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Abstract

Many empirical questions can be cast as inference on a parameter selected
through optimization. For example, researchers may be interested in the effective-
ness of the best policy found in a randomized trial, or the best-performing investment
strategy based on historical data. Such settings give rise to a winner’s curse, where
conventional estimates are biased and conventional confidence intervals are unreliable.
This paper develops optimal confidence sets and median-unbiased estimators that
are valid conditional on the parameter selected and so overcome this winner’s curse.
If one requires validity only on average over target parameters that might have been
selected, we develop hybrid procedures that combine conditional and projection
confidence sets to offer further performance gains relative to existing alternatives.
KEYwoORDSs: WINNER'S CURSE, SELECTIVE INFERENCE
JEL Copgs: C12, C13

1 Introduction

A wide range of empirical questions involve inference on target parameters selected through

optimization over a finite set. In a randomized trial considering multiple treatments, for
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instance, one might want to learn about the true average effect of the treatment that
performed best in the experiment. In finance, one might want to learn about the expected
return of the trading strategy that performed best in a backtest. Perhaps less obviously,
in threshold regression or tipping point models, researchers first estimate the location of
a threshold by minimizing the sum of squared residuals and then seek to estimate the
magnitude of the discontinuity taking the estimated threshold as given.

Estimators that do not account for data-driven selection of the target parameters
can be badly biased, and conventional t-statistic-based confidence intervals may severely
under-cover. To illustrate the problem, consider inference on the true average effect of
the treatment that performed best in a randomized trial.! Since it ignores the data-driven
selection of the treatment of interest, the conventional estimate for this average effect will be
biased upwards. Similarly, the conventional confidence interval will under-cover, particularly
when the number of treatments considered is large. This gives rise to a form of winner’s
curse, where follow-up trials will be systematically disappointing relative to what we would
expect based on conventional estimates and confidence sets. This form of winner’s curse has
previously been discussed in contexts including genome-wide association studies (e.g. Zhong
and Prentice, 2009; Ferguson et al., 2013) and online A/B tests (Lee and Shen, 2018).

This paper develops estimators and confidence sets that eliminate these biases and
inference failures. There are two distinct perspectives from which to consider bias and
coverage. The first conditions on the target parameter selected, for example on the identity
of the best-performing treatment, while the second is unconditional and averages over
possible target parameters. As we discuss in the next section, conditional validity is
more demanding but may be desirable in some settings, for example when one wants
to ensure validity conditional on the recommendation made to a policy maker. Both
perspectives differ from inference on the effectiveness of the “true” best treatment, as

in e.g. Chernozhukov et al. (2013) and Rai (2018), in that we consider inference on the

1Such a scenario seems to be empirically relevant, as a number of recently published randomized
trials in economics either were designed with the intent of recommending a policy or represent a direct
collaboration with a policy maker. For example, Khan et al. (2016) assesses how incentives for property
tax collectors affect tax revenues in Pakistan, Banerjee et al. (2018) evaluates the efficacy of providing
information cards to potential recipients of Indonesia’s Raskin programme, and Duflo et al. (2018)
collaborates with the Gujarat Pollution Control Board (an Indian regulator tasked with monitoring
industrial emissions in the state) to evaluate how more frequent but randomized inspection of plants
performs relative to discretionary inspection. Baird et al. (2016) finds that deworming Kenyan children
had substantial beneficial effects on their health and labor market outcomes into adulthood, and
Bjorkman Nyqvist and Jayachandran (2017) finds that providing parenting classes to Ugandan mothers
has a greater impact on child outcomes than targeting these classes at fathers.



effectiveness of the (observed) best-performing treatment in the experiment rather than
the (unobserved) best-performing treatment in the population.?

Considering first conditional inference, we derive optimal unbiased and equal-tailed
confidence sets. Our results build on the rapidly growing literature on selective inference
(e.g. Harris et al. (2016); Lee et al. (2016); Tian and Taylor (2016); Fithian et al. (2017)),
which derives optimal conditional confidence sets in a range of other settings. We further
observe that the results of Pfanzagl (1994) imply optimal median-unbiased estimators for
conditional settings, which does not appear to have been previously noted in the selective
inference literature. Hence, for settings where conditional validity is desired, we propose
optimal inference procedures that eliminate the winner’s curse noted above. We further
show that in cases where this winner’s curse does not arise (for instance because one
treatment considered is vastly better than the others) our conditional procedures coincide
with conventional ones. Hence, our corrections do not sacrifice efficiency in such cases.

A common alternative remedy for the biases we consider is sample splitting. In settings
with independent observations, choosing the target parameter using the first part of the
data and constructing estimates and confidence sets using the second part ensures unbi-
asedness of estimates and validity of conventional confidence sets conditional on the target
parameter. Such conventional split-sample procedures can have undesirable properties,
however. In particular, the target parameter is generally more variable than if constructed
using the full data. Moreover, since only the second part of the data is used for inference,
Fithian et al. (2017) show that conventional split-sample procedures are inadmissible
within the class of procedures with the same target parameter. Motivated by this result,
in the supplement to the paper we develop computationally tractable confidence sets and
estimators that dominate conventional sample-splitting.

We next turn to unconditional inference. One approach to constructing unconditional
confidence sets is projection, applied in various forms and settings by e.g. Romano and
Wolf (2005), Berk et al. (2013), and Kitagawa and Tetenov (2018a). To obtain a projection
confidence set, we form a simultaneous confidence band for all potential target parameters
and take the implied set of values for the target parameter of interest. The resulting
confidence sets have correct unconditional coverage but, unlike our conditional intervals,
are wider than conventional confidence sets even when the latter are valid. On the other

hand, we find in simulations that projection intervals outperform conditional intervals in

2See Dawid (1994) for an early discussion of this distinction, and an argument in favor of inference
on the best-performing treatment in the experiment.



cases where there is substantial randomness in the target parameter, e.g. when there is
not a clear best treatment.

Since neither conditional nor projection intervals perform well in all cases, we introduce
hybrid confidence sets that combine conditioning and projection. These maintain most
of the good performance of our conditional confidence intervals in cases for which the
winner’s curse does not arise but are subsets of (conservative) projection intervals by
construction, limiting their maximal under-performance relative to projection confidence
sets. We also introduce hybrid estimators that allow a controlled degree of bias while
limiting the deviation from the conventional estimator.

We derive our main results in the context of a finite-sample normal model with an
unknown mean vector and a known covariance matrix. This model can be viewed as an
asymptotic approximation to non-normal finite sample problems where the optimal policy
may not be obvious from the data. To formalize this connection, in the supplement to
the paper we show that the procedures we derive are uniformly asymptotically valid over
large classes of data-generating processes.

Since we are not aware of any other full-sample procedures that ensure validity condi-
tional on the target parameter, our simulations focus on unconditional performance. The
simulation designs are based on an empirical welfare maximization application from Kita-
gawa and Tetenov (2018b) and a threshold regression application from Card et al. (2008).
In both settings, we find that while our conditional procedures exhibit good unconditional
performance in cases where the objective function determining the target parameter has
a well-separated optimum, their unconditional performance can be poor in other cases. By
contrast, our hybrid procedures perform quite well: hybrid confidence sets are shorter than
the previously available alternative (projection intervals) in all specifications, and are shorter
than conditional intervals in all but the well-separated case (where they are nearly the
same). Hybrid estimators eliminate nearly all the bias of conventional estimators, and are
less dispersed than our exactly median unbiased estimators. These results show that while
optimal conditional performance is attainable, conditional validity can come at the cost
of unconditional performance. By combining conditional and projection approaches, our
hybrid procedures yield better performance than either and offer a substantial improvement
over existing alternatives.

While most of our simulation results focus on comparing our full-sample conditional
and hybrid approaches to existing full-sample alternatives, Card et al. (2008) originally

conducted inference based on a conventional split-sample approach. Hence, our simulations



based on Card et al. (2008) also compare conventional sample splitting procedures to our
improved split-sample ones. We similarly find substantial performance improvements in
these split-sample settings.

In this paper we focus on frequentist inference, and in particular on ensuring coverage
and controlling bias under all parameter values. If one instead takes a Bayesian perspective
then, as discussed by e.g. Dawid (1994), the selection issue does not arise since Bayesian
inference conditions on the data and thus on any form of data-driven selection. One way to
interpret this point is that e.g. the Bayes posterior median is median unbiased for the true
parameter value under the prior. As highlighted by Dawid (1994), however, this property
hinges crucially on the specification of the prior. If we consider frequentist performance
in cases where the data are generated in a manner inconsistent with the prior, Bayes
procedures may have large biases. In settings where we observe independent estimates
for a large number of different parameters and are willing to assume that these parameters
are drawn from some common unknown distribution, we can avoid this issue by adopting
an empirical Bayes approach and estimating the prior (see Efron, 2011; Ferguson et al.,
2013). Many settings, including our empirical welfare and threshold regression examples,
lack this structure however, rendering this approach inapplicable.

It is important to emphasize that we take the rule for selecting the target parameter as
given. In policy-evaluation contexts, for example, our goal is to evaluate the effectiveness
of recommended policies taking the rule for selecting a recommendation as given, rather
than to improve the rule. There are a number of reasons why valid confidence sets and
median-unbiased estimates are of interest in such settings. One might be interested in
understanding the true effectiveness of a selected policy for scientific reasons. Alternatively,
one might want to assess uncertainty about the effect of a new policy for forecasting and
risk management purposes. Finally, after a policy has been implemented or a follow-up
trial conducted, one may want to test whether observed differences in efficacy can be
explained solely by the winner’s curse.

This paper is related to the literature on tests of superior predictive performance
(e.g. White (2000); Hansen (2005); Romano and Wolf (2005)). This literature studies
the problem of testing whether some strategy or policy beats a benchmark, while we
consider the complementary question of inference on the effectiveness of the estimated
“best” policy. Our conditional inference results combine naturally with the results of this
literature, allowing one to condition inference on e.g. rejecting the null hypothesis that

no policy outperforms a benchmark.



As mentioned above, our results are also closely related to the growing literature on
selective inference. Fithian et al. (2017) describe a general conditioning approach applicable
to a wide range of settings, while a rapidly growing literature including e.g. Harris et al.
(2016); Lee et al. (2016); Tian and Taylor (2016) works out the details of this approach
for a range of settings. Likewise, our analysis of conditional confidence sets examines the
implications of the conditional approach in our setting. Our results are also related to
the growing literature on unconditional post-selection inference, including e.g. Berk et al.
(2013); Bachoc et al. (2017, 2018); Kuchibhotla et al. (2018). This literature considers
analogs of our projection confidence sets for inference following model selection.

Beyond the new settings considered, we make two main theoretical contributions
relative to the selective and post-selection inference literatures. First, when one only
requires unconditional validity, we propose the class of hybrid inference and estimation
procedures. We find that hybrid procedures offer large gains in unconditional performance
relative both to conditional procedures and to existing unconditional alternatives. Second,
for settings where conditional inference is desired, we observe that the same structure used
to develop optimal conditional confidence sets also allows construction of optimal quantile
unbiased estimators using the results of Pfanzagl (1994).3

In the next section, we begin by introducing the problem we consider and the techniques
we propose in the context of a stylized example. Section 3 introduces the normal model in
which we develop our main results, and shows how it arises as an asymptotic approximation
to empirical welfare maximization and threshold regression examples. Section 4 develops
our optimal conditional procedures, discusses their properties, and compares them to
sample splitting. Section 5 introduces projection confidence intervals and our hybrid
procedures. Finally, Sections 6 and 7 report results for simulations calibrated to empirical
welfare maximization and threshold regression applications, respectively. The supplement
to the paper collects proofs and other supporting material for the results in the main text,
derives a computationally tractable split-sample approach that dominates conventional
split-sample inference, shows that the finite sample results developed in the main text
translate to uniform asymptotic results over large classes of data generating processes, and

provides additional simulation results.

30ur asymptotic results are also novel relative to the literature. In particular, Tibshirani et al. (2018)
establish uniform asymptotic validity for conditional confidence sets based on similar ideas to ours, but
only under particular local sequences. We impose an analagous restriction for some of our asymptotic
results but not others. See the supplement for details and further discussion.



2 A Stylized Example

We begin by illustrating the problem we consider, along with the solutions we propose,
in a stylized example based on Manski (2004). In the treatment choice problem of Manski
(2004) a treatment rule assigns treatments to subjects based on observable characteristics.
Given a social welfare criterion and (quasi-)experimental data, Kitagawa and Tetenov
(2018b) propose what they call empirical welfare maximization (EWM), which selects the
treatment rule that maximizes the sample analog of the social welfare criterion over a class
of candidate rules.

For simplicity suppose there are only two candidate policies: 6, corresponding to “treat
everyone” and 6y corresponding to “treat no one.” Suppose further that our social welfare
function is the average of an outcome variable Y. If we have a sample of independent
observations i €{1,...,n} from a randomized trial where a binary treatment D;€{0,1} is
randomly assigned to subjects with Pr{D; =1} =d, then as in Kitagawa and Tetenov
(2018b) the scaled empirical welfare under (0;,6,) is

(X (01),X,,(65)) = (% D;Yi’%z;(li?;m)

i=1

EWM selects the rule §=argmax . (01,00 Xn(0).*

Kitagawa and Tetenov (2018b) show that the welfare from the policy selected by EWM
converges to the optimal social welfare at the minimax optimal rate, providing a strong
argument for this approach. Even after choosing a policy, we may want estimates and
confidence intervals for its implied social welfare in order to learn about the size of the
policy impact and communicate with stakeholders. For a fixed policy 6, the empirical
welfare X, (0) is unbiased for the true (scaled) social welfare 1,,(6) under the corresponding

policy.” By contrast, the empirical welfare of the estimated optimal policy X,,(6) is biased

upwards relative to the true social welfare un(@) since we are more likely to select a given
policy when the empirical welfare over-estimates the true welfare. Likewise, confidence
sets for ,un(é) that ignore estimation of # may cover ,un(é) less often than we intend. This
is a form of winner’s curse: estimation error leads us to over-predict the benefits of our

chosen policy and to misstate our uncertainty about its effectiveness.

4If the summands are instead weighted by sample propensity scores, we obtain Manski’s conditional em-
pirical success rule and the asymptotically optimal rules of Hirano and Porter (2009) with a symmetric loss.
5 X, (0) is exactly mean-unbiased and asymptotically median-unbiased.



To simplify the analysis and develop corrected inference procedures, we turn to asymp-
totic approximations. Under mild conditions the central limit theorem implies that our

estimates of social welfare are asymptotically normal:

X (6h)—pn (6 (0 3(64,0

(61) = pin (61) ~n|(o, (61) (61,62) 7 (1)
X(62) = pn(02) S(016:)  X(62)

where the asymptotic variance > can be consistently estimated while the scaled social welfare

pn, cannot be. To simplify the analysis, for this section only we assume that % (6;,05)=0.5

Motivated by (1), we abstract from approximation error and assume that we observe

( X (o) )NN<< () > < () 0 ))
X (62) wor) )\ 0 (6
for $(6;) and 2(6,) known, and that §=argmax .o X (6) with ©={6;,6,}.

As discussed above, X (6) is biased upwards as an estimator of x(6). This bias arises
both conditional on # and unconditionally. To see this note that =06, if X (61)>X(62),
where ties occur with probability zero. Conditional on § =60, and X (6,), X (6,) follows
a normal distribution truncated below at X (65). Since this holds for all X (), X(;) has

positive median bias conditional on 0=0,:"
. An 1
Pr,L{X(G) > M(e)w:el} >3 forall 2)

Since the same argument holds for 0=0,, 0 is likewise biased upwards unconditionally:

~ A~

PT’M{X(H) > ,u(@)} > % for all p. (3)

Note that (3) differs from (2) in that the target parameter is random. Unsurprisingly
given this bias, the conventional confidence set which adds and subtracts a quantile of the
standard normal distribution times the standard error need not have correct coverage.
To illustrate these issues, Figure 1 plots the coverage of conventional confidence sets, as
well as the median bias of conventional estimates, in an example with ¥(6,)=(62)=1. For

comparison we also consider cases with ten and fifty policies, |©|=10 and |©|=>50, where

50ne can show that X(6,02) = —u(61)u(6), so this restriction arises naturally if one models u as
shrinking with the sample size to keep it on the same order as sampling uncertainty: pu,, = ﬁ .
Tt also has positive mean bias, but we focus on median bias for consistency with our later results.



we again set X(6)=1 for all # and for ease of reporting assume that all the policies other
than the first are equally effective: 1u(6) = p(f3) =...=p(0_1). The first panel of Figure
1 shows that while the conventional confidence set has reasonable coverage when there are
only two policies, its coverage can fall substantially when |©]=10 or |©]|=50.® The second
panel shows that the median bias of the conventional estimator j1=X (@), measured as the
deviation of the exceedance probability Pr, {X (8)> u(6)} from 1, can be quite large. The
third panel shows that the same is true when we measure bias as the median of X (6)— ju(6).
In all cases we find that performance is worse when we consider a larger number of policies,
as is natural since a larger number of policies allows more scope for selection.

Our results correct these biases. Returning to the case with |©|=2 for simplicity, let
Frn(z(61);1(61),2(02)) denote the (truncated normal) distribution function for X (#;) trun-
cated below at () when the true social welfare for 0, is (6, ). For fixed x(6;) >x(62) this
function is strictly decreasing in (6 ), and for fi,, that solves Fry (X (01);/t0,X (62))=1—a,

Proposition 1 below shows that
Pru{ﬂa > 14(0)|0 =06, } =a for all pu.

Hence, [i,, is a-quantile unbiased for ,u(é) conditional on #=6;, and the analogous statement
holds conditional on 6= 6. Indeed, Proposition 1 shows that ji, is the optimal a-quantile
unbiased estimator conditional on 6.

Using this result, we can eliminate the biases discussed above. The estimator fi; /o is me-
dian unbiased and the equal-tailed confidence interval C'Sgr= [ﬂa /25l /2] has conditional

coverage 1—a, where we say that a confidence set C'S has conditional coverage 1—a if
Pr{,u(@)GCS@:@j}Zl—a for je{1,2} and all p. (4)

While the equal-tailed confidence interval is easy to compute, there are other confidence
sets available in this setting. As in Lehmann and Scheffé (1955) and Fithian et al. (2017) it is
possible to construct a uniformly most accurate unbiased (UMAU) confidence set, C'Sy, con-
ditional on 6. To construct C Sy, we collect the parameter values not rejected by a uniformly
most powerful unbiased test conditional on 8. While straightforward to implement, the exact
form of this test is somewhat involved and so is deferred to Section 4 below. The equal-tailed

confidence set C'Sgr is not unbiased, so there is not a clear ranking between C'Sgr and C'Sy.

8For example, these could correspond to cases where we consider “treat no one” along with nine or
forty nine different treatment assignment rules, respectively.
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Figure 1: Performance of conventional procedures in examples with 2, 10, and 50 policies.
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The law of iterated expectations implies that C'Sgr and C'Sy have unconditional

coverage 1—a as well:
Pru{u(é)ECS}Zl—a for all p. (5)

Unconditional coverage is easier to attain, so relaxing the coverage requirement from (4) to
(5) may yield tighter confidence sets in some cases. Conditional and unconditional coverage
requirements address different questions, however, and which is more appropriate depends
on the problem at hand. In the EWM problem, for instance, a policy maker who is told the
recommended policy 6 along with a confidence interval may want the confidence interval
to be valid conditional on the recommendation, which is precisely the conditional coverage
requirement (4). In particular, this ensures that if one considers repeated instances in
which EWM recommends a particular course of action (e.g. departure from the status
quo), reported confidence sets will in fact cover the true effects a fraction 1—q of the time.
On the other hand, if we only want to ensure that our confidence sets cover the true value
with probability at least 1—a on average across the distribution of recommendations, it
suffices to impose the unconditional requirement (5).

We are unaware of alternative procedures that ensure conditional coverage (4).? For
unconditional coverage (5), however, Kitagawa and Tetenov (2018a) propose an uncon-
ditional confidence set based on projecting a simultaneous confidence band for y to obtain
a confidence set for 14(f). In particular, let ¢, denote the 1—a quantile of max;|¢;| for &=

(&1,&2)' ~N(0,I5) a two-dimensional standard normal random vector. If we define C'Sp as
CSPZ |:Y(é)_ca E(é),Y(é)—FCa E<é)} ’

this set has correct unconditional coverage (5).

Figure 2 plots the median (unconditional) length of 95% confidence sets C'Sgr, C'Sy,
and C'Sp, along with the conventional confidence set, again in cases with |©|€{2,10,50}.
We focus on median length, rather than mean length, because the results for Kivaranovic
and Leeb (2018) imply that both C'Sgy and C'Sy have infinite expected length.!0 As Figure
2 illustrates, the median lengths of C'Sgr and C'Sy are shorter than the (nonrandom)
length of C'Sp when |u(6;) — p(0_1)| exceeds four, and converges to the length of the

9As noted in the introduction and further discussed in Section 4.3 below, split-sample confidence
intervals also have conditional coverage but change the definition of 6.

0While Kivaranovic and Leeb (2018) do not consider the behavior of unbiased confidence sets, one
can show that the expected length of the level 1—a unbiased confidence set is bounded below by that
of the level 1—2« equal-tailed confidence set.

11



conventional interval as |p(6;)—pu(6_1)| tends to infinity. When |u(6;)—p(6_1)] is small,
on the other hand, C'Sgr and CSy can be substantially wider than C'Sp. Both features
become more pronounced as we increase the number of policies considered, and are still
more pronounced for higher quantiles of the length distribution. To illustrate, Figure 3
plots the 95th percentile of the distribution of length in the case with |©| =50 policies, while
results for other quantiles and specifications are reported in Section E of the supplement.

In Figure 4 we plot the median absolute error Med,, <|,&— 11(0) |> for different estimators,
and find that the median-unbiased estimator likewise exhibits larger median absolute error
than the conventional estimator X (6) when |u(6;) —p(0_1)| is small.* This feature is again
more pronounced as we increase the number of policies considered, or if we consider higher
quantiles as in Section E of the supplement.

Recall that C'Sy is the optimal unbiased confidence set, while the endpoints of C'Sgr are
optimal quantile unbiased estimators. So long as we impose correct conditional coverage (4)
and unbiasedness, there is therefore no scope to improve unconditional performance. If we
instead require only correct unconditional coverage (5), improved performance is possible.

To improve performance, we consider hybrid confidence sets C'SH. and CSH. As
detailed in Section 5.2 below, these confidence sets are constructed analogously to C'Sgr
and C'Sy, but further condition on the event that the true social welfare falls in the level
1—/ projection interval C’S]ﬁg for B <. This ensures that the hybrid confidence sets are
never longer than the level 1—f projection interval, and so both limits the performance
deterioration when |(6;)—p(6_1)| is small and ensures that the expected length of hybrid
confidence sets is always finite. These hybrid confidence sets have correct unconditional
coverage (5), but do not in general have correct conditional coverage (4). By relaxing the
conditional coverage requirement, however, we obtain major improvements in unconditional
performance, as illustrated in Figure 2. In particular, we see that in the cases with 10 and
50 policies, the hybrid confidence sets have shorter median length than the unconditional
interval C'Sp for all parameter values considered. The gains relative to conditional
confidence sets are large for many parameter values, and are still more pronounced for
higher quantiles of the length distribution, as in Figure 3 and Section E of the supplement.
In Figure 4 we report results for a hybrid estimation procedure based on a similar approach
(detailed in Section 5.3 below), and again find substantial performance improvements.

The improved unconditional performance of the hybrid confidence sets is achieved by

HThe proof of Proposition 1 of Kivaranovic and Leeb (2018) implies that the mean absolute error
of the median unbiased estimator is infinite.

12
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Figure 2: Median length of confidence sets for p(6) in cases with 2, 10, and 50 policies.
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Figure 3: 95th percentile of length of confidence sets for ,u(@) in case with 50 policies.

requiring only unconditional, rather than conditional, coverage. To illustrate, Figure 5
plots the conditional coverage given 0=0, in the case with two policies. As expected, the
conditional intervals have correct conditional coverage, while coverage distortions appear
for the hybrid and projection intervals when ju(6;) < u(62). In this case =86, with high
probability but the data will nonetheless sometimes realize 0= f;. Conditional on this
event, X (6,) will be far away from p(6;) with high probability, so projection and hybrid

confidence sets under-cover.

3 Setting

This section introduces our general setting, which extends the stylized example of the
previous section in several directions. We assume that we observe normal random vectors
(X(H)',Y(H))’ for €O where O is a finite set, X () €R%, and Y (f) €R. In particular,
for O={01,..0j01}, let X=(X(81) .. X (0))') and ¥ =(¥(6)),...Y (Ae)))"- Then

X
( v )NN(M,E) (6)

14
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We assume that Y is known, while g is unknown and unrestricted unless noted otherwise.
For brevity of notation, we abbreviate ¥(6,0) to ¥(6). We will show that this model arises

naturally as an asymptotic approximation. We assume throughout that ¥y (6) >0 for all

for

6 €O, since the inference problem we study is trivial when ¥y (6)=0.
We are interested in inference on /,Ly(é), where 6 is determined based on X. We define

0 through either the level mazimization problem where (for dx =1)

A~

0 =argmax X (6), (7)
(4SS

or the norm mazimization problem where (for dy >1)

6 =argmax|| X (6)|], (8)
0eO
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with [|-|| denoting the Euclidean norm.'? We will again be interested in constructing con-
fidence sets for uy(@) that are valid either conditional on the value of 6 or unconditionally,
as well as median-unbiased estimates. We may also want to condition on some additional
event =4, for y=~(X) a function of X which takes values in the finite set I". In such
cases, we aim to construct confidence sets for ,uy(@) that are valid conditional on the pair
(@ﬁ). Examples of such additional conditioning events are discussed below.

In the remainder of this section, we show how this class of problems arises in examples
and discuss the choice between conditional and unconditional confidence sets in each case.
We first revisit the EWM problem in a more general setting and show that it gives rise to
the level maximization problem (7) asymptotically. We then discuss threshold regression
models and show that they reduce to the norm maximization problem (8) asymptotically.
We also briefly discuss other examples giving rise to level and norm maximization problems,
and note that finite sample results for level and norm maximization in the normal model

(6) translate to uniform asymptotic results over large classes of models.

Empirical Welfare Maximization As in the last section, we aim to select a welfare-
maximizing treatment rule from a set of policies © in the EWM problem of Kitagawa
and Tetenov (2018b). Let us assume that we have a sample of independent observations
i€{1,...,n} from a randomized trial where treatment is randomly assigned conditional
on observables C; with Pr{D;=1|C;} =d(C;). We consider policies that assign units to
treatment based on the observables, where rule 6 assigns ¢ to treatment if and only if

C; €Cy. The scaled empirical welfare under policy 6 is'3

Y:D; Yi(1-D;)
X, \/_Z( 1{0 ce}+ ()1{(J¢Ce})

EWM again selects the policy that maximizes empirical welfare: §, =argmax 0coXn(0).
The definition of Y,, in this setting depends on the object of interest. We may be

interested in the overall social welfare, in which case we can define Y,, = X,,. Alternatively

we could be interested in social welfare relative to the baseline of no treatment, in which

case we can define Y,,(0) as the difference in scaled empirical welfare between policy 6 and

12For simplicity of notation we will assume 6 is unique almost surely unless noted otherwise. Our
conditional analysis does not rely on this assumption, however: see footnote 20 below.

3Kitagawa and Tetenov (2018b) primarily consider welfare relative to the baseline of no treatment,
which yields the same optimal policy.
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the policy that treats no one, which we denote by 6=0:

Y, (0) = X,,(6) — Xu( WZ{YDi Yl(éz))]uciec@}.

Likewise, we might be interested in the social welfare for a particular subgroup defined

by the observables, say S, in which case we can take

VA, (B 1{C e SNCo -+ HeDI1{C e 5\Co}
2?211{01 ES} ’

For pux,, and py,, the true scaled social welfare corresponding to X,, and Y,,,

Xn - n
Hxn ) o N(OS) 9)
Yn_,uY,n

Yo (0)=

under mild conditions, where the covariance > will depend on the data generating process
and the definition of Y,, but is consistently estimable. By contrast, the scaling of X,, and
Y,, means that 1x,, and jy,, are not consistently estimable. As in the last section, this
suggests the asymptotic problem where we observe normal random vectors (X,Y") as in
(6) with 3 known and 6 defined as in (7), the level maximization problem.'

As argued in the last section, if a policy maker is given a recommended policy 0 as well
as a confidence set for uy(é), it is natural to require that the confidence set be valid condi-
tional on the recommendation. It may also be natural to condition on additional variables.
For example, if a recommendation is made only when we reject the null hypothesis that no
policy in © improves outcomes over the base case of no treatment, Hy:maxpeeu(d) < u(0),
then it is also natural to condition inference on this rejection.!® To cover this case we
can define y=~(X) as a dummy for rejection of Hy. If on the other hand we care only
about performance on average across a range of recommendations, we need only impose

unconditional coverage. A

The level maximization problem arises in a number of other settings as well. For

example, selecting the “best” policy from a collection considered in A /B tests is closely

4Under mild regularity conditions, (9) also holds in settings where the empirical welfare involves
estimated propensity scores and/or estimated outcome regressions, e.g., the hybrid procedures of Kitagawa
and Tetenov (2018b) and the doubly robust welfare estimators of Athey and Wager (2018).

15Tn the case of |©|=2, conditioning on this rejection can be interpreted as conditioning on the event
that the decision criterion of Tetenov (2012) supports the same policy.
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related to EWM. Further afield, the literature on tests of superior predictive performance
(c.f. White (2000); Hansen (2005); Romano and Wolf (2005)) considers the problem of
testing whether some trading strategies or forecasting rules amongst a candiate set beat
a benchmark. If we define X,, =Y, as the vector of performance measures for different
strategies, X, is asymptotically normal under mild conditions (see e.g. Romano and Wolf
(2005)). If one wants to form a confidence set for the performance of the “best” strategy
based on X,, (perhaps also conditioning on the result of a test for superior performance),
this reduces to our level maximization problem asymptotically.

Another example comes from Bhattacharya (2009) and Graham et al. (2014), who
consider the problem of optimally matching individuals to maximize peer effects. For X,
again a scaled objective function, the results of Bhattacharya (2009) show that his problem
reduces to level maximization asymptotically when one considers a finite set of assignments.
More broadly, any time we consider M-estimation with a finite parameter space and are
interested in the value of the population objective or some other function at the estimated
optimal value, this falls into our level maximization framework under mild conditions.

We next discuss an example of threshold regression estimation, showing that it gives

rise to our norm-maximization problem asymptotically.

Threshold Regression Estimation Suppose we observe data on an outcome Y;, a
threshold regressor ); and a k-dimensional vector of regressors C; for i € {1,...,n}. We

assume there is a linear but potentially regressor-dependent relationship between Y; and C;:

Yi=Ci(B+¢n(Qi)+U, (10)

where ; €R and the residuals U; are orthogonal to (); and C;. Similarly to Elliott and
Miiller (2014) and Wang (2018), the function ¢, : R — R* determines the value of the
regressor-dependent coefficient 3+ ¢, (Q;). This model nests the traditional threshold

regression model (see e.g. Hansen (2000) and references therein) by taking

on(Qi) =1(Qi>0)d, (11)

where 0 €R is the “true” threshold. The threshold model (11) is often used as a parsimo-
nious approximation to a more general linear regression model with regressor-dependent
coefficents. For example, Card et al. (2008) use the threshold model to approximate a

theoretical model with smoothly-varying regressor-dependent coefficients. See also the
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motivations for this model discussed in Hansen (1997, 2000).

Since the threshold regression model is widely used in practice, we consider a researcher
who fits the model (11). To allow the possibility of misspecification, however, we assume
only that the data is generated by (10). To provide a good asymptotic approximation
to finite sample behavior, we follow Elliott and Miiller (2007, 2014) and Wang (2018)
and model parameter instability as on the same order as sampling uncertainty, with

on(Qi)= \/Lﬁ g(Q;) for a fixed function g. We further assume that

—ZCC/ Qi <60)—,%c(6) ZCC/ (Q)1(Qs <O) =, Xy (0), (12)
and .
1
%;@UA(@S@);»G(&), (13)

all uniformly in # € R. Here X¢ : R — R¥*¥ is a consistently-estimable matrix-valued
function and Y¢(0) is full rank for all 6 in the interior of the support of Q;, ¢, :R—R*
is a vector-valued function, and G(-) is a k-dimensional mean zero Gaussian process with a
consistently estimable covariance function that is positive definite when evaluated at points
in the interior of the support of ¢);. Conditions (12) and (13) are analogous to Conditions
1(ii) and 1(iv) of Elliott and Miiller (2007) for structural break models in a time-series
setting. See Wang (2018) for sufficient conditions that give rise to (12) and (13).

The standard threshold estimator 6,, chooses 6 to minimize the sum of squared residuals
in an OLS regression of ¥; on C; and 1(Q; >6)C; across a finite grid of thresholds 6.1 For

l\')\)—‘ l\’)\)—‘

X.(6)= ( (S GOLQi<6)”

(S0, ConL(Q:<6)) )
(S0, GCA(Qi>6)) ’

Q1= Cimil(Qi>0))

with 7; = U;+n~2Clg(Q;), arguments analogous to those in the proof of Proposition 1
in Elliott and Miiller (2007) imply that 6, =argmax see || X, (6)[|+0,(1), where 0,(1) is an
asymptotically negligible term. Hence, 0, is asymptotically equivalent to the solution to
a particular norm-maximization problem (8).

Suppose we are interested in the approximate change in the jth parameter §; = 6;-5 ,

16Note that finiteness of © is without loss of generality if Q; is finitely-supported, but that we otherwise
limit attention to a finite collection of thresholds.
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where e; is the 4t standard basis vector.!'” In practice it is common to estimate § by least
squares imposing the estimated threshold #,. When the threshold regression model (11) is
misspecified, however, there is neither a “true” threshold € nor a “true” change coefficient
J. Instead, the population regression coefficient 6(#) imposing threshold 6 depends on 6.
Thus, for threshold 6, the coefficient of interest is §;(¢). Denote the OLS estimate imposing
threshold 6 by 4;(0) and define Y;,(6) = \/nd;(6). If we define jiy,,(6) = v/nd;(6) as the
scaled coefficient of interest and jx,,(0) as the population analog of X, (), Section B.2
of the supplement shows that

(&@wm@

V(O 6] ):»N(o,z(e)) (14)

uniformly over a parameter space © contained in the interior of the support of @);, where
the covariance matrix (6) is consistently estimable but jx,,(0) and piy,(0) are not. As
before, this suggests the asymptotic problem (6) where we now define 0 through norm
maximization (8).

Since the estimated threshold 6 is random and the parameter of interest d;(6) depends
on #, it is important to account for this randomness in our inference procedures. In
particular, it may be appealing to condition inference on the estimated threshold 9, since
we only seek to conduct inference on 9; (/) when §=0. It may also be natural to condition
inference on additional variables. For example, if we report a confidence set for the
change coefficient 4, (9) only when we reject the null hypothesis of parameter constancy,
Hy:¢,(0)=0 for all 6, it is natural to condition inference on this rejection. As above, this
can be accomplished by defining 4=~(X) as a dummy for rejection of Hy, and conditioning
inference on (6,%). Even if we only desire coverage of &;(6) on average over the distribution
of @, and so prefer to consider unconditional confidence sets, accounting for the randomness
of f remains important. If on the other hand we are confident that the threshold model is
correctly specified, so that (11) holds in the data, it will typically be more appealing to focus

on inference for the “true” parameters as in Elliott and Miiller (2014) and Wang (2018). A

An analogous analysis applies to estimation and inference in the traditional structural
break model (see e.g. Hansen (2001) and Perron (2006) and references therein) under
local asymptotics as in Elliott and Miiller (2007, 2014). Moreover, while our discussion

of threshold regression estimation focuses on the linear model (10), Elliott and Miller

7By changing the definition of Y;, below, our results likewise apply to the pre-change parameters f3;
and the post-change parameters 3;4-0;, amongst other possible objects of interest.
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(2014) show that structural break estimation in nonlinear models with time-varying pa-
rameters gives rise to the same asymptotic problem. Hence, our results apply in that
setting as well. Likewise, Wang (2018) shows that the same asymptotic problem arises in
nonlinear threshold models.!® Further afield, one could generalize our approach to consider
norm-minimization rather than norm-maximization, and so derive results for GMM-type

problems with finite parameter spaces.

Uniform Asymptotic Validity We have shown that the emprical welfare maximization
and threshold regression problems asymptotically resemble level and norm maximization
based on the finite-sample normal model (6). Section D of the supplement builds on this con-
nection and shows that if we consider classes of data generating processes such that (X,,,Y;,)
are uniformly well-approximated by the normal model (6), we have a uniformly consistent
estimator f]n for 32, and X satisfies mild regularity conditions, our finite-sample results in
the normal model (6) translate to uniform asymptotic results. These unifomity results apply
to level maximization settings without any restrictions on the behavior of (px n,py,). In
norm maxmization settings, by contrast, we limit attention to (ftx n.pty») lying in bounded
sets, since this is the context for which the asymptotic results of Elliott and Miiller (2007,

2014) and Wang (2018) imply an asymptotic norm-maximization representation.'?

4 Conditional Inference

This section develops conditional inference procedures for our general setting. We seek

~

confidence sets with correct coverage conditional on (6,7),
Pm{w(é) eCS|§=éﬁ:§} >1—aq for all 9€©, F€T, and all 4. (15)

As in the stylized example of Section 2, we consider both equal-tailed and uniformly most ac-
curate unbiased confidence sets.?’ We also derive optimal conditionally a-quantile-unbiased
estimators, which for o€ (0,1) satisfy

Pr#{/laz,uy(@)\@:éfy:’y}:a for all € ©, €T, and all 4. (16)

18Tn a manuscript circulated after the initial public version of this paper, Hyun et al. (2018) consider
the related problem of conditional inference for changepoint detection, but the changepoint estimation
methods they consider cannot be cast as norm-maximization, so their results do not overlap with ours.

19Tf one instead considers cases where (1x 5,ity.n) diverges, as occurs for example in threshold regression
with non-vanishing parameter instability, the problem reduces to level-maximization asymptotically.

207f § is not unique we change the conditioning event §=6 to 0 € argmax X (f) or 6 € argmax || X ()||
for the level and norm maximization problems, respectively.
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Our conditional procedures depend on the conditioning events of interest. We analyze
these conditioning events for our general level and norm maximization settings, and illus-
trate them in our EWM and threshold regression examples. We then discuss conventional
sample splitting as an alternative conditional approach and briefly discuss the construction
of dominating procedures. Finally, we show that our conditional procedures converge to

conventional ones when Pru{@zéﬁzi} — 1 so the latter are valid.

4.1 Optimal Conditional Inference

Since # and 4 are functions of X, we can re-write the conditioning event in terms of the

sample space of X as {X : é:éﬁ:ﬁ} =X (éﬁ). Thus, for conditional inference we are

interested in the distribution of (X,Y") conditional on X € X(0,7). Our results below imply

that under mild conditions, the elements of Y other than Y (#) do not help in constructing a

quantile-unbiased estimate or unbiased confidence set for iy () conditional on X € X (6,7).

Hence, we limit attention to the conditional distribution of (X,Y ()) given X € X(0,7).

Since (X,Y () is jointly normal unconditionally, it has a multivariate truncated normal

distribution conditional on X € X(0,7). Correlation between X and Y'(#) implies that

the conditional distribution of Y (d) depends on both the parameter of interest 1y (f) and
px. To eliminate dependence on the nuisance parameter px, we condition on a sufficient

statistic. Without truncation and for any fixed py (#), a minimal sufficient statistic for px is
Zi=X = (Sxr (:0)/Zv(0) )Y () (17)

where we use Yxy(+,0) to denote Cov(X,Y (0)). Z; corresponds to the part of X that

is (unconditionally) orthogonal to Y (6) which, since (X,Y (f)) are jointly normal, means

that Z; and Y'(6) are independent. Truncation breaks this independence, but Z; remains

~

minimal sufficient for px. The conditional distribution of Y'() given {é =0/4=3,7 5= z}
is truncated normal:
Y(0)0=0/7y=7,Z=2~££€V(07,2), (18)

where £~ N (,uy(é),Ey(é)> is normally distributed and

Y072 ={y:2+(Sxr (/v 0) Jyex(6.7)] (19

is the set of values for Y (f) such that the implied X falls in X'(6,7) given Z;=z. Thus,

conditional on 9:9, y=7, and Z3=z2, Y(@) follows a one-dimensional truncated normal
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distribution with truncation set Y(6,3,z).
Using this result, it is straightforward to construct quantile-unbiased estimators for

piy (0). Let Frn(y:py (9),0,7,2) denote the distribution function for the truncated normal

distribution (18). This distribution function is strictly decreasing in uy (6). Define fi, as

the unique solution to

Fru(Y (0)ifta.0.7.25) =10 (20)
Proposition 1 below shows that ji, is conditionally a-quantile-unbiased in the sense of
(16), so f1 1 is median-unbiased while the equal-tailed interval C'Sgr = [/la /251 —a /2} has
conditional coverage 1—a. Moreover, results in Pfanzagl (1979) and Pfanzagl (1994) on
quantile-unbiased estimation in exponential families imply that fi, is optimal in the class
of quantile-unbiased estimators.

To establish optimality, we add the following assumption:

Assumption 1

If X=Cov((X",Y")) has full rank, then the parameter space for y is open and convex.
Otherwise, there exists some u* such that the parameter space for i is an open convex
subset of {u*—i—Z%v:vERdim(X’Y)} where $3 is the symmetric square oot of 3.

This assumption requires that the parameter space for 1 be sufficiently rich.2! When X is
degenerate (for example when X and Y are perfectly correlated as in the EWM example
with X =Y), this assumption further implies that (X,Y") have the same support for all
values of p. This rules out cases in which some a pair of parameter values pq, ps can
be perfectly distinguished based on the data. Under this assumption, ji, is an optimal

quantile-unbiased estimator.

Proposition 1

Let f1,, be the unique solution of (20). [iy is conditionally a-quantile-unbiased in the sense of
(16). If Assumption 1 holds, then i, is the uniformly most concentrated a-quantile-unbiased
estimator in that for any other conditionally o-quantile-unbiased estimator [}, and any

loss function L(d#y (é)) that attains its minimum at d=py (0) and is quasiconvez in d

Jor all py (6),

B [L(ftoay 0))0=05=3) < B, [ L (itr 0)) 16=0.5=7]

21The assumption that the parameter space is open can be relaxed at the cost of complicating the
statements below.
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for all yu and all 0€©, F€T.

Proposition 1 shows that /i, is optimal in the strong sense that it has lower risk (expected
loss) than any other quantile-unbiased estimator for a large class of loss functions.
Rather than considering equal-tailed intervals, we can alternatively consider unbiased
confidence sets. Following Lehmann and Romano (2005), we say that a level 1 —a two-sided
confidence set C'S is unbiased if its probability of covering any given false parameter value is
bounded above by 1—a. Likewise, a one sided lower (upper) confidence set is unbiased if its
probability of covering a false parameter value above (below) the true value is bounded above
by 1—a. Using the duality between tests and confidence sets, a level 1 —a confidence set C'S
is unbiased if and only if ¢(uyo)=1{pyo¢ CS} is an unbiased test for the corresponding
family of hypotheses.?? The results of Lehmann and Scheffé (1955) applied in our setting

imply that optimal unbiased tests conditional on {9:&&:& are the same as optimal

unbiased tests conditional on {9 = éﬁz&,Z@ =25 } These optimal tests take a simple form.

Define a size « test of the two-sided hypothesis Hy: py (0) =y as

Orsalive) =1{Y (0) ¢ [a(Z).c(Z)] | (21)

where ¢(z), ¢,(z) solve
Pr{¢ela(z).cu(2)]} =1-a, E[CI{(€[a(z),cu(2)]}] = (1—a)E[(]
for ¢ that follows a truncated normal distribution

(~EEEVB2), E~N (1o Sv(D)):

Likewise, define a size « test of the one-sided hypothesis Hy: py (0) > p1yo as

605-a(1tv0) =1{ Fen (Y (O)iry0.0.7.2) <o | (22)

and a test of Hy:py (6) <piyo as

¢OS+,0¢ (NY,O) = 1{FTN(Y(é);:u'Y,07éﬁ/vz) >1 —04}. (23)

2That is, Ho: py (0) =py,o for a two-sided confidence set, Hy: py (6) > py.o for a lower confidence set
and Hy: py (0) <py,o for an upper confidence set.

25



Proposition 2
If Assumption 1 holds, ¢rsa, PoS—a: A P05+« are uniformly most powerful unbiased

size «v tests of their respective null hypotheses conditional on 6=0 and y=7.

To form uniformly most accurate unbiased confidence sets we collect the values not
rejected by these tests. The two-sided uniformly most accurate unbiased confidence set
is CSy={pvo:Prsalityvo)=0}. CSy is unbiased and has conditional coverage 1—a by
construction. Likewise, we can form lower and upper one-sided uniformly most accu-
rate unbiased confidence intervals as C'Sy— = {y0: ¢os—a(tivo) =0} = (—00,f11—o), and
CSus+={1vo:00s+.a(ttv0) =0} =[fta,00), respectively. Hence, we can view C'Sgr as the
intersection of level 1— 5 uniformly most accurate unbiased upper and lower confidence
intervals. Unfortunately, no such simplification is generally available for C'Sy;, though

Lemma 5.5.1 of Lehmann and Romano (2005) guarantees that this set is an interval.
4.2 Conditioning Sets

Thus far we have left the conditioning events X (é,’y) and y(é,’y,z) abstract. To implement
our conditional procedures, however, we need tractable representations of y(éﬁ,z). We
first derive the form of this conditioning event for the level maximization problem (7) and
the norm maximization problem (8) without additional conditioning variables 4. We then
discuss the effect of adding conditioning variables and illustrate in our examples.

In level maximization problems without additional conditioning variables, we are in-

terested in inference conditional on X € X(f) for X(f)= {X : X (6) =maxpeo X (9)} The
following result, based on Lemma 5.1 of Lee et al. (2016), derives Y(6,z) in this setting.

Proposition 3
Let Yxy (0)=Cov(X(h),Y (9)). Define

i Sy (0)(23(0)—2(0))
L(0,75) = max = —
0e0:Txy (0)>xy (6,0) Exy(e)—zxy(e,e)

i | Sy (0)(Z(0)~ 23(6) )
U0,23) = min = B
0cO:Txy (0)<Zxvy (0,0) Exy(e) —Yxy (0,9)

)

and
V(0,7;) = min - (zé(e)—zé(e)).

GEO:EXY (9):2Xy(§,0)

[FV(0,2)>0, then Y(0,2)= [g(é,z),u@,z)] IFV(0,2) <0, then Y(0,2)=0.
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Thus, the conditioning event y(é,z) is an interval bounded above and below by easy-to-
calculate functions of z. While we must have V(é,z) >0 for this interval to be non-empty;,
P?“M{V(é,Z@) < O} =0 for all s so this constraint holds almost surely when we consider the
value 6 observed in the data. Hence, in applications we can safely ignore this constraint
and calculate only £(0,Z;) and U(6,Z;).

The norm maximization conditioning event is X' (6) = {X || X (0)]| = maxgeo || X (9)]] }
This conditioning event involves nonlinear constraints so the results of Lee et al. (2016)

do not apply. The expression for y(é,z) is more involved, but remains easy to calculate.

Proposition 4

Define
A Z[ZXYZ —Yxy,(0, ‘9) }
~ ~ dX ~ ~ ~
B,(0.0)=25y 0) Y [ Lxvi0)Z3,0)~Sxvi(0.0)23,0)|.
=1
) Z[ZM ~Z,(0?].
For
D4(6,0)=B(0,0)>—4A(0.0)C(0,0), Hz(0,0)= Z(é %)
_ —By(6,0)—+/Dz(6,0 _ —By(0.6)++/Dz(0,0
Galh0)- 2PN DA gy~ OO DA,
2A(6,6) 2A(6.6)
define
Klz(é):max{ “max  Gz(0,9), max HZ(é,G)},
0€0:A(0,0)<0,Dz(8,0)>0 0€0:A(0,0)=0,B7(0,0)>0
@(é,e):max{ “max  Gz(0,9),  max Hz(é,e),GZ(é,e)},
6€0:A(6,0)<0,D(6,6)>0 6€0:A(6,0)=0,B(8,0)>0
ulz(éﬁ):min{ “min K400, min H (é,&),KZ(éﬁ)},
0€0:A(0,0)<0,D7(0,0)>0 0€0:A(0,0)=0,B(0,0)<0
uQZ(é):min{ “min K460, _min Hz(éﬁ)},
6€0:A(6,0)<0,D(6,6)>0 6€0:A(6,0)=0,B(8,0)<0
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and
V(0,Z5)= i min ~Cz(0,0).
0€0:A(0,0)=B(0,0)=0 or Dz (8,0)<0

IfV(0,Z5) >0 then

Yozy= ) |GOa00)|u][E6.0.:0).

0c©:A(0,0)>0,D 7 (6,0)>0
IfV(0,Z5) <0, then Y(0,7Z;)=0.

While the expression for y(é,z) in this setting is long, it is easy to calculate in practice
and can be expressed as a finite union of intervals using DeMorgan’s laws. As before,
PTM{V(é,Z@) <O} =0 for all 1 so we can ignore this constraint in applications.

Our derivations have so far assumed we have no additional conditioning variables 4.
If we also condition on 4 =7, then for X,(3) = {X:7(X)=7}, we can write X(0,7) =
X(0)NA,(%). Likewise, for ),(%,2) defined analogously to (19), Y(8,7,2) =V(0,2)NV,(3,2).
The form of X, () and Y, (%,z) depends on the conditioning variables 4 considered. To
illustrate we next discuss the effect of conditioning on the outcomes of pretests in our

EWM and threshold regression examples.

Empirical Welfare Maximization (continued) Suppose that we report estimates
and confidence sets for welfare only if the improvement in empirical welfare from the esti-
mated optimal policy over a baseline policy # =0 exceeds a threshold ¢, i.e. X (9) —X(0)>ec.
For instance, we might report results only when the test of White (2000) rejects the null
that no policy has performance exceeding the baseline, Hy:maxgcopx (6) <px(0). This
implies that we report results only if X (6)—X(0)> ¢ for ¢ a critical value depending on X.
We can set v(X)= 1{X (6)—X(0) Zc} and it is natural to condition inference on 4=1.

Assuming ¥ Xy(é)—z Xy (5,0) >0 for simplicity, the conditioning event in this setting
is X, (1)= {X:X(é)—X(O) Zc} and one can show that

Sy () (C—Z@(é)+zé(0))
Yxy (0)—Xxy (0,0)

Vo(L,Zg)=q y:y>

See Section B.1 of the supplement for details, as well as expressions for other val-
ues of Yxy(A) — Lxy(0,0). In the present case, provided V(6,Z;) > 0, Y(0,1,7;) =
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[E*(é,Zg)),L{ (é,Zé)] , where U (é,Zé) is the upper bound derived in Proposition 3 while

2y (0) (= Z0)+2,(0))
Y xy () —Exv(0,0)

,C*(é,Zé) =max E(é,Zé),

for £(0,7;) defined as in Proposition 3. Hence, when Yy (6) =X xy (,0) >0, conditoning
on 4 =1 simply modifies the lower bound ﬁ(é,Zé). Likewise, when X xy (6) — X xy (6,0) <0 or
Sxy(0)—Zxy (6,0)=0, conditioning on 4 =1 modifies U (é,Zé) and V(é,Z@), respectively. A

Threshold Regression Estimation (continued) Suppose that we report estimates
and confidence sets for the change parameter 5j(é) only if we reject the null hypothesis of
no threshold, Hy:5(0)=0 for all #€©. Suppose, in particular, that we test this hypothesis
with the sup-Wald test of Andrews (1993). Analogous results to those shown in Elliott
and Miiller (2014) provide that in our setting, such a test rejects asymptotically if and only
if | X (8)||>c for a critical value ¢ that depends on Y. We can set 7(X)=1{||X(@)|| >c}
and it is again natural to condition inference on 4=1.

In this setting X, (1)= {X X 0)|| > c}. As before, the expressions for the conditioning
sets are involved but straightforward to compute. In particular, for V(Z;), £(Z;), and U(Z;)
defined in Section B.2 of the supplement, if V(Z;) >0 then Y,(1,75) = (L(Z;)U(Z;))",

where §¢ denotes the complement of a generic set S. Thus,

V(0.1,25) = (L(Z;)U(Z;)) N N |4(0)u,(0.0)] U |£(0.0)03,(0)

0€0:A(6,0)>0,D4(6,0)>0

when min{V(é,Zé),l_i(Zé)} >0. Details and expressions under other realizations of V(Z;)
can be found in Section B.2 of the supplement. A

As these example illustrate, it is straightforward to incorporate additional conditioning
variables 4 in both the level and norm maximization problems provided one can characterize
the set Y, (¥,2). While such characterizations are easy to obtain in many cases, they depend

on the conditioning variable considered and must be derived on a case-by-case basis.
4.3 Comparison to Sample Splitting

A common remedy in practice for the problems we study is to split the sample. If we have
iid observations and select 6! based on the first half of the data, conventional estimates

and confidence intervals for py (@1) that use only the second half of the data will be
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(conditionally) valid. Hence, it is natural to ask how our conditioning approach compares
to this conventional sample splitting approach.

For ease of exposition, in this section we focus on even sample splits. Asymptotically,
such splits yield a pair of independent and identically distributed normal draws (X', Y1) and
(X2Y?), both of which follow (6), albeit with a different scaling for (1, than in the full-
sample case.23 Sample splitting procedures calculate 6" as in (7) and (8) for level and norm
maximization, respectively, replacing X by X*. Inference on uy(@l) is then conducted using

(X2Y?). In particular, the conventional 95% sample-splitting confidence interval for ,U,y(él),

{YQ(él)—L%\/ Sy (01),Y2(6")+1.964/ zy(él)] ,

has correct (conditional) coverage and Y2(6') is a median-unbiased estimator for 1y (6%).

While conventional sample splitting resolves the inference problem, this comes at a
cost. First, 6" is based on less data than in the full-sample case, which is unappealing since
a policy recommendation estimated with a smaller sample size leads to a lower expected
welfare (see, e.g., Theorems 2.1 and 2.2 in Kitagawa and Tetenov (2018b)). Moreover, even
after conditioning on #', the full-sample average (X1 Y1) +1(X?%Y?) remains a minimal
sufficient statistic for 4. Hence, using only (X2 Y?) for inference sacrifices information.

Fithian et al. (2017) formalize this point and show that conventional sample splitting
tests (and thus confidence sets) are inadmissible.?* Motivated by this result, in Section C of
the supplement we derive optimal confidence sets and estimates that are valid conditional
on A, These optimal split-sample procedures involve truncated normal distributions which
are difficult to compute, however, so we also propose computationally straightforward
alternatives. These alternatives dominate conventional split-sample methods, but are in
turn dominated by the (computationally intractable) optimal split-sample procedures.
Nevertheless, these computationally straightforward alternative procedures dominate their
conventional counterparts by a substantial margin in simulations calibrated to Card et al.
(2008) and reported in Section 7.

Splitting the sample changes the target parameter from gy (6) to py (%), so split-sample

~ ~

ZSection C of the supplement considers cases with general sample splits and describes the scaling
for (u,X). Intuitively, the scope for improvement over conventional split-sample inference is increasing
in the fraction of the data used to construct Xj.

24 Corollary 1 of Fithian et al. (2017) applied in our setting shows that for any sample splitting test
based on Y2, there exists a test that uses the full data and has weakly higher power against all alternatives
and strictly higher power against some alternatives.
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approaches are not directly comparable to our full-sample conditioning approach developed
above. Nonetheless, while conventional sample splitting methods are dominated, calculating
6! based on only part of the data may increase the amount of information available for
inference and so allow tighter confidence intervals. Thus, depending on how we weight
noisier choices of 6 against more precise inference on ,uy(é), it may be helpful to split the
sample and use a procedure that dominates conventional split-sample inference. See Tian

and Taylor (2016) and Tian et al. (2016) for related discussions.
4.4 Behavior When Pru{ézé,&:i} is Large

As discussed in Section 2, if we ignore selection and compute the conventional (or “naive”)

estimator fiy =Y () and the conventional confidence set

CSy= [Y(@) —Capan\ By (0),Y (0)+cajony/ zy(é)] (24)

where ¢,y is the 1 —a-quantile of the standard normal distribution, fi is biased and
C'Sy has incorrect coverage conditional on 6 = 0, 4 = 7. These biases are mild when

Pru{@:é,’yzfy} is close to one, however, since in this case the conditional distribution is

close to the unconditional one. Intuitively, Pr#{@ = é} is close to one for some 6 when i (6)
or ||pux ()] has a well-separated maximum in the level and norm maximization problems, re-
spectively. This section shows that our procedures converge to conventional ones in this case.
In particular, suppose first that for some sequence of values py,,,, and 2, the probability
that =0 and 4=, conditional on Zp= 23 ,,,, converges to one as m—»o00. Then our con-
ditional confidence sets and estimates converge to the usual confidence sets and estimates.
Lemma 1
Consider any sequence of values fiy,, and z;,, such that Pry,, {9 =05=7|Z;= Zé,m} — 1.
Then under jty,,, conditional on {9 —0,4=75,Z5= z@m} we have CSy —,CSy, CSgr—)

CSy, and ,&% —, Y (), where for confidence sets —, denotes convergence in probability

of the endpoints.

Lemma 1 discusses probabilities conditional on Zj. If we consider a sequence of values

fm such that Pr, {@zé,’y:i} —p 1, the same result holds when conditioning only on
{9 = é,ﬁ/ zi} and unconditionally.

Proposition 5

Consider any sequence of values i, such that Prﬂm{ézé,’yzfy} — 1. Then under i,
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we have C'Sy —,CSy, CSgr—,CSn, and /l% —>pY(é) both conditional on {@zéﬁyz’y}

and unconditionally.

These results provide an additional argument for using our procedures: they remain
valid when conventional procedures fail, but coincide with conventional procedures when
the latter are valid. On the other hand, as we saw in Section 2, there are cases where our

conditional procedures have poor unconditional performance.

5 Unconditional Inference

~

Rather than requiring validity conditional on (6,7) we can instead require coverage only

on average, yielding the unconditional coverage requirement
Pr{u(é) € C’S} >1—a for all p. (25)

All confidence sets with correct conditional coverage in the sense of (15) also have correct

unconditional coverage provided 0 is unique with probability one.

Proposition 6
Suppose that 6 is unique with probability one for all . Then any confidence set C'S with

correct conditional coverage (15) also has correct unconditional coverage (25).

Uniqueness of § implies that the conditioning events X (9,&) partition the support of X
with measure zero overlap. The result then follows from the law of iterated expectations.

A sufficient condition for almost sure uniqueness of 0 is that Y x has full rank. A weaker
sufficient condition is given in the next lemma. Cox (2018) gives sufficient conditions for

uniqueness of a global optimum in a much wider class of problems.

Lemma 2
Suppose that for all 8, 0 € © such that 00, either Var (X(H)\X(é)) #0 orVar <X(5’)\X(9)> #
0. Then 0 is unique with probability one for all .

While the conditional confidence sets derived in the last section are unconditionally
valid, unconditional coverage is less demanding than conditional coverage. Hence, if we
are only concerned with unconditional coverage, relaxing the coverage requirement from
(15) to (25) may allow us to obtain shorter confidence sets in some settings.

In this section we explore the benefits of such a relaxation. We begin by introducing

unconditional confidence sets based on projections of simultaneous confidence bands for
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1. We then introduce hybrid confidence sets that combine projection confidence sets with
conditioning arguments. We do not know of estimators for ,uy(@) that are unconditionally
a-quantile-unbiased but not conditionally unbiased, but introduce hybrid estimators which

substantially reduce variability at the cost of permitting a small unconditional bias.

5.1 Projection Confidence Sets

~

One approach to obtain an unconditional confidence set for iy () is to start with a joint con-
fidence set for p and project on the dimension corresponding to 0. This approach was used
by Kitagawa and Tetenov (2018a) for inference in EWM, and by Romano and Wolf (2005)
in the context of multiple testing. This approach has also been used in a large and growing
statistics literature on post-selection inference including e.g. Berk et al. (2013), Bachoc et al.
(2017), Kuchibhotla et al. (2018), and Bachoc et al. (2018). Laber and Murphy (2011) con-
sider a variant of projection for inference on the generalization error of an estimated classifier,
obtaining a smaller critical value via a first-stage pretest with a divergent critical value.

To formally describe the projection approach, let ¢, denote the 1 — a quantile of

maxg|£(6)]//Zy () for E~N(0,Xy). If we define
CSy={ 1: 1Y (6)— py ()] < car/S (6) for all 9O},

then C'S,, is a level 1—a confidence set for p.?® If we then define
CSp= { fiy(0):3u€CS, such that puy(6)= ﬁy(é)} = [Y(@) —ca\/ Sy (0),Y (0)+ca zy(é)]

as the projection of C'S,, on the parameter space for py (@), then since p € C'S,, implies
uy(@) € C'Sp, CSp satisfies the unconditional coverage requirement (25). As noted in
Section 2, however, C'Sp does not generally have correct conditional coverage.

The width of the confidence set C'Sp depends on the variance Zy(@) but does not
otherwise depend on the data. To account for the randomness of @, the critical value c,
is larger than the conventional two-sided normal critical value. This means that C'Sp will
be conservative in cases where 6 takes a given value 6 with high probability. To improve

performance in this case, we next consider hybrid confidence sets.

Z5Note that we consider a studentized confidence band that adjusts the width based on Ey(@), while
Kitagawa and Tetenov (2018a) consider an unstudentized band. Romano and Wolf (2005) argue for
studentization in a closely related problem.
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5.2 Hybrid Confidence Sets

As shown in Section 2, conditional and projection confidence sets each have good uncon-
ditional performance in some cases, but neither is fully satisfactory. Hybrid confidence sets
combine these procedures to obtain good performance over a wide range of parameter values.

Hybrid confidence sets are constructed to be subsets of the level 1—/ projection con-
fidence set C'Sp, for 0< <. A hybrid confidence set collects the values iy € C'Sp not

rejected by a hybrid test. Like our conditional tests, hybrid tests of Hy: py () = py,o condi-
tion on {@ =0/= ﬁ}, but they further condition on the event that the null value is contained

in the projection confidence set, i.e. fy ECS]@. This changes the conditioning event to

VH(0.7,p1v0.2) =V (0.7,2)N {MY,O—C,B\/ Sy (0),pvo+esy EY@)]

for cg as defined in Section 5.1.

Similarly to our conditional confidence sets, we construct hybrid confidence sets by
inverting both equal-tailed and uniformly most powerful unbiased hybrid tests. To con-
struct the equal-tailed test, we define ¢fjs_ , and ¢35, ., analogously to Pos—q and ¢osyq
in (22) and (23), respectively, using the conditioning event Y (é,:y,um,Zg,) rather than

V(0.7,Z5). The equal-tailed hybrid test of Hy:py (6) =iy is

¢gT,a (,U/YD) - max{ ¢gS—,a/2 (MY,(J) 7¢gS+,o¢/2 (MKO) } )

which rejects if either of the upper or lower size /2 one-sided tests rejects. The level
1—a equal-tailed hybrid confidence set is C'SE, = {,um cCSy: gT, ozt (tyo) :O}, which
H

ET,$=5"

To form a hybrid confidence set based on inverting unbiased tests, we likewise define

collects the set of values in C’SIB_-, which are not rejected by ¢

Piis, analogously to ¢rgq in (21), using the conditioning event Y (8,7,41v,0,Z5) rather than
y(é,&,z(;). By the results of Proposition 2, we know that ¢¥S7a(,uy70) is the uniformly most

powerful level o unbiased test of Hy: py (6) = piy,0 conditional on {9 =04 =,y € C’S}B)}.

The corresponding level 1—a confidence set is then C'SH = { piy0€ C'S5 qf)g o s (fy0)=00p.
Y1I—8

For =0 the hybrid confidence sets coincide with the conditional confidence sets C'Sgr
and C'Sy. For >0 on the other hand, the hybrid confidence sets are contained in C'S ]ﬁg and
the level of hybrid tests that condition on {@zéﬁzﬁ,uyp EC’S?,} are correspondingly
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adjusted to % This adjustment is necessary because the true value uy(é) sometimes falls
outside C’S]ﬁg, and if we do not account for this our hybrid confidence sets may under-cover.
With this adjustment, however, hybrid confidence sets have coverage at least 1—a both

conditionally and unconditionally.

Proposition 7

The hybrid confidence sets CSH. and CSf have conditional coverage t—g

0 D—pPA—A pi 11—«
Pr“{”w) €CSprl0=07=7.uy(0) 6051’@} =15
—B

- N ) e
Pm{M(G) cCSH0=0/7=7,uy(0) € CS@} =—
1-5
for all@€®©, €T, and all 1. Moreover, provided 0 is unique with probability one for all

i, both confidence sets have unconditional coverage between 1—a and i:—g <l—a+p:

_ - - 11—«

1%fP7‘H{,u(9)€C'S§IT}21—a, sgpPr#{u(Q)GngT}Sm,
. - 1-a

112fP7“H{,u,(9)€CSU}_1 a, stlePru{,u(@)ECSU}_ —

Hybrid confidence sets strike a balance between the conditional and projection ap-
proaches. The maximal length of hybrid confidence sets is bounded above by the length of
CSIQ. For small 3, hybrid confidence sets will be close to conditional confidence sets and
thus to the conventional confidence set when {@ = é,‘y :’y} with high probability. However,
for >0, hybrid confidence sets do not fully converge to conventional confidence intervals
as Pru{ézéﬁzﬁ} —1.%6 Nevertheless, in our simulations we find the performance of
the hybrid and conditional approaches to be quite similar in these well-separated cases.

While hybrid confidence sets combine the conditional and projection approaches, they
can yield overall performance more appealing than either. In Section 2 we found that
hybrid confidence sets had a shorter median length for many parameter values than did
either the conditional or projection approaches used in isolation. Our simulation results

in Sections 6 and 7 below provide further evidence of outperformance in realistic settings.

26Tndeed, one can directly choose 3 to yield a given maximal power loss for the hybrid tests relative to
conditional tests in the well-separated case. Such a choice of 5 will depend on ¥, however. For simplicity
we instead use S=«/10 in our simulations. Romano et al. (2014) and McCloskey (2017) find this choice
to perform well in two different settings when using a Bonferroni correction.
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It is worth contrasting our hybrid approach with more conventional Bonferroni correc-
tions as in e.g. Romano et al. (2014); McCloskey (2017). A simple Bonferroni approach for
our setting intersects a level 1—( projection confidence interval CS?, with a level 1—a+
conditional interval that conditions only on {929,’?:'?}. Bonferroni intervals differ from
our hybrid approach in two respects. First, they use a level 1 —a+( conditional confidence
interval, while the hybrid approach uses a level }:—‘g conditional interval, where t—‘g <l—-a+
B. Second, the conditional interval used by the Bonferroni approach does not condition on
uy(é) eCs ?,, while that used by the hybrid approach does. Consequently, hybrid confidence

sets never contains the endpoints of C’S}B;., while the same is not true of Bonferroni intervals.
5.3 Hybrid Estimators

The simulation results of Section 2 showed that our median-unbiased estimator can some-
times be much more dispersed than the conventional estimator ﬂzY(@). While we do not
know of an alternative approach to construct exactly median-unbiased estimators in our
setting, a version of our hybrid approach yields estimators that control both median bias
and dispersion relative to ﬂ:Y(é).

To construct hybrid estimators we again condition on both {9:9,&:-y} and py (A) €

C'S?. Conditional on these events and Z; =z, we know that Y (§) again lies in Y (8, 7,1y (0),2).

Let FE (y;uy(0),0,7,2) denote the conditional distribution function of Y'(6), and define
! to solve Ff (Y (0):il 0.4,2;) =1-a

Proposition 8
For ae(0,1), il is unique and ! ECSJ’B;. If 0 is unique almost surely for all w, i s

a-quantile-unbiased conditional on iy (0) € C'S5:
Pru{ﬂg Zuy(é)my(@)eC’Sg}:a for all .

Proposition 8 implies several notable properties for the hybrid estimator. First, since
Pru{ 1y (9) e CS]@} >1—/ by construction, one can show that

‘Pru{ﬂlezy(é)}—a‘ < fB-max{a,1—a} for all pu.

This implies that the absolute median bias of il (measured as the deviation of the ex-
2

ceedance probability from 1/2) is bounded above by 3/2. On the other hand, since ¥ € C'S5,
2

we have |fi —Y(@)’ <cz1/ Sy (6), so the difference between i and the conventional esti-
2 2
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mator Y(@) is bounded above by half the width of C'S 153. As (3 varies, the hybrid estimator in-

terpolates between the median-unbiased estimator [t 1 and the conventional estimator Y(@)

6 Simulations: Empirical Welfare Maximization

Our first set of simulations considers the EWM setting introduced in Section 3. We calibrate
our simulations to experimental data from the National Job Training Partnership Act
(JTPA) Study, which was previously used by Kitagawa and Tetenov (2018b) to study empir-
ical welfare maximization. For a detailed description of the study see Bloom et al. (1997).
We have data on n=11,204 individuals ¢ and the treatment D; is binary; D; =1 indicates
assignment to a job training program and D; =0 indicates non-assignment. The probability
of assignment is constant: d(c) =Pr(D;=1|C;=c)=2/3. We consider rules that allocate
treatment based on years of education C;. In the data, C' takes integer values ranging
from 6 to 18 years. As in Section 3, rule # assigns ¢ to treatment if and only if C; €Cy.
We consider two classes of policies. The first, which we call threshold policies, treat all
individuals with fewer than 0 years of education: Cp={C":C' <6}. The second, which we
call interval policies, treat all individuals with between 6; and 0, years of education: Cy=
{C:6,<C<8,}, where a policy 0 consists of a (6,,0,) pair. The total number of policies
|©| is equal to 13 and 91 for the threshold and interval cases, respectively. We define X, (6)
as a scaled estimate for the increase in income from policy € relative to the baseline of

no treatment. For Y; individual income measured in hundreds of thousands of dollars,

%l WZ<YD )

and we consider inference on the average increase in income, so Y, =X,,.

For our simulations, we focus on the asymptotic problem and draw normal vectors X
with known variance Y x equal to a (consistent) estimate for the asymptotic variance of
X,, based on the JTPA data and take § = argmax X (/). The object of interest is thus
1 X(@) The mean vector px, of X, is not consistently estimable due to the y/n scaling,
so we consider three specifications for the mean px of X. Specification (i) sets ux =0,
so all policies yield the same welfare as the baseline of no treatment. Specification (ii)
sets pix =(0,—10%,...,—10%), so one policy is vastly more effective than the others. Finally,
specification (iii) sets ux =X, for X,, calculated in the JTPA data. Intuitively, we expect
that specification (i) will be unfavorable to conditional confidence sets since in Section 2

these performed poorly when all policies were equally effective. Specification (ii) should
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be favorable to conditional confidence sets since in this case 6 selects one policy with high
probability, and the results of Section 4.4 apply. Finally, specification (iii) is calibrated
to the data and it is not obvious which approaches will perform well in this setting.

To the best of our knowledge our conditional confidence sets are the only known proce-
dures available with correct conditional coverage given 6. Hence, we focus on unconditional
performance and compare the conditional confidence sets C'Sgr and C'Syy and the hybrid
confidence sets C'SHZ,. and C'SH to the projection confidence set C'Sp. The conditional and
hybrid confidence sets are novel to this paper, but (unstudentized) projection confidence
sets were previously considered for this problem by Kitagawa and Tetenov (2018a). We
take a=0.05 in all cases and so consider 95% confidence sets. For hybrid confidence sets
we set 3=a/10=.005. All reported results are based on 10* simulation draws.

Table 1 reports the unconditional coverage Pr,,{p X(@) €S} of all five confidence sets,
along with the conventional confidence set C'Sy as in (24). As expected, all confidence
sets other than C'Sy have correct coverage in all settings considered. The conditional
confidence sets are exact, with coverage equal to 95% up to simulation error. By contrast,
hybrid confidence sets tend to be slightly conservative, and projection confidence sets are

often quite conservative, with coverage close to one when we consider interval policies.

Table 1: Unconditional Coverage Probability

DGP CSgr CSy C’SJ{;IT CS{}’ CSp CSy
Class of Threshold Policies

(i) 0.949 0.950 0.952 0.953 0.986 0.922

(ii) 0.952 0952 0956 0.956 0.991 0.952

(iii) 095 095 0.955 0.955 0.992 0.952
Class of Interval Policies

(i) 0.952 0.949 0.956 0.953 0.992 0.837

(ii) 095 0951 0954 0.954 0.998 0.950

(iii) 0.951 095 0954 0.955 0.998 0.948

We next compare the length of confidence sets. Projection confidence sets were pro-
posed in the previous literature and their length is proportional to the standard error
Xx (9) for the welfare of the estimated optimal policy. Hence, C'Sp provides a natural
benchmark against which to compare the length of our new confidence sets. In Table 2
we compare our new confidence sets to this benchmark in two ways, first reporting the
median lengths of CSpr, CSy, CSE., and CSH relative to C'Sp (that is, the ratio of the

median of their lengths), and then reporting the fraction of simulation draws for which
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our new confidence sets are longer than C'Sp.

Focusing first on specification (i) for which px =0, we see that conditional confidence
sets are longer than C'Sp according to both measures in the threshold and interval policy
specifications. Hence, as expected, this case is unfavorable to these confidence sets. By
contrast, our hybrid confidence sets are shorter than the projection sets both in median
length and in the substantial majority of simulation draws. Turning next to specification
(ii) for which px has a well-separated maximum, we see that, as expected, conditional
confidence sets are much shorter than projection confidence sets. Hybrid confidence sets
perform nearly as well. Finally in specification (iii) for which px is calibrated to the data,
we see that the performance of the conditional sets is between its performance in cases
(i) and (ii), and that hybrid confidence sets again perform best.

Overall, these simulation results favor the hybrid confidence sets relative to both the
conditional and projection sets. The benefits of hybrid confidence sets are still more
pronounced if we consider higher quantiles of the length distribution, reported in Section
F of the supplement. We do not find a strong advantage for either C'SZ,. or CSH | though
when the two differ C'SZ. typically performs better. Since C'SE.. is also typically easier

to calculate, these simulation results suggest using C'SE,. in this setting.

Table 2: Length of Confidence Sets Relative to C'Sp in EWM Simulations

DGP Median Length Relative to C'Sp  Probability Longer than C'Sp
CSgr CSy CSH. CSH  CSgr CSy CSH. CSE
Class of Threshold Policies

(i) 1.17 127 0.63 0.64 0.71 080 0.04 0.35

(ii) 0.75 075 0.76 0.76 0 0 0 0

(iii) 0.84 093 0.84 0.89 0.33 043 0 0.19
Class of Interval Policies

(i) 1.54 165 0.77 0.76 0.79 0.88 0 0

(ii) 0.63 064 0.65 0.65 0 0 0 0

(iii) 0.78 0.88 0.76 0.81 0.32 042 0 0

We next consider the properties of our point estimators. The initial columns of Table
3 report the simulated median bias of our median unbiased estimator [ 1, our hybrid
estimator jif, and the conventional estimator X (é), measured both as the difference in
the exceedaflce probability from % and as the median studentized estimation error. The
hybrid estimator is quite close to being median unbiased. By constrast, the conventional

estimator exhibits substantial bias when px does not have a well-separated maximum.
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The final three columns of Table 3 report the median absolute studentized error for
the estimators considered. These results show that the median unbiased estimator ji 1
has a larger median absolute error than the conventional estimator X () in all designs
except the well-separated case (ii), where all three estimators perform similarly. The
hybrid estimator ji’ likewise has a larger median absolute error than the conventional
estimator. Addition?ﬂ results reported in Section F' of the supplement show that the hybrid
estimator substantially outperforms the median unbiased estimator when one considers

higher quantiles of absolute error.

Table 3: Bias and Median Absolute Error of Point Estimators

- fi—pux (0 fi—px (0
pGP  Prfisux®)}-3  Med, (‘i/;i_ie))) Med#(\:t/;i_g)
p W X0 g W XO) by @ x(0)
Class of Threshold Policies
(i) -0.007 -0.007 0.391 -0.02 -0.02 082 1.11 1.10 0.88
(ii) -0.001  0.001 0.001 0 0 0 0.67 0.67 0.67
(iii) -0.001 -0.001 0.104 O 0 025 080 0.79 0.67
Class of Interval Policies
(i) 0 0003 05 0 002 13 142 139 130
(i1) -0.002 0.001 0.001 0 0 0 0.65 0.65 0.66
(iii) 0 0.001 0.148 0 0 035 0.86 0.86 0.69

The results of this section confirm our theoretical findings. Conditional confidence
sets and estimators perform well when the optimal policy is well-separated but can oth-
erwise underperform existing alternatives. Hybrid confidence sets outperform existing
alternatives in all cases, nearly matching conditional confidence sets in well-separated cases
while maintaining much better performance in other settings. Finally, hybrid estimators
eliminate almost all median bias while obtaining a substantially smaller median absolute
error than the exact median-unbiased estimator. Hence, we find strong evidence favoring
our hybrid confidence sets relative to the available alternatives and evidence favoring our

hybrid estimators if bias reduction is desired.

7 Simulations: Tipping Point Estimation

Our second set of simulation results is based on the tipping point model of Card et al.
(2008), a leading application of the threshold regression model discussed throughout this
paper as a running example. Card et al. (2008) study the evolution of neighborhood
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composition as a function of minority population share. In particular, for Y; the normalized
change in the white population of census tract ¢ between 1980 and 1990, C; a vector of

controls, and ; the minority share in 1980, Card et al. (2008) consider the specification
Y; = B+Cla+61{Q; >0} +U;,

which allows the white population share to change discontinuously when the minority
share exceeds some threshold 6. They then fit this model, including the break point 6, by
least squares. See Card et al. (2008) for details on the data and motivation. We consider
data from Chicago and Los Angeles with n=1,820 and n=2,035 observations, respectively,
estimating the model separately in each city.?”

Results in Wang (2018) show that if we model the coefficient ¢ as on the same order
as sampling uncertainty, this threshold regression model satisfies the high-level conditions
(12)-(13) we introduced in Section 3. Hence, we can immediately apply our results for the
norm-maximization problem to the present setting. Specifically, we define X, as discussed in
Section 3 and 6, is again asymptotically equivalent to the solution to a norm-maximization
problem argmax ;|| X (8)||.22 We define Y;,(#) = /nd(6) to be proportional to the estimated
change coefficient imposing tipping point 6, so we again consider the problem of inference
on the change coefficient while acknowledging randomness in the estimated threshold.

Our simulations draw normal random vectors (X,Y") from the limiting normal model
derived in Section 3. This model depends on the function ¥ and the covariance function
of G in Section 3 which we (consistently) estimate from the Card et al. (2008) data. It
also depends on the function .4(+). Since this is not consistently estimable, we consider
three specifications. Specification (i) assumes there is no coefficient change, corresponding
to 0=0. Specification (ii) assumes that there is a single large change, setting 6 =—100%
and taking the true threshold to equal the estimate in the Card et al. (2008) data. Finally,
specification (iii) calibrates ¥.4(-) to the data, corresponding to the analog of model (10)
where the intercept term in the regression may depend arbitrarily upon a neighborhood’s
minority share. This specification implies that the break model is misspecified but as

discussed above, our approach remains applicable in this case, unlike the results of Wang

2"We focus on these cities following Wang (2017), a previous version of Wang (2018), since Card et al.
(2008) note that their tipping point estimation method appears more appropriate for larger cities.

2While Card et al. (2008) optimize over all possible tipping points between 5% and 60%, consistent
with our theoretical results we limit attention to a finite set of thresholds. In particular, we consider 100
evenly-spaced quantiles of the minority share, and then further restrict attention to thresholds between
5% and 60%. We also tried several other discretization schemes and found very similar results in all cases.
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(2018). Indeed, Card et al. (2008) acknowledge that the tipping point model only ap-
proximates their underlying theoretical model of neighborhood ethnic composition, so
misspecification seems likely in this setting.

We again focus on the unconditional performance of our proposed procedures along
with existing alternatives. All reported results are based on 10* simulation draws. Table
4 reports coverage for the confidence sets C'Sgr, CSy, CSE. CSH and C'Sp, along with
the conventional confidence set C'Sy. As for the simulations calibrated to the EWM ap-
plication, we see that all confidence sets other than C'Sy have correct coverage, C'Sp often
over-covers, the conditional confidence sets have exact coverage and the hybrid confidence
sets exhibit minimal over-coverage. In this application, the conventional confidence set

C Sy severely under-covers for some simulation designs.

Table 4: Unconditional Coverage Probability

DGP CSgr CSy CSH. CSf CSp CSy
Chicago Data Calibration

(i) 0948 095 0949 0949 0.95 0.750

(ii) 0951 095 0956 0.955 0.994 0.951

(iii) 0.947 0946 0951 0.951 0.990 0.934
Los Angeles Data Calibration

(i) 0949 0948 0949 0948 0.95 0.615

(ii) 0.952 0952 0956 0.956 0.996 0.952

(iii) 0.951 0949 0.955 0.954 0.996 0.95

Table 5 compares the lengths of our confidence sets to that of C'Sp. For each confidence
set we again report both median length relative to C'Sp and the frequency with which
the confidence set is longer than C'Sp. Here we see that the conditional confidence sets
can be relatively long, while the hybrid confidence sets provide marked performance
improvements across the specifications considered. Similarly to the simulation exercises
of the previous section, the benefits of the hybrid confidence sets can become even more
pronounced at different length quantiles. See Section G of the supplemental appendix.
Remarkably, neither of the hybrid confidence sets is longer than C'Sp in any simulation draw
across all specifications examined. The overall message is similar to that of the previous
section: hybrid confidence sets possess clear advantages for unconditional inference and
CSH . seems to be the most compelling option, especially given its computational simplicity.

Finally, we consider the properties of our point estimators. The initial columns of

Table 6 report median bias measured both with the deviation of the exceedance proba-
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Table 5: Length of Confidence Sets Relative to C'Sp in Tipping Point Simulations

Median Length Relative to C'Sp  Probability Longer than C'Sp
CSpr CSy CSE. CSH  CSgr CSy CSH. CSH
Chicago Data Calibration

(i) 133 138 094 0.94 0.83 0.89 0 0

(ii) 072 072 0.74 0.74 0 0 0 0

(iii) 0.82 093 0.82 0.87 035 0.44 0 0
Los Angeles Data Calibration

(i) 126 129 0.86 0.85 0.58  0.62 0 0

(ii) 0.68 0.68 0.69 0.69 0 0 0 0

(iii) 0.68 0.70 0.70 0.72 0.15  0.19 0 0

bility from % and with the studentized median estimation error. We again see that [ 1 is

median-unbiased (up to simulation error) and that i exhibits minimal median bias. By
2

contrast, in specification (i) the conventional estimator Y'(#) has substantial median bias
as measured by the studentized median estimation error, though very little as measured
by the exceedance probability. This latter feature reflects the fact that the density of
Y (6)— 1y (0) has very little mass near zero in this specification.

Turning to median absolute studentized error, we see that all estimators perform sim-
ilarly when the series has a single large break. By contrast, the median unbiased estimator
fuy performs better than the conventional estimator Y (A) in specification (i) (no break) but
performs worse in specification (iii). The hybrid estimator is weakly better than the unbi-
ased estimator in all cases, with perfomance gains in case (i) and equal performance in the
other two cases. Again, the performance gains are more pronounced if one considers higher

quantiles of the absolute error distribution, as reported in Section G of the supplement.
7.1 Split-Sample Procedures

While we have so far compared the performance of our conditional and hybrid procedures
to the projection confidence set C'Sp and conventional estimator Y (6), Card et al. (2008)
instead adopt a sample-splitting approach, using two-thirds of the data to select the break-
date and a third of the data for inference. In this section we compare the performance
of this conventional split-sample procedure to that of the implementable split-sample
alternative developed in Section C of the supplement. We consider the same calibrations to
the Card et al. (2008) data as above and choose the sample split as in Card et al. (2008).

Table 7 compares the conventional split-sample confidence set C'Sgg and estimator

Y2(0") used by Card et al. (2008) to our (equal-tailed) alternative split-sample confidence
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Table 6: Bias and Median Absolute Error in Tipping Point Simulations

PT’/L{[AL>My(9)}—A% Med,, (%)A Med“< ‘i;g:—g; >
py YO a YOy @ YO
Chicago Data Calibration
(i) 0 0 0.01 -0.01 001 064 151 138 1.52
(ii) -0.01 -0.01 -0.01 -0.03 -0.03 -0.03 0.66 0.66 0.66
(iii) -0.01 -0.01 -0.15 -0.03 -0.03 -0.37 0.83 0.83 0.71
Los Angeles Data Calibration
(i) 0 0 0 0 0 -0.8 138 129 1.80
(i1) 0 0 0 0.01 0.01 0.01 067 067 0.67
(iii) 0 0 0.006 0 -0.01 -016 0.74 0.74 0.68

set C4s and median-unbiased estimator ﬂg 55+ See Section C of the supplement for defini-
tions. These results clearly reflect the dominance of our alternative split-sample procedures,
with substantial performance improvements for both confidence sets and estimators across
all calibrations. These improvements are largest in the well-separated case (ii), but are
nearly as large in the data-calibrated case (iii). Section G of the supplement provides ratios
of the 5™, 25t 50", 75" and 95" quantiles of the lengths
of CSgs as well as the quantiles of ’,&—uy(él)‘/\/Ey(@l) for ﬂ:ﬂg,ss and 1=Y?2(0").

There, our new split-sample procedures can be seen to dominate the conventional ones

of C'S4g relative to the those

across all quantiles and simulation designs considered, often by very wide margins.

Table 7: Performance Measures of Split-Sample Procedures

Median Length Ved (| ﬂ_w(@l)’)
Relative to C'Sgg \ Vey @y
DGP CS4s ﬂ?,ss Y2(0')
Chicago Data Calibration
(i) 0.83 0.57 0.67
(ii) 0.58 0.38 0.66
(i) 0.64 0.44 0.67
Los Angeles Data Calibration
(i) 0.78 0.55 0.69
(ii) 0.58 0.39 0.67
(iii) 0.59 0.42 0.68
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8 Conclusion

This paper considers a form of the winner’s curse that arises when we select a target
parameter for inference based on optimization. We propose confidence sets and quantile
unbiased estimators for the target parameter that are optimal conditional on its selection.
We hence recommend our conditional inference procedures when it is appropriate to
remove uncertainty about the choice of target parameters from inferential statements.
These conditionally valid procedures are also unconditionally valid, but we find that they
sometimes have unappealing (unconditional) performance relative to existing alternatives.
If one is satisfied with correct unconditional coverage and (in the case of estimation) a
small, controlled degree of bias, we propose hybrid inference and estimation procedures
which combine conditioning with projection confidence sets. Examining performance in
simulations calibrated to empirical welfare maximization and tipping point applications,
we find that our hybrid approach performs well in both cases.

Our results suggest a range of opportunities for future work. First, rather than consider-

A~

ing inference on py (#), under suitable assumptions one could build on our results to forecast
Y(é) Alternatively, while conditional and projection confidence sets have antecedents in
the literature on inference after model selection, including in Berk et al. (2013) and Fithian
et al. (2017), there is no analog of our hybrid approach in this literature. Our very positive
simulation results for the hybrid approach in the present setting suggest that this approach
might yield appealing performance in a range of post-selection-inference settings. Even if a
fully conditional approach is desired in the post-selection problem, as in Fithian et al. (2017),
one could consider the analog of our optimal median-unbiased estimates that condition on
the selected model. Finally, the problem of estimating the value of a dynamic treatment rule
(c.f. Chakraborty and Murphy, 2014; Han, 2018) is closely related to our level-maxmization

setting, so it seems likely that our results could prove to be useful there as well.
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Supplement to the paper

Inference on Winners

Isaiah Andrews Toru Kitagawa Adam McCloskey

December 31, 2018

This supplement contains proofs and additional results for the paper “Inference on
Winners.” Section A collects proofs for results stated in the main text. Section B con-
tains additional details and derivations for the EWM and threshold regression examples
introduced in Section 3 of the paper. Section C constructs procedures that dominate con-
ventional sample splitting as discussed in Section 4.3 of the paper. Section D translates our
finite-sample results for the normal model to uniform asymptotic results over large classes
of data generating processes. Section E reports additional simulation results for the stylized
example of Section 2 of the paper. Section F reports additional simulations results for the
EWM simulations discussed in Section 6 of the paper. Finally, Section G reports additional

simulation results for the threshold regression simulations discussed in Section 7 of the paper.

A Proofs

Proof of Proposition 1 For ease of reference, let us abbreviate (Y (0),uy(0),Z;) by
(Y, jiy,Z). Let Y(—=0) collect the elements of Y other than Y'(f) and define juy (—0)

analagously. Let

evenepen(5)p={(1)) ()
sem-en(rca( T ))r((2)) (7).

fiz = ix — <2XY('7é)/EY(é)>MY-
Here we use A* to denote the Moore-Penrose pseudoinverse of a matrix A. Note that
(ZY Y*) is a one-to-one transformation of (X,Y), and thus that observing (Z,Y,Y*) is

T =

and

ol



equivalent to observing (X,Y"). Likewise, (fiz,fty,i3) is a one-to-one linear transformation
of (ux,uy), and if the set of possible values for the latter contains an open set, that for
the former does as well (relative to the appropriate linear subspace).

Note, next, that since (Z,Y,Y*) is a linear transformation of (X,Y), (Z,Y,Y*) is jointly
normal (with a potentially degenerate distribution). Note next that (Z,Y,Y*) are mutually
uncorrelated, and thus independent. That Z and Y are uncorrelated is straightforward
to verify. To show that Y™ is likewise uncorrelated with the other elements, note that we
can write Cov (Y*,(?,X’)’) as

co(ricn () )emsean e (£)) vl (1)

For VAV an eigendecomposition of Var((f/,X "y ) (so VV'=I), note that we can write

() () e

for D a diagonal matrix with ones in the entries corresponding to the nonzero entries of

A and zeros everywhere else. For any column v of V' corresponding to a zero entry of D,

_ ’
v'Var ((Y,X ! > )v:(), so the Cauchy-Schwarz inequality implies that

co(v(0)( 1) )o-o
Cov(y(—é),< )i ))VDV’:C()U(Y(—Z)),( )i ))Vv’:cov<y(—é),<

!/

<

))

so Y* is uncorrelated with (?,X ! )
Using independence, the joint density of (Z ,f/,Y*) absent truncation is given by

Inz(Eiz) oy @ity ) fvy (5 0y)
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for fy normal densities with respect to potentially degenerate base measures:
~ ~ ~ _1 ]- ~ ~ INH > ~
fnz(Ziiz)=det(2rY ;) 2exp —5(2—,&2) Zz(z—,uz)

=)

fN,Y(:&?:&Y) = (277—2)7)756)(1) (_ 22{/

%,k "~ —1 1 *  ~% * *
i) =ty e =30 <SR i) )

where det(A) denotes the pseudodeterminant of a matrix A, ¥, =Var(Z), Ly =y (0),
and Yy =Var(Y™).
The event {X eX (é,’y)} depends only on (Z ,f/) since it can be expressed as

- Sxy(0) o 5
{<Z+S§@TY)6X@w},

so conditional on this event Y remains independent of (Z ,57). In particular, we can write
the joint density conditional on {X ex (é,'?)} as

1{ (Z—FEXY(';é)EY(é)_l@) € X(éfy)}
Pri, iy {X € X@ﬁ)}

fN,Z(5§ﬁZ)fN,?<Z7§ﬁY)fN,Y* (7"51y)- (26)

The density (26) has the same structure as (5.5.14) of Pfanzagl (1994), and satisfies proper-
ties (5.5.1)-(5.5.3) of Pfanzagl (1994) as well. Part 1 of the proposition then follows immedi-
ately from Theorem 5.5.9 of Pfanzag] (1994). Part 2 of the proposition follows by using Theo-
rem 5.5.9 of Pfanzagl (1994) to verify the conditions of Theorem 5.5.15 of Pfanzagl (1994). O

Proof of Proposition 2 In the proof of Proposition 1, we showed that the joint density of
(Z.Y Y*) (defined in that proof) has the exponential family structure assumed in equation
4.10 of Lehmann and Romano (2005). Moreover, Assumption 1 implies that the parameter
space for (1x,uy) is convex and is not contained in any proper linear subspace. Thus, the
parameter space for (fiz,fiy 13 ) inherits the same property, and satisfies the conditions
of Theorem 4.4.1 of Lehmann and Romano (2005). The result follows immediately. [J
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Proof of Proposition 3 Let us number the elements of © as {01,92,...,0@‘}, where
X(6,) is the first element of X, X(f,) is the second element, and so on. Let us fur-
ther assume without loss of generality that 6 = 6;. Note that the conditioning event
{maxpce X (#)=X(01)} is equivalent to {MX >0}, where

1 -1 0 0 .. 0
0o 100
10 0 0 .. -1

isa (|©]—1) x|6| matrix and the inequality is taken element-wise. Let A= [— M Ogel-1)x|e| } :
where 0(o|_1)xjo| denotes the (|©]—1) x |©] matrix of zeros. Let W= (X",Y")" and note
that we can re-write the event of interest as {WW: AW <0} and that we are interested
in inference on 7/ for 7 the 2|0| x 1 vector with one in the (|©]+1)st entry and zeros

everywhere else. Define

ZE =W —cY(B),

for ¢ = Cov(W,Y (6))/y(f), noting that the definition of Z; in (17) corresponds to
extracting the elements of Z7 corresponding to X. By Lemma 5.1 of Lee et al. (2016),

(W AW <0} = {W:ﬁ(é,zg) <Y(6)<U(8,2).V(6.7;) zo},
where for (v); the jth element of a vector v,
J

£ e
( 7Z)_j:(r.»rﬁllca)‘jio (AC)]

Note, however, that
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and

_ Ty (01,61) —Exy (61.05)
(Ac);=— SR .

Hence, we can re-write

_(AZg)J‘ Dy (61)(Z5(05) — Z5(64))
(Ac)j a EXY(Ql,Ql)—EXy(GI,Gj) ’

Ly (01)(Z(6;)— Z(61))
7 Exy (01,61)>Exy (01,05 EXY(91,91) Exy(91,9j> ’

Sy (01)(Z5(0;) — Z(61))
I Exy (01,01)<Xxy (01,05) EXY(91,91) _EXY(9179j> 7

£(0.23)=

U0.23) =
and

V(0.2;)= min —(Z5(6;)—Z(61)).

7 Exy (01,01)=Xxv(01,65)

Note, however, that these are functions of Zj, as expected. The result follows. [

Proof of Proposition 4 Note the following equivalence of events:
{0=0}= {ZX >ZX vee®}

= {Z Zévi(é)—FZXY,i(é)EY(é)_ly(é)} 2

Vv

Zp, (9)+2X1’,i(9a9)21f(9)_1y(9)] “vpe @}
— {A(970)Y(§)2+BZ(@,6’)Y(9)+CZ(§,9) >0 Ve @},

for A(é,@), Bz(éﬁ), and C’Z(éﬂ) as defined in the statement of the proposition.
By the quadratic formula, (27) is equivalent to the event

{ —By(0.0)—+\/D2(8.0) )< —By(8.0)+1/D2(0.9)

2A(6,0) - T 2A(6.,0)

VOcO s.th. A(0,0)<0 and D(6,0) >0,

vo)< —B4(0.0) - D,(0.6) V) —B,(0.,0) 3 /D4(8.6)
24(0.,0) 2A(0.,0)

%)



V0cO s.th. A(0,0)>0 and D(6,0) >0,
Y(0)> —Cz(09)
BZ(Qﬁ)
Ve 00
BZ(Q,Q)
C%(0,0)>0V0e€O s.th. A(6.0)=B,(0.0)=0,

C2(0.0)>0 Y0 €O sth. D(0,0) <o}

_ {y@)e N —By(0.6)—\/D(0.6) —B2(0.6)+\/D£(0.9)

V€O sth. A(0,0)=0 and By(6,0) >0,

V0cO s.th. A(0,0)=0 and B4(0.0) <0,

~ ] 2A(6.,0) ’ 2A(6,0)
0€6:4(0,0)<0,Dz(6,0)>0
—By(0,0)—\/Dz(0.0)| | —Bz(0.0)+1/D(0.)
N ﬂ —00, = U = ,00
] ) 2A(6.,0) 2A(6.,0)
0€0:A(0,0)>0,D7(6,0)>0
N N [Hz(é,e),oo> N N <—oo,HZ(é,9)}
0€0:A(6,0)=0,B(8,0)>0 0€0:A(6,0)=0,B(8,6)<0
ﬁ{ i min o Oy(00)> 0}
0€0:A(6,0)=Bz(6,0)=0 or Dz(6,0)<0
:{Y(é)e [ “max  Gz(00),  min Kz(éﬂ)}
0€0:A(6,0)<0,D(6,0)>0 6€©:A(0,0)<0,D£(8,0)>0
ﬂ[ _max Hz(éﬂ),oo) N (—oo7 _min HZ(éﬂ)}
0€©:A(0,0)=0,Bz(6,0)>0 0€©:A(0,0)=0,B(,0)<0

N N (—oo,KZ(é,e)} U [Gz(é,e),oo) }m{wé,zé) 20}

0c©:A(0,0)>0,D(8,6)>0

0e0:A(0,0)>0,D7(6,0)>0

- {Y(e) c N [elz(é,e),ulz(é,e)] U [ﬁz(é,e),ug(é,e)} }m{vw,z@) 20}

for D(0.0), G(0.0), Hz(6,0), Kz(0,0), (5(0), (%(0,0), uy(8.,0), u%(f), and V(0,7;) again

defined in the statement of the proposition. The result follows immediately. [

Proof of Lemma 1 Recall that conditional on Z;= 2z, §=6 and 4=7 if and only if
Y(é) Ey(éﬁ,zé). Hence, the assumption of the lemma implies that

Priy Y (0)€907.%)| =25, ) — 1.
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Note, next, that both the conventional and conditional confidence sets are equivariant

under shifts, in the sense that the conditional confidence set for 1y-(6) based on observing
Y (A) conditional on Y (0) € Y(0,7,7;) is equal to the conditional confidence set for iy (0)
based on observing Y (6) — i (A) conditional on Y (8) — i (9) € V(8,7,75) — 1i%-(0) for any
constant i (6). Hence, rather than considering a sequence of values [y,m, We can fix some
ity and note that

Pry {Y O) €V Z5=25, } 1,

where V' =V(0,7,25) — pry.m () + 115 (#). Confidence sets for piy,,(6) in the original problem
are equal to those for 1% (f) in the new problem, shifted by jiy- (8) — % (A). Hence, to prove
the result it suffices to prove the equivalence of conditional and conventional confidence
sets in the problem with uy fixed (and likewise for estimators).

To prove the result, we make use of the following lemma, which is proved below. First,
we must introduce the following notation. Let (¢ gr(ity,0,Y),Cupr(ftv,0,))) denote the
critical values for an equal-tailed test of Hy : iy (A) = piy for Y(6) ~ N (uy (6),2y (é))

conditional on Y (#) €Y. That is, (¢, gr(ty.0,)),Cu.er(iv0,))) solve

| R

Frn(c,er(py0.Y)sty,0.Y) =

o
Frn(cu,pr(py0.)ity0.Y)=1— >

where Fry(;pty,)) is the distribution function for the normal distribution N (um,Zy (0))
truncated to Y. Similarly, let (¢, (ty,0,)),Cuv (11v,0,))) denote the critical values for the
corresponding unbiased test. That is, (¢, (py,0,)),Cuv (1y,0,))) solve

Pr{¢elau(tyo.Y)cov(tyod)}=1—a
EBICHCE e u(iyod) cuv(pyoP)]} = (1—a) E[(]

for (~¢|€€) where E~ N (um,zy (é))

Lemma 3
Suppose that we observe Y (0) ~ N <,uy(é),2y(é)> conditional on Y (0) falling in a

set Y. If we hold <Ey(9),um> fized and consider a sequence of sets V,, such that
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Pr{Y(é)eym}—ﬂ, we have that for

dr(v0) =1{Y OV ¢l (vo. V) o pivo V)l | (28)
and
00 (1v0) = 1{ Y (B) 2 [e10 (v V) o1y ) . (29
(1B (1y.0:Yim) Cu, BT (1y,0,Vm)) = (MY,O —c2 v/ Sy (0) pyotca Ey(é))
and

(v (1y.0:Vm) Cu v (1y,0,Vim)) = (/W,o —ca v\ By (0)uyo+cs xSy (é)) ~

To complete the proof, first note that C'Sgr and C'Sy are formed by inverting (families
of) equal-tailed and unbiased tests, respectively. Let C'S,, denote a generic conditional

confidence set formed by inverting a family of tests

Onli1v0) =Y O) ¢ lalivo Vi) culio V) -

Hence, we want to show that
CSp—, [Y@)—C%N,Y@)H%,N] , (30)

as m— o0, for C'S,, formed by inverting either (28) or (29).
We assume that C'S,, is a finite interval for all m, which holds trivially for the equal-
tailed confidence set C'Sgr, and holds for Cy; by Lemma 5.5.1 of Lehmann and Romano

(2005). For each value piyy our Lemma 3 implies that

Gm(py0) =pl {Y (é) ¢ [vo—ca nofivo+cs ] }

for ¢,, equal to either (28) or (29). This convergence in probability holds jointly for all
finite collections of values jiy,o, however, which implies (30). The same argument works
for the median unbiased estimator ji 1 which can also be viewed as the upper endpoint

of a one-sided 50% confidence interval. OJ
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Proof of Proposition 5 We prove this result for the unconditional case, noting that
since Pry,, {@zé,’?zfy} — 1, the result conditional on {92@;}2'&} follows immediately.

Note that by the law of iterated expectations, Pry,, {9:9,12’?} — 1 implies that
Pruy.. {@zé,‘y:’y\Zé} —, 1. Hence, if we define

9(pv-2) = Pryo {D=04=712y==2 .

we see that g(fty,m,Z5) —p 1.

Note, next, that for d the euclidian distance between the endpoints, if we define
he(py ) = Pry, {d(CSy,CSn) >e| Z5 =2},

Lemma 1 implies that for any sequence (fty.m,2m) such that g(tym,zm) =1, he(fyms2m) — 0.
Hence, if we define G(6)={(uy,2):9(py,z) >1—0} and H(e) ={(py,2): h(py,2) <c}, we
see that for all >0 there exists d(¢) >0 such that G(d(¢)) CH(e).

Hence, since our argument above implies that for all 4 >0,

Pro,. {(tym,Z;) €G(6)} — 1,

we see that for all € >0,
Pry, {(mvm Zs) €H(e)} =1

as well, which suffices to prove the desired claim for confidence sets. The same argument

likewise implies the result for our median unbiased estimator. [

Proof of Proposition 6 Provided 0 is unique with probability one, we can write

Pru{,u(é) ECS} = Z Pru{ézéﬁzﬁ}Pm{u@) GCS|9:éﬁ:§}.

6cO,5el

Since Zée@ﬁerpru{é:éﬁ:?} =1, the result of the proposition follows immediately. [

Proof of Lemma 2 Consider first the level-maximization case. Note that the assump-
tion of the lemma implies that X (#)— X () has a non-degenerate normal distribution for
all p. Since O is finite, almost-sure uniqueness of 0 follows immediately.

For norm-maximization, assume without loss of generality that Var (X (0)|X (@)) #0.

Note that || X (6)|| is continuously distributed conditional on X (6)=x(6) for all z(f) and all
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[, SO Prﬂ{ | X(O)||=]X (é)||} —0. Almost-sure uniqueness of § again follows immediately

from finiteness of ©. OJ

Proof of Proposition 7 The first part of the proposition follows immediately from
Proposition 2. For the second part of the proposition, note that for C'SH either of the
hybrid confidence sets,

P?"M{/Ly(é) ECSH} :Pru{uy(é) ECS@}X
3 Pm{é:aa:amywxxxﬁ}Pm{m4®ecsH@:&@me4®ec$ﬁ}

:Pm{uy(@) 605@}1:—; > (1—5)1:—221—04,

where the second equality follows from the first part of the proposition. The upper bound
follows by the same argument and the fact that PTM{ iy (0) € CSIQ} <10

Proof of Proposition 8 We first establish uniqueness of i7. To do so, it suffices to show

that EF (Y (0);uy(0),0,7,2;) is strictly decreasing in 1y (0). Note first that this holds for the

truncated normal assuming truncation that does not depend on py-(6) by Lemma A.1 of Lee

et al. (2016). When we instead consider F2H (Y (0);uy(0),0,7,75), we impose truncation to

y(B)e [mé)—cm/ Sy (6) 1y (6) ey zy<é>] |

~ ~ ~ ~

Since this interval shifts upwards as we increase uy (6), Ff\ (Y (0);uy(0),6,7,7;) is a
fortiori decreasing in py (f). Uniqueness of jiff for o€ (0,1) follows. Note, next, that
FR (Y (0); 1y (0),0,7,7;) € {0,1} for py(0) ¢ CSY from which we immediately see that
pecsy.

Finally, note that for uy (6) the true value,

Efn(Y (0)3v(0).07,25) ~U[0.,1]

conditional on {92@,&:%%:2@”3/(9)GCSI’@}. Since ij[N(Y(é);uy(é),Nﬁ,Zé) is de-

creasing in py (6),

Pm{ﬂf > 1y (0)|0=0.4=7.2;= 2,1y (0) € CS@,}
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— Pr{ Fi (Y 0 (8).03,25) 21~ 0l =0.5=7.Zy= 21 (B) € CS] =0,

and thus 12 is a-quantile-unbiased conditional on {@zé,&z’y,Z@ :zé,uy(é) € CSfi}. We
can drop the conditioning on Z; by the law of iterated expectations, and a-quantile-
unbiasedness conditional on juy (é) eC SIBJ follows by the same argument as in the proof

of Proposition 6.

Proof of Lemma 3 Note that we can assume without loss of generality that jy,0=0 and
Sy (f) =1 since we can define Y*(0) = (Y(é)— MY,O) /7/Zy(0) and consider the problem
of testing that the mean of Y*(f) is zero (transforming the set ), accordingly). After

deriving critical values (¢},cf) in this transformed problem, we can recover critical values

for our original problem as (c;,¢,) =1/ 2y (0)(c],cf)+pyo. Hence, for the remainder of the

proof we assume that pyo=0 and Xy () =1.

Equal-Tailed Test We consider first the equal-tailed test. Note that this test rejects
if and only if

Y(H) ¢ [CZ,ET(y)aCu,ET(y)]a

where we suppress the dependence of the critical values on fiyo =0 for simplicity, and
(cl,er(Y),cu,er(d)) solve
Frn(apr(Y),Y)=

e

Frn(cuer(Y),Y)=1- %-

for Frn(-,)) the distribution function of a standard normal random variable truncated

to V. Recall that we can write the density corresponding to Fry(y,)) as ;i?gey;} In(y)
where fy is the standard normal density and Pr{{€ Y} is the probability that £ € ) for

£~ N(0,1). Hence, we can write

[P HieViin(idy
FTN(?J,y): Pr{&ey} :

Note that that for all y we can write

Frn (Y, Ym) = am(y)+Fi(y),
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where Fy is the standard normal distribution function and

L UG et in(@)dy
Pr{i€€e¥n}

am(y) = —Fn(y).

Recall, however, that Pr{¢€),,}—1 and

‘/ UG €V} fn(@)dg—Fn(y ’ ‘/ LTV -1l (5)di
:/_ml{ggym}fN@)d.@SPr{ggym}_)o

for all y, so a,,(y) —0 for all y. Theorem 2.11 in Van der Vaart (1998) then implies that
ay(y) — 0 uniformly in y as well.
Note next that

Frn(aer(Vm)Ym) =am(cLer(Vm))+En(cer(Vn)) =

|

implies

cpr(Vm)=Fx' (%

and thus that ¢ gr (V) — F, ]§1 (%) Using the same argument, we can show that
Cu,ET(ym)%Fﬁl(l—%), as desired.

—am () ).

Unbiased Test We next consider the unbiased test. Recall that critical values
au(Y), cuu(Y) for the unbiased test solve

Pr{¢elau)curP)}=1-a

ECH{¢elau().cuvV)]}=1—a)E[(]
for (~¢£|€ €)Y where £~ N(0,1).

Note that for ¢, the truncated normal random variable corresponding to J)),,, we can

write
Pr{¢, €la,cu]} =am(c,cu)+(Fn(cy) — En(e))

with
am<clch):(FN<cl) PT{Cm<cl}) (FN Cu) PT{CmSCU})~

As in the argument for equal-tailed tests above, we see that both Fy(c,)—Pr{(m<c,}
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and Fy(c;)—Pr{¢, <¢} converge to zero pointwise, and thus uniformly in ¢, and ¢; by
Theorem 2.11 in Van der Vaart (1998). Hence, a,,(c;,¢,) —0 uniformly in (¢;,c,).

Note, next, that we can write

ElGn1{¢m € lacd = [EHE € a,cu] H+bmlcrcu)

for

bm, (Chcu) = E[le{gm € [Chcu]}] - [§1{§ € [Clvcu] }]

= /l : (%—1) yIn(y)dy

/ " Ly eV} Dyl )y < EIE{E LYY

Note, however, that

Hence, since

/j (% —Hye ym}) ny(y)dy'

Bl )< \\/ PV

= (M‘Q\ '(m )

by the Cauchy-Schwartz Inequality, where the right hand side tends to zero and doesn’t
depend on (c;,¢y), bi(cp,c,) converges to zero uniformly in (¢,c,).

Next, let us define (¢;,¢um) as the solutions to
Pri{¢n€lac}=1-a

E[le{Cm € [Chcu]}] = (1_04)E[Cm}'

From our results above, we can re-write the problem solved by (¢;m,Cum) as
Fn(c.)—Fn(a)=1—a—ay(c,c)

ElEHE € el = (1=a) E[Gn] =bm(ci,cu)-
Letting

Qm :Sup|am(clacu) |>
Cl,Cy
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by, =sup|by,(c.c.)l

Cl5Cu

we thus see that (¢;m,Cum) solves
Fn(cu)—Fn(a)=1—a—a},

ElgH{Eelencu]]=(1-a)E[Gn] 0],

for some a, € [~@p,am), b}y € [~bim,by]. We will next show that for any sequence of
values (a,,by;,) such that a}, € [~am,d) and b, € [=b,,by] for all m, the implied solutions

(@ b5,), Cum(aly bi,) converge to Fiy'(2) and Fy'(1—%). This follows from the next

lemma, which is proved below.

Lemma 4

Suppose that ¢, and ¢, solve
Prié€la,cl)t=1—a+an,

E[gl{g € [Cl7cu]}] = dm
for ap, dp—0. Then (¢ m,Cum) — (—C%JV,C%VN).
Using this lemma, since EI[(,,,]—0 as m— 0o we see that for any sequence of values
(a3 b7,) =0,
(Cl,m(a:wb:n)ac%m(ajnvb:n)) - (_C%,N7c%,N)~

However, since ay,,b,, — 0 we know that the values ay, and by, corresponding to the true ¢,

Cum Must converge to zero. Hence (¢ m,Cum) — (—c%, N,c%,N) as we wanted to show. OJ

Proof of Lemma 4 Note that the critical values solve

Flamdonc)= ( Fy(cu)—Fn(a)—(1—a)—ap ) .

Joufn()dy—dn,

We can simplify this expression, since a% In(y)=—yfn(y), so

/ i)y = () — v ca).

<
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We thus must solve the system of equations
Fy(cu)=Fn(a)=(1-a)—an

fN(Cl)—fN(Cu)de

or more compactly g(c)—v,, =0, for

o= Fy(cu)—Fn(a) o A+ (1—a)
o) <fN<Cl)_fN(Cu)>’ " < dm, )

Note that for v,,=(1—a,0)" this system is solved by c= (—0%7 NyCe, N). Further,

i o —Inla)  fv(e)
8cg( ) ( —afn(a) cufn(c) )7

which evaluated at c= (—c%, NyCE, ) is equal to

(—fN(C;&N) fv(eg.w) )

csnfnlegn) cgnfn(cgn)

and has full rank for all a€(0,1). Thus, by the implicit function theorem there exists an
open neighborhood V' of vy, = (1—a,0) such that g(c)—v=0 has a unique solution ¢(v)
for veV and ¢(v) is continuously differentiable. Hence, if we consider any sequence of

values v,, — (1—a,0), we see that

again as we wanted to show. [
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B Additional Results

B.1 Details for Empirical Welfare Maximization Example

Here, we derive the form of the conditioning event ) (1,7;) discussed in Section 4.2,

including for cases when Yy (0)—Sxy(0,0) <0. Note that we can write

{X(é)—X«J)zc}:{Z@@—Zg(owny“’ggj’””’mY<é>2c}.

Rearranging, we see that

( Sy (0)(e—Z5(0)+25(0) . ~ .
yy= ZX}E(é)—QEXY(;O) I i 2 (0) =S (00) >0
Sy (0)(e—Z;(8)+25(0) . - -
Yy= ny((é)—ezxy(é?m ) if Yxy(0)—Xxy(0,0)<0
Y(1.Z5)=1 g if Sxy(0)—Sxy (0,0)=0
and Zé(é) - Zé (O) >c
0 if Lxy (0)—Sxy(6,0)=0
L and Zé(@)—Zé(O) <ec.

B.2 Details for Threshold Regression Estimation Example

This section provides additional results to supplement our discussion of the threshold
regression example in the text.

We begin by establishing the weak convergence (14). To do so, we show uniform
convergence over any compact set O in the interior of the support of Q;, which implies
uniform convergence over ©. Note, in particular, that under (12) and (13), the continuous
mapping theorem implies that

X,(0)=X(0)

_ ( 20(9)_1/2209(0) ) N < ZC(Q)—1/2G<9) )
(Zc(00)=Zc(8))(Sey(00) =Ly (6) (So(00)=a(8)) " (G(00) - G(6)
uniformly on ©, where we use the following slight abuse of notation:

1 ) 1 — ) 1 &

i=1
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Hence, if we define 11x(0) to equal the first term, we obtain the convergence (14) for X,,.

Likewise, standard regression algebra (e.g. the FWL theorem) shows that

Vrd(0)= A, () [Ba(0)+Cu(6)],

for
n -1 n
A, (0 —120 C'(Q;>0)— ( ZO C'(Q; >0 ) <n—12q-cg> <n—120i0;1(@>9)>,
i=1 1=1
n -1 n
By( —1200' (Q:>0)g(Q; ( -1200’ (Qi>0 ) <n_1ZCiC£> <n-120ic;g(cgi)>,
=1 =1
n -1 n
C,(0 *1/2ZCU1 Q;>0)— < 120 CI1(Q;>0) ) <nlzciqf> (n”?ZCiUi)
=1 =1

Under (12) and (13), however, the continuous mapping theorem implies that
An(0) = Be(00) = Ze () = (Bc(00) = (0)) X (00) ™ (e (00) =L () = A(9),

B.,(0) = Xy (00) =Sy (0) — (Sc(00) = (0)) Zc(00) ™ Xy (00) =B(0),
Cu(0) = G(00) = G(0) — (S (00) = () X (00) ™ G(00) =C(6)

all uniformly on O, where this convergence holds jointly with that for X,,. By another

application of the continuous mapping theorem,
Y, (0)=¢,\/nd(0) =Y (0) =€, A(0) " [B(6)+C(0)].

Hence, if we define py () =€} A(0) ' B(6), then py,,(6) = py (#) uniformly in 6 € © and

we obtain the convergence (14), as desired.

Additional Conditioning Events Arguments as in the proof of Proposition 4 show
that if we define

dx ~
0)7) Sxval0),
=1

Bz(0)=2%y (0 ZZXYz
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(X2 =y < 220 VPZO ) P20V P20 ) s

- 2A(0)

N{C(0)>0,D(0) <0}

if A()>0 and {||X(0)|]>>c}={C~(A)>0} if A(6)=0, since A(f)>0 by definition. Then

for
—Bz(é)— \/ Dz(é)

L(Z;)= — ,
2A(0)
- éE—BZ@ﬂ/DZ(é)?
24(0)
V(Z5)=[1{A(0)=0}+1{A(h) >0,D4(8) <0}]C5 (),

we see that if V(Z;) >0 then Y,(1,Z;) = (L(Z;)U(Z))°, while Y,(1,Z;) =0 otherwise.

C Alternatives to Conventional Sample Splitting

In Section 4.3 of the main text, we discuss the relationship of our conditional approach
to conventional sample splitting methods and note that the results of Fithian et al. (2017)
imply that traditional sample splitting methods are dominated in our setting. Here, we
derive optimal split-sample confidence sets and estimators as well as easy-to-implement
confidence sets and estimators that dominate their conventional split-sample counterparts

in the asymptotic version of the split-sample problem.

The Split-Sample Limit Experiment Let 7 denote the fraction of the full sample
used to compute the estimated maximum and (X!,Y!) and (X?2Y?) denote rescaled data

corresponding to the first and second portions of the data such that
(XY =72 (X Yir)s

(XTQwY;LQ) - (1 _7_)_1 ((XTL,Y;L) - \/F(X[T-nHlaY[T-nHl))
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with [a] denoting the nearest integer to a € R. Finally, let @}1 = argmaxgee X, (0) or
0! = argmaxgeo|| X (0)|| denote the estimated maximum from the first part of the sample.
In large samples, (XY, (X2,Y2) and 62 behave according to

and

0" =argmaxyeo X' ()
or
o1 =argmaxyco HXI(H) H>

where c=(1—7)/7 and (X',Y'!) is independent of (X?,Y?). This is the generalization of the
asymptotic problem discussed in Section 4.3 of the main text to arbitrary sample splits.?”

Traditional sample splitting methods base inference on YQ(@I). Since Y2 is independent
of X', and thus of #', this ensures the (conditional) median-unbiasedness of conventional
split-sample estimates Y2(0') and the (conditional) validity of conventional split-sample

confidence sets
GSSS:[Y2(é1)_ L8y (0o pon, Y201 + c—lzy(él)ca/w]

but does not make full use of the information in the data. To derive optimal procedures
in the sample splitting framework, we first derive a sufficient statistic for the unknown
parameter y conditional on {91 :9} and then apply classical exponential family results

as in Section 4 of the main text.

Optimal Estimators and Confidence Sets The joint (unconditional) density of
(X1Y! X?Y?) is proportional to

1 Xt 1 X1 c X2 . X2
exp| —5 v —u | X v —h| x| =5 v2 —u| X v2 —ul -
29For simplicity of exposition, in this section we suppress the possibility of using additional conditioning
variables 4, ZV(X}L) with asymptotic counterpart 'Ay:fy(X 1).
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The conditional density given {91 :é} is thus propotional to

ey (G ((0))-

()

with X1(0)={X"':0=0}, which we can re-write as

g1 (Xl,Yl)gg (XQ,YQ)h(,u)exp (( X )+c< X

Yl

)
_ <

and

1 1 P
h“‘):prM{XIEXl(é)}eXp(‘T”E ')

X* X! X?
This exponential family structure shows that = +c is
Y+ y! y?

sufficient for p. Hence, for any function of (X!, Y* X?Y?), there exists a (potentially
randomized) function of (X*,Y*) with the same distribution for all . Thus, to study
questions of optimality it is without loss to limit attention to confidence sets and estimators
that depend only on (X*Y™).

Now that we have derived a sufficient statistic (X*,Y™*) for u, we turn to the question of

how to construct optimal estimators and confidence sets for jy-(A) conditional on {92@}
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Note that the unconditional density of (X*,Y™*) is proportional to

exp —2_&20 << ;(: )—(1+c)u> E_1<< );: )—(1+c)u>

The density of (X*,Y™*) given {91 :é} is thus proportional to

M@)o () Y[
Pru{XleXl(é)} eXp(_2+2c<< v >_(1+C)“) z (( v )-(HC)u)),

where we have used sufficiency to drop dependence of the numerator on .

This joint distribution has the same exponential family structure used to derive the
optimal estimators and confidence sets in the main text (see the proofs of Propositions 1
and 2). Hence, the same arguments deliver optimal procedures for the split-sample setting.

Specifically, for

Zg:( )Y( )— (cw(( ;( ),Y*@))/Ey* (6>>Y<9>

where Yy« denotes the variance of Y*, we can re-write

(305 ) ot e )

for Yz« the variance of Z*, AT the Moore-Penrose pseudoinverse of a matrix A, and

X* . - .
pze=(14+c)u— (C’ov ( ( v ) Y (9)) /Var (Y* (9)))/1;/* (0) .
This expression shows that when we are interested in inference on uy(é) conditional on
{91 zé}, lz+ is the nuisance parameter, and Zg is minimal sufficient for this parameter
relative to observing (X1 Y1 X2 Y?).
If we let Fig(Y*(0); py-(6),0,2*) denote the conditional distribution function of

YHZ* = z*,él = é, then the same arguments used to prove Proposition 1 show that
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the optimal o quantile-unbiased estimator figg , in the sample splitting problem solves
F;S(Y* (91);(1_}—0):[1’;3,009725) =l-a.

Likewise, the same arguments used to prove Proposition 2 show that the optimal two-sided

unbiased test rejects Hy: iy (6) = f1y,0 when

V(0)¢a(Z;).cu(%)];
where ¢(z), ¢,(z) solve

pri{Cela(z)cu(z)]} =1-a; E[CH{CEa(2).cu(2)]}]=(1-a) E[]

with ¢ distributed according to F. S*S(-;(H—c)um,é,z). These optimal procedures condition
on Zg rather than (X*Y'!) and so, unlike conventional sample splitting, continue to treat

(X1Y") as random for inference.

Feasible Dominating Estimators and Confidence Sets To implement the optimal
split-sample proecdures, we need to evaluate (or at least be able to draw from) the condi-
tional distribution Fgg(+;(1+c) um,é,z). Unfortunately, however, it is not computationally
straightforward to do so since Y*|Z* —2* 0* =0 is distributed as a normal random vari-
able truncated to a dependent random set. We thus introduce side constraints to derive
procedures that, although they are not fully optimal in the unconstrained problem, are
computationally straightforward to implement and dominate conventional sample splitting
procedures. These computationally feasible procedures are optimal within the class of

split-sample procedures that condition on {91 =0} and the realizations of

Zi=Xi- (zxy (9) /Sy (é) ) y (9)

for :=1,2, where (Zél,Zg) is a sufficient statistic for the nuisance parameter px. Since
Y2(64)[{6" :9,(Zg,Z§) = (21,21)} ~Y2(f), the conventional split-sample estimator Y2(6")
and confidence set C'Sgg fall within the class of split-sample conditional procedures that
condition on {0 =6} and (Z3,73). These conventional procedures are therefore dominated
by the optimal procedures within this class, which we now describe.

Standard exponential family arguments show that (Zg,Zg) is sufficient for the nuisance

parameter px and, conditional on {#' =6} and (Z3,73), optimal estimation and inference
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is based upon the conditional distribution of Y*(6). Note that since Y2(6) is independent
of (Z3,73) and both 0" and Y2(0) are independent, of Zz,

Y*(O)H8' =0.2;.29) = (=" )}~ Y ()8! =0.Z;=2"}+-cY *(§).

Thus, the feasible dominating split-sample procedures rely upon the computation of
the distribution function of Y()|{0' = 6, 7y =2} +¢Y?(A). We now describe a fast
computational method for computing this obJect.

In analogy with full sample inference, let

% (é,zl) = {yl 24 (EXY (,é) /Xy (é))yl}

so that conditional on {#* = 6} and zZy =2 , Y'(6) follows a one-dimensional trun-

cated normal distribution with truncation set }'(6,2'). Note that in both the level

and norm maximization contexts, yl(é,zl) can be expressed as a finite union of disjoint

intervals: Y'(0,21) =, [¢x(2"),ux(2")], where the dependence of £,(z") and u(z") for

k=1,....K on 6 is suppressed for notational simplicity. Note that Y(8)|{6" :é,Zg =21

is distributed as £']¢* € Y1(6,21), where €' ~ N(uy (0),%y (). The density function of
Y1(0)|{ =6 Zy=2"} is thus

z,iilfN(@l—uy(é»/ EY@) () <y <un ()

1y1)\/;(§)zf_l<FN<(uk(zl) v(®)/ <>) FN(wk(zl)—uy(é))/ EY@))

and ¢Y2(9) has density function f2(y?)=c /25y ()~ 1/2fN( 2—cu)/ cZy(é)). There-

fore, since Y(0)|{6* =0, 7y =2'} and cY? (A) are independent, the density function of
Y*(0){6 =6 Zy=2"}is equal to

S (= r @D (0 =ty 0/ o2 0)
VR O (B (0l O/ D)) - (60 @)/ 50 0)) )

73



with corresponding distribution function
FA v 0)5,)
st (= @) ) (=t O 2 ) )
Vo @S (B (@)= @)/ 2r® ) s () - D)/ 20 )
| (1~ ey O)\/e25 @) )1 (& €U (D))
S (B () - @)/ 20 @) )~ () -y B\ 5v10))

where the expectation is taken with respect to &' ~ N (1 (6),2y(9)). This latter expression

’

for Féo(y*;uy (0),0,2) is very easy to compute by generating normal random variables in
standard software packages. This makes the computation of optimal estimators, tests and
confidence intervals within the class discussed here computationally straightforward.
Similarly to the optimal case above, the same arguments used to prove Proposition 1
show that the optimal o quantile-unbiased estimator figg, in the sample splitting problem

that conditions on {#' =6} and the realizations of Z} and Z3 solves
Fgs(Y* (0 )siids 0, 24) =1 -

Therefore, our (equal-tailed) alternative split-sample confidence set is C§s =[5 S0/ A 55.1—a/2)-
Likewise, the same arguments used to prove Proposition 2 show that the optimal two-sided

unbiased test rejects Ho: pty (A) =1y when
Y(0)¢ [0(25).cu(25)]
where ¢,(2), cu(2) solve
pri{¢ela(z).cu(2)]} =1-a, E[CI{¢€[a(2),cu(2)]}] = (1-a) E[(]

with ¢ distributed according to Fg(+; /,Lyyo,é,Z). These dominating procedures condition
on Zé1 rather than (X! Y1), and so unlike conventional sample splitting continue to treat

(X1,Y!) as random for inference.
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D Uniformity Results

In this section, we show that the results derived in the main text for the finite-sample normal
model translate to uniform asymptotic results over large classes of data generating processes.
To state and prove these results, it will be important to distinguish between finite-sample and
asymptotic objects. To keep this distinction clear, we will subscript finite-sample objects by
the sample size, writing X,,, Y, in, and so on. Moreover, the estimators and confidence sets
flon,s ,&g,n, CSETn, CS?T’W CSun, C’S&{n and CSp,, are equal to their asymptotic counter-
parts fl,, i, CSpr, CSE., CSy, CSH and CSp after replacing X, Y, ¥ with X,,, Y,,, S,

With this notation, we aim to prove, for example, that for /i, our a-quantile unbiased
estimator calculated using (Xn,Yn,in), fyn(0;P) the analog of iy (f) in the sample of

size n, and data generating process P,

lim sup PT’P{ﬂam > lyn <@n;P> } —oz‘ =0,
n=oopep,

SO flan 1s (unconditionally) asymptotically a-quantile unbiased uniformly over the (possibly

sample-size dependent) class of data generating processes P,,. Moreover, we will show that

for all € ©

lim sup Prp{,&am > [y n <9n;P) ]én:é}—alprp{én:é} =0,

n—0opep,

so asymptotic quantile unbiasedness also holds conditional on the event {971 :é} provided
this event occurs with non-trivial asymptotic probability. One could use arguments along
the same lines as those below to derive results for additional conditioning variables 4,,, but
since such arguments would be case-specific, and we do not pursue such an extension here.

Asymptotic uniformity results for conditional inference procedures that, like our cor-
rections, rely on truncated normal distributions were previously established by Tibshirani
et al. (2018). Their results cover a class of models that nests our level maximization
problem but not our norm maximization problem, and impose an assumption that implies
bounded asymptotic means (analogous to our Assumption 5 below). Since we do not
impose this assumption in our analysis of level-maximization, neither our norm nor level
maximization results are nested by theirs. Moreover, these authors do not cover hybrid
inference procedures, which are new to the literature, and also do not provide results for

quantile-unbiased estimation. Our proofs are based on subsequencing arguments as in An-
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drews et al. (2018), though due to the differences in our setting (our interest in conditional
inference, and the fact that our target is random from an unconditional perspective) we
cannot directly apply their results. In the subsequent analysis, Fy and fy denote the cdf

and pdf of the standard normal distribution.
D.1 Asymptotic Validity for Level Maximization

Section D.1.1 collects the assumptions we use to prove uniform asymptotic validity. Section
D.1.2 then states our uniformity results. Section D.1.3 collects a series of technical lemmas
which we use to prove our uniformity results. Finally, Sections D.1.4 and D.1.5 collect

proofs for the lemmas and the uniformity results, respectively.
D.1.1 Assumptions

To derive our asymptotic uniformity results, we use the fact that all our estimates and
confidence sets are functions of <Xn,Yn,§3n>. Hence, to derive our results it suffices to

state assumptions in terms of the behavior of these objects.

Assumption 2

Our estimator 3, is uniformly consistent for some function 3(P),

lim sup Prp{Hfln—E(P)H >€} =0

n=Opep,

for all e>0.

This assumption requires that our variance estimator 5, be consistent for some X(P),
which our later assumptions will take to be the asymptotic variance matrix of (X/,Y;)’

under P, uniformly over P,,.

Assumption 3
There ezists a finite A\>0 such that for Apin(A) and Apayx(A) the minimum and mazimum

eigenvalues of a matrix A,
/A< Ain(Bx (P) € Amax(Ex (P)) <\ for all PEP,

and

1/A<Sy(0;P) <\ for all €O and all PEP,,.

This assumption bounds the variance matrix X x(P) above and away from singularity,

and likewise bounds the diagonal elements of 3y (P) above and away from zero. This
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ensures that the set of covariance matrices consistent with P €P,, is a subset of a compact

set, and that X,,(¢) has a unique maximum with probability tending to one.

Assumption 4
For BLy the class of Lipschitz functions that are bounded in absolute value by one and
have Lipschitz constant bounded by one, and p~ N(0,5(P)),

f< X, tixn(P) )
Y;L_MYM<P)

for some sequence of functions px ,(P) and piy,(P).

lim sup sup |Ep =0
n—OpeP, fEBLy

—E[f(&p)]

Bounded Lipschitz distance metrizes convergence in distribution, so uniform conver-
gence in bounded Lipschitz, as we assume here, is one formalization for uniform convergence

in distribution. Hence, this assumption requires that

!/

(Xr/z _#X,n(P)/vY;; _IUY,n(P)/)

be asymptotically N(0,5(P)) distributed, uniformly over P€P,,.
D.1.2 Level Maximization Uniformity Results
For 0, =argmaxyX,(#) we obtain the following results.

Proposition 9

Under Assumptions 2-4, for 9n:argmaxeXn(9) and fio ,, the a-quantile unbiased estimator,

lim sup P?"p{,&am >y, (@mP) |@n :é} —a’PrP{@n :9} =0, (31)
n=oopep,
for all 0€©, and
lim sup Prp{,&am > Iy p <@n;P) } —a‘ =0. (32)

n—=Opep,

Corollary 1
Under Assumptions 2-4, for 0, =argmaxy X, (0) and CSgr,, the level 1 —a equal-tailed

confidence set,

lim sup PTP{/Ly’n<én;P) GC’SET’nlén:é}—(1—04)’P7’p{9n:é}:(),

n—o0pep,
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for all 0O, and

lim sup PT’p{/Ly’n <én;P> € C’SET’H} —(1—04)‘ =0.
n—=Opep,

Proposition 10

Under Assumptions 2-4, for én = argmaxy X, (#) and CSy,, the level 1 —a unbiased

confidence set,

lim sup Prp{uxn(én;P> ECSUmlén:é}—(1—CY)‘PTP{(§71:§}:O, (33)

n=Opep,

for all 0€©, and

lim sup Prp{,uym <9n;P> EC’SU,n}—(l—a)’:O. (34)
n—oopep,
Proposition 11
Under Assumptions 2-4, for 6, = argmaxy X, (0) and CSp,, the level 1 —« projection
confidence set,
liminf inf P’)”p{ﬂym (@n;P) EC’Spvn} >1—a. (35)

n—oo PeP,

Proposition 12
Under Assumptions 2-4, for 9n = argmaxy X, (6), ﬂgn the a-quantile unbiased hybrid

estimator based on initial confidence set CSﬁ,n, and
cH (é;P) = 1{(% =041y (én;P) € CS]B)JL},
we have

lim sup
n—oo PeP,

Prp{ﬂg{nzwn (9n;P> icH (é;P) :1}—04‘E'p{0£{ <é;P)}:0, (36)
for all 6€©. Moreover

limsup sup
n—oo PeP,

Prp{ﬂgnzuxn@n;P)}—a‘Smax{oz,l—a}ﬁ. (37)

Corollary 2 A
Under Assumptions 2-4, for 6, =argmaxyX,,(6) and CS{E{T’n the level 1—a equal-tailed
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hybrid confidence set based on initial confidence set CSf-,m,

. o H H il H
Jim_ sup Prp{uy,n (Gn,P) €CSHy |CE (9 P) _1} Ep{c (9 P)} : (38)
for all feo,
lgglorcl)fplélgnPrp{uyn <9n7P) cCSE, n} >1- (39)
and )
limsup sup Prp{uyn(en,P) ECS’ET”}g—agl—a+ﬂ. (40)
n—oo PePy, 1—

Proposition 13
Under Assumptions 2-4, for 9n:argmax@Xn(9) and CSgn the level 1—o unbiased hybrid

confidence set based on initial confidence set CSIgn,

Prp{Wn(en,P)echnycH(e P>_1} 1z

lim sup
noopep,

for all GO,
liminf inf Prp{,uyn <9n7P) ECSUH} >1—
n—oo PEP,
and
. A H ]. [0
limsup sup Prp{uym (QH;P> ECSUn} —<l-—a+p.
n—oo PeP, ’ 1— ﬂ

D.1.3 Auxiliary Lemmas
This section collects lemmas that we will use to prove our uniformity results.
Lemma 5

Under Assumption 3, for any sequence of confidence sets C'S,,, any sequence of sets C,,(P)
indexed by P, C,(P)= {(Xn,Yn,E ) ECn(P)}, and any constant «, to show that

Prp{uy,n (én;P) eCSn|Cn(P):1} —a‘Prp{Cn(P)zl}:()

limsup sup
n—oo PeP,

it suffices to show that for all subsequences {ns} C{n}, {P,.} €P>*=x2,P, with:

1. ¥(P,,) =X €S for
S={Z:1/A< Anin(Zx) Amax(Bx) AL/ ATy (6) <A, (41)
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M}:{IMXE[—OO,O]I@l:Hl;lXMX(Q):O},

we have
lim Prp,_ { Y, (éns ;Pns) eCS,,

5—00

Con(Po) =1} =a. (42)

Lemma 6

For a collection of sequences of sets Cy,1(P),....Cp.s(P) and

Cpi(P)= 1{ (Xn,yn,in) GCW-(P)},

if
lim sup Prp{C, ;(P)=1,C,;(P)=1}=0 for all j#j'
n—)OOPEpn
and
lim sup Prp{,uyJL (émP) EC’Sn\Cn,j(P)zl}—(l—a) Prp{C, ;(P)=1}=0
n—>oop€fpn

for all 5, then

liminf inf Prp{,uY,n <9n;P> ECSn} > (1—q)-liminf inf ZPTP{C’an(P)zl}
j

n—oo PeEP, n—o0 PEP,“—
and

limsup sup Prp{,uy,n (9n;P> € CSn} <1—aliminf inf ZPTP{C’W- (P)=1}.
j

n—oo PEP, n—00 PEP,“—

To state the next lemma, define

£(0.2) >(0) (Z@_Zg ) (43)

= max ~
0eO:Xxy (é)>2xy (é79> EXY <(9

N——
|
\g!

!

-
VS
S
N—
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= min

U (é A z) i > (9) <Z<9) - <9>> (44)
o 00 xy (0)<Zxv (6.0) Y vy (é) —Yxy (9,«9) ’

where we define a maximum over the empty set as —oo and a minimum over the empty

Xo\ [ Xu—maxgpxn(0;P)
Yy Yo—piyn(P) ’

we next show that using (X;;,Y;,i» in our calculations yields the same bounds £ and

set as +oo. For

U as using (Xn,Yn,§n>, up to additive shifts

Lemma 7

For E(é,Z,E) and U(é,Z,Z) as defined in (43) and (44), and

i), i)
52 () v(8), 7,=x EY”() v (),
£(0.25,50) =£(0.73,,50) v (4:P)

U(0.2;,.50) =U(8.2,,50) ~ v (:P).

For brevity, going forward we use the shorthand notation

we have

(c (é,zém,in) U (é,zé,n,in) L (é,zgyn,in) U (é,zg,n,in» — (Lo o L5205,
Lemma 8
Under Assumptions 2 and 4, for any {ns} and {P,,} satisfying conditions (1)-(3) of
Lemma 5 and any 0 with 5% <5’> > —00,
(Vi Ui S ) = (Y004 370,

where the objects on the right hand side are calculated based on (Y*,X*X*) for

X* * *
< o >~N(u 25
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with 11 = (W3 0')

Lemma 9

For Fy again the standard normal distribution function, the function
Y(O)NU—p _F L—p
() ()
Py 2 ) — By | —2£
N(\/zyw)) N(\/zy(m)

is continuous in (Y (0),u,2y(0),LU) on the set

Frn(Y(0):,5y (0),LU) = Y @)=L  (49)

{(Y(0),1.5v(0)) €R® L€ RU{—00} U eRU{o0}: Xy (0) >0,L<Y () <U}.
To state the next lemma, let (¢;(p,2y (0),LU),cu(11, 2y (0),LU)) solve
Pr{¢e|a,c)}=1—a

ElCHC eyl =(1-a)El(]

for

C~ElEe[LULE~ N (1Y (0)).

Lemma 10
The function (¢;(1, Xy (0),LU ) cu(p.2y (8),LU)) satisfies

(Cl (MaZY(e)aﬁvu)ﬂcU(ﬂsz (6’),5,[1))
= (N+CI(O>EY(9>>£_N>U_M>>,U+Cu(O>ZY(9>>£_H>U_M>)

and is continuous in (11, Xy (0),LU) on the set
{(1.2y(0)) eR* L e RU{—00} U e RU{o0}: Xy (0) >0,L<U}.

D.1.4 Proofs for Auxiliary Lemmas

Proof of Lemma 5 To prove that

limsup sup PT’p{uym (@H;P) €CS,|C,(P)= 1} —a‘Prp{Cn(P) =1}=0

n—oo PeP,
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it suffices to show that

liminf inf (PTP{ ¥ (9n;P) € CSn|C(P) = 1} —a) Prp{Cn(P)=1}>0 (46)
and
l;n}:;gopsggn <Prp{uxn (@n;P) €CS,|Ch(P)= 1} —a) Prp{C,(P)=1}<0. (47)

We prove that to show (46), it suffices to show that for all {n,}, {P,.} satisfying conditions
(1)-(3) of the lemma,

liminf Prp, { oy, (9% ;Pns> eCS,,

5—00

Cp.(P) = 1} >a. (48)
An argument along the same lines implies that to prove (47) it suffices to show that

limsupPrp,_ { Ly, (9ns ;Pns> eCsS,,

§—00

Co.(P) = 1} <a. (49)

Note, however, that (48) and (49) together are equivalent to (42).
Towards contradiction, suppose that (46) fails, so

liminf inf (Prp{,uKn <§n;P) €CS,|CL(P)= 1} —oz) Prp{C,(P)=1} < —e¢,

n—oo PEP,

for some € >0 but that (48) holds for all sequences satisfying conditions (1)-(3) of the
lemma. Then there exists an increasing sequence of sample sizes n, and some sequence
{an} with B,, €P,, for all ¢ such that

limsup (Prew, v, (BugiPu, ) €CSu,|Coy (Pa,) =1} =a) Pre, {Cu, (Pa,) =1} <=2, (50)
We want to show that there exists a further subsequence {n;} C{n,} satistying (1)-(3) in
the statement of the lemma, and so establish a contradiction.

Note that since the set S defined in (41) is compact (e.g. in the Frobenius norm),
and Assumption 3 implies that E(an) €S for all ¢, there exists a further subsequence
{n,} C{n,} such that

lim $(P, )— ¥

o0
for some ¥*€S.

Note, next, that Prp, {C,, (P, )=1}¢€[0,1] for all 7, and so converges along a sub-
sequence {n;} C{n,}. However, (50) implies that Prp, {C,, (P, )=1}>=% for all r, and
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thus that
PTPnt {C"’Lt(P’ﬂt) = 1}—>p* € [271} .

Finally, let us define

and note that u%, (P) <0 by construction. Since X, (P) is finite-dimensional and
maxp/ly ,,(P;0) =0, there exists some § € © such that 1 ,,(P;f)) is equal to zero infinitely of-
ten. Let {n,} C {n;} extract the corresponding sequence of sample sizes. The set [—00,0]!®!
is compact under the metric d(ux,fix) = ||Fy(ux) — Fn(fix)|| for Fy(-) the standard
normal cdf applied elementwise, and ||| the Euclidean norm. Hence, there exists a further
subsequence {n,} C{n,} along which u%, (F,,) converges to a limit in this metric. Note,
however, that this means that %, (F,,) converges to a limit ;" € M* in the usual metric.

Hence, we have shown that there exists a subsequence {n,} C{n,} that satisfies (1)-(3).
By supposition, (48) must hold along this subsequence. Thus,

liminf (Prpns {uyns <@n ;Pns> €CS,,|C, (Pn,)= 1} —a) Prp{C,.(P,,)=1}>0,

n—oo

which contradicts (50). Hence, we have established a contradiction and so proved that (48)
for all subsequences satistying conditions (1)-(3) of the lemma implies (46). An argument
along the same lines shows that (49) along all subsequences satisfying conditions (1)-(3)

of lemma implies (47). O

Proof of Lemma 6 Let us define
Cn7j+1(P) = 1{OnJ(P) =0 for all VIS {1,,J}}
Note that

Prp{uy’n (9n;P> € CSn}
=575 Prodia (03P ) €CS,|Cog(P) =1} Pro{Cai(P) =1} +o(1)

where the o(1) term is negligible uniformly over P€P,, as n— oo. Hence,

Prp{,uy,n (émP) c CSn} —(1—«)
=527 (Pre{ v (00:P) €CS,ICs (P) =1} = (1=0) ) Prp{Cys(P) =1} +o(1)
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and

liminf inf Prp{uyn(Qn,P> eCs, } (1—a)

n—oo PEP

J+1

~liminf inf > (Prp{ . (%P) €CS, | (P) = 1} —a —a)) Prp{C,,;(P)=1}
=timinf inf (Prp{pve(025P) €CS1|Coia (P) =1} —(1=) ) Prip{Clusa(P) =1}

—(1—a)limsup sup Prp{C,, j11(P)=1}

n—oo PeP,

—_(1—a)<1 liminf inf ZPTP{CM P)= }>

n—oo PeP,

which immediately implies that

liminf inf PTP{Myn(en,P> cCs, } (1—a)liminf inf ZPTP{CM P)=1}.

n—oo PeP, n—oo PeP,

Likewise,
liyrgsolipgggnPrp{uym <9n;P> € C’Sn} —(1—a)
—llgipgggng (Prp{um <9n,P) €CS,|C,;(P)= 1} —(1—04)) Prp{Cy;(P)=1}

=limsup sup (P?"p{uy’n (@mP) €CS,|Cpy11(P)= 1} —(1 —a)) Prp{C, j+1(P)=1}

n—oo PePy,

<a-limsup sup Prp{C,, j;1(P)=1}= a( 1—liminf inf ZPTP{CM( )_1}>.

n—oo PEP, n—oo PEP, ne

This immediately implies that

limsup sup Prp{,uym <9n;P) € C’Sn} <1—q-liminf inf ZPTP{CM P)=1},

n—oo PeP, n—oo PePy

as we wanted to show. [
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Proof of Lemma 7 Note that

SHON

Z5 0= g —maxtix o (0;F) +Sxvn ( 79)

SO

% (0)~2;,(0) = Z43,,(0)~ Z3,,(8) + (Sxvn (0.0) ~Sv (9)) M;" <9(9];> .

The result follows immediately. [

Proof of Lemma 8 By Assumption 4

( an _ILLXyns (P”s)

—d N(O,E*)
Yns _,U/KTLS (Pns> )

Hence, by Slutsky’s lemma

X X, — n.(0;P, X*
ns _ s T MaXglx, s( s) —d NN(M*,E*)
YJS }/ns _/’L)/yns (Pns) Y*
We begin by considering one 6 € @\{é} at a time. Since f]ns —p 2" by Assumption
2, if Ty (9) — Sy (é,e) £0 then

S (0)(%,.0-5,.(0))  55(0)(%0-%(7))

S (0) S (00) 7 2y (0) 25, (0)

where the terms on the right hand side are based on (X*,Y*,3*). The limit is finite if
Wi (0) > —o0, while otherwise % (6) =—o0 and

1 (é) (Zg(e)—zg (9)) ) {oo if Ty (é) :2%(

9,9) >0
S (0) -5 (09) | #o0 i Sy (0) -5y (8.0) <0
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If instead X%y <é> — Y%y (é,@) =0, then since X% has full rank,

Z:(0)-2;(8) =x"(0)- X" (9)

is normally distributed with non-zero variance. Hence, in this case

500 ) (7,00-2,0)
SN OENNC)

o (9) - {ee@\ézz}y (0) S (é,e) 7&0}.

The argument above implies that

— 00. (51)

Let us define

e 20(5,0-%,0))
0€6*(0):Exv,ns (0)>Sxvns (0.0) ZXYnS <é> 2XY,ns <é79

e 5 (6) (207 7)

max o ~
€05y (0)>Txy (0.0) T (9) — Ty (979

)

| S (0) (7,007, (7))
min

06" (0) S, (0)<Exvs (20) Sy, (0) Sy, (é,e

e IOEO-50)
0€0:5y (0)<Txy (00) X% (9) — %y (9,0)

and

y (51), the same convergence holds when we minimize and maximize over © rather than

©*(6). Hence,
(Lr Us ) —q (L5 U%).

Moreover, @ns is almost everywhere continuous in X7 , so
(Vi S, ) = (Y*30)
by the continuous mapping theorem, and this convergence holds jointly with that for
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(E;i ,Z/I;S). Hence, we have established the desired convergence. U]

Proof of Lemma 9 Continuity for ¥y () > 0,£ <Y (f) <U with all elements finite

is immediate from the functional form. Moreover, for fixed (Y (6),u,3y(0)) € R® with
Yy(@)>0and L<Y(0)<U,

Fol YOru—n) _p L—p o YO-r
.- N( Vv 0) M\ Ver o) . N

F Y (O)NU—p _F L—p F Y (0)—u _F 00
lim N( =0 ) "\ VEo) LV ()3 £)= Vo) T\ VEe
L——00 o N
U—p _ L—p U—p _ —00
FN( zy(e)) FN( zy(e)) FN( 2y(9)> FN( 2y(0)>
and
Fo [ YOU—p ) _ L— ol XYO-1\_ oo
N(,/‘zy@) M Ve V(0)> L) Mvee) T\ Ve
(00009 1 ( wy \_p (o N A N G
N\ Voo M V@ M\ Vo) M\ Vo)

Hence, we obtain the desired result. [J

Proof of Lemma 10 Note that for fy again the standard normal density,

FN <Z/I/\Cu—,u) _FN < LN —p )
vV 2y (0 2y (0
Pr{¢€la,c.)}= 0 0 U>c,cn> L),
U—p _ L—p
FN( ZY(G)) FN( Ey(@))

ElHCe e} =PriCelacd} | n+ >0 (fN(@vEC—ZY_@_f N(u¢=<>)>
() - (G)

(i) () vmo () ()
F

=

vV Zy (0)




and

system of equations:

UNCy—p LNe—p U—p L—p -
(250 o) )

and

UNey,—p LN e —p LN e—p UNec,—p
(o (7)) vmol () (5%

U—n L—p
‘““”“(FN< 2y<6>>‘FN<¢—Ey<9>))

—(1—a)\/m<ffv< Lo )—m( U >>:0
(

Yy (0)

such that ¢ <U and ¢, > L. Note, however, that since any ¢ = (¢;,¢,) that solves this

system must satisfy (52), we can also write
(Cl (M?EY(H)vﬁau)vcu(ﬂva (0)7'67“))

as the solution to
9<C;M,\/ Ey(é’),ﬁm =0
such that ¢, <U and ¢, > L, for
g(C;u,\/Ey(Q),E,M)
UNcy—p | Lve—p |\ __(1__ U—p _ L—u
_ FN(\/zyw)) v\ Vv )~ FN( zyw)) FN(\/zyw)))
I B ) — fu | Yot ) —(1—a) | fa| 2= | — fv | 2
v/ 2y (0) vV 2y (9) vV 2y (9) 2y (9)
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This implies that

9<C;/~07\/ Ey(9)757U> =g(c—(u,u)’;0,\/ Xy (0).L—pU —u>,

from which the first result of the lemma follows immediately.
To prove the second part of the lemma, note that by the first part of the lemma it

suffices to prove continuity of

(c(0.2y (0),£.U),cu(0,5y (0),LU)). (53)
Recall that (53) solves
pr{¢ela,clt=(1-a) (54)
and
E[CH{¢eac]}]=(1-a)E[(] (55)

for ¢ ~¢|€ € [L,U] where £ ~ N(0,2y(0)). Note, however, that since £ <U, (54) im-
plies that any solution has ¢ < ¢,, and that we cannot have both ¢, < £ and ¢, > U.
Note, next, that if ¢ = £, then since ¢, < U, E[C|¢ € [a,c.]] < E[(], and thus that
E[(1{(€a,ci)}]<(1—a)E[(]. Since the same argument applies when ¢, =U, we see that
for any solution (53), £L< ¢ <c, <U.

Note, next, that g(c;O,\/m ,E,Ll) is almost everywhere differentiable with respect

to ¢ with derivative
—g(c 0,0/2y (0 EU)

—l(Cl>£>fN<Cl/\/Zy ) \/Ey fN<Cu/\/Zy )/\/Ey<9)
—1(01 >£)leN <Cl/\ / Zy )/Ey (Cu <Z/{ Cqu (Cu/\/ZY 9))/23/(9)
The first row is zero if and only if ¢; < £ and ¢, >U, which as argued above cannot

be a solution to g(c;O,\/Ey(Q),E,LO =0 for £ <U finite. The second row is zero if and

only if either (i) ¢, < £ and ¢, >U or (ii) ¢ =c, =0, which again cannot be a solution.

Finally, apart from the cases just mentioned, the rows are proportional if and only if either
(i) g<L, (ii) ¢, >U or (iil) ¢;=c,, none of which can be a solution. Hence, the implicit

function theorem implies continuity on

{Ey(@)eR,LERUER:EY(0)>0,L<U}.
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To complete the proof, we need to establish continuity at infinity. Note, however, that we

can write
9(c0/Er O).LU ) =5(e0.2 (0).Fn (L) Fy (U))

where g is continuous in all arguments and Fy(-) is continuous at infinity. Hence, another

application of implicit function theorem implies that
(c1(0,2y(0),LU),c.(0,5y(0),LU))
are continuous on
{Sy(0)>0,L<U:(Zy(0),Y () eR* LERU{—00}U ERU{0} },

as we wanted to show. [J
D.1.5 Proofs for Uniformity Results

Proof of Proposition 9 Note that
ﬂa,n Z/"LY,TL (émP) — Hyn (émp> € CSU,f,n

for C'Sy._,, = (—00, flan). Hence, by Lemma 5, to prove that (31) holds it suffices to
show that for all {ns} and {P, } such that conditions (1)-(3) of the lemma hold with
C’n(P)zl{é’n:é}, we have

lim Prp, { iy, (éns ;Pns) €CSy_.

5§—00

0, :é} = (56)

To this end, recall that for Fry (Y (0);1,2y (0),LU) as defined in (45), the estimator
flo,n SOlVes
Fr (Yn (én> .Sy <én> Ly ,un) —1—a,
where (£,,,U,,) are defined following Lemma 7. This cdf is strictly decreasing in p as argued
in the proof of Proposition 8, and is increasing in Y,, (9) Hence, fiqn> iy (9n;P) if and
only if
Fry (Yn (9n> iy <9n;P> ,ixn (9n> ,Ln,un) >1—a.
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Note, next, that by Lemma 7 and the form of the function Fry,
Fre (Yo (00 )ity (80P ) Svin (B0 ) L0 ) = P (Vi (80 ):0, 5 () L34
SO flan > [y n <9n;P> if and only if
Frxe (Y, (8):0 S (60) £324;) 2 101

Lemma, 8 shows that (Y: (9%) ,iyms <9ns> Ly U ,9%) converges in distribution as s — oo,
so since Fry is continuous by Lemma 9 while argmaxy X™*(6) is almost surely unique and

continuous for X* as in Lemma 8, the continuous mapping theorem implies that

(FTN (Y,;; (éns) 05y, (@)ns) L M:;) ,1{éns _ 9})
Ny (FTN (Y* (é) 055 (9) ,L*,u*) ,1{@):9}).

Since we can write

Prp, {FTN (Y,;; (0%) 0.y <9n> L un) >1—alf,. = é}

Ep, [1{FTN (Yn <0n> 0.5y, (9n8) L5 ,u;s) > 1—04}1{@”5 :é}]

Ep, [1{@% :éH |

and by construction (see also Proposition 1 in the main text),

Frn (Y* <9) 0,55 (9) ,L*,u*,é) 0=0~U10,1],
and Pr{@zé} =p* >0, we thus have that
Pr,. {FTN (Yn*s (éns) 05y, (an) L ,u;s) >1—al,, = é}

—>P7‘{FTN (Y* (é);o,z; (?)) ,E*,Z/{*) 21—a|é=é}:a,
which verifies (56).
Since this argument holds for all € ©, and Assumptions 3 and 4 imply that for all
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0,0 © with 640,
lim sup Prp{Xn(H) =X, (9) } =0,

n=Opep,

Lemma 6 implies (32). OJ
Proof of Corollary 1 By construction, CSgr, = [ﬂa J2m5b—a /QV,J, and fi1_a /2.5 > [la/2,n
for all aw< 1. Hence,
P?“p{/uby’n (émp> GOSET’n’én:é}
:PrP{,UJY,n (9717])) S ﬂlfa/2,n|én :é} _PTP{,U'Y,n (émP> Sﬂa/ln@n :é}a
so the result is immediate from Proposition 9 and Lemma 6. [J

Proof of Proposition 10 Note that by the definition of C'Sy,,

. (%P) €CSun
— Yn(n> e [cl (uym (9n;P),im <9n) ,/:n,un) Ca (Wm (én;P),iym (9n> ,,cn,un)]

where
(Cl(M’EY(Q)ﬂﬁau)acu(usz(6>7£au))
are defined immediately before Lemma 10. Hence, by Lemmas 7 and 10,
Hyn (én,P) c CSU’n
=17 (0n) € [ (0.5 (8) L5247 ) (0.8 (00) L2247
By Lemma 5, to prove that (33) holds it suffices to show that for all {ns} and {F,,}

satisfying conditions (1)-(3) of Lemma 5,

lim PT‘an {,uy,ns (éns> € CSU,ns

§—00

9%:9}:1—04.

Thus, it suffices to show that

S§—00

_ p [a(o,im(éns),£;57u;5>, .
PP Yo (9715)6 Cu<0,§Y,ns(Ans)yl":ﬁbs?u;s)} A
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To this end, note that by Lemma 8,
(Y* cou Zns,l{ﬁ 9}) -y (Y*,,c*,u*,zu{é:é}),

and thus, by Lemma 10 and the continuous mapping theorem, that

O obon om ) ooy

By construction (see also Proposition 2 in the main text),

Pr{y* (é) € [cl <0,£*7u*,2; (é)) c <07£*’u*72; <é> )} yé:é} i

and Y*( > ]9 0,L* U* follows a truncated normal distribution, so

Pr{v(8) =a(0zy(8).c'ur) }=Pr{y*(0) =cu(0.55 (0).£704) } =

Hence,

Prp, (Y e |03y, (0n, )L Uz ) cu( 0.8y, (On, ).L5 U ) |16, =0
{Epn(s[{) [ < Ozygs@))ﬁ Uy )>C¢(ngms(@ns)(vﬁnszf:s)}} {92}9}] }
By, [ ?ns@}]

E[l{Y*(9)6[01(O,E*Y(é),ﬁ*,u*?,cg 0,55 (0),£*u*)| }1{o=0}] TN
B[1{0=0}]

as we wanted to show, so (33) follows by Lemma 5.
Since this result again holds for all § € ©, (34) follows immediately by the same

argument as in the proof of Proposition 9. [J

Proof of Proposition 11 By the same argument as in the proof of Lemma 5, to show
that (35) holds it suffices to show that for all {n,}, {P,.} satisfying conditions (1)-(3) of
Lemma 5,

liminf Prp, {uyms <én$;Pns) € CSRnS} >1—a.

n—o0
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To this end, note that
HY ns (éns 3B ns) € CSP,ns
=1 (00 € en (B ) 5 (B0 ) () B (60|

for ¢,(Xy) the 1—a quantile of maxy|£(0)|/1/Zy (8) where £~ N(0,Zy ). Next, note that
¢o(Xy) is continuous in ¥ on S as defined in (41). Hence, for all 0, ¢, (3y)/2y(0) is

continuous as well. Assumptions 2 and 4 imply that
(3/7'11 ’ins ’éns> %d <Y*?Z*7é) 9

which by the continuous mapping theorem implies
(y (5,)) () ay(ans))ﬂ <y* (3).ca(s3) z;(é)).
Hence, since Pr{ ‘Y* (@) ‘ —ca (V)2 /25 (@) :O} =0,

Pro v (B0 ) €S ) %pr{y* ()<

—Ca(Zi) B3 (0) ea(S5) 2;(9)” (57)

where the right hand side is at least 1—a by construction. [

Proof of Proposition 12 Note that
ﬂin > [y <9n;P) = lyn (9n;P> € CS{]{_,H
for CSff_,, = (—oo,jul!,]. Hence, by Lemma 5, to prove that (36) holds it suffices to
show that for all {n,} and {P,,} such that conditions (1)-(3) of the lemma hold with
Cn(P)= 1{971 = é,,uy,n (9n;Pn) € CSIB%}, we have
lim Prp,_ {[Ly’ns (én.s;Pn.;) eCSH 10, =011y, <9n;;Pns) cCss } =a.
S5—00 v i s

Recall that for Fry (Y (6);,5y (0),LU) defined as in (45), il solves

Fry (Y;z (én) ;M:iY,n (én) 7'6751(#)?2/{7?(#)) =l-aq,
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for
LH (1) :max{ﬁn,u—ca (iyn> Sy <@n) }
u;;fw):mm{un,m@m) gy(@n)}_

The proof of Proposition 8 shows that Fry <Y;1 <9n) ;/L,iym (971) LH () U (u)) is strictly

decreasing in p, so for a given value py,

il > pyo <= Fry (Yn (én) ;,UY,Oin,n (én> 7£f(ﬂ)ﬁ0)auf(ﬂ}ﬁ0>> >1—a.
As in the proof of Proposition 9

o 50 02) S 1) £ o () 2 o 2
— Fry (Yn* (9n 0.5y (en) LCH i ) ,

where £,{7* = max{ﬁfl,—ca (f]yn) 1/ iy (9n> } and L[Tf]* :min{Z/{;,ca (iyn) f]y (@n) }

SO ﬂfm > [y <@n;P> if and only if
Fre (Y, (0) 0.8 (00) L1 1) 2 1~ 01
Lemma 8 implies that
(Vi Sy £ T D0, ) v (Y 35, L7 U D)

where £7* and UH* are equal to £7* and U* after replacing (Xn,Yn,in) with (X,Y,>*).
Then by the continuous mapping theorem and (57),

(FTN (YT: (‘971) 50,§Y,ns (éns) L ,Uﬁ.*> 1 {é"s =01y, (é”s ;P"S) © CS]BD T })
()3 ) s s G5 )

Hence, by the same argument as in the proof of Proposition 9,

lim Prp, {uyms (@ns;Pns> 60551_ n|9ns Zé,MYnS (@HS;P%) EC’Sﬁn }:04,
5—00 s ’ "hs
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as we aimed to show.
To prove (37), note that for CSUJrn (! ,,00),

Man—MYn(0n7P> <:>Myn( n >¢CSU+n

and thus that the argument above proves that

lim sup Prp{uyn<9n,P> eCsy, et (9 P) } —(1—a))PrP{0,fj (é;P) } —0

n=oopep,

for CH (é;P) as in the statement of the proposition. Since

ZPrp{éns :é,,uyms (@nS;PnS> € C’Sﬁ,’ns } :Prp{uym (9nS;PnS) € C’S}i}ns}—i—o(l),

and Proposition 11 shows that

liminf inf P?”p{,uyn (GnS;PnS>€C'S§nS}21—B,

s—00 PEPp,

Lemma 6 together with (36) implies that

liminf inf Prp{uan <pyn (QH,P> } >(1—a)(1-8)=(1-a)—pF(1—a)

n—oo PeP,

and
limsup sup Prp{ﬂgn <Hyn (én;P) } <l-a(l-p)=(1—a)+pa

n—oo PP,

from which the second result of the proposition follows immediately. []

Proof of Corollary 2 Note that by construction

H __ | ~H ~H
OSET,n* Hoa=p M a=p 1|5
3(1-5) 3(1-5)

where i, <,u o . provided = 5 < 1. Hence,
e et

Prp { . (én;P) ecst. [cH (é,P) }

(58)

—profva(0iP) <t s JCH(0P) p-Produa (B.iP) <iths cl(5.0) .
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so Proposition 12 immediately implies (38).

Equation (58) in the proof of Proposition 12 together with Lemma 6 implies that

-«
-3

so (39) holds. We could likewise get an upper bound on coverage using Lemma 6, but

liminf inf Prp{ Hyn <@n;P) eC SgTvn} >

n—oo PEP,

(1-f)=1-a

obtain a sharper bound by proving the result directly. Specifically, note that
. <9n;Pn> €CSH. = piyn <9n;Pn) cCsy.
Hence,

Prp{uym <5’n;P> € C’SﬁTm}
_ Prp{ fvm <@n;P) €CSH, ity <@n;Pn> e CSgn}Pr{ . <9n;Pn> € ngn}.

By the first part of the proposition, this implies that

. 1— .
limsup sup Prp{uym <0n;P> € CSng} < —alimsup sup Pr{uxn <9n;Pn> GC’SIEDH}
n—oo PeP, ' 1_6 n—oo PEP, ’

1-a
< PEGE)
=13

so (40) holds as well. [J

Proof of Proposition 13 The first part of the result follows by the same argument
as in the proof of Proposition 10, where as in the proof of Proposition 12 we use the
conditioning event {@n:é,uxn <9n;Pn> EC’S]@“} and replace (£, U,) by (Ef Ut ) The

second part of the result follows by the same argument as in the proof of Corollary 2. [
D.2 Asymptotic Validity of Norm-Maximization

We next turn to the asymptotic validity of our results in norm-maximization settings.
As discussed in the main text and Appendix B.2, the norm-maximization problem arises
when we follow Elliott and Miiller (2007, 2014) and Wang (2018) and model the degree
of parameter instability as shrinking with the sample size. If we instead take the degree of
parameter instability to be fixed, one can show that the threshold regression and structural
break models reduce to level maximization asymptotically.

The issue here is similar to the difference in the asymptotic distribution of the Vuong
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(1989) test between the nested and non-nested cases. As this analogy suggests, it may be
possible to develop asymptotic results for threshold regression and structural break models
that, analogous to the results of Shi (2015) and Schennach and Wilhelm (2017) for the
Vuong test, cover cases with both fixed and local parameter instability. We are unaware of
such results for existing procedures inthreshold regression and structural break literatures,
however, and this point is far afield from our primary focus in this project. Hence, in this
section we follow Elliott and Miiller (2007, 2014) and Wang (2018) and limit attention
to cases with local parameter instability and, refer readers interested in fixed parameter
instability to the level-maximization results discussed above.

Section D.2.1 states the bounded asymptotic means assumption. Section D.2.2 then
states our uniformity results for norm-maximization settings. Section D.2.3 collects ad-
ditional technical lemmas for this setting. Finally, Sections D.2.4 and D.2.5 collect proofs

for the lemmas and the uniformity results, respectively.
D.2.1 Assumptions

To prove uniform asymptotic validity for norm maximization, we will continue to impose
Assumptions 2-4 of the last section. To limit attention to the case with local parameter

instability, we further impose the following assumption.

Assumption 5

There ezxists a finite constant C'>0 such that

limsup sup ([|12xn(P)|[+[|pya(P)I)) < C.

n—oo PeP,

This assumption requires that ||px,,(P)|| and ||py,,(P)]| be uniformly bounded over
P, by a constant that does not depend on the sample size. Given the scaling of (X,,,Y;,)
in our threshold regression and structural break examples, this corresponds to the case
with local parameter instability. It may be possible to relax this assumption, but it holds
in all settings we have encountered that give rise to the norm-maximization problem
asymptotically. Specifically, note that Assumption 5 holds if we take P,, to correspond
to any finite collection of local sequences of the sort studied by Elliott and Miiller (2007,
2014) and Wang (2018). If we instead consider nonlocal sequences, then as discussed above

we instead obtain a level-maximization problem asymptotically.
D.2.2 Norm Maximization Uniformity Results

For 6, =argmaxg|| X,,(0)|| we obtain the following results.
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Proposition 14
Under Assumptions 2-5, for 0, = argmaxy | X,,(0)|| and jia the a-quantile unbiased

estimator,

lim sup Prp{/la,n >y, <9n;P> |@n :é} —a’Prp{én zé} =0, (59)

nHOOPepn

for all0€®©, and
lim sup P?”P{ﬂam > Ly, <9n;P) } —oz‘ =0. (60)

n—oopep,
Corollary 3
Under Assumptions 2-5, for 6, =argmaxg|| X,,(0)|| and C'Sgr,, the level 1—a equal-tailed

confidence set,

lim sup Prp{uy’n(@n;P) GCSET’nlén:é}—(1—04)’Prp{@n:9}:O,

n—)OOPGPn

for all 0€©, and

lim sup PT’p{/Ly,n <9n;P> € C’SET,H} —(1—04)‘ =0.
n=Opep,

Proposition 15

Under Assumptions 2-5, for 6, = argmaxy||X,(0)|| and CSy,, the level 1 —a unbiased

confidence set,

lim sup Prp{uxn(@n;P> ECS’U’n@n:é}—(1—04)‘]37"1:{9“:9}:0, (61)

noOpPep,

for all 0€©, and

lim sup Prp{uxn (9H;P> EC’SU,H}—(l—a)‘:O. (62)
n—oopep,,
Proposition 16
Under Assumptions 2-5, for 0, = argmaxy|| X,,(0)|| and CSp,, the level 1 —a projection
confidence set,
liminf inf P’)”P{/,Lym (@H;P) € C’Spvn} >1—a.

n—oo PePy,
Proposition 17
Under Assumptions 2-5, for 6, = argmaxg || X, (0], [t the a-quantile unbiased hybrid
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estimator based on initial confidence set CSIgn, and
C’f (é;P) = 1{9n :é,uxn <9n;P) € CSlgn},
we have

lim sup Prp{,uan>,uyn<9n,P>]CH<9 P)—l} ‘Ep{ (9 P)} 0,

n—o0pep,

for all 0€©. Moreover

limsup sup Prp{ﬂgn > Ly, (@H;P) } —04‘ <max{a,1—a}p.
n—oo PeP,

Corollary 4

Under Assumptions 2-5, for 6, =argmaxy|| X, (0)|| and C Spr. the level 1—a equal-tailed

hybrid confidence set based on initial confidence set C’S]ﬁ%,

H -« H
Jim_sup Prp{uyn<0n,P> €CSt|CE (9 P)_1} i EP{C (9 P)} 0,
for all 0O,
>
hnrgloréfplggnPrp{uyn <9n,P) ECSETn} >1—
and )
limsup sup Prp{uyn (Hn,P> € C’SETn} < 1_a <l—a+p.

n—oo PeP,

Proposition 18
Under Assumptions 2-5, for 6, = argmaxg || X,,(9)|| and CS,?” the level 1 —a unbiased

hybrid confidence set based on initial confidence set C’S]ﬁ%,

i sup Prp{wn <9n,P> ccst (cH (9 P) - 1} - 1_—; EP{C,? (é;P) } —0,
for all €O,
liminf lgfnprp{ v (0P ) €CSEL h 21—
and o
hgf;pﬁélgnprp{uyn (en,P) c CSUn} gsimats
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D.2.3 Auxiliary Lemmas

To prove uniformity in norm-maximization settings, we rely on some of the lemmas in

Section D.1.3 along with a few additional results.

Lemma 11
Under Assumptions 3 and 5, for any sequence of confidence sets C'S,,, any sequence of sets
Cn(P) indexed by P, C,(P)= {(Xn,Y;L,E )GC (P )}, and any constant «, to show that

limsup sup Prp{uxn <9n;P> €CS,|C,(P)= 1} —oz’Prp{Cn(P) =1}=0

n—oo PeP,

it suffices to show that for all subsequences {ns} C{n}, {P.,} €P>*=x>2,P, with:

1. ¥(P,,)—=X*€S for S as defined in (41)

S

2. (x s (B )sbtvn, (B,)) = (W3 o1ty) Jor (1 ,15) finite
we have

lim Prpns {/lyms <9ns ;Pm) €CS,,|C.(Pn,)= 1} =aq.

To state the next result, for Z; , . the jth element of Zj , as defined in Lemma 7, let

us define " i
10(88) =5 (0) "S- [Brvns(8) S (09) ]
j=1
510 (09) 250 ) S [5r ) 0) S 03) 0,0
j=1

C2(00) = 2::{ Zss(0) - W(f))ﬂ,
Dy (é,e) =By, (é,e) 44, (é,e) Cun (é,e) ,

B i e GO W *W

,9

and



Based on these objects, let us further define

2o (é) - max{()e@:An(éﬁin%?; Z,n(é,e)zoGZ’" (éﬁ) ’9g@;An(é,@ﬁ%zm(é,g)wlfz’” (9’0) }

o (9’9) B max{eee;An(a,e)ni%,)jaz,”(é,e)>oGZ’" (é’9> ’9e@;An(é,e§i%§Zm(é,e)>oHZ’” (é,e) Czin @’9) }

ulz n <é,0) =min _ min ) Kz, (é,@) , _ min } Hyz, (é,@) Kzn (9,9)
’ 0€6:4,,(60,0)<0,D7,,(6,0)>0 0€0:4,,(0,0)=0,B7,(0,0)<0

uy, (é) =min min Kz, (@ ,0) , min Hyz, (éﬁ) .
' ee@:An(é,9)<0,DZ,n(é,9)zo 0€0:An (0,0)=0,Bz.(0,0)<0

Lemma 12
Under Assumptions 2 and 4, for any {ns} and {P,.} satisfying conditions (1) and (2) of

Lemma 11,
(Yn Sl (9) . (99) . (99) . (9))
.y (Y*,z*,é,ﬂ; (9) o (é,e) il (é,e) uZ (9)) :

where the objects on the right hand side are calculated based on (X*Y™*¥*) for

X* * *
( e > ~N(u*x").

To state our next two lemmas, we consider sets that can be written as finite unions

of disjoint intervals, Y* =UK | [Ek,uk}.

Lemma 13
For FTN(~;,u,Ey(9),yK ) the distribution function for ¢ with

CNg‘feyKagNNO'LJEY(e))?
Frn (Y (0);1,2y(0),Y%) is continuous on the set

{ (Y (0),1,Ey (0)) €R3 ¢! € [—00,00),
{

_ 2y (0) >0, ’uk—ﬁk‘>0,uk2€k2uk_l for all k 5.
Ek}kKZQG]R,{uk}lelGR,uKG(—oo,oo] v () ;
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To state the next lemma, let

(a(.Sy (0).Y5) cu(11.Zv (0), V7)) (63)
solve
Pr{¢ele,c)}=1-a
E[(H{Ce[acl]=(1-a)E[(]
for ¢ as in Lemma 13.

Lemma 14
The function (63) is continuous in (M,EY(G),)/K ) for Lebesque almost-every {Ek,uk }szl
on the set

{ (1,Sy (0)) ER2 0! € [—00,00),

, Yy (0) >0, F_ k) >0uF >0 >0kt k.
{gk}SZQGR,{uk}lelGR”UIKG(—OO,OO} Y( )> ;|Uz |> u = ~U fOT‘a }

Moreover, if we fix any (1,2y (0)) in this set, and fiz all but one element of {Ek,uk}le,

(63) is almost-everywhere continuous in the remaining element.
D.2.4 Proofs of Auxiliary Lemmas
Proof of Lemma 11 Follows by the same argument as in the proof of Lemma 5.

Proof of Lemma 12 Note that Assumption 4 along with condition (2) of Lemma 11

Xn, — X N(p* )
Yns d y* 22 )

while Assumption 2 implies that f]ns —p 2"

imply that

If we define

(A* (é,e) B (9,9) C (é,e) D3 (9,9) G (é,e) K (é,e) H (é,e))

as the analog of

<An (é,e) By (9,9) Con (9,9) D, (9,9) G (9,9) Ky (é,e) Hy, (é,e) )

based on (X*Y* ¥*), the continuous mapping theorem implies that

(Ans (é,e) Bz, (é,e) Cm, (é,e) ) 5 <A* (é,e) B (é,e) s (é,e))
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where this convergence holds jointly over all (9,9) €O? If A* (é,@) #0, another application

of the continuous mapping theorem implies that°

(Dz,ns (é,e) G (é,e) Ko, (é,e)) iy (D*Z (é,e) G (9,9) K (9,0) ) .

If instead A* <@,9) =0, note that

7 (0)=X*(0)— o (09)

550)=X; 5 (0) ve(0)=x; 5 (0) '(9).

Hence, in this setting
B (é,e) —9%y (9) By [X; (9) —X;(e)]
j=1

and condition (1) of Lemma 11 implies that PT{B} (é,@) :0} —0 for all ##6. Hence,
Pr{D} <é,9) >0} =1. Moreover, note that for b#0 and all ¢

i —b—/b2—4ac {19, it b<0
im =

a0 2a oo ifb>0

while

li

. —b+vb2—dac |oo ifb<O
m = .
-0 2a —< ifp>0

b

Hence, if A* (9,@) =0,

By, (é,e) /Dy (é,e)

24, <é,9)

—q—00-1{ By (0.0) >0} +H;(0.9)

30Note that we allow the possibility that <D Zn (9,9) D7 (9,0)) may be negative, so
(G Zn (9,9) Kzn (é,ﬁ)) and (G*Z <t§,9) K (@,9)) may be complex-valued.
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and

~ By, (9,9) +/Dyn (9,9)
A —>doo-1{B} (9,0) <o}+H; (9,9),
24, (9,9)
with the convention that co-0=0. Finally, another application of the continuous mapping
theorem shows that when A* (é,@) =0,

Hy,. (é,e) o H (é,e) .

Since all of these convergence results hold jointly over <9,é> € ©?, another application

of the continuous mapping theorem implies that

(0 (0) 2, (0.0) ik, (0.0) 42, (8) ) —a (€2 (9).2(0.0) ik (90) w2 (9) ).

Moreover,  is almost everywhere continuous in X*, so that (Y, 5. ,0,.) —a (Y*,5%,6),
where this convergence occurs jointly with that above. Thus, we have established the
desired result. [

Proof of Lemma 13 Note that we can write

s (s(2255) ()
Fr (Y (0);0.5y (0),Y%) = - - - . :
uf—p _ 0F—p
2 (FN (\/zyw)) b ( \/zy(m))
Hence, we trivially obtain continuity for ¥y (6)>0,Y(#) eR,peR, 0<> ", ‘uk —Kk’ < 00.

Moreover, as in the proof of Lemma 9 we retain continuity as we allow ¢! — —oc and/or

uf — 00, in the sense that for a sequence of sets y,ff with

ko, kK ko, kK
{Em,um}kzl — {Koo,uoo}kzl
with ¢}, =—o0 and/or uX =00 and the other elements finite,

Frn (Y(0):1,2y(0).Y5) = Fra (Y (0):.5y (6) VX)),
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Proof of Lemma 14 Note that

N {CE[%H:Zkl{ukz@,cuzek}(FN(u;g;_(—;)_FN(@%))
() (7))

ElC{¢e .} =E[CICE el Pri{C €leicu]}

while

where

ElCIcelascdl=ptvEr(0)

S zanze) (1 G2 ) - ()

zkl{ukzchcuzgk} (FN(uk/\Cuﬂ _
Sy (0)

Thus,

E[a{ce[cz,cu}}]qul{Uk>cl’C“>€k}gFN(%) _FN(W))
o) (%)

VEy (©0)
. " Cove—p \ uFAcy—p
Zkl{u chvcuzg }(fN( 25/(9)) fN<‘/Zy(9)>>

5
7N
}:

+4/ Ey(e)

and

(]= (0) .
I () ()

Using analogous reasoning to that in the proof of Lemma 10, we can write (63) as the

(/S (0).97) =0 (64)

solution to

for

g (cw,\/ Ey(e),yK> =
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S b > e, > 00} (FN <“\/AZW§‘> —Fy (%) —(1-a) (FN (jﬁ) —Fy <\;Ey+;)>>>
Sttt 2z (i (Gt ) - (2t ) ~0-0 (v (S ) (7))
Note that by construction

(cu\/yy) (C 10,7/ Sy (0), V5 — )

which implies that

(a(.Sy (0). V") cu(11.2y (0),Y7) ) = (1+c (0,5 (0), Y5 — 1) ot (0,54 (), Y5 — 1) )

so to prove continuity it suffices to consider the case with p=0.
Next, note that g(c;O,\ /Yy (0), VK ) is almost everywhere differentiable with respect

to (¢,c.), with derivative

k kY 1 < k k 1 Lo
Sl{uF > >¢ }\/gy(e)fN(\/zy(9)> Spl{uf>e, >0 }\/Ey(e)fN(\/zy(e))

k C k k Cu Cu
Zkl{u > >/ }2 (9) \/2;(9) Zkl{u >c, >l }EY(H)fN Vo 0)

though it is non-differentiable if ¢, € {uk,ﬁk} or ¢ € {uk,ﬁk} for some k.

Note, however, that if we fix all but one element of { ﬁk,uk},i; and change the remaining
element, the set of values for which there exists a solution ¢ to (64) with ¢, € (¢ ,u7) and
qe (Ek,uk) for some j,k has Lebesgue measure one by arguments along the same lines as
in the proof of Lemma 10. Likewise, the set of values such that there exists a solution ¢
to (64) with ¢;=¢, has Lebesgue measure zero as well. The implicit function theorem thus
implies that (63) is almost-everywhere continuously differentiable in the element we have
selected. Since we can repeat this argument for each element of {Ek ,uk}szl, we obtain that
(63) is continuously differentiable in {Ek ,uk}szl Lebesgue almost-everywhere. Moreover,
as in the proof of Lemma 10 the form of (63) implies that the same remains true if we

take /! — —o0 or uff — oo.
D.2.5 Proofs of Uniformity Results

Proof of Proposition 14 As in the proof of Proposition 9, note that

ﬂa,nZMY,n (émP) <:>///Y,n (9717P> EC(SU,—,n
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for 'Sy, = (=00, fla]. Hence, by Lemma 11, to prove that (59) holds it suffices to
show that for all {ns} and {P,_} such that conditions (1) and (2) of the lemma hold with
anl{én:é}, we have

lim Prp, { fivm, (en ;Pns> eCSp—n b, = é} —a (65)

5—00

To this end, note that for Fry (Y (6);u,3y (0),YX) as defined in the statement of Lemma

13, the estimator fi,,,, solves

Fry (Yn @n) ;Min,n <én> 7yn) =1—a,

Vo= N 15 (0) k(00) |0 |2,,(00) 2, (8)] (66)

0€0:4,(0,0)>0,D7,(6,0)>0

for

(see Proposition 4 in the main text). The set ), can be written as a finite union of disjoint
intervals by DeMorgan’s Laws.
The cdf Fry (Yn (971) ;/L,ixn <§n) ,yn) is strictly decreasing in p as argued in the proof

of Proposition 8, and is increasing in Y, (5’) Hence, flon> ttyn <én;P> if and only if
Fr (Yo (00 )ty (00:P) Sy (80) D) 21 =0

Lemma 12 shows that (Y}L (9%) ,iyms <9ns> ,yns,éns) converges in distribution as s — 00,3!

so since Fry is continuous by Lemma 13 while argmaxg||X*(6)|| is almost everywhere

)

continuous for X*, the continuous mapping theorem implies that

(FTN (Yns (éns) MY ng (éﬂpns) 7§Y,n ( ns 7yn5>7 { é
G e ()5 5
where Y* is the analog of ), calculated based on (X*)Y™* ¥*).

Since we can write

PTpns {FTN (Yns (ém) MY, (95Pn5> aiY,ns (éns) 7yns> > 1_a|9ns :é}

31Since ), can be represented as a finite union of intervals, we use ),, —4 )™ to denote joint convergence
in distribution of (i) the number of intervals and (ii) the endpoints of the intervals.
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Y

EPM |:1{én =0 }

and by construction
Frn (Y (8) v, (B:P, ) B3 (9).70) =0~ V0.1,
and Pr{=0) =p" >0 by Assumption 5, v ths have tha
Pre, {Brx (Yo, (0. )ity (0:n.) Sy, (.. . ) 21-0lf, =8

e B (v (0)i (3).55 (9) ) 21—l =0} =a,
which verifies (65).
Since this argument holds for all fe O, and Assumptions 3 and 4 imply that for all
0,0 €O with 640,
lim sup PTP{HXn(Q)H - HX“ (9) H}:o,

n—=Opep,
Lemma 6 implies (60). OJ
Proof of Corollary 3 Follows from Proposition 14 by the same argument used to prove

Corollary 1. O
Proof of Proposition 15 Note that by the definition of C'Sy,,

Hyn <9n;P) €eCSyp
e ) (37) 1)) o () () )

where ), is as defined in (66) while (¢;(14, 2y (0).Vn),cu(16, 2y (0),Vy)) are as defined imme-
diately before Lemma 14, after replacing Y with J,.

By Lemma 11, to prove that (61) holds it suffices to show that for all {n} and {F,,}
satisfying conditions (1) and (2) of Lemma 11,
lim PTpn5 {,U,y,ns (éns> S CSU,n5

§—00

9nszé}:1—a.
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Thus, it suffices to show that

[Cl (/JJY,ns (9>Pns) viYms (éns) 7ynS)7 9% 2 G

lim Prp, ¢ Y, <@ns> € . ~ .
s7ro0 Cy (,uY,ns (97Pns> ;EY,nS (Qng> 7yns>}
To this end, note that by Lemma 12,

(VoD S 1, =0} ) = (v 320 1{0=0}).

and thus, by Lemma 14 and the continuous mapping theorem, that3?

(v ()cz(wns(é Po) Sy, (0): 90 ) a1 (8.2, ) Svin, (8) D, ) 18, =0})
= (v (0) s (0).5 @NWMW@ﬁﬁwgﬁﬁﬂ

By construction,

(v () <o )95 ) s )75 9) =3} =1

and Y™ (é) |é:é,y* follows a truncated normal distribution, so

Py (0) =l (9) 55 () 37) p=r{y (8) = o (7) 35 (9) ) }

Hence,

0.

[Cl (MY,ns (97Pns> viYns ( ns) 7ynS)7 0 ~

e (i (3.2 ) S g ]
b

_ Brn [1{%0s (s J€fer(12v.0s (B.Prs ) Bvins (B ) Vs ) (1175 (B:Prs ) S (B ) Vs )| 140, =8} ]

[1{0n~0}]
B[y (0)cler (5 (0) 25 (0) ) eu (13 (8)- 55 (0)- ) [}1{0=0}] _ | _ |

Prp, { Y, <9n> e

as we wanted to show, so (61) follows by Lemma 5.
Since this result again holds for all § € O, (62) follows immediately by the same

argument as in the proof of Proposition 14. [J

32Note that when 0 = é, Y* is either equal to the real line, or contains at least one interval with a
continuously distributed endpoint. Hence, the almost-everywhere continuity established in Lemma 14
is sufficient for us to apply the continuous mapping theorem.
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Proof of Proposition 16 Follows by the same argument as in the proof of Proposition
11. O

Proof of Proposition 17 Follows by an argument along the same lines as in the proof
of Proposition 12, using Lemmas 11, 12, and 13 in place of 5, 8, and 9, and using the
conditioning event {Y,,(6,) € Y71 ={Y;(6,) €V, }N {,qu (én,Pn) € C’S]@’n}. O

Proof of Corollary 4 Follows by the same argument as in the proof of Corollary 2. [J

Proof of Proposition 18 Follows by the same argument as the proof of Proposition

17, using Lemma 14 rather than Lemma 13. [J

E Additional Simulation Results for Stylized Example

In the stylized example discussed in Section 2 of the main text, we focus on the median length
of confidence sets and the median absolute error of estimators. In this section, we report
results for other quantiles, in particular that 7-th quantiles for 7€ {0.05,0.25,0.5,0.75,0.95}.

Figures 6 and 7 show the unconditional quantiles of the length of the 95% confidence
sets C'Sy and C'Sgr, for cases with |©|=2, 10, and 50 policies. In each case and for each
7€{0.05,0.25,0.5,0.75,0.95}, the 7-th quantile is monotonically decreasing in u(6;)—p(0-1).
Noting the different scales of the y-axes, we see that the upper quantiles grow as the
number of policies increase, particularly for small p(6;)—p(6_1).

Figures 8 and 9 show the unconditional quantiles of the length of 95% hybrid confidence
sets C'SH and CSH, with 3=0.005. Compared with Figures 6 and 7, the upper quantiles
are much smaller, especially for small 1(61)—p(6_1). This substantial reduction in length
directly comes from the construction of the hybrid confidence sets, which ensures that
CSH and CSE, are contained in C'S5. For the case of |©] =50, even the 95% quantiles
of the length of C'SH and C'SH,. are shorter than the length of C'Sp uniformly over the
range of u(61)—pu(0_1) values we consider.

Figures 10, 11, and 12 examine the performance of point estimators for ,u(@) They plot
the unconditional quantiles of the absolute error of the conventional estimator, the median
unbiased estimator, and the hybrid estimator, respectively. In spite of the severe median
bias shown in Figure 1 in the main text, the distribution of the conventional estimator is
relatively concentrated compared to that of the median unbiased estimator. In particular,
the upper quantiles of the absolute errors of ji1/, are very large for small ju(6;) —p(6-1)
(similar to the quantile plots of the length of C'Syy and C'Sgr shown in Figures 6 and 7).

At the cost of a small median bias, the hybrid estimator substantially reduces the
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absolute errors (Figure 12). The 95% quantile of the absolute errors of the hybrid estimator
is overall similar to the 95% quantile of the absolute errors of the conventional estimator
with a notable exception of the case of 2 policies. In contrast, for |©| = 10 and 50, and
for quantiles other than 95%, the hybrid estimator outperforms the conventional estimator
over a wide range of values for 14(6;)—p(6_1). These numerical results show that the hybrid

estimator successfully reduces bias without greatly inflating the variability of the estimator.

F Additional Results for EWM Simulations

Tables 8 and 9 provide the ratios of the 5%, 25" 50t", 75" and 95" quantiles of the lengths of
CSgr, CSy, CSH, and C'SH relative to the corresponding length quantiles of C'Sp for the
EWM data-calibrated designs described in Section 6 of the main text. Looking at the upper
quantiles in Table 8, we can see that the conditional confidence sets C'Sgr and C'Syy can be-
come very wide when the maximal element of p1x is not well-separated from the others. On
the other hand, Table 9 shows that the hybrid approach is very successful at mitigating this
problem. Indeed, C'SE. and C'S{ dominate C'Sp across nearly all quantiles and simulation
designs considered. Table 10 reports the same quantiles of the studentized absolute errors

of j1 1 fi and Y(@) Here we can see that, although the hybrid estimator fi{’ does not dom-
2 2

inate the conventional estimator Y () according to this performance measure, it does domi-
nate [ 1 across all quantiles and DGPs considered. This dominance is especially pronounced
at higher quantiles. The underlying message here is a bit more nuanced than that which

applies to the confidence sets: when minimal bias is desired, i is the preferred estimator.
2

Table 8: Ratios of Length Quantiles Relative to C'Sp

CSgr Quantile C'Sy Quantile
DGP 5th o5th  5oth  75th ggth 5th o onth  5th - 75th g5th
Class of Threshold Policies
(i) 0.75 132 1.17 197 888 0.75 148 127 194 7.17
(ii) 0.74 0.75 0.75 0.75 076 0.74 075 075 075 0.75
(iii) 0.74 0.74 0.82 122 330 074 07 093 145 3.65
Class of Interval Policies

(i) 1.11 141 154 231 1078 127 154 1.65 191 872
(ii) 0.63 0.63 063 064 064 0.63 0.63 0.64 0.64 0.64
(iii) 066 0.71 078 114 439 0.70 0.76 0.88 136 3.61
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Figure 6: Quantiles of the length of 95% conditionally UMAU confidences sets C'Sy.
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Figure 10: Quantiles of the absolute error of the conventional estimator (i.e. of |X(8)—u(8))).
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Figure 12: Quantiles of the absolute error of the hybrid estimator (i.e. of | ﬂ{‘;Q—u(é)D with
£5=0.005.
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Table 9: Ratios of Length Quantiles Relative to C'Sp

5th

CSH. Quantile

2 5th

50th 75th 95th 5th 25th

50th

CSH Quantile

75th

9 5th

0.76
0.76
0.77

0.75
0.64
0.67

0.85
0.76
0.78

0.76
0.65
0.72

Class of Threshold Policies

0.63 093 0.99 0.76 0.77
0.76 0.77 0.77 0.76 0.76
0.84 092 0.98 0.79 0.81

Class of Interval Policies

0.77 0.85 0.88 0.63 0.74
0.65 0.65 0.65 0.64 0.65
0.76 0.85 0.89 0.69 0.76

0.64
0.76
0.89

0.76
0.65
0.81

0.95
0.76
0.96

0.86
0.65
0.88

1.01
0.77
1.00

0.89
0.65
0.92
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G Additional Results for Tipping Point Simulations

Tables 11 and 12 provide the ratios of the 5%, 25", 50, 75" and 95" quantiles of the
lengths of CSpy, CSy, CSH. and CSH relative to the corresponding length quantiles
of C'Sp for the tipping point data-calibrated designs described in Section 7 of the main
text. The main takeaways from these tables are analogous to those that apply to tables
8 and 9 for the EWM data-calibrated designs. Table 13 reports the same quantiles of the
studentized absolute errors of fi 1, [ﬂ; and Y(@) Again, the main features of this table are
similar to those of Table 10. However, note that in this application, the hybrid estimator
[ﬂ; not only exhibits minimal bias, in contrast to the standard estimator Y'(6), but also

exhibits lower studentized absolute errors across most quantiles and designs considered.

Table 11: Ratios of Length Quantiles Relative to C'Sp

CSgr Quantile C'Sy Quantile
DGP 5th - o5th  pth  75th gnth - 5tho o g5th - g5oth  g5th g5t
Chicago Data Calibration

(i) 088 113 133 154 187 092 120 1.38 1.58 1.89

(ii) 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.72 0.74

(iii) 0.74 074 082 122 330 0.74 0.76 093 145 3.65
Los Angeles Data Calibration

(i) 092 127 126 099 0.76 094 131 129 1.00 0.77

(i) 0.68 0.68 0.68 0.68 0.68 0.67 0.68 0.68 0.68 0.69

(iii) 0.68 0.68 0.68 0.79 212 0.68 0.68 0.70 0.89 232

Table 12: Ratios of Length Quantiles Relative to C'Sp

CSE, Quantile CSfl Quantile
DGP sith - 25th 5oth 75t g5th Bt o5th 5ot 75t g5t
Chicago Data Calibration
(i) 0.69 091 094 093 096 0.60 090 094 0.93 0.96
(i1) 0.74 0.74 074 0.74 0.74 0.74 0.74 0.74 0.74 0.75
(iii) 0.75 075 0.82 093 097 0.76 0.78 087 094 097
Los Angeles Data Calibration

(i) 073 091 086 082 076 0.65 091 085 0.82 0.76
(ii) 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.70
(iii) 0.69 0.69 0.70 0.79 091 0.68 0.69 0.72 084 0092
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G.1 Additional Results for Split-Sample Approaches

Table 14 provides the ratios of the 5, 25" 50", 75" and 95" quantiles of the length of our
newly proposed equal-tailed split-sample confidence set C'S4 relative to the corresponding
length quantiles of the conventional split-sample confidence set C'Sgg for each of the tipping
point data-calibrated designs described in Section 7 of the main text. Since every entry
in this table is less than one, we can see that the dominance result illustrated in Table
7 of the main text is further reinforced: the length quantiles of C'Sgy are shorter than
those of C'Sgg across all quantiles and simulation designs considered. Table 15 reports
the same quantiles of the studentized absolute errors of our newly proposed split-sample
estimator ﬂ‘;s’ ! and those of the conventional split-sample estimator YQ(@I). Though both
of these estimators are median unbiased for iy (6'), ﬂg&% dominates Y2(6') in terms of

studentized absolute errors across all quantiles and simulation designs considered.

Table 14: Ratios of Length Quantiles of CSg‘S Relative to C'Sgg

Quantile
DGP 5th o5th - poth - 75th g5th
Chicago Data Calibration

(i) 0.69 079 083 0.84 0.87

(ii) 0.57 0.58 0.58 0.58 0.58

(iii) 0.59 059 0.64 0.73 0.86
Los Angeles Data Calibration

(i) 0.74 085 0.78 0.68 0.57

(i) 0.57 0.58 0.58 0.58 0.58

(iii) 0.57 0.58 0.59 0.66 0.81

Table 15: Quantiles of )ﬂ—uy(@l)‘/\/ﬁy(@)l

[i5 1 Quantile Y2(0') Quantile
DGP 5 25 50 75 95t 5 o5 B 7t g5
Chicago Data Calibration

(i) 0.05 027 057 095 1.61 0.06 031 067 1.15 1.97

(ii) 0.04 0.18 0.38 0.65 1.13 0.06 0.31 066 1.14 1.96

(iii) 004 021 044 077 138 0.07 032 0.67 1.15 2.00
Los Angeles Data Calibration

(i) 0.05 025 055 093 156 0.07 032 069 116 1.96

(i) 0.04 018 0.39 066 1.13 0.06 031 067 1.15 1.96

(iii) 0.04 020 042 071 125 0.06 032 068 1.16 1.98
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