
k`

ln

(
λ`ν`′(1− Pk``′)

λ
(s)
` ν

(s)
`′ (1− P

(s)
k``′)

M
(s)
k`

)
.

This provides log-additivity. Still need to deal with

lnPk`′` = ln γk`′ − ln(γk` + γkl ′). For this, use Hunter (2004)

minorization,

− ln(γk` + γk`′) ≥ 1− ln(γ
(s)
k` + γ

(s)
k`′)−

γk` + γk`′

γ
(s)
k` + γ

(s)
k`′

.

back



Minorize-maximization galore
M-step, transition mobilities - 3

From this M(m+1) is found through an MM-algorithm where updates

are,

γ
(s+1)
k` ∝

∑L
`′=0(ñ

(s,m)
k``′ + nk`′`)∑L

`′=0

ñ
(s,m)

k``′ +nk``′+ñ
(s,m)

k`′` +nk`′`

γ
(s)
k` +γ

(s)

k`′

λ
(s+1)
` =

∑K
k=1

∑L
`′=0

(
ñ
(s,m)
k``′ + n

(s)
k``′

)
∑K

k=1

(
n
(s)
k`

1−λ(s)`

M
(s)
k`

)
+
∑K

k=1

∑L
`′=0

(
ñ
(s,m)
k``′ + n

(s)
k``′

)
ν
(s+1)
` ∝

K∑
k=1

L∑
`′=0

[
ñ
(s,m)
k`′` + n

(m)
k`′`

]
.

Use this as long as log-likelihood is improved. Otherwise, use

numerical optimizer to improve on
∑I

i=1Hi(M;βm,Lm).
back
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