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Abstract. This paper considers the problem of testing many moment
inequalities where the number of moment inequalities, denoted by p,
is possibly much larger than the sample size n. There is a variety of
economic applications where solving this problem allows to carry out
inference on causal and structural parameters; a notable example is the
market structure model of Ciliberto and Tamer (2009) where p = 2m+1

with m being the number of firms that could possibly enter the market.
We consider the test statistic given by the maximum of p Studentized
(or t-type) inequality-specific statistics, and analyze various ways to
compute critical values for the test statistic. Specifically, we consider
critical values based upon (i) the union bound combined with a moder-
ate deviation inequality for self-normalized sums, (ii) the multiplier and
empirical bootstraps, and (iii) two-step and three-step variants of (i)
and (ii) by incorporating the selection of uninformative inequalities that
are far from being binding and a novel selection of weakly informative
inequalities that are potentially binding but do not provide first order
information. We prove validity of these methods, showing that under
mild conditions, they lead to tests with the error in size decreasing poly-
nomially in n while allowing for p being much larger than n; indeed p can
be of order exp(nc) for some c > 0. Importantly, all these results hold
without any restriction on the correlation structure between p Studen-
tized statistics, and also hold uniformly with respect to suitably large
classes of underlying distributions. Moreover, in the online supplement,
we show validity of a test based on the block multiplier bootstrap in the
case of dependent data under some general mixing conditions.

1. Introduction

In recent years, the moment inequalities framework has developed into a
powerful tool for inference on causal and structural parameters in partially
identified models. Many papers studied models with a finite and fixed (and
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so asymptotically small) number of both conditional and unconditional mo-
ment inequalities; see the list of references below. In practice, however, the
number of moment inequalities implied by the model is often large. For
example, one of the main classes of partially identified models arise from
problems of estimating games with multiple equilibria, and even relatively
simple static games typically produce a large set of moment inequalities; see,
for example, Theorem 1 in Galichon and Henry (2011). More complicated
dynamic models, including dynamic games of imperfect information, pro-
duce even larger sets of moment inequalities. Researchers therefore had to
rely on ad hoc, case-specific, arguments to select a small subset of moment
inequalities to which the methods available in the literature so far could
be applied. In this paper, we develop systematic methods to treat many
moment inequalities. Our methods are universally applicable in any setting
leading to many moment inequalities.1

There is a variety of economic applications where the problem of test-
ing many moment inequalities appears. One example is the discrete choice
model where a consumer is selecting a bundle of products for purchase and
moment inequalities come from a revealed preference argument (see Pakes,
2010). In this example, one typically has many moment inequalities because
the number of different combinations of products from which the consumer
is selecting is huge. Another example is the market structure model of Cilib-
erto and Tamer (2009) where the number of moment inequalities equals the
number of possible combinations of firms presented in the market, which is
exponentially large in the number of firms that could potentially enter the
market. Yet another example is a dynamic model of imperfect competition of
Bajari, Benkard, and Levin (2007), where deviations from the optimal policy
serve to define many moment inequalities. Other prominent examples lead-
ing to many moment inequalities are studied in Beresteanu, Molchanov, and
Molinari (2011), Galichon and Henry (2011), Chesher, Rosen, and Smolin-
ski (2013), and Chesher and Rosen (2013) where moment inequalities are
used to provide sharp identification regions for parameters in partially iden-
tified models. In all these applications, testing moment inequalities allows

1In some special settings, such as those studied in Theorem 4 of Galichon and Henry
(2011), the number of moment inequalities can be dramatically reduced without blow-
ing up the identified set (and so without any subjective choice). However, there are no
theoretically justified procedures that would generically allow to decrease the number of
moment inequalities in all settings.

In addition, it is important to note that in practice, it may be preferable to use more
inequalities than those needed for sharp identification of the model. Indeed, selecting
inequalities for statistical inference and selecting a minimal set of inequalities that suffice
for sharp identification are rather different problems since the latter problem relies upon
the knowledge of the inequalities and does not take into account the noise associated with
estimation of inequalities. For example, if a redundant inequality can be estimated with
high precision, it may be beneficial to use it for inference in addition to inequalities needed
for sharp identification since such an inequality may improve finite sample statistical
properties of the inferential procedure.
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to carry out inference on structural and causal parameters. In addition, we
note that, as explained in Shah and Peters (2018), our results help to test
conditional independence, a concept that plays a particularly important role
in causal machine learning; see Pearl (2009).

Many examples above have a very important feature – the large num-
ber of inequalities generated are “unstructured” in the sense that they can
not be viewed as some unconditional moment inequalities generated from a
small number of conditional inequalities with a low-dimensional condition-
ing variable. This means that the existing inference methods for conditional
moment inequalities, albeit fruitful in many cases, do not apply to this type
of framework, and our methods are precisely aimed at dealing with this im-
portant case. We thus view our methods as strongly complementary to the
existing literature.2

There are also many empirical studies where many moment inequalities
framework could be useful. Among others, these are Ciliberto and Tamer
(2009) who estimated the empirical importance of firm heterogeneity as a
determinant of the market structure in the US airline industry,3 Holmes
(2011) who estimated the dynamic model of the Wal-Mart expansion,4 and
Ryan (2012) who estimated the welfare costs of the 1990 Amendments to
the Clean Air Act on the U.S. Portland cement industry.5

To formally describe the problem, let X1, . . . , Xn be a sequence of in-
dependent and identically distributed (i.i.d.) random vectors in Rp, where

2A small number of conditional inequalities gives rise to a large number of uncondi-
tional inequalities, but these have a certain continuity and tightness structure, which the
literature on conditional moment inequalities heavily exploits/relies upon. Our approach
works even if such structure is not available and can handle many unstructured moment
inequalities. In addition, when such structure is available, our bootstrap methods auto-
matically exploit it leading to powerful tests of structured moment inequalities arising
from conversion of a small or large number of conditional moment inequalities.

3Ciliberto and Tamer (2009) had 2742 markets and used four major airline companies
and two aggregates of medium size and low cost companies that lead to 24+2+1 = 128
moment inequalities, which is already a large number. However, as established in Theorem
1 of Galichon and Henry (2011), sharp identification bounds in the Ciliberto and Tamer

model would require around 224+2

= 264 inequalities.
4Holmes (2011) derived moment inequalities from ruling out deviations from the ob-

served Wal-Mart behavior as being suboptimal. He considered the set of potential de-
viations where the opening dates of some Wal-Mart stores are reordered, and explicitly
acknowledged that this leads to the enormous number of inequalities (in fact, this is a num-
ber of permutations of 3176 Wal-Mart stores, up to a restriction that the stores opened in
the same year can not be permuted). Therefore, he restricted attention to deviations con-
sisting of pairwise resequencing where each deviation switches the opening dates of only
two stores. However, one could argue that deviations in the form of block resequencing
where the opening dates of blocks of stores are switched are also informative since one of
the main features of the Wal-Mart strategy is to pack stores closely together, so that it is
easy to set up a distribution network and save on trucking costs.

5Ryan (2012) adapted an estimation strategy proposed in Bajari, Benkard, and Levin
(2007). He had 517 market-year observations and considered 1250 alternative policies to
generate a set of inequalities.
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Xi = (Xi1, . . . , Xip)
T , with a common distribution denoted by LX . For

1 ≤ j ≤ p, write µj := E[X1j ]. We are interested in testing the null hypoth-
esis

H0 : µj ≤ 0 for all j = 1, . . . , p, (1)

against the alternative

H1 : µj > 0 for some j = 1, . . . , p. (2)

We refer to (1) as the moment inequalities, and we say that the jth moment
inequality is satisfied (violated) if µj ≤ 0 (µj > 0). ThusH0 is the hypothesis
that all the moment inequalities are satisfied. The primal feature of this
paper is that the number of moment inequalities p is allowed to be larger or
even much larger than the sample size n.

We consider the test statistic given by the maximum over p Studentized
(or t-type) inequality-specific statistics (see (13) ahead for the formal def-
inition), and propose a number of methods for computing critical values.
Specifically, we consider critical values based upon (i) the union bound com-
bined with a moderate deviation inequality for self-normalized sums, and (ii)
bootstrap methods. We will call the first option the SN method (SN refers to
the abbreviation of “Self-Normalized”). Among bootstrap methods, we con-
sider multiplier and empirical bootstrap procedures abbreviated as MB and
EB methods. The SN method is analytical and is very easy to implement.
As such, the SN method is particularly useful for grid search when the re-
searcher is interested in constructing the confidence region for the identified
set in the parametric model defined via moment inequalities as in Appendix
A of the online supplement. Bootstrap methods are simulation-based and
computationally harder. However, an important feature of bootstrap meth-
ods is that they take into account the correlation structure of the data and
yield lower critical values leading to more powerful tests than those obtained
via the SN method. In particular, if the researcher incidentally repeated the
same inequality twice or, more importantly, included inequalities with very
similar informational content (that is, highly correlated inequalities), the
MB/EB methods would be able to account of this and would automatically
disregard or nearly disregard these duplicated or nearly duplicated inequal-
ities, without inflating the critical value.

We also consider two-step methods by incorporating inequality selection
procedures. The two-step methods get rid of most of uninformative inequal-
ities, that is inequalities j with µj < 0 if µj is not too close to 0. By dropping
the uninformative inequalities, the two-step methods produce more powerful
tests than those based on the one-step methods, that is, methods without
the inequality selection procedures.

Moreover, we develop novel three-step methods by incorporating dou-
ble inequality selection procedures. The three-step methods are suitable in
parametric models defined via moment inequalities and allow to drop weakly
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informative inequalities in addition to uninformative inequalities.6 Specif-
ically, consider the model consisting of inequalities E[gj(ξ, θ)] ≤ 0 for all
j = 1, . . . , p where ξ is a vector of observable random variables, θ a vector
of structural or causal parameters, and g1, . . . , gp a set of known functions.
Suppose that the researcher is interested in testing the null hypothesis θ = θ0

against the alternative θ 6= θ0 based on the i.i.d. data ξ1, . . . , ξn, so that
the problem reduces to (1)-(2) by setting Xij = gj(ξi, θ0). We say that the
inequality j is weakly informative if the function θ 7→ E[gj(ξ, θ)] is flat or
nearly flat at θ = θ0. Dropping weakly informative inequalities allows us to
derive tests with higher local power since these inequalities can only provide
a weak signal of the violation of the null hypothesis when θ is close to θ0.

We prove validity of these methods for computing the critical values, uni-
formly in suitable classes of distributions LX . We derive non-asymptotic
bounds on the rejection probabilities, where “non-asymptotic” means that
the bounds hold with fixed n (and p, and all the other parameters), and the
dependence of the constants involved in the bounds are stated explicitly.
Notably, under mild conditions, these methods lead to the error in size de-
creasing polynomially in n, while allowing for p much larger than n; indeed,
p can be of order exp(nc) for some c > 0. In addition, we emphasize that
although we are primarily interested in the case with p (much) larger than
n, our methods remain valid when p is small or comparable to n.7

An important feature of our methods is that increasing the set of mo-
ment inequalities has no or little effect on the critical value. In particular,
as a function of the number of moment inequalities p, our critical values are
always bounded from above by a slowly varying (log p)1/2 (up to a multi-
plicative constant). This implies that instead of making a subjective choice
of inequalities, the researcher should use all (or at least a large set of) avail-
able inequalities since using more inequalities gives much larger values of
the test statistic when added inequalities violate H0. This feature of our
methods is akin to that in modern high-dimensional/big-data techniques
like the Lasso and the Dantzig selector that allow for the variable selection
in exchange for small cost in the precision of model estimates; see, for ex-
ample, Bickel, Ritov, and Tsybakov (2009) for an analysis and discussion of
the methods of estimating high-dimensional models.

Our results can also be used for the construction of confidence regions
for identifiable parameters in partially identified models defined by moment
inequalities. In particular, we show in Appendix A of the online supplement
how to use our results for constructing confidence regions that are asymp-
totically honest, with the coverage being correct uniformly in suitably large
classes of underlying distributions.

6The same methods can be extended to nonparametric models as well. In this case, θ
appearing below in this paragraph should be considered as a sieve parameter.

7When p is small relative to n, other tests, e.g. the quasi likelihood-ratio test may be
more powerful than the methods developed here; see Section 3 for further discussion.
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Moreover, we consider two extensions of our results in Appendix B of
the online supplement. In the first extension, we consider testing many
moment inequalities for dependent data. In the second extension, we allow
for approximate inequalities to account of the case where an approximation
error arises either from estimated nuisance parameters or from the need
to linearize the inequalities. Both of these extensions are important for
inference in dynamic models such as those considered in Bajari, Benkard,
and Levin (2007).

The literature on testing (unconditional) moment inequalities is large;
see White (2000), Chernozhukov, Hong, and Tamer (2007), Romano and
Shaikh (2008), Rosen (2008), Andrews and Guggenberger (2009), Andrews
and Soares (2010), Canay (2010), Bugni (2011), Andrews and Jia-Barwick
(2012), and Romano, Shaikh, and Wolf (2014). However, these papers deal
only with a finite (and fixed) number of moment inequalities. There are
also several papers on testing conditional moment inequalities, which can
be treated as an infinite number of unconditional moment inequalities; see
Andrews and Shi (2013), Chernozhukov, Lee, and Rosen (2013), Lee, Song,
and Whang (2013a,b), Armstrong (2015), Chetverikov (2017), and Arm-
strong and Chan (2016). However, when unconditional moment inequalities
come from conditional ones, they inherit from original inequalities certain
correlation structure that facilitates the analysis of such moment inequal-
ities. In contrast, we are interested in treating many moment inequalities
without assuming any correlation structure, motivated by important exam-
ples such as those in Cilberto and Tamer (2009), Bajari, Benkard, and Levin
(2007), and Pakes (2010). Menzel (2009) considered inference for many mo-

ment inequalities, but with p growing at most as n2/7 (and hence p being
much smaller than n). Also his approach and test statistics are different
from ours. Finally, Allen (2014) recently suggested further extensions and
refinements of our new methods. In particular, he noticed that the trunca-
tion threshold for our selection procedures can be taken slightly lower (in
absolute value) than what we use; he studied an iterative procedure based
on Chetverikov (2017); and he considered moment re-centering procedure
similar to that developed in Romano, Shaikh, and Wolf (2014). The latter
two possibilities were already noted in the previous versions of our paper.8

The remainder of the paper is organized as follows. In the next section,
we discuss several motivating examples. In Section 3, we build our test
statistic. In Section 4, we derive various ways of computing critical values
for the test statistic, including the SN, MB, and EB methods and their
two-step and three-step variants discussed above, and state results on their
validity. In Section 5, we discuss power properties of our methods. In Section
6, we describe Monte Carlo simulations shedding light on how our methods
perform in finite samples. Additional results, as well as all the proofs and the
results of Monte Carlo simulations, are provided in the online supplement.

8See the 2013 version of our paper at arXiv:1312.7614v1.
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1.1. Notation and convention. For an arbitrary sequence {zi}ni=1, we
write En[zi] = n−1

∑n
i=1 zi. For a, b ∈ R, we use the notation a ∨ b =

max{a, b}. For any finite set J , we let |J | denote the number of elements
in J . The transpose of a vector z is denoted by zT . Moreover, we use
the notation Xn

1 = {X1, . . . , Xn}. In this paper, we (implicitly) assume
that the quantities such as X1, . . . , Xn and p are all indexed by n. We are
primarily interested in the case where p = pn → ∞ as n → ∞. However,
in most cases, we suppress the dependence of these quantities on n for the
notational convenience, and our results also apply to the case with fixed p.
Finally, throughout the paper, we assume that n ≥ 2 and p ≥ 2.

2. Motivating examples

In this section, we provide three examples that motivate the framework
where the number of moment inequalities p is large and potentially much
larger than the sample size n. In these examples, one actually has many
conditional rather than unconditional moment inequalities. Therefore, we
emphasize that our results cover the case of many conditional moment in-
equalities as well.9 As these examples demonstrate, there is a variety of eco-
nomic models leading to the problem of testing many unconditional and/or
many conditional moment inequalities to which the methods available in
the literature so far can not be applied, and which, therefore, requires the
methods developed in this paper.

2.1. Market structure model. This example is based on Ciliberto and
Tamer (2009).10 Let m denote the number of firms that could potentially
enter the market. Let m-tuple D = (D1, . . . , Dm) denote entry decisions
of these firms; that is, Dj = 1 if the firm j enters the market and Dj = 0
otherwise. Let D denote the set of possible values of D. Clearly, the number
of elements d of the set D is |D| = 2m.

Let X and ε denote the (exogenous) characteristics of the market as well
as the characteristics of the firms that are observed and not observed by the

9Indeed, consider conditional moment inequalities of the form

E[gj(Y ) | Z] ≤ 0 for all j = 1, . . . , p′ (3)

where (Y,Z) is a pair of random vectors and g1, . . . , gp′ is a set of functions with p′ being

large. Let Z be the support of Z and assume that Z is a compact set in Rl. Then,
following Andrews and Shi (2013), one can construct an infinite set I of instrumental
functions I : Z → R such that I(z) ≥ 0 for all z ∈ Z and (3) holds if and only if

E[gj(Y )I(Z)] ≤ 0 for all j = 1, . . . , p′ and all I ∈ I.

In practice, one can choose a large subset In of I and consider testing p = p′|In| moment
inequalities

E[gj(Y )I(Z)] ≤ 0 for all j = 1, . . . , p′ and all I ∈ In. (4)

If In grows sufficiently fast with n, the test of (3) based on (4) will be consistent.
10The market structure model is also often referred to as an entry game.
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researcher, respectively. The profit of the firm j is given by

πj(D,X, ε, θ),

where the function πj is known up to a parameter θ. Assume that both X
and ε are observed by the firms and that a Nash equilibrium is played, so
that for each j,

πj((Dj , D−j), X, ε, θ) ≥ πj((1−Dj , D−j), X, ε, θ),

where D−j denotes the decisions of all firms excluding the firm j. Then
one can find set-valued functions R1(d,X, θ) and R2(d,X, θ) such that d is
the unique equilibrium whenever ε ∈ R1(d,X, θ), and d is an equilibrium
whenever ε ∈ R2(d,X, θ). When ε ∈ R1(d,X, θ) for some d ∈ D, we know
for sure that D = d but when ε ∈ R2(d,X, θ), the probability that D =
d depends on the equilibrium selection mechanism, and, without further
information, can be anything in [0, 1]. Therefore, we have the following
bounds

E [1{ε ∈ R1(d,X, θ) | X] ≤ E [1{D = d} | X]

≤ E [1{ε ∈ R1(d,X, θ) ∪R2(d,X, θ)} | X] ,

for all d ∈ D. Further, assuming that the conditional distribution of ε given
X is known (alternatively, it can be assumed that this distribution is known
up to a parameter that is a part of the parameter θ), both the left- and
the right-hand sides of these inequalities can be calculated. Denote them by
P1(d,X, θ) and P2(d,X, θ), respectively, to obtain

P1(d,X, θ) ≤ E [1{D = d} | X] ≤ P2(d,X, θ) for all d ∈ D. (5)

These inequalities can be used for inference about the parameter θ. Note
that the number of inequalities in (5) is 2|D| = 2m+1, which is a large
number even if m is only moderately large. Moreover, these inequalities
are conditional on X. For inference about the parameter θ, each of these
inequalities can be transformed into a large and increasing number of un-
conditional inequalities as described above. Also, if the firms have more
than two decisions, the number of inequalities will be even (much) larger.
Finally, one can produce even larger set of inequalities in this example us-
ing the bounds of Galichon and Henry (2011); see Section 6.3 for details.
Therefore, our framework is exactly suitable for this example.

2.2. Discrete choice model with endogeneity. Our second example is
based on Chesher, Rosen, and Smolinski (2013). The source of many mo-
ment inequalities in this example is different from that in the previous ex-
ample. Consider an individual who is choosing an alternative d from a set
D of available options. Let M = |D| denote the number of available options.
Let D denote the choice of the individual. From choosing an alternative d,
the individual obtains the utility

u(d,X, V ),
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where X is a vector of observable (by the researcher) covariates and V is
a vector of unobservable (by the researcher) utility shifters. The individual
observes both X and V and makes a choice based on utility maximization,
so that D satisfies

u(D,X, V ) ≥ u(d,X, V ) for all d ∈ D.
The object of interest in this model is the pair (u, PV ) where PV denotes
the distribution of the vector V .

In many applications, some components of X may be endogenous in the
sense that they are not independent of V . Therefore, to achieve (partial)
identification of the pair (u, PV ), following Chesher, Rosen, and Smolinski
(2013), assume that there exists a vector Z of observable instruments that
are independent of V . Let V denote the support of V , and let τ(d,X, u)
denote the subset of V such that D = d whenever X = x and V ∈ τ(d, x, u),
so that

V ∈ τ(D,X, u). (6)

Then for any set S ⊂ V,

E [1{V ∈ S}] = E [1{V ∈ S} | Z] ≥ E [1{τ(D,X, u) ⊂ S} | Z] , (7)

where the equality follows from independence of V from Z, and the inequal-
ity from (6). Note that the left-hand side of (7) can be calculated (for fixed
distribution PV ) and equals PV (S), so that we obtain

PV (S) ≥ E [1{τ(D,X, u) ⊂ S} | Z] for all S ∈ S, (8)

where S is some collection of sets in V. Inequalities (8) can be used for
inference about the pair (u, PV ). A natural question then is what collection
of sets S should be used in (8). Chesher, Rosen, and Smolinski (2013) showed
that sharp identification of the pair (u, PV ) is achieved by considering all
unions of sets on the support of τ(D,X, u) with the property that the union
of the interiors of these sets is a connected set. When X is discrete with the
support consisting of m points, this implies that the class S may consist of
M ·2m sets, which is a large number even for moderately large m. Moreover,
as in our previous example, inequalities in (8) are conditional giving rise to
even a larger set of inequalities when transformed into unconditional ones.
Therefore, our framework is again exactly suitable for this example.

Also, we note that the model described in this example fits as a special
case into a Generalized Instrumental Variable framework set down and an-
alyzed by Chesher and Rosen (2013), where the interested reader can find
other examples leading to many moment inequalities.

2.3. Dynamic model of imperfect competition. This example is based
on Bajari, Benkard, and Levin (2007). In this example, many moment
inequalities arise from ruling out deviations from best responses in a dynamic
game. Consider a market consisting of N firms. Each firm j makes a decision
Ajt ∈ A at time periods t = 0, 1, 2, . . . ,∞. Let At = (A1t, . . . , ANt) denote
the N -tuple of decisions of all firms at period t. The profit of the firm j at
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period t, denoted by πj(At, St, νjt), depends on the N -tuple of decisions At,
the state of the market St ∈ S at period t, and the firm- and time-specific
shock νjt ∈ V. Assume that the state of the market St follows a Markov
process, so that St+1 has the distribution function P (St+1|At, St), and that
νjt’s are i.i.d. across firms j and time periods t with the distribution function
G(νjt). In addition, assume that when the firm j is making a decision Ajt at
period t, it observes St and νjt but does not observe ν−jt, the specific shocks
of all its rivals, and that the objective function of the firm j at period t is
to maximize

E

[ ∞∑
τ=t

βτ−tπj(Aτ , Sτ , νjt) | St

]
,

where β is a discount factor. Further, assume that a Markov Perfect Equi-
librium (MPE) is played in the market. Specifically, let σj : S × V → A
denote the MPE strategy of firm j, and let σ := (σ1, . . . , σN ) denote the
N -tuple of strategies of all firms. Define the value function of the firm j in
the state s ∈ S given the profile of strategies σ, Vj(s, σ), by the Bellman
equation:

Vj(s, σ) := Eν

[
πj(σ(s, ν), s, νj) + β

∫
Vj(s

′, σ)dP (s′ | σ(s, ν), s)
]
,

where σ(s, ν) = (σ1(s, ν1), . . . , σN (s, νN )), and expectation is taken with
respect to ν = (ν1, . . . , νN ) consisting of N i.i.d. random variables νj with
the distribution function G(νj). Then the profile of strategies σ is an MPE
if for any j = 1, . . . , N and σ′j : S × V → A, we have

Vj(s, σ) ≥ Vj(s, σ′j , σ−j)

= Eν

[
πj(σ

′
j(s, νi), σ−j(s, ν−j), s, νj)

+ β

∫
Vj(s

′, σ′j , σ−j)dP (s′ | σ′j(s, νj), σ−j(s, ν−j), s)
]
,

where σ−j is strategies of all rivals of the firm j in the profile σ.
For estimation purposes, assume that the functions πj(At, St, νjt) and

G(νjt) are known up to a finite dimensional parameter θ, that is we have
πj(At, St, νjt) = πj(At, St, νjt, θ) and G(νjt) = G(νjt, θ), so that the value
function Vj(s, σ) = Vj(s, σ, θ) also depends on θ, and the goal is to estimate
θ. Assume that the data consist of observations on n similar markets for a
short span of periods or observations on one market for n periods. In the
former case, assume also that the same MPE is played in all markets.11

In this model, Bajari, Benkard, and Levin (2007) suggested a computa-
tionally tractable two-stage procedure to estimate the structural parameter

11In the case of data consisting of observations on one market for n periods, one has to
use techniques for dependent data developed in Appendix B.1 of the online supplement.
It is also conceptually straightforward to extend our techniques to the case when the data
consist of observations on many markets for many periods, as happens in some empirical
studies. We leave this extension for future work.
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θ. An important feature of their procedure is that it does not require point
identification of the model. The first stage of their procedure consists of
estimating transition probability function P (St+1|St, At) and policy func-
tions (strategies) σj(s, νj). Following their presentation, assume that these
functions are known up to a finite dimensional parameter α = (α1, α2),
that is P (St+1|St, At) = P (St+1|St, At, α1) and σj(s, νj) = σj(s, νj , α2), and
that the first stage yields a

√
n-consistent estimator α̂n = (α̂n,1, α̂n,2) of

α = (α1, α2).12 Using α̂n,1, one can estimate the transition probability
function by P (St+1|St, At, α̂n,1), and then one can calculate the (estimated)

value function of the firm j at every state s ∈ S, V̂j(s, σ
′, θ), for any profile

of strategies σ′ and any value of the parameter θ using forward simulation

as described in Bajari, Benkard, and Levin (2007). Here we have V̂j(s, σ
′, θ)

instead of Vj(s, σ
′, θ) because forward simulations are based on the esti-

mated transition probability function P (St+1|St, At, α̂n) instead of the true
function P (St+1|St, At, α). Then, on the second stage, one can test the
equilibrium conditions

Vj(s, σj , σ−j , θ) ≥ Vj(s, σ′j , σ−j , θ)
for all j = 1, . . . , N , s ∈ S, and σ′j ∈ Σ for some set of strategies Σ by
considering inequalities

V̂j(s, σ̂j , σ̂−j , θ) ≥ V̂j(s, σ′j , σ̂−j , θ) (9)

where σ̂j = σj(α̂n,2) and σ̂−j = σ−j(α̂n,2) are the estimated policy functions
for the firm j and all of its rivals, respectively. Inequalities (9) can be used
to test hypotheses about the parameter θ. The number of inequalities is
determined by the number of elements in Σ. Assuming that A, S, and V are
all finite, we obtain |Σ| = |A||S|·|V|, so that the total number of inequalities
is N · |S| · |Σ|, which is a very large number in all but trivial empirical
applications.

Inequalities (9) do not fit directly into our testing framework (1)-(2).
One possibility to go around this problem is to use a jackknife procedure.
To explain the procedure, assume that the data consist of observations on

n i.i.d markets. Let V̂ −ij (s, σ′, θ) and σ̂−i denote the leave-market-i-out

estimates of Vj(s, σ
′, θ) and σ, respectively. Define

X̃ij(s, θ) := nV̂j(s, σ̂j , σ̂−j , θ)− (n− 1)V̂ −ij (s, σ̂−ij , σ̂−i−j , θ)

and

X̃ ′ij(s, σ
′
j , θ) := nV̂j(s, σ

′
j , σ̂−j , θ)− (n− 1)V̂ −ij (s, σ′j , σ̂

−i
−j , θ).

12Estimation of α1 is simple; for example, it can be estimated by the maximum likeli-
hood method. Estimation of α2 is more complicated since the functions σj(s, νj) depend
on unobservable νj ’s and requires additional assumptions. When the set A is finite, for
example, one can assume that the shock νj is additively separable in the profit function,
so that πj(At, St, νjt) = π̃j(At, St) + νi(Ajt), where the vector {νi(A)}A∈A consists of
i.i.d. random variables, and use the methods of Hotz and Miller (1993) to estimate α2;
see Bajari, Benkard, and Levin (2007) for details.
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Also, define

X̂ij(s, σ
′
j , θ) := X̃ ′ij(s, σ

′
j , θ)− X̃ij(s, θ).

Then under some regularity conditions including smoothness of the value
function Vj(s, σ), one can show that

X̂ij(s, σ
′
j , θ) = Xij(s, σ

′
j , θ) + oP (1) (10)

for some Xij(s, σ
′
j , θ) satisfying

E[Xij(s, σ
′
j , θ)] = Vj(s, σ

′
j , σ−j , θ)− Vj(s, σ, θ) ≤ 0, (11)

where Xij(s, σ
′
j , θ)’s are independent across markets i = 1, . . . , n. We pro-

vide some details on the derivation of (10) and (11) in Appendix C of the
online supplement. Now we can use the results of Appendix B.2 on testing
approximate moment inequalities to do inference about the parameter θ if

we replace Xij(s, σ
′
j , θ) by the “data” X̂ij(s, σ

′
j , θ) and, in addition, we use

(V̂j(s, σ
′
j , σ̂−j , θ)− V̂j(s, σ̂j , σ̂−j , θ)) instead of µ̂j = n−1

∑n
i=1 X̂ij(s, σ

′
j , θ) in

the numerator of our test statistic defined in (13).13 Thus, this example fits
into our framework as well.14

3. Test statistic

We begin with preparing some notation. Recall that µj = E[X1j ]. We
assume that

E[X2
1j ] <∞, σ2

j := Var(X1j) > 0, j = 1, . . . , p. (12)

For j = 1, . . . , p, let µ̂j and σ̂2
j denote the sample mean and variance of

X1j , . . . , Xnj , respectively, that is,

µ̂j = En[Xij ] =
1

n

n∑
i=1

Xij , σ̂
2
j = En[(Xij − µ̂j ])2] =

1

n

n∑
i=1

(Xij − µ̂j)2.

Alternatively, we can use σ̃2
j = (1/(n − 1))

∑n
i=1(Xij − µ̂j)2 instead of σ̂2

j ,
which does not alter the overall conclusions of the theorems ahead. In all
what follows, however, we will use σ̂2

j .
There are several different statistics that can be used for testing the null

hypothesis (1) against the alternative (2). Among all possible statistics, it

13Note that one of the conditions of Theorem B.2 is that (58) holds with µ̂j,0 =

n−1 ∑
i=1Xij(s, σ

′
j , θ) in our case, and since we can only guarantee that X̂ij(s, σ

′
j , θ) −

Xij(s, σ
′
j , θ) = OP (n−1/2) as in (10), this condition may not be satisfied if we define

µ̂j = n−1 ∑n
i=1 X̂ij(s, σ

′
j , θ). This condition is satisfied, however, under mild regularity

conditions, if we define µ̂j = V̂j(s, σ
′
j , σ̂−j , θ)− V̂j(s, σ̂j , σ̂−j , θ); see the online supplement

for details.
14The jackknife procedure described above may be computationally intensive in some

applications but, on the other hand, the required computations are rather straightforward.
In addition, this procedure only involves the first stage estimation, which is typically
computationally simple. Moreover, bootstrap procedures developed in this paper do not
interact with the jackknife procedure, so that the latter procedure has to be performed
only once.
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is natural to consider statistics that take large values when some of µ̂j ’s are
large. In this paper, we focus on the statistic that takes large values when
at least one of µ̂j ’s is large. One can also consider either non-Studentized
or Studentized versions of the test statistic. For a non-Studentized statis-
tic, we mean a function of µ̂1, . . . , µ̂p, and for a Studentized statistic, we
mean a function of µ̂1/σ̂1, . . . , µ̂p/σ̂p. Studentized statistics are often consid-
ered preferable. In particular, they are scale-invariant (that is, multiplying
X1j , . . . , Xnj by a scalar value does not change the value of the test statis-
tic), and they typically spread the power evenly among the different moment
inequalities µj ≤ 0. See Romano and Wolf (2005) for a detailed comparison
of Studentized versus non-Studentized statistics in a related context of mul-
tiple hypothesis testing. In our case, Studentization also has an advantage
that it allows us to derive an analytical critical value for the test under weak
moment conditions. In particular, for our SN critical values, we will only re-
quire finiteness (existence) of E[|X1j |3] (see Section 4.1.1). As far as MB/EB
critical values are concerned, our theory can cover a non-Studentized statis-
tic but Studentization leads to easily interpretable regularity conditions.
For these reasons, in this paper we study the Studentized version of the test
statistic.

To be specific, we focus on the following test statistic:

T = max
1≤j≤p

√
nµ̂j
σ̂j

. (13)

Large values of T indicate that H0 is likely to be violated, so that it would
be natural to consider the test of the form

T > c⇒ reject H0, (14)

where c is a critical value suitably chosen in such a way that the test has
approximately size α ∈ (0, 1). We will consider various ways for calculating
critical values and prove their validity.

Rigorously speaking, the test statistic T is not defined when σ̂2
j = 0 for

some j = 1, . . . , p. In such cases, we interpret the meaning of “T > c” in
(14) as

√
nµ̂j > cσ̂j for some j = 1, . . . , p, which makes sense even if σ̂2

j = 0
for some j = 1, . . . , p. We will obey such conventions if necessary without
further mentioning.

Other types of test statistics are possible. For example, one alternative is
the test statistic of the form

T ′ =

p∑
j=1

(
max{

√
nµ̂j/σ̂j , 0}

)2
. (15)

The statistic T ′ has an advantage that it is less sensitive to outliers. However,
T ′ leads to good power only if many inequalities are violated simultaneously.
In general, T ′ is preferable against T if the researcher is interested in detect-
ing deviations when many inequalities are violated simultaneously, and T is
preferable against T ′ if the main interest is in detecting deviations when at
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least one moment inequality is violated too much. When p is large, as in our
motivating examples, the statistic T seems preferable over T ′ because the
critical value for the test based on T grows very slowly with p (at most as

(log p)1/2) whereas one can expect that the critical value for the test based
on T ′ grows at least polynomially with p.

Another alternative is the quasi likelihood-ratio test statistic of the form

T ′′ = min
t≤0

n(µ̂− t)T Σ̂−1(µ̂− t),

where µ̂ = (µ̂1, . . . , µ̂p)
T , t = (t1, . . . , tp)

T ≤ 0 means tj ≤ 0 for all j =

1, . . . , p, and Σ̂ is some p by p symmetric positive definite matrix. This
statistic in the context of testing moment inequalities was first studied by
Rosen (2008) when the number of moment inequalities p is fixed; see also
Wolak (1991) for the analysis of this statistic in a different context. Typi-

cally, one wants to take Σ̂ as a suitable estimate of the covariance matrix of
X1, denoted by Σ. However, when p is larger than n, it is not possible to
consistently estimate Σ without imposing some structure (such as sparsity)
on it. Moreover, the results of Bai and Saranadasa (1996) suggest that the
statistic T ′ or its variants may lead to higher power than T ′′ even when p
is smaller than but close to n. On the other hand, when p is small relative
to n, the test statistic T ′′ may lead to more powerful tests than those based
on T and T ′ since it takes into account the correlation structure between
the inequalities, like GMM does in the setting of moment equalities. For
the rest of the paper, we focus on the statistic T and do not provide critical
values for the tests based on T ′ and T ′′.

4. Critical values

In this section, we study several methods to compute critical values for
the test statistic T so that under H0, the probability of rejecting H0 does
not exceed size α asymptotically. The methods are essentially ordered by
increasing computational complexity, increasing strength of required condi-
tions, but also increasing power. We note, however, that all our methods
require only mild conditions on the underlying distributions and are com-
putationally rather simple.

The basic idea for construction of critical values for T lies in the fact that
under H0,

T ≤ max
1≤j≤p

√
n(µ̂j − µj)/σ̂j , (16)

where the equality holds when all the moment inequalities are binding, that
is, µj = 0 for all j = 1, . . . , p. Hence in order to make the test to have size
α, it is enough to choose the critical value as (a bound on) the (1 − α)-
quantile of the distribution of max1≤j≤p

√
n(µ̂j − µj)/σ̂j . We consider two

approaches to construct such critical values: self-normalized and bootstrap
methods. We also consider two- and three-step variants of the methods by
incorporating inequality selection.



MANY MOMENT INEQUALITIES 15

We will use the following notation. Pick any α ∈ (0, 1/2). Let

Zij = (Xij − µj)/σj , and Zi = (Zi1, . . . , Zip)
T . (17)

Observe that E[Zij ] = 0 and E[Z2
ij ] = 1. Define

Mn,k = max
1≤j≤p

(
E[|Z1j |k]

)1/k
, k = 3, 4, Bn =

(
E
[

max
1≤j≤p

Z4
1j

])1/4
.

(Mn,k and Bn depend on n since p = pn (implicitly) depends on n.) Note
that by Jensen’s inequality, Bn ≥ Mn,4 ≥ Mn,3 ≥ 1. In addition, if Zij ’s
are all bounded by a constant C almost surely, we have C ≥ Bn. These
inequalities are useful to get a sense of various conditions on Mn,3, Mn,4,
and Bn imposed in the theorems below.

4.1. Self-Normalized methods.

4.1.1. One-step method. The self-normalized method (abbreviated as the
SN method in what follows) we consider is based upon the union bound
combined with a moderate deviation inequality for self-normalized sums.
Because of inequality (16), under H0,

P(T > c) ≤
p∑
j=1

P(
√
n(µ̂j − µj)/σ̂j > c). (18)

At a first sight, this bound might look too crude when p is large since, as long
as Xij ’s have polynomial tails, applying, for example, the Markov inequality
would only allow us to show that the right-hand side of (18) is bounded from
above by α when c is growing polynomially fast with p, and using such c
would yield a test with low power. However, the Markov inequality is far
from being sharp here. Instead, we will exploit the self-normalizing nature
of the quantity

√
n(µ̂j − µj)/σ̂j to show that the right-hand side of (18)

is bounded from above by α, up to a vanishing term, even if c is growing
logarithmically fast with p. Using such c will in turn yield a test with much
better power properties.

For j = 1, . . . , p, define

Uj =
√
nEn[Zij ]/

√
En[Z2

ij ].

By simple algebra, we see that

√
n(µ̂j − µj)/σ̂j = Uj/

√
1− U2

j /n,

where the right-hand side is increasing in Uj as long as Uj ≥ 0. Hence under
H0,

P(T > c) ≤
p∑
j=1

P
(
Uj > c/

√
1 + c2/n

)
, c ≥ 0. (19)



16 CHERNOZHUKOV, CHETVERIKOV, AND KATO

Now, the moderate deviation inequality for self-normalized sums of Jing,
Shao, and Wang (2003) (see Lemma D.1 in the online supplement) implies
that for moderately large c ≥ 0,

P
(
Uj > c/

√
1 + c2/n

)
≈ P

(
N(0, 1) > c/

√
1 + c2/n

)
even if Zij only have 2 + δ finite moments for some δ > 0. Therefore, we
take the critical value as

cSN (α) =
Φ−1(1− α/p)√

1− Φ−1(1− α/p)2/n
, (20)

where Φ(·) is the distribution function of the standard normal distribution,
and Φ−1(·) is its quantile function. We will call cSN (α) the (one-step) SN
critical value with size α as its derivation depends on the moderate deviation
inequality for self-normalized sums. Note that

Φ−1(1− α/p) ∼
√

log(p/α),

so that cSN (α) depends on p only through log p.
The following theorem provides a non-asymptotic bound on the probabil-

ity that the test statistic T exceeds the SN critical value cSN (α) under H0

and shows that the bound converges to α under mild regularity conditions,
thereby validating the SN method.

Theorem 4.1 (Validity of one-step SN method). Suppose that Mn,3Φ−1(1−
α/p) ≤ n1/6. Then under H0,

P(T > cSN (α)) ≤ α
[
1 +Kn−1/2M3

n,3{1 + Φ−1(1− α/p)}3
]
, (21)

where K is a universal constant. Hence, if there exist constants 0 < c1 < 1/2
and C1 > 0 such that

M3
n,3 log3/2(p/α) ≤ C1n

1/2−c1 , (22)

then there exists a positive constant C depending only on C1 such that under
H0,

P(T > cSN (α)) ≤ α+ Cn−c1 . (23)

Moreover, this bound holds uniformly over all distributions LX satisfying
(12) and (22). In addition, if (22) holds, all components of X1 are inde-
pendent, µj = 0 for all 1 ≤ j ≤ p, and p = pn →∞, then

P(T > cSN (α))→ 1− e−α. (24)

Comment 4.1 (On conditions of Theorem 4.1). Since condition (22) is
abstract, it is instructive to see how this condition looks in particular ex-
amples. Suppose, for example, that all Xij ’s are Gaussian. Then all Zij ’s

are standard Gaussian, and so E[|Z1j |3] = (8/π)1/2. Hence, it follows that

Mn,3 = max1≤j≤p(E[|Z1j |3])1/3 = (8/π)1/6, and condition (22) reduces to
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log3/2(p/α) ≤ C1n
1/2−c1 (with a different constant C1). When α is inde-

pendent of n, the condition further reduces to (log3 p)/n ≤ C1n
−c1 (with

possibly different constants c1 and C1).

Comment 4.2 (Relaxing conditions of Theorem 4.1). The theorem assumes
that max1≤j≤p E[|X1j |3] < ∞ (so that Mn,3 < ∞) but allows this quantity
to diverges as n→∞ (recall p = pn). In principle, Mn,3 that appears in the

theorem could be replaced by max1≤j≤p(E[|Z1j |2+ν ])1/(2+ν) for 0 < ν ≤ 1,
which would further weaken moment conditions; however, for the sake of
simplicity of presentation, we do not explore this generalization.

Comment 4.3 (On conservativeness of the one-step SN method). The last
asserted claim of Theorem 4.1, (24), shows that when p is large, all com-
ponents of X1 are independent, and all inequalities satisfy the null and are
binding, the one-step SN method is approximately non-conservative. Indeed,
the nominal level α is typically small, e.g. 5% or 10%, so that e−α ≈ 1− α,
and the probability of rejecting the null is approximately α in this case.

Comment 4.4 (Comparison with the classical Bonferroni procedure). The
classical Bonferroni approach to test (1) against (2) would be to compare
the statistic T with the Bonferroni critical value cBon(α) = Φ−1(1 − α/p).
It is straightforward to show using standard techniques that this approach
works (controls size) when p is much smaller than n or Xi’s are Gaussian. In
contrast, our techniques do not require these conditions, which is important
because it allows us to test many moment inequalities in a wide variety of
settings, without assuming Gaussianity. In addition, using our techniques,
it is possible to show that the Bonferroni approach also works under the
same conditions as those required for our SN method; see Theorem D.1 in
the online supplement.

4.1.2. Two-step method. We now turn to combine the SN method with in-
equality selection. We begin with stating the motivation for inequality se-
lection.

Observe that when µj < 0 for some j = 1, . . . , p, inequality (16) becomes
strict, so that when there are many j for which µj are negative and large
in absolute value, the resulting test with one-step SN critical values would
tend to be unnecessarily conservative. Hence it is intuitively clear that, in
order to improve the power of the test, it is better to exclude j for which µj
are below some (negative) threshold when computing critical values. This
is the basic idea behind inequality selection.

More formally, let 0 < βn < α/2 be some constant. For generality, we
allow βn to depend on n; in particular, βn is allowed to decrease to zero as
the sample size n increases. Let cSN (βn) be the SN critical value with size

βn, and define the set ĴSN ⊂ {1, . . . , p} by

ĴSN :=
{
j ∈ {1, . . . , p} :

√
nµ̂j/σ̂j > −2cSN (βn)

}
. (25)
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Let k̂ denote the number of elements in ĴSN , that is,

k̂ = |ĴSN |.

Then the two-step SN critical value is defined by

cSN,2S(α) =


Φ−1(1−(α−2βn)/k̂)√

1−Φ−1(1−(α−2βn)/k̂)2/n
, if k̂ ≥ 1,

0, if k̂ = 0.
(26)

The following theorem establishes validity of this critical value.

Theorem 4.2 (Validity of two-step SN method). Suppose that there exist
constants 0 < c1 < 1/2 and C1 > 0 such that

M3
n,3 log3/2

(
p

βn ∧ (α− 2βn)

)
≤ C1n

1/2−c1 ,

and B2
n log2(p/βn) ≤ C1n

1/2−c1 .

(27)

Then there exist positive constants c, C depending only on α, c1, C1 such that
under H0,

P(T > cSN,2S(α)) ≤ α+ Cn−c. (28)

Moreover, this bound holds uniformly over all distributions LX satisfying
(12) and (27). In addition, if all components of X1 are independent, µj = 0
for all 1 ≤ j ≤ p, p = pn →∞, and βn → 0, then

P(T > cSN,2S(α))→ 1− e−α. (29)

Comment 4.5 (Comparing conditions of one-step and two-step SN meth-
ods). Observe that the condition (27) required for the validity of the two-step
SN method in Theorem 4.2 is stronger than the condition (22) required for
the validity of the one-step SN method in Theorem 4.1. To see the mean-
ing of (27) under primitive conditions, suppose that all Xij ’s are Gaussian.

Then all Zij ’s are standard Gaussian, and so Bn = (E[max1≤j≤p Z
4
1j ])

1/4 ≤
C(log p)1/2 for some constant C > 0. Hence, given that Mn,3 ≤ C in this

case and βn < 1, it follows that condition (27) is implied by log3(p/(βn ∧
(α− 2βn))) ≤ C1n

1/2−c1 (with a different constant C1). Hence, if cn−1/C ≤
βn ≤ α/2 − c, it follows that condition (27) holds when log6 p/n ≤ C1n

−c1

(with different constants c1 and C1).

4.2. Bootstrap methods. In this section, we consider bootstrap methods
for calculating critical values. Specifically, we consider Multiplier Bootstrap
(MB) and Empirical (nonparametric, or Efron’s) Bootstrap (EB) methods.
The methods studied in this section are computationally harder than those
in the previous section but they lead to less conservative tests. In particular,
we will show that when all the moment inequalities are binding (that is,
µj = 0 for all 1 ≤ j ≤ p), the asymptotic size of the tests based on these
methods coincides with the nominal size.
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4.2.1. One-step method. We first consider the one-step method. Recall that,
in order to make the test to have size α, it is enough to choose the critical
value as (a bound on) the (1− α)-quantile of the distribution of

max
1≤j≤p

√
n(µ̂j − µj)/σ̂j .

The SN method finds such a bound by using the union bound and the moder-
ate deviation inequality for self-normalized sums. However, the SN method
may be conservative as it ignores correlation between the coordinates in Xi.

Alternatively, we consider here a Gaussian approximation. Observe first
that under suitable regularity conditions,

max
1≤j≤p

√
n(µ̂j − µj)/σ̂j ≈ max

1≤j≤p

√
n(µ̂j − µj)/σj = max

1≤j≤n

√
nEn[Zij ],

where Zi = (Zi1, . . . , Zip)
T are defined in (17). When p is fixed, the central

limit theorem guarantees that as n→∞,
√
nEn[Zi]

d→ Y, with Y = (Y1, . . . , Yp)
T ∼ N(0,E[Z1Z

T
1 ]),

which, by the continuous mapping theorem, implies that

max
1≤j≤p

√
nEn[Zij ]

d→ max
1≤j≤p

Yj .

Hence in this case it is enough to take the critical value as the (1−α)-quantile
of the distribution of max1≤j≤p Yj .

When p grows with n, however, the concept of convergence in distribution
does not apply, and different tools should be used to derive an appropriate
critical value for the test. One possible approach is to use a Berry-Esseen
theorem that provides a suitable non-asymptotic bound between the distri-
butions of

√
nEn[Zi] and Y ; see, for example, Götze (1991) and Bentkus

(2003). However, such Berry-Esseen bounds require p to be small in com-
parison with n in order to guarantee that the distribution of

√
nEn[Zi] is

close to that of Y . Another possible approach is to compare the distribu-
tions of max1≤j≤p

√
nEn[Zij ] and max1≤j≤p Yj directly, avoiding the com-

parison of distributions of the whole vectors
√
nEn[Zi] and Y . Our recent

work (Chernozhukov, Chetverikov, and Kato, 2013, 2017) shows that, under
mild regularity conditions, the distribution of max1≤j≤p

√
nEn[Zij ] can be

approximated by that of max1≤j≤p Yj in the sense of Kolmogorov distance
even when p is larger or much larger than n.15 This result implies that we
can still use the (1 − α)-quantile of the distribution of max1≤j≤p Yj even
when p grows with n and is potentially much larger than n.16

Still, the distribution of max1≤j≤p Yj is typically unknown because the
covariance structure of Y is unknown. Hence we will approximate the dis-
tribution of max1≤j≤p Yj by one of the following two bootstrap procedures:

15The Kolmogorov distance between the distributions of two random variables ξ and
η is defined by supt∈R |P(ξ ≤ t)− P(η ≤ t)|.

16Some applications of this result can be found in Chetverikov (2017, 2012), Wasser-
man, Kolar and Rinaldo (2013), and Chazal, Fasy, Lecci, Rinaldo, and Wasserman (2013).
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Algorithm (Multiplier bootstrap).

1. Generate independent standard normal random variables ε1, . . . , εn
independent of the data Xn

1 = {X1, . . . , Xn}.

2. Construct the multiplier bootstrap test statistic

WMB = max
1≤j≤p

√
nEn[εi(Xij − µ̂j)]

σ̂j
. (30)

3. Calculate cMB(α) as

cMB(α) = conditional (1− α)-quantile of WMB given Xn
1 . (31)

Algorithm (Empirical bootstrap).

1. Generate a bootstrap sample X∗1 , . . . , X
∗
n as i.i.d. draws from the

empirical distribution of Xn
1 = {X1, . . . , Xn}.

2. Construct the empirical bootstrap test statistic

WEB = max
1≤j≤p

√
nEn[X∗ij − µ̂j ]

σ̂j
. (32)

3. Calculate cEB(α) as

cEB(α) = conditional (1− α)-quantile of WEB given Xn
1 . (33)

We will call cMB(α) and cEB(α) the (one-step) Multiplier Bootstrap (MB)
and Empirical Bootstrap (EB) critical values with size α. In practice con-
ditional quantiles of WMB or WEB can be computed with any precision by
using simulation.

Intuitively, it is expected that the multiplier bootstrap works well since
conditional on the data Xn

1 , the vector(√
nEn[εi(Xij − µ̂j)]

σ̂j

)
1≤j≤p

has the centered normal distribution with covariance matrix

En
[

(Xij − µ̂j)
σ̂j

(Xik − µ̂k)
σ̂k

]
, 1 ≤ j, k ≤ p, (34)

which should be close to the covariance matrix of the vector Y . Indeed, by
Theorem 2 in Chernozhukov, Chetverikov, and Kato (2015), the primary
factor for the bound on the Kolmogorov distance between the conditional
distribution of W and the distribution of max1≤j≤p Yj is

max
1≤j,k≤p

∣∣∣∣En [(Xij − µ̂j)
σ̂j

(Xik − µ̂k)
σ̂k

]
− E[Z1jZ1k]

∣∣∣∣ ,
which we show to be small under suitable conditions even when p� n.
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In turn, the empirical bootstrap is expected to work well since conditional
on the data Xn

1 , the maximum of the random vector(√
nEn[X∗ij − µ̂j ]

σ̂j

)
1≤j≤p

can be well approximated in distibution by the maximum of a random vector
with centered normal distribution with covariance matrix (34) even when
p� n.

The following theorem formally establishes validity of the MB and EB
critical values.

Theorem 4.3 (Validity of one-step MB and EB methods). Let cB(α) stand
either for cMB(α) or cEB(α). Suppose that there exist constants 0 < c1 <
1/2 and C1 > 0 such that

(M3
n,3 ∨M2

n,4 ∨Bn)2 log7/2(pn) ≤ C1n
1/2−c1 . (35)

Then there exist positive constants c, C depending only on c1, C1 such that
under H0,

P(T > cB(α)) ≤ α+ Cn−c. (36)

In addition, if µj = 0 for all 1 ≤ j ≤ p, then

|P(T > cB(α))− α| ≤ Cn−c. (37)

Moreover, both bounds hold uniformly over all distributions LX satisfying
(12) and (35).

Comment 4.6 (High dimension bootstrap CLT). The result (37) can be
understood as a high dimensional bootstrap CLT for maxima of studen-
tized sample averages. It shows that such maxima can be approximated ei-
ther by multiplier or empirical bootstrap methods even if maxima are taken
over (very) many sample averages. Moreover, the distributional approxima-
tion holds with polynomially (in n) small error. This result complements
a high dimensional bootstrap CLT for non-studentized sample averages de-
rived in Chernozhukov, Chetverikov, and Kato (2013) and Chernozhukov,
Chetverikov, and Kato (2017), and may be of interest in many other settings,
well beyond the problem of testing many moment inequalities.

Comment 4.7 (Comparison with White, 2000). White (2000) is relevant
to our one-step MB/EB methods in the sense that White (2000) considers a
max-type statistic for an inequality testing problem and applies bootstrap to
calibrate critical values. However, White (2000) does not consider Studen-
tization, and more importantly 1) does not allow the number of inequalities
increasing with the sample size, and 2) does not consider inequality selec-
tion so that his test would be conservative (see the next subsection on our
two-step MB/EB methods). In fact, White (2000) acknowledges the impor-
tance of extending his analysis to the case where the number of inequalities
increases with the sample size, and explicitly states that “it is natural to
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consider what happens when l grows with T” [l is the number of inequali-
ties tested and T is the sample size] but “ rigorous treatment for our con-
text is beyond our present scope” (White, 2000, p.1110-1111). Our results
on the one-step MB/EB methods address this important question in a far
more general setting where the number of inequalities can be much larger
than the sample size. In addition, our results provided finite sample error
bounds that hold uniformly over a wide class of underlying distributions,
while White (2000) only derives pointwise asymptotic results on validity of
the test.

Comment 4.8 (Other bootstrap procedures). There exist many different
bootstrap procedures in the literature, each with its own advantages and
disadvantages. In this paper, we focused on multiplier and empirical boot-
straps, and we leave analysis of more general exchangeably weighted boot-
straps, which include many existing bootstrap procedures as a special case
(see, for example, Praestgaard and Wellner (1993)), in the high dimensional
setting for future work.

Comment 4.9 (Comparing conditions of two-step SN method and one-step
MB/EB methods). Observe that the condition (35) required for the validity
of the one-step MB/EB methods in Theorem 4.3 is stronger than the con-
dition (27) required for the validity of the two-step SN method in Theorem
4.2. To see the meaning of (35) under primitive conditions, suppose that all
Xij ’s are Gaussian. As in Comment 4.5, it then follows that Mn,3 ≤ C and

Bn ≤ C(log p)1/2 for some constant C in this case. Moreover, it is easy to see
that Mn,4 ≤ C as well. Therefore, condition 4.5 holds if (log9 p)/n ≤ C1n

−c1

(with possibly different constants c1 and C1).

4.2.2. Two-step methods. We now consider to combine bootstrap methods
with inequality selection. To describe these procedures, let 0 < βn < α/2
be some constant. As in the previous section, we allow βn to depend on n.
Let cMB(βn) and cEB(βn) be one-step MB and EB critical values with size

βn, respectively. Define the sets ĴMB and ĴEB by

ĴB := {j ∈ {1, . . . , p} :
√
nµ̂j/σ̂j > −2cB(βn)}

where B stands either forMB or EB. Then the two-step MB and EB critical
values, cMB,2S(α) and cEB,2S(α), are defined by the following procedures:

Algorithm (Multiplier bootstrap with inequality selection).

1. Generate independent standard normal random variables ε1, . . . , εn
independent of the data Xn

1 .
2. Construct the multiplier bootstrap test statistic

W
ĴMB

=

{
max

j∈ĴMB

√
nEn[εi(Xij−µ̂j)]

σ̂j
, if ĴMB is not empty,

0 if ĴMB is empty.
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3. Calculate cMB,2S(α) as

cMB,2S(α) = conditional (1− α+ 2βn)-quantile of W
ĴMB

given Xn
1 . (38)

Algorithm (Empirical bootstrap with inequality selection).

1. Generate a bootstrap sample X∗1 , . . . , X
∗
n as i.i.d. draws from the

empirical distribution of Xn
1 = {X1, . . . , Xn}.

2. Construct the empirical bootstrap test statistic

W
ĴEB

=

{
max

j∈ĴEB

√
nEn[X∗ij−µ̂j ]

σ̂j
, if ĴEB is not empty,

0 if ĴEB is empty.

3. Calculate cEB,2S(α) as

cEB,2S(α) = conditional (1− α+ 2βn)-quantile of W
ĴEB

given Xn
1 . (39)

The following theorem establishes validity of the two-step MB and EB
critical values.

Theorem 4.4 (Validity of two-step MB and EB methods). Let cB,2S(α)
stand either for cMB,2S(α) or cEB,2S(α). Suppose that the assumption of
Theorem 4.3 is satisfied. Moreover, suppose that log(1/βn) ≤ C1 log n. Then
there exist positive constants c, C depending only on c1, C1 such that under
H0,

P(T > cB,2S(α)) ≤ α+ Cn−c.

In addition, if µj = 0 for all 1 ≤ j ≤ p, then

P(T > cB,2S(α)) ≥ α− 3βn − Cn−c,
so that under an extra assumption that βn ≤ C1n

−c1, then

|P(T > cB,2S(α))− α| ≤ Cn−c.
Moreover, all these bounds hold uniformly over all distributions LX satisfy-
ing (12) and (35).

Comment 4.10. The selection procedure used in the theorem above is
most closely related to those in Chernozhukov, Lee, and Rosen (2013) and
in Chetverikov (2017). Other selection procedures were suggested in the lit-
erature in the framework when p is fixed. Specifically, Romano, Shaikh, and
Wolf (2014) derived an inequality selection method based on the construc-
tion of rectangular confidence sets for the vector (µ1, . . . , µp)

T . To extend
their method to high dimensional setting considered here, note that by (37),
we have that µj ≤ µ̂j + σ̂jc

MB(βn)/
√
n for all 1 ≤ j ≤ p with probability

1 − βn asymptotically. Therefore, we can replace (16) with the following
probabilistic inequality: under H0,

P

(
T ≤ max

1≤j≤p

√
n(µ̂j − µj + µ̃j)

σ̂j

)
≥ 1− βn + o(1),

where
µ̃j = min

(
µ̂j + σ̂jc

MB(βn)/
√
n, 0
)
.
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This suggests that we could obtain a critical value based on the distribution
of the bootstrap test statistic

Ŵ = max
1≤j≤p

√
nEn[εi(Xij − µ̂j)] +

√
nµ̃j

σ̂j
.

For brevity, however, we leave analysis of this critical value for future re-
search. �

4.3. Hybrid methods. We have considered the one-step SN, MB, and EB
methods and their two-step variants. In fact, we can also consider “hybrids”
of these methods. For example, we can use the SN method for inequality
selection, and apply the MB or EB method for the selected inequalities,
which is a computationally more tractable alternative to the two-step MB
and EB methods. For convenience of terminology, we will call it the Hybrid
(HB) method. To formally define the method, let 0 < βn < α/2 be some

constants, and recall the set ĴSN ⊂ {1, . . . , p} defined in (25). Suppose we
want to use the MB method on the second step. Then the hybrid MB critical
value, cMB,H(α) is defined by the following procedure:

Algorithm (Multiplier Bootstrap Hybrid method).

1. Generate independent standard normal random variables ε1, . . . , εn
independent of the data Xn

1 .
2. Construct the bootstrap test statistic

W
ĴSN

=

{
max

j∈ĴSN

√
nEn[εi(Xij−µ̂j)]

σ̂j
, if ĴSN is not empty,

0 if ĴSN is empty.

3. Calculate cMB,H(α) as

cMB,H(α) = conditional (1− α+ 2βn)-quantile of W
ĴSN

given Xn
1 . (40)

A similar algorithm can be defined for the EB method on the second step,
which leads to the hybrid EB critical value cEB,H(α). The following theorem
establishes validity of these critical values.

Theorem 4.5 (Validity of hybrid two-step methods). Let cB,H(α) stand
either for cMB,H(α) or cEB,H(α). Suppose that there exist constants 0 <
c1 < 1/2 and C1 > 0 such that (35) is verified. Moreover, suppose that
log(1/βn) ≤ C1 log n. Then all the conclusions of Theorem 4.4 hold with
cB,MS(α) replaced by cB,H(α).

4.4. Three-step method. In empirical studies based on moment inequal-
ities, one typically has inequalities of the form

E[gj(ξ, θ)] ≤ 0 for all j = 1, . . . , p, (41)

where ξ is a vector of random variables from a distribution denoted by Lξ,
θ = (θ1, . . . , θr)

T is a vector of parameters in Rr, and g1, . . . , gp a set of
(known) functions. In these studies, inequalities (1)-(2) arise when one tests
the null hypothesis θ = θ0 against the alternative θ 6= θ0 on the i.i.d. data
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ξ1, . . . , ξn by setting Xij := gj(ξi, θ0) and µj := E[X1j ]. So far in this section,
we showed how to increase power of such tests by employing inequality selec-
tion procedures that allow the researcher to drop uninformative inequalities,
that is inequalities j with µj < 0 if µj is not too close to 0. In this subsection,
we seek to combine these selection procedures with another selection proce-
dure that is suitable for the model (41) and that can substantially increase
local power of the test of θ = θ0 by dropping weakly informative inequalities,
that is inequalities j with the function θ 7→ E[gj(ξ, θ)] being flat or nearly
flat around θ = θ0. When the tested value θ0 is close to some θ satisfying
(41), such inequalities can only provide a weak signal of violation of the
hypothesis θ = θ0 in the sense that they have µj ≈ 0, and so it is useful to
drop them. For brevity of the paper, we only consider weakly informative
inequality selection based on the MB and EB methods and note that sim-
ilar results can be obtained for the self-normalized method. Also, we only
consider the case when the functions θ 7→ gj(ξ, θ) are almost surely contin-
uously differentiable, and leave the extension to non-differentiable functions
to future work.

We start with preparing necessary notation. Let ξ1, . . . , ξn be a sample
of observations from the distribution of ξ. Suppose that we are interested
in testing the null hypothesis

H0 : E[gj(ξ, θ0)] ≤ 0 for all j = 1, . . . , p,

against the alternative

H1 : E[gj(ξ, θ0)] > 0 for some j = 1, . . . , p,

where θ0 is some value of the parameter θ. Define

mj(ξ, θ) := (mj1(ξ, θ), . . . ,mjr(ξ, θ))
T

:= (∂gj(ξ, θ)/∂θ1, . . . , ∂gj(ξ, θ)/∂θr)
T

Further, let Xij := gj(ξi, θ0), µj := E[X1j ], σj := (Var(X1j))
1/2, Vijl :=

mjl(ξi, θ0), µVjl := E[V1jl], and σVjl := (Var(V1jl))
1/2. We assume that

E[X2
1j ] <∞, σj > 0, j = 1, . . . , p, (42)

E[V 2
1jl] <∞, σVjl > 0, j = 1, . . . , p, l = 1, . . . , r. (43)

In addition, let

µ̂j = En[Xij ] and σ̂j =
(
En[(Xij − µ̂j)2]

)1/2
be estimators of µj and σj , respectively, and let

µ̂Vjl = En[Vijl] and σ̂Vjl =
(
En[(Vijl − µ̂Vjl)2]

)1/2
be estimators of µVjl and σVjl , respectively.

Weakly informative inequality selection that we derive is based on the
bootstrap methods similar to those described in Section 4:
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Algorithm (Multiplier bootstrap for gradient statistic).

1. Generate independent standard normal random variables ε1, . . . , εn
independent of the data ξn1 = {ξ1, . . . , ξn}.

2. Construct the multiplier bootstrap gradient statistic

W V
MB = max

j,l

√
n|En[εi(Vijl − µ̂Vjl)]|

σ̂Vjl
. (44)

3. For γ ∈ (0, 1), calculate cMB,V (γ) as

cMB,V (γ) = conditional (1− γ)-quantile of W V
MB given ξn1 . (45)

Algorithm (Empirical bootstrap for gradient statistic).

1. Generate a bootstrap sample V ∗1 , . . . , V
∗
n as i.i.d. draws from the

empirical distribution of V n
1 = {V1, . . . , Vn}.

2. Construct the empirical bootstrap gradient statistic

W V
EB = max

j,l

√
n|En[V ∗ijl − µ̂Vjl]|

σ̂Vjl
. (46)

3. For γ ∈ (0, 1), calculate cEB,V (γ) as

cEB,V (γ) = conditional (1− γ)-quantile of W V
EB given ξn1 . (47)

For some strictly positive constants c2 and C2, let ϕn be a sequence of
constants satisfying ϕn log n ≥ c2, and let βn be a sequence of constants
satisfying 0 < βn < α/4 and log(1/(βn − ϕn)) ≤ C2 log n where α is the
nominal level of the test. Define three estimated sets of inequalities:

ĴB :=
{
j ∈ {1, . . . , p} :

√
nµ̂j/σ̂j > −2cB(βn)

}
,

Ĵ ′B :=
{
j ∈ {1, . . . , p} :

√
n|µ̂Vjl/σ̂Vjl | > 3cB,V (βn − ϕn) for some l = 1, . . . , r

}
,

Ĵ ′′B :=
{
j ∈ {1, . . . , p} :

√
n|µ̂Vjl/σ̂Vjl | > cB,V (βn + ϕn) for some l = 1, . . . , r

}
,

where B stands either for MB or EB.
Importantly, the weakly informative inequality selection procedure that

we derive requires that both the test statistic and the critical value depend
on the estimated sets of inequalities. Let TB and cB,3S(α) denote the test
statistic and the critical value for B = MB or EB depending on which

bootstrap procedure is used. If the set Ĵ ′B is empty, set the test statistic
TB = 0 and the critical value cB,3S(α) = 0. Otherwise, define the test
statistic

TB = max
j∈Ĵ ′B

√
nµ̂j
σ̂j

,

and define the three-step MB/EB critical values, cB,3S(α) for the test by

the same bootstrap procedures as those for cB,2S(α) with ĴB replaced by
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ĴB ∩ Ĵ ′′B, and also 2βn replaced by 4βn:

cB,2S(α) = conditional (1− α+ 4βn)-quantile of W
ĴB∩Ĵ ′′B

given Xn
1 ,

where W
ĴB∩Ĵ ′′B

is either the multiplier or the bootstrap test statistic depend-

ing on whether B = MB or EB. The test rejects H0 if TB > cB,3S(α).17

To state the main result of this section, we need the following additional
notation. Let

ZVijl := (Vijl − µVjl)/σVjl .

Observe that E[ZVijl] = 0 and E[(ZVijl)
2] = 1. Let

MV
n,k := max

j,l

(
E[|ZV1jl|k]

)1/k
, k = 3, 4, BV

n :=

(
E
[

max
j,l

(ZV1jl)
4
])1/4

.

We have the following theorem:

Theorem 4.6 (Validity of three-step MB and EB methods). Let TB and
cB,3S(α) stand either for TMB and cMB,3S(α) or for TEB and cEB,3S(α).
Suppose that there exist constants 0 < c1 < 1/2 and C1 > 0 such that(

M3
n,3 ∨M2

n,4 ∨Bn
)2

log7/2(pn) ≤ C1n
1/2−c1 (48)

and (
(MV

n,3)3 ∨ (MV
n,4)2 ∨BV

n

)2
log7/2(prn) ≤ C1n

1/2−c1 . (49)

Moreover, suppose that log(1/(βn − ϕn)) ≤ C2 log n and ϕn log n ≥ c2 for
some constants c2, C2 > 0. Then there exist positive constants c, C depend-
ing only on c1, C1, c2, and C2 such that under H0,

P(TB > cB,3S(α)) ≤ α+ Cn−c.

In addition, the bound holds uniformly over all distributions Lξ satisfying
(42), (43), (48), and (49).

Comment 4.11 (On the choice of ϕn). Inspecting the proof of the theorem
shows that the result of the theorem remains valid if we replace condition
ϕn log n ≥ c2 by a weaker condition ϕn ≥ Cn−c for some constants c, C that
can be chosen to depend only on c1, C1. In practice, however, it is difficult
to track the dependence of c, C on c1, C1. Therefore, in the main text we
state the result with the condition ϕn log n ≥ c2; in simulations reported in
Section 6, we set ϕn = βn/2.

17In the definition of the bootstrap test statistic WĴB∩Ĵ′′
B

, the set Ĵ ′′B is different from

Ĵ ′B , which is used in the definition of the test statistic TB . This is because our proof
techniques do not allow us to show the validity of the critical values based on WĴB∩Ĵ′

B

since Ĵ ′B is random. Instead, our approach consists of finding non-random set J such that

with large probability, Ĵ ′B ⊂ J ⊂ Ĵ ′′B , so that TB = maxj∈Ĵ′
B

√
nµj/σ̂j ≤ maxj∈J

√
nµ̂j/σ̂j

and WĴB∩Ĵ′′
B
≥ WĴB∩J

and then showing validity of using WĴB∩J
to approximate the

distribution of maxj∈J
√
nµ̂j/σ̂j .
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5. Power

In this section, we discuss power properties of our tests. Consider the same
general setup described in the Introduction and assume that (12) holds. Let
the test statistic T be defined by (13). Pick any α ∈ (0, 1/2) and consider
the test of the form

T > ĉ(α)⇒ reject H0,

where ĉ(α) is equal to cSN (α), cSN,2S(α), cMB(α), cMB,2S(α), cEB(α),
cEB,2S(α), cMB,H(α), or cEB,H(α). We have the following result on the
rate of uniform consistency of this test:

Theorem 5.1 (Rate of uniform consistency). Suppose there exist constants
0 < c1 < 1/2 and C1 > 0 such that

M2
n,4 log1/2 p ≤ C1n

1/2−c1 and log3/2 p ≤ C1n. (50)

In addition, suppose that infn≥1(α−2βn) ≥ c1α whenever inequality selection
is used. Then there exist constants c, C > 0 depending only on α, c1, C1 such
that for every ε ∈ (0, 1), whenever

max
1≤j≤p

(µj/σj) ≥ (1 + ε+ C log−1/2 p)

√
2 log(p/α)

n
,

we have

P(T > ĉ(α)) ≥ 1− C

ε2 log(p/α)
− Cn−c.

Therefore when p = pn → ∞, for any sequence εn satisfying εn → 0 and
εn
√

log pn →∞, as n→∞, we have (with keeping α fixed)

inf
µ∈Bn

Pµ(T > ĉ(α)) ≥ 1− o(1), (51)

where

Bn =
{
µ = (µ1, . . . , µp) : max

1≤j≤p
(µj/σj) ≥ rn = (1 + εn)

√
2(log pn)/n

}
and Pµ denotes the probability measure for the distribution LX having mean
µ. Moreover, the above asymptotic result (51) holds uniformly with respect
to any sequence of distributions LX satisfying (12) and (50).

Comment 5.1 (Discussion of power properties). This theorem shows that
our tests are uniformly consistent against all alternatives excluding those in
a small neighborhood of alternatives that are too close to the null. As long
as p = pn → ∞ as n → ∞, the size of this neighborhood is shrinking at a
fast rate

√
(log pn)/n. This is a fast rate because even when p is fixed, no

test can be uniformly consistent against alternatives whose distance from
the null converges to zero faster than

√
1/n. In fact, as we show in a

working version of the paper,18 when p = pn →∞, no test can be uniformly
consistent against alternatives whose distance from the null converges to
zero faster than

√
(log pn)/n, and our tests are minimax optimal. Here,

18arXiv:1312.7614v4.
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√
log pn is a small factor representing the cost we have to pay for dealing

with a large number of inequalities.
Further, the theorem indicates that all of our tests have a fast rate of

uniform consistency but it does not reveal that the bootstrap tests have
better power properties than those of the SN tests. To explain, suppose
for example that all inequalities are the same, that is, X1j1 = X1j2 for all
j1, j2 = 1, . . . , p almost surely. In addition, suppose for concreteness that
σ = σ1 = · · · = σp = 1. Moreover, suppose that µ = µ1 = · · · = µp is strictly
positive but converges to zero as n→∞, that is, µ = µn ↓ 0. Then the test
statistic T is asymptotically equal to a N(

√
nµn, 1) random variable and,

say, both one-step bootstrap critical values converge in probability to zα,
the (1 − α) quantile of the N(0, 1) distribution. Therefore, the bootstrap
tests are consistent against all alternatives such that

√
nµn →∞ as n→∞.

On the other hand, the one-step SN critical value is of order
√

log pn, as
explained in Section 4, and the one-step SN test is only consistent against
alternatives such that

√
nµn/

√
log pn →∞. A similar discussion applies to

the two-step tests. This explains the difference in power between the SN
and the bootstrap tests.

Comment 5.2 (Comparison with methods for conditional moment inequal-
ities). As discussed in the Introduction, our methods can also be applied
when dealing with a large number of (unconditional) moment inequalities
that arise from a small number of conditional moment inequalities. Here
we explain how our methods compare with those developed specifically for
testing conditional moment inequalities. To fix ideas, suppose that we have
one conditional moment inequality,

E[m(Y, Z)|Z] ≤ 0, (52)

where Y and Z are random vectors and m is a known function. To trans-
form this inequality into unconditional ones, let wz,h(Z) ≥ 0 be a positive
weighting function indexed by the location point z ∈ Zn and the bandwidth
value h ∈ Hn, where both Zn and Hn are some large but finite sets. Then
it follows from (52) that

E[m(Y, Z)wz,h(Z)] ≤ 0, for all z ∈ Zn and h ∈ Hn.

If (Yi, Zi), i = 1, . . . , n, is a random sample from the distribution of the pair
(Y, Z), our approach would be to consider the test statistic

T = max
z∈Zn;h∈Hn

n−1/2
∑n

i=1m(Yi, Zi)wz,h(Zi)

V̂
1/2
z,h

,

where V̂z,h is an estimator of Vz,h, the variance of m(Y, Z)wz,h(Z). This
is the test statistic used in Armstrong and Chan (2016), up to a minor
modification that they use infinite sets Zn and Hn. Since they couple the
test statistic T with the (1−α) quantile of the asymptotic distribution of T
when E[m(Y,Z)|Z] = 0 almost surely, it follows that the power of their test



30 CHERNOZHUKOV, CHETVERIKOV, AND KATO

essentially coincides with that of our one-step bootstrap tests, which can be
improved by using our two-step and three-step bootstrap tests.

The approach in Chetverikov (2017), on the other hand, would be to
consider the test statistic

T ′ = max
z∈Zn,h∈Hn

n−1/2
∑n

i=1m(Yi, Zi)wz,h(Zi)

V̂
1/2
z,h,c

,

where V̂z,h,c is an estimator of Vz,h,c, the variance of εwz,h(Z), where ε =
m(Y,Z)− E[m(Y,Z)|Z]. Since

Vz,h = E[m(Y,Z)2wz,h(Z)2]− E[m(Y,Z)wz,h(Z)]2

= E[(E[m(Y,Z)|Z] + ε)2wz,h(Z)2]− E[E[m(Y, Z)|Z]wz,h(Z)]2

= Var(E[m(Y, Z)|Z]wz,h(Z)) + Vz,h,c ≥ Vz,h,c,

the same alternatives will lead to larger values of T ′ than of T . It is therefore
expected that the tests in Chetverikov (2017) would typically have better
power properties than those of the tests developed in our paper.19

Further, it is argued in Armstrong and Chan (2016) that their test typ-
ically has better power properties than those of the test in Andrews and
Shi (2013), and so, given that our methods perform at least as good as the
Armstrong-Chan test, we expect that our methods also should often have
better power than those in Andrews and Shi (2013), although neither ap-
proach dominates the other one. Moreover, it is important to emphasize
that the Andrews-Shi test requires somewhat weaker regularity (in partic-
ular, moment) conditions than those used in our paper. Further compar-
isons of different methods, including those in Chernozhukov, Lee, and Rosen
(2013) and in Lee, Song, and Whang (2013a,b) can be found in Chetverikov
(2017).

To conclude this comparison, we emphasize that our methods are meant
to complement those in the literature on testing conditional moment in-
equalities since our methods can be used to deal with a large number of
(unconditional) moment inequalities that do not arise from the small num-
ber of conditional moment inequalities.

6. Monte Carlo Experiments

In this section, we provide results of a Monte Carlo simulation study. The
simulation study consists of three parts. The first part demonstrates that the
methods developed in this paper have good size control and power properties

19The precise comparison here is difficult. Indeed, consider for example the one-step
bootstrap critical values developed here and in Chetverikov (2017). In both cases, the
critical values are asymptotically equal to the (1 − α) quantile of the maxima of N(0, 1)
random variables, and are expected to be similar. On the other hand, the correlation
structure of the N(0, 1) random variables in our paper and in Chetverikov (2017) are
different, and so it may be possible that our tests sometimes perform better than those in
Chetverikov (2017).
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and also demonstrates power advantages of using bootstrap and multi-step
procedures over self-normalized and one-step procedures in a broad variety
of abstract settings. These abstract settings are useful because they allow
us to vary the key parameters of the data-generating process in a straight-
forward fashion and see how the performance of our methods depend on
these parameters. Importantly, this part of the simulation study shows that
the size control is achieved even though we use setups with a large number
of moment inequalities. The second part sheds some light on the choice of
the tuning parameters for our two- and three-step methods. The third part
applies our methods in an example based on the market structure model of
Ciliberto and Tamer (2009).

6.1. Size and power in abstract settings. Throughout all the experi-
ments in this subsection, we consider i.i.d. samples of size n = 400. Depend-
ing on the experiment, the number of moment inequalities is p = 200, 500,
or 1000. Thus, we consider models where the number of moment inequalities
p is comparable, larger, or substantially larger than the sample size n.

All the experiments are based on the following data-generating process:

Xij = θ(1{j ≤ γ1p}+ εij)− b1{γ2p < j ≤ p}+ εij .

Here, θ is a scalar parameter of interest, (γ1, γ2, b) is a triple of additional
parameters governing the data-generating process, and εi = (εi1, . . . , εip)

T ,
i = 1, . . . , n, is a sequence of i.i.d. random vectors in Rp. We always set
γ1 = 5% and γ2 = 10% but we vary b and the distribution of εi’s depending
on the experimental design.

We consider 8 different experimental designs. In all designs, we as-
sume that for all i = 1, . . . , n, we have εi = AT εi, where the vector εi =
(ε1i, . . . , εip)

T consists of i.i.d. zero-mean random variables with variance
one, so that the covariance matrix of εi’s is Σ = ATA. In Designs 1, 2, 5,
and 6,

Σjk = 1{j = k}+ ρ1{j 6= k}, for all j, k = 1, . . . , p.

In Designs 3, 4, 7, and 8,

Σjk = ρ|j−k|, for all j, k = 1, . . . , p.

We set b = 0 in Designs 1, 3, 5, and 7, and b = 0.8 in Designs 2, 4, 6, and
8. For each experimental design, we consider ρ = 0, 0.5, and 0.9, and we
generate εij ’s either from Student’s t distribution, which we normalize to
have variance one, or from the uniform on [−a, a] distribution, where we set
a =
√

3, so that this distribution also has variance one. In the tables, where
the results are presented, we write L(ε) = T or L(ε) = U , depending on
whether εij ’s are simulated from Student’s t or from the uniform distribution.

Observe that for our data-generating process,

µj = E[X1j ] = θ1{j ≤ γ1p} − b{γ2p < j ≤ p}, for all j = 1, . . . , p,

so that the null hypothesis (1) holds if and only if θ ≤ 0 since we always
set b ≥ 0. We therefore consider testing (1) against (2) for θ = 0 (Designs
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1-4; the null holds) and θ = 0.07 (Designs 5-8; the null does not hold; the
value 0.07 is chosen to make sure that most probabilities are bounded away
from 0 and 1). Note also that when we set θ = 0.07, only γ1 = 5% of the
inequalities violate the null hypothesis. Moreover, when we set b = 0.8,
1− γ2 = 90% of inequalities satisfy the null and are not binding.

We consider self-normalized (SN), multiplier bootstrap (MB), and empir-
ical bootstrap (EB) critical values. For all three methods, we consider their
one- and two-step versions. For the MB and EB methods, we also consider
their three-step versions. In all experiments, we set the nominal level of the
test α = 5% and for the tests with the inequality selection, we set β = 0.1%.
For the three-step methods, we set ϕ = β/2. We present results based on
1000 simulations for each design, and we use B = 1000 bootstrap samples
for each bootstrap procedure.

In addition, to see if the methods developed specifically for testing condi-
tional moment inequalities can be used in our setting (with “unstructured”
inequalities), we also consider the Andrews-Shi test (note that their ap-
proach consists of first transforming the conditional moment inequalities
into many unconditional ones and then testing the unconditional moment
inequalities but implementing the second step does not require knowing the
original structure of the conditional moment inequalities, which makes it
possible to apply their test in our setting).20 To implement their test, we
use the test statistic T ′ in (15), which corresponds to their CvM statis-
tic, and obtain the critical value via a bootstrap procedure as described in
Section 9 of Andrews and Shi (2013), which corresponds to their GMS crit-
ical value. We follow all their recommendations regarding the choice of the
tuning parameters.

Results on the probabilities of rejecting the null in all the experiments are
presented in Tables 1-4 in the online supplement. In these tables, we use Bj
for B ∈ {SN,MB,EB} and j ∈ {1, 2, 3} to denote j-step B test. We also
use AS to denote the Andrews-Shi test.

The first observation to be taken from these tables is that the MB and
EB methods give similar results. The second observation is that although
the Andrews-Shi test performs well in many settings, it does not control size
in some settings; for example, when p = 1000 and ρ = 0, the AS test rejects
the null with probability around 15% in Design 1 (Table 1), even though
the null holds and the nominal level of the test is 5%. Therefore, in what
follows, we only discuss and compare our SN and bootstrap (MB and EB)
methods.

Tables 1 and 2 give results for Designs 1-4, where H0 holds, and demon-
strate that all of our tests have good size control. The largest over-rejection

20The tests of Armstrong and Chan (2016) and of Chetverikov (2017) can not be
implemented in our setting because they require knowledge of the original structure of
the conditional moment inequalities. In particular, the critical value for the Armstrong-
Chan test depends on the volume of the support of the conditioning variable and the test
statistic for Chetverikov’s test depends on certain conditional heteroscedasticity functions.
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occurs in Design 3 with autocorrelated data, uniform εij ’s, p = 500, and
ρ = 0, where the one-step EB test rejects the null with probability 7.7%
against the nominal level α = 5% (Table 2). As expected, the self-normalized
tests tend to under-reject H0 but the bootstrap tests take the correlation
structure of the data into account, and have rejection probability close to
nominal level α = 5% in Designs 1 and 3, where inequalities hold as equal-
ities. The most striking difference between the SN and bootstrap tests in
this dimension perhaps can be seen in Design 1 with equicorrelated data,
uniform εij ’s, p = 1000, and ρ = 0.9 where the MB and EB tests reject
the null with probability between 4.8% and 5.2%, which is very close to the
nominal level α = 5%, but both the SN tests never reject the null. Observe
also that when the correlation in the data is not too large, the SN tests
also have size rather close to the nominal level; see results for Design 3 with
autocorrelated data and ρ = 0 or 0.5.

Tables 3 and 4 give results for Designs 5-8, where θ = 0.07 and H0 does
not hold, and demonstrate power properties of our tests. Note that we have
for all j = 1, . . . , p that Var(X1j) = (1 + θ)2 = 1.072 = 1.1449. Hence,
if we had only one inequality to test (p = 1), non-trivial testing would

only be possibly for µ1 at least of order (1.1449/n)1/2 = 1.07/20 = 0.0535.
Instead, we have many inequalities (p is large) but we set µj = 0.07 for
the inequalities that violate the null, which is of the same order as 0.0535.
Note also that in our setting, only γ1 = 5% of all inequalities violate the
null. Therefore, since Tables 3 and 4 show that our methods yield non-
trivial rejection probabilities in most cases and sometimes yield the rejection
probability close to one, we conclude that our methods have good power
properties. The one-step and two-step SN tests have rejection probabilities
close to those for the corresponding bootstrap tests when ρ = 0 or even when
ρ = 0.5 for Designs 7 and 8 with autocorrelated data. Further, the one-step
and two-step bootstrap tests substantially improve upon the corresponding
SN tests in cases with large correlation in the data; see, for example, results
for Design 5 with equicorrelated data, εij having Student’s t-distribution,
p = 1000 and ρ = 0.5, where the SN tests reject H0 with probability around
20% and the corresponding bootstrap tests rejectH0 with probability around
40%. Finally, selection procedures yield important power improvements.
For example, for Design 8 with autocorrelated data, εij having Student’s t-
distribution, p = 1000 and ρ = 0.5, the one-step MB method reject the null
with probability around 40% but the two-step method reject with probability
around 90%. Similarly, In Design 7 with autocorrelated data, εij having the
uniform distribution, p = 200 and ρ = 0, the two-step EB method rejects
the null with probability around 50% and the three-step EB method rejects
with probability around 80%.

6.2. Selecting tuning parameters. In this subsection, we carry out a
small simulation study to develop a rule of thumb for selecting the tuning
parameters for our methods. Since the bootstrap methods are more powerful
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than the SN methods, we do not consider the SN methods here. Also, since
the MB and EB methods give similar results, we focus on the MB methods
only. Thus, in this subsection, we only discuss the two-step and three-step
MB methods but note that the same discussion applies to the corresponding
EB methods.

We consider the same data-generating process as that in Design 5 in
the previous subsection with ρ = 0, εij ’s having uniform distribution, and
θ = 0.07. Instead of setting b = 0, however, we vary b from 0.05 to 0.8 to
see how it affects the choice of the tuning parameters. We consider both the
two-step and the three-step MB methods with α = 5% and β varying from
0.1% to 1.0%. For the three-step MB method, we set ϕ = β/2. Depending
the simulation, we set p = 200 or 1000. As in the previous subsection,
we present results based on 1000 simulations for each setting, and we use
B = 1000 bootstrap samples for each bootstrap procedure. In unreported
simulations, we also tried to vary ρ and to use Student’s distribution for εij ’s
and found results similar to those reported below. Results for the two-step
and three-step MB methods are presented in Tables 5 and 6, respectively,
in the online supplement.

Before looking at the simulation results, we provide some intuition re-
garding the choice of the tuning parameters. First, we discuss the two-step
MB method, which requires selecting the tuning parameter β. Observe that
increasing β has two effects on the power of the method. One effect is

that holding ĴMB fixed, increasing β leads to higher values of cMB,2S(α)
since cMB,2S(α) is defined as the (1 − α + 2β)-quantile of the conditional
distribution of W

ĴMB
given Xn

1 ; see (38). The other effect is that increas-

ing β shrinks the set ĴMB, which is defined as the set of all j’s such that√
nµ̂j/σ̂j > −2cMB(β). This in turn leads to smaller values of cMB,2S(α).

Since the test statistic T does not depend on β, the first effect decreases the
power of the method and the second one increases it. Selecting β therefore
requires balancing these two effects.

Further, observe that the second effect is negligible when all inequalities
satisfying the null are binding or nearly binding since these inequalities will

be in the set ĴMB even for large values of β. Similarly, the second effect is
negligible when all inequalities satisfying the null are far away from being

binding since these inequalities will be out of the set ĴMB even for small
values of β. Thus, the second effect is non-negligible, so that it might be
useful to use large values of β, only when there are inequalities under the
null that are not too close and not too far away from being binding.

Our simulation results support the discussion above. Indeed, as follows
from Table 5, for p = 200, the power of the two-step MB method is a
decreasing function of β when b < 0.40 and when b > 0.55. Therefore, the
second effect is strong enough to create a non-monotonicity in the power
function only in a small range of the values of b. Even in these cases,
however, the second effect is not strong enough, so that setting β = 0.1%
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yields almost the same power as the power we would obtain by selecting
β optimally. Similar discussion also applies when p = 1000. Hence, the
simulation results in Table 5 suggest that setting β = 0.1% is a good rule of
thumb.21

Next, consider the three-step MB method. The problem of selecting the
tuning parameters is now much more complicated because we now have
to choose two parameters, β and ϕ. Regarding the choice of ϕ, for given
value of β, selecting ϕ exhibits a trade off between good power and size
control: choosing larger values of ϕ improves the size control but undermines
the power of the test. Since there are no universally accepted rules in the
literature on striking the balance between power and size control, and since
our results (Theorem 4.6) require that ϕ is not too close to zero and not
too close to β, we simply set ϕ = β/2. Regarding the choice of β, although
the situation is now more difficult relative to what we had with the two-step
method because now both the test statistic and the critical value depends
on β, the overall trade off is similar to what we had before. In particular,
the simulation results in Table 6 reveal that the power of the three-step MB
method is always a decreasing function of β. We therefore, again, conclude
that setting β = 0.1% is a good rule of thumb.

6.3. An application to market structure model. In this subsection,
we show how our methods apply in an economic model setting. Specifically,
we consider the market structure model from Section 2. For a given market,
three firms (m = 3) are simultaneously deciding whether to enter the market
or not. For j = 1, . . . , 3, letDj = 1 if the firm j enters the market andDj = 0
otherwise. If the firm j enters the market, its profit is given by

πj =
∑
l 6=j

δljDl + ε+ ζj ,

where ε is the market size shock that is common to all three firms, and ζj
is an idiosyncratic shock representing specific conditions of the firm j in the
market. If the firm j does not enter the market, πj = 0. The objective of
each firm is to maximize its profit given the decisions of other firms.

We assume that ε, ζ1, ζ2, and ζ3 are i.i.d. standard normal random
variables. The parameter δlj represents the effect of the presence of the firm l
in the market on the firm j. To simplify the setting, we assume that δlj = δjl
for all j, l = 1, . . . , 3 with j 6= l, so that the firms have symmetric effects on
each other. With this assumption, we use the following reparameterization
of the model:

θ1 = δ12, θ2 = δ13, θ3 = δ23.

21Note also that it is almost never useful to set β < 0.1% since in this case, holding

ĴMB fixed, we would obtain essentially the same critical value cMB,2S(α) as the one given
by β = 0.1%, but the substantial cost of setting β < 0.1% is that it can significantly

increase the set ĴMB , relative to the set we obtain by setting β = 0.1%.
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The random variables ε, ζ1, ζ2, and ζ3 are observed by the firms when they
make their decisions but are not observed by the researcher. For simplicity,
we also assume away any variation X that is observed by the researcher.

We assume that the parameters θ1, θ2, and θ3 are all negative, so that the
game always has a Nash equilibrium in pure strategies, and we focus on such
equilibria. When there is only one equilibrium, we assume that the outcome
of the game D = (D1, D2, D3) is determined by this equilibrium. When
there are several equilibria, we assume that the outcome is determined by a
randomly selected equilibrium, where all equilibria have the same probability
of being chosen.

We consider inference on the parameters θ1, θ2, and θ3 using the data
on market outcomes for n i.i.d. markets. If the researcher knew that the
outcome of the game were determined by a randomly selected equilibrium
whenever there are several equilibria, the model would be point identified,
and there would be only one value of the parameters consistent with the
distribution of the outcomes. However, since the researcher typically has no
reasons to believe that a particular equilibrium selection mechanism is used,
we consider inference approaches from the literature on partial identification,
which are agnostic about the equilibrium selection mechanism.

Specifically, we consider two types of bounds: the Ciliberto and Tamer
(2009) bounds and the Galichon and Henry (2011) bounds. The Ciliberto-
Tamer (CT) bounds, which are described in Section 2, give 2·2m = 2·23 = 16
inequalities:

P1(d, θ) ≤ E[1{D = d}] ≤ P2(d, θ), for all d ∈ D, (53)

where D = {0, 1}m = {0, 1}3 is the set of all possible outcomes, P1(d, θ) is
the probability that the outcome d is the unique equilibrium of the game,
and P2(d, θ) is the probability that the outcome d is an equilibrium of the
game. Since the probabilities P1(d, θ) and P2(d, θ) are hard to calculate
exactly, we approximate them numerically using 100000 simulations of the
game.

To describe the Galichon-Henry (GH) bounds, for each set of outcomes
A ⊂ D, let L(A, θ) be the probability of observing an outcome in A under
the assumption that whenever the game has several equilibria, some of which
are in A and others are not, an equilibrium from A is selected. Then the
GH bounds give inequalities

E[1{D ∈ A}] ≤ L(A, θ), for all A ⊂ D. (54)

Thus, for each set A, we get one inequality, and so in total we obtain 2|D| =

223 = 28 = 256 inequalities. Note, however, that when A = ∅, the empty set,
or A = D, we obtain inequalities that always hold, and so we can disregard
them. Thus, we have 256− 2 = 254 inequalities.

The major advantage of the GH bounds is that they are tight and yield the
sharp identified set for θ = (θ1, θ2, θ3), that is, it is never possible, without
further assumptions, to find a value of θ that would satisfy the inequalities
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(54) but would be inconsistent with the distribution of the outcomes of
the game. The CT bounds do not necessarily have this property, and it
may be possible to find a value of θ that would satisfy (53) but would not
satisfy (54). On the other hand, even though the GH bounds are useful for
the identification analysis, since they produce a lot of inequalities even in
simple models (254 in our case, which is a large number, and our game has
only three firms), it was previously not possible to use them for inference on
θ. This is, however, possible using our methods. We are therefore interested
to see, via simulations, how the GH bounds work for inference and also to
compare the inference based on the GH bounds with that based on the CT
bounds.

For our simulations, we consider samples of size n = 1000, 2000, and 5000,
which are comparable with the sample size in Ciliberto and Tamer (2009),
n = 2742. We always set θ1 = θ2 = −0.6 and θ3 = −1.3, and we consider
testing the null hypothesis H0 : θ = θ0 for different values of ∆θ = θ0 − θ.
To investigate size control of our methods, we use ∆θ = (0, 0, 0), and to
investigate their power, we use ∆θ = (0.25, 0, 0), (−0.25, 0, 0), (0, 0.25, 0),
(0,−0.25, 0), (0, 0, 0.25), and (0, 0,−0.25). We consider the one-step and
two-step versions of the SN, MB, and EB methods. In addition, we consider
the three-step versions of the MB and EB methods. Note, however, that
the market structure model studied here violates the conditions required
for our three-step methods. In particular, we require in Section 4.4 that
the gradients (with respect to the parameters) of the moment functions
have non-vanishing variance, σVjl > 0, but the corresponding gradients here
are non-stochastic and so have variance zero. Therefore, as a way to drop
weakly informative inequalities in the three-step methods, we drop all the
inequalities that have |µVjl| ≤ 1/

√
n for all l = 1, 2, 3 in the notation of

Section 4.4. We tried replacing 1/
√
n by 0.5/

√
n and 2/

√
n but obtained

similar results. For all methods, we set α = 5% and whenever needed,
β = 0.1%. For all bootstrap methods, we use 500 bootstrap samples, and
for each simulation design, we repeat the experiment 1000 times to obtain
rejection probabilities. The results of our simulation study are presented in
Table 7 in the online supplement.

Table 7 shows that all of our methods have good size control. In particu-
lar, when ∆θ = (0, 0, 0), the rejection probabilities do not exceed 3.8%. Also,
the GH bounds give somewhat more conservative results in comparison with
the CT bounds. Regarding the power, it is important to note that since the
market structure model is partially identified, our methods have relatively
low power against some alternatives (for example, ∆θ = (0, 0,−0.25)) even
when n = 5000 (no methods may have power against θ0 in the sharp identi-
fied set). The MB and EB methods give similar results, and the bootstrap
methods are more powerful than the SN methods, especially in the case of
the GH bounds; for example, when ∆θ = (0, 0.25, 0) and n = 5000, the two-
step MB method based on the GH bounds rejects the null with probability
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53% whereas the corresponding two-step SN method rejects the null with
probability 36%. Three-step methods give results similar to those for the
two-step methods.

Further, it is intuitively clear that in comparison with the CT bounds,
the GH bounds may be much more powerful against those θ0 that satisfy
or nearly satisfy (53) but do not satisfy (54). This can be seen for ∆θ =
(−0.25, 0, 0) and n = 5000, where the two-step MB method based on the GH
bounds rejects the null with probability 99% but the same method based on
the CT bounds rejects the null with probability only 70% (in fact, as was
reported in the previous version of the paper, when we set ∆θ = (−0.2, 0, 0)
and n = 5000, the two-step MB method rejects the null with probability
87% when the GH bounds are used and only 18% when the CT bounds are
used). This is an important advantage of the GH bounds. On the other
hand, whenever θ0 does not satisfy (53), the methods based on the CT
bounds may be more powerful because they use a smaller set of inequalities,
and the critical values for our methods are increasing with the number of
moment inequalities used. However, the simulation results reveal that the
methods based on the GH bounds, even though sometimes less powerful,
are always comparable with those based on the CT bounds. When the two-
step MB method is used, perhaps the largest difference in power occurs for
∆θ = (0,−0.25, 0) and n = 5000, where the CT and GH bounds yield the
rejection probabilities 48% and 34%, respectively.
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Appendix A. Honest confidence regions for identifiable
parameters in partially identified models

In this section, we consider the problem of constructing confidence regions
for identifiable parameters in partially identified models defined by moment
inequalities. Let ξ1, . . . , ξn be i.i.d. random variables taking values in a mea-
surable space (S,S) with common distribution P ; let Θ be a parameter space
which is a Borel measurable subset of a metric space (usually a Euclidean
space), and let g : S×Θ→ Rp, (ξ, θ) 7→ g(ξ, θ) = (g1(ξ, θ), . . . , gp(ξ, θ))

T , be
a jointly Borel measurable map. We consider the partially identified model
where the identified set Θ0(P ) is given by

Θ0(P ) = {θ ∈ Θ : EP [gj(ξ1, θ)] ≤ 0 for all j = 1, . . . , p}.

Here EP means that the expectation is taken with respect to P (similarly
PP means that the probability is taken with respect to P ). We consider the
problem of constructing confidence regions Cn(α) = Cn(α; ξ1, . . . , ξn) ⊂ Θ
such that for some constant c, C > 0, for all n ≥ 1,

inf
P∈Pn

inf
θ∈Θ0(P )

PP (θ ∈ Cn(α)) ≥ 1− α− Cn−c, (55)

while allowing for p > n (indeed we allow p to be much larger than n),
where 0 < α < 1/2 and Pn is a suitable sequence of classes of distributions
on (S,S). We call confidence regions Cn(α) for which (55) is verified asymp-
totically honest to Pn with a polynomial rate, where the term is inspired by
Li (1989) and Chernozhukov, Chetverikov, and Kato (2014).

We first state the required restriction on the class of distributions Pn. We
assume that for every P ∈ Pn,

Θ0(P ) 6= ∅, and EP [g2
j (ξ1, θ)] <∞, σ2

j (θ, P ) := VarP (gj(ξ1, θ)) > 0,

for all j = 1, . . . , p, and all θ ∈ Θ0(P ).
(56)

We construct confidence regions based upon duality between hypoth-
esis testing and construction of confidence regions. For any given θ ∈
Θ, consider the statistic T (θ) = max1≤j≤p

√
nµ̂j(θ)/σ̂j(θ), where µ̂j(θ) =

En[gj(ξi, θ)], σ̂
2
j (θ) = En[(gj(ξi, θ)− µ̂j(θ))2]. This statistic is a test statistic

for the problem of testing

Hθ : µj(θ, P ) ≤ 0, for all j = 1, . . . , p,
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against the alternative

H ′θ : µj(θ, P ) > 0, for some j = 1, . . . , p,

where µj(θ, P ) := EP [gj(ξ1, θ)]. Pick any α ∈ (0, 1/2). We consider the
confidence region of the form

Cn(α) = {θ ∈ Θ : T (θ) ≤ c(α, θ)}, (57)

where c(α, θ) is a critical value such that Cn(α) contains θ with probability
(approximately) at least 1− α whenever θ ∈ Θ0(P ).

Recall cSN (α) defined in (20), and let cSN,2S(α, θ), cMB(α, θ), cMB,2S(α, θ),
cEB(α, θ), cEB,2S(α, θ), cMB,H(α, θ), and cEB,H(α, θ) be the two-step SN,
one-step MB, two-step MB, one-step EB, two-step EB, MB hybrid, and EB
hybrid critical values defined in Section 4 with Xi = (Xi1, . . . , Xip)

T re-
placed by g(ξi, θ) = (g1(ξi, θ), . . . , gp(ξi, θ))

T . Moreover, let CSNn (α) be the
confidence region (57) with c(α, θ) = cSN (α); define

CSN,2Sn (α), CMB
n (α), CMB,2S

n (α), CEBn (α), CEB,2Sn (α), CMB,H
n (α), CEB,Hn (α)

analogously. Finally, define

Mn,k(θ, P ) := max
1≤j≤p

(EP [|(gj(ξ1, θ)− µj(θ, P ))/σj(θ, P )|k])1/k, k = 3, 4,

Bn(θ, P ) :=

(
EP

[
max

1≤j≤p
|(gj(ξ1, θ)− µj(θ, P ))/σj(θ, P )|4

])1/4

.

Let 0 < c1 < 1/2, C1 > 0 be given constants. The following theorem is the
main result of this section.

Theorem A.1. Let PSNn be the class of distributions P on (S,S) for which
(56) and (22) are verified with Mn,3 replaced by Mn,3(θ, P ) for all θ ∈ Θ0(P );

let PSN,2Sn be the class of distributions P on (S,S) for which (56) and (27)
are verified with Mn,3, Bn replaced by (respectively) Mn,3(θ, P ), Bn(θ, P ) for
all θ ∈ Θ0(P ); and let PBn be the class of distributions P on (S,S) for
which (56) and (35) are verified with Mn,k, Bn replaced by (respectively)

Mn,k(θ, P ), Bn(θ, P ) for all θ ∈ Θ0(P ).22 Moreover, suppose that log(1/βn) ≤
C1 log n whenever inequality selection is used. Then there exist positive con-
stants c, C depending only on α, c1, C1 such that

inf
P∈Pn

inf
θ∈Θ0(P )

PP (θ ∈ Cn(α)) ≥ 1− α− Cn−c

where (Pn, Cn) is one of the pairs (PSNn , CSNn ), (PSN,2Sn , CSN,2Sn ), (PBn , CMB
n ),

(PBn , C
MB,2S
n ), (PBn , CEBn ), (PBn , C

EB,2S
n ), (PBn , C

MB,H
n ) or (PBn , C

EB,H
n ).

Comment A.1 (Computationally attractive procedure). In many applica-
tions, the parameter θ is relatively high-dimensional, and it may be com-
putationally difficult to construct a confidence set (57). In these cases, an

22For example, PSNn = {P : (56) is verified, and M3
n,3(θ, P ) log3/2(p/α) ≤

C1n
1/2−c1 , ∀θ ∈ Θ0(P )}.
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asymptotically honest and computationally attractive procedure would be
to first construct a preliminary confidence set in (57) by using the one-step
SN method and then to eliminate the values in the preliminary confidence
set that are rejected by a two-step or a three-step bootstrap method. This
procedure is computationally attractive because the one-step SN critical
value does not depend on θ and has to be calculated only once, so that
constructing the preliminary confidence set is simple, and computationally
more intense two-step or three-step bootstrap critical value does not have
to be calculated for all values of θ ∈ Θ but only for those in the preliminary
confidence set.

Appendix B. Extensions

B.1. Dependent data. In this section we consider the case where the ran-
dom vectors X1, . . . , Xn are dependent. In particular, we assume β-mixing
conditions. To avoid technical complications, we focus here on the non-
Studentized version of T :

Ť = max
1≤j≤p

√
nµ̂j .

We consider a version of the multiplier bootstrap, namely the block multi-
plier bootstrap, to calculate critical values for Ť , where a certain blocking
technique is used to account for dependency among X1, . . . , Xn.23

Our results in this section complement the set of results in Zhang and
Cheng (2014) who, independently from us and around the same time, con-
sidered the case of the functionally-dependent time series data (the concept
of functional dependence was introduced in Wu (2005) and is different from
β-mixing). Both our paper and Zhang and Cheng (2014) extend Gaussian
approximation and bootstrap results of Chernozhukov, Chetverikov, and
Kato (2013) to the case of dependent data but under different dependence
conditions (that do not nest each other). The results obtained in these two
papers are strongly complementary and, taken together, cover a wide variety
of dependent data processes, thereby considerably expanding the applicabil-
ity of the proposed tests.

Let X1, . . . , Xn be possibly dependent random vectors in Rp with identical

distribution (that is, Xi
d
= X1, for all i = 1, . . . , n), defined on the proba-

bility space (Ω,A,P). We follow the basic notation introduced in Section 3.
For the sake of simplicity, assume that there exists a constant Dn ≥ 1 such
that |Xij − µj | ≤ Dn a.s. for 1 ≤ i ≤ n, 1 ≤ j ≤ p.

23We refer to Lahiri (2003) as a general reference on resampling methods for dependent
data.
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For any integer 1 ≤ q ≤ n, define

σ2(q) := max
1≤j≤p

max
I

Var

(
q−1/2

∑
i∈I

Xij

)
,

σ2(q) := min
1≤j≤p

min
I

Var

(
q−1/2

∑
i∈I

Xij

)
,

where maxI and minI are taken over all I ⊂ {1, . . . , n} of the form I =
{i+ 1, . . . , i+ q}. For any sub σ-fields A1,A2 ⊂ A, define

β(A1,A2) :=
1

2
sup

{∑
i

∑
j

P(Ai ∩Bj)− P(Ai)P(Bj)| :

{Ai} is any finite partition of Ω in A1,

{Bj} is any finite partition of Ω in A2

}
.

Define the kth β-mixing coefficient for Xn
1 = {X1, . . . , Xn} by

bk = bk(X
n
1 ) = max

1≤l≤n−k
β(σ(X1, . . . , Xl), σ(Xl+k, . . . , Xn)), 1 ≤ k ≤ n− 1,

where σ(Xi, i ∈ I) with I ⊂ {1, . . . , n} is the σ-field generated by Xi, i ∈ I.24

We employ Bernstein’s “small-block and large-block” technique and de-
compose the sequence {1, . . . , n} into “large” and “small” blocks. Let q > r
be positive integers with q + r ≤ n/2 (q, r depend on n: q = qn, r = rn, and
asymptotically we require qn → ∞, qn = o(n), rn → ∞, and rn = o(qn)),
and let I1 = {1, . . . , q}, J1 = {q + 1, . . . , q + r}, . . . , Im = {(m− 1)(q + r) +
1, . . . , (m−1)(q+r)+q}, Jm = {(m−1)(q+r)+q+1, . . . ,m(q+r)}, Jm+1 =
{m(q+r), . . . , n}, where m = mn = [n/(q+r)] (the integer part of n/(q+r)).
The q and r are the lengths of large and small blocks, respectively, and m
is the number of blocks.

Then the block multiplier bootstrap is described as follows: generate
independent standard normal random variables ε1, . . . , εm, independent of
Xn

1 . Let

W̌ = max
1≤j≤p

1
√
mq

m∑
l=1

εl
∑
i∈Il

(Xij − µ̂j),

and consider

ĉBMB(α) = conditional (1− α)-quantile of W̌ given Xn
1 ,

which we call the BMB (Block Multiplier Bootstrap) critical value.

Theorem B.1 (Validity of BMB method). Work under the setting described
above. Suppose that there exist constants 0 < c1 ≤ C1 and 0 < c2 < 1/4
such that c1 ≤ σ2(q) ≤ σ2(r)∨σ2(q) ≤ C1,max{mbr, (r/q) log2 p} ≤ C1n

−c2,

24We refer to Fan and Yao (2003), Section 2.6, as a general reference on mixing.
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and qDn log5/2(pn) ≤ C1n
1/2−c2. Then there exist positive constants c, C

depending only on c1, c2, C1 such that under H0,

P(Ť > ĉBMB(α)) ≤ α+ Cn−c.

In addition, if µj = 0 for all 1 ≤ j ≤ p, then

|P(Ť > ĉBMB(α))− α| ≤ Cn−c.

Comment B.1 (Connection to tapered block bootstrap). The BMB method
can be considered as a variant of the tapered block bootstrap (see Paparodi-
tis and Politis, 2001, 2002; Andrews, 2004) applied to non-overlapping blocks
with a rectangular tapering function. The difference is that in the original
tapered block bootstrap the multipliers are multinomially distributed, while
in the BMB the multipliers are independent standard normal.

B.2. Approximate moment inequalities. As shown in a dynamic model
of imperfect competition example in Section 2.3, in some applications, ran-
dom vectors X1, . . . , Xn satisfying inequalities (1) with µj = E[X1j ] are not

observed. Instead, the data consist of random vectors X̂1, . . . , X̂n that ap-
proximate vectors X1, . . . , Xn. In that example, the approximation error
arises from the need to linearize original inequalities. Another possibility
leading to a nontrivial approximation error is that where the data contain
estimated parameters. In this section, we derive a set of conditions that
suffice for the same results as those obtained in Section 4 when we use the
data X̂1, . . . , X̂n as if we were using exact vectors X1, . . . , Xn. For brevity,
we only consider two-step MB/EB methods.

We use the following notation. Let µ̂j,0 := En[Xij ] and σ̂2
j,0 := En[(Xij −

µ̂j,0)2] denote (infeasible) estimators of µj = E[X1j ] and σ2
j = Var(X1j). In

addition, assume that we have estimates µ̂j that appropriately approximate
µ̂j,0 for j = 1, . . . , p. In the context of Section 2.3, for example, these

estimates would take the form V̂j(s, σ
′
j , σ̂−j , θ)− V̂j(s, σ̂j , σ̂−j , θ). Moreover,

let σ̂2
j := En[(X̂ij − µ̂j)2] be a (feasible) estimator of σ2

j .

Define the test statistic T by (13); that is, T = max1≤j≤p
√
nµ̂j/σ̂j . Define

the critical value cB,2S(α) for B = MB or EB by the same algorithms as

those used in Section 4 with Xij replaced by X̂ij for all i and j (and using
µ̂j and σ̂2

j as defined in this section). We have the following theorem:

Theorem B.2 (Validity of two-step MB/EB methods for approximate in-
equalities). Let cB,2S(α) stand either for cMB,2S(α) or cEB,2S(α). Suppose
that the assumption of Theorem 4.3 is satisfied. Moreover, suppose that
log(1/βn) ≤ C1 log n. In addition, suppose that there exists a sequence ζn1

satisfying ζn1 log p ≤ C1n
−c1 and such that

P

(
max

1≤j≤p

√
n|µ̂j − µ̂j,0| > ζn1

)
≤ C1n

−c1 (58)
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and

P

(
max

1≤j≤p
(En[(X̂ij −Xij)

2])1/2 > ζn1

)
≤ C1n

−c1 .

Moreover, if the EB method is used, suppose that

P

(√
log pmax

i,j
|X̂ij −Xij | >

√
nζn,1

)
≤ C1n

−c1 .

Finally, assume that σj ≥ c1 for all 1 ≤ j ≤ p. Then all the conclusions of
Theorem 4.4 hold with T , cMB,2S(α), and cEB,2S(α) defined in this section.

Comment B.2 (Data with estimated parameters). When Theorem B.2 is
applied to data with estimated parameters, verifying (58) typically requires
imposing further conditions, even when p is small. For example, suppose
that we observe a random sample (Vi, Yi), i = 1, . . . , n, from the distribution
of (V, Y ), where both V and Y are scalar random variables. Suppose further
that θ = E[Y ] and that we are interested in testing whether E[f(V, θ)] ≤
0 for some known function f : R2 → R. To map this problem into the

setting of Theorem B.2, denote Xi = f(Vi, θ) and X̂i = f(Vi, θ̂), where

θ̂ = n−1
∑n

i=1 Yi. Moreover, let µ̂ = n−1
∑n

i=1 X̂i and µ̂0 = n−1
∑n

i=1Xi.
Finally, denote by f ′(V, θ) the derivative of f(V, θ) with respect to θ. Then,

under mild regularity conditions,
√
n(µ̂− µ̂0) = n−1/2

∑n
i=1 f

′(Vi, θ)(θ̂−θ)+
oP (1), and so (58) can be verified only if E[f ′(V, θ)] = 0.

Appendix C. Details on equations (10) and (11) in the main text

In this section, we continue discussion of the “Dynamic model of imperfect
competition” example presented in Section 2. In particular, we explain how
to construct Xij(s, σ

′
j , θ)’s that satisfy

X̂ij(s, σ
′
j , θ) = Xij(s, σ

′
j , θ) + oP (1) (59)

and
E[Xij(s, σ

′
j , θ)] = Vj(s, σ

′
j , σ−j , θ)− Vj(s, σ, θ), (60)

which are needed to apply results in Appendix B.2. We also show that
setting

µ̂j := V̂j(s, σ
′
j , σ̂−j , θ)− V̂j(s, σ̂j , σ̂−j , θ)

gives √
n|µ̂j − µ̂j,0| = oP (n−1/2) (61)

with µ̂j,0 = n−1
∑n

i=1Xij(s, σ
′
j , θ), which is also needed to apply results in

Appendix B.2. We continue to assume that the data consist of observations
on n i.i.d. markets.

To construct Xij(s, σ
′
j , θ)’s, assume the following linear expansions:

√
n(V̂j(s, σ̂j , σ̂−j , θ)− Vj(s, σj , σ−j , θ))

=
1√
n

n∑
k=1

ψkj(s, θ) + oP (n−1/2) (62)
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and

√
n(V̂j(s, σ

′
j , σ̂−j , θ)− Vj(s, σ′j , σ−j , θ))

=
1√
n

n∑
k=1

ψ′kj(s, σ
′
j , θ) + oP (n−1/2), (63)

where ψkj and ψ′kj are influence functions depending only on the data for
the market k and satisfying

E[ψkj(s, θ)] = 0 and E[ψ′kj(s, σ
′
j , θ)] = 0. (64)

These are standard expansions that hold in many settings, so for brevity,
we do not discuss the regularity conditions behind them. Then, considering

leave-market-i-out estimates V̂ −ij (s, σ′, θ) and σ−i as in the main text, we
obtain

√
n− 1(V̂ −ij (s, σ̂−ij , σ̂−i−j , θ)− Vj(s, σj , σ−j , θ))

=
1√
n− 1

n∑
k=1; k 6=i

ψkj(s, θ) + oP (n−1/2)

and

√
n− 1(V̂ −ij (s, σ′j , σ̂

−i
−j , θ)− Vj(s, σ

′
j , σ−j , θ))

=
1√
n− 1

n∑
k=1; k 6=i

ψ′kj(s, σ
′
j , θ) + oP (n−1/2).

Hence, we have for all i = 1, . . . , n,

X̃ij(s, θ) := nV̂j(s, σ̂j , σ̂−j , θ)− (n− 1)V̂ −ij (s, σ̂−ij , σ̂−i−j , θ)

= Vj(s, σj , σ−j , θ) + ψij(s, θ) + oP (1)

and

X̃ ′ij(s, σ
′
j , θ) := nV̂j(s, σ

′
j , σ̂−j , θ)− (n− 1)V̂ −ij (s, σ′j , σ̂

−i
−j , θ)

= Vj(s, σ
′
j , σ−j , θ) + ψ′ij(s, σ

′
j , θ) + oP (1).

Therefore, defining

Xij(s, σ
′
j , θ) :=Vj(s, σ

′
j , σ−j , θ)− Vj(s, σj , σ−j , θ) + ψ′ij(s, σ

′
j , θ)− ψij(s, θ),

we obtain

X̂ij(s, σ
′
j , θ) = X̃ ′ij(s, σ

′
j , θ)− X̃ij(s, θ) = Xij(s, σ

′
j , θ) + oP (1).
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Combining these equalities with (64) implies (10) and (11) from the main
text. Moreover, observe that it follows from (62) and (63) that

µ̂j = V̂j(s, σ
′
j , σ̂−j , θ)− V̂j(s, σ̂j , σ̂−j , θ)

= Vj(s, σ
′
j , σ−j , θ)− Vj(s, σj , σ−j , θ)

+
1

n

n∑
i=1

(ψ′ij(s, σ
′
j , θ)− ψij(s, θ)) + oP (n−1)

=
1

n

n∑
i=1

Xij(s, σ
′
j , θ) + oP (n−1) = µ̂j,0 + oP (n−1),

and so (61) holds. Finally, observe that by imposing further regularity

conditions on the terms oP (n−1/2) in (62) and (63), it is rather standard
to make sure that (59) holds uniformly over i and j and that (61) holds
uniformly over j, which are the needed to apply results in Appendix B.2.

Appendix D. Proofs

In what follows, let φ(·) denote the density function of the standard nor-
mal distribution, and let Φ(·) = 1−Φ(·) where recall that Φ(·) is the distri-
bution function of the standard normal distribution.

D.1. Technical tools. We state here some technical tools used to prove
the theorems. The following lemma states a moderate deviation inequality
for self-normalized sums.

Lemma D.1. Let ξ1, . . . , ξn be independent centered random variables with
E[ξ2

i ] = 1 and E[|ξi|2+ν ] < ∞ for all 1 ≤ i ≤ n where 0 < ν ≤ 1.

Let Sn =
∑n

i=1 ξi, V
2
n =

∑n
i=1 ξ

2
i , and Dn,ν = (n−1

∑n
i=1 E[|ξi|2+ν ])1/(2+ν).

Then uniformly in 0 ≤ x ≤ n
ν

2(2+ν) /Dn,ν ,∣∣∣∣P(Sn/Vn ≥ x)

Φ(x)
− 1

∣∣∣∣ ≤ Kn−ν/2D2+ν
n,ν (1 + x)2+ν ,

where K is a universal constant.

Proof. See Theorem 7.4 in Lai, de la Peña, and Shao (2009) or the original
paper, Jing, Shao, and Wang (2003). �

The following lemma states a Fuk-Nagaev type inequality, which is a
deviation inequality for the maximum of the sum of random vectors from
its expectation.

Lemma D.2 (A Fuk-Nagaev type inequality). Let X1, . . . , Xn be indepen-
dent random vectors in Rp. Define σ2 := max1≤j≤p

∑n
i=1 E[X2

ij ]. Then for
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every s > 1 and t > 0,

P

(
max

1≤j≤p

∣∣∣ n∑
i=1

(Xij − E[Xij ])
∣∣∣ ≥ 2E

[
max

1≤j≤p

∣∣∣ n∑
i=1

(Xij − E[Xij ])
∣∣∣]+ t

)

≤ e−t2/(3σ2) +
Ks

ts

n∑
i=1

E

[
max

1≤j≤p
|Xij |s

]
,

where Ks is a constant depending only on s.

Proof. See Theorem 3.1 in Einmahl and Li (2008). Note that Einmahl and
Li (2008) assumed that s > 2 but their proof applies to the case where
s > 1. More precisely, we apply Theorem 3.1 in Einmahl and Li (2008) with
(B, ‖·‖) = (Rp, | · |∞) where |x|∞ = max1≤j≤p |xj | for x = (x1, . . . , xp)

T , and
η = δ = 1. The unit ball of the dual of (Rp, |·|∞) is the set of linear functions
{x = (x1, . . . , xp)

T 7→
∑p

j=1 λjxj :
∑p

j=1 |λj | ≤ 1}, and for λ1, . . . , λp with∑p
j=1 |λj | ≤ 1, by Jensen’s inequality,∑n

i=1 E
[
(
∑p

j=1 λjXij)
2
]

=
∑n

i=1 E
[
(
∑p

j=1 |λj |sign(λj)Xij)
2
]

≤
∑p

j=1 |λj |
∑n

i=1 E[X2
ij ] ≤ max1≤j≤p

∑n
i=1 E[X2

ij ] = σ2,

where sign(λj) is the sign of λj . Hence in this case Λ2
n in Theorem 3.1 of

Einmahl and Li (2008) is bounded by (and indeed equal to) σ2. �

In order to use Lemma D.2, we need a suitable bound on the expectation
of the maximum. The following lemma is useful for that purpose.

Lemma D.3. Let X1, . . . , Xn be independent random vectors in Rp with p ≥
2. Define M := max1≤i≤n max1≤j≤p |Xij | and σ2 := max1≤j≤p

∑n
i=1 E[X2

ij ].
Then

E

[
max

1≤j≤p

∣∣∣ n∑
i=1

(Xij − E[Xij ])
∣∣∣] ≤ K(σ

√
log p+

√
E[M2] log p),

where K is a universal constant.

Proof. See Lemma 8 in Chernozhukov, Chetverikov, and Kato (2015). �

For bounding E[M2], we will frequently use the following inequality: let
ξ1, . . . , ξn be arbitrary random variables with E[|ξi|s] <∞ for all 1 ≤ i ≤ n
for some s ≥ 1. Then

E[ max
1≤i≤n

|ξi|] ≤ (E[ max
1≤i≤n

|ξi|s])1/s

≤ (
∑n

i=1E[|ξi|s])1/s ≤ n1/s max
1≤i≤n

(E[|ξi|s])1/s.

For centered normal random variables ξ1, . . . , ξn with σ2 = max1≤i≤n E[ξ2
i ],

we have

E

[
max

1≤j≤p
ξi

]
≤
√

2σ2 log p.



50 CHERNOZHUKOV, CHETVERIKOV, AND KATO

See, for example, Proposition 1.1.3 in Talagrand (2003).

Lemma D.4. Let (Y1, . . . , Yp)
T be a normal random vector with E[Yj ] = 0

and E[Y 2
j ] = 1 for all 1 ≤ j ≤ p. (i) For α ∈ (0, 1), let c0(α) denote the

(1−α)-quantile of the distribution of max1≤j≤p Yj. Then c0(α) ≤
√

2 log p+√
2 log(1/α). (ii) For every t ∈ R and ε > 0, P(|max1≤j≤p Yj − t| ≤ ε) ≤

4ε(
√

2 log p+ 1).

Proof. Part (ii) follows from Theorem 3 in Chernozhukov, Chetverikov, and
Kato (2015) together with the fact that

E

[
max

1≤j≤p
Yj

]
≤
√

2 log p. (65)

For part (i), by the Borell-Sudakov-Tsirelson inequality (see Theorem A.2.1
in van der Vaart and Wellner (1996)), for every r > 0,

P

(
max

1≤j≤p
Yj ≥ E

[
max

1≤j≤p
Yj

]
+ r

)
≤ e−r2/2,

by which we have

c0(α) ≤ E

[
max

1≤j≤p
Yj

]
+
√

2 log(1/α). (66)

Combining (66) and (65) leads to the desired result. �

D.2. On Bonferroni approach. We state and prove here a result on va-
lidity of the Bonferroni approach for testing (1) against (2).

Theorem D.1 (Validity of Bonferroni method). If there exist constants
0 < c1 < 1/2 and C1 > 0 such that

M3
n,3 log3/2(p/α) ≤ C1n

1/2−c1 , (67)

then there exists a positive constant C depending only on C1 such that under
H0,

P(T > cBon(α)) ≤ α+ Cn−c1 , (68)

where cBon(α) = Φ−1(1− α/p). Moreover, this bound holds uniformly over
all distributions LX satisfying (12) and (67).

Proof. For brevity of notation, denote c0 = cBon(α) = Φ−1(1− α/p). Then
by (19), under the null,

P(T > cBon(α)) = P(T > c0) ≤
p∑
j=1

P

(
Uj > c0/

√
1 + c2

0/n

)

≤
p∑
j=1

(
1 +Kn−1/2M3

n,3(1 + Φ−1(1− α/p))3
)

Φ̄

(
c0/
√

1 + c2
0/n

)
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for some absolute constant K > 0, where the last inequality follows by
applying Lemma D.1 with Sn/Vn = Uj , x = c0/

√
1 + c2

0/n, ν = 1, and
Dn,1 = Mn,3. Hence, like in the proof of Theorem 4.1,

P(T > cBon(α)) ≤ p(1 + C ′n−c1)Φ̄

(
c0/
√

1 + c2
0/n

)
(69)

for some constant C ′ depending only on C1. Further,

Φ̄

(
c0/
√

1 + c2
0/n

)
≤ Φ̄(c0) + φ(c0)

(
c0 − c0/

√
1 + c2

0/n

)
≤ Φ̄(c0) + c0φ(c0)

(√
1 + c2

0/n− 1

)
≤ Φ̄(c0) + c3

0φ(c0)/n,

where φ is the pdf of the standard normal distribution. Also, it follows
from Proposition 2.2.1 in Dudley (1999) that φ(c0) ≤ K ′c0Φ̄(c0) for some
absolute constant K ′. Moreover, by the proof of Theorem 4.1,

c0 = cBon(α) = Φ−1(1− α/p) ≤
√

2 log(p/α).

Hence,

Φ̄

(
c0/
√

1 + c2
0/n

)
≤ Φ̄(c0)(1 +K ′c4

0/n) ≤ Φ̄(c0)
(

1 + 4 log2(p/α)/n
)
.

Thus, given that Mn,3 ≥ 1 and that log(p/α) ≥ log 4 > 1, it follows from
(67) that for some constant C ′′ depending only on C1,

Φ̄

(
c0/
√

1 + c2
0/n

)
≤ Φ̄(c0)(1 + C ′′n−2c1) = (α/p)(1 + C ′′n−2c1).

Combining this bound with (69) gives the first assertion. The second asser-
tion follows from the first one because the constant C depends only on C1.
This completes the proof of the theorem. �

D.3. Proof of Theorem 4.1. Combining (19) with (20) shows that under
the null,

P(T > cSN (α)) ≤
p∑
j=1

P(Uj > Φ−1(1− α/p)).

The first assertion thus follows immediately by applying Lemma D.1 to
bound P(Uj > Φ−1(1 − α/p)) with Sn/Vn = Uj , x = Φ−1(1 − α/p), ν = 1,
and Dn,1 = Mn,3.

To prove the second assertion, we first note the well known fact that

1−Φ(t) ≤ e−t2/2 for t > 0, by which we have Φ−1(1−α/p) ≤
√

2 log(p/α).25

25The inequality 1−Φ(t) ≤ e−t
2/2 for t > 0 can be proved by using Markov’s inequality,

P(ξ > t) ≤ e−λtE[eλξ] for λ > 0 with ξ ∼ N(0, 1), and optimizing the bound with respect

to λ > 0; there is a sharper inequality, namely 1 − Φ(t) ≤ e−t
2/2/2 for t > 0 (see, for

example, Proposition 2.1 in Dudley, 1999), but we do not need this sharp inequality in
this paper.
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Further, since we are assuming p ≥ 2, 2 log(p/α) ≥ 1 and thus 1 + Φ−1(1−
α/p) ≤ 2

√
2 log(p/α). Hence if M3

n,3 log3/2(p/α) ≤ C1n
1/2−c1 , it is straight-

forward to verify that αKn−1/2M3
n,3{1 + Φ−1(1 − α/p)}3 is bounded by

Cn−c1 for some constant C depending only on C1, which gives the second
assertion. The third assertion follows immediately from the second one since
the constant C in (68) depends only on C1.

To prove the last assertion, (24), we have

P(T > cSN (α)) = P
(

max
1≤j≤p

√
n(µ̂j − µj)

σ̂j
> cSN (α)

)
= 1−

∏
1≤j≤p

P
(√n(µ̂j − µj)

σ̂j
≤ cSN (α)

)
= 1−

∏
1≤j≤p

(
1− P

(√n(µ̂j − µj)
σ̂j

> cSN (α)
))

= 1−
∏

1≤j≤p

(
1− P

(
Uj > Φ−1(1− α/p)

))
, (70)

where the first line follows from the fact that µj = 0 for all j = 1, . . . , p, the
second from independence of components of X1, the third from the formula
for probabilities of complements, and the fourth from the definitions of Uj ’s
and cSN (α). Now using the same arguments as those in the proof of the
first two assertions, the expression in (70) is bounded from below by

1−
∏

1≤j≤p

(
1− (1− Cn−c1)α/p

)
= 1−

(
1− (1− Cn−c1)α/p

)p
→ 1− e−α

and from above by

1−
∏

1≤j≤p

(
1− (1 + Cn−c1)α/p

)
= 1−

(
1− (1 + Cn−c1)α/p

)p
→ 1− e−α

since p = pn →∞. This gives (24) and completes the proof of the theorem.
�

D.4. Proof of Theorem 4.2. We first prove the following technical lemma.
Recall that Bn = (E[max1≤j≤p Z

4
1j ])

1/4.

Lemma D.5. For every 0 < c < 1,

P

(
max

1≤j≤p
|σ̂j/σj − 1| > K(n−(1−c)/2B2

n log p+ n−3/2B2
n log2 p)

)
≤ K ′n−c,

where K,K ′ are universal constants.

Proof. Here K1,K2, . . . denote universal positive constants. Note that for
a > 0, |

√
a− 1| = |a− 1|/(

√
a+ 1) ≤ |a− 1|, so that for r > 0,

P

(
max

1≤j≤p
|σ̂j/σj − 1| > r

)
≤ P

(
max

1≤j≤p
|σ̂2
j /σ

2
j − 1| > r

)
.



MANY MOMENT INEQUALITIES 53

Using the expression σ̂2
j /σ

2
j − 1 = (En[Z2

ij ]− 1)− (En[Zij ])
2, we have

P

(
max

1≤j≤p
|σ̂2
j /σ

2
j − 1| > r

)
≤ P

(
max

1≤j≤p
|En[Z2

ij ]− 1| > r/2

)
+ P

(
max

1≤j≤p
|En[Zij ]| >

√
r/2

)
.

We wish to bound the two terms on the right-hand side by using the Fuk-
Nagaev inequality (Lemma D.2) combined with the maximal inequality in
Lemma D.3.

By Lemma D.3 (with the crude bounds E[Z4
1j ] ≤ B4

n and E[maxi,j Z
4
ij ] ≤

nB4
n), we have

E

[
max

1≤j≤p
|En[Z2

ij ]− 1|
]
≤ K1B

2
n(log p)/

√
n,

so that by Lemma D.2, for every t > 0,

P

(
max

1≤j≤p
|En[Z2

ij ]− 1| > 2K1B
2
n log p√
n

+ t

)
≤ e−nt2/(3B4

n) +K2t
−2n−1B4

n.

Taking t = n−(1−c)/2B2
n with 0 < c < 1, the right-hand side becomes e−n

c/3+
K2n

−c ≤ K3n
−c. Hence we have

P

(
max

1≤j≤p
|En[Z2

ij ]− 1| > K4n
−(1−c)/2B2

n(log p)

)
≤ K3n

−c. (71)

Similarly, using Lemma D.3, we have

E

[
max

1≤j≤p
|En[Zij ]|

]
≤ K5(n−1/2

√
log p+ n−3/4Bn log p), (72)

so that by Lemma D.2, for every t > 0,

P

(
max

1≤j≤p
|En[Zij ]| > 2K5(n−1/2

√
log p+ n−3/4Bn log p) + t

)
≤ e−nt2/3 +K6t

−4n−3B4
n.

Taking t = n−1/4Bn, the right-hand side becomes e−n
1/2Bn/3 + K6n

−2 ≤
K7n

−2. Hence we have

P

(
max

1≤j≤p
|En[Zij ]| > K8(n−1/4Bn

√
log p+ n−3/4Bn log p)

)
≤ K7n

−2. (73)

Combining (71) and (73) leads to the desired result. �

Proof of Theorem 4.2. Here c, C denote generic positive constants depend-
ing only on α, c1, C1; their values may change from place to place. Define

J1 = {j ∈ {1, . . . , p} :
√
nµj/σj > −cSN (βn)}, Jc1 = {1, . . . , p}\J1. (74)

For k ≥ 1, let

cSN,2S(α, k) =
Φ−1(1− (α− 2βn)/k)√

1− Φ−1(1− (α− 2βn)/k)2/n
.
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Note that cSN,2S(α) = cSN,2S(α, k̂) when k̂ ≥ 1. We divide the proof into
several steps.

Step 1. We wish to prove that with probability larger than 1−βn−Cn−c,
µ̂j ≤ 0 for all j ∈ Jc1 .

Observe that

µ̂j > 0 for some j ∈ Jc1 ⇒ max
1≤j≤p

√
n(µ̂j − µj)/σj > cSN (βn),

so that it is enough to prove that

P

(
max

1≤j≤p

√
n(µ̂j − µj)/σj > cSN (βn)

)
≤ βn + Cn−c. (75)

Since whenever σj/σ̂j − 1 ≥ −r for some 0 < r < 1,

σj = σ̂j(1 + (σj/σ̂j − 1)) ≥ σ̂j(1− r),
the left-hand side of (75) is bounded by

P

(
max

1≤j≤p

√
n(µ̂j − µj)/σ̂j > (1− r)cSN (βn)

)
(76)

+ P

(
max

1≤j≤p
|(σj/σ̂j)− 1| > r

)
, (77)

where 0 < r < 1 is arbitrary.
Take r = rn = n−(1−c1)/2B2

n log p. Then rn < 1 for large n, and since

|a− 1| ≤ r

r + 1
⇒ |a−1 − 1| ≤ r,

we see that by Lemma D.5, the probability in (77) is bounded by Cn−c.
Consider the probability in (76). It is not difficult to see that

P

(
max

1≤j≤p

√
n(µ̂j − µj)/σ̂j > (1− r)cSN (βn)

)
≤ P

(
max

1≤j≤p
Uj > (1− r)Φ−1(1− βn/p)

)
≤

p∑
j=1

P
(
Uj > (1− r)Φ−1(1− βn/p)

)
. (78)

Note that (1 − r)Φ−1(1 − βn/p) ≤
√

2 log(p/βn) ≤ n1/6/Mn,3 for large n.
Hence, by Lemma D.1, the sum in (78) is bounded by

pΦ
(
(1− r)Φ−1(1− βn/p)

) [
1 + n−1/2CM3

n,3

{
1 + (1− r)Φ−1(1− βn/p)

}3
]

≤ pΦ
(
(1− r)Φ−1(1− βn/p)

) [
1 + n−1/2CM3

n,3{1 + Φ−1(1− βn/p)}3
]
.

Observe that n−1/2M3
n,3{1 + Φ−1(1− βn/p)}3 ≤ Cn−c1 . Moreover, putting

ξ = Φ−1(1− βn/p), we have by Taylor’s expansion for some r′ ∈ [0, r],

pΦ ((1− r)ξ) = βn + rpξφ
(
(1− r′)ξ

)
≤ βn + rpξφ ((1− r)ξ) .
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Using the inequality (1 − r)2ξ2 = ξ2 + r2ξ2 − 2rξ2 ≥ ξ2 − 2rξ2, we have

φ ((1− r)ξ) ≤ erξ
2
φ(ξ). Since βn < α/2 < 1/4 and p ≥ 2, we have ξ ≥

Φ−1(1 − 1/8) > 1, so that by Proposition 2.1 in Dudley (1999), we have
φ(ξ) ≤ 2ξ(1− Φ(ξ)) = 2ξβn/p.

26 Hence

pΦ ((1− r)ξ) ≤ βn(1 + 2rξ2erξ
2
).

Recall that we have taken r = rn = n−(1−c1)/2B2
n log p, so that

rξ2 ≤ 2n−(1−c1)/2B2
n log2(p/βn) ≤ Cn−c1/2.

Therefore, the probability in (76) is bounded by βn+Cn−c for large n. The
conclusion of Step 1 is verified for large n and hence for all n by adjusting
the constant C.

Step 2. We wish to prove that with probability larger than 1−βn−Cn−c,
ĴSN ⊃ J1.

Observe that

P(ĴSN 6⊃ J1) ≤ P

(
max

1≤j≤p

[√
n(µj − µ̂j)− (2σ̂j − σj)cSN (βn)

]
> 0

)
. (79)

Since whenever 1− σj/σ̂j ≥ −r for some 0 < r < 1,

2σ̂j − σj = σ̂j(1 + (1− σj/σ̂j)) ≥ σ̂j(1− r),

the right-hand side on (79) is bounded by

P

(
max

1≤j≤p

√
n(µj − µ̂j)/σ̂j > (1− r)cSN (βn)

)
+ P

(
max

1≤j≤p
|(σj/σ̂j)− 1| > r

)
,

where 0 < r < 1 is arbitrary. By the proof of Step 1, we see that the sum
of these terms is bounded by βn +Cn−c with suitable r, which leads to the
conclusion of Step 2.

Step 3. We are now in position to prove (28). Consider first the case
where J1 = ∅. Then by Step 1, with probability larger than 1− βn −Cn−c,
T ≤ 0, so that

P(T > cSN,2S(α)) ≤ βn + Cn−c ≤ α+ Cn−c.

Suppose now that |J1| ≥ 1. Observe that

{T > cSN,2S(α)} ∩
{

max
j∈Jc1

µ̂j ≤ 0

}
⊂
{

max
j∈J1

√
nµ̂j/σ̂j > cSN,2S(α)

}
.

26Note that the second part of Proposition 2.1 in Dudley (1999) asserts that φ(t)/t ≤
P(|N(0, 1)| > t) = 2(1− Φ(t)) when t ≥ 1, so that φ(t) ≤ 2t(1− Φ(t)).
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Moreover, as cSN,2S(α, k) is non-decreasing in k,{
max
j∈J1

√
nµ̂j/σ̂j > cSN,2S(α)

}
∩ {ĴSN ⊃ J1}

⊂
{

max
j∈J1

√
nµ̂j/σ̂j > cSN,2S(α, |J1|)

}
.

Therefore, by Steps 1 and 2, we have

P(T > cSN,2S(α))

≤ P

(
max
j∈J1

√
nµ̂j/σ̂j > cSN,2S(α, |J1|)

)
+ 2βn + Cn−c

≤ P

(
max
j∈J1

√
n(µ̂j − µj)/σ̂j > cSN,2S(α, |J1|)

)
+ 2βn + Cn−c. (80)

By Theorem 4.1, we see that

P

(
max
j∈J1

√
n(µ̂j − µj)/σ̂j > cSN,2S(α, |J1|)

)
≤ α− 2βn + Cn−c, (81)

where the condition (22) of Theorem 4.1,

M3
n,3 log3/2(p/α) ≤ C1n

1/2−c1 ,

is now replaced by

M3
n,3 log3/2(p/(α− 2βn)) ≤ C1n

1/2−c1 ,

which is assumed in (27). Combining (80) and (81) gives (28).

Step 4. Finally, we prove (29). Since µj = 0 for all j = 1, . . . , p, it follows

that J1 = {1, . . . , p}, and so by Step 2, k̂ = p and cSN,2S(α) = cSN,2S(α, p) =
cSN (α − 2βn) with probability larger than 1 − βn − Cn−c = 1 − o(1) since
βn → 0. Therefore,

P(T > cSN,2S(α)) = P

(
max

1≤j≤p

√
n(µ̂j − µj)/σ̂j > cSN,2S(α)

)
= P

(
max

1≤j≤p

√
n(µ̂j − µj)/σ̂j > cSN (α− 2βn)

)
+ o(1)

= 1− e−(α−2βn) + o(1)→ 1− e−α

as in the proof of Theorem 4.1. This completes the proof of the theorem. �

D.5. Proof of Theorem 4.3. Here c, C denote generic positive constants
depending only on c1, C1; their values may change from place to place. Let
W stand for WMB or WEB, depending on which bootstrap procedure is
used. Define

T̄ := max
1≤j≤p

√
n(µ̂j − µj)

σ̂j
, and T0 := max

1≤j≤p

√
n(µ̂j − µj)

σj
.
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In addition, define

W̄MB := max
1≤j≤p

√
nEn[εi(Xij − µ̂j)]

σj
, W̄EB := max

1≤j≤p

√
nEn[(X∗ij − µ̂j)]

σj
,

and let W̄ stand for W̄MB or W̄EB depending on which bootstrap procedure
is used. Further, let

(Y1, . . . , Yp)
T ∼ N(0,E[Z1Z

T
1 ])

and for γ ∈ (0, 1), denote by c0(γ) the (1− γ)-quantile of the distribution of
max1≤j≤p Yj . Finally, define

ρn := sup
t∈R

∣∣∣∣P(T0 ≤ t)− P

(
max

1≤j≤p
Yj ≤ t

)∣∣∣∣ ,
ρBn := sup

t∈R

∣∣∣∣P(W̄ ≤ t | Xn
1 )− P

(
max

1≤j≤p
Yj ≤ t

)∣∣∣∣ .
Observe that under the present assumptions, we may apply Proposition 2.1
in Chernozhukov, Chetverikov, and Kato (2017) so that we have

ρn ≤ Cn−c; (82)

while applying Corollary 4.2 and Proposition 4.3 in Chernozhukov, Chetverikov,
and Kato (2017) to the MB and EB procedures, respectively, we have for
some νn := Cn−c,

P(ρBn < νn) ≥ 1− Cn−c. (83)

We divide the rest of the proof into three steps. Step 1 establishes a relation
between cB(·) and c0(·). Step 2 proves the assertion of the theorem. Step
3 provides auxiliary calculations. In particular, Step 3 shows that for some
ζn1 and ζn2 satisfying ζn1

√
log p+ ζn2 ≤ Cn−c, we have

P(|T̄ − T0| > ζn1) ≤ Cn−c, (84)

P(P(|W − W̄ | > ζn1 | Xn
1 ) > ζn2) ≤ Cn−c. (85)

Step 1. We wish to prove that

P(cB(α) ≥ c0(α+ ζn2 + νn + 8ζn1

√
log p)) ≥ 1− Cn−c, (86)

P(cB(α) ≤ c0(α− ζn2 − νn − 8ζn1

√
log p)) ≥ 1− Cn−c. (87)

To establish (86), observe that for any t ∈ R,

P(W ≤ t | Xn
1 ) ≤ P(W̄ ≤ t+ ζn1 | Xn

1 ) + P(|W − W̄ | > ζn1 | Xn
1 ) (88)

≤ P

(
max

1≤j≤p
Yj ≤ t+ ζn1

)
+ ρBn + P(|W − W̄ | > ζn1 | Xn

1 ). (89)
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By Lemma D.4, for any γ ∈ (0, 1−8ζn1
√

log p) (note that 1−8ζn1
√

log p > 0
for sufficiently large n),

P

(
max

1≤j≤p
Yj ≤ c0(γ + 8ζn1

√
log p) + ζn1

)
≤ P

(
max

1≤j≤p
Yj ≤ c0(γ + 8ζn1

√
log p)

)
+ 2ζn1(

√
2 log p+ 1)

≤ P

(
max

1≤j≤p
Yj ≤ c0(γ + 8ζn1

√
log p)

)
+ 8ζn1

√
log p

= 1− γ − 8ζn1

√
log p+ 8ζn1

√
log p = 1− γ,

where the third line follows from p ≥ 2, so that
√

2 log p ≥ 1, and the fourth
line from the fact that the distribution of max1≤j≤p Yj has no point masses.
Hence

c0(γ + 8ζn1

√
log p) + ζn1 ≤ c0(γ). (90)

Therefore, setting t = c0(α+ ζn2 + νn + 8ζn1
√

log p) in (88)-(89), we obtain

P(W ≤ c0(α+ ζn2 + νn + 8ζn1

√
log p) | Xn

1 )

≤ 1− α− ζn2 − νn + ρBn + P(|W − W̄ | > ζn1 | Xn
1 ) < 1− α

on the event that ρBn < νn and P(|W − W̄ | > ζn1 | Xn
1 ) ≤ ζn2, which

holds with probability larger than 1− Cn−c by (83) and (85). This implies
(86). By a similar argument, we can establish that (87) holds as well. This
completes Step 1.

Step 2. Here we prove the asserted claims. Observe that under H0,

P(T > cB(α)) ≤ P(T̄ > cB(α))

≤ P(T0 > cB(α)− ζn1) + P(|T̄ − T0| > ζn1)

≤ P(T0 > c0(α+ ζn2 + νn + 8ζn1

√
log p)− ζn1) + Cn−c

≤ P(T0 > c0(α+ ζn2 + νn + 16ζn1

√
log p)) + Cn−c

≤ P( max
1≤j≤p

Yj > c0(α+ ζn2 + νn + 16ζn1

√
log p)) + ρn + Cn−c

= α+ ζn2 + νn + 16ζn1

√
log p+ ρn + Cn−c ≤ α+ Cn−c,

where the third line follows from (84) and (86), the fourth line from (90),
and the last line from (82) and construction of νn, ζn1, and ζn2. Hence, (36)
follows. To prove (37), observe that when µj = 0 for all 1 ≤ j ≤ p, T = T̄ ,



MANY MOMENT INEQUALITIES 59

and so

P(T > cB(α)) = P(T̄ > cB(α))

≥ P(T0 > cB(α) + ζn1)− P(|T̄ − T0| > ζn1)

≥ P(T0 > c0(α− ζn2 − νn − 8ζn1

√
log p) + ζn1)− Cn−c

≥ P(T0 > c0(α− ζn2 − νn − 16ζn1

√
log p))− Cn−c

≥ P( max
1≤j≤p

Yj > c0(α− ζn2 − νn − 16ζn1

√
log p))− ρn − Cn−c

= α− ζn2 − νn − 16ζn1

√
log p− ρn − Cn−c ≥ α− Cn−c,

where the third line follows from (84) and (87), the fourth line from (90), and
the equality in the last line from the fact that the distribution of max1≤j≤p Yj
has no point masses. Hence (37) follows. This completes Step 2.

Step 3. We wish to prove (84) and (85). We wish to verify these condi-
tions with

ζn1 := n−(1−c1)/2B2
n log3/2 p, and ζn2 := C ′n−c

′
,

where c′, C ′ are suitable positive constants that depend only on c1, C1. We
note that because of the assumption that B2

n log7/2(pn) ≤ C1n
1/2−c1 , these

choices satisfy ζn1
√

log p+ ζn2 ≤ Cn−c.
We first verify (84). Observe that

|T̄ − T0| ≤ max
1≤j≤p

|(σj/σ̂j)− 1| × max
1≤j≤p

|
√
nEn[Zij ]|.

By Lemma D.5 and the simple fact that |a− 1| ≤ r/(r+ 1)⇒ |a−1− 1| ≤ r
(r > 0), we have

P

(
max

1≤j≤p
|(σj/σ̂j)− 1| > n−1/2+c1/4B2

n log p

)
≤ Cn−c. (91)

Moreover, by Markov’s inequality and (72),

P

(
max

1≤j≤p
|
√
nEn[Zij ]| > nc1/4

√
log p

)
≤ Cn−c.

Hence (84) is verified (note that n−1/2+c1/4B2
n(log p)× nc1/4

√
log p = ζn1).

To verify (85), let An be the event such that

An :=

{
max

1≤j≤p
|(σ̂j/σj)− 1| ≤ (n−1/2+c1/4B2

n log p) ∧ (1/4)

}
.

We have seen that P(An) > 1−Cn−c. We consider MB and EB procedures
separately.

Consider the MB procedure first, so that W = WMB and W̄ = W̄MB.
Observe that

|WMB − W̄MB| ≤ max
1≤j≤p

|(σ̂j/σj)− 1| × |WMB|.



60 CHERNOZHUKOV, CHETVERIKOV, AND KATO

Conditional on the data Xn
1 , the vector (

√
nEn[εi(Xij − µ̂j)/σ̂j ])1≤j≤p is

normal with mean zero and all the diagonal elements of the covariance ma-
trix are one. Hence E[|WMB| | Xn

1 ] ≤
√

2 log(2p), so that by Markov’s
inequality, on the event An,

P(|WMB−W̄MB| > ζn1 | Xn
1 ) ≤ (1/ζn1) max

1≤j≤p
|(σ̂j/σj)−1|×E[|WMB| | Xn

1 ],

which is bounded by Cn−c1/4, so that (85) for the MB procedure is verified.
Now consider the EB procedure. On the event An∩{P(|WMB−W̄MB| >

ζn1 | Xn
1 ) ≤ ζn2} ∩ {ρMB

n < νn} ∩ {ρEBn < νn}, which holds with probability
larger than 1− Cn−c,
P(|WEB − W̄EB| > ζn1 | Xn

1 )

≤ P( max
1≤j≤p

|(σj/σ̂j)− 1| × |W̄EB| > ζn1 | Xn
1 )

≤ P( max
1≤j≤p

|(σj/σ̂j)− 1| × |W̄MB| > ζn1 | Xn
1 ) + ρEBn + ρMB

n

≤ P( max
1≤j≤p

|(σ̂j/σj)− 1| × |WMB| > ζn1/4 | Xn
1 ) + ρEBn + ρMB

n ≤ Cn−c,

so that (85) for the EB procedure is verified. This completes the proof. �

D.6. Proof of Theorem 4.4. Here c, C denote generic positive constants
depending only on c1, C1; their values may change from place to place. Let

ĴB stand either for ĴMB or ĴEB depending on which bootstrap procedure
is used. Let

(Y1, . . . , Yp)
T ∼ N(0,E[Z1Z

T
1 ]).

For γ ∈ (0, 1), denote by c0(γ) the (1 − γ)-quantile of the distribution of
max1≤j≤p Yj . Recall that in the proof of Theorem 4.3, we established that
with probability larger than 1 − Cn−c, cB(α) ≥ c0(α + ϕ̄n) and cB(α) ≤
c0(α− ϕ̄n) for some 0 < ϕ̄n ≤ Cn−c; see (86) and (87). Define

J2 := {j ∈ {1, . . . , p} :
√
nµj/σj > −c0(βn + ϕ̄n)}, Jc2 = {1, . . . , p}\J2.

We divide the proof into several steps.

Step 1. We wish to prove that with probability larger than 1−βn−Cn−c,
µ̂j ≤ 0 for all j ∈ Jc2 .

Like in the proof of Theorem 4.2, observe that

µ̂j > 0 for some j ∈ Jc2 ⇒ max
1≤j≤p

√
n(µ̂j − µj)/σj > c0(βn + ϕ̄n),

so that it is enough to prove that

P

(
max

1≤j≤p

√
n(µ̂j − µj)

σj
> c0(βn + ϕ̄n)

)
≤ βn + Cn−c.

But this follows from Proposition 2.1 in Chernozhukov, Chetverikov, and
Kato (2017) (and the fact that ϕ̄n ≤ Cn−c). This concludes Step 1.

Step 2. We wish to prove that with probability larger than 1−βn−Cn−c,
ĴB ⊃ J2.
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Like in the proof of Theorem 4.2, observe that

P(ĴB 6⊃ J2)

≤ P

(
max

1≤j≤p

[√
n(µj − µ̂j)− (2σ̂jc

B(βn)− σjc0(βn + ϕ̄n))
]
> 0

)
.

Since whenever cB(βn) ≥ c0(βn + ϕ̄n) and σ̂j/σj − 1 ≥ −r/2 for some r > 0,

2σ̂jc
B(βn)− σjc0(βn + ϕ̄n) ≥ (2σ̂j − σj)c0(βn + ϕ̄n)

= σj(1 + 2(σ̂j/σj − 1))c0(βn + ϕ̄n) ≥ (1− r)σjc0(βn + ϕ̄n),

we have

P(ĴB 6⊃ J2) ≤ P

(
max

1≤j≤p

√
n(µj − µ̂j)

σj
> (1− r)c0(βn + ϕ̄n)

)
(92)

+ P
(
cB(βn) < c0(βn + ϕ̄n)

)
+ P

(
max

1≤j≤p
|(σ̂j/σj)− 1| > r/2

)
.

By Proposition 2.1 in Chernozhukov, Chetverikov, and Kato (2017), the
probability on the right-hand side of (92) is bounded by

P

(
max

1≤j≤p
Yj > (1− r)c0(βn + ϕ̄n)

)
+ Cn−c.

Moreover, by Lemma D.4,

P

(
max

1≤j≤p
Yj > (1− r)c0(βn + ϕ̄n)

)
≤ βn + ϕ̄n + 2r

(√
2 log p+ 1)(

√
2 log p+

√
2 log(1/(βn + ϕ̄n))

)
,

which is bounded by βn + ϕ̄n + Cr log(pn). Thus,

P(ĴB 6⊃ J2) ≤ βn + P

(
max

1≤j≤p
|(σ̂j/σj)− 1| > r/2

)
+ C(r log(pn) + n−c).

Choosing r = rn = n−(1−c1)/2B2
n log p, we see that, by Lemma D.5, the

second term on the right-hand side of the inequality above is bounded by
Cn−c, and

r log(pn) ≤ n−(1−c1)/2B2
n log2(pn) ≤ C1n

−c1/2,

because of the assumption that B2
n log7/2(pn) ≤ C1n

1/2−c1 . This leads to
the conclusion of Step 2.

Step 3. We are now in position to finish the proof of the theorem. Assume
first that J2 = ∅. Then by Step 1 we have that T ≤ 0 with probability larger
than 1 − βn − Cn−c. But as cB,2S(α) ≥ 0 (recall that α < 1/2), we have
P(T > cB,2S(α)) ≤ βn + Cn−c ≤ α + Cn−c. Now consider the case where
J2 6= ∅. Define cB,2S(α, J2) by the same bootstrap procedure as cB,2S(α)
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with ĴB replaced by J2. Note that cB,2S(α) ≥ cB,2S(α, J2) on the event

ĴB ⊃ J2. Therefore, arguing as in Step 3 of the proof of Theorem 4.2,

P(T > cB,2S(α)) ≤ P

(
max
j∈J2

√
nµ̂j/σ̂j > cB,2S(α)

)
+ βn + Cn−c

≤ P

(
max
j∈J2

√
nµ̂j/σ̂j > cB,2S(α, J2)

)
+ 2βn + Cn−c

≤ P

(
max
j∈J2

√
n(µ̂j − µj)/σ̂j > cB,2S(α, J2)

)
+ 2βn + Cn−c

≤ α− 2βn + 2βn + Cn−c = α+ Cn−c.

This gives the first assertion of the theorem.
Moreover, when µj = 0 for all 1 ≤ j ≤ p, we have J2 = {1, . . . , p}. Hence

by Step 2, cB,2S(α) = cB,2S(α, J2) with probability larger than 1−βn−Cn−c.
Therefore,

P(T > cB,2S(α)) = P

(
max

1≤j≤p

√
n(µ̂j − µj)/σ̂j > cB,2S(α)

)
≥ P

(
max

1≤j≤p

√
n(µ̂j − µj)/σ̂j > cB,2S(α, J2)

)
− βn − Cn−c

≥ α− 3βn − Cn−c.

This gives the second assertion of the theorem. Finally, the last assertion
follows trivially. This completes the proof of the theorem. �

D.7. Proof of Theorem 4.5. Recall the set J1 ⊂ {1, . . . , p} defined in
(74). By Steps 1 and 2 in the proof of Theorem 4.2, we see that

P(µ̂j ≤ 0 for all j ∈ Jc1) > 1− βn − Cn−c,

P(ĴSN ⊃ J1) > 1− βn − Cn−c,

where c, C are some positive constants depending only on c1, C1. The rest
of the proof is completely analogous to Step 3 in the proof of Theorem 4.4
and hence omitted. �

D.8. Proof of Theorem 4.6. Here c, C denote generic positive constants
depending only on c1, C1, c2, C2; their values may change from place to place.
Define

J2 :=
{
j ∈ {1, . . . , p} :

√
nµj/σj > −c0(βn + ϕ̄n)

}
, Jc2 := {1, . . . , p}\J2,

J3 :=
{
j ∈ {1, . . . , p} :

√
n|µVjl/σVjl | > 2cV0 (βn) for some l = 1, . . . , r

}
where c0(βn + ϕ̄n) is defined as in the proof of Theorem 4.4 and cV0 (βn) is
the (1 − βn)-quantile of the distribution of maxj,l Y

V
jl where {Y V

jl , 1 ≤ j ≤
p, 1 ≤ l ≤ r} is a sequence of Gaussian random variables with mean zero
and covariance E[Y V

jl Y
V
j′l′ ] = E[ZV1jlZ

V
1j′l′ ].
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By the same arguments as those used in Steps 1 and 2 of the proof of
Theorem 4.4, we have

P(J2 ⊂ ĴB) ≥ 1− βn − Cn−c,

P(J3 ⊂ Ĵ ′′B) ≥ 1− βn − Cn−c,

P(Ĵ ′B ⊂ J3) ≥ 1− βn − Cn−c,
P(µ̂j ≤ 0, for all j ∈ Jc2) ≥ 1− βn − Cn−c.

Define cB,3S(α, J2 ∩ J3) by the same bootstrap procedure as cB,3S(α) with

ĴB∩Ĵ ′′B replaced by J2∩J3. Then inequalities above imply that cB,3S(α, J2∩
J3) ≤ cB,3S(α) with probability larger than 1− 2βn − Cn−c. Therefore, by
an argument similar to that used in Step 3 of the proof of Theorem 4.4, with
maximum over empty set understood as 0, we have

P(T > cB,3S(α)) ≤ P

(
max

j∈J2∩Ĵ ′B

√
nµ̂j/σ̂j > cB,3S(α)

)
+ βn + Cn−c

≤ P

(
max

j∈J2∩Ĵ ′B

√
nµ̂j/σ̂j > cB,3S(α, J2 ∩ J3)

)
+ 3βn + Cn−c

≤ P

(
max

j∈J2∩J3

√
nµ̂j/σ̂j > cB,3S(α, J2 ∩ J3)

)
+ 4βn + Cn−c

≤ α− 4βn + 4βn + Cn−c = α+ Cn−c.

This completes the proof of the theorem. �

D.9. Proof of Theorem 5.1. To prove this theorem, we will apply the
following lemma:

Lemma D.6. In the setting of Theorem 5.1, for every ε ≥ 0, there exist
ε > 0 and δ ∈ (0, 1) such that whenever

max
1≤j≤p

(µj/σj) ≥ (1 + δ)(1 + ε+ ε)

√
2 log(p/α)

n
,

we have

P(T > ĉ(α)) ≥1− 1

2(1− δ)2ε2 log(p/α)

− max
1≤j≤p

P(|σ̂j/σj − 1| > δ)− P
(
ĉ(α) > (1 + ε)

√
2 log(p/α)

)
.

Proof. Let j∗ ∈ {1, . . . , p} be any index such that µj∗/σj∗ = max1≤j≤p(µj/σj).
Let An,1 and An,2 be the events that |σ̂j∗/σj∗ − 1| ≤ δ and ĉ(α) ≤ (1 +

ε)
√

2 log(p/α), respectively. Then on the event An,1 ∩An,2,

T ≥
√
nµ̂j∗/σ̂j∗ =

√
nµj∗/σ̂j∗ +

√
n(µ̂j∗ − µj∗)/σ̂j∗

≥ (1/(1 + δ)) ·
√
nµj∗/σj∗ +

√
n(µ̂j∗ − µj∗)/σ̂j∗

≥ (1 + ε+ ε)
√

2 log(p/α) +
√
n(µ̂j∗ − µj∗)/σ̂j∗ ,
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so that
√
n(µ̂j∗ − µj∗)/σ̂j∗ > −ε

√
2 log(p/α) ⇒ T > ĉ(α).

Hence we have

P(T > ĉ(α)) ≥ P ({T > ĉ(α)} ∩An,1 ∩An,2)

≥ P
({√

n(µ̂j∗ − µj∗)/σ̂j∗ > −ε
√

2 log(p/α)
}
∩An,1 ∩An,2

)
≥ P

({√
n(µ̂j∗ − µj∗)/σj∗ > −(1− δ)ε

√
2 log(p/α)

}
∩An,1 ∩An,2

)
≥ P

(√
n(µ̂j∗ − µj∗)/σj∗ > −(1− δ)ε

√
2 log(p/α)

)
− P(An,1)− P(An,2).

By Markov’s inequality, we have

P
(√

n(µ̂j∗ − µj∗)/σj∗ > −(1− δ)ε
√

2 log(p/α)
)

= 1− P
(√

n(µj∗ − µ̂j∗)/σj∗ ≥ (1− δ)ε
√

2 log(p/α)
)

≥ 1− 1

2(1− δ)2ε2 log(p/α)
.

This completes the proof. �

Getting back to the proof of Theorem 5.1, let c, C denote generic positive
constants depending only on α, c1, C1 but such that their values may change
from place to place. Note that since M2

n,4 log1/2 p ≤ C1n
1/2−c1 , by Markov’s

inequality, there exists δn ≤ min{C log−1/2 p, 1/2} such that

max
1≤j≤p

P (|σ̂j/σj − 1| > δn) ≤ Cn−c.

Hence, by Lemma D.6, we only have to verify that

P(ĉ(α) > (1 + C log−1/2 p)
√

2 log(p/α)) ≤ Cn−c. (93)

To this end, since α− 2βn ≥ c1α, we note that

cSN,2S(α) ≤ cSN (c1α), cB,2S(α) ∨ cB,H(α) ≤ cB(c1α)

where B = MB or EB, so that it suffices to verify (93) with ĉ(α) = cSN (α),
cMB(α), and cEB(α).

For ĉ(α) = cSN (α), since Φ−1(1−p/α) ≤
√

2 log(p/α) and log3/2 p ≤ C1n,

it is straightforward to see that (93) is verified. For ĉ(α) = cMB(α), it follows

from Lemma D.4 that cMB(α) ≤
√

2 log p +
√

2 log(1/α), so that (93) can
be verified by simple algebra.

Now consider ĉ(α) = cEB(α). It is established in Step 1 of the proof of
Theorem 4.3 that there exists a sequence ϕ̄n ≥ 0 such that ϕ̄n ≤ Cn−c and
P(cEB(α) > c0(α − ϕ̄n)) ≤ Cn−c where c0(α − ϕ̄n) is the (1 − α + ϕ̄n)th
quantile of the distribution of max1≤j≤p Yj and (Y1, . . . , Yp)

T is a normal
vector with mean zero and all diagonal elements of the covariance matrix
equal to one. By Lemma D.4,

c0(α− ϕ̄n) ≤
√

2 log p+
√

2 log(1/(α− ϕ̄n)).



MANY MOMENT INEQUALITIES 65

In addition, simple algebra shows that

(1 + C log−1/2 p)
√

2 log(p/α) >
√

2 log p+
√

2 log(1/(α− ϕ̄n))

if C is chosen sufficiently large (and depending on α). Combining these
inequalities gives (93). This completes the proof. �

D.10. Proof of Theorem A.1. The theorem readily follows from Theo-
rems 4.1-4.5. �

D.11. Proof of Theorem B.1. Here c, c′, C, C ′ denote generic positive
constants depending only on c1, c2, C1; their values may change from place
to place. It suffices to show that |P(Ť ≤ ĉBMB(α)) − α| ≤ Cn−c when
µj = 0, 1 ≤ ∀j ≤ p. Suppose that µj = 0, 1 ≤ ∀j ≤ p. We use the extensions
of the results in Chernozhukov, Chetverikov, and Kato (2013) to dependent
data proved in Appendix E ahead. Note that since log(pn) ≤ C

√
q (which

follows from (r/q) log2 p ≤ C1n
−c2),

√
qDn log7/2(pn) ≤ CqDn log5/2(pn) ≤

C ′n1/2−c2 , so that by Theorem E.1 in Appendix E,

sup
t∈R
|P(Ť ≤ t)− P( max

1≤j≤p
Y̌j ≤ t)| ≤ Cn−c, (94)

where Y̌ = (Y̌1, . . . , Y̌p)
T is a centered normal random vector with covariance

matrix E[Y̌ Y̌ T ] = (1/(mq))
∑m

l=1 E[(
∑

i∈Il Xi)(
∑

i∈Il Xi)
T ]. Note that c1 ≤

σ2(q) ≤ E[Y̌ 2
j ] ≤ σ2(q) ≤ C1, 1 ≤ ∀j ≤ p.

Let W̌0 = max1≤j≤p(1/
√
mq)

∑m
l=1 εl

∑
i∈Il Xij . Then by Theorem E.2,

with probability larger than 1− Cn−c,

sup
t∈R
|P(W̌0 ≤ t | Xn

1 )− P( max
1≤j≤p

Y̌j ≤ t)| ≤ C ′n−c
′
.

Observe that |W̌ − W̌0| ≤ max1≤j≤p |
√
nµ̂j | · |m−1

∑m
l=1 εl|. Here since

q ≤ Cn1/2−c2 , we have m ≥ n/(4q) ≥ C−1n1/2−c2 , so that by Markov’s

inequality, P(|m−1
∑m

l=1 εl| > Cn−1/4+5c2/8) ≤ n−c2/8. On the other hand,
by applying Theorem E.1 to (Xi1, . . . , Xip,−Xi1, . . . ,−Xip)

T , we have

sup
t∈R
|P( max

1≤j≤p
|
√
nµ̂j | ≤ t)− P( max

1≤j≤p
|Y̌j | ≤ t)| ≤ Cn−c.

Since E[max1≤j≤p |Y̌j |] ≤ C
√

log p, we conclude that

P( max
1≤j≤p

|
√
nµ̂j | > Cnc2/8

√
log p) ≤ C ′n−c.

Hence with probability larger than 1− Cn−c,

P(|W̌ − W̌0| > ζn | Xn
1 ) ≤ n−c′ ,

where ζn = C ′n−1/4+3c2/4
√

log p. Note that since qDn log5/2(pn) ≤ C1n
1/2−c2 ,

n−1/4+c2/2 log p ≤ Cq−1/2 ≤ C ′n−c2/2 (the second inequality follows from

(r/q) log2 p ≤ C1n
−c2 so that q−1 ≤ Cn−c2), and hence ζn

√
log p ≤ Cn−c2/4.
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Using the anti-concentration property of max1≤j≤p Y̌j (see Step 3 in the proof
of Theorem E.1), we conclude that with probability larger than 1− Cn−c,

sup
t∈R
|P(W̌ ≤ t | Xn

1 )− P( max
1≤j≤p

Y̌j ≤ t)| ≤ C ′n−c
′
.

The desired assertion follows from combining this inequality with (94). �

D.12. Proof of Theorem B.2. Here c, C denote generic positive constants
depending only on c1, C1; their values may change from place to place. De-
fine

T̄ := max
1≤j≤p

√
n(µ̂j − µj)

σ̂j
, T0 := max

1≤j≤p

√
n(µ̂j,0 − µj)

σj
,

WMB := max
1≤j≤p

√
nEn[εi(X̂ij − µ̂j)]

σ̂j
, W̄MB := max

1≤j≤p

√
nEn[εi(Xij − µ̂j,0)]

σj
,

WEB := max
1≤j≤p

√
nEn[X̂∗ij − µ̂j ]

σ̂j
, W̄EB := max

1≤j≤p

√
nEn[X∗ij − µ̂j,0]

σj
,

where X̂∗1 , . . . , X̂
∗
n is an empirical bootstrap sample from X̂1, . . . , X̂n, and

X∗1 , . . . , X
∗
n is an empirical bootstrap sample from X1, . . . , Xn. Observe

that the critical values cMB,2S(α) and cEB,2S(α) are based on the bootstrap
statistics WMB and WEB.

We divide the proof into several steps. In Steps 1, 2, and 3, we prove that

P
(
|T̄ − T0| > ζ ′n1

)
≤ Cn−c, (95)

P(P(|WMB − W̄MB| > ζ ′n1 | Xn
1 ) > Cn−c) ≤ Cn−c, (96)

P(P(|WEB − W̄EB| > ζ ′n1 | Xn
1 ) > Cn−c) ≤ Cn−c, (97)

respectively, for some ζ ′n1 satisfying ζ ′n1

√
log p ≤ Cn−c. In Step 4, we prove

an auxiliary result that

P

(
max

1≤j≤p
|1− σ̂j/σ̂j,0| > Cζn1

)
≤ Cn−c. (98)

Given results (95)-(97), the conclusions of the theorem follow by repeating
the arguments used in the proofs of Theorems 4.3 and 4.4.

In the proof, we will frequently use the following implications of Lemma
D.5 (recall that σ̂j in Lemma D.5 is denoted as σ̂j,0 in this proof):

P

(
max

1≤j≤p
(σj/σ̂j,0)2 > 2

)
≤ Cn−c, (99)

P

(
max

1≤j≤p
(σ̂j,0/σj)

2 > 2

)
≤ Cn−c. (100)
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Step 1. Here we wish to prove (95). Define T ′0 := max1≤j≤p
√
n(µ̂j,0 −

µj)/σ̂j . Observe that

|T̄ − T ′0| ≤ max
1≤j≤p

∣∣∣∣√n(µ̂j − µ̂j,0)

σ̂j

∣∣∣∣ ≤ C max
1≤j≤p

∣∣∣∣√n(µ̂j − µ̂j,0)

σj

∣∣∣∣
≤ C max

1≤j≤p
|
√
n(µ̂j − µ̂j,0)| ≤ Cζn1

with probability larger than 1−Cn−c where the second inequality in the first
line follows from (98) and (99) and the second line follows from assumptions.
Also,

|T ′0 − T0| ≤ max
1≤j≤p

|σj/σ̂j − 1| × max
1≤j≤p

|
√
nEn[Zij ]|,

where Zij = (Xij −µj)/σj . As shown in Step 3 of the proof of Theorem 4.3,

P

(
max

1≤j≤p
|
√
nEn[Zij ]| > nc1/4

√
log p

)
≤ Cn−c.

In addition, using an elementary inequality |ab−1| ≤ |a||b−1|+ |a−1| with
a = σj/σ̂j,0 and b = σ̂j,0/σ̂j , we obtain from (91) in the proof of Theorem
4.3, (98), and (99) that

P

(
max

1≤j≤p
|σj/σ̂j − 1| > C(n−1/2+c1/4B2

n log p+ ζn1)

)
≤ Cn−c

(remember that σ̂j in the proof of Theorem 4.3 corresponds to σ̂j,0 here).

Therefore, the claim of this step holds with ζ ′n1 := C(n−1/2+c1/2B2
n(log p)3/2+

ζn1n
c1/4
√

log p) for sufficiently large C.

Step 2. Here we wish to prove (96). Let ŴMB := max1≤j≤p
√
nEn[εi(Xij−

µ̂j,0)]/σ̂j . By (98) and (99), with probability larger than 1− Cn−c,

|WMB − ŴMB| ≤ max
1≤j≤p

|
√
nEn[εi(X̂ij −Xij − µ̂j + µ̂j,0)]|

σ̂j

≤ C max
1≤j≤p

|
√
nEn[εi(X̂ij −Xij − µ̂j + µ̂j,0)]|

σj

≤ C max
1≤j≤p

|
√
nEn[εi(X̂ij −Xij − µ̂j + µ̂j,0)]|,

where the third inequality follows from the assumption that σj ≥ c1 for all

j = 1, . . . , p. Conditional on Xn
1 , the vector (

√
nEn[εi(X̂ij − Xij − µ̂j +

µ̂j,0)])1≤j≤p is normal with mean zero and all diagonal elements of the co-

variance matrix bounded by max1≤j≤p En[(X̂ij − Xij − µ̂j + µ̂j,0)2]. As
established in in Step 4 below, the last quantity is bounded by Cζ2

n1 with
probability larger than 1− Cn−c. Therefore,

P(P(|WMB − ŴMB| > Cζn1

√
log p | Xn

1 ) > Cn−c) ≤ Cn−c. (101)

Moreover

|ŴMB − W̄MB| ≤ max
1≤j≤p

|σj/σ̂j − 1| × W̄MB.
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Now observe that W̄MB = max1≤j≤p
√
nEn[εi(Xij − µ̂j,0)/σj ] and condi-

tional on the data Xn
1 , the vector (

√
nEn[εi(Xij − µ̂j,0)/σj ])1≤j≤p is normal

with mean zero and all diagonal elements of the covariance matrix bounded
by max1≤j≤p(σ̂

2
j,0/σ

2
j ). By (100), the last quantity is bounded by 2 with

probability larger than 1− Cn−c. Therefore,

P(P(|ŴMB − W̄MB| > ζ ′n1 | Xn
1 ) > Cn−c) ≤ Cn−c (102)

where ζ ′n1 is defined in Step 1. Combining (101) and (102) leads to the
assertion of this step.

Step 3. Here we wish to prove (97). Let ŴEB := max1≤j≤p
√
nEn[X∗ij −

µ̂j,0]/σ̂j . By (98) and (99), with probability larger than 1− Cn−c,

|WEB − ŴEB| ≤ max
1≤j≤p

|
√
nEn[X̂∗ij −X∗ij − µ̂j + µ̂j,0]|

σ̂j

≤ C max
1≤j≤p

|
√
nEn[X̂∗ij −X∗ij − µ̂j + µ̂j,0]|

σj

≤ C max
1≤j≤p

|
√
nEn[X̂∗ij −X∗ij − µ̂j + µ̂j,0]|,

where the third inequality follows from the assumption that σj ≥ c1 for all
1 ≤ j ≤ p. Applying Lemma D.3 conditional on the data Xn

1 , we have

E

[
max

1≤j≤p
|
√
nEn[X̂∗ij −X∗ij − µ̂j + µ̂j,0]| | Xn

1

]
≤ C

(
max

1≤j≤p
(En[(X̂ij −Xij)

2] log p)1/2 + max
i,j
|X̂ij −Xij |(log p)/

√
n

)
.

Therefore, by Markov’s inequality, we have

P(P(|WEB − ŴEB| > Cζn1n
c1/4
√

log p | Xn
1 ) > Cn−c) ≤ Cn−c. (103)

Moreover
|ŴEB − W̄EB| ≤ max

1≤j≤p
|σj/σ̂j − 1| × W̄EB.

Applying Lemma D.3 conditional on the data Xn
1 once again, we have

E[W̄EB | Xn
1 ] ≤ C

(
max

1≤j≤p
(σ̂j,0/σj) + max

i,j

|Xij − µj |
σj

(log p)/
√
n

)
.

By (100), max1≤j≤p(σ̂j,0/σj) ≤
√

2 with probability larger than 1 − Cn−c.
Here for Zij = (Xij − µj)/σj ,

E

[
max

1≤j≤p
|Zij |

]
≤
(

E

[
max
i,j
|Zij |4

])1/4

≤
(

E

[
n max

1≤j≤p
|Zij |4

])1/4

= n1/4Bn.

Hence, by Markov’s inequality and the assumption that B2
n log7/2(pn) ≤

C1n
1/2−c1 , we have maxi,j(|Xij − µj |/σj)(log p)/

√
n ≤ C

√
log p with proba-

bility larger than 1− Cn−c for sufficiently large C. Therefore,

P(P(|ŴEB − W̄EB| > Cζn1

√
log p | Xn

1 ) > Cn−c) ≤ Cn−c. (104)
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Combining (103) and (104) leads to the assertion of this step.

Step 4. Here we wish to prove (98). Using (99), we obtain that with
probability larger than 1− Cn−c, for all j = 1, . . . , p,∣∣∣∣1− σ̂j

σ̂j,0

∣∣∣∣ ≤ ∣∣∣∣1− ( σ̂jσ̂j,0
)2
∣∣∣∣ =

1

σ̂2
j,0

∣∣σ̂2
j − σ̂2

j,0

∣∣ ≤ 2

σ2
j

∣∣σ̂2
j − σ̂2

j,0

∣∣
=

2

σ2
j

∣∣∣En[(X̂ij − µ̂j)2 − (Xij − µ̂j,0)2]
∣∣∣ .

Since a2 − b2 = (a − b)2 + 2b(a − b) for any a, b ∈ R, we have, by the
Cauchy-Schwarz inequality,

|En[(X̂ij − µ̂j)2 − (Xij − µ̂j,0)2]| ≤ En[(X̂ij −Xij − µ̂j + µ̂j,0)2]

+ 2σ̂j,0

(
En[(X̂ij −Xij − µ̂j + µ̂j,0)2]

)1/2
.

Also,(
En[(X̂ij −Xij − µ̂j + µ̂j,0)2]

)1/2
≤ (En[(X̂ij −Xij)

2])1/2 + |µ̂j − µ̂j,0|,

which is further bounded by Cζn1 with probability larger than 1 − Cn−c.
Taking these inequalities together, we conclude that with probability larger
than 1− Cn−c, for all j = 1, . . . , p,∣∣∣∣1− σ̂j

σ̂j,0

∣∣∣∣ ≤ 2(Cζn1)2

σ2
j

+
4σ̂j,0Cζn1

σ2
j

≤ Cζn1,

where the last inequality follows from the assumption that σj ≥ c1 for all
j = 1, . . . , p and inequality (100). This leads to the assertion of Step 4 and
completes the proof of the theorem. �

Appendix E. High dimensional CLT under dependence

In this section, we extend the results of Chernozhukov, Chetverikov, and
Kato (2013) to dependent data. Let X1, . . . , Xn be possibly dependent ran-
dom vectors in Rp with mean zero, defined on the probability space (Ω,A,P),
and let Ť = max1≤j≤p

√
nEn[Xij ]. For the sake of simplicity, we assume that

there is some constant Dn ≥ 1 such that

|Xij | ≤ Dn, a.s., 1 ≤ i ≤ n; 1 ≤ j ≤ p.
We follow the other notation used in Appendix B.1. In addition, define

Sl =
∑
i∈Il

Xi, S
′
l =

∑
i∈Jl

Xi,

and let {S̃l}ml=1 and {S̃′l}ml=1 be two independent sequences of random vectors
in Rp such that

S̃l
d
= Sl, S̃

′
l
d
= S′l, 1 ≤ l ≤ m.

Moreover, let Y̌ = (Y̌1, . . . , Y̌p)
T be a centered normal random vector with

covariance matrix E[Y̌ Y̌ T ] = (1/(mq))
∑m

l=1 E[SlS
T
l ].
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Theorem E.1 (High dimensional CLT under dependence). Suppose that
there exist constants 0 < c1 ≤ C1 and 0 < c2 < 1/4 such that c1 ≤ σ2(q) ≤
σ2(r) ∨ σ2(q) ≤ C1, (r/q) log2 p ≤ C1n

−c2, and

max{qDn log1/2 p, rDn log3/2 p,
√
qDn log7/2(pn)} ≤ C1n

1/2−c2 .

Then there exist constants c, C > 0 depending only on c1, c2, C1 such that

sup
t∈R
|P(Ť ≤ t)− P( max

1≤j≤p
Y̌j ≤ t)| ≤ Cn−c + 2(m− 1)br.

Proof. In this proof, c, C denote generic positive constants depending only
on c1, c2, C1; their values may change from place to place. We divide the
proof into several steps.

Step 1. (Reduction to independence). We wish to show that

P

(
max

1≤j≤p

1√
n

m∑
l=1

S̃lj ≤ t− Cn−c log−1/2 p

)
− n−c − 2(m− 1)br

≤ P(Ť ≤ t)

≤ P

(
max

1≤j≤p

1√
n

m∑
l=1

S̃lj ≤ t+ Cn−c log−1/2 p

)
+ n−c + 2(m− 1)br.

We only prove the second inequality; the first inequality follows from the
analogous argument. Observe that

∑n
i=1Xi =

∑m
l=1 Sl +

∑m
l=1 S

′
l + S′m+1,

so that

| max
1≤j≤p

n∑
i=1

Xij − max
1≤j≤p

m∑
l=1

Slj | ≤ max
1≤j≤p

|
m∑
l=1

S′lj |+ max
1≤j≤p

|S′m+1,j |.

By Corollary 2.7 in Yu (1994) (see also Eberlein, 1984), we have

sup
t∈R

∣∣∣∣∣P
(

max
1≤j≤p

m∑
l=1

Slj ≤ t

)
− P

(
max

1≤j≤p

m∑
l=1

S̃lj ≤ t

)∣∣∣∣∣ ≤ (m− 1)br,

sup
t>0

∣∣∣∣∣P
(

max
1≤j≤p

|
m∑
l=1

S′lj | > t

)
− P

(
max

1≤j≤p
|
m∑
l=1

S̃′lj | > t

)∣∣∣∣∣ ≤ (m− 1)bq.

Hence for every δ1, δ2 > 0,

P(Ť ≤ t) ≤ P

(
max

1≤j≤p

1√
n

m∑
l=1

S̃lj ≤ t+ δ1 + δ2

)

+ P

(
max

1≤j≤p
| 1√
n

m∑
l=1

S̃′lj | > δ1

)
+ P

(
max

1≤j≤p
|S′m+1,j | >

√
nδ2

)
+ 2(m− 1)br

= I + II + III + IV.

Since |Sm+1,j | ≤ (q + r − 1)Dn a.s., by taking δ2 = 2(q + r − 1)Dn/
√
n (≤

Cn−c log−1/2 p), we have III = 0. Moreover, for every ε > 0, by Markov’s

inequality, with δ1 = ε−1E[max1≤j≤p |n−1/2
∑m

l=1 S̃
′
lj |], II ≤ ε. It remains to
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bound the magnitude of E[max1≤j≤p |n−1/2
∑m

l=1 S̃
′
lj |]. Since S̃′l, 1 ≤ l ≤ m,

are independent with |S̃′lj | ≤ rDn a.s. and Var(S̃′lj) ≤ rσ2(r), 1 ≤ l ≤ m, 1 ≤
j ≤ p, by Lemma D.3, we have

E

[
max

1≤j≤p
| 1√
n

m∑
l=1

S̃′lj |

]
≤ K

(√
(r/q)σ2(r) log p+ n−1/2rDn log p

)
.

where K is universal (here we have used the simple fact that m/n ≤ 1/q),

so that the left side is bounded by Cn−2c log−1/2 p (by taking c sufficiently
small). The conclusion of this step follows from taking ε = n−c so that

δ1 ≤ Cn−c log−1/2 p.

Step 2. (Normal approximation to the sum of independent blocks). We
wish to show that

sup
t∈R

∣∣∣∣∣P
(

max
1≤j≤p

1√
n

m∑
l=1

S̃lj ≤ t

)
− P

(
max

1≤j≤p

√
(mq)/nY̌j ≤ t

)∣∣∣∣∣ ≤ Cn−c.
Since S̃l, 1 ≤ l ≤ m, are independent, we may apply Corollary 2.1 in

Chernozhukov, Chetverikov, and Kato (2013) (note that the covariance ma-

trix of
√

(mq)/nY̌ is the same as that of n−1/2
∑m

l=1 S̃l). We wish to verify
the conditions of the corollary to this case. Observe that

1√
n

m∑
l=1

S̃lj =
1√
m

m∑
l=1

S̃lj√
n/m

,

and
√
q ≤

√
n/m ≤ 2

√
q (recall that q + r ≤ n/2). Hence

c1/4 ≤ σ2(q)/4 ≤ Var
(
S̃lj/

√
n/m

)
≤ σ2(q) ≤ C1,

and |S̃lj/
√
n/m| ≤ √qDn a.s., so that the conditions of Corollary 2.1 (i) in

Chernozhukov, Chetverikov, and Kato (2013) are verified with Bn =
√
qDn,

which leads to the assertion of this step (note that q ≤ Cn1−c so that
m ≥ n/(4q) ≥ C−1nc).

Step 3. (Anti-concentration). We wish to verify that, for every ε > 0,

sup
t∈R

P

(∣∣∣ max
1≤j≤p

Y̌j − t
∣∣∣ ≤ ε) ≤ Cε√1 ∨ log(p/ε).

Indeed, since Y̌ is a normal random vector with

c1 ≤ σ2(q) ≤ Var(Y̌j) ≤ σ2(q) ≤ C1, 1 ≤ ∀j ≤ p,
the desired assertion follows from application of Corollary 1 in Chernozhukov,
Chetverikov, and Kato (2015).

Step 4. (Conclusion). By Steps 1-3, we have

sup
t∈R

∣∣∣∣P(Ť ≤ t)− P

(
max

1≤j≤p

√
(mq)/nY̌j ≤ t

)∣∣∣∣ ≤ Cn−c.



72 CHERNOZHUKOV, CHETVERIKOV, AND KATO

It remains to replace
√

(mq)/n by 1 on the left side. Observe that

1−
√

(mq)/n ≤ 1− (mq)/n ≤ 1− (n/(q + r)− 1)(q/n) = r/(q + r) + q/n,

and the right side is bounded by Cn−c log−1 p. With this c, by Markov’s
inequality,

P

(∣∣∣∣max
1≤j≤p

Y̌j

∣∣∣∣ > nc/2
√

log p

)
≤ Cn−c/2,

as E[|max1≤j≤p Y̌j |] ≤ C
√

log p, so that with probability larger than 1 −
Cn−c/2,

(1−
√

(mq)/n)

∣∣∣∣max
1≤j≤p

Y̌j

∣∣∣∣ ≤ C ′n−c/2 log−1/2 p.

By using the anti-concentration property of max1≤j≤p Y̌j (see Step 3), we
conclude that

sup
t∈R

∣∣∣∣P(max
1≤j≤p

√
(mq)/nY̌j ≤ t

)
− P

(
max

1≤j≤p
Y̌j ≤ t

)∣∣∣∣ ≤ Cn−c.
This leads to the conclusion of the theorem. �

An inspection of the proof of the above theorem leads to the following
corollary on high dimensional CLT for block sums, where the regularity
conditions are weaker than those in Theorem E.1.

Corollary E.1 (High dimensional CLT for block sums). Suppose that there
exist constants C1 ≥ c1 > 0 and 0 < c2 < 1/2 such that c1 ≤ σ2(q) ≤
σ2(q) ≤ C1, and

√
qDn log7/2(pn) ≤ C1n

1/2−c2. Then there exist constants
c, C > 0 depending only on c1, c2, C1 such that

sup
t∈R

∣∣∣∣∣P
(

max
1≤j≤p

1
√
mq

m∑
l=1

Slj ≤ t

)
− P( max

1≤j≤p
Y̌j ≤ t)

∣∣∣∣∣ ≤ Cn−c + (m− 1)br.

The following theorem is concerned with validity of the block multiplier
bootstrap.

Theorem E.2 (Validity of block multiplier bootstrap). Let ε1, . . . , εm be
independent standard normal random variables, independent of the data Xn

1 .
Suppose that there exist constants 0 < c1 ≤ C1 and 0 < c2 < 1/2 such

that c1 ≤ σ2(q) ≤ σ2(q) ≤ C1 and qDn log5/2 p ≤ C1n
1/2−c2. Then there

exist constants c, c′, C, C ′ > 0 depending only on c1, c2, C1 such that, with
probability larger than 1− Cn−c − (m− 1)br,

sup
t∈R

∣∣∣∣∣P
(

max
1≤j≤p

1
√
mq

m∑
l=1

εiSlj ≤ t | Xn
1

)
− P( max

1≤j≤p
Y̌j ≤ t)

∣∣∣∣∣ ≤ C ′n−c′ .
(105)

Proof. Here c, c′, C, C ′ denote generic positive constants depending only on
c1, c2, C1; their values may change from place to place. By Theorem 2
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in Chernozhukov, Chetverikov, and Kato (2015), the left side on (105) is

bounded by C∆̂1/3{1 ∨ log(p/∆̂)}2/3, where

∆̂ = max
1≤j,k≤p

|(1/(mq))
∑m

l=1(SljSlk − E[SljSlk])|.

Hence it suffices to prove that P(∆̂ > C ′n−c
′
log−2 p) ≤ Cn−c + (m − 1)br

with suitable c, c′, C, C ′. By Corollary 2.7 in Yu (1994), for every t > 0,

P(∆̂ > t) ≤ P(∆̃ > t) + (m− 1)br,

where ∆̃ = max1≤j,k≤p |(1/(mq))
∑m

l=1(S̃ljS̃lk−E[SljSlk])| (recall that S̃l, 1 ≤
l ≤ m, are independent with S̃l

d
= Sl). Observe that |S̃ljS̃lk| ≤ q2D2

n a.s.

and E[(S̃ljS̃lk)
2] ≤ q3D2

nσ
2(q). Hence by Lemma D.3, we have

E[∆̃] ≤ C(n−1/2qDn

√
log p+ n−1q2D2

n log p).

Since qDn log5/2 p ≤ C1n
1/2−c2 , the right side is bounded by C ′n−c2 log−2 p.

The conclusion of the theorem follows from application of Markov’s inequal-
ity. �
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Table 1. Results of Monte Carlo experiments for rejection prob-
ability. Equicorrelated data, that is var(εi) = Σ where Σjk = 1 if
j = k and Σjk = ρ if j 6= k. Design 1: b = 0. Design 2: b = 0.8.

Design 1 (θ = 0): Null Hypothesis is True

L(ε) p ρ
test type

SN1 SN2 MB1 MB2 MB3 EB1 EB2 EB3 AS

T

200
0 .042 .042 .046 .046 .052 .042 .041 .048 .104

0.5 .013 .013 .048 .045 .047 .047 .044 .048 .045
0.9 .005 .005 .043 .043 .047 .042 .041 .044 .053

500
0 .036 .035 .049 .046 .051 .044 .042 .047 .132

0.5 .012 .011 .052 .051 .049 .050 .046 .042 .054
0.9 .003 .003 .055 .052 .054 .059 .053 .056 .058

1000
0 .028 .025 .044 .044 .051 .034 .034 .047 .154

0.5 .017 .016 .066 .064 .064 .059 .059 .052 .064
0.9 .001 .001 .054 .050 .056 .050 .048 .049 .054

U

200
0 .048 .048 .063 .059 .052 .060 .056 .049 .113

0.5 .024 .024 .057 .056 .048 .057 .054 .047 .056
0.9 .000 .000 .049 .046 .044 .050 .049 .043 .049

500
0 .053 .049 .064 .063 .057 .065 .064 .055 .140

0.5 .012 .012 .043 .042 .041 .044 .043 .042 .045
0.9 .002 .002 .050 .048 .045 .042 .042 .044 .053

1000
0 .048 .046 .065 .065 .050 .065 .063 .054 .147

0.5 .015 .013 .062 .061 .062 .062 .061 .058 .052
0.9 .000 .000 .052 .050 .050 .051 .049 .048 .051

Design 2 (θ = 0): Null Hypothesis is True

L(ε) p ρ
test type

SN1 SN2 MB1 MB2 MB3 EB1 EB2 EB3 AS

T

200
0 .003 .050 .004 .060 .056 .003 .053 .050 .001

0.5 .003 .031 .012 .056 .052 .011 .055 .052 .003
0.9 .002 .010 .024 .048 .047 .024 .043 .043 .011

500
0 .003 .046 .006 .056 .052 .005 .051 .052 .000

0.5 .003 .022 .009 .046 .044 .011 .045 .043 .004
0.9 .000 .002 .022 .045 .042 .021 .041 .040 .004

1000
0 .003 .033 .004 .042 .040 .003 .036 .036 .000

0.5 .001 .018 .008 .048 .047 .008 .043 .043 .004
0.9 .000 .004 .028 .043 .042 .028 .039 .039 .010

U

200
0 .006 .056 .006 .060 .058 .006 .060 .058 .001

0.5 .002 .041 .014 .054 .052 .011 .050 .049 .007
0.9 .003 .009 .033 .060 .058 .032 .057 .054 .017

500
0 .002 .048 .004 .052 .052 .002 .054 .052 .000

0.5 .003 .028 .009 .054 .051 .009 .057 .055 .006
0.9 .000 .004 .021 .036 .034 .022 .037 .035 .008

1000
0 .005 .036 .008 .050 .048 .008 .051 .049 .000

0.5 .006 .024 .015 .052 .050 .015 .059 .055 .006
0.9 .000 .002 .026 .052 .049 .028 .050 .046 .011



76 CHERNOZHUKOV, CHETVERIKOV, AND KATO

Table 2. Results of Monte Carlo experiments for rejection proba-
bility. Autocorrelated data, that is var(εi) = Σ where Σjk = ρ|j−k|.
Design 3: b = 0. Design 4: b = 0.8.

Design 3 (θ = 0): Null Hypothesis is True

L(ε) p ρ
test type

SN1 SN2 MB1 MB2 MB3 EB1 EB2 EB3 AS

T

200
0 .041 .038 .050 .047 .043 .046 .045 .041 .097

0.5 .028 .028 .041 .041 .049 .035 .033 .053 .077
0.9 .023 .022 .063 .062 .057 .062 .060 .059 .075

500
0 .031 .029 .048 .044 .044 .044 .041 .042 .123

0.5 .043 .041 .053 .052 .040 .047 .046 .041 .117
0.9 .024 .023 .047 .046 .041 .045 .042 .040 .067

1000
0 .039 .039 .056 .054 .044 .049 .047 .043 .151

0.5 .045 .042 .061 .060 .037 .055 .055 .033 .145
0.9 .022 .020 .052 .052 .048 .053 .048 .044 .083

U

200
0 .047 .040 .056 .054 .060 .054 .054 .063 .121

0.5 .040 .039 .049 .047 .060 .051 .048 .060 .095
0.9 .029 .025 .066 .064 .058 .067 .063 .063 .078

500
0 .051 .049 .073 .073 .064 .077 .073 .065 .142

0.5 .044 .043 .065 .061 .063 .059 .059 .064 .125
0.9 .014 .014 .051 .048 .055 .051 .050 .052 .085

1000
0 .037 .037 .051 .050 .054 .055 .051 .062 .151

0.5 .044 .041 .064 .059 .061 .064 .059 .060 .139
0.9 .028 .028 .066 .063 .053 .067 .066 .056 .102

Design 4 (θ = 0): Null Hypothesis is True

L(ε) p ρ
test type

SN1 SN2 MB1 MB2 MB3 EB1 EB2 EB3 AS

T

200
0 .004 .038 .004 .045 .041 .004 .044 .044 .003

0.5 .009 .057 .012 .068 .066 .010 .062 .063 .010
0.9 .002 .025 .007 .051 .051 .008 .051 .050 .022

500
0 .005 .030 .006 .036 .036 .005 .034 .033 .001

0.5 .002 .033 .003 .044 .043 .003 .044 .041 .001
0.9 .000 .023 .002 .055 .053 .002 .057 .056 .018

1000
0 .001 .041 .002 .049 .047 .002 .043 .045 .000

0.5 .007 .048 .009 .054 .052 .007 .053 .053 .001
0.9 .003 .029 .004 .062 .062 .004 .064 .062 .013

U

200
0 .006 .046 .007 .048 .047 .007 .051 .049 .004

0.5 .003 .039 .004 .053 .052 .004 .050 .049 .009
0.9 .002 .022 .004 .048 .044 .003 .049 .046 .021

500
0 .003 .038 .005 .048 .046 .005 .049 .045 .000

0.5 .003 .035 .006 .049 .046 .005 .046 .045 .002
0.9 .003 .021 .006 .048 .045 .006 .048 .046 .015

1000
0 .004 .045 .006 .052 .051 .007 .056 .054 .000

0.5 .003 .028 .005 .047 .046 .005 .045 .045 .000
0.9 .004 .025 .009 .051 .049 .009 .055 .053 .010
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Table 3. Results of Monte Carlo experiments for rejection prob-
ability. Equicorrelated data, that is var(εi) = Σ where Σjk = 1 if
j = k and Σjk = ρ if j 6= k. Design 5: b = 0. Design 6: b = 0.8.

Design 5 (θ = 0.07): Null Hypothesis is False

L(ε) p ρ
test type

SN1 SN2 MB1 MB2 MB3 EB1 EB2 EB3 AS

T

200
0 .447 .437 .518 .501 .842 .476 .467 .830 .999

0.5 .176 .174 .309 .301 .489 .300 .292 .480 .130
0.9 .050 .047 .332 .321 .392 .326 .318 .393 .096

500
0 .538 .529 .597 .587 .922 .570 .562 .914 .999

0.5 .187 .184 .333 .329 .501 .333 .325 .493 .134
0.9 .043 .043 .344 .338 .407 .336 .333 .400 .099

1000
0 .594 .581 .681 .665 .954 .635 .625 .941 .999

0.5 .191 .187 .401 .393 .517 .379 .366 .518 .153
0.9 .042 .040 .290 .284 .335 .286 .281 .332 .104

U

200
0 .469 .456 .537 .521 .846 .532 .526 .855 .999

0.5 .204 .199 .354 .346 .525 .358 .353 .523 .136
0.9 .051 .050 .316 .311 .374 .314 .309 .374 .097

500
0 .529 .514 .605 .596 .907 .617 .610 .907 .999

0.5 .187 .184 .356 .348 .505 .351 .345 .503 .138
0.9 .045 .045 .337 .332 .378 .339 .330 .381 .114

1000
0 .572 .562 .659 .646 .934 .667 .658 .942 .999

0.5 .174 .170 .345 .340 .520 .356 .343 .509 .128
0.9 .033 .032 .340 .334 .371 .336 .331 .373 .101

Design 6 (θ = 0.07): Null Hypothesis is False

L(ε) p ρ
test type

SN1 SN2 MB1 MB2 MB3 EB1 EB2 EB3 AS

T

200
0 .244 .737 .286 .767 .762 .259 .759 .750 .966

0.5 .143 .407 .265 .500 .491 .256 .496 .490 .224
0.9 .052 .176 .290 .387 .379 .295 .388 .384 .187

500
0 .318 .851 .369 .871 .867 .333 .856 .864 .999

0.5 .116 .368 .264 .509 .502 .255 .501 .493 .197
0.9 .038 .135 .303 .389 .387 .300 .384 .373 .188

1000
0 .368 .892 .452 .923 .920 .402 .897 .909 .999

0.5 .115 .357 .263 .513 .504 .259 .500 .501 .193
0.9 .032 .092 .281 .355 .348 .277 .352 .345 .174

U

200
0 .249 .751 .294 .765 .756 .292 .768 .761 .962

0.5 .147 .416 .255 .518 .507 .260 .511 .507 .217
0.9 .034 .155 .281 .389 .376 .283 .380 .373 .181

500
0 .315 .832 .377 .855 .849 .375 .862 .853 .999

0.5 .120 .360 .246 .486 .482 .250 .487 .476 .199
0.9 .035 .110 .293 .385 .376 .294 .382 .376 .163

1000
0 .351 .890 .430 .917 .911 .430 .920 .918 .999

0.5 .132 .389 .290 .532 .525 .292 .537 .533 .221
0.9 .028 .107 .323 .390 .383 .323 .396 .391 .194
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Table 4. Results of Monte Carlo experiments for rejection proba-
bility. Autocorrelated data, that is var(εi) = Σ where Σjk = ρ|j−k|.
Design 7: b = 0. Design 8: b = 0.8.

Design 7 (θ = 0.07): Null Hypothesis is False

L(ε) p ρ
test type

SN1 SN2 MB1 MB2 MB3 EB1 EB2 EB3 AS

T

200
0 .429 .420 .489 .481 .826 .464 .458 .814 .999

0.5 .395 .385 .452 .443 .762 .442 .433 .762 .934
0.9 .183 .180 .303 .295 .531 .301 .289 .535 .391

500
0 .560 .548 .631 .621 .924 .598 .589 .913 .999

0.5 .495 .484 .562 .554 .875 .552 .538 .869 .999
0.9 .243 .238 .393 .382 .663 .391 .382 .658 .655

1000
0 .612 .597 .695 .688 .951 .649 .639 .940 .999

0.5 .586 .576 .693 .682 .938 .663 .652 .931 .999
0.9 .261 .256 .428 .413 .732 .414 .406 .728 .860

U

200
0 .445 .433 .499 .484 .830 .504 .496 .827 .999

0.5 .392 .382 .454 .442 .745 .455 .444 .744 .930
0.9 .178 .176 .299 .288 .537 .305 .295 .534 .399

500
0 .526 .520 .611 .600 .903 .611 .602 .904 .999

0.5 .489 .475 .558 .548 .845 .561 .552 .851 .999
0.9 .241 .235 .358 .351 .639 .363 .355 .635 .657

1000
0 .604 .595 .703 .683 .950 .702 .694 .953 .999

0.5 .541 .526 .630 .619 .912 .621 .616 .914 .999
0.9 .272 .267 .445 .433 .740 .440 .421 .746 .890

Design 8 (θ = 0.07): Null Hypothesis is False

L(ε) p ρ
test type

SN1 SN2 MB1 MB2 MB3 EB1 EB2 EB3 AS

T

200
0 .231 .731 .274 .758 .753 .257 .746 .741 .968

0.5 .224 .633 .252 .666 .660 .249 .664 .658 .770
0.9 .095 .316 .167 .472 .464 .167 .473 .465 .368

500
0 .338 .842 .387 .866 .861 .368 .859 .859 .999

0.5 .274 .767 .332 .809 .802 .318 .801 .800 .972
0.9 .118 .387 .196 .557 .552 .196 .552 .546 .528

1000
0 .363 .907 .435 .933 .930 .398 .915 .920 .999

0.5 .333 .856 .403 .899 .893 .382 .880 .882 .999
0.9 .171 .487 .266 .661 .656 .264 .661 .654 .724

U

200
0 .249 .726 .292 .751 .739 .294 .755 .747 .957

0.5 .203 .650 .240 .697 .688 .246 .698 .683 .793
0.9 .091 .311 .159 .457 .446 .164 .457 .448 .385

500
0 .305 .839 .360 .877 .869 .370 .864 .860 .999

0.5 .263 .748 .316 .802 .795 .321 .809 .795 .970
0.9 .142 .407 .218 .584 .575 .216 .575 .571 .538

1000
0 .345 .898 .420 .914 .910 .421 .918 .915 .999

0.5 .329 .809 .387 .857 .850 .389 .862 .859 .999
0.9 .174 .480 .269 .654 .646 .270 .652 .640 .716
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Table 5. Results of Monte Carlo experiments for rejection prob-
ability. Two-step MB method.

p = 200

b
β

.001 .002 .003 .004 .005 .006 .007 .008 .009 .010

.05 .289 .279 .269 .262 .256 .245 .238 .231 .226 .221

.10 .272 .262 .254 .247 .242 .231 .225 .218 .213 .208

.15 .272 .262 .254 .247 .242 .231 .225 .218 .213 .208

.20 .272 .262 .254 .247 .242 .231 .225 .218 .213 .208

.25 .272 .262 .254 .247 .242 .231 .225 .219 .213 .208

.30 .272 .263 .255 .249 .243 .232 .227 .222 .214 .210

.35 .272 .268 .260 .255 .253 .243 .237 .230 .226 .215

.40 .293 .289 .280 .285 .278 .277 .273 .271 .264 .257

.45 .354 .364 .371 .373 .377 .377 .377 .376 .374 .370

.50 .479 .493 .513 .527 .526 .529 .525 .525 .524 .519

.55 .627 .642 .651 .658 .656 .647 .644 .636 .625 .613

.60 .731 .730 .728 .723 .710 .702 .688 .677 .659 .644

.65 .757 .750 .741 .732 .722 .711 .699 .686 .665 .648

.70 .765 .754 .742 .733 .722 .712 .700 .686 .666 .648

.75 .766 .754 .742 .733 .722 .712 .700 .686 .666 .648

.80 .766 .754 .742 .733 .722 .712 .700 .686 .666 .648

p = 1000

b
β

.001 .002 .003 .004 .005 .006 .007 .008 .009 .010

.05 .455 .445 .439 .425 .411 .397 .381 .370 .356 .349

.10 .442 .432 .426 .413 .399 .385 .371 .361 .347 .340

.15 .442 .432 .426 .413 .399 .385 .371 .361 .347 .340

.20 .442 .432 .426 .413 .399 .385 .371 .361 .347 .340

.25 .442 .432 .426 .413 .399 .385 .371 .361 .347 .340

.30 .442 .432 .426 .413 .399 .385 .371 .361 .347 .340

.35 .442 .434 .427 .417 .401 .387 .375 .363 .353 .346

.40 .455 .445 .438 .430 .425 .410 .398 .389 .377 .358

.45 .486 .485 .483 .478 .476 .470 .465 .460 .457 .446

.50 .554 .574 .581 .586 .586 .588 .587 .586 .585 .577

.55 .710 .743 .757 .770 .769 .769 .767 .764 .756 .746

.60 .849 .869 .876 .877 .872 .864 .852 .840 .827 .820

.65 .917 .921 .918 .908 .903 .892 .882 .873 .863 .843

.70 .925 .924 .920 .913 .907 .895 .884 .875 .865 .848

.75 .927 .925 .922 .913 .907 .895 .884 .875 .865 .848

.80 .927 .925 .922 .913 .907 .895 .884 .875 .865 .848



80 CHERNOZHUKOV, CHETVERIKOV, AND KATO

Table 6. Results of Monte Carlo experiments for rejection prob-
ability. Three-step MB method.

p = 200

b
β

.001 .002 .003 .004 .005 .006 .007 .008 .009 .010

.05 .642 .619 .601 .567 .536 .496 .465 .425 .370 .291

.10 .601 .578 .561 .529 .499 .464 .437 .398 .349 .276

.15 .601 .578 .561 .529 .499 .464 .437 .398 .349 .276

.20 .601 .578 .561 .529 .499 .464 .437 .398 .349 .276

.25 .601 .578 .561 .529 .499 .464 .437 .398 .349 .276

.30 .601 .578 .561 .529 .499 .464 .437 .398 .349 .276

.35 .601 .578 .561 .529 .499 .464 .437 .398 .350 .277

.40 .601 .581 .562 .533 .502 .469 .441 .408 .355 .283

.45 .604 .594 .575 .554 .522 .492 .460 .430 .369 .314

.50 .634 .623 .604 .585 .569 .543 .501 .467 .421 .362

.55 .680 .670 .656 .634 .610 .588 .545 .518 .470 .398

.60 .729 .712 .696 .671 .639 .613 .575 .537 .491 .423

.65 .749 .731 .709 .685 .647 .618 .583 .540 .494 .426

.70 .753 .733 .712 .686 .648 .619 .583 .540 .494 .427

.75 .754 .733 .712 .686 .648 .619 .583 .540 .494 .427

.80 .754 .733 .712 .686 .648 .619 .583 .540 .494 .427

p = 1000

b
β

.001 .002 .003 .004 .005 .006 .007 .008 .009 .010

.05 .809 .794 .770 .752 .719 .676 .631 .594 .534 .473

.10 .790 .774 .751 .730 .698 .657 .611 .575 .518 .460

.15 .790 .774 .751 .730 .698 .657 .611 .575 .518 .460

.20 .790 .774 .751 .730 .698 .657 .611 .575 .518 .460

.25 .790 .774 .751 .730 .698 .657 .611 .575 .518 .460

.30 .790 .774 .751 .730 .698 .657 .611 .575 .518 .460

.35 .790 .774 .751 .730 .698 .657 .611 .575 .518 .460

.40 .790 .774 .751 .732 .699 .657 .612 .577 .518 .463

.45 .792 .779 .757 .738 .707 .664 .620 .581 .529 .469

.50 .802 .790 .773 .756 .725 .688 .648 .606 .554 .496

.55 .838 .820 .809 .789 .777 .748 .709 .661 .605 .543

.60 .879 .874 .863 .843 .812 .789 .764 .707 .650 .583

.65 .918 .908 .888 .871 .842 .809 .780 .729 .674 .604

.70 .924 .913 .894 .875 .848 .811 .782 .737 .675 .607

.75 .925 .913 .895 .875 .848 .811 .782 .737 .675 .607

.80 .925 .913 .895 .875 .848 .811 .782 .737 .675 .607
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Table 7. Results of Monte Carlo experiments for rejection prob-
ability. Market structure model.

∆θ
0.25

CT/GH n
test type

SN1 SN2 MB1 MB2 MB3 EB1 EB2 EB3

(0, 0, 0)

CT
1000 .027 .027 .028 .028 .011 .026 .027 .009
2000 .036 .037 .038 .038 .008 .036 .037 .009
5000 .024 .029 .028 .032 .035 .026 .034 .031

GH
1000 .021 .021 .022 .021 .004 .022 .021 .003
2000 .006 .006 .011 .011 .000 .011 .011 .000
5000 .001 .005 .010 .013 .013 .010 .013 .013

(1, 0, 0)

CT
1000 .168 .141 .154 .156 .027 .135 .136 .028
2000 .183 .186 .189 .209 .213 .188 .208 .208
5000 .249 .302 .271 .307 .304 .279 .306 .307

GH
1000 .086 .086 .124 .124 .069 .121 .120 .071
2000 .169 .169 .242 .254 .253 .231 .253 .257
5000 .414 .480 .579 .630 .630 .569 .619 .634

(−1, 0, 0)

CT
1000 .066 .066 .072 .073 .074 .070 .070 .075
2000 .164 .179 .176 .203 .193 .172 .194 .192
5000 .611 .684 .628 .704 .700 .618 .702 .704

GH
1000 .079 .079 .160 .159 .158 .155 .153 .158
2000 .327 .350 .520 .546 .559 .527 .548 .549
5000 .953 .972 .984 .994 .994 .989 .994 .995

(0, 1, 0)

CT
1000 .205 .205 .203 .202 .203 .204 .205 .204
2000 .289 .302 .296 .300 .304 .298 .302 .304
5000 .547 .554 .531 .566 .573 .520 .570 .574

GH
1000 .097 .091 .180 .174 .166 .176 .171 .156
2000 .145 .145 .248 .247 .248 .246 .251 .245
5000 .330 .358 .484 .525 .515 .484 .524 .522

(0,−1, 0)

CT
1000 .031 .033 .041 .042 .042 .043 .041 .036
2000 .064 .075 .068 .078 .076 .067 .075 .078
5000 .323 .439 .336 .479 .470 .337 .460 .466

GH
1000 .006 .006 .014 .014 .011 .015 .015 .009
2000 .013 .015 .040 .040 .039 .040 .048 .041
5000 .113 .179 .256 .343 .358 .252 .351 .357

(0, 0, 1)

CT
1000 .212 .212 .211 .212 .069 .211 .213 .070
2000 .377 .377 .356 .363 .363 .341 .357 .365
5000 .700 .762 .720 .764 .764 .719 .766 .768

GH
1000 .116 .116 .205 .205 .080 .202 .203 .082
2000 .201 .201 .289 .292 .268 .287 .291 .262
5000 .496 .549 .657 .698 .703 .654 .702 .704

(0, 0,−1)

CT
1000 .032 .032 .033 .033 .035 .034 .035 .033
2000 .069 .085 .077 .092 .074 .084 .094 .078
5000 .239 .358 .278 .390 .394 .267 .390 .383

GH
1000 .010 .010 .023 .022 .022 .023 .023 .022
2000 .019 .024 .054 .058 .056 .058 .062 .057
5000 .081 .139 .209 .307 .305 .207 .298 .300
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