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Abstract

We propose a framework for estimation and inference about the parameters of an
economic model and predictions based on it, when the model may be misspecified. We
rely on a local asymptotic approach where the degree of misspecification is indexed
by the sample size. We derive formulas to construct estimators whose mean squared
error is minimax in a neighborhood of the reference model, based on simple one-step
adjustments. We construct confidence intervals that contain the true parameter un-
der both correct specification and local misspecification. We calibrate the degree of
misspecification using a model detection error approach. Our approach allows us to
perform systematic sensitivity analysis when the parameter of interest may be partially
or irregularly identified. To illustrate our approach we study panel data models where
the distribution of individual effects may be misspecified and the number of time pe-
riods is small, and we revisit the structural evaluation of a conditional cash transfer
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1 Introduction

Although economic models are intended as plausible approximations to a complex economic

reality, econometric inference typically relies on the model being an exact description of

the population environment. This tension is most salient in the use of structural models

to predict the effects of counterfactual policies. Given estimates of model parameters, it is

common practice to simply “plug in” those parameters to compute the effect of interest. Such

a practice, which typically requires full specification of the economic environment, hinges on

the model being correctly specified.

Economists have long recognized the risk of model misspecification. A number of ap-

proaches have been developed, such as specification tests and estimation of more general

nesting models, semi-parametric and nonparametric methods, and more recently bounds

approaches. Implementing those existing approaches typically requires estimating a more

general model than the original specification, possibly involving nonparametric and partially

identified components.

In this paper we consider a different approach, which consists in quantifying how model

misspecification affects the parameter of interest, and in modifying the estimate in order

to minimize the impact of misspecification. The goal of the analysis is twofold. First, we

provide simple adjustments of the model-based estimates, which do not require re-estimating

the model and provide guarantees on performance when the model is misspecified. Second,

we construct confidence intervals which account for model misspecification error in addition

to sampling uncertainty.

Our approach is based on considering deviations from a reference specification of the

model, which is parametric and fully specified given covariates. It may, for example, cor-

respond to the empirical specification of a structural economic model. We do not assume

that the reference model is correctly specified, and allow for local deviations from it within a

larger class of models. While it is theoretically possible to extend our approach to allow for

non-local deviations, a local analysis presents important advantages in terms of tractability

since it allows us to rely on linearization techniques.

We construct minimax estimators which minimize worst-case mean squared error (MSE)

in a given neighborhood of the reference model. The worst case is influenced by the direc-

tions of model misspecification which matter most for the parameter of interest. We focus in

particular on two types of neighborhoods, for two leading classes of applications: Euclidean
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neighborhoods in settings where the larger class of models containing the reference specifica-

tion is parametric, and Kullback-Leibler neighborhoods in semi-parametric likelihood models

where misspecification of functional forms is measured by the Kullback-Leibler divergence

between density functions.

The framework we propose borrows several key elements from Hansen and Sargent’s

(2001, 2008) work on robust decision making under uncertainty and ambiguity. In particular,

we rely on their approach to calibrate the size of the neighborhood around the reference

model in a way that targets the probability of a model detection error. Our approach thus

delivers a class of estimators indexed by error probabilities, which can be used for systematic

sensitivity analysis.

In addition, we show how to construct confidence intervals which asymptotically contain

the population parameter of interest with pre-specified probability, both under correct speci-

fication and local misspecification. In our approach, acknowledging misspecification leads to

easy-to-compute enlargements of conventional confidence intervals. Such confidence intervals

are “honest” in the sense that they account for the bias of the estimator (e.g., Donoho, 1994,

Armstrong and Kolesár, 2016).

Our local approach leads to tractable expressions for worst-case bias and mean squared

error as well as for the minimum-mean squared error estimators in a given neighborhood

of the reference model. A minimum-mean squared error estimator generically takes the

form of a one-step adjustment of the prediction based on the reference model by a term

which reflects the impact of model misspecification, in addition to a more standard term

which adjusts the estimate in the direction of the efficient estimator based on the reference

model. Implementing the optimal estimator only requires computing the score and Hessian

of a larger model, evaluated at the reference model. The large model never needs to be

estimated. This feature of our approach is reminiscent of the logic of Lagrange Multiplier

(LM) testing. In addition we show that, beyond likelihood settings, our approach can be

applied to models defined by moment restrictions.

To illustrate our approach we first analyze a linear regression model where the researcher

postulates that covariates are exogenous, while contemplating the possibility that this as-

sumption might be violated. The goal is to estimate a regression parameter. The researcher

has a set of instruments, which she believes to be valid, but the rank condition may fail

to hold. In this case the minimum-MSE estimator interpolates, in a nonlinear fashion, be-
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tween the ordinary least squares (OLS) and instrumental variable (IV) estimators. When

the first-stage rank condition holds, letting the neighborhood size tend to infinity gives the

IV estimator. However, since the minimax rule induces a particular form of regularization

of the first-stage matrix (akin to Ridge regression), the minimum-MSE estimator is always

well-defined irrespective of the rank condition.

We then apply our approach to two main illustrations. First, we consider a class of panel

data models which covers both static and dynamic settings. Our main focus is on average

effects, which depend on the distribution of individual effects. The risk of misspecification of

this distribution and its dependence on covariates and initial conditions has been emphasized

in the literature (e.g., Heckman, 1981). This setting is also of interest since it has been shown

that, in discrete choice panel data models, common parameters and average effects often fail

to be point-identified (Chamberlain, 2010, Honoré and Tamer, 2006, Chernozhukov et al.,

2013), motivating the use of a sensitivity analysis approach. While existing work provides

consistency results based on large-n, T asymptotic arguments (e.g., Arellano and Bonhomme,

2009), here we focus on assessing sensitivity to misspecification in a fixed-T setting.

In panel data models, we show that minimizing mean squared error leads to a regular-

ization approach (specifically, Tikhonov regularization). The penalization reflects the degree

of misspecification allowed for, which is itself calibrated based on a detection error proba-

bility. When the parameter of interest is point-identified and root-n consistently estimable

the estimator converges to a semi-parametrically consistent estimator as the neighborhood

size tends to infinity. Importantly, our approach remains informative when identification is

irregular or point-identification fails. In simulations of a dynamic panel probit model un-

der misspecification, we illustrate that our estimator can provide substantial bias and MSE

reduction relative to commonly used estimators.

As a second illustration we apply our approach to the structural evaluation of a con-

ditional cash transfer policy in Mexico, the PROGRESA program. This program provides

income transfers to households subject to the condition that the child attends school. Todd

and Wolpin (2006) estimate a structural model of education choice on villages which were

initially randomized out. They compare the predictions of the structural model with the es-

timated experimental impact. As emphasized by Todd and Wolpin (2008) and Attanasio et

al. (2012), the ability to predict the effects of the program based solely on control villages im-

poses restrictions on the economic model. Within a simple static model of education choice,

3



we assess the sensitivity of model-based counterfactual predictions to a particular form of

model misspecification under which program participation may have a direct “stigma” effect

on the marginal utility of schooling, in which case control villages are no longer sufficient to

predict program impacts (Wolpin, 2013). We also provide improved counterfactual predic-

tions in two scenarios – doubling the subsidy amount and implementing an unconditional

income transfer – while accounting for the possibility that the reference model is misspecified.

Related literature. This paper relates to several branches of the literature in economet-

rics and statistics on robustness and sensitivity analysis. As in the literature on robust

statistics dating back to Huber (1964), we rely on a minimax approach and aim to minimize

the worst-case impact of misspecification in a neighborhood of a model. See Huber and

Ronchetti (2009) for a comprehensive account of this literature. Our approach is closest to

the infinitesimal approach based on influence functions (Hampel et al., 1986), and especially

to the shrinking neighborhood approach developed by Rieder (1994). An important differ-

ence with this previous work, and with recent papers on sensitivity analysis that we mention

below, is that we focus on misspecification of specific aspects of a model. That is, we con-

sider parametric or semi-parametric classes of models around the reference specification. By

contrast, the robust statistics literature has mostly focused on fully nonparametric classes,

motivated by data contamination issues.

A related branch of the literature is the work on orthogonalization and locally robust

moment functions, as developed in Neyman (1959), Newey (1994), Chernozhukov et al.

(2016), and Chernozhukov et al. (2018), among others. Similarly to those approaches,

we wish to construct estimators which are relatively insensitive to variation in an input.

A difference is that we account for both bias and variance, weighting them by calibrating

the size of the neighborhood around the reference model. In addition, our approach to

robustness and sensitivity – both for estimation and construction of confidence intervals –

does not require the larger model to be point-identified. A precedent of the idea of minimum

sensitivity is the concept of local unbiasedness proposed by Fraser (1964).

Our analysis is also connected to Bayesian robustness, see for example Berger and Berliner

(1986), Gustafson (2000), Vidakovic (2000), or recently Mueller (2012). In our approach we

similarly focus on sensitivity to model (or “prior”) assumptions. However, our minimum-

mean squared error estimators and confidence intervals have a frequentist interpretation.
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Closely related to our work is the literature on statistical decision theory dating back to

Wald (1950); see for example Chamberlain (2000), Watson and Holmes (2016), and Hansen

and Marinacci (2016). Hansen and Sargent (2008) provide compelling motivation for the use

of a minimax approach based on Kullback-Leibler neighborhoods whose widths are calibrated

based on detection error probabilities.

This paper also relates to the literature on sensitivity analysis in statistics and economics,

for example Rosenbaum and Rubin (1983a), Leamer (1985), Imbens (2003), Altonji et al.

(2005), Nevo and Rosen (2012), Oster (2014), and Masten and Poirier (2017). Our analysis

of minimum-MSE estimation and sensitivity in the OLS/IV example is related to Hahn and

Hausman (2005) and Angrist et al. (2017). Our approach based on local misspecification has

a number of precedents, such as Newey (1985), Conley et al. (2012), Guggenberger (2012),

Bugni et al. (2012), Kitamura et al. (2013), and Bugni and Ura (2018). Also related is

Claeskens and Hjort’s (2003) work on the focused information criterion, which relies on a

local asymptotic to guide model choice.

Recent papers rely on a local approach to misspecification related to ours to provide tools

for sensitivity analysis. Andrews et al. (2017) propose a measure of sensitivity of parameter

estimates in structural economic models to the moments used in estimation. Andrews et al.

(2018) introduce a measure of informativeness of descriptive statistics and other reduced-

form moments in the estimation of structural models; see also recent work by Mukhin (2018).

Our goal is different, in that we aim to provide a framework for estimation and inference

in the presence of misspecification. In independent work, Armstrong and Kolesár (2018)

study models defined by over-identified systems of moment conditions that are approximately

satisfied at true values, up to an additive term that vanishes asymptotically. In this setting

they derive results on optimal estimation and inference. Differently from their approach,

here we seek to ensure robustness to misspecification of a reference model (for example, a

panel data model with a parametrically specified distribution of individual effects) within a

larger class of models (e.g., models with an unrestricted distribution of individual effects).

Our focus on specific forms of model misspecification is close in spirit to some recently pro-

posed approaches to estimate partially identified models. Chen et al. (2011) and Norets and

Tang (2014) develop methods for sensitivity analysis based on estimating semi-parametric

models while allowing for non-point identification in inference. Schennach (2013) proposes

a related approach in the context of latent variables models. In recent independent work,
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Christensen and Connault (2018) consider structural models defined by equilibrium con-

ditions, and develop inference methods on the identified set of counterfactual predictions

subject to restrictions on the distance between the true model and a reference specification.

We view our approach as complementary to these partial identification methods. Our local

approach allows tractability in complex models, such as structural economic models, since

implementation does not require estimating a larger model. In our framework, parametric

reference models are still seen as useful benchmarks, although their predictions need to be

modified in order to minimize the impact of misspecification. This aspect relates our paper

to shrinkage methods, such as those recently proposed by Hansen (2016, 2017) and Fessler

and Kasy (2018); see Maasoumi (1978) for an early contribution. Our approach differs from

the shrinkage literature since, instead of estimating an unrestricted estimator and shrinking

it towards a set of restrictions, we adjust – in one step – a restricted estimator. Moreover,

we calibrate the size of the neighborhood, hence the degree of “shrinkage”, rather than

attempting to estimate it.

The plan of the paper is as follows. In Section 2 we describe our framework and derive

the main results. In Sections 3 and 4 we apply our framework to parametric and semi-

parametric likelihood settings, respectively. In Sections 5 and 6 we show the results of a

simulation exercise in a panel data model, and the empirical illustration on conditional cash

transfers in Mexico. We discuss several extensions in Section 7, and we conclude in Section 8.

Three appendices numbered A, B and C provide the proofs, and details on various extensions.

2 Framework of analysis

In this section we describe the main elements of our approach in a general setting. In the

next two sections we will specialize the analysis to the cases of parametric misspecification,

and semi-parametric misspecification of distributional functional forms.

2.1 Setup

We observe a random sample (Yi : i = 1, . . . , n) from the distribution fθ(y) = f(y | θ), where

θ ∈ Θ is a finite- or infinite-dimensional parameter. Throughout the paper the parameter

of interest is δθ, a scalar function or functional of θ. We assume that δθ and fθ are known,

smooth functions of θ. Examples of functionals of interest in economic applications include

counterfactual policy effects which can be computed given a fully specified structural model,
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and moments of observed and latent data such as average effects in panel data settings. The

true parameter value θ0 ∈ Θ that generates the observed data Y1, . . . , Yn is unknown to the

researcher. Our goal is to estimate δθ0 and construct confidence intervals around it.

Our starting point is that the unknown true θ0 belongs to a neighborhood of a reference

model θ(η), indexed by a finite-dimensional parameter vector η ∈ B. We say that the

reference model is correctly specified if there is an η ∈ B such that θ0 = θ(η). Otherwise we

say that the model is misspecified. Note that this setup covers the estimation of (structural)

parameters of the reference model as a special case, when η is a component of θ and δθ = η.

To quantify the degree of misspecification we rely on a distance measure d on Θ. Let Eθ
be the expectation under the distribution

∏n
i=1 fθ(Yi). We will measure the performance of

an estimator δ̂ by its worst-case bias |Eθ0 δ̂−δθ0 | and mean squared error (MSE) Eθ0 [(δ̂−δθ0)2]

in an ε-neighborhood Γε of the reference model manifold, which is defined as

Γε = {(θ0, η) ∈ Θ× B : d(θ0, θ(η)) ≤ ε} .

At the end of this section we will discuss how to choose ε ≥ 0 through a calibration approach.

Examples As a first example, consider a parametric model defined by an Euclidean pa-

rameter θ ∈ Θ. Under the reference model, θ satisfies a set of restrictions. To fix ideas, let

θ = (β, ρ), η = β, and consider the reference specification θ(η) = (β, 0), which corresponds to

imposing the restriction that ρ = 0. For example, ρ can represent the effect of an omitted con-

trol variable in a regression, or the degree of endogeneity of a regressor as in the example we

analyze in Subsection 3.2. Suppose that the researcher is interested in the parameter δθ = c′β

for a known vector c, such as one component of β. In this case we define the neighborhood

Γε using the weighted Euclidean (squared) distance d(θ0, θ) = ‖β0 − β‖2
Ωβ

+ ‖ρ0 − ρ‖2
Ωρ

, for

two positive-definite matrices Ωβ and Ωρ, where ‖V ‖2
Ω = V ′ΩV . We further analyze this

class of models in Section 3.

As a second example, consider a semi-parametric panel data model whose likelihood de-

pends on a finite-dimensional parameter vector β and a nonparametric density π of individual

effects A ∈ A (abstracting from conditioning covariates for simplicity). The joint density of

(Y,A) is gβ(y | a)π(a) for some known function g. Suppose that the researcher’s goal is to

estimate an average effect δθ = Eπ∆(A, β), for ∆ a known function. It is common to esti-

mate the model by parameterizing the unknown density using a correlated random-effects

specification πγ, where γ is finite-dimensional (e.g., a Gaussian whose mean and variance are
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the components of γ). We focus on situations where, although the researcher thinks of πγ

as a plausible approximation to the population distribution π0, she is not willing to rule out

that it may be misspecified. In this case we use the Kullback-Leibler divergence to define

semi-parametric neighborhoods, and let d(θ0, θ) = ‖β0− β‖2
Ωβ

+ 2
∫
A log

(
π0(a)
π(a)

)
π0(a)da, for

a positive-definite matrix Ωβ. We analyze this class of models in Section 4.

We study a local asymptotic framework where ε tends to zero and the sample size n tends

to infinity. Specifically, we will choose ε such that εn is asymptotically constant. The reason

for focusing on ε tending to zero is tractability. While fixed-ε minimax calculations involve

considerable mathematical difficulties, a small-ε analysis allows us to rely on linearization

techniques and obtain simple, explicit expressions. Moreover, in an asymptotic where εn

tends to a constant both bias and variance play a non-trivial role. This approach has a

number of precedents in the literature (notably Rieder, 1994).

We will focus on asymptotically linear estimators, which can be expanded around δθ(η)

for a suitable η; that is, for small ε and large n the estimators we consider will satisfy

δ̂ = δθ(η) +
1

n

n∑
i=1

h(Yi, η) + oP (ε
1
2 ) + oP (n−

1
2 ), (1)

where h(y, η) = φ(y, θ(η)), for φ(y, θ0) the influence function of δ̂. We will assume that the

remainder in (1) is uniformly small on Γε in a sense to be made precise in Theorem 1 below.

In addition, we assume that the function h in (1) satisfies two key conditions. First, it

has zero mean under the reference model; that is,

Eθ(η)h(Y, η) = 0, for all η ∈ B, (2)

where we write Y to denote Yi for one representative i ∈ {1, . . . , n}. Under (2), the estimator

δ̂ is asymptotically unbiased for the target parameter δθ0 = δθ(η) under the reference model.

Second, h is locally robust with respect to η in the following sense,

∇ηδθ(η) + Eθ(η)∇ηh(Y, η) = 0, for all η ∈ B, (3)

where ∇η is the gradient operator. The constraint (3) guarantees that the estimator δ̂ =

δ̂(Y1, . . . , Yn) itself does not have an explicit η-dependence, but only depends on the model

parameters through the distribution of the sample. By differentiating (2) with respect to η

we obtain the following equivalent expression for (3),

Eθ(η) h(Y, η)∇η log fθ(η)(Y ) = ∇ηδθ(η), for all η ∈ B. (4)
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Local robustness (3)-(4) follows from properties of influence functions under general condi-

tions; see Chernozhukov et al. (2016), for example.

Estimators based on moment restrictions or score equations which are satisfied under the

reference model (but may not hold under fθ0) can under mild conditions be expanded as

in (1) for a suitable h function satisfying (2) and (3)-(4). In Appendix A we provide more

details about the asymptotically linear representation (1), and we give several examples of

estimators.1

In this paper we characterize the worst-case asymptotic bias and MSE of estimators that

satisfy the above conditions, and construct confidence intervals for the target parameter δθ0

which are uniformly asymptotically valid on the neighborhood Γε. In addition, an important

goal of the analysis is to construct estimators that are asymptotically optimal in a minimax

sense. For this purpose, we will show how to compute a function h such that the worst-case

MSE, in the neighborhood Γε, among estimators of the form

δ̂h,η̂ = δθ(η̂) +
1

n

n∑
i=1

h(Yi, η̂) (5)

is minimized under our local asymptotic analysis. Here η̂ is a preliminary estimator of η,

for example the maximum likelihood estimator (MLE) of η based on the reference model.

In fact, it follows from the local robustness property (3) that, under mild conditions on the

preliminary estimator, δ̂h,η̂ satisfies (1) for that same function h. As a result, the form of

the minimum-MSE h function will not be affected by the choice of η̂.

Examples (cont.) In our first, parametric example a natural estimator is the MLE of c′β

based on the reference specification, for example, the OLS estimator under the assumption

that ρ – the coefficient of an omitted control variable – is zero. In a correctly specified

likelihood setting such an estimator will be consistent and efficient. However, when the

reference model is misspecified it may be dominated in terms of bias or MSE by other

regular estimators.

In our second, semi-parametric example a commonly used (“random-effects”) estima-

tor of δθ = Eπ∆(A, β) is obtained by replacing the population average by an integral with

respect to the parametric distribution πγ̂, where γ̂ is the MLE of γ. Another popular (“em-

1Note that, in (1), the estimator is expanded around the reference value δθ(η). As we discuss in Appendix

A, such asymptotic expansions can be related to expansions around the probability limit of δ̂ under fθ0 –
i.e., around the “pseudo-true value” of the target parameter.
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pirical Bayes”) estimator is obtained by substituting an integral with respect to the posterior

distribution of individual effects based on πγ̂. In fixed-lengths panels both estimators are

consistent under the parametric reference specification, and the random-effects estimator is

efficient. However, the two estimators are generally biased under misspecification, whenever

π0 does not belong to the postulated parametric family πγ. We compare their finite-sample

performance to that of our minimum-MSE estimator in Section 5.

2.2 Heuristic derivation of the minimum-MSE estimator

We start by providing heuristic derivations of worst-case bias and minimum-MSE estimator.

This will lead to the main definitions in equations (8), (11) and (12) below. Then, in the next

subsection, we will provide regularity conditions under which these derivations are formally

justified.

For presentation purposes we first describe our approach in the simple case where the

parameter η, and hence the reference model θ(η), are known; that is, we assume that B = {η}.

For any ε ≥ 0, let

Γε(η) = {θ0 ∈ Θ : d(θ0, θ(η)) ≤ ε}.

We assume that Θ and Γε(η) are convex sets. For any linear map u : Θ→ R we define

‖u‖η,ε = sup
θ0∈Γε(η)

ε−
1
2 u′(θ0 − θ(η)), ‖u‖η = lim

ε→0
‖u‖η,ε . (6)

When θ is infinite-dimensional this definition continues to hold, with a suitable (“bracket”)

notation for u′(θ0− θ(η)); see Appendix A for a general notation that covers both finite and

infinite-dimensional cases. We assume that the distance measure d is chosen such that ‖·‖η is

unique and well-defined, and that it constitutes a norm. ‖·‖η is dual to a local approximation

of d(θ0, θ(η)) for fixed θ(η). Both our examples of distance measures – weighted Euclidean

distance and Kullback-Leibler divergence – satisfy these assumptions.

We focus on estimators δ̂ that satisfy (1) for a suitable h function for which (2) holds.

Under appropriate regularity conditions, the worst-case bias of δ̂ in the neighborhood Γε(η)

can be expanded for small ε and large n as

sup
θ0∈Γε(η)

∣∣∣Eθ0 δ̂ − δθ0∣∣∣ = bε(h, η) + o(ε
1
2 ) + o(n−

1
2 ), (7)

where

bε(h, η) = ε
1
2

∥∥∇θδθ(η) − Eθ(η) h(Y, η) ∇θ log fθ(η)(Y )
∥∥
η
, (8)
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for ‖ · ‖η the dual norm defined in (6). When θ is infinite-dimensional ∇θ denotes a general

(Gâteaux) derivative . Then, the worst-case MSE in Γε(η) can be expanded as follows, again

under appropriate regularity conditions,

sup
θ0∈Γε(η)

Eθ0
[(
δ̂ − δθ0

)2
]

= bε(h, η)2 +
Varθ(η)(h(Y, η))

n
+ o(ε) + o

(
n−1
)
. (9)

In order to construct estimators with minimum worst-case MSE we define, for any func-

tion h satisfying (2),

δ̂h,η = δθ(η) +
1

n

n∑
i=1

h(Yi, η). (10)

Applying the small-ε approximation of the bias and MSE to δ̂h,η, we define the minimum-

MSE function hMMSE
ε (y, η) as

hMMSE
ε (·, η) = argmin

h(·,η)

ε
∥∥∇θδθ(η) − Eθ(η) h(Y, η) ∇θ log fθ(η)(Y )

∥∥2

η
+

Varθ(η)(h(Y, η))

n

subject to (2). (11)

The minimum-MSE estimator δ̂ MMSE
ε = δθ(η) + 1

n

∑n
i=1 h

MMSE
ε (Yi, η) thus minimizes an

asymptotic approximation to the worst-case MSE in Γε(η). Using a small-ε approximation

is crucial for analytic tractability, since the variance term in (9) only needs to be calculated

under the reference model, and the optimization problem (11) is convex.

Note that, for ε = 0 we have δ̂
MMSE

0 = δθ(η), independent of the data, since this choice

satisfies the unbiasedness constraint and achieves zero variance. However, for ε > 0 the

minimum-MSE function hMMSE
ε (y, η) depends on y, hence the estimator δ̂ MMSE

ε depends on

the data Y1, . . . , Yn.2

Turning now to the general case where the parameter η is unknown, let η̂ be a preliminary

estimator of η that is asymptotically unbiased for η under the reference model fθ(η). Let

h(·, η) be a set of functions indexed by η, and define δ̂h,η̂ by (5). We assume that, in addition

to (2), h(·, η) satisfies the local robustness condition (4). Analogously to (11), we search for

functions h(·, η) solving the following programs, separately for all η ∈ B,

hMMSE
ε (·, η) = argmin

h(·,η)

ε
∥∥∇θδθ(η) − Eθ(η) h(Y, η) ∇θ log fθ(η)(Y )

∥∥2

η
+

Varθ(η)(h(Y, η))

n

subject to (2) and (4), (12)

2The function hMMSE
ε (·, η) also depends on the sample size n, although we do not make the dependence

explicit. In fact, hMMSE
ε (·, η) only depends on ε and n through the product εn.
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where we note that (12) is again a convex optimization problem.

We then define the minimum-MSE estimator of δθ0 as

δ̂
MMSE

ε = δθ(η̂) +
1

n

n∑
i=1

hMMSE
ε (Yi, η̂). (13)

In practice, (12) only needs to be solved at η = η̂. In addition, the form of the minimum-MSE

estimator is not affected by the choice of the preliminary estimator η̂.

It is common in applications with covariates to model the conditional distributions of

outcomes Y given covariates X as fθ(y |x), while leaving the marginal distribution of X,

fX(x), unspecified. Our approach can easily be adapted to deal with such conditional models.

In those cases we minimize the (worst-case) conditional MSE

Eθ0
[(
δ̂h,η̂ − δθ0

)2
∣∣∣∣ X1, . . . , Xn

]
,

for estimators δ̂h,η̂ = δθ(η̂) + 1
n

∑n
i=1 h(Yi, Xi, η̂). The calculations for hMMSE

ε and δ̂
MMSE

ε are

very similar in this case, as we will see in the parametric and semi-parametric settings of

Sections 3 and 4.

Special cases. To provide intuition on the minimum-MSE function hMMSE
ε , let us define

two Hessian matrices Hθ(η) (dim θ × dim θ) and Hη (dim η × dim η) as

Hθ(η) = Eθ(η)

[
∇θ log fθ(η)(Y )

] [
∇θ log fθ(η)(Y )

]′
, Hη = Eθ(η)

[
∇η log fθ(η)(Y )

] [
∇η log fθ(η)(Y )

]′
.

The definition of Hθ(η) generalizes to the infinite-dimensional θ case, see Appendix A.

In our analysis we assume that Hη is invertible. This requires that the Hessian matrix

of the parametric reference model be non-singular, thus requiring that η be identified under

the reference model. For ε = 0 we find that

hMMSE
0 (y, η) =

[
∇η log fθ(η)(y)

]′
H−1
η ∇ηδθ(η). (14)

Thus, if we impose that ε = 0 – that is, if we work under the assumption that the parametric

reference model is correctly specified – then δ̂
MMSE

ε is simply the one-step approximation of

the MLE for δθ0 that maximizes the likelihood with respect to the “small” parameter η. This

“one-step efficient” adjustment of δθ(η̂) is purely based on efficiency considerations.3

3Such one-step approximations are classical estimators in statistics; see for example Bickel et al. (1993,
pp. 43–45).
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Another interesting special case of the minimum-MSE h function arises in the limit

ε → ∞, when the matrix or operator Hθ(η) is invertible. Note that invertibility of Hθ(η),

which may fail when θ0 is not identified, is not needed in our analysis and we only use it to

analyze this special case. We then have that

lim
ε→∞

hMMSE
ε (y, η) =

[
∇θ log fθ(η)(y)

]′
H−1
θ(η)∇θδθ(η). (15)

Equivalently, the same limiting quantity is attained if ε is kept fixed as n → ∞, or if εn

tends to infinity. In this limit we thus find that δ̂ MMSE
ε is simply the one-step approximation

of the MLE for δθ0 that maximizes the likelihood with respect to the “large” parameter θ.

More generally, for any ε the estimator δ̂ MMSE
ε is a nonlinear interpolation between the

one-step MLE approximation of the parametric reference model and the one-step MLE ap-

proximation of the large model. We obtain one-step approximations in our approach, since

(12) is only a local approximation to the full MSE-minimization problem. When Hθ(η) is

invertible it can be shown that bε(h
MMSE
ε (·, η), η) tends to zero as ε tends to infinity, since the

one-step MLE approximation of the large model is robust to misspecification of fθ(η). Lastly,

note that, while neither (14) nor (15) involve the particular choice of distance measure with

respect to which neighborhoods are defined, for given ε > 0 the minimum-MSE estimator

will depend on the chosen distance measure.

The estimator associated with (15) is “orthogonalized” or “locally robust” (e.g., Neyman,

1959, Chernozhukov et al., 2016) with respect to the large parameter θ.4 While such esti-

mators are useful in a number of settings, in our framework they have minimal bias but may

have large variance. As a result they may be ill-behaved in non point-identified problems, or

in problems where the identification of θ0 is irregular. By contrast, notice that when Hθ(η)

is singular δ̂ MMSE
ε is still well-defined and unique, due to the variance of h(Y, η) acting as a

sample size-dependent regularization. The form of δ̂ MMSE
ε is thus based on both efficiency

and robustness considerations.

Examples (cont.). To describe the form of the bias and MSE in our two examples, con-

sider first a parametric model with distance measure d(θ0, θ) = ‖θ0 − θ‖2
Ω. Any linear map

on Θ can be written as the transpose of a dim θ -dimensional vector u, and we have

‖u‖η,ε = ‖u‖η = ‖u‖Ω−1 ,

4To see this, it is useful to explicitly indicate the dependence of h on θ. The moment condition Eθ(δθ +
h(Y, θ)− δ) = 0 is locally robust with respect to θ whenever Eθ∇θ(δθ + h(Y, θ)) = 0. The function h(y, θ) =
[∇θ log fθ(y)]

′
H−1
θ ∇θδθ is locally robust in this sense.
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where Ω−1 is the inverse of Ω. The squared bias term in (12) is then a quadratic function of

h, and computing hMMSE
ε (·, η) amounts to minimizing a quadratic objective in h. In Section

3 we will see that this problem has a closed-form solution.

Consider next our semi-parametric example, abstracting from β parameters and taking

θ = π for simplicity, with distance measure d(θ0, θ) = 2
∫
A log

(
θ0(a)
θ(a)

)
θ0(a)da. We show in

Appendix B that for any real-valued function q : A → R associated with the linear map

θ 7→
∫
A q(a)θ(a)da we have, under mild conditions,

‖q‖η =
√

Varθ(η) (q(A)). (16)

Moreover, in settings where fθ and δθ are linear in θ, the derivatives∇θδθ(η) and∇θ log fθ(η)(y)

take the form of simple, analytical expressions. Indeed, using that δθ = Eθ∆(A), fθ(y) =∫
A g(y | a)θ(a)da, and

∫
A θ(a)da = 1, we have (see Appendix B for a formal presentation)

∇θδθ = ∆(·)− δθ, ∇θ log fθ(y) =
g(y | ·)∫

A g(y | a)θ(a)da
− 1.

It thus follows that, for h satisfying (2),

Eθ(η) h(Y, η) ∇θ log fθ(η)(Y ) =

∫
Y
h(y, η)g(y | ·)dy = E [h(Y, η) |A = ·] .

For example, (8) and (11) become, respectively,

bε(h, η) = ε
1
2

√
Varθ(η) (∆(A)− E [h(Y, η) |A]), (17)

and

hMMSE
ε (·, η) = argmin

h(·,η)

εVarθ(η) (∆(A)− E [h(Y, η) |A]) +
Varθ(η)(h(Y, η))

n

subject to (2). (18)

As in the parametric case, the MSE-minimization problem (18) is thus quadratic in h, and

computing hMMSE
ε (·, η) amounts to solving a quadratic problem.

2.3 Properties of the minimum-MSE estimator

In this subsection we provide a formal characterization of the minimum-MSE estimator by

showing that it achieves minimum worst-case MSE in a large class of estimators as n tends

to infinity and εn tends to a constant. Moreover, under the stated assumptions the heuristic

derivations of the previous subsection are formally justified.
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We will show that the minimum-MSE estimator asymptotically minimizes the following

integrated worst-case MSE,∫
B

{
sup

θ0∈Γε(η)

Eθ0
[(
δ̂h,η̂ − δθ0

)2
]}

w(η)dη, (19)

where w is a non-negative weight function supported on B. This particular objective has

the advantage, compared to minimizing the maximum MSE on the set of (θ0, η) in Γε, of

not being driven by the worst-case MSE in terms of η values. Moreover, the optimization

problem in (19) nicely decouples across η asymptotically, and its solution does not depend

on the weight function w.

We first establish the following result. All proofs are in Appendix A.

Theorem 1. Let Assumptions A1 and A2 in Appendix A hold, and let δ̂ε = δ̂ε(Y1, . . . , Yn)

be a sequence of estimators such that

sup
(θ0,η)∈Γε

Eθ0

[
δ̂ε − δθ(η) −

1

n

n∑
i=1

hε(Yi, η)

]2

= o(ε), (20)

for a sequence of influence functions hε(·, η) that satisfy the constraints (2) and (4), as well

as sup(θ0,η)∈Γε Eθ0 |hε(Y, η)|κ = O(1), for some κ > 2. We then have

sup
η∈B

{
sup

θ0∈Γε(η)

Eθ0
[(
δ̂

MMSE

ε − δθ0
)2
]
− sup

θ0∈Γε(η)

Eθ0
[(
δ̂ε − δθ0

)2
]}
≤ o(ε). (21)

Theorem 1 is established in a joint asymptotic where ε tends to zero as n tends to

infinity and εn tends to a finite positive constant. The sequences of estimators and influence

functions could thus alternatively be indexed by n. Under our asymptotic the leading term

in the worst-case MSE is of order ε (squared bias), or equivalently of order 1/n (variance).

The theorem states that the leading order worst-case MSE achieved by our minimum-

MSE estimator δ̂
MMSE

ε is at least as good as the leading order worst-case MSE achieved by any

other sequence of estimators satisfying our regularity conditions. All the assumptions on δ̂ε

and hε(y, η) that we require for this result are explicitly listed in the statement of the theorem.

In particular, condition (20) is a form of local regularity of the sequence of estimators δ̂ε

(e.g., Bickel et al., 1993). The additional regularity conditions in Assumptions A1 and A2

are smoothness conditions on fθ0(y), δθ0 , θ(η), and d(θ0, θ(η)) as functions of θ0 and η, and

an appropriate rate condition on the preliminary estimator η̂.
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The optimality result in Theorem 1 is uniform in the reference parameter η. Such a

uniform result is possible here, because our constraints (2) and (4) imply a decoupling of

the worst-case MSE optimization problem across η; that is, we can solve for the optimal

hMMSE
ε (·, η) separately for each value of η. This happens since (2), (4) and (9) only involve

h(·, η) at a given η value, and since δ̂h,η̂ satisfies (1) under local robustness.5

To leading order, the uniform optimality result in Theorem 1 immediately implies the

following corollary on the integrated worst-case MSE.

Corollary 1. Under the Assumptions of Theorem 1 we also have∫
B

{
sup

θ0∈Γε(η)

Eθ0
[(
δ̂

MMSE

ε − δθ0
)2
]}

w(η)dη ≤
∫
B

{
sup

θ0∈Γε(η)

Eθ0
[(
δ̂ε − δθ0

)2
]}

w(η)dη + o(ε),

for any weight function w : B → [0,∞) that satisfies
∫
B w(η)dη <∞.

2.4 Confidence intervals

In addition to point estimates, our framework allows us to compute confidence intervals that

contain δθ0 with prespecified probability under our local asymptotic. To see this, let δ̂ be an

estimator satisfying (1), (2) and (4). For a given confidence level µ ∈ (0, 1), let us define the

following interval

CIε(1− µ, δ̂) =

[
δ̂ ±

(
bε (h, η̂) +

σ̂h√
n
c1−µ/2

)]
, (22)

where bε (h, η) is given by (8), σ̂2
h is the sample variance of h(Y1, η̂), . . . , h(Yn, η̂), and c1−µ/2 =

Φ−1(1−µ/2) is the (1−µ/2)-standard normal quantile. Under suitable regularity conditions,

the interval CIε(1−µ, δ̂) contains δθ0 with probability approaching 1−µ as n tends to infinity

and εn tends to a constant, both under correct specification and under local misspecification

of the reference model. Formally, we have the following result.

Theorem 2. Let Assumptions A1 and A3 in Appendix A hold, and also assume that the

influence function h of δ̂ satisfies sup(θ0,η)∈Γε Eθ0h
2(Y, η) = O(1). Then we have

inf(θ0,η)∈Γε Prθ0

[
δθ0 ∈ CIε(1− µ, δ̂)

]
≥ 1− µ+ o(1). (23)

5This decoupling only occurs for the leading terms of order ε and 1/n in the worst-case MSE. If we
considered higher-order MSE terms, or even a finite-sample problem, then minimizing the integrated worst-
case MSE in (19) would not lead to such decoupling.
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Such “fixed-length” confidence intervals, which take into account both misspecification

bias and sampling uncertainty, have been studied in different contexts (e.g., Donoho, 1994,

Armstrong and Kolesár, 2016).6

2.5 Choice of ε

Confidence intervals and minimum-MSE estimators depend on the choice of the neighbor-

hood size ε. To provide a meaningful interpretation for this choice we follow a similar

calibration approach as Hansen and Sargent (2008), and target the probability of a model

detection error. For θ0 ∈ Θ and η ∈ B, consider the following probability of detection error

e(θ0, θ(η)) =
1

2

{
Prθ0

[
n∑
i=1

log

(
fθ(η)(Yi)

fθ0(Yi)

)
> 0

]
+ Prθ(η)

[
n∑
i=1

log

(
fθ0(Yi)

fθ(η)(Yi)

)
> 0

]}
.

The function e(θ0, θ(η)), which is symmetric in its arguments, is an average of two error

probabilities corresponding to the data being generated under fθ0 or fθ(η).

Let p ∈ (0, 1) be a fixed probability, and let η ∈ B. In the known-η case we set ε such

that

inf
θ0∈Γε(η)

e(θ0, θ(η)) = p+ o(1). (24)

In the estimated-η case we denote e(θ0, θ(·)) = supη∈B e(θ0, θ(η)), and we set ε such that

inf
θ0∈Γε(η)

e(θ0, θ(·)) = p+ o(1). (25)

According to this rule, the probability of detection error when attempting to distinguish any

element θ0 ∈ Γε(η) from the reference model is no smaller than p. Moreover, achieving a

lower p requires setting a larger ε.

Let η̂ be a preliminary estimator of η. Expanding (25) as n tends to infinity, a possible

choice for ε is obtained by solving

sup
θ0∈Γε(η̂)

(θ0 − θ(η̂))′ H̃θ(η̂) (θ0 − θ(η̂)) =
4 (Φ−1(p))

2

n
, (26)

where H̃θ(η) = Hθ(η)−Hθ(η)G
′
ηH
−1
η GηHθ(η), for Gη = ∇ηθ(η)′ (which is dim θ×dim η). In the

known-η case we obtain a similar formula, with η in place of η̂ and Hθ(η) in place of H̃θ(η̂).

Note that this calibration of ε is not based on the sample Y1, ..., Yn. We will see that the

6A variation suggested by these authors, which reduces the length of the interval, is to compute the

interval as δ̂± bε(h, η̂) times the (1− µ)-quantile of |N (1,
σ̂2
h

bε(h,η̂)2n )|.
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value of ε implied by (26) has a closed-form or easily computable expression as a function of

p in the parametric and semi-parametric models we will analyze in the next two sections.

Our goal here is to provide an optimal estimator for a given amount of misspecification,

which is itself calibrated to the ability to detect deviations from the reference model. We

do not aim to tailor the amount of misspecification to a given estimator. This aspect differs

from the original Hansen and Sargent approach, which is based on decision-specific worst

cases. While one could adopt such an approach to calibrate ε,7 we prefer to calibrate a single

model-specific value that can be used to compare different estimators.

Setting ε = ε(p) according to (26) is motivated by a desire to calibrate the fear of

misspecification of the researcher. When p is fixed to 1% or 5%, say, values θ0 inside the

neighborhood Γε(η̂) are hard to statistically distinguish from the reference model based

on a sample of n observations. Moreover, for fixed p the product εn tends to a constant

asymptotically. This approach aligns well with Huber and Ronchetti (2009, p. 294), who

write: “[such] neighborhoods make eminent sense, since the standard goodness-of-fit tests

are just able to detect deviations of this order. Larger deviations should be taken care of

by diagnostic and modeling, while smaller ones are difficult to detect and should be covered

(in the insurance sense) by robustness”. Calibrating ε based on model detection error, as we

do, provides an interpretable metric to assess how “large” or “small” a given deviation is.

Given an estimator δ̂, our framework delivers a collection of confidence intervals CIε(p)(1−

µ, δ̂) for different p levels. Reporting those allows one to conduct a sensitivity analysis for any

given estimator to possible misspecification of the reference model. In addition, our approach

delivers a collection of minimum-MSE estimators δ̂ MMSE
ε(p) for different p. In practice, it can be

informative to report the full sets of δ̂ MMSE
ε(p) and associated confidence intervals as a function

of p, along with the estimator and interval corresponding to a preferred p level. We will

report such quantities in our empirical illustration in Section 6.

7In our first (parametric) example, the worst-case θ0 values in (7) are, up to lower-order terms,

θ∗0(h, η, ε) = θ(η)± ε 1
2

Ω−1
(
∇θδθ(η) − Eθ(η)h(Y, η)∇θ log fθ(η)(Y )

)
‖∇θδθ(η) − Eθ(η)h(Y, η)∇θ log fθ(η)(Y )‖Ω−1

.

This motivates the following estimator-specific calibration

ε =
4Φ−1(p)2

n

‖∇θδθ(η̂) − Eθ(η̂)h(Y, η̂)∇θ log fθ(η̂)(Y )‖2Ω−1

‖∇θδθ(η̂) − Eθ(η̂)h(Y, η̂)∇θ log fθ(η̂)(Y )‖2
Ω−1H̃θ(η̂)Ω−1

.

In this case hMMSE
ε and ε are jointly determined.
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It should be noted that our choice of ε is not based on a priori information on the true

parameter value or the bias of a given estimator. Our approach thus differs from sensitivity

analysis methods which rely on prior information about the parameter of interest. Even in

the absence of such information, a variety of other approaches could be used to calibrate ε

(see Appendix C for an example). Given an alternative rule for the choice of ε under which

εn tends asymptotically to a constant, all other ingredients of our approach would remain

identical.

3 Parametric models

In this section and the next we specialize our framework to two leading classes of applications.

Here we study the case where θ is finite-dimensional and the distance measure is based on a

weighted Euclidean metric ‖·‖Ω for a positive definite weight matrix Ω. We start by treating

Ω and the neighborhood size ε as known, before discussing how to choose them in practice.

3.1 Minimum-MSE estimator

In the case where θ is finite-dimensional and the distance measure is based on ‖ · ‖Ω, the

small-ε approximation to the bias of δ̂ is given by (8), with ‖ · ‖η = ‖ · ‖Ω−1 . This expression

can be used to construct confidence intervals, as we explained in Subsection 2.4. Moreover,

the objective function in (12) is quadratic and its solution satisfies

hMMSE
ε (y, η) =

[
∇η log fθ(η)(y)

]′
H−1
η ∇ηδθ(η)

+ (εn)
[
∇̃θ log fθ(η)(y)

]′
Ω−1

(
∇̃θδθ(η) − E

[
hMMSE
ε (Y, η)∇̃θ log fθ(η)(Y )

])
,

(27)

where ∇̃θ = ∇θ − Hθ(η)G
′
ηH
−1
η ∇η is a projected gradient operator, and we have assumed

that Hη – the Hessian with respect to the “small” parameter η – is non-singular.

This minimum-MSE h function can equivalently be written as

hMMSE
ε (y, η) =

[
∇η log fθ(η)(y)

]′
H−1
η ∇ηδθ(η)

+
[
∇̃θ log fθ(η)(y)

]′ [
H̃θ(η) + (εn)−1Ω

]−1

∇̃θδθ(η), (28)

for H̃θ(η) = Var
[
∇̃θ log fθ(η)(y)

]
= Hθ(η)−Hθ(η)G

′
ηH
−1
η GηHθ(η). In addition to the “one-step

efficient” adjustment hMMSE
0 (·, η) given by (14), the minimum-MSE function hMMSE

ε (·, η)
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provides a further adjustment that is motivated by robustness concerns. In the special case

where η is known the expression becomes

hMMSE
ε (y, η) =

[
∇θ log fθ(η)(y)

]′ [
Hθ(η) + (εn)−1Ω

]−1 ∇θδθ(η). (29)

It is interesting to compute the limit of the MSE-minimizing h function as ε tends to

infinity. This leads to the following expression, which is identical to (15),

lim
ε→∞

hMMSE
ε (y, η) =

[
∇η log fθ(η)(y)

]′
H−1
η ∇ηδθ(η) +

[
∇̃θ log fθ(η)(y)

]′
H̃†θ(η) ∇̃θδθ(η), (30)

where H̃†θ(η) denotes the Moore-Penrose generalized inverse of H̃θ(η).
8 Comparing (30) and

(28) shows that the optimal δ̂ MMSE
ε is a regularized version of the one-step full MLE, where

(εn)−1Ω regularizes the projected Hessian matrix H̃θ(η). Our “robust” adjustment remains

well-defined when Hθ(η) is singular, and it accounts for small or zero eigenvalues of the

Hessian in a way that is optimal in terms of worst-case mean squared error.

Choice of ε and Ω. To calibrate ε for a given weight matrix Ω, we rely on (26), which

here simplifies to

sup
v∈Rdim θ : v′Ωv≤ε

v′H̃θ(η̂)v =
4 (Φ−1(p))

2

n
, (31)

the solution of which is

ε(p) =
4 (Φ−1(p))

2

n · λmax(Ω−
1
2 H̃θ(η̂)Ω

− 1
2 )
, (32)

where λmax(A) is the maximal eigenvalue of matrix A.

Our approach also depends on the choice of Ω. One may provide guidance on this

choice using a calibration approach related to the one we use for ε. To see this, let us

focus on Ω = diag(ω1, ..., ωdim θ) being diagonal. Applying the same formula as in (31), but

now only considering the deviations v = θ0 − θ(η) along the j-th component θj, we obtain

ωj = ω · (H̃θ(η̂))(j,j), the j-th diagonal element of H̃θ(η̂) multiplied by some constant ω (which

can be chosen equal to one without loss of generality). This provides a possible scaling for

the components of θ.

Incorporating covariates. In models with conditioning covariates whose distribution is

unspecified, the minimum-MSE h function takes a similar form to the expressions derived

8In fact, H̃†θ(η) in (30) can be replaced by any generalized inverse of H̃θ(η).
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above, except that it involves averages over the covariates sample X1, . . . , Xn. For example,

when minimizing the worst-case conditional MSE, (28) becomes

hMMSE
ε (y, x, η) =

[
∇η log fθ(η)(y |x)

]′ (ÊXHη

)−1

∇ηδθ(η)

+
[
∇̃θ log fθ(η)(y |x)

]′ [
ÊXH̃θ(η) + (εn)−1Ω

]−1

∇̃θδθ(η), (33)

where ÊXH̃θ(η) = ÊXHθ(η) − ÊXHθ(η)G
′
η

(
ÊXHη

)−1

GηÊXHθ(η), for

ÊXHθ(η) =
1

n

n∑
i=1

Eθ(η)

[
∇θ log fθ(η)(Y |Xi)

] [
∇θ log fθ(η)(Y |Xi)

]′
,

ÊXHη =
1

n

n∑
i=1

Eθ(η)

[
∇η log fθ(η)(Y |Xi)

] [
∇η log fθ(η)(Y |Xi)

]′
.

3.2 A linear regression example

Although we view our approach to be most useful in structural or semi-structural settings

where the researcher relies on a rich and tightly specified model, studying a linear model

helps illustrate some of the main features of our approach in a simple, transparent setup.

Specifically, here we consider the linear regression model

Y = X ′β + U,

X = ΠZ + V,

where Y is a scalar outcome, and X and Z are random vectors of covariates and instruments,

respectively, β is a dimX parameter vector, and Π is a dimX × dimZ matrix. We assume

that

U = ρ′V + ξ,

where ξ is normal with zero mean and variance σ2, independent of X and Z. Let ΣV , ΣZ

and ΣX be the covariance matrices of V , Z and X. We assume that ΣV is non-singular. For

simplicity we assume that Π, ΣV , ΣZ and σ2 are known. The parameters are thus θ = (β, ρ).

As a reference model we take η = β and θ(η) = (β, 0). That is, the reference model treats X

as exogenous, while the larger model allows for endogeneity. The target parameter is δθ = c′β

for a known dim β×1 vector c. Lastly, as a weight matrix Ω we take a block-diagonal matrix

with β-block Ωβ and ρ-block Ωρ.
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From (28) we have9

hMMSE
ε (y, x, z, β) = (y − x′β)x′Σ−1

X c

− (y − x′β)
[
(x− Πz)− ΣV Σ−1

X x
]′ [

ΣV − ΣV Σ−1
X ΣV + (εn)−1Ωρ

]−1
ΣV Σ−1

X c. (34)

Hence, when ε = 0 the minimum-MSE estimator of c′β is the “one-step efficient” adjust-

ment in the direction of the OLS estimator, with h function

hMMSE
0 (y, x, z, β) = (y − x′β)x′Σ−1

X c.

As ε tends to infinity, provided ΠΣZΠ′ is invertible, the adjustment is performed in the

direction of the IV estimator.10 Indeed, it follows from (34) that

lim
ε→∞

hMMSE
ε (y, x, z, β) = (y − x′β) [Πz]′ [ΠΣZΠ′]

−1
c.

For given ε > 0 and n, our adjustment remains well-defined even when ΠΣZΠ′ is singu-

lar. When c′β is identified (that is, when c belongs to the range of Π) the minimum-MSE

estimator remains well-behaved as εn tends to infinity, otherwise setting a finite ε value is

essential in order to control the increase in variance. The term (εn)−1 in (34) acts as a form

of regularization, akin to Ridge regression.

Lastly, for a probability p of model detection error, the choice of ε is given by (32); that

is,

ε(p) =
4σ2 (Φ−1(p))

2

n · λmax
(

Ω
− 1

2
ρ

(
ΣV − ΣV Σ−1

X ΣV

)
Ω
− 1

2
ρ

) . (35)

To provide intuition about this choice, consider the case where all instruments are very weak,

so ΣV − ΣV Σ−1
X ΣV is close to zero. In this case it is difficult to detect any departure from

the reference model with exogenous X. This leads us to fix a large neighborhood around the

reference model where we seek to ensure robustness.

3.3 Implementation

In practice our approach requires several inputs from the researcher. First, one needs to

specify a model that is more flexible than the reference model in some dimension. In para-

metric settings this may consist in including additional covariates, or in allowing for a more

9Indeed, G = (I, 0), ∇β log fθ(η)(y, x | z) = 1
σ2x(y− x′β), ∇ρ log fθ(η)(y, x | z) = 1

σ2 (x−Πz)(y− x′β), and

Hθ(η) = 1
σ2

(
ΣX ΣV
ΣV ΣV

)
, where ΣX = ΠΣZΠ′ + ΣV .

10Recall that Π is assumed known here. A given choice Π̂ will correspond to a particular IV estimator. A
more general analysis would include Π in the parameter η of the reference model.
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general parametric specification of a density function (e.g., a mixture of two normals instead

of a normal distribution). The second input is the distance measure that defines the neigh-

borhood of the reference model, together with the size of that neighborhood. Our choice of

ε is guided by a model detection error approach. Moreover, as we explained above, in the

weighted Euclidean case the choice of weights Ω can be informed by a similar calibration

strategy.

To implement the method the researcher needs to compute the score and Hessian of the

larger model. In complex models such as structural static or dynamic models this com-

putation will be the main task to implement our approach. Since we focus on smooth

models, methods based on numerical derivatives can be used. When the likelihood function

is intractable but simulating from the model is feasible, one may use simulation-based ap-

proximations to likelihood, score and Hessian (e.g., Fermanian and Salanié, 2004, Kristensen

and Shin, 2012). Alternatively, one may construct robust adjustments based on moment

functions, as we explain in Appendix C.

4 Semi-parametric models

In this section we consider semi-parametric settings, where the reference model is still para-

metric but the unknown true model contains a nonparametric component. Our focus is on

misspecification of distributional functional forms, and we rely on the Kullback-Leibler di-

vergence to define nonparametric neighborhoods with respect to which we assess robustness.

4.1 Setup and minimum-MSE estimator

Consider a model where the likelihood function has a mixture structure. The distribution

of outcomes Y supported on Y depends on a latent variable A supported on A. We denote

the conditional distribution by gβ(y | a), for β a finite-dimensional parameter. In turn, the

distribution of A is denoted by π. The researcher postulates a parametric reference specifi-

cation for π, which we denote as πγ(a), for γ a finite-dimensional parameter. However, she

entertains the possibility that her specification may be misspecified in a nonparametric sense.

Her goal is to estimate a function of θ0, δθ0 =
∫

∆(a, β0)π0(a)da, which is linear in π0. In the

next subsection we analyze a class of panel data models as one illustration of this setup. In

Appendix B we describe two additional examples: a treatment effects model under selection

on observables where the conditional mean of potential outcomes may be misspecified, and
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a demand model where the distributional assumptions on unobserved preference shocks may

be invalid.

In this setup, θ = (β, π), η = (β, γ), and θ(η) = (β, πγ). As a distance measure on θ

we use a combination of a weighted Euclidean norm on β and twice the Kullback-Leibler

divergence on π; that is, d(θ0, θ) = ‖β0− β‖2
Ωβ

+ 2
∫
A log

(
π0(a)
π(a)

)
π0(a)da. Neither the choice

of Ωβ nor the weighting of the parametric and nonparametric parts play any role in the

analysis that follows.11

It is instructive to start with the case where both β and γ are assumed to be known. By

(17) the small-ε approximation to the worst-case bias of an asymptotically linear estimator

δ̂ with influence function h is

bε(h, β, γ) = ε
1
2

√
Varγ (∆(A, β)− Eβ [h(Y ) |A]), (36)

where, here and in the following, β, γ, and (β, γ) subscripts indicate that expectations and

variances are taken with respect to the joint distribution of the reference model at (β, γ)

or some conditional distribution based on it. This bias expression can be used to form

confidence intervals for δθ0 , as explained in Subsection 2.4.

Moreover, by (18), hMMSE
ε minimizes the following small-ε approximation to the MSE,

εVarγ (∆(A, β)− Eβ [h(Y, β, γ) |A]) +
Varβ,γ h(Y, β, γ)

n
, (37)

subject to Eβ,γ h(Y, β, γ) = 0. The associated first-order conditions are

Eβ,γ
[
Eβ(hMMSE

ε (Y, β, γ) |A) | y
]

+ (εn)−1hMMSE
ε (y, β, γ)

= Eβ,γ [∆(A, β) | y]− Eγ∆(A, β), for all y ∈ Y , (38)

where the expectations in the terms in brackets are with respect to the posterior distribution

pβ,γ(a | y) =
gβ(y | a)πγ(a)∫
A gβ(y | ã)πγ(ã)dã

of the latent variable A given the outcome Y . Note that (38) is

linear in hMMSE
ε . This is a Fredholm type-II integral system, which can be solved uniquely

given εn > 0, irrespective of the support of Y being finite or infinite. In Subsection 4.3 we

describe how we compute the unique minimum-MSE h function in practice.

To provide intuition about the form of hMMSE
ε it is useful to write the MSE-minimization

problem as a functional problem on Hilbert spaces of square-integrable functions. Indeed,

11We obtain the same expressions in case the neighborhoods are defined in terms of the KL divergence

between joint distributions of (Y,A), d̃(θ0, θ) = 2
∫∫
Y×A log

(
gβ0 (y | a)π0(a)

gβ(y | a)π(a)

)
gβ0

(y | a)π0(a)dyda, provided

Eβ,γ [(∇β log gβ(Y |A))(∇β log gβ(Y |A))′] is non-singular.
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minimizing the MSE is equivalent to minimizing

‖∆− δ − EY |A h‖2
A + (εn)−1‖h‖2

Y , (39)

where EY |A is the conditional expectation operator of Y given A, δ = Eγ∆(A, β), ‖g‖2
A =∫

A g(a)2πγ(a)da, and ‖h‖2
Y =

∫∫
Y×A h(y)2gβ(y | a)πγ(a)dyda. The unbiasedness constraint

on h is automatically satisfied at the solution.

By standard results in functional analysis (e.g., Engl et al., 2000), (39) is minimized at

the following regularized inverse of the operator EY |A evaluated at ∆− δ

hMMSE
ε =

[
HY + (εn)−1IY

]−1 (EA |Y ∆− δ
)
, (40)

where EA |Y is the conditional expectation operator of A given Y ,12 IY is the identity operator

on Y , and HY is the composition of EA |Y and EY |A; that is,

HY [h](y) = Eβ,γ[Eβ(h(Ỹ ) |A) |Y = y ], for all y ∈ Y .

The function on the right-hand side of (40) is the unique solution to (38). It is well-defined

even when HY is singular or its inverse is ill-posed. The term (εn)−1 can be interpreted as a

Tikhonov penalization (e.g., Carrasco et al., 2007).

Equivalently, (40) can be written as

hMMSE
ε = EA |Y

[
HA + (εn)−1IA

]−1
(∆− δ) , (41)

where IA is the identity operator on A, and HA is the composition of EY |A and EA |Y . This

formula is the semi-parametric counterpart to (29). In Appendix B we describe the mapping

between the general setup of Section 2 and the semi-parametric model of this section.

Consider next the case where (β, γ) are estimated. Writing the first-order conditions

of (12), and making use of (4), we obtain the following formula for the minimum-MSE h

function,

Qβ,γEβ,γ
[
Eβ(hMMSE

ε (Y, β, γ) |A) | y
]

+ (εn)−1hMMSE
ε (y, β, γ)

= (εn)−1
[
∇β,γ log fβ,πγ (y)

]′
H−1
β,γ∇β,γ Eγ∆(A, β) + Qβ,γ

(
Eβ,γ [∆(A, β) | y]− Eγ∆(A, β)

)
,

(42)

12EA |Y and EY |A are adjoint operators.
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where Qβ,γ is the operator which projects functions of y onto the orthogonal of the score of

the reference model; that is,

Qβ,γ h(y) = h(y)−
[
∇β,γ log fβ,πγ (y)

]′
H−1
β,γEβ,γ

[
h(Y )∇β,γ log fβ,πγ (Y )

]
.

The system (42) is again linear in hMMSE
ε . Note that (42) applies in particular to the case

where ∆(A, β) = βk is a component of β.

Finally, to set ε we rely on (26). In the case where (β, γ) are known this formula takes

the following simple expression

ε =
4 (Φ−1(p))

2

n
, (43)

which follows from the fact that the maximum eigenvalue of the operator HA is equal to

one, see Appendix B. Given a detection error probability p we select ε = ε(p) according

to (43). When (β, γ) are estimated, the relevant maximal eigenvalue can be approximated

numerically, as we describe in Subsection 4.3.

4.2 Application: individual effects in panel data

As a semi-parametric example we study a panel data model with n cross-sectional units

and T time periods. For each individual i = 1, . . . , n we observe a vector of outcomes

Yi = (Yi1, . . . , YiT ), and a vector of conditioning variables Xi. The observed data includes

both Y ’s and X’s. Observations are i.i.d. across individuals. The distribution of Yi is

modeled conditional on Xi and a vector of latent individual-specific parameters Ai. Leaving

i subscripts implicit for conciseness, we denote the corresponding probability density or

probability mass function as gβ(y | a, x). In turn, the density of latent individual effects is

denoted as π(a |x). The density of Y given X is then

fθ(y |x) =

∫
A
gβ(y | a, x)π(a |x)da, for all y, x.

The density of X, denoted as fX , is left unspecified. This setup covers both static models

and dynamic panel models, in which case X includes exogenous covariates and initial values

of outcomes and predetermined covariates (e.g., Arellano and Bonhomme, 2011).

In panel data settings we are interested in estimating average effects of the form

δθ0 = Eθ0 [∆(A,X, β0)] =

∫∫
A×X

∆(a, x, β0)π0(a |x)fX(x)dadx, (44)
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for a known function ∆. Average effects, such as average partial effects in static or dynamic

discrete choice models, moments of individual effects, or more general policy parameters, are

of great interest in panel data applications (Wooldridge, 2010). Since common parameters β0

can be obtained from (44) by taking ∆(A,X, β0) = β0k for any component of β0, our frame-

work covers estimation of – and inference on – both average effects and common parameters.

The researcher postulates a correlated random-effects specification πγ(a |x) indexed by a

parameter γ. For example, a common specification in applied work is a normal distribution

whose mean depends linearly on X’s and whose variance is constant (Chamberlain, 1984).

Random-effects and empirical Bayes estimators. In the next section we will compare

the finite-sample performance of the minimum-MSE estimator of δθ0 , obtained by minimizing

the worst-case conditional MSE given covariates X1, . . . , Xn, to that of two other commonly

used panel data estimators. The first one is the random-effects (RE) estimator

δ̂
RE

=
1

n

n∑
i=1

∫
A

∆
(
a,Xi, β̂

)
πγ̂(a |Xi) da, (45)

where (β̂, γ̂) is the MLE of (β, γ) based on the reference model. The second one is the

empirical Bayes (EB) estimator

δ̂
EB

=
1

n

n∑
i=1

∫
A

∆(a,Xi, β̂)
gβ̂(Yi | a,Xi)πγ̂(a |Xi)∫
A gβ̂(Yi | ã, Xi)πγ̂(ã |Xi)dã︸ ︷︷ ︸

=p
β̂,γ̂

(a |Yi,Xi)

da, (46)

where pβ̂,γ̂(a |Yi, Xi) is the posterior distribution of Ai given (Yi, Xi) implied by gβ̂ and πγ̂.

Both δ̂
RE

and δ̂
EB

are consistent for fixed T as n tends to infinity under correct specification

of the reference model. Our interest centers on situations where misspecification of πγ makes

such commonly used estimators fixed-T inconsistent. Settings where gβ is assumed correctly

specified while πγ may be misspecified have received substantial attention in the panel data

literature (e.g., Heckman, 1981, Arellano and Hahn, 2007).13

Our approach allows us to rank the RE and EB estimators in terms of bias. For simplicity

here we focus on β and γ being known. The small-ε approximation to the bias of the RE

estimator is

bε(h
RE, β, γ) = ε

1
2

√
V̂arγ (∆(A,X, β)),

13Our approach allows us to consider other forms of model misspecification than the sole misspecification
of the distribution of individual effects. In Appendix B we provide additional results where either gβ , or
both gβ and πγ , are misspecified.
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where V̂arγ (∆(A,X, β)) = 1
n

∑n
i=1 Varγ |Xi (∆(A,Xi, β)), with the variance being computed

with respect to the conditional density πγ(· |Xi). The corresponding bias expression for the

EB estimator is

bε(h
EB, β, γ) = ε

1
2

√
V̂arγ

(
∆(A,X, β)− Eβ

[
Eβ,γ

(
∆(Ã,X, β) |Y,X

)
|A,X

])
,

where Ã has the same distribution as A given Y,X. It thus follows that bε(h
EB, β, γ) ≤

bε(h
RE, β, γ). Hence, from a fixed-T robustness perspective, the EB estimator dominates the

RE estimator in terms of bias. In addition, as T tends to infinity we expect bε(h
EB, β, γ) to

tend to zero.14 By contrast, bε(h
RE, β, γ) is constant, independent of T . This comparison is

in line with the consistency of EB estimators and inconsistency of RE estimators of average

effects under large T (Arellano and Bonhomme, 2009).

Link to the semi-parametric panel data literature. Similarly to the EB estimator,

but unlike the RE estimator, the minimum-MSE estimator updates the prior πγ in light of

the data. However, the form of the minimum-MSE update rule in (42) differs from Bayesian

updating. Here we relate our estimator to the semi-parametric panel data literature. In

Appendix C we discuss the link between our approach and Bayesian approaches.

Consider first the estimation of the average of ∆(A, β), assuming (β, γ) known. (40)

shows that in this case the minimum-MSE h function is obtained by Tikhonov regularization.

It is well-understood that average effects are typically only partially identified in discrete

choice panel data models (Chernozhukov et al., 2013, Pakes and Porter, 2013), and that

in point-identified models with continuous outcomes they may not be root-n estimable due

to ill-posedness (Bonhomme and Davezies, 2017). The presence of the term (εn)−1 in (40),

which is constant in large samples under our calibration, bypasses these issues by making

the operator [HY + (εn)−1IY ] non-singular.

In some cases, and under strong conditions, regular estimation of average effects is pos-

sible provided there exists a suitable function ζ such that Eβ [ζ(Y,X) |A = a,X = x] =

∆(a, x, β). In such cases it follows from (40) that limε→∞ δ̂
MMSE

ε = 1
n

∑n
i=1 ζ(Yi, Xi), so in

the large-ε limit the minimum-MSE estimator remains unbiased for δθ0 under misspecifi-

14This is easy to see in a model without covariates X since, as T tends to infinity, we expect that

Eβ
[
Eβ,γ

(
∆(Ã, β) |Y

)
|A = a

]
≈ E

(
∆(Â(Y, β), β) |A = a

)
≈ ∆(a, β), for all a,

where Â(y, β) = argmaxa gβ(y | a) is the maximum likelihood estimator of A (for a given individual).
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cation (for known β, γ). More generally, by focusing on a shrinking neighborhood of the

distribution πγ, as opposed to entertaining any possible distribution, our approach avoids

issues of non-identification and ill-posedness while guaranteeing MSE-optimality within that

neighborhood.

Next, consider the estimation of c′β, for c a dim β × 1 vector and γ known. Note that,

by the Woodbury identity,

(εn)−1
[
HY + (εn)−1IY

]−1
= IY − EA |Y

[
HA + (εn)−1IA

]−1 EY |A := Wε
β,πγ

is a regularized counterpart to the functional differencing “within” projection operator (Bon-

homme, 2012). It then follows from (42) that

hMMSE
ε (y, β, γ) = Wε

β,πγ [∇β log fβ,πγ ](y)′
{
Eβ,γ

(
∇β log fβ,πγ (Y )Wε

β,πγ [∇β log fβ,πγ ](Y )′
)}−1

c.

(47)

As ε tends to infinity, Wε
β,πγ

tends to the functional differencing projection operator Wβ,πγ =

IY −EA |YE†A |Y , where E†A |Y denotes the Moore-Penrose generalized inverse of EA |Y . In this

limit, the minimum-MSE estimator is the one-step approximation to the semi-parametric

efficient estimator of c′β0 based on the efficient score Wβ0,π0 [∇β log fβ0,π0 ](y).

Yet, the efficient estimator fails to exist when the matrix denominator in (47) is singular.

For example, in discrete choice models common parameters are generally not point-identified

(Chamberlain, 2010, Honoré and Tamer, 2006). In models with continuous outcomes, iden-

tification and regularity require high-level non-surjectivity conditions (related to so-called

“completeness” conditions) which may be hard to verify. Here the term (εn)−1 acts as a

regularization of the functional differencing projection. Compared to semi-parametric esti-

mation based on functional differencing, the approach described in this section covers a large

class of models with continuous or discrete outcomes, and it does not require optimization.

In the next section we will see that our estimator provides reliable results in simulations of

a dynamic probit model, in settings with a substantial amount of misspecification.

4.3 Implementation

Unlike for the parametric models we studied in Section 3, the minimum-MSE h function is

generally not available in closed form in semi-parametric models. Here we describe how we

compute a numerical approximation to the minimum-MSE estimator δ̂
MMSE

ε = Eγ̃∆(A, β̃) +

1
n

∑n
i=1 h

MMSE
ε (Yi, β̃, γ̃), where hMMSE

ε is given by (42) and (β̃, γ̃) are preliminary estimates.
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We abstract from conditioning covariates. In the presence of covariates Xi we use the same

technique to approximate hMMSE
ε (· |x) for each value of Xi = x. We use this approach in

the numerical illustration on a dynamic panel data model in the next section, where the

covariate is the initial condition.

Draw an i.i.d. sample (Y (1), A(1)), ..., (Y (S), A(S)) of S draws from gβ × πγ. Let G be

S × S with (τ , s) element gβ(Y (τ) |A(s))/
∑S

s′=1 gβ(Y (τ) |A(s′)), GY be N × S with (i, s)

element gβ(Yi |A(s))/
∑S

s′=1 gβ(Yi |A(s′)), ∆ be S × 1 with s-th element ∆(A(s), β), I be the

S × S identity matrix, and ι and ιY be the S × 1 and N × 1 vectors of ones. In addition, let

D be the S × dim η matrix with (s, k) element

dηk(Y
(s)) =

∑S
s′=1

(
∇ηk log gβ(Y (s) |A(s′)) +∇ηk log πγ(A

(s′))
)
gβ(Y (s) |A(s′))∑S

s′=1 gβ(Y (s) |A(s′))
,

and let DY be N × dim η with (i, k) element dηk(Yi), Q = I − DD†, G̃Y = GY − DYD
†G,

ι̃Y = ιY − DYD
†ι, G̃ = QG, ι̃ = Qι, and ∂∆ be the K × 1 vector with k-th element

1
S

∑S
s=1∇ηk∆(A(s), β) + ∆(A(s), β)∇ηk log πγ(A

(s)).

From (42), a fixed-S approximation to the minimum-MSE estimator is then

δ̃
MMSE

ε = ι†∆ + ι†YDY (D′D/S)−1 ∂∆ + (εn)ι†Y

[(
G̃Y − ι̃Y ι†

)
∆

− G̃YG
′
(
G̃G′ + (εn)−1I

)−1 (
(εn)−1D(D′D/S)−1 ∂∆ +

(
G̃− ι̃ι†

)
∆
)]

,

where (β, γ) are replaced by the preliminary (β̃, γ̃) in all the quantities above, including

when producing the simulated draws.

In turn, ε(p) can be approximated as 4Φ−1(p)2/(nλmax), where λmax is the maximum

eigenvalue of G′QG = G̃′G̃, see Appendix B. In the known (β, γ) case, λmax = 1 since it is

the maximal eigenvalue of the stochastic matrix G′G. In practice, when (β, γ) are estimated

and low-dimensional, λmax appears to be often close to one.

5 Revisiting the dynamic panel probit model

In this section we present simulations in the following dynamic panel data probit model with

individual effects

Yit = 1 {β0Yi,t−1 + Ai + Uit ≥ 0} , t = 1, ..., T,
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where Ui1, ..., UiT are i.i.d. standard normal, independent of Ai and Yi0. Here Yi0 is observed,

so there are effectively T + 1 time periods. We focus on the average state dependence effect

δθ0 = Eπ0 [Φ(β0 + Ai)− Φ(Ai)] .

We assume that the probit conditional likelihood given individual effects and lagged outcomes

is correctly specified. However we do not assume knowledge of π0 or its functional form. We

specify the reference density π = πµ,σ of Ai given Yi0 as a Gaussian with mean µ1 + µ2Yi0

and variance σ2. Throughout this section we treat the parameters (µ, σ) of the reference

model as known.

The dynamic probit model has proven challenging to analyze. No semi-parametrically

consistent estimators of β and δ are available in the literature. Moreover, it has been

documented that static and dynamic probit models are typically partially identified for

fixed T (Chamberlain, 2010, Honoré and Tamer, 2006). Here we report simulation results

suggesting that our minimum-MSE estimator can perform well under sizable departures from

the reference model.

Before showing results on simulated data we start by reporting illustrative calculations of

the bias of the random-effects (RE), empirical Bayes (EB), and minimum-MSE estimators.

To do so we set β0 = .5, µ1 = −.25, µ2 = .5, and σ = .8. In the calculations we treat (β0, µ, σ)

as known, and evaluate the formulas at Yi0 = 0. To compute the bias of the minimum-MSE

estimator we use the approach described in Subsection 4.3, based on S = 30, 000 simulated

draws. We use a similar approach to compute the bias of RE and EB estimators. We vary T

between 1 and 50. The variance and MSE formulas are calculated at a sample size n = 500.

In Figure 1 we show the asymptotic bias bε and MSE for each of the three estimators, where

ε is set according to (43) for a detection error probability p = .01 (left graph) and p = 10−10

(right), and a sample size n = 500.

On the top panel of Figure 1 we see that the bias of the RE estimator (solid line)

is the largest, and that it does not decrease as T grows. By contrast, the bias of the

EB estimator (dashed) decreases as T grows. Interestingly, the bias of the minimum-MSE

estimator (dotted) is the smallest, and it decreases quickly as T increases. The bias levels

off in the large-T limit, since ε is indexed by n and independent of T . Setting p to the much

smaller value p = 10−10 implies larger biases for the RE and EB estimators. Lastly, on the

bottom panel we observe a similar relative ranking between estimators in terms of MSE.
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Figure 1: Bias and MSE of different estimators of the average state dependence effect in the
dynamic probit model
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Notes: Asymptotic bias bε (top panel) and MSE (bottom panel) for different panel length T . The

solid line corresponds to the random-effects estimator δ̂
RE

, the dashed line to the empirical Bayes

estimator δ̂
EB

, and the dotted line to the minimum-MSE estimator δ̂
MMSE

ε . ε is chosen according to

(43) for a detection error probability p = .01 (left) and p = 10−10 (right) when n = 500. (β0, µ, σ)

are treated as known.

We then turn to calculations of confidence intervals. In Figure 2 we report two types

of asymptotic 95% confidence intervals for the average state dependence effect: obtained

under correct specification (dashed lines), and allowing for local misspecification as in (22)

(dotted lines).15 ε is chosen based on (43) for a probability p = .01 (top panel) and p = 10−10

(bottom), and a sample size n = 500. We see that accounting for model misspecification leads

to enlarged confidence intervals. However the size of the enlargement varies to a large extent

with the estimator considered, reflecting the amount of bias. In particular, the confidence

intervals based on the minimum-MSE estimator are quite similar under correct specification

and misspecification. Moreover, while for p = 10−10 the confidence intervals based on the RE

and EB estimators widen substantially, those based on the minimum-MSE estimator remain

quite informative.

15We also computed the Armstrong and Kolesár (2016) confidence intervals in this case, see footnote 6.
Those are almost identical to the ones we report in Figure 2.
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Figure 2: Confidence intervals of the average state dependence effect in the dynamic probit
model

Random-effects Empirical Bayes Minimum-MSE
p = .01

0 10 20 30 40 50

Number of time periods T

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

C
on

fid
en

ce
 in

te
rv

al

0 10 20 30 40 50

Number of time periods T

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

C
on

fid
en

ce
 in

te
rv

al
0 10 20 30 40 50

Number of time periods T

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

C
on

fid
en

ce
 in

te
rv

al

p = 10−10

0 10 20 30 40 50

Number of time periods T

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

C
on

fid
en

ce
 in

te
rv

al

0 10 20 30 40 50

Number of time periods T

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

C
on

fid
en

ce
 in

te
rv

al

0 10 20 30 40 50

Number of time periods T

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

C
on

fid
en

ce
 in

te
rv

al
Notes: Asymptotic 95%-confidence intervals for the average state dependence effect, based on three

estimators. Dashed lines correspond to confidence intervals based on correct specification, dotted

lines to the ones allowing for local misspecification. n = 500. ε is chosen according to (43) for a

detection error probability p = .01 (top) and p = 10−10 (bottom). (β0, µ, σ) are treated as known.

Monte Carlo simulations. We next report the results of two Monte Carlo simulations

under misspecification. In the first one we use the same data generating process as above,

except that we set the population distribution of Ai to be log-normal with mean −.25+ .5Yi0

and standard deviation .8. The assumed distribution for Ai in the parametric reference

model is still Gaussian, with the same mean and standard deviation. Here we estimate β0

along with the average state dependence effect δθ0 , and treat the parameters (µ, σ) of the

reference model as fixed. β0 = .5, and Yi0 are drawn from a Bernoulli(1/2). We use S = 1000

simulated draws to compute the estimators. Our goal is to document the performance of the

minimum-MSE estimator under a particular form of global misspecification.

In Table 1 we report the results of 1000 Monte Carlo replications, for T ranging between

5 and 50, and n = 500. The upper panel shows the bias and MSE for the average state

dependence effect δ, and the lower panel shows the bias and MSE for the autoregressive

parameter β. We report results for δ for five estimators: the RE estimator, the EB estimator,

the linear probability (LP) estimator, and the minimum-MSE estimators with ε set according
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Table 1: Monte Carlo simulation of the average state dependence effect and autoregressive
parameter in the dynamic probit model, DGP with log-normal Ai

T 5 10 20 50 5 10 20 50

Bias Mean squared error (×1000)

Average state dependence δ
Random-effects -.067 -.065 -.047 -.033 4.73 4.31 2.27 1.11
Empirical Bayes -.065 -.059 -.035 -.016 4.43 3.57 1.30 .278
Linear probability -.299 -.124 -.052 -.011 90.0 15.7 2.79 .171
Minimum-MSE (p = .01) -.021 -.005 .000 .001 1.14 .408 .163 .075
Minimum-MSE (p = .10−10) -.005 .002 .003 .002 1.02 .454 .187 .086

Autoregressive parameter β
Maximum likelihood -.154 -.146 -.085 -.038 26.3 22.8 7.82 1.72
Minimum-MSE (p = .01) -.038 .006 .012 .008 8.02 3.51 1.57 .691
Minimum-MSE (p = .10−10) .005 .025 .019 .011 8.78 4.62 1.89 .781

Notes: n = 500, results for 1000 simulations. (µ, σ) are treated as known.

to p = .01 and p = 10−10, respectively. We report results for β for three estimators: the

random-effects MLE and the two minimum-MSE estimators.

Focusing first on β, we see that the MLE is biased due to the misspecification of the

random-effects density. When T = 5 the mean estimate is .35, compared to a true value

of .5. Both minimum-MSE estimators reduce the bias substantially, the mean estimates

being .46 and .49 depending on the value of ε. This bias reduction comes with some increase

in variance: for example when T = 5 the variance of the minimum-MSE estimator for ε

calibrated to p = .01 is .0066 compared to .0026 for the MLE. Yet the overall mean squared

error is lower for our robust estimator compared to the MLE. Turning to average state

dependence δ, we see that the RE estimator is substantially biased and has large MSE in

this case too. In comparison the EB estimator has smaller bias and mean squared error. The

LP estimator is severely biased in short panels in this dynamic setting. The minimum-MSE

estimator performs again clearly best in terms of both bias and MSE.

Note that in this simulation design the calibrated neighborhood size ε is .04 for p = .01,

and .32 for p = 10−10, whereas twice the Kullback-Leibler divergence between the true log-

normal density and the assumed normal density is equal to 1.52. Hence the true distribution

of Ai lies quite far outside of the chosen neighborhood. It represents a form of misspecification

that should be “easy to detect” from the reference model at conventional significance levels.
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Figure 3: Estimates and mean squared error of random-effects and minimum-MSE estimators
under varying amount of misspecification
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True parameter values are shown in dotted. n = 500, T = 5. The reference specification for π is

normal with mean −.25 + .5Yi0 and standard deviation .8, whereas the true π0 is normal with the

same standard deviation and mean −.25+ν+.5Yi0. On the x-axis we report twice the KL divergence;

that is, ν2/.64. Top panel: mean and 95% interval. Bottom panel: mean squared error. ε is chosen

according to (43) for a detection error probability p = .01. (µ, σ) are treated as known.

In spite of this, the minimum-MSE estimator provides effective bias and MSE reduction in

this environment.

In order to better understand the sensitivity of our estimator to misspecification, we

perform a second simulation where we vary the amount of misspecification. While the

reference specification for π is still normal with mean −.25 + .5Yi0 and standard deviation

.8, the true π0 is now normal with mean −.25 + ν + .5Yi0 and the same standard deviation.

On the x-axes in Figure 3 we report twice the Kullback-Leibler divergence between π0 and

π; that is, ν2/.64. Hence the amount of misspecification increases as one moves to the right.

The RE estimator is shown in solid in the graphs, whereas the minimum-MSE estimator

for p = .01 is shown in dashed, and the true parameter value is in dotted. We see that,

for both δ and β, the minimum-MSE estimator is less sensitive to departure from correct
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specification than the RE estimator. Although this robustness comes at a price in terms of

variance under correct specification (that is, when ν = 0) the comparison of bias and MSE

clearly favors our estimator as soon as some misspecification is allowed for. The results for

ε calibrated to p = 10−10 can be found in the appendix.

6 Application to structural evaluation of conditional

cash transfers in Mexico

The goal of this section is to predict program impacts in the context of the PROGRESA con-

ditional cash transfer program, building on the structural evaluation of the program in Todd

and Wolpin (2006, TW hereafter) and Attanasio et al. (2012, AMS). We estimate a simple

model in the spirit of TW, and adjust its predictions against a specific form of misspecifi-

cation under which the program may have a “stigma” effect on preferences. Our approach

provides a way to improve the policy predictions of a structural model when the model may

be misspecified. It does not require the researcher to estimate another (larger) structural

model, and provides a tractable way to perform sensitivity analysis in such settings.

6.1 Setup

Following TW and AMS we focus on PROGRESA’s education component, which consists

of cash transfers to families conditional on children attending school. Those represent sub-

stantial amounts as a share of total household income. Moreover, the implementation of the

policy was preceded by a village-level randomized evaluation in 1997-1998. As TW and AMS

point out, the randomized control trial is silent about the effect that other, related policies

could have, such as higher subsidies or unconditional income transfers, which motivates the

use of structural methods.

To analyze this question we consider a simplified version of TW’s model (Wolpin, 2013),

which is a static, one-child model with no fertility decision. To describe this model, let

U(C, S, τ , v) denote the utility of a unitary household, where C is consumption, S ∈ {0, 1}

denotes the schooling attendance of the child, τ is the level of the PROGRESA subsidy, and

v are taste shocks. Utility may also depend on characteristics X, which we abstract from

for conciseness in the presentation. Note the direct presence of the subsidy τ in the utility

function, which may reflect a stigma effect. This direct effect plays a key role in the analysis.

The budget constraint is: C = Y +W (1− S) + τS, where Y is household income and W is
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the child’s wage. This is equivalent to: C = Y + τ + (W − τ)(1− S). Hence, in the absence

of a direct effect on utility, the program’s impact is equivalent to an increase in income and

decrease in the child’s wage.

Following Wolpin (2013) we parameterize the utility function as

U(C, S, τ , v) = aC + bS + dCS + λτS + Sv,

where λ denotes the direct (stigma) effect of the program. The schooling decision is then

S = 1{U(Y + τ , 1, τ , v) > U(Y +W, 0, 0, v)} = 1{v > a(Y +W )− (a+ d)(Y + τ)− λτ − b}.

Assuming that v is standard normal, independent of wages, income, and program status

(that is, of the subsidy τ) we obtain

Pr(S = 1 | y, w, τ) = 1− Φ [a(y + w)− (a+ d)(y + τ)− λτ − b] ,

where Φ is the standard normal cdf.

We estimate the model on control villages, under the assumption that λ = 0. The average

effect of the subsidy on school attendance is

E
[
Pr(S = 1 |Y,W, τ = τ treat)− Pr(S = 1 |Y,W, τ = 0)

]
= E

(
Φ
[
a(Y +W )− (a+ d)(Y + τ treat)− b

]
− Φ [a(Y +W )− (a+ d)Y − b]

)
.

Note that data under the subsidy regime (τ = τ treat) is not needed to construct an empirical

counterpart to this quantity, since treatment status is independent of Y,W by design. TW

use a similar strategy to predict the effect of the program and other counterfactual policies,

in the spirit of “ex-ante” policy prediction. Here we use the specification with λ = 0 as our

reference model.

As Wolpin (2013) notes, in the presence of a stigma effect (i.e., when λ 6= 0) information

from treated villages is needed for identification and estimation.16 Instead of estimating a

larger model, here we adjust the predictions from the reference model against the possibility

of misspecification, using data from both controls and treated. While in the present simple

static context one could easily estimate a version of the model allowing for λ 6= 0, in dynamic

structural models such as the one estimated by TW estimating a different model in order to

16AMS make a related point (albeit in a different model), and use both control and treated villages to
estimate their structural model. AMS also document the presence of general equilibrium effects of the
program on wages. We abstract from such effects in our analysis.

37



assess the impact of any given form of misspecification may be computationally prohibitive.

This highlights an advantage of our approach, which does not require the researcher to

estimate the parameters under a new model.

To cast this setting into our framework, let θ = (a, b, d, λ), η = (a, b, d), θ(η) = (a, b, d, 0)

and δθ = E (Φ [a(Y +W )− (a+ d)(Y + τ treat)− λτ treat − b]− Φ [a(Y +W )− (a+ d)Y − b]).

We focus on the effect on eligible (i.e., poorer) households. We will first estimate δθ(η) using

the control villages only. We will then compute the minimum-MSE estimator δ̂
MMSE

ε , for

given ε = ε(p), taking advantage of the variation in treatment status in order to account for

the potential misspecification. We will also report confidence intervals. In this setting our

assumption that ε shrinks as n increases reflects that the econometrician’s uncertainty about

the presence of stigma effects diminishes when the sample gets larger.

6.2 Empirical results

We use the sample from TW. We drop observations with missing household income, and focus

on boys and girls aged 12 to 15. This results in 1219 (boys) and 1089 (girls) observations,

respectively. Children’s wages are only observed for those who work. We impute potential

wages to all children based on a linear regression that in particular exploits province-level

variation and variation in distance to the nearest city, similar to AMS. Descriptive statistics

on the sample show that average weekly household income is 242 pesos, the average weekly

wage is 132 pesos, and the PROGRESA subsidy ranges between 31 and 59 pesos per week

depending on age and gender. Average school attendance drops from 90% at age 12 to

between 40% and 50% at age 15.

In Table 2 we show the results of different estimators and confidence intervals. The

top panel focuses on the impact of the PROGRESA subsidy on eligible households. The

left two columns show the point estimates of the policy impact as well as 95% confidence

intervals, calculated under the assumption that the reference model is correct (second row)

and under the assumption that the model belongs to an ε-neighborhood of the reference

model (third row). We calibrate ε based on a detection error probability p = .01. The

model-based predictions are calculated based on control villages. We add covariates to

the gender-specific school attendance equations, which include the age of the child and her

parents, year indicators, distance to school, and an eligibility indicator. In the middle two

columns of Table 2 we report estimates of the minimum-MSE estimator for the same ε,
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Table 2: Effect of the PROGRESA subsidy and counterfactual reforms

Model-based Minimum-MSE Experimental

PROGRESA impacts
Girls Boys Girls Boys Girls Boys

estimate .076 .080 .077 .053 .087 .050
non-robust CI (.006,.147) (.032,.129) - - - -
robust CI (-.053,.205) (-.062,.222) (-.012,.166) (-.023,.129) - -

Counterfactual 1: doubling subsidy
Girls Boys Girls Boys Girls Boys

estimate .145 .146 .146 .104 - -
robust CI (-.085,.374) (-.085,.378) (-.012,.304) (-.019,.227) - -

Counterfactual 2: unconditional transfer
Girls Boys Girls Boys Girls Boys

estimate .004 .005 .004 -.018 - -
robust CI (-.585,.593) (-.486,.497) (-.252,.260) (-.238,.201) - -

Notes: Sample from Todd and Wolpin (2006). p = .01. CI are 95% confidence intervals.
The unconditional transfer amounts to 5000 pesos in a year.

together with confidence intervals. The minimum-MSE estimates are computed based on

both treated and control villages. Lastly, in the right two columns we report the differences

in means between treated and control villages.

We see that PROGRESA had a positive impact on attendance of both boys and girls.

The impacts predicted by the reference model are large, approximately 8 percentage points,

and are quite close to the results reported in Todd and Wolpin (2006, 2008). However, the

confidence intervals which account for model misspecification (third row) are very large for

both genders. This suggests that model misspecification, such as the presence of a stigma

effect of the program, may strongly affect the ability to produce “ex-ante” policy predictions

in this context. When adding treated villages to the sample and computing our minimum-

MSE estimators, we find that the effect for girls is similar to the baseline specification,

whereas the effect for boys is smaller, around 5 percentage points. Moreover, the confidence

intervals are then substantially reduced, although they are still large.17 Interestingly, as

shown by the rightmost two columns the minimum-MSE estimates are quite close to the

experimental differences in means between treated and control villages, for both genders.

17The PROGRESA impacts are significant at the 10% level for girls, though not for boys.
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Figure 4: Effect of the PROGRESA subsidy as a function of the detection error probability
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Notes: Sample from Todd and Wolpin (2006). ε(p) is chosen according to (32), with Φ−1(1 −
p) reported on the x-axis. The minimum-MSE estimates of the effect of PROGRESA on school

attendance are shown in solid. 95% confidence intervals based on those estimates are in dashed.

The dotted line shows the unadjusted model-based prediction. Girls (left) and boys (right).

When using our approach it is informative to report minimum-MSE estimates and con-

fidence intervals for different values of the neighborhood size ε. In Figure 4 we plot the

estimates for girls (left) and boys (right) as a function of Φ−1(1 − p), in addition to 95%

confidence intervals based on those estimates, where ε = ε(p) is chosen according to (32).

In dotted we show the unadjusted model-based predictions. The estimates and confidence

intervals reported in Table 2 correspond to Φ−1(.99) = 2.32. The minimum-MSE estimates

vary very little with ε for girls, and show slightly more variation for boys. Note that the

minimum-MSE estimate at ε = 0 for boys is .058, compared to .053 for our calibrated ε

value, and .080 for the estimate predicted by the reference model estimated on control vil-

lages. This suggests that, for boys, the functional form of the schooling decision is not

invariant to treatment status, again highlighting that predictions based off the controls are

less satisfactory for boys (as acknowledged by Todd and Wolpin, 2006).

On the middle and bottom panels of Table 2 we next show estimates, based on the

reference model and minimum-MSE adjustments, of the effects of two counterfactual policies:

doubling the PROGRESA subsidy, and removing the conditioning of the income transfer

on school attendance. Unlike in the case of the main PROGRESA effects, there is no

experimental counterpart to such counterfactuals. Estimates based on our approach predict

a substantial effect of doubling the subsidy on girls’ attendance and a more moderate effect
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on boys.18 By contrast, we find no effect of an unconditional income transfer.

Lastly, the analysis in this section is based on a reference model estimated on the sub-

sample of control villages, as in TW. Treated villages are only added when constructing

minimum-MSE estimators. An alternative approach, in the spirit of “ex-post” policy pre-

diction, is to estimate the reference model on both controls and treated, and perform the

adjustments based on the same data. We report the results of this exercise in the appendix.

7 Extensions

In Appendix C we describe several extensions to our approach. In particular, we consider

settings where a finite-dimensional parameter θ0 does not fully determine the distribution

f0 of Y , but satisfies a finite-dimensional system of moment conditions

Ef0Ψ(Y, θ0) = 0. (48)

We focus on asymptotically linear generalized method-of-moments (GMM) estimators of δθ0

that satisfy

δ̂ = δθ(η) + a(η)′
1

n

n∑
i=1

Ψ(Yi, θ(η)) + oP (ε
1
2 ) + oP (n−

1
2 ), (49)

for an η-specific parameter vector a(η). We characterize the form of a(η) which leads to

minimum worst-case MSE in Γε. We use this framework to revisit the OLS/IV example of

Subsection 3.2, removing the Gaussian assumptions on the distributions.

Lastly, in Appendix C we present other extensions regarding different distance or loss

functions, a different rule for the neighborhood size ε, and the role of the unbiasedness

constraint (2). In addition, we discuss how our approach and Bayesian approaches relate to

each other, give a result on fixed-ε bias in a particular case, and provide a characterization

which links our local approach to partial identification.

8 Conclusion

We propose a framework for estimation and inference in the presence of model misspec-

ification. The methods we develop allow one to perform sensitivity analysis for existing

estimators, and to construct improved estimators and confidence intervals that are less sen-

sitive to model assumptions.

18The estimates are significant at the 10% level for both genders.
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Our approach can handle parametric and semi-parametric forms of misspecification. It

is based on a minimax mean squared error rule, which consists of a one-step adjustment of

the initial estimate. This adjustment is motivated by both robustness and efficiency, and it

remains valid when the identification of the “large” model is irregular or point-identification

fails. Hence, our approach provides a complement to partial identification methods, when

the researcher sees her reference model as a plausible, albeit imperfect, approximation to

reality.

Lastly, given a parametric reference model, implementing our estimators and confidence

intervals does not require estimating a larger model. This is an attractive feature in complex

models such as dynamic structural models, for which sensitivity analysis methods are needed.
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APPENDIX

A Main results

In this section of the appendix we provide the proofs for the main results of Section 2. At

the end of the section we give some background on asymptotically linear estimators.

A.1 Proof of Theorem 1

A.1.1 Notation and assumptions

In all our applications Θ is either a vector space or an affine space. Let T (Θ) and T ∗(Θ) be

the tangent and co-tangent spaces of Θ.19 Thus, for θ1, θ2 ∈ Θ we have (θ1 − θ2) ∈ T (Θ),

and T ∗(Θ) is the set of linear maps u : T (Θ)→ R. For v ∈ T (Θ) and u ∈ T ∗(Θ) we use the

bracket notation 〈v, u〉 ∈ R to denote their scalar product. Our squared distance measure

d(θ0, θ(η)) on Θ induces a norm on the tangent space T (Θ), namely for v ∈ T (Θ),

‖v‖2
ind,η = lim

ε→0

d
(
θ(η) + ε1/2v, θ(η)

)
ε

.

For every η ∈ B we assume that there exists a map Ωη : T (Θ) → T ∗(Θ) such that, for all

v ∈ T (Θ),

‖v‖2
ind,η = 〈v,Ωηv〉 .

We assume that Ωη is invertible, and write Ω−1
η : T ∗(Θ)→ T (Θ) for its inverse.

For a scalar function on Θ, such as δ : Θ 7→ R, we have ∇θδθ ∈ T ∗(Θ); that is, the typical

element of T ∗(Θ) is a gradient. Conversely, for a map to Θ, such as η 7→ θ(η), we have

∂θ(η)
∂ηk
∈ T (Θ). The two versions of the Jacobian G′η : Rdim η → T (Θ) and Gη : T ∗(Θ) →

Rdim η are defined by

G′η : q 7→
dim η∑
k=1

qk
∂θ(η)

∂ηk
, Gη : u 7→

(〈
∂θ(η)

∂ηk
, u

〉)
k=1,...,dim η

,

where q ∈ Rdim η and u ∈ T ∗(Θ). Similarly, the Hessian Hθ(η) : T (Θ)→ T ∗(Θ) is defined by

Hθ(η) : v 7→ Eθ(η)

[〈
v,∇θ log fθ(η)(Y )

〉
∇θ log fθ(η)(Y )

]
.

19If Θ is a more general manifold (not just an affine space), then the tangent and co-tangent spaces depend
on the particular value of θ ∈ Θ. We then need a connection on the manifold that provides a map between the
tangent spaces at θ(η) and θ0 ∈ Γε(η). All the proofs can be extended to that case, as long as the underlying
connection on the manifold is sufficiently smooth. However, this additional formalism is unnecessary to deal
with the models discussed in this paper.
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The definitions of the projected Hessian H̃θ(η) : T (Θ) → T ∗(Θ) and the projected gradient

operator ∇̃θ are then as in the main text, namely H̃θ(η) = Hθ(η) −Hθ(η)G
′
ηH
−1
η GηHθ(η), and

∇̃θ = ∇θ −Hθ(η)G
′
ηH
−1
η ∇η. We have ∇̃θδθ(η) ∈ T ∗(Θ).

The dual norm for u ∈ T ∗(Θ) was defined in the main text. We have

‖u‖η = sup
v∈T (Θ)\{0}

〈v, u〉
‖v‖ind,η

, ‖u‖2
η =

〈
Ω−1
η u, u

〉
.

‖·‖η is also the norm on T ∗(Θ) that is naturally induced by d(θ0, θ(η)). We use the shorter

notation ‖·‖η for that norm, because it also appears in the main text. Notice also that

‖ · ‖ind,η, ‖ · ‖η, Ωη, and Ω−1
η could all be defined for general θ ∈ Θ, but since we use them

only at the reference values θ = θ(η) we index them simply by η.

Throughout we assume that dim η is finite. For vectors w ∈ Rdim η we use the standard

Euclidean norm ‖w‖, and for dim η×dim η matrices we use the spectral matrix norm, which

we also denote by ‖ · ‖.

The vector norms ‖ · ‖ind,η, ‖ · ‖η, ‖.‖ on T (Θ), T ∗(Θ), Rdim η immediately induce norms

on any maps between T (Θ), T ∗(Θ), Rdim η, and R. With a slight abuse of notation we denote

all those norms simply by ‖.‖η. For example, for Hθ(η) : T (Θ)→ T ∗(Θ) we have∥∥Hθ(η)

∥∥
η

:= sup
v∈T (Θ)\{0}

‖Hθ(η)v‖η
‖v‖ind,η

= sup
v,w∈T (Θ)\{0}

〈
w,Hθ(η)v

〉
‖v‖ind,η ‖w‖ind,η

.

Our first set of assumptions is as follows.

Assumption A1. We assume that Yi ∼ i.i.d.fθ0. In addition, we impose the following

regularity conditions:

(i) We consider n→∞ and ε→ 0 such that εn→ c, for some constant c ∈ (0,∞).

(ii) sup(θ0,η)∈Γε

∣∣δθ0 − δθ(η) −
〈
θ0 − θ(η),∇θδθ(η)

〉∣∣ = o(ε1/2).

(iii) sup(θ0,η)∈Γε

∫
Y

[
f

1/2
θ0

(y)− f 1/2
θ(η)(y)

]2

dy = o(1),

sup(θ0,η)∈Γε

∫
Y

∥∥∇θ log fθ(η)(y)
∥∥2

η

[
f

1/2
θ0

(y)− f 1/2
θ(η)(y)

]2

dy = o(1),

sup(θ0,η)∈Γε

∫
Y

[
f

1/2
θ0

(y)− f 1/2
θ(η)(y)−

〈
θ0 − θ(η),∇θf

1/2
θ(η)(y)

〉]2

dy = o(ε).

(iv) sup(θ0,η)∈Γε ε
−1/2 ‖θ0 − θ(η)‖ind,η = 1+o(1). Furthermore, for u(η) ∈ T ∗(Θ) with supη∈B

‖u(η)‖η = O(1) we have

sup
η∈B

∣∣∣∣∣ sup
θ0∈Γε(η)

ε−1/2 〈θ0 − θ(η), u(η)〉 − ‖u(η)‖η

∣∣∣∣∣ = o(1).
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(v) sup(θ0,η)∈Γε ‖∇θδθ0‖η = O(1), supη∈B
∥∥H−1

η

∥∥ = O(1), supη∈B ‖Gη‖η = O(1),

supη∈B
∥∥Ω−1

η

∥∥
η

= O(1), sup(θ0,η)∈Γε Eθ0 ‖∇θ log fθ0(Y )‖2+ν
η = O(1), for some ν > 0.

Part (i) of Assumption A1 describes our asymptotic framework, where the assumption

εn → c is required to ensure that the squared worst-case bias (of order ε) and the variance

(of order 1/n) of the estimators for δθ0 are asymptotically of the same order, so that MSE

provides a meaningful balance between bias and variance also asymptotically. Part (ii)

requires δθ0 to be sufficiently smooth in θ0, so that a first-order Taylor expansion provides a

good local approximation of δθ0 . Part (iii) imposes similar smoothness assumption on fθ0(y)

in θ0. The first condition in part (iii) is just continuity in Hellinger distance, and the second

condition is very similar, but also involves the score of the model. The last condition in

part (iii) is a standard condition of differentiability in quadratic mean (see, e.g., equation

(5.38) in Van der Vaart, 2000). Part (iv) of the assumption requires that our distance

measure d(θ, θ(η)) converges to the associated norm for small values ε in a smooth fashion.

Finally, part (v) requires invertibility of H−1
η and Ω−1

η , and uniform boundedness of various

derivatives and of the (2 + ν)-th moment of ∇θ log fθ(η)(y). Notice that invertibility of Hθ(η)

is not required for our results.

For many of the proofs (specifically, all results below up to Proposition A1) we only need

the regularity conditions in Assumption A1. However, in order to describe the properties of

our Minimum-MSE estimator δ̂ MMSE
ε = δθ(η̂) + 1

n

∑n
i=1 h

MMSE
ε (Yi, η̂) we also need to account

for the fact that η̂ is itself already an estimator. It turns our that the leading-order asymptotic

properties of δ̂ MMSE
ε are actually independent of whether η is known or estimated in the

construction of δ̂ MMSE
ε (see Lemma A3 below), but formally showing this requires some

additional assumptions, which we present next.

For a given η, let H(η) be the set of functions h = h(·, η) that satisfy the constraints (2)

and (4). The minimization problem (12) in the main text can then be rewritten as

QMMSE
ε (η) := min

h∈H(η)

[
bε(h, η)2 +

Varθ(η)(h(Y, η))

n

]
= bε(h

MMSE
ε , η)2 +

Varθ(η)(h
MMSE
ε (Y, η))

n
. (A1)

The optimal hMMSE
ε (·, η) ∈ H(η) can be expressed as

hMMSE
ε (y, η) = 〈vMMSE

ε (η),∇θ log fθ(η)(y)〉, (A2)

50



with

vMMSE
ε (η) := G′ηH

−1
η ∇ηδθ(η) +

[
I−G′ηH−1

η GηHθ(η)

] [
H̃θ(η) + (εn)−1Ωη

]−1

∇̃θδθ(η), (A3)

where vMMSE
ε (η) ∈ T (Θ), and I denotes the identity operator on T (Θ). It is easy to verify

that hMMSE
ε (y, η) in (A2) indeed satisfies the first-order conditions of problem (12).

Assumption A2. We assume that

(i) sup(θ0,η)∈Γε

(
Eθ0 ‖η̂ − η‖

4)1/4
= o(n−1/4).

(ii) sup(θ0,η)∈Γε Eθ0
∥∥∇ηh

MMSE
ε (Y, η)

∥∥2
= O(1).

(iii) sup(θ0,η)∈Γε Eθ0 supη̃∈B(η,rε)

∥∥ 1
n

∑n
i=1∇ηη′h

MMSE
ε (Yi, η̃)

∥∥2
= O(1), for a Euclidean ball

B(η, rε) around η with radius rε = o(1).

Part (i) of Assumption A2 requires η̂ to converge at a rate faster than n1/4, although in

most applications we actually expect it to converge at rate n1/2.20 Part (ii) of Assumption A2

requires a uniformly bounded second moment for ∇ηh
MMSE
ε (y, η). Since (A2) and (A3) give

an explicit expression for hMMSE
ε (y, η), we could replace Assumption A2(ii) by appropriate

assumptions on the model primitives fθ0(y), δθ0 and Ωη, but for the sake of brevity we state

the assumption in terms of hMMSE
ε (y, η). The same is true for part (iii) of Assumption A2.

Notice that this last part of the assumption involves a supremum over η̃ inside of an expecta-

tion – in order to verify it, one either requires a uniform Lipschitz bound on the dependence

of hMMSE
ε (Yi, η) on η, or some empirical process method to control the entropy of that func-

tion (e.g., a bracketing argument). But since η is a finite-dimensional parameter these are

all standard arguments.

Remark. We found that hMMSE
ε (y, η) can be expressed in the form 〈v(η),∇θ log fθ(η)(y)〉,

thus automatically satisfying the constraint (2). By choosing v(η) = G′ηH
−1
η ∇ηδθ(η) + ṽ(η),

where GηHθ(η)ṽ(η) = 0, the constraint (4) is also satisfied. Using this one can alternatively

represent the worst-case MSE problem as

QMMSE
ε (η) = min

ṽ∈T (Θ)

[
ε
∥∥∥∇̃θδθ(η) − H̃θ(η)ṽ

∥∥∥2

η
+

1

n

〈
ṽ, H̃θ(η)ṽ

〉]
+

1

n

(
∇ηδθ(η)

)′
H−1
η ∇ηδθ(η).

20By slightly modifying the proof of Lemma A3 below one could replace Assumption A2(i) by

sup(θ0,η)∈Γε

(
Eθ0 ‖η̂ − η‖

2
)1/2

= o(n−1/2) – i.e., convergence in `2 only, but at a faster rate – although

this would require slightly different versions of parts (ii) and (iii) of that assumption as well.
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This concise expression for the leading order worst-case MSE highlights the terms of order ε

(from squared bias) and of order 1/n (from variance terms). This representation also shows

that instead of solving for the optimal influence function h(y, η) we can alternatively solve for

an optimal vector ṽ ∈ T (Θ), which is particularly convenient in models where the dimension

of y exceeds that of θ.

A.1.2 Proof

In the following, as in the rest of the paper, we always implicitly assume that all functions

of y are measurable, and that correspondingly all expectations and integrals over y are

well-defined.

Lemma A1. Let Assumption A1 and the conditions on hε(·, η) in Theorem 1 hold. Then,

(i) sup
(θ0,η)∈Γε

∣∣Eθ0h2
ε(Y, η)− Eθ(η)h

2
ε(Y, η)

∣∣ = o(1).

(ii) sup
(θ0,η)∈Γε

∣∣Eθ0hε(Y, η)− Eθ(η)hε(Y, η)−
〈
θ0 − θ(η),Eθ(η)hε(Y, η)∇θ log fθ(η)(Y )

〉∣∣ = o(ε1/2).

Proof of Lemma A1. # Part (i): Without loss of generality we may assume that κ ≤ 4,

since if sup(θ0,η)∈Γε Eθ0 |hε(Y, η)|κ = O(1) holds for κ > 4, then it also holds for κ ≤ 4. Let

ξ = κ/(κ− 2) ≥ 2. We then have∫
Y

∣∣∣f 1/ξ
θ0

(y)− f 1/ξ
θ(η)(y)

∣∣∣ξ dy ≤ ∫
Y

[
f

1/2
θ0

(y)− f 1/2
θ(η)(y)

]2

dy,

where we used that |a−b| ≤ |ac−bc|1/c, for any a, b ≥ 0 and c ≥ 1, and plugged in a = f
1/ξ
θ0

(y),

b = f
1/ξ
θ(η)(y), and c = ξ/2. Thus, the first part of Assumption A1(iii) also implies

sup
(θ0,η)∈Γε

∫
Y

∣∣∣f 1/ξ
θ0

(y)− f 1/ξ
θ(η)(y)

∣∣∣ξ dy = o(1). (A4)
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Next, we find

sup
(θ0,η)∈Γε

∣∣Eθ0h2
ε(Y, η)− Eθ(η)h

2
ε(Y, η)

∣∣
= sup

(θ0,η)∈Γε

∣∣∣∣∣
∫
Y
h2
ε(y, η)

fθ0(y)− fθ(η)(y)

f
1/ξ
θ0

(y)− f 1/ξ
θ(η)(y)

[
f

1/ξ
θ0

(y)− f 1/ξ
θ(η)(y)

]
dy

∣∣∣∣∣
≤

 sup
(θ0,η)∈Γε

∫
Y
|hε(y, η)|

2ξ
ξ−1

∣∣∣∣∣ fθ0(y)− fθ(η)(y)

f
1/ξ
θ0

(y)− f 1/ξ
θ(η)(y)

∣∣∣∣∣
ξ
ξ−1

dy


ξ−1
ξ {

sup
(θ0,η)∈Γε

∫
Y

∣∣∣f 1/ξ
θ0

(y)− f 1/ξ
θ(η)(y)

∣∣∣ξ dy} 1
ξ

≤ ξ

{
sup

(θ0,η)∈Γε

∫
Y
|hε(y, η)|

2ξ
ξ−1

∣∣fθ0(y) + fθ(η)(y)
∣∣ dy} ξ−1

ξ
{

sup
(θ0,η)∈Γε

∫
Y

∣∣∣f 1/ξ
θ0

(y)− f 1/ξ
θ(η)(y)

∣∣∣ξ dy} 1
ξ

≤ ξ

{
2 sup

(θ0,η)∈Γε

Eθ0 |hε(Y, η)|κ
} ξ−1

ξ
{

sup
(θ0,η)∈Γε

∫
Y

∣∣∣f 1/ξ
θ0

(y)− f 1/ξ
θ(η)(y)

∣∣∣ξ dy} 1
ξ

= o(1),

where the first inequality is an application of Hölder’s inequality, the second inequality

uses that

∣∣∣∣ fθ0 (y)−fθ(η)(y)

f
1/ξ
θ0

(y)−f1/ξ
θ(η)

(y)

∣∣∣∣ξ/(ξ−1)

≤ ξξ/(ξ−1)
[
fθ0(y) + fθ(η)(y)

]
,21 the last line uses that κ =

2ξ/(ξ − 1), and the final conclusion follows from our assumptions and (A4).

# Part (ii): We have

Eθ0hε(Y, η)− Eθ(η)hε(Y, η)−
〈
θ0 − θ(η),Eθ(η)hε(Y, η)∇θ log fθ(η)(Y )

〉
=

∫
Y
hε(y, η)

[
fθ0(y)− fθ(η)(y)−

〈
θ0 − θ(η),∇θ log fθ(η)(y)

〉
fθ(η)(y)

]
dy

=

∫
Y
hε(y, η)

[
f

1/2
θ0

(y) + f
1/2
θ(η)(y)

] [
f

1/2
θ0

(y)− f 1/2
θ(η)(y)− 1

2

〈
θ0 − θ(η),∇θ log fθ(η)(y)

〉
f

1/2
θ(η)(y)

]
dy︸ ︷︷ ︸

=:a
(1)
η,θ0,q

+
1

2

∫
Y
hε(y, η)f

1/2
θ(η)(y)

〈
θ0 − θ(η),∇θ log fθ(η)(y)

〉 [
f

1/2
θ0

(y)− f 1/2
θ(η)(y)

]
dy︸ ︷︷ ︸

=:a
(2)
η,θ0,q

.

Applying the Cauchy-Schwarz inequality and our assumptions we find that

sup
(θ0,η)∈Γε

∣∣∣a(1)
η,θ0,q

∣∣∣2
≤ 4

{
sup

(θ0,η)∈Γε

Eθ0h2
ε(Y, η)

}{
sup

(θ0,η)∈Γε

∫
Y

[
f

1/2
θ0

(y)− f 1/2
θ(η)(y)−

〈
θ0 − θ(η),∇θf

1/2
θ(η)(y)

〉]2

dy

}
= o(ε),

21For a, b ≥ 0 there exists c ∈ [a, b] such that by the mean value theorem we have (aξ − bξ)/(a − b) =

ξcξ−1 ≤ ξmax(aξ−1, bξ−1), and therefore [(aξ − bξ)/(a− b)]ξ/(ξ−1) ≤ ξξ/(ξ−1) max(aξ, bξ) ≤ ξξ/(ξ−1)(aξ + bξ),

which we apply here with a = f
1/ξ
θ0

(y) and b = f
1/ξ
θ(η)(y).
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and

sup
(θ0,η)∈Γε

∣∣∣a(2)
η,θ0,q

∣∣∣2
≤
{
Eθ(η)h

2
ε(Y, η)

}{
sup

(θ0,η)∈Γε

‖θ0 − θ(η)‖2
ind,η

∫
Y

∥∥∇θ log fθ(η)(y)
∥∥2

η

[
f

1/2
θ0

(y)− f 1/2
θ(η)(y)

]2

dy

}
= o(ε).

Combining this gives the statement in the lemma.

Let ∆η,θ0 := δθ0 − δθ(η). For a function h = h(y, η) we define

Qε(h, η, θ0) := Eθ0

(
1

n

n∑
i=1

h(Yi, η)−∆η,θ0

)2

= [Eθ0h(Y, η)−∆η,θ0 ]
2 +

1

n
Varθ0 [h(Y, η)−∆η,θ0 ]

=
n− 1

n
[Eθ0h(Y, η)−∆η,θ0 ]

2 +
1

n
Eθ0 [h(Y, η)−∆η,θ0 ]

2 . (A5)

Also, recall the definition of the worst-case bias in (8) of the main text:

bε(h, η) = ε
1
2

∥∥∇θδθ(η) − Eθ(η) h(Y, η) ∇θ log fθ(η)(Y )
∥∥
η
.

Lemma A2. Let Assumption A1 and the conditions on hε(·, η) in Theorem 1 hold. Then,

sup
η∈B

∣∣∣∣∣ sup
θ0∈Γε(η)

Qε(hε, η, θ0)− bε(hε, η)2 −
Varθ(η)(hε(Y, η))

n

∣∣∣∣∣ = o(ε).

Proof of Lemma A2. Using the Cauchy-Schwarz inequality and our assumptions we find

that

sup
(θ0,η)∈Γε

∣∣〈θ0 − θ(η),Eθ(η)hε(Y, η)∇θ log fθ(η)(Y )
〉∣∣

≤ sup
(θ0,η)∈Γε

{
‖θ0 − θ(η)‖ind,η

[
Eθ(η)h

2
ε(Y, η)

]1/2 [Eθ(η)

∥∥∇θ log fθ(η)(Y )
∥∥2

η

]1/2
}

= o(1), (A6)

and similarly

sup
(θ0,η)∈Γε

∣∣〈θ0 − θ(η),∇θδθ(η)

〉∣∣ = o(1). (A7)

Lemma A1(ii) and (A6) imply that Eθ0hε(Y, η) = Eθ(η)hε(Y, η) + o(1), uniformly in (θ0, η) ∈

Γε. In turn, Assumption A1(ii) guarantees that ∆η,θ0 = o(1), uniformly in (θ0, η) ∈ Γε.

Combining with Lemma A1(i) we thus obtain

Eθ0 [hε(Y, η)−∆η,θ0 ]
2 = Eθ0 [hε(Y, η)]2 − 2 ∆η,θ0 Eθ0hε(Y, η) + ∆2

η,θ0

= Eθ(η) [hε(Y, η)]2 + o(1) = Varθ(η)(hε(Y, η)) + o(1),
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uniformly in (θ0, η) ∈ Γε, where in the last step we have also used that hε(y, η) satisfies

the unbiasedness constraint (2). Using that constraint again, as well as Lemma A1(ii) and

Assumptions A1(ii) and A1(iv) we find

sup
θ0∈Γε(η)

|Eθ0hε(Y, η)−∆η,θ0|

= sup
θ0∈Γε(η)

∣∣〈θ0 − θ(η),Eθ(η)hε(Y, η)∇θ log fθ(η)(Y )−∇θδθ(η)

〉∣∣+ o(ε1/2)

= ε1/2
∥∥Eθ(η)hε(Y, η)∇θ log fθ(η)(Y )−∇θδθ(η)

∥∥
η

+ o(ε1/2) = bε(hε, η) + o(ε1/2),

uniformly in η ∈ B. The results in the previous two displays together with the last expression

for Qε(h, η, θ0) in equation (A5) yield the statement of the lemma.

Proposition A1. Let Assumption A1 and the conditions on hε(·, η) in Theorem 1 hold.

Then,

sup
η∈B

{
QMMSE
ε (η)− sup

θ0∈Γε(η)

Eθ0
[(
δ̂ε − δθ0

)2
]}
≤ o(ε).

Proof of Proposition A1. Using (20), the definition of Qε(h, η, θ0), and also applying

Lemma A2, we find that

sup
η∈B

{
QMMSE
ε (η)− sup

θ0∈Γε(η)

Eθ0
[(
δ̂ε − δθ0

)2
]}

= sup
η∈B

QMMSE
ε (η)− sup

θ0∈Γε(η)

Eθ0

( 1

n

n∑
i=1

hε(Yi, η) + δθ(η) − δθ0

)2
+ o (ε)

= sup
η∈B

[
QMMSE
ε (η)− sup

θ0∈Γε(η)

Qε(hε, η, θ0)

]
+ o (ε)

= sup
η∈B

[
QMMSE
ε (η)− bε(hε, η)2 −

Varθ(η)(hε(Y, η))

n

]
+ o(ε).

Moreover, by the definition of QMMSE
ε (η) in (A1) we have

QMMSE
ε (η) ≤ bε(hε, η)2 +

Varθ(η)(hε(Y, η))

n
.

Combining the last two displays gives the statement of the proposition.

Recall that δ̂ MMSE
ε = δθ(η̂) + 1

n

∑n
i=1 h

MMSE
ε (Yi, η̂). The following lemma shows that the

fact that η is being estimated in the construction of δ̂ MMSE
ε can be neglected to first order.

Notice that this result requires the additional regularity conditions in Assumption A2, which

were not required for any of the previous results.
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Lemma A3. Under Assumptions A1 and A2 we have

sup
(θ0,η)∈Γε

Eθ0

[
δ̂ MMSE
ε − δθ(η) −

1

n

n∑
i=1

hMMSE
ε (Yi, η)

]2

= o(ε).

Proof of Lemma A3. By a Taylor expansion in η we find that

δ̂ MMSE
ε = δθ(η̂) +

1

n

n∑
i=1

hMMSE
ε (Yi, η̂)

= δθ(η) +
1

n

n∑
i=1

hMMSE
ε (Yi, η) + (η̂ − η)′

[
∇ηδθ(η) + Eθ(η)∇ηh

MMSE
ε (Y, η)

]︸ ︷︷ ︸
=r

(1)
η,θ0

+ (η̂ − η)′
1

n

n∑
i=1

[
∇ηh

MMSE
ε (Yi, η)− Eθ0∇ηh

MMSE
ε (Yi, η)

]
︸ ︷︷ ︸

=r
(2)
η,θ0

+ (η̂ − η)′
[
Eθ0∇ηh

MMSE
ε (Y, η)− Eθ(η)∇ηh

MMSE
ε (Y, η)

]︸ ︷︷ ︸
=r

(3)
η,θ0

+
1

2
(η̂ − η)′

[
1

n

n∑
i=1

∇ηη′h
MMSE
ε (Yi, η̃)

]
(η̂ − η)︸ ︷︷ ︸

=r
(4)
η,θ0

, (A8)

where η̃ is a value between η̂ and η. Our constraints (2) and (4) guarantee that ∇ηδθ(η) +

Eθ(η)∇ηh
MMSE
ε (Y, η) = 0, that is, we have r

(1)
η,θ0

= 0. Using Assumption A2 we furthermore

find

Eθ0
∣∣∣r(2)
η,θ0

∣∣∣2 ≤ Eθ0 ‖η̂ − η‖
2 Eθ0

∥∥∥∥∥ 1

n

n∑
i=1

[
∇ηh

MMSE
ε (Yi, η)− Eθ0∇ηh

MMSE
ε (Yi, η)

]∥∥∥∥∥
2

≤ Eθ0 ‖η̂ − η‖
2 1

n
Eθ0
∥∥∇ηh

MMSE
ε (Y, η)

∥∥2
= o(n−1/2)O(n−1) = o(ε3/2) = o(ε),

uniformly in (θ0, η) ∈ Γε, where in the second step we have used the independence of Yi

across i. Similarly, we have

Eθ0
∣∣∣r(3)
η,θ0

∣∣∣2 ≤ Eθ0 ‖η̂ − η‖
2
∥∥Eθ0∇ηh

MMSE
ε (Y, η)− Eθ(η)∇ηh

MMSE
ε (Y, η)

∥∥2

= o(n−1/2)O(ε) = o(ε3/2) = o(ε),

uniformly in (θ0, η) ∈ Γε, where we have used that

sup
(θ0,η)∈Γε

∥∥Eθ0∇ηh
MMSE
ε (Y, η)− Eθ(η)∇ηh

MMSE
ε (Y, η)

∥∥ = O(ε1/2),
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which follows from Assumptions A1(iii) and A2(ii) by using the proof strategy of part (ii)

of Lemma A1. Finally, we have

Eθ0
∣∣∣r(4)
η,θ0

∣∣∣2 ≤ Eθ0 ‖η̂ − η‖
4 Eθ0

∥∥∥∥∥ 1

n

n∑
i=1

∇ηη′h
MMSE
ε (Yi, η̃)

∥∥∥∥∥
2

= o(n−1) = o(ε),

uniformly in (θ0, η) ∈ Γε, where we have used Assumption A2(iii). We have thus shown that

sup
(θ0,η)∈Γε

Eθ0

∣∣∣∣r(1)
η,θ0

+ r
(2)
η,θ0

+ r
(3)
η,θ0

+
1

2
r

(4)
η,θ0

∣∣∣∣2 = o(ε),

which together with (A8) gives the statement of the lemma.

Proposition A2. Under Assumptions A1 and A2 we have

sup
η∈B

∣∣∣∣∣ sup
θ0∈Γε(η)

Eθ0
[(
δ̂

MMSE

ε − δθ0
)2
]
−QMMSE

ε (η)

∣∣∣∣∣ = o(ε).

Proof of Proposition A2. Applying Lemma A3 together with the definition of Qε(h, η, θ0)

in (A5) we obtain

sup
(θ0,η)∈Γε

{
Eθ0
[(
δ̂

MMSE

ε − δθ0
)2
]
−Qε(h

MMSE
ε , η, θ0)

}
= o(ε).

Assumptions A1(i) and A1(v) imply that supη∈B
∥∥vMMSE

ε (η)
∥∥

ind,η
= O(1).22 From the explicit

solution for hMMSE
ε (y, η) in (A2) and (A3) together with Assumption A2 we conclude

sup
(θ0,η)∈Γε

Eθ0
[
hMMSE
ε (Y, η)

]2+ν
= sup

(θ0,η)∈Γε

Eθ0〈vMMSE
ε (η),∇θ log fθ(η)(y)〉2+ν

≤ sup
η∈B

∥∥vMMSE
ε (η)

∥∥2+ν

ind,η
sup

(θ0,η)∈Γε

Eθ0 ‖∇θ log fθ0(Y )‖2+ν
η = O(1).

Thus, hMMSE
ε (y, η) satisfies the regularity conditions for hε(y, η) in Theorem 1 with κ = 2+ν.

We can therefore apply Lemma A2 with hε(y, η) = hMMSE
ε (y, η) to find

sup
η∈B

∣∣∣∣∣ sup
θ0∈Γε(η)

Qε(h
MMSE
ε , η, θ0)−QMMSE

ε (η)

∣∣∣∣∣ = o(ε).

Combining the last two displays gives the statement of the proposition.

Proof of Theorem 1. Combining Propositions A1 and A2 gives the the statement of the

theorem.

22Notice that supη∈B
∥∥Hθ(η)

∥∥
η

= O(1) follows from the bounded moment condition on the score

∇θ log fθ(η)(y) in part (v) of Assumption A1.
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A.2 Proof of Corollary 1

Let q(η) denote the MSE difference in the curly brackets in (21). Corollary 1 then immedi-

ately follows from Theorem 1 and
∫
B q(η)w(η)dη ≤

[∫
B w(η)dη

] [
supη∈B q(η)

]
.

A.3 Proof of Theorem 2

Assumption A3.

(i) We consider n→∞ and ε→ 0 such that εn→ c, for some constant c ∈ (0,∞).

(ii) δ̂ − δθ(η) − 1
n

∑n
i=1 h(Yi, η) = oPθ0 (n−

1
2 ), uniformly in (θ0, η) ∈ Γε.

(iii) Let σ2
h(θ0, η) = Varθ0 h(Y, η). We assume that there exists a constant c, independent

of ε, such that inf(θ0,η)∈Γε σh(θ0, η) ≥ c > 0. Furthermore, for all sequences an =

c1−µ/2 + o(1) we have

inf(θ0,η)∈Γε Prθ0

[∣∣∣∣∣ 1√
n

n∑
i=1

h(Yi, η)− Eθ0h(Y, η)

σh(θ0, η)

∣∣∣∣∣ ≤ an

]
≥ 1− µ+ o(1).

(iv) sup(θ0,η)∈Γε Eθ0‖η̂ − η‖2 = o(1), sup(θ0,η)∈Γε Eθ0 [σ̂h − σh(θ0, η)]2 = o(1).

(v) supη∈B ‖∇ηbε(h, η)‖ = O(ε
1
2 ).

Part (ii) is weaker than the local regularity of the estimator δ̂ that we assumed when

analyzing the minimum-MSE estimator, see equation (20). In turn, related to but differently

from the conditions we used for Theorem 1, part (iii) requires a form of local asymptotic

normality of the estimator.

Proof of Theorem 2. Let δ̂ be an estimator and h(y, η) be the corresponding influence

function such that part (ii) in Assumption A3 holds. Define R̂η := δ̂−δθ(η)− 1
n

∑n
i=1 h(Yi, η).

We then have

δ̂ − δθ0 =
1

n

n∑
i=1

h(Yi, η) + δθ(η) − δθ0 + R̂η

=
1

n

n∑
i=1

[h(Yi, η)− Eθ0h(Y, η)]−
[
δθ0 − δθ(η) − Eθ0h(Y, η)

]
+ R̂η,

and therefore

|̂δ − δθ0 | − bε(h, η̂)− σ̂h c1−µ/2/
√
n

σh(θ0, η)/
√
n︸ ︷︷ ︸

=lhs

≤

∣∣∣∣∣ 1√
n

n∑
i=1

h(Yi, η)− Eθ0h(Y, η)

σh(θ0, η)

∣∣∣∣∣− c1−µ/2 + r̂η,θ0︸ ︷︷ ︸
=rhs

, (A9)
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where

r̂η,θ0 := c1−µ/2 +

∣∣δθ0 − δθ(η) − Eθ0h(Y, η)
∣∣+
∣∣∣R̂η

∣∣∣− bε(h, η̂)− σ̂h c1−µ/2/
√
n

σh(θ0, η)/
√
n

=

√
n

σh(θ0, η)

{
|δθ0 − δθ(η) − Eθ0h(Y, η)|+ |R̂η| − bε(h, η̂)− σ̂h − σh(θ0, η)√

n
c1−µ/2

}
.

From (A9) we conclude that the event rhs ≤ 0 implies the event lhs ≤ 0, and therefore

Prθ0(lhs ≤ 0) ≥ Prθ0(rhs ≤ 0), which we can also write as

Prθ0

[
|̂δ − δθ0| ≤ bε(h, η̂) +

σ̂h√
n
c1−µ/2

]
≥ Prθ0

[∣∣∣∣∣ 1√
n

n∑
i=1

h(Yi, η)− Eθ0h(Y, η)

σh(θ0, η)

∣∣∣∣∣ ≤ c1−µ/2 − r̂η,θ0

]
. (A10)

By part (v) in Assumption A3 there exists a constant C > 0 such that supη∈B ‖∇ηbε(h, η)‖ ≤

Cε
1
2 , and therefore

supη∈B |bε(h, η̂)− bε(h, η)| ≤ C ε
1
2 ‖η̂ − η‖.

Using this we find that

|r̂η,θ0| ≤
√
n

σh(θ0, η)

{∣∣|δθ0 − δθ(η) − Eθ0h(Y, η)| − bε(h, η)
∣∣

+
|σ̂h − σh(θ0, η)|√

n
c1−µ/2 + C ε

1
2 ‖η̂ − η‖+ |R̂η|

}
.

Parts (ii) and (iii) in Assumption A3 imply that, uniformly in (θ0, η) ∈ Γε, we have
√
n

σh(θ0, η)
R̂η = oPθ0 (1),

and analogously we find from the conditions in Assumption A3 that

σ̂h − σh(θ0, η)

σh(θ0, η)
= oPθ0 (1),

√
n

σh(θ0, η)
ε
1
2 ‖η̂ − η‖ = oPθ0 (1),

uniformly in (θ0, η) ∈ Γε. Finally, since we also impose Assumption A1 and sup(θ0,η)∈Γε

Eθ0h2(Y, η) = O(1) we obtain, analogously to the proof of Lemma A1(ii) above, that23

sup
(θ0,η)∈Γε

√
n

σh(θ0, η)

∣∣|δθ0 − δθ(η) − Eθ0h(Y, η)| − bε(h, η)
∣∣ = o(1).

We thus conclude that r̂η,θ0 = oPθ0 (1), uniformly in (θ0, η) ∈ Γε. Together with (A10) and

part (iii) in Assumption A3 this implies (23), hence Theorem 2.

23Notice that the proof of part (ii) of Lemma A1 only requires a bounded second moment of h(y, η).
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A.4 Asymptotically linear estimators

In this subsection we provide some background on the asymptotically linear representation

(1), and we give several examples. See, e.g., Bickel et al. (1993) and Rieder (1994) on local

asymptotic expansions of regular estimators.

Consider an asymptotically linear estimator δ̂ which has the following representation

under fθ0 , for θ0 ∈ Θ,

δ̂ = δ∗θ0 +
1

n

n∑
i=1

φ(Yi, θ0) + oPθ0 (n−
1
2 ), (A11)

where δ∗θ0 is the probability limit of δ̂ under fθ0 , and φ(y, θ0) is its influence function. The

pseudo-true value δ∗θ0 generally differs from the true parameter value δθ0 . The influence

function is assumed to satisfy

Eθ0φ(Y, θ0) = 0, ∇θδ
∗
θ0

+ Eθ0∇θφ(Y, θ0) = 0, for all θ0 ∈ Θ. (A12)

The first condition in (A12) requires that the estimator be asymptotically unbiased for

the pseudo-true value δ∗θ0 . The second condition is a version of the generalized information

identity.24 Expansion (A11) and conditions (A12) are satisfied for a large class of estimators,

see below for examples.

Furthermore, suppose that

δ∗θ(η) = δθ(η), for all η ∈ B. (A13)

Condition (A13) requires that δ̂ be asymptotically unbiased for δθ(η) under fθ(η), that is, under

correct specification of the reference model. Note that, under mild regularity conditions, the

function

h(y, η) = φ(y, θ(η))

will then be automatically “locally robust” with respect to η, as defined in Chernozhukov et

al. (2016). Indeed,

Eθ(η)∇ηh(Y, η) = Eθ(η)∇ηφ(y, θ(η)) = ∇ηθ(η)Eθ(η)∇θφ(y, θ(η))

= −∇ηθ(η)∇θδ
∗
θ(η) = −∇ηδ

∗
θ(η) = −∇ηδθ(η),

where we have used (A12) at θ0 = θ(η), and that, by (A13), ∇ηδ
∗
θ(η) = ∇ηδθ(η).

24The generalized information identity can alternatively be written in terms of the influence function and
the score of the model (or any parametric sub-model in semi-parametric settings); see, e.g., Newey (1990).
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To relate (1), which is taken around δθ(η), to expansion (A11), which is taken around

δ∗θ0 , note that by an expansion around θ(η), and making use of the second identity in (A12),

(A11) will imply (1) provided 1
n

∑n
i=1∇θφ(Yi, θ̃)−Eθ̃∇θφ(Y, θ̃) is oPθ0 (1), uniformly in η ∈ B,

θ0 ∈ Γε(η), θ̃ ∈ Γε(η).

Examples. As a first example, consider an estimator δ̂ solving
∑n

i=1m(Yi, δ̂) = 0, where

m is a smooth scalar moment function. The pseudo-true value solves Eθ0m(Y, δ∗θ0) = 0 for

all θ0 ∈ Θ. Expanding the moment condition around δ∗θ0 implies that (A11) holds under

mild conditions on m, with

φ(y, θ0) =
[
−Eθ0∇δm(Y, δ∗θ0)

]−1
m(y, δ∗θ0).

It is easy to see that (A12) is satisfied. Moreover, (A13) is satisfied when the moment

restriction is satisfied under the reference model; that is, whenever Eθ(η)m(Y, δθ(η)) = 0 for

all η ∈ B.

As a second example, consider an estimator δ̂ solving
∑n

i=1 m(Yi, δ̂, η̂) = 0, where η̂ is

a preliminary estimator which solves
∑n

i=1 q(Yi, η̂) = 0, for smooth moment functions m

(scalar) and q (vector-valued). In this case (A11) holds under regularity conditions on m

and q, with

φ(y, θ0) =[Eθ0(−∇δm(Y, δ∗θ0 , η
∗
θ0

))]−1

(
m(y, δ∗θ0 , η

∗
θ0

)

+ Eθ0(∇ηm(Y, δ∗θ0 , η
∗
θ0

))′[Eθ0(−∇ηq(Y, η
∗
θ0

))]−1q(y, η∗θ0)

)
,

where η∗θ0 and δ∗θ0 satisfy Eθ0q(Y, η∗θ0) = 0 and Eθ0m(Y, δ∗θ0 , η
∗
θ0

) = 0 for all θ0 ∈ Θ. It can

be verified that (A12) holds. Moreover, (A13) holds provided the moment restrictions for

η and δθ(η) are satisfied under the reference model, that is, whenever Eθ(η)q(Y, η) = 0 and

Eθ(η)m(Y, δθ(η), η) = 0 for all η ∈ B.

As a third example, consider the (non-random) estimator δ̂ = δθ(η), where η is a known,

fixed parameter (i.e., B = {η}). In this case φ(y, θ0) = δθ(η) − δ∗θ0 = 0. It follows that both

(A12) and (A13) hold.

As a last example, consider the estimator δ̂ = δθ(η̂), where as above the preliminary

estimator η̂ solves
∑n

i=1 q(Yi, η̂) = 0. In this case (A11) will hold, with

φ(y, θ0) =(∇ηδθ(η∗θ0 ))
′ [Eθ0(−∇ηq(Y, η

∗
θ0

))]−1q(y, η∗θ0),
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where η∗θ0 solves Eθ0q(Y, η∗θ0) = 0. It is easy to see that (A12) is satisfied. Moreover, (A13)

holds provided Eθ(η)q(Y, η) = 0 for all η ∈ B.

B Semi-parametric models

In this section of the appendix we provide results and additional examples for the semi-

parametric setting of Section 4.

B.1 Dual of the Kullback-Leibler divergence

Let A be a random variable with domain A, reference distribution f∗(a) and “true” distri-

bution f0(a). We use notation f∗(a) and f0(a) as if those were densities, but point masses

are also allowed. Twice the Kullback-Leibler (KL) divergence reads

d(f0, f∗) = − 2E0 log
f∗(A)

f0(A)
,

where E0 is the expectation under f0. Let F be the set of all distributions, in particular,

f ∈ F implies
∫
A f(a)da = 1. Let q : A → R be a real valued function. For given f∗ ∈ F

and ε > 0 we define

‖q‖∗,ε := max
{f0∈F : d(f0,f∗)≤ε}

E0 q(A)− E∗ q(A)√
ε

,

where E∗ is the expectation under f∗.

We have the following result.

Lemma B4. For q : A → R and f∗ ∈ F we assume that the moment-generating function

m∗(t) = E∗ exp(t q(A)) exists for t ∈ (δ−, δ+) and some δ− < 0 and δ+ > 0.25 For ε ∈ (0, δ2
+)

we then have

‖q‖∗,ε =
√

Var∗(q(A)) +O(ε
1
2 ).

Proof. Let the cumulant-generating function of the random variable q(A) under the refer-

ence measure f∗ be k∗(t) = logm∗(t). We assume existence of m∗(t) and k∗(t) for t ∈ (δ−, δ+).

This also implies that all derivatives of m∗(t) and k∗(t) exist in this interval. We denote the

p-th derivative of m∗(t) by m
(p)
∗ (t), and analogously for k∗(t).

25Existence of m∗(t) in an open interval around zero is equivalent to having an exponential decay of the
tails of the distribution of the random variable Q = q(A). If q(a) is bounded, then m∗(t) exists for all t ∈ R.
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In the following we denote the maximizing f0 in the definition of ‖q‖∗,ε simply by f0.

Applying standard optimization method (Karush-Kuhn-Tucker) we find the well-known ex-

ponential tilting result

f0(a) = c f∗(a) exp(t q(a)),

where the constants c, t ∈ (0,∞) are determined by the constraints
∫
A f0(a)da = 1 and

d(f0, f∗) = ε. Using the constraint
∫
A f0(a)da = 1 we can solve for c to obtain

f0(a) =
f∗(a) exp(t q(a))

E∗ exp(t q(A))
=
f∗(a) exp(t q(a))

m∗(t)
.

Using this we find that

d(t) := d(f0, f∗)

= 2E∗
f0(A)

f∗(A)
log

f0(A)

f∗(A)

=
2 t

m∗(t)
E∗ exp(t q(A))q(A)− 2 logm∗(t)

m∗(t)
E∗ exp(t q(A))

=
2 tm

(1)
∗ (t)

m∗(t)
− 2 logm∗(t).

= 2
[
t k(1)
∗ (t)− k∗(t)

]
.

We have d(0) = 0, d(1)(0) = 0, d(2)(0) = 2k
(2)
∗ (0) = 2Var∗(q(A)), d(3)(t) = 4k

(3)
∗ (t) + 2tk

(4)
∗ (t).

A mean-value expansion thus gives

d(t) = Var∗(q(A))t2 +
t3

6

[
4 k(3)
∗ (t̃) + 2 t̃ k(4)

∗ (t̃)
]
,

where 0 ≤ t̃ ≤ t ≤ δ+. The value t that satisfies the constraint d(t) = ε therefore satisfies

t =
ε
1
2√

Var∗(q(A))
+O(ε).

Next, using that ‖q‖∗,ε = ε−
1
2 E∗

[(
f0(A)
f∗(A)

− 1
)
q(A)

]
we find

‖q‖∗,ε = ε−
1
2

[
k(1)
∗ (t)− k(1)

∗ (0)
]
.

Again using that k
(2)
∗ (0) = Var∗(q(A)) and applying a mean value expansion we obtain

‖q‖∗,ε = ε−
1
2

[
t k(2)
∗ (t) +

1

2
t2 k(3)

∗ (t̄)

]
= ε−

1
2

[
tVar∗(q(A)) +

1

2
t2 k(3)

∗ (t̄)

]
=
√

Var∗(q(A)) +O(ε
1
2 ),

where t̄ ∈ [0, t].
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B.2 Mapping between the setup of Section 2 and the semi-parametric
case

In order to link the formulas in Section 2 to the ones we derived in Section 4 for semi-

parametric models, let us focus for simplicity on the case where η is known and θ = π is

the density of A. In this case, elements v of the tangent space satisfy
∫
A v(a)da = 0, and

the corresponding squared norm is ‖v‖2
ind,η =

∫
A

v(a)2

πγ(a)
da. Hence Ωη is such that, for any two

elements of the tangent space, 〈w,Ωηv〉 =
∫
Aw(a) v(a)

πγ(a)
da.

In turn, elements u of the co-tangent space satisfy
∫
A u(a)πγ(a)da = 0. The squared dual

norm is ‖u‖2
η =

∫
A u

2(a)πγ(a)da = Varγ(u(A)) (see Subsection B.1), and Ω−1
η is such that

〈Ω−1
η u, s〉 =

∫
A u(a)s(a)πγ(a)da = Covγ(u(A), s(A)).

Next, ∇θδθ(η) is an element of the co-tangent space such that, for all tangents v,

〈v,∇θδθ(η)〉 =

∫
A
v(a)(∆(a)− δθ(η))da.

We identify ∇θδθ(η) with ∆ − δθ(η). In turn, ∇θ log fθ(η)(y) is an element of the co-tangent

space such that, for all tangents v,

〈v,∇θ log fθ(η)(y)〉 =

∫
A gβ(y | a)v(a)da∫
A gβ(y | a)πγ(a)da

−
∫
A
v(a)da = Eβ,γ

(
v(A)

πγ(A)
| y
)
− Eγ

(
v(A)

πγ(A)

)
.

We identify ∇θ log fθ(η)(y) with
gβ(y | ·)∫

A gβ(y | a)πγ(a)da
− 1.

For any tangent v, Hθ(η)v is a co-tangent element such that, for all tangents w,

〈w,Hθ(η)v〉 =Eθ(η)〈v,∇θ log fθ(η)(Y )〉〈w,∇θ log fθ(η)(Y )〉

=Covβ,γ

[
Eβ,γ

(
v(A)

πγ(A)
|Y
)
,Eβ,γ

(
w(A)

πγ(A)
|Y
)]

.

In particular, it follows that defining hMMSE
ε as in (29) gives the same expression as in

(41) since, for all y,

hMMSE
ε (y) = 〈

[
Hθ(η) + (εn)−1Ωη

]−1∇θδθ(η),∇θ log fθ(η)(y)〉

= Eβ,γ
[

1

πγ(A)

[
Hθ(η) + (εn)−1Ωη

]−1
[∇θδθ(η)](A) | y

]
= Eβ,γ

[[
HA + (εn)−1IA

]−1
[∆− δ](A) | y

]
= EA|Y

[
HA + (εn)−1IA

]−1
[∆− δ](y).

We also briefly want to discuss when the conditions in Assumption A1(iii) are satisfied

for this model. Firstly, we have∫
Y

[
f

1/2
θ0

(y)− f 1/2
θ(η)(y)

]2

dy = 2H2(fθ0 , fθ(η)) ≤ 2DKL(fθ0||fθ(η)) ≤ 2DKL(π0||πγ),
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where the first inequality is the general relation H2(fθ0 , fθ(η)) ≤ DKL(fθ0||fθ(η)) between the

squared Hellinger distance H2 and the Kullback-Leibler divergence DKL, and the second

inequality is sometimes called the “chain rule” for the Kullback-Leibler divergence, which

can be derived by an application of Jensen’s inequality. Finally, recall that we defined our

distance measure d(θ0, θ(η)) in the semi-parametric case to be twice the Kullback-Leibler

divergence 2DKL(π0||πγ) = 2
∫
A log

(
π0(a)
πγ(a)

)
π0(a)da. We therefore find that

sup
(θ0,η)∈Γε

∫
Y

[
f

1/2
θ0

(y)− f 1/2
θ(η)(y)

]2

dy ≤ sup
(θ0,η)∈Γε

d(θ0, θ(η))) = ε = o(1),

that is, the first condition in Assumption A1(iii) is satisfied here. The second condition in

that assumption follows if, for example, we assume that supy∈Y Varγ [gβ(y |A)] / [Eγgβ(y |A)]2

= O(1),26 because an upper bound on
∥∥∇θ log fθ(η)(y)

∥∥2

η
= Varγ [gβ(y |A)] / [Eγgβ(y |A)]2 can

then simply be taken out of the integral over y ∈ Y .

Regarding the last condition of Assumption A1(iii), we first note that since fθ is linear

in θ = π here we have fθ0(y)− fθ(η)(y) =
〈
θ0 − θ(η),∇θfθ(η)(y)

〉
, and therefore〈

θ0 − θ(η),∇θf
1/2
θ(η)(y)

〉
=
fθ0(y)− fθ(η)(y)

2f
1/2
θ(η)(y)

.

Using this, we obtain∫
Y

[
f

1/2
θ0

(y)− f 1/2
θ(η)(y)−

〈
θ0 − θ(η),∇θf

1/2
θ(η)(y)

〉]2

dy

=
1

4

∫
Y

[(
fθ0(y)

fθ(η)(y)

)1/2

− 1

]4

fθ(η)(y)dy ≤ 1

64

∫
Y

[
fθ0(y)

fθ(η)(y)
− 1

]4

fθ(η)(y)dy

=
1

64

∫
Y

[
fθ0(y)− fθ(η)(y)

]4[
fθ(η)(y)

]3 dy =
1

64

∫
Y

[〈
θ0 − θ(η),∇θ log fθ(η)(y)

〉]4
fθ(η)(y)dy

≤ 1

64
‖θ0 − θ(η)‖4

ind,η Eθ(η)

∥∥∇θ log fθ(η)(Y )
∥∥4

η
,

where the first inequality follows from
√
a − 1 ≤ (a − 1)/2 for a ≥ 0. This shows that the

last part of Assumption A1(iii) holds, provided Eθ(η)

∥∥∇θ log fθ(η)(Y )
∥∥4

η
= O(1).

26If γ is not assumed known, then one should also take the supremum over γ in that condition.
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B.3 Computation of ε(p)

Given a probability p we set ε(p) = 4Φ−1(p)2/(nλmax), where λmax is the maximal eigenvalue

of the projected Hessian operator which to π(a′) associates the function∫
Y

[(
gβ(y|a′)∫

A gβ(y|a)πγ(a)da
− 1

)( ∫
A gβ(y|a)π(a)da∫
A gβ(y|a)πγ(a)da

− 1

)∫
A
gβ(y|a)πγ(a)da

]
dy

−
(∫
Y
∇β,γ log fβ,πγ (y)gβ(y | a′)dy

)′
H−1
η

(∫
Y
∇β,γ log fβ,πγ (y)

∫
A
gβ(y|a)π(a)dady

)
.

That is, λmax is the maximum of∫
Y

[( ∫
A gβ(y|a)π(a)da∫
A gβ(y|a)πγ(a)da

− 1

)2 ∫
A
gβ(y|a)πγ(a)da

]
dy

−
(∫
Y
∇β,γ log fβ,πγ (y)

∫
A
gβ(y | a)π(a)dady

)′
H−1
η

(∫
Y
∇β,γ log fβ,πγ (y)

∫
A
gβ(y | a)π(a)dady

)
,

with respect to π, subject to
∫
A π(a)da = 1 and

∫
A

(π(a)−πγ(a))2

πγ(a)
da ≤ 1.

Letting ξ(a) = π(a)/πγ(a), λmax is thus equal to the maximum of

E
[
(E (ξ(A) |Y )− 1)2]− E [sη(Y )ξ(A)]′H−1

η E [sη(Y )ξ(A)]

with respect to ξ, subject to Eξ(A) = 1 and Var ξ(A) ≤ 1, where we have denoted sη =

∇β,γ log fβ,πγ , and in the remainder of this subsection we abstract from parameter subscripts

for conciseness. Equivalently, λmax is equal to the minimum of

E [Var (ξ(A) |Y )] + E [sη(Y )ξ(A)]′H−1
η E [sη(Y )ξ(A)]

subject to Eξ(A) = 1 and Var ξ(A) ≤ 1.

The first-order conditions of the corresponding Lagrangian are

2ξ(a)πγ(a)− 2E [E (ξ(A) |Y ) | a] πγ(a) + 2E [sη(Y ) | a]′H−1
η E [sη(Y )ξ(A)] πγ(a)

+ λ1πγ(a) + 2λ2ξ(a)πγ(a) = 0.

Hence, denoting ν(a) = ξ(a)− 1,

E [E (ν(A) |Y ) | a]− E [sη(Y ) | a]′H−1
η E [sη(Y )ν(A)] = (1 + λ2)ν(a).

Note that, since at the solution Var ν(A) = 1, we have λmax = 1 + λ2. It thus follows that

λmax is the maximum eigenvalue of the operator

ν(a) 7→ E [E (ν(A) |Y ) | a]− E [sη(Y ) | a]′H−1
η E [sη(Y )ν(A)] .
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Note that in the known (β, γ) case this operator is equal to HA, whereas in the estimated

(β, γ) case it is a projected version of HA.

We can thus approximate λmax by the maximum eigenvalue of the following S×S matrix

computed by simulation, the (s1, s2) element of which is (using the notation of Subsection

4.3)

S∑
τ=1

gβ(Y (τ) |A(s1))gβ(Y (τ) |A(s2))(∑S
s′=1 gβ(Y (τ) |A(s′))

)2

−

(
S∑
τ=1

dη(Y
(τ))gβ(Y (τ) |A(s1))∑S

s′=1 gβ(Y (τ) |A(s′))

)′( S∑
τ=1

dη(Y
(τ))dη(Y

(τ))′

)−1( S∑
τ=1

dη(Y
(τ))gβ(Y (τ) |A(s2))∑S

s′=1 gβ(Y (τ) |A(s′))

)
.

This matrix is equal to G′QG = G̃′G̃.

B.4 Two additional semi-parametric examples

In this subsection of the appendix we analyze two additional semi-parametric examples: a

potential outcomes model under selection on observables and a demand model.

B.4.1 Average treatment effects under selection on observables

In our first example we consider a setting with a binary treatment variable D, and two

potential outcomes Y (0), Y (1) which we assume to be independent of D given a vector X

of covariates (e.g., Rosenbaum and Rubin, 1983b). Our target parameter is the average

treatment effect δ = E(Y (1)− Y (0)).

Let π = fd(y |x) denote the density of Y (d) given X = x, for d ∈ {0, 1}. We assume that

the propensity score p(x) = Pr(D = 1 |X = x) is correctly specified. However, we allow the

reference parametric specification πγ, where γ = (γ0, γ1), to be misspecified. We focus on a

regression specification for Eγ (Y (d) |X) = X ′γd, and assume that under the reference model

Y (d) is normally distributed given X = x with variance σ2. The value of σ2 has no impact

on the analysis. While 1
n

∑n
i=1 X

′
i(γ1 − γ0) is consistent for δ under correct specification of

the conditional means, it is generally inconsistent otherwise. In the analysis we treat the

propensity score p(x) and the parameter γ as known.

Given a function h(y, d, x), we consider the estimator of δ given by δ̂h,γ = 1
n

∑n
i=1X

′
i(γ1−

γ0) + 1
n

∑n
i=1 h(Yi, Di, Xi). The analysis differs slightly from the setup of Section 4, due to

the presence of the two densities f0 and f1. We rely on the Kullback-Leibler divergence
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DKL(f0f1, f̃0f̃1) between products of densities in order to define neighborhoods. Using similar

arguments as in Section 4 we find

bε(h, γ) =

ε
1
2

√
V̂arγ (Y (1)−X ′γ1 − p(X)h(Y (1), 1, X)) + V̂arγ (Y (0)−X ′γ0 + (1− p(X))h(Y (0), 0, X)),

and

hMMSE
ε (y, d, x, γ) =

d(y − x′γ1)

p(x) + (εn)−1
+

(1− d)(y − x′γ0)

1− p(x) + (εn)−1
.

The minimum-MSE estimator of the average treatment effect is thus

δ̂
MMSE

ε =
1

n

n∑
i=1

X ′i(γ1 − γ0) +
1

n

n∑
i=1

Di(Yi −X ′iγ1)

p(Xi) + (εn)−1
+

(1−Di)(Yi −X ′iγ0)

1− p(Xi) + (εn)−1
.

Notice that as ε tends to infinity δ̂
MMSE

ε becomes

lim
ε→∞

δ̂
MMSE

ε =
1

n

n∑
i=1

X ′i(γ1 − γ0) +
1

n

n∑
i=1

Di(Yi −X ′iγ1)

p(Xi)
+

(1−Di)(Yi −X ′iγ0)

1− p(Xi)
,

which is closely related to the inverse propensity weighting estimator, and is consistent

irrespective of whether the conditional means are correctly specified, provided 0 < p(X) < 1

with probability one. The term (εn)−1 provides a regularization which guarantees that the

minimum-MSE estimator remains well-behaved in the absence of such overlap.

B.4.2 A demand model

In our second example we consider a demand setting with J products. Individual i chooses

product Yi = j if j maximizes her utility Uij = X ′ijβj + Aij, where Xij are observed charac-

teristics and Aij are random preference shocks; that is,

Yi = j ⇔ X ′ijβj + Aij ≥ X ′ikβk + Aik for all k 6= j. (B14)

We assume that the vector of individual preference shocks A = (A1, ..., AJ) is independent

of X = (X1, ..., XJ), with density π. We are interested in predictions from the demand model,

such has counterfactual market shares under different prices or other attributes of the goods.

We denote such effects as δθ0 = Eθ0 (∆(A,X, β0)), for a known function ∆, where θ0 denotes

the true value of θ = (β, π).

We start with a reference parametric specification θ(η) = (β, πγ) for η = (β, γ). A

common example of a reference specification is Aj being i.i.d. type-I extreme value, leading
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to a multinomial logit demand model. Note that in this particular case π is parameter-free. A

widely echoed concern in the literature on demand analysis is that properties of the logit, in

particular independence of irrelevant alternatives (IIA), may have undesirable consequences

for the estimation of δθ0 ; see Anderson et al. (1992), for example.

Assuming that β and γ are known for simplicity, in this example we have, by (36) and

(38),

bε(h, β, γ) = ε
1
2

√√√√√Êγ

(∆(A,X, β)− Eγ∆(Ã,X, β)−
J∑
j=1

qj(A,X, β)h(j,X)

)2
,

where

qj(a, x, β) = 1
{
x′jβj + aj ≥ x′kβk + ak for all k 6= j

}
.

Moreover, we have, for all k = 1, ..., K and x,

Eβ,γ

[
J∑
j=1

qj(A, x, β)hMMSE
ε (j, x, β)

∣∣ Y = k,X = x

]
+ (εn)−1 hMMSE

ε (k, x, β)

= Eβ,γ
[
∆(A, x, β)

∣∣ Y = k,X = x
]
− Eγ∆(A, x, β).

B.5 Individual effects in panel data (continued)

In this subsection we consider panel data models where gβ(y | a, x) may be misspecified. Let

us start with the case where neither gβ nor πγ are correctly specified. We treat β and γ as

known for simplicity. We have

bε(h, β, γ) = ε
1
2

√
V̂arβ,γ

[
∆(A,X)− h(Y,X)

]
.

In this case, there is a unique h function which minimizes the bias (to first-order), which

corresponds to the empirical Bayes h function; that is,

hEB(y, x, β, γ) = Eβ,γ
[
∆(A,X) |Y = y,X = x

]
− Eγ

[
∆(A,X) |X = x

]
, for all y, x.

Note that here there is no scope for achieving fixed-T or even large-T identification (except

in the trivial case where ∆(A,X) = ∆(X) does not depend on A).

Consider next the case where πγ is correctly specified, but gβ may be misspecified. We

have

bε(h, β, γ) = ε
1
2

√
V̂arβ,γ

[
∆(A,X)− h(Y,X)− Eβ

[
∆(A,X)− h(Ỹ , X) |A,X

] ]
.
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C Extensions

In this section of the appendix we study several extensions of our approach. We start

by considering models defined by moment restrictions, and we then outline various other

generalizations.

C.1 Models defined by moment restrictions

In this subsection we consider a model where the parameter θ0 does not fully determine

the distribution f0 of Y , but satisfies the system of moment conditions (48). This system

may be just-identified, over-identified or under-identified. We focus on asymptotically linear

GMM estimators that satisfy (49) for an η-specific parameter vector a(η). We assume that

the remainder in (49) is uniformly bounded similarly as in (20). In this case local robustness

with respect to η takes the form

∇ηδθ(η) + Ef0∇ηΨ(Y, θ(η)) a(η) = 0. (C15)

It is natural to focus on asymptotically linear GMM estimators here, since f0 is unrestricted

except for the moment condition (48).

To derive the worst-case bias of δ̂ note that, by (48), for any η ∈ B and any θ0 ∈ Γε(η)

we have

Ef0Ψ(Y, θ(η)) = − [Ef0∇θΨ(Y, θ(η))]′ (θ0 − θ(η)) + o(ε
1
2 ),

so, under appropriate regularity conditions,

sup
θ0∈Γε(η)

∣∣∣Ef0 δ̂ − δθ0∣∣∣ = ε
1
2

∥∥∇θδθ(η) + Ef0∇θΨ(Y, θ(η)) a(η)
∥∥
η

+ o(ε
1
2 ) + o(n−

1
2 ).

The worst-case MSE of

δ̂a,η = δθ(η) + a(η)′
1

n

n∑
i=1

Ψ(Yi, θ(η))

is thus

ε
∥∥∇θδθ(η) + Ef0∇θΨ(Y, θ(η)) a(η)

∥∥2

η
+ a(η)′

Ef0Ψ(Y, θ(η))Ψ(Y, θ(η))′

n
a(η) + o(ε) + o(n−1).

To obtain an explicit expression for the minimum-MSE estimator, let us focus on the

case where θ0 is finite-dimensional and ‖ · ‖η = ‖ · ‖Ω−1 . Let us define

Vθ(η) = Ef0Ψ(Y, θ(η))Ψ(Y, θ(η))′, Kθ(η) = Ef0∇θΨ(Y, θ(η)), Kη = Ef0∇ηΨ(Y, θ(η)).
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For all η ∈ B we aim to minimize

ε
∥∥∇θδθ(η) +Kθ(η)a(η)

∥∥2

Ω−1 + a(η)′
Vθ(η)

n
a(η), subject to ∇ηδθ(η) +Kηa(η) = 0.

A solution is given by27

aMMSE
ε (η) = −B†θ(η),εK

′
η

(
KηB

†
θ(η),εK

′
η

)−1

∇ηδθ(η)

−B†θ(η),ε

(
I −K ′η

(
KηB

†
θ(η),εK

′
η

)−1

KηB
†
θ(η),ε

)
K ′θ(η)Ω

−1∇θδθ(η), (C16)

where Bθ(η),ε = K ′θ(η)Ω
−1Kθ(η) + (εn)−1Vθ(η), and B†θ(η),ε is its Moore-Penrose generalized

inverse. Note that, in the likelihood case and taking Ψ(y, θ) = ∇θ log fθ(y), the function

h(y, η) = aMMSE
ε (η)′Ψ(y, θ(η)) simplifies to (28).

As a special case, when ε = 0 we have

aMMSE
0 (η) = −V †θ(η)K

′
η

(
KηV

†
θ(η)K

′
η

)−1

∇ηδθ(η).

In this case the minimum-MSE estimator

δ̂
MMSE

ε = δθ(η̂) + aMMSE
0 (η̂)′

1

n

n∑
i=1

Ψ(Yi, θ(η̂))

is the one-step approximation to the optimal GMM estimator based on the reference model,

given a preliminary estimator η̂. To obtain a feasible estimator one simply replaces the

expectations in Vθ(η) and Kη by sample analogs.

As a second special case, consider ε tending to infinity. Focusing on the known-η case for

simplicity, aMMSE
ε (η) tends to

−
(
V †θ(η)

)1/2
[(
V †θ(η)

)1/2

K ′θ(η)Ω
−1Kθ(η)

(
V †θ(η)

)1/2
]† (

V †θ(η)

)1/2

K ′θ(η)Ω
−1︸ ︷︷ ︸

=Kginv
θ(η)

∇θδθ(η),

where Kginv
θ(η) is a generalized inverse of Kθ(η), and the choice of Ω corresponds to choosing one

specific such generalized inverse. In this case, the minimum-MSE estimator is the one-step

approximation to a particular GMM estimator based on the “large” model.

Lastly, given a parameter vector a, confidence intervals can be constructed as explained

in Subsection 2.4, taking

bε(a, η̂) = ε
1
2

∥∥∥∥∥∇θδθ(η̂) +
1

n

n∑
i=1

∇θΨ(Yi, θ(η̂)) a(η̂)

∥∥∥∥∥
Ω−1

.

27Here we assume that KηV
†
θ(η)K

′
η is non-singular, requiring that η be identified from the moment condi-

tions. Existence follows from the fact that, by the generalized information identity, Vθ(η)a = 0 implies that
Kθ(η)a = 0. Moreover, although aMMSE

ε (η) may not be unique, aMMSE
ε (η)′Ψ(Y, θ(η)) is unique almost surely.
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Example. Consider again the OLS/IV example of Subsection 3.2, but now drop the Gaus-

sian assumptions on the distributions. For known Π, the set of moment conditions corre-

sponds to the moment functions

Ψ(y, x, z, θ) =

(
x(y − x′β − ρ′(x− Πz))

z(y − x′β)

)
.

In this case, letting W = (X ′, Z ′)′ we have

Kη = −Ef0 (XW ′) , Kθ(η) = −Ef0
(

XX ′ XZ ′

(X − ΠZ)X ′ 0

)
, Vθ(η) = Ef0

(
(Y −X ′β)2WW ′) .

Given a preliminary estimator β̃, Vθ(η) can be estimated as 1
n

∑n
i=1(Yi−X ′iβ̃)2WiW

′
i , whereas

Kη and Kθ(η) can be estimated as sample means. The estimator based on (C16) then

interpolates nonlinearly between the OLS and IV estimators, similarly as in the likelihood

case.

Remarks. If the researcher is willing to specify a complete parametric model fθ0 compat-

ible with the moment conditions (48), the choice of ε can then be based on the approach

described in Subsection 2.5. Alternatively, the choice of ε can be based on specification test-

ing ideas which do not require full specification, such as a test of exogeneity in the OLS/IV

example above.

Lastly, the approach outlined here can be useful in fully specified structural models when

the likelihood function, score and Hessian of the model are difficult to compute. Given a

set of moment conditions implied by the structural model, instead of implementing (28) one

may compute the optimal a vector though (C16), which only involves the moment functions

and their derivatives. When the moments are computed by simulation, their derivatives can

be approximated using numerical differentiation. Note that this minimum-MSE estimator

has a different interpretation (and a larger mean squared error) compared to the estimator

in (28) that relies on the full likelihood structure.

C.2 Bayesian interpretation

A different approach to account for misspecification of the reference model would be to

specify a prior on the parameter θ0. A Bayesian decision maker could then compute the

posterior mean E [δθ0 |Y1, . . . , Yn]. As we discuss in C.2.1 below, in the parametric case of

Section 3, when θ0 is endowed with the Gaussian prior N (θ(η), εΩ−1) and η is endowed with
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a non-dogmatic prior, this posterior mean coincides with our minimum-MSE estimator up

to smaller-order terms; that is,

E [δθ0 |Y1, . . . , Yn] = δ̂
MMSE

ε + oP (ε
1
2 ) + oP

(
n−

1
2

)
. (C17)

A related question is the interpretation of our minimax estimator in terms of a least-

favorable prior distribution. As we discuss in C.2.2 below, in the parametric case a least-

favorable prior for θ0 given η concentrated on the neighborhood Γε(η) puts all mass at the

boundary of Γε(η).

C.2.1 Gaussian prior

Consider the known η case to start with. To see that (C17) holds, note that, under sufficient

regularity conditions,

E [δθ0 |Y1, . . . , Yn, η] = δθ(η) + (∇θδθ(η))
′E [θ0 − θ(η) |Y1, . . . , Yn, η] + oP (ε

1
2 ), (C18)

where

E [θ0 − θ(η) |Y1, . . . , Yn, η] =

∫
(θ0 − θ(η))

∏n
i=1 fθ0(Yi) exp

(
− 1

2ε
(θ0 − θ(η))′Ω(θ0 − θ(η))

)
dθ0∫ ∏n

i=1 fθ0(Yi) exp
(
− 1

2ε
(θ0 − θ(η))′Ω(θ0 − θ(η))

)
dθ0

= ε
1
2

∫
u
∏n

i=1 fθ(η)+ε
1
2 u

(Yi) exp
(
−1

2
u′Ωu

)
du∫ ∏n

i=1 fθ(η)+ε
1
2 u

(Yi) exp
(
−1

2
u′Ωu

)
du

.

Now, since, up to smaller terms,

n∏
i=1

f
θ(η)+ε

1
2 u

(Yi) ≈
N∏
i=1

fθ(η)(Yi) exp

(
ε
1
2u′

n∑
i=1

∇θ log fθ(η)(Yi)−
1

2
εnu′Hθ(η)u

)
,

we have

E [θ0 − θ(η) |Y1, . . . , Yn, η]

= ε
1
2

∫
u exp

(
ε
1
2u
∑n

i=1∇θ log fθ(η)(Yi)− 1
2
u′[Ω + εnHθ(η)]u

)
du∫

exp
(
ε
1
2u
∑n

i=1∇θ log fθ(η)(Yi)− 1
2
u′[Ω + εnHθ(η)]u

)
du

+ oP (ε
1
2 ) + oP

(
n−

1
2

)

= εn[Ω + εnHθ(η)]
−1 1

n

n∑
i=1

∇θ log fθ(η)(Yi) + oP (ε
1
2 ) + oP

(
n−

1
2

)
.

Lastly, in the case where η is estimated, let us endow it with a non-dogmatic prior. Under

regularity conditions, taking expectations in (C18) with respect to the posterior distribution

of η implies that (C17) holds.
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C.2.2 Least favorable prior

Consider the known η case, in the parametric setting with weighted Euclidean norm. Con-

sider the minimax problem

inf
h

sup
ρ

∫
Γε(η)

Eθ0
[
(δ̂h,η − δθ0)2

]
ρ(θ0)dθ0,

where ρ belongs to a class of priors supported on Γε(θ(η)).

Assuming that the order of the infimum and supremum can be reversed, a least-favorable

prior ρLF solves

sup
ρ

inf
h

∫
Γε(η)

Eθ0
[
(δ̂h,η − δθ0)2

]
ρ(θ0)dθ0.

For given h the integral is equal to∫
Γε(η)

Eθ0
[
(δ̂h,η − δθ0)2

]
ρ(θ0)dθ0

=

∫
Γε(η)

(
Varθ(η) h(Y, η)

n
+
(
δθ(η) + Eθ0h(Y, η)− δθ0

)2
)
ρ(θ0)dθ0 + o(ε) + o

(
n−1
)

=
Varθ(η) h(Y, η)

n

+
(
Eθ(η)h(Y, η)∇θ log fθ(η)(Y )−∇θδθ(η)

)′
Ω−

1
2VΩ(ρ)Ω−

1
2

(
Eθ(η)h(Y, η)∇θ log fθ(η)(Y )−∇θδθ(η)

)
+ o(ε) + o

(
n−1
)
,

where

VΩ(ρ) =

∫
Γε(η)

Ω
1
2 (θ0 − θ(η)) (θ0 − θ(η))′Ω

1
2ρ(θ0)dθ0.

This quantity (net of the lower-order terms) is minimized, subject to the unbiasedness

restriction, at h∗ which solves

h∗(y, η) = n∇θ log fθ(η)(y)′Ω−
1
2VΩ(ρ)Ω−

1
2

(
∇θδθ(η) − Eθ(η)h

∗(Y, η)∇θ log fθ(η)(Y )
)
.

Let now

v = Ω−1
(
∇θδθ(η) − Eθ(η)h

MMSE
ε (Y, η)∇θ log fθ(η)(Y )

)
,

and consider a prior ρLF that puts all mass at θ(η) + ε
1
2v/‖v‖Ω, say. Note that ρLF puts all

mass at the boundary of Γε(η) (see also footnote 7).

Then

VΩ(ρLF) = ε
Ω

1
2vv′Ω

1
2

v′Ωv
.
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Moreover, it can be checked that, for ρ = ρLF,

h∗(·, η) = hMMSE
ε (·, η),

and that ρLF is least-favorable.

In the case where η is estimated, consider the following problem, for a given prior w on

η and a preliminary estimator η̂,

inf
h

sup
ρ

∫
B

∫
Γε(η)

Eθ0
[
(δ̂h,η̂ − δθ0)2

]
ρ(θ0 | η)w(η)dθ0dη,

where ρ(· | η) belongs to a class of priors supported on Γε(θ(η)) for all η. Note that this

formulation provides a Bayesian interpretation for the weight function w appearing in (19).

Applying the above arguments to the estimated-η case, one can derive a related least-

favorable prior that satisfies

VΩ(ρLF(·|η)) = ε
Ω

1
2vv′Ω

1
2

v′Ωv
, for v = Ω−1

(
∇̃θδθ(η) − Eθ(η)h

MMSE
ε (Y, η)∇̃θ log fθ(η)(Y )

)
.

For such a prior, the implied optimal h∗(·, η) is again equal to hMMSE
ε (·, η).

C.3 Partial identification

Here we discuss how our approach relates to a partial identification analysis. We focus on

the general setup described in Section 2, for a given reference model indexed by a known

η. Consider the following restricted identified set for δθ0 , where f0 denotes the population

distribution of Y ,

Sε,η = {δθ0 : θ0 ∈ Θ, fθ0 = f0, d(θ0, θ(η)) ≤ ε} .

Sε,η is equal to the intersection of the identified set for δθ0 with the image by δ of the

neighborhood Γε(η).

Proposition C3. For any ε ≥ 0 we have

diamSε,η ≤ 2 inf
h
bε(h, η), (C19)

where diamSε,η = sup(δ1,δ2)∈S2ε,η |δ2− δ1| denotes the diameter of the restricted identified set,

and the infimum is taken over any function h such that Ef0h(Y ) exists. Moreover, (C19)

holds with equality whenever

sup
θ0∈Γε(η)

δθ0 − δθ(η) − Eθ0h(Y, η) = sup
θ0∈Γε(η)

−
(
δθ0 − δθ(η) − Eθ0h(Y, η)

)
= bε(h, η). (C20)
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Note that (C20) is satisfied when Γε(η) is symmetric around θ(η) and δθ0 − Eθ0h(Y, η)

is linear in θ0. In addition, (C20) approximately holds – up to lower-order terms – when ε

tends to zero.

Proof. Let h such that Ef0h(Y ) exists. Let (δ1, δ2) ∈ S2
ε,η, with δ1 = δθ1 and δ2 = δθ2 . Then

Eθ1h(Y ) = Eθ2h(Y ) = Ef0h(Y ), so

|δ2 − δ1| = |δθ2 − δθ1|

≤ |δθ2 − δθ(η) − Eθ2h(Y ) + Eθ(η)h(Y )|+ |δθ1 − δθ(η) − Eθ1h(Y ) + Eθ(η)h(Y )| ≤ 2bε(h, η).

This shows (C19).

To see when (C19) holds with equality, note that the problem

sup
(δ1,δ2)∈S2ε,η

δθ2 − δθ1

can equivalently be written as

sup
(θ1,θ2)∈Γε(η)2

δθ2 − δθ1 +

∫
Y
λ1(y)fθ1(y)dy +

∫
Y
λ2(y)fθ2(y)dy, (C21)

where λ1 and λ2 are the functional Lagrange multipliers associated with the restrictions

fθ1 = f0 and fθ2 = f0, respectively. Hence, (C21) is equal to

sup
θ1∈Γε(η)

(
−δθ1 + δθ(η) +

∫
Y
λ1(y)fθ1(y)dy

)
+ sup

θ2∈Γε(η)

(
δθ2 − δθ(η) +

∫
Y
λ2(y)fθ2(y)dy

)
= bε(λ1, η) + bε(−λ2, η) ≥ 2 inf

h
bε(h, η),

where we have used (C20).

C.4 Different approaches

Distance function. Consider again the setup of Section 3, now equipped with the distance

measure d(θ0, θ) = (maxk=1,...,dim θ |θk − θ0k|)2. In this case,

‖u‖η,ε = ‖u‖η =
dim θ∑
k=1

|uk|

is the `1 norm of the vector u. Hence, computing hMMSE
ε (·, η) in (11) requires minimizing a

convex function which combines a quadratic objective function with an `1 penalty, similarly

as in the LASSO (Tibshirani, 1996).
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Choice of epsilon. While in the paper we focus on a model detection error approach as in

Hansen and Sargent (2008), other rules could be used to set ε. For example, an alternative

calibration strategy is to target a maximal percentage increase in variance relative to the

estimate based on the parametric reference model. Specifically, one may set ε(k) such that

the variance of δ̂
MMSE

ε(k) is lower than k times the variance of δθ(η̂MLE), for any given constant

k ≥ 1, where η̂MLE is the MLE based on the reference model. If k is kept fixed as n tends

to infinity, εn will be constant in the limit. For example, in the parametric case of Section

3, by (28) and given a preliminary estimator η̂, ε = ε(k) can be chosen such that:

(∇̃θδθ(η̂))
′[H̃θ(η̂) + (εn)−1Ω]−1H̃θ(η̂)[H̃θ(η̂) + (εn)−1Ω]−1∇̃θδθ(η̂) = (k− 1) (∇ηδθ(η̂))

′H−1
η ∇ηδθ(η̂).

Role of the unbiasedness constraint (2). The asymptotic unbiasedness restriction (2)

on the candidate h functions is motivated by the aim to focus on an estimator which performs

well under the reference model, while in addition providing some robustness away from the

reference model. Interestingly, in the case with known η and a weighted Euclidean norm,

(29) remains valid when (2) is dropped. In this case our minimax objective coincides with a

minimax regret criterion.

Loss function. While we focus on a quadratic loss function other losses are compatible

with our approach. In fact, for any loss function L(a, b) that is strictly convex and smooth

in its first argument, minimizing the maximum value of

Eθ0
[
L
(
δ̂h,η̂, δθ0

)]
on Γε will lead to the same expressions for the minimum-MSE h function. This is due to our

focus on a local asymptotic approach, and the fact that L(a, b) ≈ c|a− b|2 when |a− b| ≈ 0.

Fixed-ε bias. In this paper we rely on a small-ε asymptotic. The tractability of our results

relies crucially on a local approach. Nevertheless, in some models it is possible to provide

relatively simple bias formulas for fixed ε. To see this, let us consider the setup of Section 4

for known β and γ. We have the following result.

Proposition C4. For any ε > 0 we have

bε(h, β, γ) =

∣∣∣∣CEγ [(∆̃γ(A, β)− Eβ (h(Y ) |A)
)

exp

(
− 1

2λ2

(
∆̃γ(A, β)− Eβ (h(Y ) |A)

))]∣∣∣∣ ,
(C22)
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for ∆̃γ(a, β) = ∆(a, β)−Eγ∆(A, β), and C > 0 and λ2 two constants which satisfy equations

(C23)-(C24) given in the proof.

Proposition C4 provides an explicit expression for the bias, for any ε > 0. Note that

both C and λ2 depend on ε. When ε tends to zero one can show that 1/λ2 tends to zero,

and the bias converges to the expression in (36).

While it would be theoretically possible to follow a fixed-ε approach throughout the

analysis, instead of the local approach we advocate, proceeding in that way would face

several challenges. First, the bias in (C22) depends on parameters C and λ2 which need

to be recovered given ε, increasing computational cost. Second, simple fixed-ε derivations

seem to be limited to settings where the parameter θ0 (that is, π0 in the present setting)

enters the likelihood function linearly. Under linearity, similar derivations have been used in

other contexts, see Schennach (2013) for an example. The third and main challenge is that

characterizing mean squared errors and confidence intervals would become less tractable,

while as we have seen those remain simple calculations under a local approximation. Lastly,

note that the local approach allows us to provide insights into the form of the solution, as

shown by our discussion of the panel data example.

Proof. Let us omit the reference to β, γ for conciseness, and denote π = πγ. Consider the

maximization of
∣∣δπ0 − δπ −

∫
h(y)fπ0(y)dy

∣∣ with respect to π0. Let ∆̃π(a) = ∆(a) − δπ.

The corresponding Lagrangian is

L =

∫∫
Y×A

(
∆̃π(a)− h(y)

)
g(y | a)π0(a)dyda+ λ1

∫
A
π0(a)da+ 2λ2

∫
A

log

(
π0(a)

π(a)

)
π0(a)da.

The first-order conditions with respect to π0 are then

∆̃π(a)−
∫
Y
h(y)g(y | a)dy + [λ1 + 2λ2] + 2λ2 log

(
π0(a)

π(a)

)
= 0.

Hence, using that π0 integrates to one,

π0(a) = C exp

(
− 1

2λ2

(
∆̃π(a)−

∫
Y
h(y, x)g(y | a)dy

))
π(a),

where

C−1 =

∫
A

exp

(
− 1

2λ2

(
∆̃π(a)−

∫
Y
h(y, x)g(y | a)dy

))
π(a)da. (C23)
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Since, at the least-favorable π0, 2
∫
A log

(
π0(a)
π(a)

)
π0(a)da = ε, we have

ε = 2 logC − C

λ2

∫
A

(
∆̃π(a)−

∫
Y
h(y, x)g(y | a)dy

)
×

exp

(
− 1

2λ2

(
∆̃π(a)−

∫
Y
h(y, x)g(y | a)dy

))
π(a)da. (C24)

It follows that

bε(h) =

∣∣∣∣∣C
∫
A

(
∆̃π(a)−

∫
Y
h(y, x)g(y | a)dy

)
×

exp

(
− 1

2λ2

(
∆̃π(a)−

∫
Y
h(y, x)g(y | a)dy

))
π(a)da

∣∣∣∣∣,
where C and λ2 satisfy (C23)-(C24).

Hence (C22) follows.
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Figure C1: Estimates and mean squared error of random-effects and minimum-MSE estima-
tors under varying amount of misspecification, p = 10−10
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Notes: Random-effects (solid) and minimum-MSE (dashed) for δ (left graphs) and β (right graphs).

True parameter values are shown in dotted. n = 500, T = 5. The reference specification for π is

normal with mean −.25 + .5Yi0 and standard deviation .8, whereas the true π0 is normal with the

same standard deviation and mean −.25+ν+.5Yi0. On the x-axis we report twice the KL divergence;

that is, ν2/.64. Top panel: mean and 95% interval. Bottom panel: mean squared error. ε is chosen

according to (43) for a detection error probability p = 10−10. (µ, σ) are treated as known.

80



Table C1: Effect of the PROGRESA subsidy and counterfactual reforms, reference model
estimated on both controls and treated

Model-based Minimum-MSE Experimental

PROGRESA impacts
Girls Boys Girls Boys Girls Boys

estimate .082 .060 .078 .055 .087 .050
non-robust CI (.026,.139) (.018,.102) - - - -
robust CI (-.012,.177) (-.058,.178) (.005,.150) (-.008,.119) - -

Counterfactual 1: doubling subsidy
Girls Boys Girls Boys Girls Boys

estimate .154 .112 .147 .105 - -
robust CI (-.008,.315) (-.091,.315) (.025,.270) (-.004,.214) - -

Counterfactual 2: unconditional transfer
Girls Boys Girls Boys Girls Boys

estimate .007 .000 .003 -.012 - -
robust CI (-.542,.557) (-.478,.478) (-.201,.207) (-.193,.169) - -

Notes: Sample from Todd and Wolpin (2006). p = .01. CI are 95% confidence intervals.
The unconditional transfer amounts to 5000 pesos in a year.

Figure C2: Effect of the PROGRESA subsidy as a function of the detection error probability,
reference model estimated on both controls and treated
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Notes: Sample from Todd and Wolpin (2006). ε(p) is chosen according to (32), with Φ−1(1 −
p) reported on the x-axis. The minimum-MSE estimates of the effect of PROGRESA on school

attendance are shown in solid. 95% confidence intervals based on those estimates are in dashed.

The dotted line shows the unadjusted model-based prediction. Girls (left) and boys (right).
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