Dynamic economics in Practice

Monica Costa Dias and Cormac O'Dea

Motivation

- Many economic decisions (e.g. education take-up, savings or investments) are difficult to rationalise in a static setting
- They all involve some trade-off between present costs and future returns, sometimes in uncertain environments
- The existence of some markets (credit, insurance...) hinges on the dynamic nature of some decisions
- Their existence may reinforce the dynamic nature of the decision process

The problem I

Dynamic microeconomic problems are notably difficult to solve

- Very high dimensional
 - Present cost of a decision depends on present circumstances, and these are a consequence of past circumstances and decisions
 - Future returns may also depend on present circumstances and be realised in many periods and in different ways, possibly influencing future decisions
- In most cases, dynamic problems are not tractable analytically
- Possible solution: break the big problem into a sequence of similar smaller problems that we can solve - use Recursive Methods

The problem II

Solution we explore: break the big problem into a sequence of similar smaller problems that we can solve

This is what a recursive method called Dynamic Programming does

- Describe the position of the problem at a moment in time: the state of the world today – it summarises all the current information relevant for decision-making
- Where it might be tomorrow: the state of the world tomorrow
- And how the agents care about tomorrow vis-a-vis today
- DP allows us to characterise the problem with two functions
 - Transition function: maps the state today into the state tomorrow
 - Choice function: maps the state today into the endogenous choices

This course I

Gentle and practical introduction to dynamic optimisation

- Dynamic programming
- Numerical solution
- Computational methods

► Main goals

- Introduce standard tools to study and solve dynamic optimisation problems in microeconomics
- Demonstrate practically how these tools are used
- Discuss their comparative advantages
- Focus on methods and tools that can be easily extended to more general and complex setups

This course II

Workhorse: the consumption-savings model

- Interesting per-se: a key model in economics, underlying the permanent income theory and all developments that hinge on it
- Inherently dynamic
- Many interesting variations useful to illustrate how to tackle alternative dynamic problems: uncertainty, risk aversion, life-cycle/infinite horizon, habit formation, many choice or state variables, ...
- Various alternative specifications reflect underlying assumptions about market structure
- Crucial tool for policy analysis

This course III

Practical focus

- Discuss the approaches and procedures we found useful
- While keeping an eye on efficiency (but it will not be central)
- We make no attempt to discuss comprehensively the theoretical foundations of the problem or solution
- Goal: to solve increasingly more realistic (but also more complex) models showing methods that can be extended and applied to other settings

Outline of this course

- 1. The simplest consumption-savings problem: the cake-eating problem The problem; Simple example; Existence and uniqueness of solution
- 2. Introduction to dynamic programming Bellman equation; Recursive solution; Optimality conditions; Numerical solution; Practical implementation
- 3. Life-cycle income process Credit markets; Numerical solution; Practical implementation
- 4. Stochastic optimisation

Markov processes; lid income process; Numerical solution; Practical implementation; Autocorrelated income process; Practical implementation

5. Infinite horizon

The problem; Existence and uniqueness of solution; Simple example; Numerical solution; Practical implementation

The cake-eating problem

Setup and classical solution

The cake-eating problem

Simplest possible life-cycle consumption-savings problem

- lntertemporal problem of a consumer living for T periods and endowed with initial wealth a_1 in period t = 1
- Her goal: to allocate the consumption of this wealth over her T periods of life in order to maximise her lifetime wellbeing
- Consumption is divisible: a continuous decision variable
- Any remaining wealth in period t is productive, generating k(a) units of wealth to consume in the future
- No outstanding debts are allowed at the end of life
- And any remaining wealth at the end of life is of no value

Formal model

$$\max_{\substack{(c_1,\ldots,c_T)\in\mathbb{C}^T\\ \text{s.t.}}} \sum_{t=1}^T \beta^{t-1} u(c_t)$$

s.t. $a_{t+1} = k(a_t - c_t) \text{ for } t = 1,\ldots,T$
 $a_{T+1} \ge 0$
 $a_1 (\in \mathbb{A}) \text{ given}$

- Per-period wellbeing u: increasing in consumption
- ► Consumption: choice variable, with domain C (here R⁺₀ or R⁺, depending on u)
- Assets is the state variable, with domain A (here \mathbb{R}^+_0 or \mathbb{R}^+)
- k: law of motion for assets, a positive and increasing function in A

 $k(a_t - c_t) = R(a_t - c_t)$ where R = 1 + r is the interest factor

Classical solution

- Objective function is C¹ (continuously differentiable): interior optimum satisfies foc
- Classical solution: attack problem directly by solving all its foc's
- Useful to write model restrictions more compactly by noting that the law of motion for assets together with the initial condition imply

$$a_{T+1} = R^T a_1 - \sum_{t=1}^T R^{T-t+1} c_t$$

• Therefore, the consumer's problem for a given $a_1 \ge 0$ is

$$\max_{(c_1,\ldots,c_T)\in(\mathbb{C})^T}\sum_{t=1}^T\beta^{t-1}u(c_t) \qquad \text{s.t} \quad \sum_{t=1}^TR^{1-t}c_t \leq a_1$$

Classical solution: Euler equation |

Lagrangian for this problem

$$\mathcal{L} = \sum_{t=1}^{T} \beta^{t-1} u(c_t) - \lambda \left(\sum_{t=1}^{T} R^{1-t} c_t - a_1 \right)$$

• With necessary foc's with respect to c_t , for t = 1, ..., T:

$$\beta^{t-1}u'(c_t) = \lambda R^{1-t}$$

Putting together two subsequent conditions yields

$$u'(c_t) = \beta R u'(c_{t+1})$$
 for $t = 1, ..., T - 1$ (1)

► These are the Euler equations for this problem

Classical solution: Euler equation II

$$u'(c_t) = \beta R u'(c_{t+1})$$
 for $t = 1, ..., T - 1$

- Euler equation: establishes relationship between consumption in subsequent periods
- But not the consumption level
- For that we need the budget constraint
- The Kuhn-Tucker conditions do just that

Classical solution: Kuhn-Tucker conditions

The Kuhn-Tucker conditions for this problem:

$$\lambda\left(\sum_{t=1}^{T} R^{1-t}c_t - a_1\right) = 0, \quad \lambda \ge 0, \quad \sum_{t=1}^{T} R^{1-t}c_t \le a_1$$

lf u strictly increasing (u' > 0):

λ > 0: +ve marginal value of relaxing the budget constraint
 ∑_{t=1,...,T} R^{1-t}c_t = a₁: consumer better off by consuming all a₁
 Then

$$a_{T+1} = 0 \tag{2}$$

► Together, the *T* conditions (??) and (??) determine the *T* interior optimal consumption choices

Corner solutions

Up to here we assumed that the solution is interior

► The Euler conditions allowing for corner solutions are

 $u'(c_t) \leq \beta R u'(c_{t+1})$ for the possibility of $c_t = 0$ or $u'(c_t) \geq \beta R u'(c_{t+1})$ for the possibility of $c_t = a_t$

Typical choices of utility functions are continuously differentiable and monotonically increasing in R⁺, with the additional following property:

$$\lim_{c_t \to 0^+} u(c_t) = -\infty \quad \text{and} \quad \lim_{c_t \to 0^+} u'(c_t) = +\infty$$

In this case a solution, if it exists, is interior

The cake-eating problem Simple example: CRRA utility

CRRA utility

• A convenient and popular specification of the utility function ($\gamma > 0$)

$$u(c) = rac{c^{1-\gamma}}{1-\gamma}$$

 γ^{-1} is the elasticity of intertemporal substitution

 \blacktriangleright It is generally accepted that $\gamma \geq 1$, in which case, for $c \in \mathbb{R}^+$

$$u(c) < 0, \quad \lim_{c \to 0} u(c) = -\infty, \quad \lim_{c \to +\infty} u(c) = 0$$

 $u'(c) > 0, \quad \lim_{c \to 0} u'(c) = +\infty, \quad \lim_{c \to +\infty} u'(c) = 0$

CRRA utility: solution I

► The problem is

$$\max_{(c_1,\ldots,c_T)\in(\mathbb{R}^+)^T}\sum_{t=1}^T\beta^{t-1}\frac{c_t^{1-\gamma}}{1-\gamma} \qquad \text{s.t} \quad \sum_{t=1}^TR^{1-t}c_t \leq a_1$$

Euler equations:

$$c_t^{-\gamma} = \beta R c_{t+1}^{-\gamma} \quad \Rightarrow \quad c_t = (\beta R)^{-rac{1}{\gamma}} c_{t+1} \quad ext{for } t = 1, \dots, T-1$$

By successive substitution:

 $c_t = (\beta R)^{\frac{t-1}{\gamma}} c_1$

CRRA utility: solution II

The budget constraint and optimality condition imply

$$\begin{aligned} a_1 &= \sum_{t=1,...,T} R^{1-t} c_t \\ &= c_1 \sum_{t=1,...,T} \left(\beta^{\frac{1}{\gamma}} R^{\frac{1-\gamma}{\gamma}} \right)^{t-1} \\ &= c_1 \sum_{t=1,...,T} \alpha^{t-1} \text{ where } \alpha = \beta^{\frac{1}{\gamma}} R^{\frac{1-\gamma}{\gamma}} \end{aligned}$$

• The solution for $t = 1, \ldots, T$:

$$c_1 = \frac{1-lpha}{1-lpha^T}a_1$$
 and $c_t = \frac{1-lpha}{1-lpha^T}(eta R)^{\frac{t-1}{\gamma}}a_1$

CRRA utility: solution III

In general, if the optimisation problem starts at time t as follows

$$\max_{(c_t,\ldots,c_T)\in(\mathbb{R}^+)^{\tau-t+1}}\sum_{\tau=t}^T\beta^{\tau-t}\frac{c_\tau^{1-\gamma}}{1-\gamma}\qquad \text{s.t} \quad \sum_{\tau=t}^TR^{\tau-t}c_\tau \leq a_\tau$$

the solution for c_t is

$$c_t = \frac{1-\alpha}{1-\alpha^{T-t+1}}a_t$$

This is the *consumption function*, a linear function of assets if utility is CRRA

CRRA utility: consumption over the life-cycle

 βR determines the profile of the solution: $c_t = \frac{1-\alpha}{1-\alpha^T} (\beta R)^{\frac{t-1}{\gamma}} a_1$

 $\beta = 1.025^{-1}$ and initial assets are $a_{20} = 1$.

The cake-eating problem

Existence and uniqueness of solution

When can the existence of the optimum be guaranteed?

Feasibility set: space of choices satisfying the problem constraints

$$\mathcal{C}_{1:T}(\boldsymbol{a}_1) = \left\{ (c_1, \ldots, c_T) \in \mathbb{C}^T : \sum_{t=1, \ldots, T} R^{1-t} c_t \leq \boldsymbol{a}_1 \right\}$$

where typically $\mathbb{C}=\mathbb{R}^+$

Apply Weierstrass theorem to ensure existence of solution:

Let $u : \mathbb{C} \to \mathbb{R}$ be continuous and suppose $C_{1:T}(a_1) \subset \mathbb{C}^T$ is non-empty and compact. Then the consumer's problem

$$\max_{(c_1,\ldots,c_T)\in\mathcal{C}_{1:T}(a_1)}\sum_{t=1,\ldots,T}\beta^{t-1}u(c_t)$$

has a solution in $C_{1:T}(a_1)$ for any $a_1 \in \mathbb{A}$.

When is the optimum interior and unique?

 \blacktriangleright Typical consumer's problem: *u* is strictly increasing, concave and \mathcal{C}^1

- Then the sum of per-period utilities is also strictly increasing, concave and C¹
- Also assume that the feasibility set C_{1:T}(a₁) is non-empty and compact
- Under these conditions the solution is unique
- lt is also interior (T > 1)
- But if we had a convex u: corner solution

Dynamic programming

The Bellman equation

Dynamic programming

- Dynamic programming splits the big problem into smaller problems that are of similar structure and easier to solve
- The trick is to find the limited set of variables that completely describe the decision problem in each period – the state
- Then the solution of these problems over a small state-space determines a set of policy functions: optimal consumption is h_t(a_t) for t = 1, ... T
- DP returns a general solution: it solves the entire family of problems of the same type
- The specific solution to our problem can be constructed recursively, by iterating

$$egin{array}{rcl} c_t &=& h_t(a_t)\ a_{t+1} &=& R(a_t-c_t) \end{array}$$

starting from the given a_1

Problem specification I

- In our problem, the level of assets at the start of period t summarises all the information needed to solve for consumption
- ▶ The feasibility set at time t for the sequence of present and future consumption choices given $a_t \in A$ is

$$\mathcal{C}_{t:T}(a_t) = \left\{ (c_t, \ldots, c_T) \in \mathbb{C}^{T-t+1} : \sum_{\tau=t, \ldots, T} R^{t-\tau} c_\tau \leq a_t \right\}$$

▶ If consumption must be positive in every period, then $\mathbb{C} = \mathbb{A} = \mathbb{R}^+$ and the feasibility set at time *t* is

$$\mathcal{C}_{t}(a_{t}) = \begin{cases} \{c_{t} > 0 : a_{t+1} = R(a_{t} - c_{t}) > 0\} & \text{if } t < T \\ \{c_{t} > 0 : a_{t+1} = R(a_{t} - c_{t}) \ge 0\} & \text{if } t = T \end{cases}$$

Problem specification II

• The problem of a consumer with assets a_t at time t is

$$V_t(a_t) = \max_{(c_t,\ldots,c_T)\in \mathcal{C}_{t:T}(a_t)} \sum_{\tau=t,\ldots,T} \beta^{\tau-t} u(c_\tau)$$

\blacktriangleright V_t is the value function

- Indirect lifetime utility: measures max utility that assets at can deliver
- It is a function of a_t alone
- Dependence on a_t arises through the feasibility set

Problem specification III

The value function can be defined recursively

$$V_{t}(a_{t}) = \max_{(c_{t},...,c_{T})\in\mathcal{C}_{t:T}(a_{t})} \sum_{\tau=t,...,T} \beta^{\tau-t} u(c_{\tau})$$

$$= \max_{c_{t}\in\mathcal{C}_{t}(a_{t})} \left\{ u(c_{t}) + \beta \left[\max_{\substack{(c_{t+1},...,c_{T})\in\mathcal{C}_{t+1:T}(a_{t+1}) \\ V_{t+1}(a_{t+1})}} \sum_{\tau=t+1}^{T} \beta^{\tau-(t+1)} u(c_{\tau}) \right] \right\}$$

$$= \max_{c_{t}\in\mathcal{C}_{t}(a_{t})} \{ u(c_{t}) + \beta V_{t+1} (R[a_{t}-c_{t}]) \}$$

The Bellman equation I

$$V_t(a_t) = \max_{c_t \in C_t(a_t)} \{ u(c_t) + \beta V_{t+1} (R[a_t - c_t]) \}$$

- ► This is a functional equation: recursive formulation
- Breaks the large lifecycle problem in smaller static problems
 - Key: memoryless process depends only on the value of state variables at the time of decision
- Principle of Optimality: if the consumer behaves optimally in the future, all that matters for the solution at time t is the decision of how much to consume today
- V_{t+1} exists (by recursion) but is unknown!

The Bellman equation II

Often useful to reformulate the problem in terms of savings decisions

Define the payoff function as

$$f(a_t, a_{t+1}) = u\left(a_t - \frac{a_{t+1}}{R}\right) = u(c_t)$$

Then the consumption/savings problem is equivalently specified as

$$V_t(a_t) = \max_{a_{t+1} \in \mathcal{D}_t(a_t)} \{ f(a_t, a_{t+1}) + \beta V_{t+1}(a_{t+1}) \}$$

where the feasibility set at time t (for $\mathbb{C} = \mathbb{A} = \mathbb{R}^+$)

$$\mathcal{D}_t(a_t) = \begin{cases} \{a_{t+1} > 0 : a_t - a_{t+1}R^{-1} > 0, \} & \text{if } t < T \\ \\ \{a_{t+1} \ge 0 : a_t - a_{t+1}R^{-1} > 0\} & \text{if } t = T \end{cases}$$

The Bellman equation III

The solution is

$$g_t(a_t) = \arg \max_{a_{t+1} \in \mathcal{D}_t(a_t)} \{ f(a_t, a_{t+1}) + \beta V_{t+1}(a_{t+1}) \}$$

Exists and is unique under the conditions discussed earlier:

- f real-valued, strictly increasing (decreasing) in the first (second) argument, concave and C¹ in both arguments
- \blacktriangleright \mathcal{D} is non-empty and compact
- Under these conditions g is also continuous
- Moreover, V inherits some of the properties of f
 - continuity, monotonicity and concavity
 - differentiability at points $a \in \mathbb{A}$ in which the solution is interior

Dynamic programming

Recursive solution

Recursive solution

$$V_t(a_t) = \max_{a_{t+1} \in \mathcal{D}_t(a_t)} \{f(a_t, a_{t+1}) + \beta V_{t+1}(a_{t+1})\}$$

Key insight of dynamic programming: the unknown V can be pinned down by backward induction

- ▶ This highlights the usefulness of the Bellman equation
- And inspires the numerical strategy to solve models with no closed-form solution

Last period

Solution strategy: start from period T and move backwards as the future value function, the continuation value, is determined

The problem in the last period is

$$V_T(a_T) = \max_{a_{T+1} \in \mathcal{D}_T(a_T)} \{f(a_T, a_{T+1})\}$$

where
$$\mathcal{D}_T(a_T) = [0, Ra_T]$$

• The solution is (for any
$$a_T \in \mathbb{A}$$
)

 $g_T(a_T) = 0$ with value $V_T(a_T) = f(a_T, 0) = u(a_T)$
Last but one period

Since
$$V_T(a_T) = u(a_T)$$
, the problem at $T - 1$ is known

$$V_{T-1}(a_{T-1}) = \max_{a_T \in \mathcal{D}_{T-1}(a_{T-1})} \{f(a_{T-1}, a_T) + \beta V_T(a_T)\}$$

► Under differentiability of the maximising function, an interior optimum satisfies the foc's (for any a_{T-1} ∈ A

 $g_{\mathcal{T}-1}(a_{\mathcal{T}-1})$ is the solution to $f_2\left(a_{\mathcal{T}-1},a_{\mathcal{T}}
ight)+eta V_{\mathcal{T}}'(a_{\mathcal{T}})=0$

So the value function at T-1 is (for each $a_{T-1} \in \mathbb{A}$)

 $V_{T-1}(a_{T-1}) = f(a_{T-1}, g_{T-1}(a_{T-1})) + \beta V_T(g_{T-1}(a_{T-1}))$

Period t

Move backwards in similar steps

 Once the value function for period t + 1 has been determined, solve (for each a_t ∈ A)

$$g_t(a_t) = \arg \max_{a_{t+1} \in \mathcal{D}_t(a_t)} \{ f(a_t, a_{t+1}) + \beta V_{t+1}(a_{t+1}) \}$$

▶ The solution can then be used to build V_t (for each $a_t \in \mathbb{A}$):

$$V_t(a_t) = f(a_t, g_t(a_t)) + \beta V_{t+1}(g_t(a_t))$$

Solution to our specific problem

- The specific problem we are interested in is fully characterised by the initial condition, a₁
- To construct the solution, we use the policy functions g_t and iterate, for t = 1, ..., T

$$c_t = a_t - R^{-1}g_t(a_t)$$
 and $a_{t+1} = g_t(a_t)$

Dynamic programming

Optimality conditions

Optimality conditions I

- The typical problem in economics assumes that the utility function is strictly increasing, concave and continuously differentiable (in consumption), and that the feasibility space is closed and bounded
- \blacktriangleright Under these conditions the solution is unique and V is differentiable
- And the first order conditions are necessary and sufficient for an interior optimum

Optimality conditions II

The problem at time t is

$$V_t(a_t) = \max_{a_{t+1} \in \mathcal{D}_t(a_t)} \{f(a_t, a_{t+1}) + \beta V_{t+1}(a_{t+1})\}$$

The foc at time t is

$$f_2(a_t, a_{t+1}) + \beta V'_{t+1}(a_{t+1}) = 0$$

• Use the envelope condition to workout $V'_{t+1}(a_{t+1})$

$$V'_{t}(a_{t}) = f_{1}(a_{t}, a_{t+1}) + f_{2}(a_{t}, a_{t+1}) \frac{\partial a_{t} + 1}{\partial a_{t}} + \beta V'_{t+1}(a_{t+1}) \frac{\partial a_{t} + 1}{\partial a_{t}}$$

$$= f_{1}(a_{t}, a_{t+1}) + \underbrace{\left[f_{2}(a_{t}, a_{t+1}) + \beta V'_{t+1}(a_{t+1})\right]}_{\text{for at } t} \frac{\partial a_{t} + 1}{\partial a_{t}}$$

$$= f_{1}(a_{t}, a_{t+1}) = u'(h_{t}(a_{t}))$$

Optimality conditions III

Put the foc together with the envelope condition to get the Euler equation

 $f_{2}(a_{t}, a_{t+1}) + \beta f_{1}(a_{t+1}, a_{t+2}) = 0$

$$\Leftrightarrow \quad u'(c_t) = \beta R u'(c_{t+1})$$

since: $u(c_t) = f(a_t, a_{t+1}) = u(a_t - \frac{a_{t+1}}{R})$ and so: $f_1(a_t, a_{t+1}) = u'(c_t)$ and $f_2(a_t, a_{t+1}) = -\frac{u'(c_t)}{R}$

Dynamic programming

Numerical solution

Numerical solution

- ▶ The cake-eating problem is easy to solve on the paper
- But it is an instructive example to play with numerically
 - Sophisticated enough to require most of the numerical tricks used in more complicated models
 - But easy enough to keep the discussion simple
 - Can be used to demonstrate the comparative advantages of various numerical procedures since the solution is known!

Computers do not known infinity

1. Model specification

- CRRA utility is great to ensure that consumers avoid getting close to zero consumption
- The same does not hold for computational solutions: extreme values cause the routine to crash

 \Rightarrow Bound solution space to its relevant parts to avoid problems

2. Discretise state space

- Select grid in assets $A = \{a^i\}_{i=1,...,n_a}$
- Solve problem only for points in the grid
- Approximate unknown functions numerically outside the grid

Algorithm for recursive solution

- 1. Parameterise model and select grid in assets: $\{a^i\}_{i=1,\dots,n_2}$
- 2. Choose stopping criterion $\epsilon > 0$
- 3. Store $V_{T+1}(a^i) = 0$ for all $i = 1, ..., n_a$
- 4. Loop over t backwards: $t = T, \ldots, 1$

For each $i = 1, \ldots, n_a$

4.1 Compute
$$g_t^i = \operatorname{arg\,max}_{a_{t+1} \in \mathcal{D}_t(a^i)} \left\{ u\left(a^i - rac{a_{t+1}}{R}\right) + \beta \widetilde{V}_{t+1}\left(a_{t+1}\right)
ight\}$$

- 4.2 Compute $V_t^i = u\left(a^i \frac{g_t^i}{R}\right) + \beta \widetilde{V}_{t+1}\left(g_t^i\right)$
- 4.3 Approximate V_t over its entire domain to get \widetilde{V}_t and store it *This step is optional*: can be done directly in step 4.1 or skipped altogether, depending on the solution method - more to follow

Solution at each point

Step 4.1 is the (computationally) heavy part of the solution algorithm

There are two main ways of finding the optimum gⁱ_t

- Use a search algorithm to look for the value of savings a_{t+1} that maximise V_t(a_t)
 This is the procedure implicit in the algorithm we presented
- Or look for the root of the Euler equation $u'(c_t) = \beta RV'(a_{t+1})$ vspace0.1cm We will discuss this solution later

Solution at each point using the foc: a trick |

- Useful trick under CRRA: speed up and improve accuracy of solution
- The Euler equation is

$$c_t^{-\gamma} = eta R V_{t+1}'(a_{t+1}) \hspace{0.2cm} \Leftrightarrow \hspace{0.2cm} c_t = (eta R)^{-1/\gamma} \left[V_{t+1}'(a_{t+1})
ight]^{-1/\gamma}$$

But since (envelope condition)

$$V_{t+1}'(a_{t+1}) = u'(h_{t+1}(a_{t+1})) = \left(a_{t+1} - \frac{g_{t+1}(a_{t+1})}{R}\right)^{-\gamma}$$

• The solution is the level of savings a_{t+1} that satisfies

$$\underbrace{a_{t} - \frac{a_{t+1}}{R}}_{c_{t}} = (\beta R)^{-1/\gamma} \underbrace{\left[a_{t+1} - \frac{g_{t+1}(a_{t+1})}{R}\right]}_{c_{t+1}}$$

Solution at each point using the foc: a trick II

$$\underbrace{a_{t} - \frac{a_{t+1}}{R}}_{c_{t}} = (\beta R)^{-1/\gamma} \underbrace{\left[a_{t+1} - \frac{g_{t+1}(a_{t+1})}{R}\right]}_{c_{t+1}} = (\beta R)^{-1/\gamma} h_{t+1}(a_{t+1})$$

- This is a linear (in a_{t+1}) equation in non-stochastic problems
- More generally, the policy function h is typically not very non-linear
- So all we need is to:
 - 1. Store $h_t(a^i)$ after solving consumers problem at time t
 - 2. "Connect the points" to approximate function *h* and obtain the solution over the entire domain: Linear Interpolation
- Notice that V is not needed to solve the problem using the foc

Approximating the value function

- A bad idea: to rely on simple (linear) approximations of V to solve model as V can be highly non-linear
- But one may still need the value function, even when relying on the foc for the solution:
 - to study the value of different policy interventions
 - or attitudes towards risk once uncertainty is considered
- Two alternatives to approximate V
 - More reliable approximation method: shape-preserving splines
 - Reduce non-linearity by applying selected transformation, then approximate by linear interpolation For a CRRA utility:

$$\Psi_t(a_t) = [(1-\gamma)V_t(a_t)]^{\frac{1}{1-\gamma}}$$

Practical session 1

Income process

Add income process

- Just adding an income process does not much change the lifecycle problem
- But raises interesting issues of how to deal with the credit markets
- Suppose the consumer has a stream of income over time

 $y_t = w(a_t, t)$

For the moment, suppose {y_t}_{t=1,...,T} is known by the consumer from time t = 1

Income process

Credit Markets

Functioning credit markets I

If credit markets are complete, the consumer may borrow to bring income forward

- Assets at time t can be negative
- Borrowing limited by ability to repay
- Domain of possible values of assets changes over time, depending on time left to repay debts and terminal condition

• The problem of the consumer at time t for assets a_t

$$V_t(a_t, y_t) = \max_{a_{t+1}} \{f(a_t, y_t, a_{t+1}) + \beta V_{t+1}(a_{t+1}, y_{t+1})\}$$

s.t. $a_{t+1} = R(a_t + y_t - c_t)$
 $y_{t+1} = w(a_{t+1}, t+1)$
 $c_t > 0 \text{ and } a_{T+1} \ge 0$

Functioning credit markets II

• The feasibility space at time t < T is

$$\mathcal{D}_t(a_t, y_t) = \left\{ a_{t+1} : \underbrace{a_t + y_t - \frac{a_{t+1}}{R}}_{c_t} > 0, \ a_{t+1} + \sum_{\tau=t+1}^T R^{(t+1)-\tau} y_\tau > 0 \right\}$$

$$= \left(-\sum_{\tau=t+1}^T R^{(t+1)-\tau} y_\tau, \ R(a_t + y_t) \right)$$

► At time T

$$\mathcal{D}_T(a_T, y_T) = [0, R(a_T + y_T))$$

Functioning credit markets III

The compact specification of the problem is

 $V_t(a_t, y_t) = \max_{\substack{a_{t+1} \in \mathcal{D}_t(a_t, y_t) \\ \text{s.t.}}} \{ f(a_t, y_t, a_{t+1}) + \beta V_{t+1}(a_{t+1}, y_{t+1}) \}$ s.t. $y_t = w(a_t, t)$ for all t

Foc is Euler equation $u'(c_t) = \beta R u'(c_{t+1})$

► The state space is now 2-dimensional

- Although it is easy to reduce to 1 dimension in this case by noting that $a_{t+1} = R(a_t + w(a_t, t) c_t)$
- Computation-wise, reducing the dimensionality of the state space is the most time-saving procedure

Simple example: CRRA utility

• With CRRA utility the Euler equation implies $c_t = (\beta R)^{\frac{t-1}{\gamma}} c_1$

• The value of total lifetime wealth at t = 1 is

$$W = a_1 + \sum_{t=1,\ldots,T} R^{1-t} y_t$$

► Total consumption is

$$C = \sum_{t=1,...,T} R^{1-t} c_t = \sum_{t=1,...,T} \left(\beta R^{1-\gamma} \right)^{\frac{t-1}{\gamma}} c_1$$

• Yielding, for $t = 1, \ldots, T$

$$c_t = (\beta R)^{\frac{t-1}{\gamma}} \frac{1-\alpha}{1-\alpha^T} W$$
 where $\alpha = \beta^{\frac{1}{\gamma}} R^{\frac{1-\gamma}{\gamma}}$

CRRA utility: profiles for a patient consumer

r=4% and $\beta=1.025^{-1}.$ Initial assets are $a_1=1.$ Income profiles as plotted.

CRRA utility: introducing retirement

r=4% and $\beta=1.025^{-1}.$ Initial assets are $a_1=1.$ Income profiles as plotted.

If credit is rationed, the consumer may be willing to consume more than she can afford in the short term

▶ In the absence of credit, the feasibility set is restricted to

$$\mathcal{D}_t(a_t, y_t) = \left\{ a_{t+1}: \ a_t + y_t - \frac{a_{t+1}}{R} > 0, \ a_{t+1} \ge 0 \right\}$$

This implies that the consumer's best choice may be a corner solution

Credit constraints ||

The problem of the consumer at time t for assets at is now

$$V_t(a_t, y_t) = \max_{a_{t+1}} \{ f(a_t, y_t, a_{t+1}) + \beta V_{t+1}(a_{t+1}, y_{t+1}) \}$$

s.t. $a_{t+1} = R(a_t + y_t - c_t)$
 $y_{t+1} = w(a_{t+1}, t+1)$
 $c_t > 0$ and $a_{t+1} \ge 0$

There are T inequality restrictions in assets now, so we have T first order and Kuhn Tucker conditions:

 $\begin{aligned} & f_3(a_t, y_t, a_{t+1}) + \beta f_1(a_{t+1}, y_{t+1}, a_{t+2}) = \lambda_t \\ & \lambda_t a_{t+1} = 0, \quad \lambda_t \ge 0, \quad a_{t+1} \ge 0 \end{aligned} \qquad \text{for } t = t = 1, \dots, T - 1 \\ & a_{T+1} = 0 \qquad \qquad \text{for } t = T \end{aligned}$

The solution is

$$c_t = \min \{a_t + y_t, \text{ root of } u'(c_t) = \beta R u'(c_{t+1})\}$$

or

$$a_{t+1} = \max \{0, \text{ root of } f_3(a_t, y_t, a_{t+1}) + \beta f_1(a_{t+1}, y_{t+1}, a_{t+2}) = 0\}$$

Income process

Numerical solution

Solution algorithm

The recursive solution in practice: almost exactly as before

- 1. Parameterise model and select grids in a_t : $\{a_t^i\}_{i=1,\dots,n_s}$
- 2. Choose stopping criterion $\epsilon > 0$
- 3. Store $V_{T+1}(a_{T+1}^{i}) = 0$ for all $i = 1, ..., n_{a}$
- 4. Loop over t backwards: $t = T, \ldots, 1$

For each $i = 1, \ldots, n_a$

4.1 Compute
$$g_t^i = \operatorname*{arg\,max}_{a_{t+1} \in \mathcal{D}_t(a_t^i)} \left\{ u\left(a_t^i + w(a_t^i, t) - \frac{a_{t+1}}{R}\right) + \beta \widetilde{V}_{t+1}\left(a_{t+1}\right) \right\}$$

4.2 Compute
$$V_t^i = u\left(a_t^i + w(a_t^i, t) - rac{g_t^i}{R}
ight) + eta \widetilde{V}_{t+1}\left(g_t^i
ight)$$

Computational solution: additional issues

1. Dimension of state space: reduce to 1 in solution

$$a_{t+1} = R(a_t + w(a_t, t) - c_t)$$

- 2. Positive consumption: may be tricky to ensure with approximated functions \Rightarrow impose minimum consumption $c_{min} > 0$
- 3. Functioning credit markets: grid in assets changes over time
 - Lower bound at t ensures debt can be repaid and c_{min} is affordable

$$a_t + \sum_{\tau=t...,T} R^{t-\tau} y_{\tau} \geq \sum_{\tau=t...,T} R^{t-\tau} c_{min}$$

Upper bound at t reached if consumes c_{min} in all periods to t

$$a_{t} \leq R^{t-1}a_{1} + \sum_{\tau=1...,t-1} R^{t-\tau} (y_{\tau} - c_{min})$$

Practical session 2

Stochastic optimisation

Stochastic problems

- Most interesting problems in economics involve some sort of uninsurable risk
- \blacktriangleright The solution to the dynamic problem will depend crucially on
 - 1. how much risk consumers face
 - 2. their attitudes towards risk
- ▶ We consider a stochastic income process to formalise uncertainty
- ► And do so in a parsimonious way, using Markov processes

Stochastic optimisation

Markov processes

Super brief introduction to stochastic Markov processes I

Stochastic process: sequence $\{y_t\}_{t=1,...}$ of random variables/vectors

The Markov property

Suppose $\{y_t\}_{t=1,2,...}$ is defined on the support \mathbb{Y}

▶ Then $\{y_t\}$ satisfies the Markov property if, for all $y \in \mathbb{Y}$

 $\mathsf{Prob}\left(y_{t+1} = y \mid y_t, \dots, y_1\right) = \mathsf{Prob}\left(y_{t+1} = y \mid y_t\right) \; \; \text{ for discrete } \mathbb{Y}$

 $\mathsf{Prob}\left(y_{t+1} < y \mid y_t, \dots, y_1\right) = \mathsf{Prob}\left(y_{t+1} < y \mid y_t\right) \ \ \mathsf{for \ continuous} \ \mathbb{Y}$
Super brief introduction to stochastic Markov processes II

The conditional probabilities are known as the transition function

$$Q_t(y_t, y_{t+1}) = \operatorname{Prob}(y_{t+1} \mid y_t)$$

• Time-invariant process: $Q_t(y_t, y_{t+1}) = Q(y_t, y_{t+1})$

▶ $Q : \mathbb{Y} \times \mathbb{Y} \to [0, 1]$ is a transition function if $Q(y_t, y)$ is a pdf: For each $y_t \in \mathbb{Y}$

Super brief introduction to stochastic Markov processes III

Markov process: stochastic process satisfying the Markov property

- Characterised by 3 objects
 - ▶ the domain ¥
 - the transition function Q
 - the distribution of the initial value y1
- These fully characterise the joint and marginal distributions of y at all points in time

Super brief introduction to stochastic Markov processes IV

- \blacktriangleright The unconditional distribution of y_t can be obtained iteratively
- Let π_{t-1} be the pdf of y at time t-1. Then, if π_{t-1} is known

$$\pi_t(y_t) = \int_{y \in \mathbb{Y}} Q(y, y_t) \pi_{t-1}(y) \, dy$$

where π_t be the pdf of y at time t

- A Markov process is stationary if $\pi_t(y) = \pi_{t'}(y) = \pi(y)$
- ln this case, π is the *fixed point* in the functional equation

$$\pi(y_t) = \int_{y \in \mathbb{Y}} Q(y, y_t) \pi(y) \, dy$$

Stochastic optimisation

lid income process

Memoryless income process with discrete support

- ▶ Take a discrete income process $y_t \in \mathbb{Y} = \left\{y^1, \dots, y^n\right\}$
- For a memoryless problem, the transition function equals the unconditional pdf:

$$\pi^{i} = {\sf Prob}\left(y_{t} = y^{i}
ight) = {\it Q}\left(y, y^{i}
ight)$$
 for each $i = 1, \ldots, n$

The consumer's problem is

$$V_t(a_t, y_t) = \max_{\substack{a_{t+1} \in \mathcal{D}_t(a_t, y_t) \\ \text{s.t.}}} \left\{ f(a_t, y_t, a_{t+1}) + \beta \sum_{y^i \in \mathbb{Y}} V_{t+1}\left(a_{t+1}, y^i\right) \pi^i \right\}$$

The problem is setup as a Markov process: (a_{t+1}, y_{t+1}) depends only on (a_t, y_t) Memoryless income process with continuous support

► The problem is

$$V_t(a_t, y_t) = \max_{a_{t+1} \in \mathcal{D}_t(a_t, y_t)} \left\{ f(a_t, y_t, a_{t+1}) + \beta \int_{y \in \mathbb{Y}} V_{t+1}(a_{t+1}, y) \pi(y) \, dy \right\}$$

Feasibility set: savings choices ensuring positive consumption is affordable even in *worst possible scenario*

$$\mathcal{D}_t(a_t, y_t) = \left\{ a_{t+1} : a_t + y_t - \frac{a_{t+1}}{R} > 0, \ a_{t+1} + \sum_{\tau=t+1}^T R^{(t+1)-\tau} y_{min} > 0 \right\}$$

Support and feasibility set in practice

- Feasibility set for a_{t+1} is $\mathcal{D}_t(a_t, y_t)$
 - Set of possible choices a_{t+1} given current value of state variables
 - Computational implementation: optimal savings chosen in $\mathcal{D}_t(a_t, y_t)$
- ▶ Support of a_{t+1} is \mathbb{A}_{t+1}
 - Range of all possible values of a_{t+1}, independently of current value of state variables
 - Computational implementation: grid in a_{t+1} drawn to represent \mathbb{A}_{t+1}
- Clearly $\mathcal{D}_t(a_t, y_t) \subseteq \mathbb{A}_{t+1}$ for all (a_t, y_t)
- Suppose we bound consumption choices from below: ensure c_{min} always affordable
- And use bounded support of income is $\mathbb{Y} = [y_{min}, y_{max}]$

Support and feasibility set in practice: support

• Upper bound of \mathbb{A}_{t+1} : maximum savings reached if $y_t = y_{max}$ and $c_t = c_{min}$ in the past

$$a_{t+1} \leq R^t a_1 + \sum_{\tau=1}^t R^\tau y_{max} - \sum_{\tau=1}^t R^\tau c_{min}$$
$$\Rightarrow \quad \mathsf{UB}_{t+1} = R^t a_1 + R \frac{1-R^t}{1-R} (y_{max} - c_{min})$$

▶ Lower bound of \mathbb{A}_{t+1} : ensures c_{min} always affordable in future

$$a_{t+1} + \sum_{\tau=t+1}^{T} R^{(t+1)-\tau} y_{min} \geq \sum_{\tau=t+1}^{T} R^{(t+1)-\tau} c_{min}$$

$$\Rightarrow \quad \mathsf{LB}_{t+1} = \frac{1-R^{t-T}}{1-R^{-1}} (c_{min} - y_{min})$$

 $\blacktriangleright \text{ So } \mathbb{A}_{t+1} = [\mathsf{LB}_{t+1}, \mathsf{UB}_{t+1}]$

Support and feasibility set in practice: feasibility set

▶ Upper bound of D_t conditional on (a_t, y_t) ensures $c_t \ge c_{min}$

$$a_t + y_t - a_{t+1}R^{-1} \ge c_{min}$$

$$\Rightarrow \quad \mathsf{UB}_{t+1}(a_t, y_t) = R(a_t + y_t - c_{min})$$

- Lower bound of D_t equals lower bound of A_{t+1}: LB_{t+1} can always be reached or otherwise problem has no solution
- $\blacktriangleright \text{ So } \mathcal{D}_t(a_t, y_y) = [\mathsf{LB}_{t+1}, \mathsf{UB}_{t+1}(a_t, y_y)]$

Memoryless income process: optimality conditions

Foc at time t: derivative of objective function at time t is zero

$$f_3(a_t, y_t, a_{t+1}) + \beta \int_{y \in \mathbb{Y}} \frac{\partial V_{t+1}(a_{t+1}, y)}{\partial a_{t+1}} \pi(y) \, dy = 0$$

Work out marginal value of a_t:

$$\frac{\partial V_t(a_t, y_t)}{\partial a_t} = f_1 + \left[\underbrace{f_3 + \beta \int_{y \in \mathbb{Y}} \frac{\partial V_{t+1}}{\partial a_{t+1}} \pi(y) \, dy}_{=0}\right] \frac{\partial a_{t+1}}{\partial a_t} = f_1(a_t, y_t, a_{t+1})$$

So an interior optimum satisfies

$$f_3(a_t, y_t, a_{t+1}) + \beta \int_{y \in \mathbb{Y}} f_1(a_{t+1}, y, a_{t+2}) \pi(y) \, dy = 0$$

$$\Leftrightarrow \quad u'(c_t) - \beta R \mathsf{E}_t \left[u'(c_{t+1}) \right] = 0$$

Stochastic optimisation

lid income process: Numerical solution

Computational algorithm

- 1. Parameterise model and select grids (A, Y) and compute weights π^j
- 2. Choose stopping criterion $\epsilon > 0$
- 3. Store $EV_{T+1}(a_{t+1}^{i}) = 0$ for all $i = 1, ..., n_{a}$
- 4. Loop over t backwards: $t = T, \dots, 1$

Loop over $i = 1, \ldots, n_a$

4.1 Compute for $j = 1, \ldots, n_y$

$$g_{t}^{ij} = \operatorname*{arg\,max}_{a_{t+1} \in \mathcal{D}_{t}^{ij}} \left\{ u\left(a_{t}^{i} + y^{j} - \frac{a_{t+1}}{R}\right) + \beta \widetilde{\mathsf{EV}}_{t+1}\left(a_{t+1}\right) \right\}$$

4.2 Compute the continuation value

$$\mathsf{E} V_t^i = \sum_{j=1,\dots,n_y} \left[u \left(\mathbf{a}_t^i + y^j - \frac{\mathbf{g}_t^{ij}}{R} \right) + \beta \widetilde{\mathsf{EV}}_{t+1} \left(\mathbf{g}_t^{ij} \right) \right] \pi^j$$

Practical issues I

State space is 2-dim: (a, y)

- ▶ The income process could have a continuous support: discretise \mathbb{Y} and solve problem in $n_a \times n_v$ points for each t
- Bounds in X: ensure feasibility and measurability

Grid in a to account for the many possible future circumstances

- Feasibility amounts to ensure c_{min} remains affordable
- Imposed on worst case scenario of future income so it holds under all possible future circumstances
- Continuation value: $E_t V_{t+1}$
 - Measured at t conditional on existing information
 - Only argument in $E_t V_{t+1}$ is a_{t+1}
 - Choice of grid in y to support integration
 - \blacktriangleright Need set of weights to calculate integral numerically, π^j

Practical issues II

We choose to store $\mathsf{E}V$ instead of V

More efficient: saves computations in solution

$$V_t(a, y) = u\left(a + y - \frac{\widetilde{g}_t(a, y)}{R}\right) + \beta \widetilde{\mathsf{EV}}_{t+1}\left(\widetilde{g}_t(a, y)\right)$$

▶ If had stored V_t , step 4.1 would compute (for each (i, j, t))

$$g_{t}^{ij} = \operatorname*{arg\,max}_{a_{t+1} \in \mathcal{D}_{t}^{ij}} \left\{ u\left(a_{t}^{i} + y^{j} - \frac{a_{t+1}}{R}\right) + \beta \sum_{l=1}^{n_{y}} \widetilde{V}_{t+1}\left(a_{t+1}, y^{l}\right) \pi^{l} \right\}$$

involving n_y interpolations for each a_{t+1} called by maximisation routine

Numerical integration I

- Suppose we want to compute $\int_a^b f(y)\pi_y(y)dy$ where
 - π_y is the pdf of y
 - the value of f is known in points yⁱ in grid Y
- The numerical integral is a simple weighted average of f over a discrete selected grid

$$\int_a^b f(y)\pi_y(y)dy \simeq \sum_{i=1}^{n_y} f(y^i)w^i$$

- The simplest procedure (Tauchen)
 - 1. Divide the distribution of y into n_y equal-probability intervals, Y^i
 - 2. Compute the grid points $y^i = E(y | Y^i)$
 - 3. The weights are uniform: $w^i = n_y^{-1}$
 - 4. Then $\int_{\mathbb{Y}} f(y) \pi_y(y) dy \simeq n_y^{-1} \sum_{i=1}^{n_y} f(y^i)$

Numerical integration II

Alternative procedures

- Gaussian quadrature: Gaussian nodes and weights {(yⁱ, wⁱ)} are selected to make exact the numerical integral of polynomials of degree 2n_y + 1 or less
 - Good option if f can be closely approximated by a polynomial
 - Weights and nodes depend on the distribution of y: Gauss-Laguerre for normal, Gauss-Hermite for log-normal, ...
- Monte-Carlo simulations: draw {yⁱ} randomly from its distribution and compute simple average of f(y) at random points

Practical issues III

- The algorithm we specified is implicitly designed to use with a search method
- But again it can be more efficient and accurate to use foc

Find root of Euler equation: CRRA utility

• At each
$$(a_t^i, y^j, t)$$
 find root (a_{t+1}) of
$$u'\left(a_t^i + y^j - \frac{a_{t+1}}{R}\right) - \beta R \widetilde{dV}_{t+1}(a_{t+1}) = 0$$

Inverse marginal utility reduces non-linearity in marginal value

Can solve Euler equation in its quasi-linearised version

$$\left(a_t^i + y^j - \frac{a_{t+1}}{R}\right) - (\beta R)^{-\frac{1}{\gamma}} \, \widetilde{\mathsf{IdV}}_{t+1}(a_{t+1}) = 0$$

where the quasi-linear expected marginal value (|dV) is stored

$$|dV_{t+1}^{i} = (u')^{-1} \left[dV_{t+1}^{i} \right] = \left[\sum_{j=1}^{n_{y}} \left(a_{t+1}^{i} + y^{j} - \frac{g_{t+1}^{ij}}{R} \right)^{-\gamma} \pi^{j} \right]^{-\frac{1}{\gamma}}$$

Stochastic optimisation

Autocorrelated income process

Autocorrelated income process

More interesting model of income: AR(1) process

We assume

$$\ln y_t = \alpha + \rho \ln y_{t-1} + e_t$$

- y_t is a Markov process: Markov structure of dynamic problem not compromised
- Stationarity requires that unconditional pdf of y is time-invariant
- Stationarity under log-normality requires $|\rho| < 1$ and, for all t

•
$$E(\ln y_t) = \alpha (1 - \rho)^{-1}$$

• $Var(\ln y_t) = \sigma_e^2 (1 - \rho^2)^{-1}$

Autocorrelated income process: model

The consumption-savings problem is $(\mathcal{D}_t(a, y) \text{ as defined earlier})$

$$V_t(a_t, y_t) = \max_{a_{t+1} \in \mathcal{D}_t} \left\{ f(a_t, y_t, a_{t+1}) + \beta \int V_{t+1}(a_{t+1}, y_t^{\rho} \exp\{\alpha + e\}) dF_e(e) \right\}$$

- Generally need to bound domain of e to ensure feasibility and measurability at all points
- ► The Euler equation is

$$u'(c_t) = \beta R \mathsf{E}_t \left[u'(c_{t+1}) \mid y_t \right]$$

Simple example I

Not most appealing 2-period model... but can be solved explicitly

▶ Period 1: consumer endowed with (a_1, y_1) , consumes c_1

Period 2: $a_2 = R(a_1 + y_1 - c_1)$ $y_2 = \rho y_1 + e_2$ $c_2 = R(a_1 + y_1 - c_1) + (\rho y_1 + e_2)$

where e_2 is a rv of mean zero, unknown from period 1 and unrelated to other model variables

• Utility function: $u(c) = \delta_0 + \delta_1 c + \delta_2 c^2$

Consumers problem:

$$\max_{c_{1}} \{u(c_{1}) + \beta \mathsf{E}_{1}u[R(a_{1} + y_{1} - c_{1}) + (\rho y_{1} + e_{2})]\}$$

Simple example II

The Euler equation is (with
$$\beta R = 1$$
)

$$\delta_1 + \delta_2 c_1 = \delta_1 + \delta_2 \mathbb{E} \left[R(a_1 + y_1 - c_1) + (\rho y_1 + e_2) \right]$$

$$= \delta_1 + \delta_2 \left[R(a_1 + y_1 - c_1) + \rho y_1 \right]$$

With solution

$$c_1 = \frac{R}{1+R}a_1 + \frac{\rho+R}{1+R}y_1$$

• If $\rho = 0$: income shocks do not persist and consumption responds less to shocks

• If $\rho = 1$: permanent income shocks and consumption responds fully to shocks

Solution algorithm

- 1. Parameterise model and select grids (A, Y) and compute weights Q^{jl}
- 2. Choose stopping criterion $\epsilon > 0$
- 3. Store $\mathsf{E}V_{T+1}\left(a_{t+1}^{i}, y^{j}\right) = 0$ for all $i = 1, \dots, n_{a}$ and $j = 1, \dots, n_{y}$
- 4. Loop over t backwards: $t = T, \dots, 1$

Loop over $i = 1, \ldots, n_a$

4.1 Compute for $j = 1, \ldots, n_y$

$$g_t^{ij} = \arg\max_{a_{t+1} \in \mathcal{D}_t^{ij}} \left\{ u\left(a_t^i + y^j - \frac{a_{t+1}}{R}\right) + \beta \widetilde{\mathsf{EV}}_{t+1}\left(a_{t+1}, y^j\right) \right\}$$

4.2 Compute the continuation value at point $(a_t, y_{t-1}) = (a_t^i, y^l)$

$$\mathsf{E} V_t^{il} = \sum_{j=1,\dots,n_y} \left[u \left(a_t^i + y^j - \frac{g_t^{ij}}{R} \right) + \beta \widetilde{\mathsf{EV}}_{t+1} \left(g_t^{ij}, y^i \right) \right] Q^{lj}$$

Practical issues

- ▶ The continuation value at time t is $E_t[V_{t+1}(a_{t+1}, y_{t+1}) | y_t]$, a function of (a_{t+1}, y_t)
- If the foc were to be used in the solution, the linearised expected marginal value in time t Euler equation would also be a function of (a_{t+1}, y_t)
- Persistency in y_t implies that the integration weights Q need to be conditional on the past realisation of y

Transition function: simple procedure to determine Q^{ji}

Consider a stationary Markov process

$$x_t = \alpha + \rho x_{t-1} + e_t$$
 where $e \sim \mathcal{N}(0, \sigma^2)$

► A simple procedure to compute Q^{jl}

- 1. Divide the domain \mathbb{X} in n_x intervals $\{X^i = [\underline{x}^i, \overline{x}^i]\}$
- 2. Compute the grid points $x^i = E(x^i | x^i \in X^i)$

3. Then

$$\begin{aligned} Q^{ji} &= \operatorname{Prob}\left(x_t \in X^i \mid x_{t-1} = x^j\right) \\ &= \operatorname{Prob}\left(\underline{x}^i \leq \alpha + \rho x^j + \mathbf{e}_t \leq \overline{x}^i\right) \\ &= \operatorname{Prob}\left(\underline{x}^i - \alpha - \rho x^j \leq \mathbf{e}_t \leq \overline{x}^i - \alpha - \rho x^j\right) \\ &= \Phi\left(\frac{\overline{x}^i - \alpha - \rho x^j}{\sigma}\right) - \Phi\left(\frac{\underline{x}^i - \alpha - \rho x^j}{\sigma}\right) \end{aligned}$$

Practical session 3

Infinite horizon

The problem

Consumption-savings with infinite horizon

> Often useful to consider dynamic problems in infinite horizon

- Short time periods
- End period very far away
- End period uncertain and not becoming more likely over time
- Inherits many of the features of finite horizon problem but conceptually more complex
- Markov structure of problem is key: cannot deal with dependencies on infinite past
- Stationarity (at least in limit) is also crucial: dimensionality problem, and possibly measurement problems as well

The problem at time t

This is

$$V_t(a_t, y_t) = \mathsf{E}_t \left[\max_{\mathcal{D}_{t:\infty}(a_t, y_t)} \sum_{\tau=t}^{\infty} \beta^{\tau-t} f(a_{\tau}, y_{\tau}, a_{\tau+1}) \mid a_t, y_t \right]$$

The horizon is always infinite, whichever t

- Conditional on (a, y), the feasibility set is always the same, $\mathcal{D}_{\infty}(a, y)$
- Conditional on (a, y), the problem is always the same, V(a, y)

Given stationarity the infinite horizon problem is time-invariant

Hence can drop time indexes

Recursive form I

The functional equation

$$V(a, y) = E\left[\max_{\mathcal{D}_{\infty}(a, y)} \sum_{t=0}^{\infty} \beta^{t} f(a_{t}, y_{t}, a_{t+1}) \middle| a, y\right]$$

=
$$\max_{a' \in \mathcal{D}(a, y)} \left\{ f(a, y, a') + \beta E_{y'|y} \left(E\left[\max_{\mathcal{D}_{\infty}(a', y')} \sum_{t=0}^{\infty} \beta^{t} f(a_{t}, y_{t}, a_{t+1}) \middle| a', y'\right] \right) \right\}$$

=
$$\max_{a' \in \mathcal{D}(a, y)} \left\{ f(a, y, a') + \beta E_{y'|y} \left[V\left(a', y'\right) \right] \right\}$$

Recursive form II

$$V(a,y) = \max_{a' \in \mathcal{D}(a,y)} \left\{ f(a,y,a') + \beta \underbrace{\mathsf{E}_{y'|y}\left[V(a',y')\right]}_{\int_{\mathbb{Y}} V(a',y')Q(y,y')dy'} \right\}$$

- This is the Bellman equation
- \blacktriangleright The solution is a fixed point V of this functional equation
- Key to the specification: stationarity of the Markov process

Feasibility set

Determined by a set of conditions

$$\begin{aligned} \mathbf{a}' &= R(\mathbf{a} + \mathbf{y} - \mathbf{c}) \\ \ln \mathbf{y}' &= \alpha + \rho \ln \mathbf{y} + \mathbf{e}' \\ \mathbf{e} &\sim \mathcal{N}\left(0, \sigma_{\mathbf{e}}^{2}\right) \\ \ln \mathbf{y}_{0} &\sim \mathcal{N}\left(\mu_{\ln \mathbf{y}}, \sigma_{\ln \mathbf{y}}^{2}\right) \\ \left(\mathbf{a}_{0}, \mathbf{y}_{0}\right) \in \mathbb{A} \times \mathbb{Y} \\ \mathbf{a} \text{ bounding condition} \end{aligned}$$

Stationarity requires

$$\mu_{\ln y} = \frac{\alpha}{1-\rho}$$
 and $\sigma_{\ln y}^2 = \frac{\sigma_e^2}{1-\rho^2}$

Bounding condition

Typical assumption is that transversality conditions is satisfied

$$\lim_{t \to \infty} \beta^t \mathsf{E} \left[\frac{\partial f(a_t, y_t, a_{t+1})}{\partial a_t} a_t \right] = 0$$

This is similar to the Kuhn-Tucker conditions

- In the limit, either the present marginal value of assets is 0 or the agent consumes all her wealth
- Ensures that consumer cannot borrow too much: present value of assets in far future is zero

Infinite horizon

Existence and uniqueness of solution

Contraction Mapping result I

- C(X) is space of continuous functions with support X
- $T: C(X) \to C(X)$ is a transformation (mapping): Tw(x) = v(x)
- ► T satisfying Blackwell sufficient conditions is a contraction mapping Monotonicity if $v, w \in C(X)$ and $v(x) \leq w(x)$ for all $x \in X$, then $Tv(x) \leq Tw(x)$

Discounting there is $\beta \in (0, 1)$ such that $T(v + k)(x) \le Tv(x) + \beta k$ for all k > 0, where (v + k)(x) = v(x) + k
Contraction Mapping result ||

Fixed point of T is a function v : T(v(x)) = v(x)

Contraction Mapping Theorem

If T is a contraction mapping with modulus β , then

- 1. T has exactly 1 fixed point
- 2. Fixed point can be reached iteratively from any $v_0 \in C(X)$

 \blacktriangleright Bellman equation defines a contraction mapping with modulus eta

$$TV(a,y) = \max_{a' \in \mathcal{D}(a,y)} \left\{ f(a,y,a') + \beta \int_{\mathbb{Y}} V(a',y') Q(y,y') dy' \right\}$$

Existence and uniqueness result

The dynamic optimisation problem is

$$V(a,y) = \max_{a' \in \mathcal{D}(a,y)} \left\{ f(a,y,a') + \beta \int_{\mathbb{Y}} V(a',y') Q(y,y') dy' \right\}$$

▶ $\beta \in (0,1);$

f: real-valued, continuous, strictly concave in a and bounded;

- y: Markov process in the compact set $\mathbb Y$;
- $\triangleright \mathcal{D}(a, y)$: non-empty, compact and convex.

Then:

- 1. there exists a unique function V that solves this problem;
- 2. V is continuous and strictly concave in a;
- 3. g(a, y) exists and is a (unique) continuous, single-valued function.

Other properties of the problem

Other properties of f are transferred to V through the mapping T:

- 1. f also \mathcal{C}^1 in $(a, a') \in int(\mathbb{A})^2$ and $g(a, y) \in int(\mathcal{D}(a, y))$ $\Rightarrow V$ is \mathcal{C}^1 in a and $V_1(a, y) = f_1(a, y, g(a, y))$
- f also strictly increasing in a and D(a, y) ≥ D(a', y) for a ≥ a'
 V is strictly increasing in a
- 3. 2 also true for y if f and $\mathcal{D}(a, y)$ are strictly increasing in y

Optimality conditions for interior solution

Euler equation under the continuous differentiability conditions

$$f_{3}(a, y, a') + \beta \int_{\mathbb{Y}} f_{1}(a', y', g(a', y'))Q(y, y')dy' = 0$$

$$\Leftrightarrow f_{3}(a, y, a') + \beta \mathsf{E}_{y'|y} [f_{1}(a', y', g(a', y'))] = 0$$

Or in terms of the utility function

$$\frac{d u(c)}{d c} = \beta R \mathsf{E}_{y'|y} \left[\frac{d u(c')}{d c'} \right]$$

Euler and transversality conditions: necessary and sufficient for the interior optimum a' = g(a, y)

$$\lim_{t\to\infty}\beta^t\mathsf{E}\left[\frac{\partial f(a_t,y_t,a_{t+1})}{\partial a_t}a_t\right] = 0$$

Infinite horizon

Simple example

Simple example |

Consider the problem

$$V(a) = \max_{c>0} \{ \ln(c) + \beta V(R(a-c)) \}$$

$$\frac{1}{c_t} = \beta R \frac{1}{c_{t+1}} \quad \Leftrightarrow \quad c_{t+1} = \beta R c_t = (\beta R)^t c_0$$

► The transversality condition is

$$\lim_{t\to\infty}\beta^t u'(c_t)a_t = \lim_{t\to\infty}\frac{\beta^t a_t}{(\beta R)^t c_0} = \lim_{t\to\infty}\frac{a_t}{R^t c_0} = 0$$

Simple example II

Work out the value of a_t

$$\begin{aligned} a_t &= R(a_{t-1} - c_{t-1}) \\ &= R(R[a_{t-2} - c_{t-2}] - c_{t_1}) \dots \\ &= R^t a_0 - \sum_{\tau=0}^{t-1} R^{t-\tau} c_{\tau} \\ &= R^t a_0 - \sum_{\tau=0}^{t-1} R^{t-\tau} (\beta R)^{\tau} c_0 \\ &= R^t a_0 - R^t c_0 \sum_{\tau=0}^{t-1} \beta^{\tau} \\ &= R^t \left(a_0 - c_0 \frac{1-\beta^t}{1-\beta} \right) \end{aligned}$$

Simple example III

• We got
$$a_t = R^t \left(a_0 - c_0 \frac{1-\beta^t}{1-\beta} \right)$$

Replace in transversality condition to yield

$$\lim_{t \to \infty} \frac{a_t}{R^t c_0} = \lim_{t \to \infty} \frac{R^t \left(a_0 - c_0 \frac{1 - \beta^t}{1 - \beta}\right)}{R^t c_0}$$
$$= a_0 - c_0 \frac{1}{1 - \beta} = 0$$

Hence the solution is c₀ = a₀(1 − β)
 More generally, c_t = a₀(1 − β)(βR)^t

Infinite horizon

Numerical solution

Recursion

$$V(a,y) = \max_{a' \in \mathcal{D}(a,y)} \left\{ f(a,y,a') + \beta \mathsf{E}_{y'|y} \left[V(a',y') | a,y \right] \right\}$$

Contraction Mapping Theorem

- 1. The problem has a unique fixed point V
- 2. It can be reached iteratively from any starting function V_0

Value function iteration

1. find optimal savings

$$g_n(a, y) = \arg \max_{a' \in \mathcal{D}(a, y)} \left\{ f(a, y, a') + \beta \mathsf{E}_{y'|y} \left[V_{n-1}(a', y') \right] \right\}$$

2. compute new value function

$$V_n(a,y) = f(a,y,g_n(a,y)) + \beta \mathsf{E}_{y'|y} \left[V_{n-1}(g_n(a,y),y') \right]$$

Solution algorithm: value function iteration

- 1. Parameterise model and select grids (A, Y) and compute weights Q^{jl}
- 2. Choose stopping criterion $\epsilon > 0$
- 3. Select initial guess $\mathsf{E}V_0\left(a^i,y^j\right)$ for all $\left(a^i,y^j\right)\in A imes Y$
- 4. Iterate until convergence, for $n = 1, \ldots$

4.1 For all a^{i} in grid A compute (a) $g_{n}^{ij} = \underset{a' \in \mathcal{D}^{ij}}{\operatorname{arg\,max}} \left\{ f\left(a^{i}, y^{j}, a'\right) + \beta \widetilde{\mathsf{EV}}_{n-1}\left(a', y^{j}\right) \right\}$ for all $y = y^{j}$ (b) $\mathsf{EV}_{n}^{il} = \sum_{j=1}^{n_{y}} \left[f\left(a^{i}, y^{j}, g_{n}^{ij}\right) + \beta \widetilde{\mathsf{EV}}_{n-1}\left(g_{n}^{ij}, y^{j}\right) \right] Q^{lj}$ for all $y_{-1} = y^{l}$

- 4.2 Check distance between EV_{n-1} and EV_n
 - If larger than ϵ then go back to step 4.1
 - Else accept solution (g_n, V_n) and stop

Practical issues

- Time subscript dropped and loop is now until convergence of V to fixed point
- ► Initial guess
 - ▶ should be C^1
 - could be $EV_0 = 0$: implying consumer saves nothing to next period
 - better solution is $EV_0 = u(c)$
- Solution using Euler equation: store dV, a function of (a, y_{-1})
- Distance in continuation value: max absolute difference (levels/relative)

Feasibility set

Transversality condition not practical

$$\lim_{t\to\infty}\beta^t \mathsf{E}\left[f_1(a_t, y_t, a_{t+1}')a_t\right] = 0$$

 \blacktriangleright Implication: consumer avoids low assets, where f_1 arbitrarily large

 \blacktriangleright \Rightarrow ensure c_{min} always affordable in worst possible scenario

$$a + \sum_{t=0}^{\infty} R^{-t} y_{min} \geq \sum_{t=0}^{\infty} R^{-t} c_{min} \quad \Leftrightarrow \quad a + \frac{1}{1 - R^{-1}} \left(y_{min} - c_{min} \right) \geq 0$$

▶ If present state is $(a, y) \Rightarrow$ optimal savings a' must lie in interval

$$\mathcal{D}(a,y) = \left[-\frac{1}{1-R^{-1}}\left(y_{min}-c_{min}\right), R\left(a+y-c_{min}\right)\right]$$

Now for the final practical example!