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1 Introduction

We consider estimation of a demand model with nonseparable unobserved heterogene-

ity where the impact of price and income on household demand is the focus of interest.

The analysis starts from the observation that datasets that are commonly used in house-

hold demand analysis often suffer from a particular type of measurement error in the

covariates: Instead of observing the true price a household faces, the researcher observes

a regional average price. Thus, only the average price in a specified group (e.g., a county)

is observed. The resulting errors in the price variables are called Berkson errors.

Berkson measurement errors occur frequently in applied econometric analyses in which

information on relevant covariates is not collected directly from households in a survey

but is taken from an alternative data source and assigned to households based on their

location. While covariates assigned in this way will often be highly correlated with the

true covariates, they will not be identical as long as there is some variability in the

covariate within the specified locality. Textbook analysis of this kind of model often

focuses on the case when the model is linear in the covariate and the error is additive.

In this case, Berkson errors do not lead to a bias. This is sometimes taken to mean that

Berkson errors are unlikely to cause significant bias in applied analysis, compared to say

classical measurement error.

In this paper, we argue that understanding the role of Berkson measurement errors in

demand estimation is of growing relevance. The focus on understanding heterogeneity in

responses motivates researchers to investigate behavior at different points in the distri-

bution of unobserved heterogeneity, see e.g. Browning and Carro (2007). Moreover, re-

searchers are increasingly interested in nonlinear models with non-separable unoberserved

heterogeneity, see e.g. references in Cameron and Trivedi (2005); Blundell et al. (2012,

2017). Better data and increased computational power facilitate the study of models

that do not impose linearity restrictions and, instead, allow flexible functional forms with

a high degree of potential nonlinearity. Accordingly, nonlinear models are increasingly

important in applications. In nonlinear models, Berkson errors are not innocuous and

require careful treatment.
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This paper develops a method for estimating a nonseparable demand model in the

presence of Berkson errors, using a Maximum Likelihood Estimator (MLE). The standard

quantile demand approach is inconsistent when prices are subject to Berkson errors. The

maximum likelihood procedure we propose estimates all quantiles simultaneously, and a

monotonicity constraint is used to ensure that the estimated quantiles do not cross. This

estimator enables us to contrast the resulting estimates to results obtained assuming the

absence of Berkson errors.

Delaigle et al. (2006) show the demand function is unidentified nonparametrically un-

less either the distribution of the Berkson error is known or can be estimated consistently

from auxiliary data. Alternatively identification can be delivered if there is an instrument

that is related to the true price in a suitable way (Schennach (2013)). We choose to follow

the first of these approaches and use auxiliary data from external sources to inform us

about the distribution of the Berkson error. We then assess the sensitivity to Berkson

errors across different levels of the Berkson error variance. Finally, we note there is a

potential for gasoline prices to be endogenous. To address this we develop a test for the

exogeneity of covariates in the presence of Berkson errors.

We motivate and illustrate our analysis with an application to gasoline demand.

Household travel surveys frequently assign gasoline prices from external sources based on

the location of the household, leading to the presence of Berkson errors. A long-standing

body of work has documented the importance of allowing for potential non-linearities in

household gasoline demand (Hausman and Newey (1995); Yatchew and No (2001); Blun-

dell et al. (2012)). The role of unobserved heterogeneity motivates a quantile modelling

approach (Blundell et al. (2017); Hoderlein and Vanhems (2018)). These considerations

suggest that nonlinearity plays an important role in this appliciation, highlighting the

importance of Berkson errors in applied research and the need to treat them carefully.

We find that accounting for Berkson errors is quantitatively important. For example,

Deadweight Loss measures derived from our estimates differ substantially when we allow

for Berkson errors. In previous work we have investigated the role of shape restrictions

in semiparametric or nonparametric estimation settings (Blundell et al. (2012, 2017)). In
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a setting with Berkson errors, we find that imposing shape restrictions, in the form of

the Slutsky inequality, reduces the sensitivity of the estimates to the presence of Berkson

errors.

The paper proceeds as follows. In the next section, we outline the demand model and

introduce Berkson errors. Section 3 develops the MLE estimator. Section 4 presents the

exogeneity test. We describe household gasoline data and the price data in Section 5.

We also document how we use the gasoline price information from the GasBuddy website

(www.gasbuddy.com) to provide external information on the distribution current local

gasoline prices. The estimation results for the gasoline demand responses to prices and

for deadweight loss welfare measures are presented in Section 6. Section 7 concludes.

2 Model

In this section we first outline the nonseparable demand model in the absence of

Berkson errors. We then introduce Berkson errors into the model.

2.1 The Demand Model without Berkson Errors

To set the notation consider the demand function with nonseparable unobserved het-

erogeneity

Q = G(P, Y, U)

where Q is the quantity demanded, P the price, Y household income, and U unobserved

heterogeneity. We assume that U is a scalar random variable that is statistically inde-

pendent of (P, Y ), and that G(P, Y, U) is monotone increasing in its third argument.1

We further assume without further loss of generality that U ∼ U[0, 1].

Under these assumptions, the α quantile of Q conditional on (P, Y ) is

Qα = G(P, Y, α) ≡ Gα(P, Y ).

1The assumption of scalar unobserved heterogeneity (U) is restrictive but necessary to achieve point
identification and to do welfare analysis. Hausman and Newey (2017) and Dette et al. (2016) discuss
models with multi-dimensional unobserved heterogeneity. We address the possibility that P is endoge-
nous in Section 4.
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That is, the the conditional α quantile of Q recovers the demand function G, evaluated

at U = α.

2.2 The Demand Model with Berkson Errors

Suppose now that we do not observe the true price at which a transaction took place,

which we refer to as P ?. Instead, we observe a county average price P that is related to

P ? by

P ? = P + ε,

where ε is an unobserved random variable, independent of P . The resulting errors in

variables are called Berkson errors (Berkson (1950)).

With Berkson errors, the demand model becomes

Q = G(P + ε, Y, U).

Berkson errors are common in economics data. For example, relevant covariates may not

be surveyed or measured at the level of the household, but are instead approximated by

a regional average from an external source. Importantly, Berkson errors in variables are

different from classical errors in variables, where P = P ? + ε, with ε independent of P ?.

The function G is unidentified nonparametrically unless either the distribution of ε is

known or can be estimated consistently from auxiliary data (Delaigle et al. (2006)) or,

alternatively, there is an instrument Z that is related to the true price P ? in a suitable

way (Schennach (2013)). In this work we follow the first of these approaches, and use

auxiliary data to inform us about the distribution of the Berkson error.
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3 Estimation

3.1 A Maximum Likelihood Estimator

In this section we develop the Maximum Likelihood Estimation approach. The model

is

Q = G(P + ε, Y, U); U ∼ U[0, 1].

Therefore,

P (Q ≤ z|P, Y ) = P (G(P + ε, Y, U) ≤ z|P, Y ) = P (U ≤ G−1(P + ε, Y, z)|P, Y ) (1)

=

∫
G−1(P + ε, Y, z)fε(ε)dε

= EεG
−1(P + ε, Y, z),

where G−1(∙, ∙, z) is the inverse of G in the third argument.

The left-hand term of equation (1), P (Q ≤ z|P, Y ), is identified by the sampling

process. G−1 and G are identified nonparametrically if and only if G−1 is determined

uniquely by

P (Q ≤ z|P, Y ) = EεG
−1(P + ε, Y, z).

This requires knowledge of fε(ε); Delaigle et al. (2006) present a similar identification

result for a conditional mean model.2

The truncated series

G−1(P + ε, Y,Q) ≈
J∑

j=1

θjΨj(P + ε, Y,Q) (2)

provides a flexible parametric approximation to G−1. In the truncated series, J is the

(fixed) truncation point, the Ψj ’s are basis functions and the θj ’s are Fourier coeffi-

cients. The data {Qi, Pi, Yi : i = 1, ..., n} are a random sample of n households. The

log-likelihood function for estimating parameter vector θ is the logarithm of the proba-

2Note that the identification condition can be formulated as a version of the completeness condition
of Nonparametric Instrumental Variables (NPIV) models. See Newey and Powell (2003).
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bility density of the data. This is:

log L(θ) =
n∑

i=1

log
Jn∑

j=1

θj

∫
∂Ψj(Pi + ε, Yi, z)

∂z

∣
∣
∣
∣
z=Qi

fε(ε)dε

Maximum likelihood estimation of θ consists of maximizing log L(θ) subject to the fol-

lowing constraints: first, that G−1 is non-decreasing in its third argument, and second,

0 ≤ G−1 ≤ 1. The maximum likelihood procedure estimates all quantiles simultaneously,

and by imposing the monotonicity constraint above ensures that the estimated quantiles

do not cross.

3.2 Shape Restrictions

In some of the estimates we also impose the Slutsky shape restriction from consumer

theory. Assuming quantity, income and prices for household i are measured in logs, and

Si reflects the budget share of household i, the Slutsky constraint, evaluated at (Pi, Yi, Ui)

can be written as

∂Q

∂P
(Pi, Yi, Ui) +

∂Q

∂Y
(Pi, Yi, Ui) Si ≤ 0.

From U = G−1(P, Y,Q), we re-write the price and income effect in terms of G−1, so that

the Slutsky condition for household i is

∂G−1

∂P
(Pi, Yi, Qi) +

∂G−1

∂Y
(Pi, Yi, Qi) Si ≥ 0. (3)

The estimation then proceeds by maximizing the log-likehood as before, adding the con-

straint (3) for a set of households in the data. For the presentation of the results, we

numerically invert the estimated function Ĝ−1 to obtain the corresponding demand func-

tion Ĝ.
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4 An Exogeneity Test

A common concern in demand estimation is the possible endogeneity of the price

variable, where local prices are correlated with consumer preferences (see Blundell et al.

(2012, 2017)). If a variable W is available as an instrument for the price, the researcher

can test for the presence of endogeneity. In a nonparametric or flexible parametric model,

such a test is likely to have better power properties than a comparison of the exogenous

estimate with an instrumental variables (IV) estimate. We therefore develop an exogene-

ity test, which takes account of the presence of Berkson errors. In this section we state

the test statistic and asymptotic approximation to its distribution. The corresponding

derivations can be found in Appendix A.2.

Assume that the instrument, W , satisfies

P (U ≤ τ |W,Y ) = τ .

Let G−1
EX denote the inverse demand function G−1, described in Section 3, under the null

hypothesis H0 that P is exogenous. Under H0

Pr
[
G−1

EX(P + ε, Y,Q|W = w, Y = y) ≤ τ
]

= E

∫
I
[
G−1

EX(P + ε, Y,Q|W = w, Y = y) ≤ τ
]
fε(ε)dε = τ (4)

for any (y, w) in the support of (Y,W ). The exogeneity test statistic is based on a sample

analog of this relation. Let fY W denote the probability density function of (Y,W ). Let K

be a probability density function that is supported on [−1, 1] and symmetrical around 0.

Let {hn : n = 1, 2, ...} be a sequence of positive numbers that converges to 0 as n → ∞.

K is called a kernel function and {hn} is called a sequence of bandwidths. Denote the

data by {Qi, Pi, Yi,Wi : i = 1, . . . , n}. Let f̂Y W be a kernel nonparametric estimator of

fY W :

f̂Y W (y, w) =
1

nh2
n

n∑

i=1

K

(
Wi − w

hn

)

K

(
Yi − y

hn

)

.
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Let Ĝ−1
EX denote the MLE of G−1

EX . Define

Sn(y, w) =
1

nh2

n∑

i=1

{∫
I
[
Ĝ−1

EX(Pi + ε, Yi, Qi) ≤ τ
]
fε(ε)dεK

(
Wi − w

hn

)

K

(
Yi − y

hn

)}

.

Sn(y, w)/f̂Y W (y, w) is a sample analog of the integral expression in (4). The test statistic

is

Tn = nh2
n

∫ [
Sn(y, w) − τ f̂Y W (y, w)

]2
dwdy.

To obtain an asymptotic approximation to the distribution of Tn, assume without loss

of generality that (y, w) ∈ [0, 1]2. Let {λ̂j : j = 1, . . . , n} denote the eigenvalues of the

operator

C(y1, w1; y2, w2) = τ(1 − τ)f̂Y W (y1, w1)

∫
K(ξ)K(ξ + δW )K(ζ)K(ζ + δY )dξdζ.

Let {Ln : n = 1, 2, . . . } be an increasing sequence of positive constants such that Ln → ∞

and n−1/2L
3/2
n → 0 as n → ∞. Under regularity conditions that are stated in the

appendix,

∣
∣
∣
∣
∣
∣
Tn −

Lj∑

j=1

λ̂jχ
2
j

∣
∣
∣
∣
∣
∣
→p 0

as n → ∞, where the χ2
j s are independent random variables that are distributed as

chi-square with one degree of freedom. The distribution of Tn can be approximated by

that of

ω =
Ln∑

j=1

λ̂jχ
2
j .

The quantiles of the distribution of ω can be estimated with any desired accuracy by

Monte Carlo simulation.
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5 Data on Demand and Prices

5.1 The household gasoline demand

The data are from the 2001 National Household Travel Survey (NHTS), which surveys

the civilian noninstitutionalized population in the United States. This is a household

level survey conducted by telephone, and complemented by travel diaries and odometer

readings.3 These data provide information on the travel behavior of selected households.

We focus on annual mileage by vehicles owned by the household.

In order to minimize heterogeneity in the sample, the following restrictions are im-

posed: We restrict attention to households with a white respondent, two or more adults,

and at least one child under age 16. We drop households in the most rural areas, where

farming activities are likely to be particularly important. We also omit households in

Hawaii due to its different geographic situation compared to the continental states. House-

holds without any drivers or where key variables are not observed are excluded, and we

restrict attention to gasoline-based vehicles (excluding diesel, natural gas, or electricity

based vehicles).4 The sample we use is the same as in Blundell et al. (2017).

A key aspect of the data is that although odometer readings and fuel efficiencies are

recorded, price information is not collected at the household level, reflecting the expense in

collecting purchase diaries and the resulting burden for respondents (EIA (2003); Leckey

and Schipper (2011)). Instead, in the NHTS gasoline prices are assigned the fuel cost

in the local area, based on the location of the household (EIA (2003)). In Section 5.2

we document that households face price variability within local markets, and we use this

information to assess the extent of Berkson errors.

The resulting sample contains 3,640 observations. Table 1 presents summary statis-

tics. The reported means of our key variables correspond to about 1,250 gallons of gasoline

per year, a gasoline price of $1.33, and household income of about $63,000. For reference,

Table 2 presents baseline estimates of price and income elasticities from a log-log model

3See ORNL (2004) and Blundell et al. (2012) for further detail on the survey.
4We require gasoline demand of at least one gallon, and we drop one outlier observation where the

reported gasoline share is larger than 1.
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Table 1: Sample descriptives

Mean St. dev.

Log gasoline demand 7.127 0.646
Log price 0.286 0.057
Log income 11.054 0.580

Observations 3640

Note: Table presents mean and standard deviations. See text for details.

of gasoline demand. In the mean regression model, we find a price elasticity of -0.83 and

Table 2: Log-log model estimates

α = 0.25 α = 0.50 α = 0.75 OLS
(1) (2) (3) (4)

log(p) -1.00 -0.72 -0.60 -0.83
[0.22] [0.19] [0.22] [0.18]

log(y) 0.41 0.33 0.23 0.34
[0.02] [0.02] [0.02] [0.02]

Constant 2.58 3.74 5.15 3.62
[0.25] [0.21] [0.25] [0.20]

N 3640 3640 3640 3640

Note: Dependent variable is log gasoline demand. See text for details.

an income elasticity of 0.34, similar to the elasticities reported in other studies of gasoline

demand (see further Blundell et al. (2017)). Looking across quantiles, we find the lower

quantile households to be more sensitive to changes in prices and income.

In the estimation below, the function G−1 is specified as a product of three Chebyshev

polynomials, one each for P , Y , and Q. We use cubic polynomials in price and income,

and a 7th-degree polynomial in quantity. The high-degree polynomial in quantity enables

us to estimate differences in the demand function across quantiles of the distribution of

unobserved heterogeneity.5 When we impose the Slutsky constraint, using the observed

data points in the sample, we restrict attention to those data points broadly in the areas

5We also trim the top and bottom 1 percent of the quantity distribution.
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of the data which we are focusing our analysis on below.6

5.2 Dispersion in local gasoline prices

In this subsection, we present evidence on the within-market dispersion of gasoline

prices. To gain insight into this, we draw on data from the gasoline price information

website www.gasbuddy.com. Gasbuddy operates a website (and mobile app) where users

report current local gasoline prices, and this information is then made available to other

consumers. Atkinson (2008) compares gasoline price data from the same website for

Canada with externally collected data and finds the crowdsourced data to be reliable. 7

To provide a description of the within-market price variability, we select seven counties

in the U.S. as examples, and note the reported prices as shown on the website’s map for

each county on a given day. This results in a sample of 5,953 price observations. 8

While it is possible that a limited amount of measurement error may result from

the manual transcription of the gas prices shown on a map, this is unlikely to bias the

resulting estimates systematically. Figure 1 shows a histogram of the gas prices collected,

after removing county fixed effects. The price deviations are concentrated between −0.1

and +0.1, and the histogram suggests that a normal approximation of the within-market

dispersion broadly captures the shape of the distribution. (Figure 2 shows individual

histograms for each of these seven counties.) Table 3 shows the standard deviations of

(log) prices, across the seven counties studied; these standard deviations vary between

0.024 and 0.043, with a weighted average of 0.033. In our analysis below, we therefore

use a normal distribution with a standard deviation of 0.033 for the distribution of the

Berkson error. Comparing this value to the reported standard deviation of 0.057 in the

NHTS price variable (see Table 1) shows that a significant amount of price variability

6For this purpose, we add restrictions for data points between the 10th and the 90th percentile of
the unconditional demand data, 0.2 to 0.36 in the log price dimension, and household income between
20,000 and 90,000 USD.

7In particular, 78.6% of reported prices were correct at some point during the relevant day, and, for
price reports which differed, the mean difference was only 0.8 cents per litre (relative to a price level
of around 100 cents per litre); furthermore, deviations were equally likely to be positive as negative,
suggesting that there is no systematic tendency of over- or underreporting (Atkinson (2008)).

8The counties selected for this exercise were Cook County (IL), Dallas County (TX), Harris County
(TX), Los Angeles County (CA), Maricopa County (AZ), Miami-Dade County (FL), and Queens County
(NY). Data collection took place July 2014.
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Figure 1: Histogram of GasBuddy price distribution (selected counties)
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Note: Histogram shows distribution of gasoline prices collected for selected counties, after removing

county effects. See text for details.

occurs within local markets, suggesting that the Berkson error is an important feature of

the price variation in this sample.

5.3 Gasoline price cost shifter

To examine the exogeneity of prices we require a variable which is correlated with

gasoline prices, but uncorrelated with the unobservable type of the household. Building

on earlier work (Blundell et al. (2012)), we use transportation cost as a cost shifter. This

reflects that the cost of transporting the fuel from the supply source is an important

determinant of prices.

We measure transportation cost with the distance between one of the major oil plat-

forms in the Gulf of Mexico and the state capital. The U.S. Gulf Coast region accounts

for the majority of total U.S. refinery net production of finished motor gasoline and for

almost two-thirds of U.S. crude oil imports. It is also the starting point for most major

gasoline pipelines. We therefore expect that transportation cost increases with distance

to the Gulf of Mexico (see Blundell et al., 2012, for further details and references). Ap-

pendix Figure A.1 shows the systematic and positive relationship between state-level
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Figure 2: Histogram of GasBuddy price distribution (selected counties)
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Source: Histogram shows distribution of gasoline prices collected on GasBuddy.com for selected counties,
after removing county effects. Data collection took place July 2014. See text for details.

13



Table 3: Standard deviation of prices collected on GasBuddy.com for selected counties

County Standard deviation Observations

Cook County, IL 0.043 1131
Dallas County, TX 0.024 641
Harris County, TX 0.027 1371

Los Angeles County, CA 0.037 1323
Maricopa County, AZ 0.028 803

Miami-Dade County, FL 0.037 528
Queens County, NY 0.024 156

Weighted average 0.033 5953

Note: Table shows standard deviation and number of observations of prices reported on GasBuddy.com
within the selected counties. Data collection took place July 2014. See text for details.

average prices and the distance to the Gulf of Mexico.

6 Empirical Results

6.1 Demand estimates

Figure 4 shows the ML estimates at the quartiles of the distribution of the unobserved

heterogeneity, for the middle income group ($57,500). The round markers show the MLE

estimates without taking account of Berkson errors; the upside down triangular markers

show the MLE with Berkson error. As can be seen from the Figure, accounting for

Berkson errors accentuates the variability in the demand estimates, and leads to relevant

differences in the estimated price responsiveness. For the median, for example, shifting

the price across the full range shown in the figure (from 0.20 to 0.36) leads to a fall in

estimated (log) demand by 0.11 assuming the absence of Berkson errors, compared to

0.22 in the presence of Berkson errors. Note the non-monotonicity in the unconstrained

demand curve estimates, which is an artifact of random sampling variation (see further

Blundell et al. (2012, 2017)). This non-monotonicity appears to accentuate the sensitivity

to the Berkson errors in this empirical example.

The square markers in Figure 3 and Figure 4 show the estimates when we impose Slut-

sky negativity. Although there is still a difference in the slope, the two sets of estimates
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Figure 3: MLE estimates at the median (at middle income)
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Note: The figure shows MLE estimates at the median (τ = 0.50) for the middle income group. Lines
shown in red are estimates accounting for Berkson error, lines shown in blue assume absence of Berkson
error. The figure compares unconstrained estimates versus Slutsky-constrained estimates (see legend).
See text for details.

are now much more similar. Looking across the different quantiles, we note a consistent

finding that imposing the Slutsky inequality restriction removes non-monotonicity and

delivers a smoother estimated demand curve much less sensitive to Berkson errors. This

suggests that the estimates under the shape restriction are less sensitive to accounting

for Berkson errors, reflecting the stabilizing effect of the shape restriction on the demand

estimate.

Figure 5 compares the estimated effect at the median across the income distribution,

comparing $ 72,500, $ 57,500, and $ 42,500, representing upper, middle and lower income

households, respectively. These results highlight the importance of the Slutsky restriction

in achieving monotonicity. In this way, these results not only provide demand function

estimates that are consistent with consumer theory, but in addition attenuate sensitivity

to Berkson errors. However, although the mitigation of sensitivity to Berkson errors

through imposing the Slutsky restriction is a clear empirical finding of our analysis, we

do not claim that it is a theoretical necessity.
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Figure 4: MLE estimates across quartiles (at middle income)
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and lower quartile, τ = 0.25) for the middle income group. Lines shown in red are estimates accounting for
Berkson error, lines shown in blue assume absence of Berkson error. The figure compares unconstrained
estimates versus Slutsky-constrained estimates (see legend). See text for details.
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Figure 5: MLE estimates across the income distribution (at τ = 0.50)
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Note: The figure shows MLE estimates for the three income groups (top panel: ‘high’ income, cor-
responding to $72,500, middle panel: ‘medium’ income, corresponding to $57,500, and bottom panel:
‘low’ income, corresponding to $42,500) at the median (τ = 0.50). Lines shown in red are estimates
accounting for Berkson error, lines shown in blue assume absence of Berkson error. The figure compares
unconstrained estimates versus Slutsky-constrained estimates (see legend). See text for details.
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Figure 6 compares the estimates for different magnitudes of the Berkson error, varying

the standard deviation with factor 2 and factor 0.5, respectively. For small standard

deviations (panel (b)), the presence of Berkson error makes very little difference to the

demand estimates. However for larger standard deviation of the Berkson errors (panel

(c)), the differences become quantitatively very important. This is especially pronounced

for the unconstrained estimates.

6.2 Estimating the welfare loss of gasoline taxation

The estimates of the demand function can be used to estimate welfare measures such

as deadweight loss (DWL). We consider a hypothetical tax change which moves the price

from p0 to p1 in a discrete fashion (see Blundell et al. (2017)). Let e(p) denote the

expenditure function at price p and a reference utility level. The DWL of this price

change is then given by

L(p0, p1) = e(p1) − e(p0) − (p1 − p0) Hα

[
p1, e(p1)

]
,

where Hα(p, y) is the Marshallian demand function. L(p0, p1) is computed by replacing

e and H with consistent estimates. The estimator of e, ê, is constructed by numerical

solution of the differential equation

dê(t)

dt
= Ĥα [p(t), ê(t)]

dp(t)

dt
,

where [p(t), ê(t)] (0 ≤ t ≤ 1) is a price-(estimated) expenditure path.

Deadweight Loss (DWL) estimates are reported in Table 4. Looking at the uncon-

strained estimates, the table shows the strong quantitative difference in the DWL figures

between the estimates with Berkson error (columns (1)-(2)) versus those without (columns

(3)-(4)). In many cases, the estimates with Berkson errors but not the Slutsky restriction

are more than twice as large as those assuming absence of Berkson errors.

Regarding the constrained estimates, however, the DWL figures are now much closer

together and often of similar order of magnitude. This underlines a key point from
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Figure 6: Comparison of different magnitudes of the Berkson error
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deviation of the Berkson error. Panel (b) reduces the Berkson error standard deviation by factor 0.5,
and panel (c) increases it by factor 2. Estimates shown for the median, at the middle income group. Lines
shown in red are estimates accounting for Berkson error, lines shown in blue assume absence of Berkson
error. Round markers indicate unconstrained estimates, square markers indicate Slutsky-constrained
estimates. See text for details. 19



the demand curve estimates in the previous subsection, the Slutsky constrained demand

estimates reduce sensitivity to the presence of Berkson errors.

6.3 Exogeneity test

In this section we report the empirical results for the endogeneity test. To simplify

the computation, we implement the univariate version of the test. For this purpose, we

stratify the sample along the income dimension in three groups: a low-income group of

households (household income between $35,000 and $50,000), a middle-income group of

households (between $50,000 and $65,000), and an upper-income group of households

(between $65,000 and $80,000). The test is then performed for each income group. The

results are shown in Table 5.

We find we do not reject exogeneity for any of the three income groups. This con-

clusion remains unchanged when we consider moderate variation in the extent of the

Berkson error, multiplying the standard error of the Berkson error by a factor of 0.8

and 1.2, respectively, as shown in the table. The critical values shown in the table do

not take account of the fact that we perform the test three times (for each of the three

income groups). One possibility for adjusting the size for a joint 0.05 level test would be

a Bonferroni adjustment. The adjusted p-value for a joint 0.05 level test of exogeneity is

1−(0.95)(1/3) = 0.01695, at each of the three income groups. Using this more conservative

cutoff would strengthen our conclusion. Based on these results, endogeneity is unlikely

to be a first-order issue for our estimates.

7 Conclusions

It has long been understood that in a mean regression model with a linear effect of

a covariate with Berkson errors and an additive error term, the coefficients in an OLS

regression are unbiased. Recent advances in methods, data, as well as computational

capacity, together with a desire for understanding the effect of heterogeneity in the studied

population, have led to a growing interest in nonlinear models. In nonlinear models, the
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role of Berkson errors is much less well understood, and ignoring these errors in general

leads to a bias in the estimates. This motivates our interest in investigating the effect of

Berkson errors, and methods for addressing their presence in the data. We conduct this

analysis in the context of a quantile regression model, where the covariates enter through

a flexible parametric specification, allowing for potential nonlinearity in the effects. Our

application of interest is a gasoline demand model with unobserved heterogeneity, where

the price is measured with Berkson error.

The presence of Berkson errors is a frequent feature of economic data. It occurs, for

example, when the covariate is measured as a regionally aggregated average, masking

within-region variability. The data generating process features the covariate which in-

cludes the Berkson error but its error-free value is unobserved by the researcher. This

naturally raises the question how much difference recognizing the presence of Berkson

error may make.

We derive a maximum likelihood estimator, which enables us to carry out consistent

estimation in the presence of Berkson errors with a known density. The paper also

develops a test for exogeneity of the Berkson covariate in the presence of an instrument.

We apply the method to the demand for gasoline in the U.S. We examine demand

curves in which we impose the Slutsky inequality constraint and those that do not.

The unconstrained estimated demand function display non-monotonicity in the price of

gasoline. This estimated demand function is substantially affected by Berkson errors.

The estimates which do not take account of the Berkson errors understate the variability

in the price effect. These results show that accounting for Berkson error can have a

substantial effect on the estimated demand function in a standard demand application.

In turn, these estimates result in differences in DWL estimates for given price changes.

In a number of cases, the DWL estimates recognizing the presence of Berkson errors are

more than twice as large as estimates assuming the absence of Berkson errors. Thus,

Berkson errors can have quantitatively large effects.

In our application, the estimated demand function is weakly non-monotonic in the

price. As Blundell et al. (2012, 2017) explain, this can be due to the effects of random
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sampling errors on the estimate. We overcome this problem by imposing the Slutsky

constraint on the structural demand function estimates, as a way of adding structure to

the estimation problem. When the Slutsky restriction is imposed, the estimated demand

function is well-behaved and the effects of Berkson errors are greatly attenuated. These

results illustrate that in a setting where measurement error increases the uncertainty of

the estimates, shape restrictions such as the Slutsky constraint can be particularly useful

for providing additional structure to improve the estimation.
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Table 4: DWL estimates

with Berkson errors without Berkson errors

DWL
per

DWL
per

DWL
per

DWL
per

income tax income tax income

(1) (2) (3) (4)

A. Upper quartile (τ=0.75)

high 0.132 6.82 0.053 2.98
unconstrained middle 0.130 7.92 0.055 3.59

low 0.105 7.79 0.043 3.35

high 0.117 6.18 0.094 5.14
constrained middle 0.121 7.44 0.093 5.92

low 0.114 8.37 0.066 5.04

B. Median (τ=0.50)

high 0.126 4.66 0.061 2.39
unconstrained middle 0.114 4.90 0.062 2.79

low 0.089 4.60 0.052 2.80

high 0.108 4.08 0.096 3.66
constrained middle 0.109 4.70 0.092 4.04

low 0.105 5.33 0.070 3.66

C. Lower quartile (τ=0.25)

high 0.114 2.92 0.077 2.02
unconstrained middle 0.088 2.65 0.074 2.24

low 0.067 2.44 0.069 2.51

high 0.098 2.57 0.102 2.64
constrained middle 0.093 2.78 0.094 2.80

low 0.093 3.27 0.083 2.96

Note: DWL shown corresponds to a price change from the 5th to the 95th percentile in the data. Income
level ‘high’ corresponds to $72,500, ‘medium’ to $57,500, and ‘low’ to $42,500. ‘DWL per income’ is
re-scaled by ×104 for readibility.
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Table 5: Exogeneity test

test statistic crit value (5%) p-value reject?

(a) HIGH INCOME (N=578)

baseline case 0.1575 0.4000 0.4490 no
reduced Berkson error, factor 0.8 0.1629 0.4000 0.4291 no
increased Berkson error, factor 1.2 0.1443 0.4000 0.5009 no

(b) MEDIUM INCOME (N=555)

baseline case 0.2257 0.4033 0.2459 no
reduced Berkson error, factor 0.8 0.1879 0.4033 0.3444 no
increased Berkson error, factor 1.2 0.2617 0.4033 0.1781 no

(c) LOW INCOME (N=580)

baseline case 0.1338 0.4042 0.5427 no
reduced Berkson error, factor 0.8 0.1490 0.4042 0.4799 no
increased Berkson error, factor 1.2 0.1777 0.4042 0.3768 no

Note: Income range ‘high’ refers to $65,000-$80,000, ‘medium’ to $50,000-$65,000, ‘low’ to $35,000-
$50,000. Exogeneity test is conducted separately for each income range. Bonferroni-adjusted p-value for
a joint 0.05 level test of exogeneity is 0.01695. See text for details.
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A Appendix

A.1 Additional Tables and Figures

Figure A.1: Instrumental Variable for Price: Distance to the Gulf of Mexico
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Note: Price of gasoline and distance to the Gulf of Mexico. Distance to the respective state capital is measured

in 1000 km. Source: BHP (2012, Figure 5).

A.2 Exogeneity Test

The argument that follows uses linear functional notation. In this notation,

Pg =

∫
gdP ; Png =

∫
gdPn

for any function g(∙), where P and Pn, respectively, are the distribution and empirical distri-

bution functions of the random argument of g.

To obtain an asymptotic approximation to the distribution of Tn, make:

Assumption 1. (i) G−1
EX is a known bounded function g(∙, ∙, ∙, θ), where θ ∈ Rd for some

d < ∞ is a constant parameter whose maximum likelihood estimate is denoted by θ̂ and

whose true but unknown population value is denoted by θ0.

(ii) n1/2
(
θ̂ − θ0

)
→d N(0, V ) for some non-singular covariance matrix V .

(iii) The first and second derivatives of g with respect to its third argument are bounded and

continuous uniformly over θ in a neighborhood of θ0 and the other arguments of g.



Assumption 2. (i) K is a probability density function that is symmetrical about 0 and sup-

ported on [−1, 1].

(ii) n1/2h/(log n)γ → ∞ as n → ∞ for some γ > 1/2.

Define

G−1
EX(∙, ∙, ∙) = g(∙, ∙, ∙, θ).

Define

Rn(y, w, ε) =
1

nh2

n∑

i=1

I
[
Ĝ−1

EX (Pi + ε, Yi, Qi) ≤ τ
]
K

(
Wi − w

h

)

K

(
Yi − y

h

)

=
1

h2
Pn

{

I
[
Ĝ−1

EX (P + ε, Y,Q) ≤ τ
]
K

(
W − w

h

)

K

(
Y − y

h

)}

.

Define

Rn1(y, w, ε) = h−2 (Pn − P )
{(

I
[
Ĝ−1

EX (P + ε, Y,Q) ≤ τ
]
− I

[
G−1

EX (P + ε, Y,Q) ≤ τ
])

K

(
W − w

h

)

K

(
Y − y

h

)}

and

Rn2(y, w, ε) = h−2P

{

I
[
Ĝ−1

EX (P + ε, Y,Q) ≤ τ
]
K

(
W − w

h

)

K

(
Y − y

h

)}

+h−2 (Pn − P )

{

I
[
G−1

EX (P + ε, Y,Q) ≤ τ
]
K

(
W − w

h

)

K

(
Y − y

h

)}

.

Then Rn = Rn1 + Rn2. In linear functional notation, Ĝ−1
EX is treated as a fixed (non-random)

function in the integrals.

Under Assumption 1, Ĝ−1
EX − G−1

EX = Op

(
n−1/2

)
. Therefore, it follows from Lemma 2.37 of

Pollard (1984) that

Rn1(y, w, ε) = Op

[
(log n)γ

nh

]



uniformly over (y, w, ε). It further follows that

Rn(y, w, ε) = h−2P

{

I
[
Ĝ−1

EX(P + ε, Y,Q) ≤ τ
]
K

(
W − w

h

)

K

(
Y − y

h

)}

+ h−2(Pn − P )

{

I
[
G−1

EX(P + ε, Y,Q) ≤ τ
]
K

(
W − w

h

)

K

(
Y − y

h

)}

+ Op

[
(log n)γ

nh

]

= h−2P
{

I
[
Ĝ−1

EX(P + ε, Y,Q) ≤ τ
]
− I

[
G−1

EX(P + ε, Y,Q) ≤ τ
]}

K

(
W − w

h

)

K

(
Y − y

h

)

+ h−2Pn

{

I
[
G−1

EX(P + ε, Y,Q) ≤ τ
]
K

(
W − w

h

)

K

(
Y − y

h

)}

+ Op

[
(log n)γ

nh

]

≡ Rn3(y, w, ε) + Rn4(y, w, ε) + Op

[
(log n)γ

nh

]

.

Under Assumption 1, (θ̂ − θ0) = Op(n
−1/2). It follows from standard arguments for kernel

estimators that Rn3(y, w, ε) = Op(n
−1/2) uniformly over (y, w, ε). Therefore, by Assumption 2,

Rn(y, w, ε) = Rn4(y, w, ε) + Op(n
−1/2) (5)

uniformly over (y, w, ε).

Now consider Rn4(y, w, ε). Because U = G−1
EX(P + ε, Y,Q),

Rn4(y, w, ε) = h−2Pn

[

I(U ≤ τ)K

(
W − w

h

)

K

(
Y − y

h

)]

,

Rn4(y, w, ε) − τ f̂Y W (y, w) = h−2Pn

{

[I(U ≤ τ) − τ ] K

(
W − w

h

)

K

(
Y − y

h

)}

,

and

P
[
Rn4(y, w, ε) − τ f̂Y W (y, w)

]
= 0. (6)

Therefore, Rn4(y, w, ε)−τ f̂Y W (y, w) is a mean-zero stochastic process. The covariance function

of this process is [C(y1, w1; y2, w2) + o(1)]/(nh2), where

C(y1, w1; y2, w2) = τ(1 − τ)fY W (y1, w1)

∫
K(ξ)K(ξ + δW )K(ζ)K(ζ + δY )dξdζ,

where δW = (w1 − w2)/h and δY = (y1 − y2)/h. It follows from (5) and (6) that

Sn(y, w) − τ f̂Y W (y, w) =
1

h2
Pn

{

[I(U ≤ τ) − τ ] K

(
W − w

h

)

K

(
Y − y

h

)}

+ Op

(
n−1/2

)
.



Define the stochastic process

Zn(y, w) = n1/2h−1Pn

{

[I(U ≤ τ) − τ ] K

(
W − w

h

)

K

(
Y − y

h

)}

=
1

n1/2
h−1

n∑

i=1

[I(Ui ≤ τ) − τ ] K

(
Wi − w

h

)

K

(
Yi − y

h

)

= n1/2h[Sn(y, w) − τ f̂Y W (y, w)] + Op(h).

Let
{
ψj : j = 1, 2, . . .

}
be the eigenfunctions of C(y1, w1; y2, w2) and {λnj : j = 1, 2, ...} be

the eigenvalues. The ψj’s form a complete, orthonormal basis for L2[−1, 1]2. Zn(y, w) has the

representation

Zn(y, w) =
∞∑

k=1

b̂nkψk(y, w)

where

b̂nk =

∫
Zn(y, w)ψk(y, w)dydw.

Moreover,

Eb̂nk = 0

and

E(b̂nkb̂nl) = λnkδkl + o(1)

for all k and l, where δkl is the Kronecker delta. In addition,

Tn =
∞∑

k=1

b̂2
nk.

Let {Ln : n = 1, 2, . . . } be an increasing sequence of positive constants such that Ln → ∞ as

n → ∞. Define

T̃n =
Ln∑

k=1

b̂2
nk.



Then

|T̃n − Tn| →
p 0.

Let VLn denote the Ln×Ln diagonal matrix whose (l, l) element is λnl. Let ω be a Ln×1 random

vector with the N(0, VLn) distribution, and let ‖∙‖ denote the Euclidean norm. It follows from

Theorem A.1 of Spokoiny and Zhilova (2015) that for any z > max(4, Ln) and some constant

C4 < ∞,

∣
∣
∣ P

(
T̃n ≤ z

)
− P

(
‖ω‖2 ≤ z

)∣∣
∣ ≤ C4n

−1/2L3/2
n .

Assume that n−1/2L
3/2
n → 0 as n → ∞. Then

P (Tn ≤ z) − P
(
‖ω‖2 ≤ z

)
→ 0

as n → ∞, and the distribution of Tn can be approximated by that of ‖ω‖2. This is

‖ω‖2 =
Ln∑

j=1

λnjχ
2
j ,

where the χ2
j s are independent random variables that are distributed as chi-square with one

degree of freedom. Estimate the λnj ’s by the eigenvalues of the empirical covariance operator

of Zn.



Table A.1: DWL estimates with confidence intervals

with Berkson errors without Berkson errors

DWL per DWL per DWL per DWL per
income tax income tax income

(1) (2) (3) (4)

A. Upper quartile (τ=0.75)

high 0.132 6.82 0.053 2.98
[0.062; 0.209] [3.787; 10.645] [-0.012; 0.100] [-0.313; 5.583]

middle 0.130 7.92 0.055 3.59
[0.066; 0.199] [4.624; 11.925] [-0.002; 0.103] [0.310; 6.709]

low 0.105 7.79 0.043 3.35
[0.038; 0.210] [3.442; 15.530] [-0.022; 0.116] [-1.301; 9.202]

B. Median (τ=0.50)

high 0.126 4.66 0.061 2.39
[0.043; 0.193] [2.022; 7.074] [-0.003; 0.118] [0.142; 4.616]

middle 0.114 4.90 0.062 2.79
[0.052; 0.177] [2.500; 7.555] [0.011; 0.117] [0.730; 5.258]

low 0.089 4.60 0.052 2.80
[0.025; 0.189] [1.554; 9.847] [-0.007; 0.125] [-0.149; 6.745]

C. Lower quartile (τ=0.25)

high 0.114 2.92 0.077 2.02
[0.017; 0.183] [0.711; 4.668] [0.011; 0.155] [0.471; 4.090]

middle 0.088 2.65 0.074 2.24
[0.016; 0.154] [0.640; 4.590] [0.021; 0.145] [0.757; 4.407]

low 0.067 2.44 0.069 2.51
[-0.028; 0.172] [-0.609; 6.351] [-0.024; 0.151] [-0.462; 5.496]

Note: Table shows unconstrained DWL estimates with 90% confidence intervals, based on 499 bootstrap repli-
cations. DWL shown corresponds to a price change from the 5th to the 95th percentile in the data. Income
level ‘high’ corresponds to $72,500, ‘medium’ to $57,500, and ‘low’ to $42,500. ‘DWL per income’ is re-scaled
by ×104 for readibility. See text for details.
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