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Abstract

We propose a bootstrap-based calibrated projection procedure to build confidence in-
tervals for single components and for smooth functions of a partially identified parameter
vector in moment (in)equality models. The method controls asymptotic coverage uni-
formly over a large class of data generating processes.

The extreme points of the calibrated projection confidence interval are obtained by
extremizing the value of the component (or function) of interest subject to a proper
relaxation of studentized sample analogs of the moment (in)equality conditions. The
degree of relaxation, or critical level, is calibrated so that the component (or function)
of 6, not @ itself, is uniformly asymptotically covered with prespecified probability. This
calibration is based on repeatedly checking feasibility of linear programming problems,
rendering it computationally attractive.

Nonetheless, the program defining an extreme point of the confidence interval is gener-
ally nonlinear and potentially intricate. We provide an algorithm, based on the response
surface method for global optimization, that approximates the solution rapidly and ac-
curately. The algorithm is of independent interest for inference on optimal values of
stochastic nonlinear programs. We establish its convergence under conditions satisfied by
canonical examples in the moment (in)equalities literature.

Our assumptions and those used in the leading alternative approach (a profiling based
method) are not nested. An extensive Monte Carlo analysis confirms the accuracy of
the solution algorithm and the good statistical as well as computational performance of
calibrated projection, including in comparison to other methods.

Keywords: Partial identification; Inference on projections; Moment inequalities; Uni-
form inference.
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1 Introduction

This paper provides theoretically and computationally attractive confidence intervals for pro-
jections and smooth functions of a parameter vector §# € © c R%, d < oo, that is partially
or point identified through a finite number of moment (in)equalities. The values of 6 that
satisfy these (in)equalities constitute the identification region ©j.

Until recently, the rich literature on inference in this class of models focused on confidence

sets for the entire vector 8, usually obtained by test inversion as
Cn(ciea)={0€O :T,(0) <c1-a(0)}, (1.1)

where T,,(0) is a test statistic that aggregates violations of the sample analog of the moment
(in)equalities, and c;_,(f) is a critical value that controls asymptotic coverage, often uni-
formly over a large class of data generating processes (DGPs). In point identified moment
equality models, this would be akin to building confidence ellipsoids for 8 by inversion of the
F-test statistic proposed by Anderson and Rubin (1949).

However, applied researchers are frequently primarily interested in a specific component
(or function) of 0, e.g., the returns to education. Even if not, they may simply want to report
separate confidence intervals for components of a vector, as is standard practice in other
contexts. Thus, consider the projection p’6, where p is a known unit vector. To date, it has

been common to report as confidence interval for p’f the projection of Cy,(¢1—-q):

CIF = | inf p', sup pof, (12)
0eCn(ci—a) 0eCn(ci—a)

where n denotes sample size; see for example Ciliberto and Tamer (2009), Grieco (2014) and
Dickstein and Morales (2016). Such projection is asymptotically valid, but typically yields
conservative and therefore needlessly large confidence intervals. The potential severity of this
effect is easily appreciated in a point identified example. Given a y/n-consistent estimator
6, € R? with limiting covariance matrix equal to the identity matrix, a 95% confidence
interval for 6; is obtained as énk +1.96, k=1,...,d. In contrast, if d = 10, then projection
of a 95% Wald confidence ellipsoid yields énk + 4.28 with true coverage of essentially 1. We
refer to this problem as projection conservatism.

Our first contribution is to provide a bootstrap-based calibrated projection method that
largely anticipates and corrects for projection conservatism. For each candidate 6, ¢,(6) is
calibrated so that across bootstrap repetitions the projection of 6 is covered with at least some
pre-specified probability. Computationally, this bootstrap is relatively attractive because we

linearize all constraints around 6, so that coverage of p’# corresponds to the projection of a



stochastic linear constraint set covering zero. We then propose the confidence interval

cl, = inf p'0, sup pO|. 1.3
0eCn (én) 0eCr (én) ( )

We prove that C1,, asymptotically covers p’f with probability at least 1 — o uniformly over
a large class of DGPs and that it is weakly shorter than (1.2) for each n.! We also provide
simple conditions under which it is asymptotically strictly shorter.

Our second contribution is a general method to accurately and rapidly compute projection-
based confidence intervals. These can be our calibrated projection confidence intervals, but
they can also correspond to projection of many other methods for inference on either 6
or its identified set ©;. Examples include Chernozhukov, Hong, and Tamer (2007), An-
drews and Soares (2010), or (for conditional moment inequalities) Andrews and Shi (2013).
Projection-based inference extends well beyond its application in partial identification, hence
our computational method proves useful more broadly. For example, Freyberger and Reeves
(2017a,b, Section S.3) use it to construct uniform confidence bands for an unknown function
of interest under (nonparametric) shape restrictions.

We propose an algorithm that is based on the response surface method, thus it resembles
an expected improvement algorithm (see e.g. Jones, 2001; Jones, Schonlau, and Welch, 1998,
and references therein). Bull (2011) established convergence of the expected improvement
algorithm for unconstrained optimization problems where the objective is a “black box”
function. Building on his results, we show convergence of our algorithm for constrained
optimization problems in which the constraint functions are “black box” functions, assuming
that they are sufficiently smooth. We then verify this smoothness condition for canonical
examples in the moment (in)equalities literature. Our extensive Monte Carlo experiments
confirm that the algorithm is fast and accurate.?

Previous implementations of projection-based inference were based on approximating the
set Cn(c1_o) < R? by searching for vectors 6 € © such that T},(6) < ¢1_o(f) (using, e.g., grid-
search or simulated annealing with no cooling), and reporting the smallest and largest value
of p'f# among parameter values that were “guessed and verified” to belong to C,(c1—q). This
becomes computationally cumbersome as d increases because it typically requires a number of
evaluation points that grows exponentially with d. In contrast, our method typically requires
a number of evaluation points that grows linearly with d.

The main alternative inference prodedure for projections was introduced in Romano and
Shaikh (2008) and significantly advanced in Bugni, Canay, and Shi (2017, BCS henceforth).

It is based on profiling out a test statistic. The classes of DGPs for which our procedure and

!This comparison is based on projection of the confidence set of Andrews and Soares (2010) and holds the
choice of tuning parameters and criterion function in (1.2) and (1.3) constant across methods.

2Freyberger and Reeves (2017b, Section S.3) similarly find our method to be accurate and to considerably
reduce computational time.



the profiling-based method of BCS (BCS-profiling henceforth) can be shown to be uniformly
valid are non-nested. We show that in well behaved cases, calibrated projection and BCS-
profiling are asymptotically equivalent. We also provide conditions under which calibrated
projection has lower probability of false coverage, thereby establishing that the two methods’
power properties are non-ranked. Computationally, calibrated projection has the advantage
that the bootstrap iterates over linear as opposed to nonlinear programming problems. While
the “outer” optimization problems in (1.3) are potentially intricate, our algorithm is geared
toward them. Our Monte Carlo simulations suggest that these two factors give calibrated
projection a considerable computational edge over BCS-profiling, with an average speed gain
of about 78-times.

In an influential paper, Pakes, Porter, Ho, and Ishii (2011) also use linearization but,
subject to this approximation, directly bootstrap the sample projection.? This is valid only
under stringent conditions, and we show that calibrated projection can be much simplified
under those conditions. Other related papers that explicitly consider inference on projections
include Andrews, Berry, and Jia (2004), Beresteanu and Molinari (2008), Bontemps, Magnac,
and Maurin (2012), Chen, Tamer, and Torgovitsky (2011), Kaido (2016), Kitagawa (2012),
Kline and Tamer (2015), and Wan (2013). However, some are Bayesian, as opposed to
our frequentist approach, and none of them establish uniform validity of confidence sets.
Chen, Christensen, and Tamer (2017) establish uniform validity of MCMC-based confidence
intervals for projections, but these are aimed at covering the entire set {p'0 : 6 € ©;(P)},
whereas we aim at covering the projection of 8. Finally, Gafarov, Meier, and Montiel-Olea
(2016) have used our insight in the context of set identified spatial VARs.

Structure of the paper. Section 2 sets up notation and describes our approach in
detail. Section 3 describes computational implementation of the method and establishes
convergence of our proposed algorithm. Section 4 lays out our assumptions and, under these
assumptions, establishes uniform validity of calibrated projection for inference on projections
and smooth functions of #. It also shows that more stringent conditions allow for several
simplifications to the method, including that it can suffice to evaluate ¢, at only two values
of # and that one can dispense with a tuning parameter. The section closes with a formal
comparison of calibrated projection and BCS-profiling. Section 5 reports the results of Monte
Carlo simulations. Section 6 draws conclusions. The proof of convergence of our algorithm
is in Appendix A. All other proofs, background material for our algorithm, and additional

results are in the Online Appendix.*

3The published version, i.e. Pakes, Porter, Ho, and Tshii (2015), does not contain the inference part.

4Section B provides convergence-related results and background material for our algorithm and describes
how to compute é,(0). Section C verifies, for a number of canonical moment (in)equality models, the assump-
tions that we invoke to show validity of our inference procedure and for our algorithm. Section D contains
proofs of the Theorems in this paper’s Section 4. Section E collects Lemmas supporting the preceding proofs.
Section F provides further comparisons with the profiling method of Bugni, Canay, and Shi (2017), including
an example where calibrated projection has higher power in finite sample. Section G provides comparisons with
“uncalibrated” projection of the confidence region in Andrews and Soares (2010), including simple conditions

[3]



2 Detailed Explanation of the Method

Let X; € X < R be a random vector with distribution P, let © < R denote the parameter
space, and let m; : X x © — R for j = 1,...,J1 + Jo denote measurable functions char-
acterizing the model, known up to parameter vector # € ©. The true parameter value @ is

assumed to satisfy the moment inequality and equality restrictions

Ep[mj(Xi,H)] =0,5j=J+1,---,J1 + Jo. (2.2)

The identification region ©(P) is the set of parameter values in O satisfying (2.1)-(2.2). For

a random sample {X;,i = 1,--- ,n} of observations drawn from P, we write
m”,](e) En_IZ?:lmj(Xhe)ﬂ j = 1) 7<]1 +J2 (23)
Gng = (0 20 [my (Xi, )7 — [mn (1), =1, i+ J (2.4)

for the sample moments and the analog estimators of the population moment functions’
standard deviations Up’j.s
The confidence interval in (1.3) then becomes C1,, = [—s(—p, Cr(¢n)), $(p,Cn(én))], where
A / mnj(a) N .
$(p,Cn(én)) =sup p'0 sit. Vn——22 < é,(0), j=1,---,J (2.5)
60 on,;(0)
and similarly for (—p). Here, we define J = J; + 2J> moments, where my, j, +j,+k(0) =
—m g, +x(0) for k =1,---, Jy. That is, we split moment equality constraints into two opposing
inequality constraints and relax them separately.’

For a class of DGPs P that we specify below, define the asymptotic size of CI,, by

liminf inf inf P(p'0 e CIL,). 2.6
Lo pep He(laI}(P) w ) (2:6)

Our goal is to calibrate ¢, so that (2.6) is at least equal to a prespecified level 1 —a > 1/2
while anticipating projection conservatism. To build intuition, fix (0, P) s.t. 6 € O;(P), P €

under which CT,, is asymptotically strictly shorter than CIZ"%.

SUnder Assumption 4.3-(IT), in equation (2.5) instead of G, ; we use the estimator 6., specified in (E.188)
in Lemma E.10 p.50 of the Online Appendix for j = 1,...,2R1 (with R1 < J1/2 defined in the assumption).
In equation (3.2) we use 6,,; for all j = 1,...,J. To ease notation, we distinguish the two only where needed.

SFor a simple analogy, consider the point identified model defined by the single moment equality
Ep(mi1(X:,0)) = Ep(X;) — 60 = 0, where 6 is a scalar. In this case, Cn(én) = X + é,6w/4/n. The upper
endpoint of the confidence interval can be written as sup, {p'0 s.t. —é, < Vn(X —0)/6, < &,}, withp =1,
and similarly for the lower endpoint.



‘P. The projection of 4 is covered when

- 5(_p7 Cn(én)) < p/0 < S(p, Cn(én))

infy p'v < h < supy p'v
< S x T, N X
st.oeo, Y <o) vi( P S \srgeo, Yimm) <o) v;

T 6n,09) 6,5 (V)
i(anw)ae_e) A S(upxev)me—e) A
Yo Ym0 E) e g a) (SO Ven Y UE) e (g )
) < (0+35) v s (04 35) i

(2.7)

where the second equivalence follows from substituting © = 6 + \/4/n and taking A to be the
choice parameter. (Intuitively, we localize around 6 at rate 1/4/n.)

We control asymptotic size by finding ¢, such that 0 asymptotically lies within the optimal
values of the NLPs in (2.7) with probability 1 — a. To reduce computational burden, we
approximate the event in equation (2.7) through linear expansion in A of the constraint set.
To each constraint j, we add and subtract \/nEp[m;(X;,0 + \/\/n)]/6,.;(0 + A//n) and

apply the mean value theorem to obtain

(g o (002
m {G (9+\F)+DP’( )A+ﬁ71,P,j(0)}m. (2.8)

Here G, () = v/n(mn;(-) — Ep[m;(X;,-)])/op;(-) is a normalized empirical process indexed
by 0 € ©, Dp;(-) = Vo{Ep[m;(X;,-)]/op;(-)} is the gradient of the normalized moment,
y,p;(-) = Ep(mj(X;,-))/op;(-) is the studentized population moment, and the mean value
0 lies componentwise between 6 and 6 + \/y/n.”

Calibration of ¢, requires careful analysis of the local behavior of the moment restric-
tions at each point in the identification region. This is because the extent of projection
conservatism depends on (i) the asymptotic behavior of the sample moments entering the
inequality restrictions, which can change discontinuously depending on whether they bind at
6 (v1,pj(0) = 0) or not, and (ii) the local geometry of the identification region at 6, i.e. the
shape of the constraint set formed by the moment restrictions, and its relation to the level
set of the objective function p’f. Features (i) and (ii) can be quite different at different points
in ©;(P), making uniform inference for the projection challenging. In particular, (ii) does
not arise if one only considers inference for the entire parameter vector, and hence is a new

challenge requiring new methods.® This is where this paper’s core theoretical innovation lies.

"The mean value  changes with j but we omit the dependence to ease notation.

8This is perhaps best expressed in the testing framework: Inference for projections entails a null hypothesis
specifying the value of a single component (or a function) of 8. The components not under test become
additional nuisance parameters, and dealing with them presents challenges that one does not face when
testing hypotheses that specify the value of the entire vector 6.

[5]



An important component of this innovation is to add to (2.7) the constraint that A\ €
pB?, where B* = [~1,1]? and p > 0 a tuning parameter. This is slightly conservative but
regularizes the effect of the local geometry of ©;(P) at 6 on the inference problem. See
Section 4.3 for further discussion. We show that the probability of the event in (2.7), with
A restricted to be in pB¢, is asymptotically approximated by the probability that 0 lies
between the optimal values of two programs that are linear in A. The constraint sets of these
programs are characterized by (i) a Gaussian process Gp;(f) evaluated at § (that we can
approximate through a simple nonparametric bootstrap), (ii) a gradient Dp;(#) (that we
can uniformly consistently estimate’ on compact sets), and (iii) the parameter y; p;(6) that
measures the extent to which each moment inequality is binding (that we can conservatively
estimate using insights from Andrews and Soares (2010)). This suggests a computationally

attractive bootstrap procedure based on linear programs.

3 Computing Calibrated Projection Confidence Intervals

3.1 Computing the Critical Level

For a given 6 € ©, we calibrate ¢, () through a bootstrap procedure that iterates over linear
programs.'? Define

AL (0,p,¢) = {Aev/n(© —0) n pB: Gh ;(0) + Dy (0N + ¢(€n(0) <c,j=1,....J0}  (3.1)

where Gfl,j(-) =n 12 D (my (Xf’, ) =11n5(+))/6n.;(+) is a bootstrap analog of Gp;,'* ﬁn]()
is a consistent estimator of Dp(-), p > 0 is a constant chosen by the researcher (see Section
4.3), B4 = [-1,1]%, and &, j is defined by

H;l\/ﬁmn7j(9)/a'n7j(9) j=1,...,J1
0 I A |

€n;(0) = (3.2)

J
(0]

one of the generalized moment selection (GMS) functions proposed by Andrews and Soares

where Kk, is a user-specified thresholding sequence such that x, — oo, ¢ : R[J too] ™ R is

(2010), and Rp4o) = R U {£o0}. A common choice of ¢ is given component-wise by

0 if ©>-1
pj(z) = ' (3.3)
-0 if z < —1.

Restrictions on ¢ and the rate at which &, diverges are imposed in Assumption 4.2.

9See Online Appendix C for proposal of such estimators in some canonical moment (in)equality examples.

101f © is defined through smooth convex (in)equalities, these can be linearized too.

""Bugni, Canay, and Shi (2017) approximate the stochastic process Gp,; using n= /237" [(m;(Xi,-) —
M, (+))/0n,;(-)]xi with {x; ~ N(0,1)}7; i.i.d. This approximation is equally valid in our approach, and can
be computationally faster as it avoids repeated evaluation of m; (Xf’7 -) across bootstrap replications.

[6]



REMARK 3.1: For concreteness, in (3.3) we write out the “hard thresholding” GMS func-

tion. As we establish below, our results apply to all but one of the GMS functions in Andrews
and Soares (2010).12

Heuristically, the random convex polyhedral set A% (6, p,c) in (3.1) is a local (to 6) lin-
earized bootstrap approximation to the random constraint set in (2.7). To see this, note
that the bootstrapped empirical process and the estimator of the gradient approximate the
first two terms in the constraint in (2.7) as linearized in (2.8). Next, for 6 € ©7(P), the
GMS function conservatively approximates the local slackness parameter \/ny; p;(#). This
is needed because the scaling of /nvy1 pj(#) precludes consistent estimation. The problem
is resolved by shrinking estimated intercepts toward zero, thereby tightening constraints and
hence increasing ¢,(0). As with other uses of GMS, the resulting conservative distortion
vanishes pointwise but not uniformly. Finally, restricting A to the “p-box” pB? has a strong
regularizing effect: It ensures uniform validity in challenging situations, including several that
are assumed away in most of the literature. We discuss this point in more detail in Section
4.3.

The critical level ¢,(6) to be used in (1.3) is the smallest value of ¢ that makes the

bootstrap probability of the event

min  PA<0< max p'A (3.4)
AeAb (0,p,c) AeAL (0,p,c)

at least 1 — .. Because A% (6, p, c) is convex, we have

' ,A<0< /)\ Abg)a /)\:0 )
{AGAI?E;}P’C)p )\E/{g?é},{p,c)p } D { n( P C) o {p } 7 Q}

so that we can equivalently define
én(0) = inf{ce Ry : P*(AY(0,p,¢) n {p'A =0} # @) = 1 — a}, (3.5)

where P* denotes the law of the random set A% (6, p, c) induced by the bootstrap sampling
process, i.e. by the distribution of (X?,..., X?), conditional on the data. Importantly, P*
can be assessed by repeatedly checking feasibility of a linear program.' We describe in detail

in Online Appendix B.4 how we compute ¢,(#) through a root-finding algorithm.

2These are ¢' — ¢ in Andrews and Soares (2010), all of which depend on &y, ' /1 ;(0)/64.;(0). We do
not consider GMS function ¢° in Andrews and Soares (2010), which depends also on the covariance matrix of
the moment functions.

13We implement a program in R? for simplicity but, because p’A = 0 defines a linear subspace, one could
reduce this to R%!,



3.2 Computation of the Outer Maximization Problem

Projection based methods as in (1.2) and (1.3) have nonlinear constraints involving a critical
value which in general is an unknown function of 8. Moreover, in all methods, including ours
and Andrews and Soares (2010), the gradients of the critical values with respect to € are
not available in closed form. When the dimension of the parameter vector is large, directly
solving optimization problems with such constraints can be expensive even if evaluating the
critical value at each 6 is cheap.

To mitigate this issue, we provide an algorithm that is a contribution to the moment
(in)equalities literature in its own right and that can be helpful for implementing other

approaches.'* We apply it to constrained optimization problems of the following form:

p'0* = sup p'0

USS)
st gi(0) < c(8), j=1,---,J, (3.6)
where 0* is an optimal solution of the problem, g;,j = 1,...,J are known functions, and cis a

function that requires a higher computational cost. In our context, g;(0) = /nmy ;(6)/6n,;(0)
and, for calibrated projection, ¢(f) = ¢,(#). Conditional on the data {Xi,---,X,}, these
functions are considered deterministic. A key feature of the problem is that the function
c(+) is relatively costly to evaluate.!® Our algorithm evaluates c(-) on finitely many values
of #. For other values, it imposes a probabilistic model that gets updated as specific values
are computed and that is used to determine the next evaluation point. Under reasonable
conditions, the resulting sequence of approximate optimal values converges to p'6*.
Specifically, after drawing an initial set of evaluation points that grows linearly with the

dimensionality of parameter space, the algorithm has three steps called E, A, and M below.

Initialization-step: Draw randomly (uniformly) over © a set (81, ... () of initial eval-

uation points. We suggest setting k£ = 10d + 1.

E-step: (Evaluation) Evaluate c¢(8))forf =1,---,L, where L > k. Set T = ¢(#)), ¢ =

1,---, L. The current estimate p’6*% of the optimal value can be computed using

0%~ € argmaxy.cLp'0, (3.7)

where CL' = {0 : ¢ e {1,--- L}, g;(0¥)) < c(6¥),j = 1,---,J} is the set of feasible

evaluation points.

“This algorithm is based on the response surface method used in the optimization literature; see Jones
(2001), Jones, Schonlau, and Welch (1998), and references therein.

15Here we assume that computing the sample moments is less expensive than computing the critical value.
When computation of moments is also very expensive, our proposed algorithm can be used to approximate
these too.



A-step: (Approximation) Approximate 6 — c(f) by a flexible auxiliary model. We use a
Gaussian-process regression model (or kriging), which for a mean-zero Gaussian process

¢(-) indexed by # and with constant variance ¢? specifies

TEO = 4+ €e09), 0=1,--- | L (3.8)
Corr(e(0),e(0')) = Kg(6 —¢'), 6,0 € O, (3.9)

where K is a kernel with parameter vector 8 € X Zzl[ék, Bl cRe,, eg Kg(0—0) =
exp(— Zi:l |0 —0,.|>/Bx). The unknown parameters (u, ¢?) can be estimated by running
a GLS regression of X = (Y ... T on a constant with the given correlation

matrix. The unknown parameters 3 can be estimated by a (concentrated) MLE.

The (best linear) predictor of the critical value and its gradient at an arbitrary point

are then given by

cr(0) = p+rL(0)RNY — 1), (3.10)
Vocr(0) = i+ QLR (Y — al), (3.11)

where rp(f) is a vector whose /-th component is Corr(e(8),e(6))) as given above
/

with estimated parameters, Qr(6) = Vorr(0)’, and Ry is an L-by-L matrix whose
(0,0 entry is Corr(e(0©), e(0¢))) with estimated parameters. This approximating
(or surrogate) model has the property that its predictor satisfies ¢z, (0()) = ¢(0), £ =
1,---, L. Hence, it provides an analytical interpolation to the evaluated critical values
together with an analytical gradient.'® Further, the amount of uncertainty left in c(6)

(at an arbitrary point) is captured by the following variance:

(1- 1’RZIYL(9))2). (3.12)

2.2y _ 22(1 I —1
P53(0) = (1 i (0) Ry rr(0) + TR
M-step: (Maximization): With probability 1 — e, maximize the expected improvement

function El, to obtain the next evaluation point, with:

g(0) —cr(0
oL+ = arg max I (0) = arg max(p'0 — p'6*1) (1 — @(M)), (3.13)
b0 b0 $sp(0)
where g(0) = maxj—_i,.. jg;(#). This step can be implemented by standard nonlinear
optimization solvers, e.g. Matlab’s fmincon or KNITRO (see Appendix B.3 for details).

With probability e, draw 8(5+1) randomly from a uniform distribution over ©.

(L+1)

Once the next evaluation point 6 is determined, one adds it to the set of evaluation

63ee details in Jones, Schonlau, and Welch (1998). We use the DACE Matlab kriging toolbox (http:
//www2.imm.dtu.dk/projects/dace/) for this step in our Monte Carlo experiments.

[9]
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points and iterates the E-A-M steps. This yields an increasing sequence of approximate
optimal values p'6*% L = k+ 1,k + 2,---. Once a convergence criterion is met, the value

p'0% is reported as the end point of CI,,. We discuss convergence criteria in Section 5.

REMARK 3.2: The advantages of E-A-M are as follows. First, we control the number of
points at which we evaluate the critical value. Since the evaluation of the critical value is the
relatively expensive step, controlling the number of evaluations is important. One should also
note that the E-step with the initial k£ evaluation points can easily be parallelized. For any
additional E-step (i.e. L > k), one needs to evaluate ¢(-) only at a single point §(“+1). The
M-step is crucial for reducing the number of additional evaluation points. To determine the
next evaluation point, one needs to take into account the trade-off between “exploitation”
(i.e. the benefit of drawing a point at which the optimal value is high) and “exploration” (i.e.
the benefit of drawing a point in a region in which the approximation error of ¢ is currently
large). The expected improvement function in (3.13) quantifies this trade-off, and draws a
point only in an area where one can expect the largest improvement in the optimal value,
yielding substantial computational savings.'”

Second, the proposed algorithm simplifies the M-step by providing constraints and their
gradients for program (3.13) in closed form. Availability of analytical gradients greatly aids
fast and stable numerical optimization. The price is the additional approximation step. In

the numerical exercises of Section 5, this price turns out to be low.

3.3 Convergence of the E-A-M Algorithm

We now provide formal conditions under which p’8*% converges to the true end point of
CI, as L — ."® Our convergence result recognizes that the parameters of the Gaussian
process prior in (3.8) are estimated for each iteration of the A-step using the “observations”
{0°,c(69)}L_|, and hence change with L. Because of this, a requirement for convergence
is that c¢(f) is a sufficiently smooth function of §. We show that a high-level condition
guaranteeing this level of smoothness ensures a general convergence result for the E-A-M
algorithm. This is a novel contribution to the literature on response surface methods for
constrained optimization.

In the statement of Theorem 3.1 below, Hg(©) is the reproducing kernel Hilbert space
(RKHS) on © < R? determined by the kernel used to define the correlation functional in (3.9).
The norm on this space is | - |,; see Online Appendix B.2 for details. Also, the expectation
Eq is taken with respect to the law of (0(1), e ,G(L)) determined by the Initialization-step
and the M-step, holding the sample fixed. See Appendix A for a precise definition of Eg and

a proof of the theorem.

171t is also possible to draw multiple points in each iteration. See Schonlau, Welch, and Jones (1998).

18We build on Bull (2011), who proves a convergence result for the algorithm proposed by Jones, Schonlau,
and Welch (1998) applied to an unconstrained optimization problem in which the objective function is unknown
outside the evaluation points.
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THEOREM 3.1: Suppose © < R? is a compact hyperrectangle with nonempty interior and
that |p| = 1. Let the evaluation points (1), --- 00} be drawn according to the Initialization
and the M steps. Let Kg in (3.9) be a Matérn kernel with index v € (0,00) and v ¢ N. Let
¢: O — R satisfy ||y, < R for some R >0, where B= (B, - ,B4q). Then

Eg[p'0* —p0*"*] -0 as L — . (3.14)

REMARK 3.3: The requirement that © is a compact hyperrectangle with nonempty inte-
rior can be replaced by a requirement that © belongs to the interior of a closed hyperrectangle

in R¢ such that ¢ satisfies the smoothness requirement in Theorem 3.1 on that rectangle.

In order to apply Theorem 3.1 to calibrated projection, we provide low level conditions
(Assumption B.1 in Online Appendix B.1.1) under which the map 6 — ¢é,(f) uniformly
stochastically satisfies a Lipschitz-type condition. To get smoothness, we work with a mollified
version of ¢,, denoted ¢, ., and provided in equation (B.1), with 7, = o(n~'/2).1 Theorem
B.1 in the Online Appendix shows that ¢, and ¢, -, can be made uniformly arbitrarily close
to each other and that ¢, -, yields valid inference in the sense of equation (2.6). In practice,

one may therefore directly apply the E-A-M steps to ¢&,.

REMARK 3.4: The key condition imposed in Theorem B.1 is Assumption B.1. It requires
that the GMS function used is Lipschitz in its argument, and that the standardized moment
functions are Lipschitz in 6. In Online Appendix C.1 we establish that the latter condition
is satisfied by some canonical examples in the moment (in)equality literature, namely the
mean with missing data, linear regression and best linear prediction with interval data (and

discrete covariates), and entry games with multiple equilibria (and discrete covariates).?

4 Asymptotic Validity of Inference

4.1 Assumptions

We posit that P, the distribution of the observed data, belongs to a class of distributions
denoted by P. We write stochastic order relations that hold uniformly over P € P using the
notations op and Op; see Online Appendix D.1 for the formal definitions. Below, ¢, ¢, 6,
w, o, M, M denote generic constants which may be different in different appearances but

cannot depend on P. Given a square matrix A, we write eig(A) for its smallest eigenvalue.

ASSUMPTION 4.1: (a) © c R? is a compact hyperrectangle with nonempty interior.
(b) All distributions P € P satisfy the following:

9For a discussion of mollification, see e.g. Rockafellar and Wets (2005, Example 7.19)
29Tt can also be shown to hold in semi-parametric binary regression models with discrete or interval valued
covariates under the assumptions of Magnac and Maurin (2008).
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(1) Eplm;(X;,0)] <0, j=1,...,J1 and Ep[m;(X;,0)] =0, j=Ji+1,---,J1 + Ja for

some 0 € ©;
(ii) {X;,i > 1} are i.i.d.;
(i13) 012%.(9) € (0,00) forj=1,---,J for all 0 € ©;
(iv) For some § >0 and M € (0,00) and for all j, Ep[supgee |m;j(X;,0)/op;(0)*F0] < M.

ASSUMPTION 4.2: The function ¢; is continuous at all z = 0 and ¢;(0) = 0; K, — ©
and k, = o(n'/?). If Assumption 4.3-(II) is imposed, r, = o(n/*).

Assumption 4.1-(a) requires that © is a hyperrectangle, but can be replaced with the
assumption that 6 is defined through a finite number of nonstochastic inequality constraints
smooth in # and such that © is convex. Compactness is a standard assumption on © for
extremum estimation. We additionally require convexity as we use mean value expansions of
Ep[m;(X;,0)]/op;(0) in 0; see (2.8). Assumption 4.1-(b) defines our moment (in)equalities
model. Assumption 4.2 constrains the GMS function and the rate at which its tuning param-
eter diverges. Both 4.1-(b) and 4.2 are based on Andrews and Soares (2010) and are standard
in the literature,?! although typically with x, = o(n!/?). The slower rate s, = o(n'/*) is
satisfied for the popular choice, recommended by Andrews and Soares (2010), of k, = v/Inn.

Next, and unlike some other papers in the literature, we impose restrictions on the cor-
relation matrix of the moment functions. These conditions can be easily verified in practice
because they are implied when the correlation matrix of the moment equality functions and
the moment inequality functions specified below have a determinant larger than a predefined

constant for any 6 € ©.

ASSUMPTION 4.3: All distributions P € P satisfy one of the following two conditions for

some constants w > 0,0 > 0, > 0,6 > 0, M < o0:

(I) Let J(P,0;e)={je{l,---,Ji}: Ep[m;(X;,0)]/op;(0) = —c}. Denote

m(Xw 9) = ({m] (Xla 0)}j€j(P,6;6)7mJ1+1(Xia 0)7 Mg 4+ s (Xla 0))/ )
Qp(0) = Corrp(m(X;,0)).
Then infgeg, (p) eig(Qp(0)) = w.

(II) The functions m;j(X;,0) are defined on ©° = {§ € R? : d(0,0) < €}. There ezists
Ry € N, 1 < Ry < J1/2, and measurable functions t; : X x ©° — [0,M], j e Ry =
{1,..., Ry}, such that for each j € Ry,

mi+ Ry (XZ,G) = —mj(XZ-,G) - tj(Xi,G). (41)

2 Continuity of ¢, for & > 0 is restrictive only for GMS function ¢ in Andrews and Soares (2010).

[12]



For each j € Ri n J(P,0;¢) and any choice mj(X;,0) € {m;(X;,0),m;jir, (X;,0)},
denoting Qp(0) = Corrp(m(X;,0)), where

m(Xi, 9) = ({mj (Xi, 9)}jeR1mj(P,9;a)a

/
{m;(Xs,0)} jeq(Poent,...2r > Ma+1(Xi, 0), -+ mu, 0, (X5, 9)) ,

one has
inf eig(Qp(0)) = 4.2
Bt cig(@p(0) > (42)
Finally,
inf ; =1,... . 4.
OEg;(P)UP,J(@)>Qf07“J R (4.3)

Assumption 4.3-(I) requires that the correlation matrix of the moment functions cor-
responding to close-to-binding moment conditions has eigenvalues uniformly bounded from
below. This assumption holds in many applications of interest, including: (i) instances when
the data is collected by intervals with minimum width;*? (ii) in treatment effect models
with (uniform) overlap; (iii) in static complete information entry games under weak solution
concepts, e.g. rationality of level 1, see Aradillas-Lopez and Tamer (2008).

We are aware of two examples in which Assumption 4.3-(I) may fail. One are missing
data scenarios, e.g. scalar mean, linear regression, and best linear prediction, with a vanishing
probability of missing data. The other example, which is extensively simulated in Section
5, is the Ciliberto and Tamer (2009) entry game model when the solution concept is pure
strategy Nash equilibrium. We show in Online Appendix C.2 that these examples satisfy
Assumption 4.3-(II).

REMARK 4.1: Assumption 4.3-(II) weakens 4.3-(I) by allowing for (drifting to) perfect
correlation among moment inequalities that cannot cross. This assumption is often satisfied

in moment conditions that are separable in data and parameters, i.e. for each j =1,...,J,
Ep[m;(Xi,0)] = Ep[h;(Xi)] — v;(0), (4.4)

for some measurable functions h; : X — R and v; : © — R. Models like the one in Ciliberto
and Tamer (2009) fall in this category, and we verify Assumption 4.3-(II) for them in Online

Appendix C.2. The argument can be generalized to other separable models.

22 Empirically relevant examples are that of: (a) the Occupational Employment Statistics (OES) program
at the Bureau of Labor Statistics, which collects wage data from employers as intervals of positive width, and
uses these data to construct estimates for wage and salary workers in 22 major occupational groups and 801
detailed occupations; and (b) when, due to concerns for privacy, data is reported as the number of individuals
who belong to each of a finite number of cells (for example, in public use tax data).
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In Online Appendix C.2, we also verify Assumption 4.3-(II) for some models that are
not separable in the sense of equation (4.4), for example best linear prediction with interval
outcome data. The proof can be extended to cover (again non-separable) binary models with

discrete or interval valued covariates under the assumptions of Magnac and Maurin (2008).

In what follows, we refer to pairs of inequality constraints indexed by {j, 7 + R1} and sat-
isfying (4.1) as “paired inequalities.” Their presence requires a modification of the bootstrap
procedure. This modification exclusively concerns the definition of Ag(@, p,c) in equation
(3.1). We explain it here for the case that the GMS function ¢; is the hard-thresholding one
in (3.3), and refer to Online Appendix E equations (E.12)-(E.13) for the general case. If

(€ (0)) = 0 = (& jrr (0)),

we replace GY ., p (0) with —G!, (0) and Dy g, (0) with —D, ;(), so that inequality

G27j+R1 (0) + lA?n’jJrRl (0)\ < c is replaced with —G27j(9) — Dy, j(0)X < ¢ in equation (3.1). In
words, when hard threshold GMS indicates that both paired inequalities bind, we pick one of
them, treat it as an equality, and drop the other one. In the proof of Theorem 4.1, we show
that this tightens the stochastic program.?® The rest of the procedure is unchanged.

Instead of Assumption 4.3, BCS (Assumption 2) impose the following high-level condition:
(a) The limit distribution of their profiled test statistic is continuous at its 1 — o quantile
if this quantile is positive; (b) else, their test is asymptotically valid with a critical value of
zero. In Online Appendix D.2.3, we show that we can replace Assumption 4.3 with a weaker
high level condition (Assumption D.1-(I)) that resembles the BCS assumption but constrains
the limiting coverage probability. (We do not claim that the conditions are equivalent.) The
substantial amount of work required for us to show that Assumption 4.3 implies Assumption
D.1-(I) is suggestive of how difficult these high-level conditions can be to verify.?* Moreover, in
Online Appendix F.2 we provide a simple example that violates Assumption 4.3 and in which
all of calibrated projection, BCS-profiling, and the boosttrap procedure in Pakes, Porter, Ho,
and Ishii (2011) fail. The example leverages the fact that when binding constraints are
near-perfectly correlated, the projection may be estimated superconsistently, invalidating the
simple nonparametric bootstrap.?®

Together with imposition of the p-box constraints, Assumption 4.3 allows us to dispense
with restrictions on the local geometry of the set ©7(P). Restrictions of this type, which

are akin to constraint qualification conditions, are imposed by BCS (Assumption A.3-(a)),

23When paired inequalities are present, in equation (2.5) instead of &, ; we use the estimator Ef,]lv{j specified

in (E.188) in Lemma E.10 p.50 of the Online Appendix for op;,j = 1,...,2Ry (with R1 < J1/2 defined in
the assumption). In equation (3.2) we use 6,,; for all j = 1,...,J. To ease notation, we do not distinguish
the two unless it is needed.

24 Assumption 4.3 is used exclusively to obtain the conclusions of Lemma E.6, E.7 and E.8, hence any
alternative assumption that delivers such results can be used.

25The example we provide satisfies all assumptions explicitly stated in Pakes, Porter, Ho, and Ishii (2011),
illustrating an oversight in their Theorem 2.
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Pakes, Porter, Ho, and Ishii (2011, Assumptions A.3-A.4), Chernozhukov, Hong, and Tamer
(2007, Condition C.2), and elsewhere. In practice, they can be hard to verify or pre-test for.
We study this matter in detail in Kaido, Molinari, and Stoye (2017).

We next lay out regularity conditions on the gradients of the moments.
ASSUMPTION 4.4: All distributions P € P satisfy the following conditions:

(i) For each j, there exist Dp;(-) = Vo{Ep[m;(X,-)]/op;(-)} and its estimator Do j(-)
such that supgeer | D s(6) — Dy (6)] = op(D).

(ii) There exist M, M < oo such that for all 0,0 € ©° max;_;.. ;|Dp;(0) — Dp;(0)]| <
M8 — 0] and masj-1,...s supgeo, (p) |Dps (O)] < AT,

Assumption 4.4 requires that each of the J normalized population moments is differen-
tiable, that its derivative is Lipschitz continuous, and that this derivative can be consistently
estimated uniformly in # and P.? We require these conditions because we use a linear ex-
pansion of the population moments to obtain a first-order approximation to the nonlinear
programs defining C'I,,, and because our bootstrap procedure requires an estimator of Dp.

A final set of assumptions is on the normalized empirical process. For this, define the

variance semimetric op by

(4.5)

0p(6,0) = [{[Varr (5L (0)m; (X, 0) = o3} @)y (x,0)] 7} |

J=1

For each 6,0 € © and P, let Qp(6,6) denote a J-by-J matrix whose (j, k)-th element is the
covariance between m;(X;,0)/op;(0) and my(X;,0))/opx(0).

ASSUMPTION 4.5: All distributions P € P satisfy the following conditions:

(i) The class of functions {agﬁﬁ(ﬁ)mj('ﬁ) : X = R,0 € ©} is measurable for each j =
1, .

(i) The empirical process Gy with j-th component Gy, ; is uniformly asymptotically op-

equicontinuous. That is, for any € > 0,

lim lim sup sup P ( sup  |Gn(0) — G, ()] > e) =0. (4.6)
0 n—w PeP \gp(0,0)<s

(ii) Qp satisfies
lim sup sup [|Qp(61,61) — Qp(62,62)| = 0. (4.7)

040 |1 (01,81)— (02,8) | <5 PEP

26The requirements are imposed on ©¢. Under Assumption 4.3-(I) it suffices they hold on ©.
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Under this assumption, the class of normalized moment functions is uniformly Donsker
(Bugni, Canay, and Shi, 2015). We use this fact to show validity of our method.

4.2 Theoretical Results

First set of results: Uniform asymptotic validity in the general case.

The following theorem establishes the asymptotic validity of the proposed confidence
interval CI,, = [—s(—p,Cn(¢n)), s(p,Cn(én))], where s(p,Cr(¢,)) was defined in equation (2.5)
and ¢, in (3.5).

THEOREM 4.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 < o < 1/2.
Then

liminf inf inf PpAeCl,)>1-a. 4.8

minf nf nf (p n) (4.8)

A simple corollary to Theorem 4.1, whose proof is omitted, is that we can provide joint
confidence regions for several projections, in particular confidence hyperrectangles for sub-

vectors. Thus, let p!, ..., p* denote unit vectors in R%, k < d. Then:

COROLLARY 4.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 < a < 1/2.
Then,

liminf inf inf POY0ecCIL, , 0 =1.....k)>1— 4.9
ey zlﬂrelpaeg}(P) (P70 € Clne, e k) “ (4.9)

where Clyp = [ianECn(éﬁ)peleaSupeecn(éﬁ)pele] and & (9) = inf{c € Ry : P*(A(0,p,c) N
{rb_ "X =01} # @) > 1—a}.

The difference in this Corollary compared to Theorem 4.1 is that ¢¥ is calibrated so that
(3.4) holds for all p!, ..., p¥ simultaneously.

In applications, a researcher might wish to obtain a confidence interval for a known non-
linear function f : © — R. Examples include policy analysis and counterfactual estimation
in the presence of partial identification, or demand extrapolation subject to rationality con-
straints. It is possible to extend our results to uniformly continuously differentiable functions
f. Because the function f is known, the conditions on its gradient required below can be

easily verified in practice (especially if the first one is strengthened to hold over ©).

THEOREM 4.2: Let CI,J; be a confidence interval whose lower and upper points are obtained

solving

N

0cO’ peco
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where &4(0) = inf{c = 0: P*(AL(0, p,c) n {|Vaf(8)| " Vaf(O)A = 0} # &) = 1—a}. Suppose
Assumptions 4.1, 4.2, 4.8, 4.4, and 4.5 hold. Suppose that there exist w > 0 and M < o0
such that inf pep infoco, (p) [VF(O)] > © and supg e |VF(0) — V@) < Mo — 6], where
Vof(0) is the gradient of f(0). Let 0 < a < 1/2. Then,

liminf inf inf P(f(#)eCI)=>1—a. 4.10
R By PO €Ol 2 1 e (410

Second set of results: Simplifications for special cases.

We now consider more restrictive assumptions on the model, defining a subset of DGPs
Q c P; across theorems below, the set Q differs based on which assumptions are maintained.
If P € Q, a number of simplifications to the method, including dropping the p-box constraints,
are possible. Here we state the formal results and then we give a heuristic explanation of
the conditions needed for these simplifications. Online Appendix D.3.1 contains the exact
assumptions and Online Appendix D.3.2 the proofs. We remark that all of the additional
assumptions are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011), hence under

their conditions Theorem 4.3 applies in its entirety.
THEOREM 4.3: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 < o < 1/2.

(1) If Assumption D.2-(1) holds for either p or —p (or both), then setting

cl, = inf  p'0, sup PO, 4.11
[9GCn(én,—p) 0€C (én p) ] ( )

Cnq(0) = inf{ce Ry : P*(AL(0,p,0) n {d'A =0} # &) = 1—a}, g€ {p,—p}, (412)
we have

liminf inf inf P(p'0eCl,)>1-a. (4.13)
n—0 PeQ ed;(P)

(II) If Assumptions D.2-(1) (for either p or —p or both), D.3 and D.4 hold, then (4.13)
continues to be satisfied with CT,, as defined in (4.11) and evaluated at é, 4(0) = én.q(y)
for g € {—p,p} and for all 6 € © in (4.12), where éq € argmax, g, ¢'0 and O = {0 €
@2T7Ln’j(9) <0, j=1,...,J}.

(111) If Assumptions D.2-(2) (for either p or —p or both) and D.5 hold, then setting p = +o0
to obtain énq(0,) in (4.12) and using these values for q € {—p,p} for each 6 € © in
computing CI,, as defined in (4.11), we have that (4.13) continues to be satisfied.

REMARK 4.2: If Theorem 4.3-(II) applies and the standardized moment conditions in

(2.5) are linear in 6, then CI,, can be computed by solving just two linear programs.
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Assumption D.2-(1) in Theorem 4.3-(I) ensures that some point in {p'0,0 € O;(P)} is
covered with probability approaching 1. Hence, the inference problem is effectively one-
sided at the projection’s end points and degenerate in between. It then suffices to intersect
two one-sided (1 — «)-confidence intervals. Under Assumptions 4.1-4.5, Assumption D.2 is
implied both by a “degeneracy condition”in Chernozhukov, Hong, and Tamer (2007) and by
an assumption in Pakes, Porter, Ho, and Ishii (2011). A simple sufficient condition is that
there exists a parameter value at which all population constraints hold with slack.

Assumptions D.3 and D.4 in Theorem 4.3-(II) are logically independent “polynomial
minorant” conditions imposed in Chernozhukov, Hong, and Tamer (2007) and Bugni, Canay,
and Shi (2017). Jointly, they assure that the sample support set H(p, @)I) is an “inner
consistent” estimator of the population support set H(p, ©;).2” That is, any accumulation
point of a selection from H(p, é)[) is in H(p,©7p), but H(p, @1) may be much smaller than
H(p,©71). Then for one-sided inference, it suffices to compute é,(f) exactly once, namely at
one arbitrary selection § € H(p, ©;), and to set &,(0) = &,(6) for all . We again remark that
these conditions are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011).

Assumptions D.2-(2) and D.5 in Theorem 4.3-(I1I) yield that the support set is a singleton
and the tangent cone at the support set is pointy (in a uniform sense). We show that, in this
case, the p-box constraints can be entirely dropped. This assumption is directly imposed by
Pakes, Porter, Ho, and Ishii (2011), but we weaken it by showing that it is only needed in a
local sense; hence, it suffices that the support set consists of distinct extreme points and all

corresponding tangent cones are pointy.

Result 3: A comparison with BCS-profiling. We finally compare calibrated projection
to BCS-profiling in well behaved cases. Suppose that Theorem 4.3 applies. Then C1, is the
intersection of two one-sided confidence intervals and we can set p = +00. Hence, a scalar s

is in the one-sided (unbounded from below) confidence interval for p'6 if

min T, (0) < éa(dy). (4.14)
Tn(H) = \/ﬁm]ax mm](@)/a'n’](e) (4.15)

While it was not originally constructed in this manner, this simplified confidence interval
is the lower contour set of a profiled test statistic.?® Indeed, up to an inconsequential squaring,
T, is a special case of the statistic used in Bugni, Canay, and Shi (2017). This raises the
question of how the tests compare. In the especially regular case where all parts of Theorem
4.3 apply, and assuming that calibrated projection is implemented with the corresponding

simplifications, the answer is as follows:

2TFor a given unit vector p and compact set A ¢ R?, the support set of A is H(p, A) = argmax,, p'a.
By contrast, the corresponding expression without Theorem 4.3-(IT) is minyrg—s {75 (8) — ¢, (0)} < 0, which
is not usefully interpreted as test inversion.
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THEOREM 4.4: Suppose Assumptions 4.1, 4.2, 4.8, 4.4, 4.5, D.2, D.3, D./, D.5, and
D.6 hold. Let BCS-profiling be implemented with the criterion function in equation (4.15)
and GMS function ¢(z) = min{0,2}.2° Let calibrated projection be implemented using the
simplifications from Theorem 4.3, including setting p = +oo. If both methods furthermore

use the same Ky, they are uniformly asymptotically equivalent:

liminf inf inf P (1{3 eCl,} =1{se Cfﬁmf}) -1,

n—0 PeQ se[minge p’'f,maxgeco p'0]

where Cfﬁmf denotes the confidence interval resulting from the BCS-profiling method.

Thus there is strong agreement between methods in extremely well-behaved cases.?? We
also show in Online Appendix F.1 that, in a further specialization of the above setting, finite
sample power is higher with calibrated projection. This effect is due to a conservative dis-
tortion of order 1/k, in Bugni, Canay, and Shi (2017) and therefore vanishes asymptotically;
however, due to the slow rate at which s, diverges, it can be large in samples of consider-
able size. In sum, the approaches are not ranked in terms of power in empirically relevant

examples.

4.3 Role of the p-box Constraints and Heuristics for Choosing p

When we use the bootstrap to calibrate é,(+), we restrict the localization vector A to lie in a
p-box; see equation (3.1). This restriction has a crucial regularization effect. Comparing (2.7)
and (3.4), it is apparent that we estimate coverage probabilities by replacing a nonlinear pro-
gram with a linear one. It is intuitive that a Karush-Kuhn-Tucker condition (with uniformly
bounded Lagrange multipliers) is needed for this to work (uniformly), and also that the lin-
earization in (2.8) should be uniformly valid. But direct imposition of a Karush-Kuhn-Tucker
condition would amount to a hard-to-verify constraint qualification. Rather than doing this,
we show that Assumption 4.3 and imposition of the p-box constraints jointly yield such con-
straint qualification conditions on the set A% (6, p,c) (defined in (3.1)) with arbitrarily high
probability for n large enough, as well as uniform validity of the linearization. If one knows
(or assumes) a priori that the population (limit) counterpart of the constraint set in (2.7) is
contained in a ball with a radius bounded in probability (see Assumption D.1-(II) in Online
Appendix D.2.2), then p can be set equal to +00. The assumptions in Theorem 4.3-(I1I) are
sufficient for this condition to hold.3!

In practice, the choice of p requires trading off how much conservative bias one is willing

to bear in well-behaved cases against how much finite-sample size distortion one is willing

29The restriction on the GMS function is needed only because the “penalized resampling” approximation
in BCS employs a specific “slackness function” equal to én]

30This is not true for Pakes, Porter, Ho, and Ishii (2011) because they do not studentize the moment
inequalities.

31See Online Appendix D.1 for proofs of these statements.
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to bear in ill-behaved cases.?2

We propose a heuristic approach to calibrate p focusing
on conservative bias in the well behaved cases just considered, i.e. cases such as those
characterized in Assumptions D.2, D.3, D.4, D.5 and D.6, in which the p-box could be
dropped. In these cases, the optimal value of each of the two programs in equation (3.4) is
distributed asymptotically normal as a linear combination of d binding inequalities. When
in fact J; + Jo = d, constraining A\ € pB? increases the coverage probability by at most
n=1-—[1-2®(—p)]¢. The parameter p can therefore be calibrated to achieve a conservative

bias of at most . When J; + Jy > d, we propose to calibrate p using the benchmark

n=1-[1-20(-p)"":"), (4.16)
again achieving a target conservative bias (in well-behaved cases) of 7. For a few numerical
examples, set n = 0.01: then J; + Jo = 10 and d = 3 imply p = 4.2, whereas J; + J2 = 100
and d = 10 imply p = 8.4. In the Monte Carlo experiments of Section 5, we investigate

sensitivity of calibrated projection to the choice of p.

5 Monte Carlo Simulations

We evaluate the statistical and numerical performance of calibrated projection and EAM in
two sets of Monte Carlo experiments run on a server with two Intel Xeon X5680 processors
rated at 3.33GHz with 6 cores each and with a memory capacity of 24Gb rated at 1333MHz.33
Both simulate a two-player entry game. The first experiment compares calibrated projec-
tion and BCS-profiling in the Monte Carlo exercise of BCS, using their code.?® The other
experiments feature a considerably more involved entry model with and without correlated

unobservables. We were unable to numerically implement BCS-profiling for this model.?

5.1 The General Entry Game Model
We consider a two player entry game based on Ciliberto and Tamer (2009):

Y2 =0 Yoo 1
Y1 =0 0,0 O7Zé<1 + us
Yi=1 Zi§1+u1,0 Z{(Cl+A1)+u1,Z§(§2+A2)+u2

Here, Yy, Z;, and uy denote player ¢’'s binary action, observed characteristics, and unobserved
characteristics. The strategic interaction effects Z,A, < 0 measure the impact of the oppo-
nent’s entry into the market. We let X = (Y1,Y2, Z],Z)’. We generate Z = (Z1,Z3) as

32In Kaido, Molinari, and Stoye (2017) we provide examples of well-behaved and ill-behaved cases.

33To run the more than 120 distinct simulations reported here, we employed multiple servers. We benched
the relative speed of each and report average computation time normalized to the server just described.

34Gee nttp://qeconomics.org/ojs/index.php/qe/article/downloadSuppFile/431/1411.

35For implementations of calibrated projection with real-world data, we refer the reader to Mohapatra and
Chatterjee (2015), where d = 5, J1 = 44, and J2 = 0.
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an ii.d. random vector taking values in a finite set whose distribution p, = P(Z = z) is
known. We let u = (u1,u2) be independent of Z and such that Corr(ui,us) = r € [0,1]
and Var(uy) = 1,£ = 1,2. We let 0 = (¢}, ¢, A}, AL, 7). For a given set A = R?, we define
G,(A) = P(u e A). We choose G, so that the c.d.f. of u is continuous, differentiable, and
has a bounded p.d.f. The outcome Y = (Y7, Y2) results from pure strategy Nash equilibrium
play. For some value of Z and u, the model predicts monopoly outcomes Y = (0,1) and (1, 0)
as multiple equilibria. When this occurs, we select outcome (0, 1) by independent Bernoulli

trials with parameter p € [0,1]. This gives rise to the following restrictions:

B[ = (0,0}1{Z = 2}] = Gy((—o0, =C1) X (=90, —24C2))p- = 0 (5.1)

B[L{Y = (LI}UZ = 2}] = Go([=# (1 + A1), +90) x [~2(Go + A2), +0))p: = 0 (5.2

E[Y = (0,D}1{Z = 2}] = Gr((=0,~#4 (G + A1) x [=25Ga, +90))ps <0 (5.3)
~E[I{Y = (0, D}U{Z = 2}] + | Gr((—0, =2 (G1 + A1) x [~2ha, +20)

— Gr([—21G, =21 (G + A1) x [—25C2, —25(Co + Az))]Pz <0. (5.4)

We show in Online Appendix C that this model satisfies Assumptions B.1 and 4.3-(II).3¢
Throughout, we analytically compute the moments’ gradients and studentize them using

sample analogs of their standard deviations.

5.2 Specific Implementations and Results

Set 1: A comparison with BCS-Profiling

BCS specialize this model as follows. First, uy, ug are independently uniformly distributed
on [0,1] and the researcher knows r = 0. Equality (5.1) disappears because (0,0) is never
an equilibrium. Next, Z; = Zy = [1;{Wk}Z‘i’0], where W, are observed market type in-
dicators, Ay = [d4;0q,,] for £ = 1,2, and (; = (o = ¢ = [0; {C[k]}‘,f":‘/o].37 The parameter
vector is 6 = [d1;02;¢] with parameter space © = {# € R**w . (§;,45) € [0,1]%, ¢ €
[0, min{d1,d2}], & = 1,...,dw}. This leaves 4 moment equalities and 8 moment inequali-
ties (so J = 16); compare equation (5.1) in BCS. We set dyy = 3, P(Wj, = 1) = 1/4,k =
0,1,2,3, 0 =[0.4;0.6;0.1;0.2; 0.3], and p = 0.6. The implied true bounds on parameters are
61 € [0.3872,0.4239], &, € [0.5834,0.6084], ¢M € [0.0996,0.1006], ¢[?! € [0.1994,0.2010], and
¢Bl € [0.2992,0.3014].

The BCS-profiling confidence interval CIE™ inverts a test of Hy : p'6 = s over a grid for
sg. We do not in practice exhaust the grid but search inward from the extreme points of © in

directions +p. At each sg that is visited, we compute (the square of) a profiled test statistic

36The specialization in which we compare to BCS also fulfils their assumptions. The assumptions in Pakes,
Porter, Ho, and Ishii (2011) exclude any DGP that has moment equalities.

37 This allows for market-type homogeneous fixed effects but not for player-specific covariates nor for observed
heterogeneity in interaction effects.
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min,g—s, Tp(0); see equations (4.14)-(4.15) above. The corresponding critical value &/ (s)
is a quantile of the minimum of two distinct bootstrap approximations, each of which solves
a nonlinear program for each bootstrap draw. Computational cost quickly increases with
grid resolution, bootstrap size, and the number of starting points used to solve the nonlinear
programs.

Calibrated projection computes ¢é,(f) by solving a series of linear programs for each
bootstrap draw.?® It computes the extreme points of CI,, by solving NLP (2.5) twice, a task
that is much accelerated by the E-A-M algorithm. Projection of Andrews and Soares (2010)
operates very similarly but computes its critical value ebro (#) through bootstrap simulation
without any optimization.

We align grid resolution in BCS-profiling with the E-A-M algorithm’s convergence thresh-
old of 0.005.2 We run all methods with B = 301 bootstrap draws, and calibrated and
“uncalibrated” (i.e., based on Andrews and Soares (2010)) projection also with B = 1001.%°
Some other choices differ: BCS-profiling is implemented with their own choice to multi-start
the nonlinear programs at 3 oracle starting points, i.e. using knowledge of the true DGP;
our implementation of both other methods multi-starts the nonlinear programs from 30 data
dependent random points (see Kaido, Molinari, Stoye, and Thirkettle (2017) for details).

Table 1 displays results for (1, d2) and for 300 Monte Carlo repetitions of all three meth-
ods. All confidence intervals are conservative, reflecting the effect of GMS. As expected,
uncalibrated projection is most conservative, with coverage of essentially 1. Also, BCS-
profiling is more conservative than calibrated projection. We suspect this relates to the
conservative effect highlighted in Online Appendix F.1. The most striking contrast is in com-
putational effort, where uncalibrated projection is fastest but calibrated projection also beats
BCS-profiling by a factor of about 78. There are two effects at work here: First, because
the calibrated projection bootstrap iterates over linear programs, it is much faster than the
BCS-profiling one. Second, both uncalibrated projection and calibrated projection confidence
intervals were computed using the E-A-M algorithm. Indeed, the computation times reported
for uncalibrated projection indicate that, in contrast to received wisdom, this procedure is
computationally somewhat easy. This is due to the E-A-M algorithm and therefore part of
this paper’s contribution.

Table 2 extends the analysis to all components of § and to 1000 Monte Carlo repetitions.
We were unable to compute this or any of the next tables for BCS-profiling.

Set 2: Heterogeneous interaction effects and potentially correlated errors

38We implement this step using the high-speed solver CVXGEN, available from http://cvxgen.com and
described in Mattingley and Boyd (2012).

39This is only one of several individually necessary stopping criteria. Others include that the current
optimum 6% and the expected improvement maximizer 8% (see equation (3.13)) satisfy |p’ (%! —0*%)| <
0.005. See Kaido, Molinari, Stoye, and Thirkettle (2017) for the full list of convergence requirements.

49Based on some trial runs of BCS-profiling for 61, we estimate that running it with B = 1001 throughout
would take 3.14-times longer than the computation times reported in Table 1. By comparison, calibrated
projection takes only 1.75-times longer when implemented with B = 1001 instead of B = 301.
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In our second set of experiments, we let u = (uj, ug2) be bivariate Normal with (nondegen-
erate) correlation r, so all outcomes have positive probability. We let Z include a constant
and a player specific, binary covariate, so Z; € {(1,—1),(1,1)} and Z3 € {(1,—1),(1,1)}. This
implies J; = Jy = 8, hence J = 24. The marginal distribution of (ZP], ZE]) is multinomial
with weights (0.1,0.2,0.3,0.4) on ((—1,—1),(—1,1),(1,—-1),(1,1)).

In our Set 2-DGP1, we set (1 = (.5,.25)", Ay = (—1,—1), and r = 0. Set 2-DGP2 differs
by setting Ay = (—1,—.75)". In both cases, (¢2,A2) = (¢1,A1) and p = 0.5; we only report
results for (¢1,A). Although parameter values are similar, there is a qualitative difference:
In DGP1, parameters are point identified; in DGP2, they are not but the true bounds (Cl[l] €
[0.405,0.589], ¢* e [0.236,0.266], ALY € [—1.158, -0.832], AP € [-0.790, —0.716]) are not
wide compared to sampling uncertainty. We therefore expect all methods that use GMS to
be conservative in DGP2.4! In both Set 2-DGP1& DGP2 we use knowledge that r = 0, so
that d = 8. Our Set 2-DGP3 preserves the same payoff parameters values as in Set 2-DGP2
but sets r = 0.5 and this parameter is also unknown, so that d = 9.

Within Set 2-DGP2, we also experiment with the sensitivity of coverage probability and
length of CI,, to the choice of p and k,. We consider choices of p that are (1) very large or
“liberal”, so that in well behaved cases the p-box constraints induce an amount n of over-
coverage in CI,, smaller than machine precision (see equation (4.16)); (2) “default”, so that
n = 0.01; (3) small or “conservative”, so that n = 0.025. For k,,, we have experimented with
a “conservative” choice k, = n¥7, and a “liberal” choice k,, = vInlnn, while out “default”
is kK, = vInn.

Results are reported in Tables 3 through 7. An interesting feature of Table 3 is that
in this (point identified) DGP, calibrated projection is not conservative at all. This pre-
sumably reflects an absence of near-binding inequalities. Conservative bias is larger in the
partially identified Set 2-DGP2 in Table 4. For these two tables, we do note the increased
computational advantage of uncalibrated projection over calibrated projection. This advan-
tage is bound to increase as DGP’s, and therefore the linear programs iterated over in the
bootstrap, become more complex. Table 5 shows that allowing for correlation of the errors
does not change the results much in terms of the confidence intervals’ length and coverage
probabilities. However, due to the repeated evaluation of the bivariate normal CDFs, both
calibrated and uncalibrated projection have higher computational time than the case with
r = 0. Another feature to note is that both confidence intervals for r tend to be wide although
the projection of ©; is short, which suggests that this component may be weakly identified.

Table 6 examines the effect of varying the tuning parameter p. Increasing p necessarily
(weakly) decreases length and also coverage of intervals, and this effect is evident in the
table but is arguably small. This is even more the case for the GMS tuning parameter

kn. Numerically, for n = 4000, the values explored in the table are rather different at

41We also note that this is a case where non-uniform methods may severely undercover in finite sample.
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4000Y7 ~ 3.27 and 4/In(In(4000)) ~ 1.45, but the effect on inference is very limited, see
Table 7. Indeed, differences in coverage are so small that reported results are occasionally

slightly nonmonotonic, reflecting numerical and simulation noise.

6 Conclusions

This paper introduces a computationally attractive confidence interval for linear functions of
parameter vectors that are partially identified through finitely many moment (in)equalities.
The extreme points of our calibrated projection confidence interval are obtained by minimizing
and maximizing p'# subject to properly relaxed sample analogs of the moment conditions.
The relaxation amount, or critical level, is computed to insure uniform asymptotic coverage
of p'0 rather than 6 itself. Its calibration is computationally attractive because it is based on
repeatedly checking feasibility of (bootstrap) linear programming problems. Computation of
the extreme points of the confidence intervals is also computationally attractive thanks to an
application, novel to this paper, of the response surface method for global optimization that
is of independent interest in the partial identification literature. Indeed, a key contribution
of the paper is to establish convergence of this algorithm.

Our Monte Carlo analysis shows that, in the DGPs that we considered, calibrated pro-
jection is fast and accurate: Computation of the confidence intervals is orders of magnitude
faster than for the main alternative to our method, a profiling-based procedure due to Bugni,
Canay, and Shi (2017). The class of DGPs over which we can establish uniform validity of our
procedure is non-nested with corresponding class for the alternative method. Important cases
covered here but not elsewhere include linear functions of best linear predictor parameters
with interval valued outcomes and discrete covariates. The price to pay for this generality is
the use of one additional (non-drifting) tuning parameter. We provide conditions under which
this parameter can be eliminated and compare the power properties of calibrated projection
and BCS-profiling. The false coverage properties of the two methods are non-ranked but are
asymptotically the same in very well-behaved cases. We establish considerable finite sample
advantage in a specific case.

Similarly to confidence regions proposed in Andrews and Soares (2010), Bugni, Canay,
and Shi (2017), Stoye (2009), and elsewhere, our confidence interval can be empty, namely if
sample violations of moment inequalities exceed ¢, (6) at each #. This event can be interpreted
as rejection of maintained assumptions. See Stoye (2009) and especially Andrews and Soares
(2010) for further discussion and Bugni, Canay, and Shi (2015) for a paper that focuses on
this interpretation and improves on &% for the purpose of specification testing. We leave a

detailed analysis of our implied specification test to future research.
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A Convergence of the E-A-M Algorithm

In this appendix, we provide details on the algorithm used to solve the outer maximization problem
as described in Section 3.2. Below, let (€2, F) be a measurable space and w a generic element of ). Let
LeNand let (1), -, 6()) be a measurable map on (2, F) whose law is specified below. The value
of the function ¢ in (3.6) is unknown ex ante. Once the evaluation points 00 ¢ =1,---,L realize,
the corresponding values of ¢, i.e. T = ¢(#®)), ¢ = 1,---, L, are known. We may therefore define

the information set
Fr=00W,*® r=1,... L) (A1)

We note that 0*1 = argmax,.p'0 is measurable with respect to Fr,.

Our algorithm iteratively determines evaluation points based on the expected improvement (Jones,
Schonlau, and Welch, 1998). For this, we formally introduce a model that describes the uncertainty
associated with the values of ¢ outside the current evaluation points. Specifically, the unknown function

c is modeled as a Gaussian process such that?*?
E[e(0)] = i, Cov(c(0),c(0)) = 2Ks(0 —6), (A.2)

where 8 = (B1,---, B4) € R? controls the length-scales of the process. Two values c(f) and c(¢') are
highly correlated when 6, — 6}, is small relative to 5. Throughout, we assume 3 p S Br < B, for some
0<8, < B <owfork=1,---,d Welet 3= (B, --,B4) € RL Specific suggestions on the forms
of Kg are given in Appendix B.2.

For a given (u,s, 8), the posterior distribution of ¢ given Fj, is then another Gaussian process
whose mean ¢, (+) and variance ¢%s% () are given as follows (Santner, Williams, and Notz, 2013, Section
4.1.3):

cr(0) =p+rL(0)RN(Y — pl) (A.3)
2 2 _2f1 I —1 (1- 1/RzlrL(9))2
<?53(0) = <*(1 1 (0) Ry 'rr(0) + TR ). (A4)
Given this, the expected improvement function can be written as
ElL(0) = E[(p'0 — p'0™")+ 1{g(0) < c(0)}|FL]
=(p'0—p oL P(c(0) = Irllangj(é))\]-'L)
J=1,,
0) —cr(0) _ max;j_y.. jg;(0) —cL(0)
_ 10 _ /9*,L P (C( > J 3 J
(p p )+ (SL(G) §3L(9)
g(0) —cr(9)
_ ‘0 ./ *,L 1 _ (b g( A
The evaluation points (9(1), sy Q(L)) are then generated according to the following algorithm (M-step

in Section 3.2).

42We use P and E to denote the probability and expectation for the prior and posterior distributions of ¢
to distinguish them from P and E used for the sampling uncertainty for Xj.
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ALGORITHM A.1: Let ke N.
Step 1: Initial evaluation points 0V ...  0%) are drawn randomly independent of c.
Step 2: For L > k, with probability 1 — €, let 0+ = argmazy.oElL(0). With probability e, draw

6L+ uniformly at random from ©.

Below, we use Q to denote the law of (9(1), e ,Q(L)) determined by the algorithm above. We also
note that 0% X+! = arg max,_-r+1 p'6 is a function of the evaluation points and therefore is a random

variable whose law is governed by Q.

A.1 Proof of Theorem 3.1

Proof. We adopt the method used in the proof of Theorem 5 in Bull (2011), who proves a convergence
result for an unconstrained optimization problem in which the objective function is unknown outside
the evaluation points.

Below, we let L > 2k. Let 0 < v < o0. Let 0 < < € and A € F be the event that at least
|nL| of the points 8+ ... (L) are drawn independently from a uniform distribution on ©. Let
By, € F be the event that one of the points 85+ ... #L) is chosen by maximizing the expected

improvement. For each L, define the mesh norm:

= i —p®
hL—zggzilll’l.I-l.LHa 0']. (A.6)

For a given M > 0, let Cy, € F be the event that hy, < M(L/InL)~"/¢. We then let
DLEAL('\BLOCL. (A?)

On Dy, the following results hold. First, let 81, be the estimated parameter. Noting that there
are |nL| uniformly sampled points and arguing as in (A.24)-(A.25), it follows that

sup sz.(0; Br) < Mrp, (A.8)
0O

for some constant M > 0 by w e C, and ry, is defined by
rp = (L/In L)~/ (A.9)

For later use, we note that, for any L > 2,

L 1)V/d(1H(L — ]_)

v/d v/d
- T )< v, (A.10)

ro—1/rr = (

Second, by w € By, there is £ such that L < ¢ < 2L and 0 is chosen by maximizing the expected
improvement. For # € © and L € N, let I1(0) = (p'0 — p'0*%), 1{g(0) < c(0)}. Recall that 6* is an



optimal solution to (3.6). Then,
0 0* _plo*j—l @ Ip_1(6%)

© B (0%) (1 2(5)

Tp1(09) + Myse—1(01) eXP(—M23871(9(0)72)) (1- ‘I’(?))i

(2 (14—1(9(0) + MMire—q eXP(—M72M2Te_721)> (1 - ‘D(?))_l
R.._
(£ (0) + 27/ M My exp(—(27/M) 2 Mor ) (1= #( )~

B R
N ((p'W) — 0% N 1{g(00) < c(0“)} + 27/ M Myrg exp(—(27/4M) "2 Mor, 2)) (1—a(

< (o —p0m ) + 2 MM exp(—(27M) M) ) (1= @ ()
2 (h@ + 2V UM My exp(—(zv/dM)—2M2r;2)) (1- @(?))*1, (A.11)

—~
=

where (1) follows by construction, (2) follows from Lemma A.1 (ii), (3) follows from #() being the
maximizer of the expected improvement, (4) follows from Lemma A.1 (i), (5) follows from (A.8), (6)
follows from r,_; < 2¥/r, for £ = 2 by (A.10), (7) follows from §** = argmaxy.cep'd, (8) follows from
p' 6% — p'#**~1 being dominated by the mesh-norm. Therefore, by w € Cp,, there exists a constant
M > 0 such that

PO —plottl < (M(E/lné)_l/d + Mry exp(—Mr[z)) (1- @(?))_1. (A12)

Since L < ¢ < 2L, p'0*' is non-decreasing in L, and 7, is non-increasing in L, we have

p'o* —p'o*2l < (M(L/ln L)~V 4 Mrp exp(—MrZ2)) (1- @(?))71

= O((2L/ M 2L0)~Y4) + O(ror exp(—Mr3 7)), (A.13)

where the last equality follows from the existence of a positive constant C' such that r;, = Crop and
redefining multiplying constants properly.
Now consider the case w ¢ Dr. By (A.7),

Q(D7) < Q(AL) + Q(B;) + Q(CE). (A.14)

Let Z; be a Bernoulli random variable such that Z, = 1 if #) is randomly drawn from a uniform
distribution. Then, by the Chernoff bounds (see e.g. Boucheron, Lugosi, and Massart, 2013, p.48),

QUAH) = @ 3] 2 <InLl) < exp(—(L — k + e~ 1)’/2). (A.15)
l=k+1



Further, by the definition of By,
Q(Bf) = ", (A.16)

and finally by taking M large upon defining the event Cr, and applying Lemma 4 in Bull (2011), one

has
Q(Cf) = O((L/In L)), (A.17)
for any y > 0. Combining (A.14)-(A.17), for any v > 0,
Q(DL) = O((L/InL)™7). (A.18)

Finally, noting that p’6* — p’0*2% is bounded by some constant M > 0 due to the boundedness of ©,

we have

EQ[ple* _p/e*,QL] _ J

p/a* _ple*,2LdQ +J p/e* _ple*,QLdQ
Dy,

Dg

= O((2L/ I 2L)~Y4) + O(rop exp(—M7r5;2)) + O((2L/In2L) ™) = o(1), (A.19)
where the second equality follows from (A.13) and (A.18). This completes the proof. O

The following lemma is an analog of Lemma 8 in Bull (2011), which links the expected improvement

to the actual improvement achieved by a new evaluation point 6.

LEMMA A.1: Suppose © c R? is bounded and p € S*1. Suppose the evaluation points (0, - - §(F))
are drawn by Algorithm A.1 and |c|, < R for some R > 0. For § € © and L € N, let I(0) =
(p'0 — p'0*1) 1{gG(0) < c(0)}. Then, (i) there exist constants M; > 0,5 = 1,2 that only depend on
(s, R) and an integer L € N such that

El(6) < I1.(0) + Mysr,(0) exp(—Mas;2(6)) (A.20)

for all L = L. Further, (i) for any Le N and 0 € ©,

Ry —1

IL(0) < EHL(G)(l - cp(?)) . (A.21)
Proof of Lemma A.1. (i) If s (0) = 0, then the posterior variance of ¢(6) is zero. Hence, El(0) =
I1,(9), and the claim of the lemma holds.

For sp(0) > 0, we first show the upper bound. Let u = (g(0) — ¢1(0))/sr(0) and t = (g(0) —



c(0))/sr(0). By Lemma 6 in Bull (2011), we have |u — t| < R. Since 1 — ®(+) is decreasing, we have

ELL(0) = (00 — 0" "), (1 - #(%))
< (/0 _p/g*,L)_"_(l _ (p(t :R))
= (0 = P05+ (1{g(0) < c(0)} + 1{g(6) > c(0)}) (1 - ‘I’(QD
< 1(0) + (70— p6°), 1(3(6) > 6(9)}(1 _ @(#)), (A.22)

where the last inequality used 1 — ®(x) < 1 for any = € R. Note that one may write

1{5(0) > c(9)}<1 - @(#)) — 1{3(0) > c(0)} (1 - @(gw) - CgfL)(;)sL(e)R)). (A.23)

Below we assume g(f) > ¢(6) because otherwise, the expression above is 0, and the claim holds. To
be clear about the parameter value at which we evaluate s, we will write sz, (8; 5). By the hypothesis
that |c[#, < R and Lemma 4 in Bull (2011), we have

HCHH/ﬁL < S7 (A24)

where S = R? HZ=1(B,C /B,)- Note that there are |L| uniformly sampled points, and K is associated
with index v € (0,00),v ¢ N. By Corollary 6.4 in Narcowich, Ward, and Wendland (2003),

sup sp(0;8) = O(M(B)hY), (A.25)

uniformly in 8, where hy, = supgee ming—; ..., [0 —0©|| and 8 ~— M (3) is a continuous function (note
that the exponent v in our notation matches matches (k + v)/2 in theirs). Hence, s1,(0) = o(1). This,
together with g(6) > c(6), implies that there are a constant M and L € N such that

0< M < (§(0) — c(8) — sp.(0)R)/s, YL > L. (A.26)

Therefore, again by the fact that 1 — ®(-) is decreasing, one obtains

1g(0) > @)1 - o (L= s ORY) (1 _g( 2Y)

ssp.(0) s.(0)
< 83\(40)¢(53(49))’ (A.27)

where ¢ is the density of the standard normal distribution, and the last inequality follows from
1—®(z) < ¢(x)/z, which is due to Gordon (1941). The claim on the upper bound then follows from
(A.22), (p'0 — p'0*L) < M for some M > 0 due to © being bounded, and (A.27).



(ii) For the lower bound in (A.21), we have

ELL(0) = (o0 — p/0) 4 (1 - @(t i R))

S
= 0~ 01 1{g(0) < c0)) (1 - o (“E))
> 1..(6) (1 - @(?)), (A.28)

where the last inequality follows from t = (g(8) — ¢(6))/s.(#) < 0 and the fact that 1 — ®(-) is

decreasing. O



Tables

Table 1: Results for Set 1 with n = 4000, M C's = 300, B = 301, p = 5.04, K, = vInn.

l— o Median CI 4 CIProf Coverage | CI,, Coverage | CIP™J Coverage Average Time
creref CI, cipro Lower  Upper | Lower Upper | Lower Upper | CIP™°f CI, CIP
0.95 | [0.330,0.495] [0.336,0.482] [0.290,0.557] | 0.997 0.990 0.993 0.973 1 1 1858.42 22.86  13.82
1 =04 | 0.90 | [0.340,0.485] [0.342,0.474] [0.298,0.543] | 0.990 0.980 0.980  0.963 1 1 1873.23 22.26  15.81
0.85 | [0.345,0.475] [0.348,0.466] [0.303,0.536] | 0.970 0.970 0.960  0.937 1 1 1907.84 23.00 13.98
0.95 | [0.515,0.655] [0.518,0.650] [0.461,0.682] | 0.987 0.993 0.980  0.987 1 1 1753.54 23.84 19.10
d> =0.6 | 0.90 | [0.525,0.647] [0.533,0.643] [0.473,0.675] | 0.977 0.973 0.957  0.953 1 1 1782.91 2445 17.16
0.85 | [0.530,0.640] [0.540,0.639] [0.481,0.670] | 0.967 0.957 0.943  0.923 1 1 1809.65 23.38  17.33

Notes: (1) Projections of ©; are: &, € [0.3872,0.4239], 6, € [0.5834,0.6084], ¢1 € [0.0996,0.1006], (2 € [0.1994,0.2010], Cs € [0.2992, 0.3014]. (2) “Upper” coverage

is for maxgee,(p) p'0, and similarly for “Lower”. (3) “Average time” is computation time in seconds averaged over MC replications. (4) CIP™7 results from

[1€]

BCS-profiling, CI,, is calibrated projection, and C'I2" is uncalibrated projection.

Table 2: Results for Set 1 with n = 4000, M C's = 1000, B = 1001, p = 5.04, Kk, = v/Inn.

l— o Median CI ‘ C1,, Coverage | CIPmJ Coverage | Average T img

CI, cpro Lower Upper | Lower  Upper cr1, CIEros

0.95 | [0.333,0.479] [0.288,0.555] | 0.990  0.979 1 1 42.35  15.79

51 =0.4 | 0.90 | [0.342,0.470] [0.296,0.542] | 0.978  0.957 1 1 41.13  11.60
0.85 | [0.347,0.464] [0.302,0.534] | 0.960  0.942 1 1 39.91 15.36

0.95 | [0.526,0.653] [0.466,0.683] | 0.969  0.978 1 1 41.40  24.30

d2=0.6 | 0.90 | [0.538,0.646] [0.478,0.677] | 0.948  0.959 1 0.999 | 41.39 32.78
0.85 | [0.545,0.642] [0.485,0.672] | 0.925  0.941 1 1 38.49 31.55

0.95 | [0.054,0.143] [0.020,0.179] | 0.951  0.952 1 1 35.57  20.80

¢=0.1| 090 | [0.060,0.137] [0.028,0.171] | 0.916  0.916 | 0.998 0.998 | 38.42  28.07
0.85 | [0.064,0.132] [0.033,0.166] | 0.868  0.863 | 0.998 0.998 | 38.63  28.77

0.95 | [0.156,0.245] [0.120,0.281] | 0.950  0.949 1 1 35.99  18.07

¢Bl'=0.2 | 090 | [0.162,0.238] [0.128,0.273] | 0.910  0.908 | 0.999 0.998 | 33.29 23.13
0.85 | [0.166,0.235] [0.133,0.268] | 0.869  0.863 | 0.995 0.995 | 33.76 17.33

0.95 | [0.257,0.344] [0.222,0.379] | 0.945  0.944 1 1 39.92  31.27

¢Bl'=03 | 090 | [0.262,0.337] [0.230,0.371] | 0.896  0.900 | 0.998 0.998 | 43.37 29.17
0.85 | [0.266,0.333] [0.235,0.366] | 0.866  0.863 | 0.995 0.995 | 43.60 26.99

Notes: Same DGP and conventions as in Table 1.



Table 3: Results for Set 2-DGP1, Corr(uy,us) = 0, n = 4000, MC's = 1000, p = 6.02, k,, =

l—a Median CI . Coverage . Average Time.

CI, CIE™? cr, CIg> cr, CIE

0.95 [0.355,0.715] [0.127,0.938] | 0.948 1 82.34  23.56

P] =0.50 | 0.90 [0.374,0.687] [0.172,0.902] | 0.902  0.999 84.33  21.61
0.85 [0.387,0.669] [0.200,0.878] 0.856 0.996 87.33 22.31

0.95 [0.115,0.354] [0.003,0.488] | 0.954 0.998 | 103.58  32.63

1[2] =0.25 | 0.90 [0.132,0.340] [0.024,0.464] | 0.904 0.996 | 106.20  26.52
0.85 [0.142,0.330] [0.040,0.448] | 0.848 0.996 | 110.10  32.01

0.95 [-1.321,-0.716] [-1.712,-0.296] | 0.946 1 88.21 22.11

AEI] =-—11] 090 | [-1.284,-0.755] [-1.647,-0.368] | 0.895  0.999 94.38  22.65
0.85 | [-1.259,-0.778] [-1.611,-0.416] | 0.849  0.997 92.77  27.52

0.95 [-1.179,-0.791] [-1.443,0.500] | 0.950 1 96.97 27.31

Agz] =-—11| 090 | [-1.153,-0.814] [-1.398,-0.544] | 0.891  0.999 98.69  25.13
0.85 | [-1.136,-0.832] [-1.370,-0.575] | 0.853 ~ 0.999 | 102.16 25.11

Inn.

Table notes: (1) Oy is a singleton in this DGP. (2) B = 1001 bootstrap draws. (3) “Average time” is computation time in

seconds averaged over MC replications. (4) C1I,, is calibrated projection and CIEZ™ is uncalibrated projection.

Table 4: Results for Set 2-DGP2, Corr(uy,us) = 0, n = 4000, MC's = 1000, p = 6.02, k,, = v/Inn.

l— o Median CI . CI,, Coverage | CIP™J Coverage | Average T ime‘

CI, cipro Lower Upper | Lower  Upper Ccl, C1Iprod

0.95 [0.249,0.790] [-0.007,1.004] | 0.954 0.971 | 0.999 1 85.76  50.10

CP] = 0.50 0.90 [0.271,0.765] [0.038,0.969] | 0.918 0.941 | 0.998 1 91.47  50.51
0.85 [0.287,0.750] [0.067,0.948] | 0.883  0.919 | 0.999 1 91.39  61.10

0.95 [0.112,0.376] [0.009,0.523] | 0.969  0.963 | 0.998 1 94.09  36.46

(1[2] =0.25 0.90 [0.128,0.359] [0.025,0.498] | 0.938 0.927 | 0.997 0.999 93.26  52.80
0.85 [0.138,0.348] [0.038,0.489] | 0.909  0.891 | 0.998 0.996 95.68  61.25

0.95 | [-1.467,-0.497] [-1.869,-0.003] | 0.960  0.967 | 0.999 0.999 82.54  27.25

Agl] =-1 0.90 | [-1.432,-0.544] [-1.806,-0.091] | 0.932  0.939 1 0.999 89.97  28.63
0.85 | [-1.408,-0.571] [-1.766,-0.146] | 0.901  0.902 1 0.999 91.72  28.38

0.95 | [-0.979,-0.514] [-1.276,-0.237] | 0.973  0.969 1 1 97.75  32.09

AT = 075 | 090 | [[0.953-0.539] [-1.226,-0.282] | 0.941  0.940 1 1 95.86  27.34
0.85 | [-0.936,-0.556] [-1.194,-0.312] | 0.916  0.917 1 0.999 | 104.52 31.15

Notes: (1) Projections of ©; are: ¢ e [0.405,0.589]; ¢!* € [0.236,0.266]; Al € [~1.158, —0.832]; Al*! € [—0.790, —0.716].
(2) “Upper” coverage refers to coverage of max{p'd : 6 € ©;(P)}, and similarly for “Lower”. (3) “Average time” is
computation time in seconds averaged over MC replications. (4) B = 1001 bootstrap draws. (5) CI, is calibrated projection

and CIE™ is uncalibrated projection.
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Table 5: Results for Set 2-DGP3, Corr(u1,us) = 0.5, n = 4000, M C's = 1000, p = 6.02, k,, =

Inn.

{—a Median CI . CI,, Coverage | CIE™J Coverage | Average Time.

ClI, crero Lower Upper | Lower  Upper cl, cirero

0.95 [0.196,0.895] [-0.043,1.053] 0.978  0.978 | 0.996 0.995 | 561.66 163.42

1[1] =0.50 0.90 [0.224,0.864] [-0.009,1.009] 0.958  0.966 | 0.993 0.984 | 583.80 163.42
0.85 [0.244,0.844] [0.015,1.000] 0.945  0.945 | 0.989 0.972 | 562.05  99.90

0.95 [0.099,0.436] [0.001,0.586] 0.974 0.969 | 0.997 0.996 | 626.00 245.39

1[2] =0.25 0.90 [0.115,0.417] [0.016,0.583] 0.951  0.950 | 0.997 0.997 | 597.29  206.35
0.85 [0.126,0.404] [0.031,0.564] 0.939  0.941 | 0.993 0.994 | 681.24 234.50

0.95 | [-1.664,-0.372]  [-1.956,-0.000] | 0.957  0.962 | 0.986 0.993 | 578.63 156.00

AP] =-1 0.90 | [-1.609,-0.441]  [-1.929,-0.000] | 0.939  0.930 | 0.986 0.996 | 594.27 145.85
0.85 | [-1.568,-0.490]  [-1.912,-0.000] | 0.909  0.916 | 0.986 0.994 | 638.16 132.73

0.95 | [-1.065,-0.504] [-1.312,-0.1938] | 0.956  0.955 | 0.994 0.995 | 559.10 214.71

A?] =—0.75 | 0.90 | [-1.037,-0.525] [-1.286,-0.241] | 0.940  0.947 | 0.994 0.997 | 553.53 128.71
0.85 | [-1.021,-0.542]  [-1.276,-0.266] | 0.918  0.928 | 0.989 0.998 | 645.54 129.67

0.95 [0.000,0.830] [0.000,0.925] 0.968  0.968 | 0.995 0.995 | 269.98  42.66

r=0.5 0.90 [0.000,0.802] [0.000,0.925] 0.935 0.935 | 0.994 0.995 | 308.58  47.55
0.85 [0.042,0.784] [0.000,0.925] 0.897  0.897 | 0.995 0.995 | 334.43  49.54

Notes: (1) Projections of ©; are: ¢ € [0.465,0.533]; ¢! € [0.240,0.261]; AP € [~1.069, —0.927]; Al ¢
[—0.782, —0.720]; r € [0.4998,0.5000]. (2) “Upper” coverage refers to coverage of max{p'6 : € ©;(P)}, and

similarly for “Lower”. (3) “Average time” is computation time in seconds averaged over MC replications. (4)

B = 1001 bootstrap draws. (5) CI,, is calibrated projection and CT2"%? is uncalibrated projection.
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Table 6: Results for Set 2-DGP2, Corr(uy,us) = 0, n = 4000, MC's = 1000, varying p, £, = v1nn.
Median C1I, C1I,, Coverage Average Time
l-—« p=>5.87 p=10 p=5.87 p=10 p=5>587T p=10
Lower Upper Lower Upper
0.95 [0.248,0.790] [0.254,0.776] 0.959 0971 0.947 0.962 116.19 104.14
(1[1] =0.50 | 0.90 [0.271,0.766] [0.275,0.754] 0.921 0.939 0.908 0.925 121.24 115.65
0.85 [0.286,0.749] [0.289,0.738] | 0.888 0.916  0.868  0.895 11541  112.38
0.95 | [-1.471,-0.498] [-1.454,-0.512] | 0.964 0.965 0.955  0.959 104.34 108.77
Agll =—11] 090 | [-1.434-0.543] [-1.418,-0.555] | 0.933  0.940 0.927 0.924 113.63 114.74
0.85 | [-1.410,-0.571] [-1.394,-0.583] | 0.904 0.905 0.887  0.895 114.23 119.55

Notes: Same DGP, number of bootstrap draws and conventions as in Table 4. Results are for calibrated

projection C'I,,.

Table 7: Results for Set 2-DGP2, Corr(uy,us) = 0, n = 4000, MC's = 1000, p = 6.02, varying k.

Median C1,, C1I,, Coverage Average Time
11—« Ky = n/7 Kn:\/m Koy = 07 Kn:\/m kn=n"" Kk, =+Inlnn
Lower Upper Lower Upper
0.95 [0.249,0.790] [0.250,0.787] 0.955 0.972  0.955  0.970 85.11 89.65
CP] =0.50 | 0.90 [0.270,0.765] [0.274,0.763] 0.922 0.943 0.914  0.936 89.12 94.49
0.85 [0.286,0.748] [0.287,0.746] 0.891 0.916  0.870  0.901 89.82 92.15
0.95 | [-1.469,-0.497] [-1.464,-0.501] | 0.966 0.968 0.956  0.959 80.33 81.70
Agl] =—1| 090 | [-1.432,-0.542] [-1.426,-0.548] | 0.935 0.938 0.926  0.923 85.12 88.07
0.85 | [-1.408,-0.568] [-1.402,-0.577] | 0.909  0.908  0.889  0.892 86.95 89.34

Notes: Same DGP, number of bootstrap draws and conventions as in Table 4. Results are for calibrated

projection C'I,.
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Structure of the Appendix

Section B states and proofs Theorem B.1, which establishes convergence-related results for our E-A-M algorithm.

It also provides provides background material for the E-A-M algorithm, and details on the root-finding algorithm
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that we use to compute é,(6). Section C verifies some of our main assumptions for moment (in)equality models
that have received much attention in the literature. Section D summarizes the notation we use and the structure
of the proof of Theorem 4.1,** and provides a proof of Theorems 4.1 (both under our main assumptions and under
a high level assumption replacing Assumption 4.3 and dropping the p-box constraints), 4.2, 4.3 and 4.4. Section
E contains the statements and proofs of the lemmas used to establish Theorems 4.1 and B.1, as well as a rigorous
derivation of the almost sure representation result for the bootstrap empirical process that we use in the proof
of Theorem 4.1. Section F provides further results comparing our calibrated projection method and the profiling
method proposed by Bugni, Canay, and Shi (2017, BCS-profiling henceforth), and gives an example of methods’
failure (including calibrated projection, BCS-profiling and the method in Pakes, Porter, Ho, and Ishii (2011)) when
some key assumptions are violated. Section G provides a formal comparison of our calibrated projection method
and projection of the confidence set of Andrews and Soares (2010, AS henceforth).
Throughout the Appendix we use the convention oo -0 = 0.

Appendix B Additional Convergence Results and Background Mate-
rials for the E-A-M algorithm and for Computation of

Cn(0)

B.1 Theorem B.1: An Approximating Critical Level Sequence for the E-A-M Algo-

rithm

B.1.1 Assumption B.1: A Low Level Condition Yielding a Stochastic Lipschitz-Type Prop-

erty for ¢,

In order to establish convergence of our E-A-M algorithm, we need ¢, to uniformly stochastically exhibit a Lipschitz-
type property so that its mollified counterpart (see equation (B.1)) is sufficiently smooth and yields valid inference.
Below we provide a low level condition under which we are able to establish the Lipschitz-type property. In Appendix

C.1 we verify the condition for the canonical examples in the moment (in)equality literature.

ASSUMPTION B.1: The model P for P satisfies:

(i) lop(0)tm;(z,0) — op;(0") " tm;(z,0)] < M(z)|0 — 0'| with Ep[M(X)?] < M for all 0,6/ € ©, z €
X, j = 1,,J, and there exists a function F such that |op;(0)"'m;(-,0)| < F(-) for all @ € © and
Ep[[F(X)NI(X)] < M.

(i1) @; is Lipschitz continuous in x € R for all j=1,...,J.

B.1.2 Statement and Proof of Theorem B.1

For all 7 > 0 let &, -(6) be a mollified version of é,(8), i.e.:

nr0) = | eal0=0)0r ) = | 2, (0)0r(0 = )i (B.1)

43Gection D.1 provides in Table D.0 a summary of the notation used throughout, and in Figure D.1 and Table D.1 a flow
diagram and heuristic explanation of how each lemma contributes to the proof of Theorem 4.1.



where the family of functions ¢. is a mollifier as defined in Rockafellar and Wets (2005, Example 7.19). Choose it
to be a family of bounded, measurable, smooth functions such that ¢,(z) = 0 ¥z € R, Spa @r(2)dz = 1 and with
B, = {2 6r() > 0} = {2: |2 < 7).

THEOREM B.1: Suppose Assumptions 4.1, 4.2, 4.4, 4.5 and B.1 hold. Let T, be a positive sequence such that
Tn = n~¢ with ¢ > 1/2. Let {B,} be a positive sequence such that B, = o(1) and |D, — Dp|s = Op(Bn). Let
En = Ky /M7y v Bn. Then,

1.

lim sup sup P < sup  é,(0) — én(0)] > Csn> =0; (B.2)

n—ow PeP 10—0"| <7y
2. Let ¢y 7, be defined as in (B.1) with 1, replacing 7. Then there exists C > 0 such that

liminf inf P(Hén — o < cgn) — 1 (B.3)

n—w PeP

3. There exists R > 0 such that |éy, -,

HﬂﬁR.

4. Let Assumption 4.3 also hold. Let {P,,0,} be a sequence such that P, € P and 6,, € O1(P,) for all n and
ﬂgl\/ﬁ’}/l,pmj(en) - T ERL_p, 7=1,...,J, Qp, = O, and Dp, (0,,) »> D. Let

Cnpr(6) = inf (6 + L), (B.4)

For ¢ =0, let Uy (0y,c) be defined as in (D.25). Then,

liminf P, (Up(On,Cnpr,) # &) =1 —a. (B.5)

n—o0

Proof. We establish each part of the theorem separately.
Part 1. Throughout, let C' > 0 denote a positive constant, which may be different in different appearances.
Define the event

E,={2*€X*:|D, — Dp|ow < CBha, ‘ sup |G (8) — G ()] < (Inn)37,,

|0—6'|<Tn

sup [7,,5(0)] < C/+v/n, max  sup  |nn;(0) = ;(0)] < Cr}. (B.6)
0O =L d j0—0 | <

Note that (Inn)?7,/(—7,In7,) = (Inn)?/{Inn = Inn/¢, and hence tends to 0. By Assumption B.1-(i) and arguing

as in the proof of Theorem 2 in Andrews (1994), condition (E.216) in Lemma E.11 is satisfied with v = d. Also, by

Lemma E.13, (E.217) in Lemma E.11 holds with v = 1. This therefore ensures the conditions of Lemma E.11.
Similarly, by Assumption B.1-(i) m? (x,@)/cr]%’j (0) satisfies

m;j(x,0) B mj(x,0")

m?(x,ﬁ) . m?(I,G)) < mj(x’a) mj(xvgl) (B 7)
op;(0) 0P (0) opi(0)  op;(0) 1l op;(0)  op;(0) '
< 2F(z)M(x)||0 — ¢'|. (B.8)
Let F(x) = 2F(z)M (x). By Theorem 2.7.11 in van der Vaart and Wellner (2000),
No(el Fllzz, M3, |- 22) < N(e. O, | - |) < (diam(©)/e)?, (B.9)
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where N(e, 0, | -||) is the covering number of ©. This ensures

o0
n 2
. sup i N €l Pl M g e < o (B.10)
Further, for any C' > 0

Bp[F2(X)1{F(X) > C}] < Bp[FX(X)]P(F(X) > C)

1 L, - AM?
C c’

which implies limc o sup pep Ep[F2(X)1{F(X) > C}] = 0. By Theorems 2.8.4 and 2.8.2 in van der Vaart and

Wellner (2000), this implies that Sp is Donsker and pre-Gaussian uniformly in P € P. This therefore ensures

< 4Ep[|F(X)M(X)P] (B.11)

the conditions of Lemma E.12 (i). Note also that Assumption B.1-(i) ensures the conditions of Lemma E.12 (ii).
Therefore, by Lemmas E.11-E.12 and Assumption 4.4, for any n > 0, there exists C' > 0 such that infpep P(E,) =
1 — n for all n sufficiently large.

Let 0,60" € ©. For each j, we have

Gy, j(8) + pDuj(OOA + 5(6ni(8) — G}, ;(8") = Dy ()X — 05(6n i (6))
<G, ;(8) = G, ;(8)| + pl Dy (6) — Dy (8] sup, IA]+ 10 (60,3(8)) = 05 (6 s(8))]. (B.12)

Assume that the sample path {X;}7, is such that the event E,, holds. Conditional on {X;};2, and using G}, ;(0) —
&), ;(0) = &7 ()i (0),
G, (0) = Gy, ;(0)] < 18, ;(60) — &), ;(6")] + 2sup |Gy, ;(0)| sup [1a,5(0)]
0e® 0cO
C
< B (0) — &L (0)] + 2sup|& (0)|—. (B.13
©4,,(0) — 0, (0)] + 2509 &%, 0) . (B13)

Define the event F;, € C for the bootstrap weights by

F, = {mn €Q: sup \\62(9) — 052(9’)” < (lnn)zTn, sup HQSI,’L(Q)H < C’}. (B.14)
0O

[6—0"|<Tn

By Lemma E.11 (ii) and the asymptotic tightness of &%, for any 1 > 0, there exists a C such that P*(F,) > 1—n
for all n sufficiently large. Suppose that the multinomial bootstrap weight M, is such that F,, holds. Then, the
right hand side of (B.13) is bounded by (Inn)?7, + C/y/n for some C > 0.

Next, by the triangle inequality and Assumption 4.4,

| D, (0) = Dy i (0)] < [ D (0) = Dpj(0)] + [ Dpj(8) — Dpj(0)] + | Dn (6") — Dp;(6)]
< OBy + Crn. (B.15)

Finally, note that by the Lipschitzness of ¢;, |p; (énJ(H)) —©; (énj 0] < C|én,j(9) - fn’j (8")] and
£ni(0) = & 5(0')
— it [V (B 1y 0) - P2 — (T ) - P )]

op,;(0) op,;(0) op;(0) op;(0)
1~ (Ep[my(X,0)]  Ep[m;(X,6)]
V() ons@ ) (P10



Hence,

‘én,j(a) - én,j(olﬂ < H;1|Gn,j(0) - Gn,j(e/)‘

7n’9 My, j o
i H;l\/ﬁ)?}),é( M, (0")
5J

)
i (0) — ——-%
0" o @)
By Lemma E.11, the right hand side of (B.17) can be further bounded by

— — Mon, j 9) My, '(9/)
k- (Inn)?7, + k1 nm’]( — -
n ( ) 2 n \/> UP,j(e) UP,j (9/)

1 /] ng (')
i \/ﬁ‘ ap;(9)

g (0)| + K VnDp;(0)|0 — '] (B.17)

17,5 (0)]

7,5 (0) = 1, (0)] + Criyy '/,

<k Y(Inn)?r, + nnlx/ﬁTn\Cfv + Cry T + Cry'y/nmy,  (B.18)
n

where the last inequality follows from Condition (i) and Lemma E.12 (ii).
Combining (B.12), (B.13), (B.15), and (B.16)-(B.18), we obtain
G2 5(0) + D g (0N + (603 (0)) = G ;(8') = Dug (02 = 5(ns(0))] < Cen. (B.19)

n,j

In particular, if 1 (A% (6, p,2,(0)) N {p’A = 0} # &) = 1, it also holds that 1(A% (€', p,é,(0) + Ceyn) N {p'A = 0} #
@) = 1 because

Gh(0') + Do (0N + 0 (60 5(0))) < G ;(8) + Dij ()N + 9 (6n,(0)) + Cen < En(8) + Cey,
Recalling that P*(F,,) = 1 — n for all n sufficiently large, we then have
Py ({An(0',p,0(0) + Cen) 0 {p'X = 0} + &1})

> P¥ ({AL(6,p,¢n(0) + Cen) 0 {p'X = 0} # B} 0 Fy)
> P* ({AL(0,p,6,(0) n {PA=0} = B} " F) = 1—a—n. (B.20)

Since 7 is arbitrary, we have
en(0) < é,(0) + Cep.

Reversing the roles of 8 and ¢’ and noting that sup pep P(E,) — 0 yields the first claim of the lemma.
Part 2. To obtain the result in equation (B.3), we use that for any 6,0’ € © such that |0 — ¢'| < 7,,
| (0) — ¢,(0")| < Ce,, with probability approaching 1 uniformly in P € P by the result in Part 1. This implies

60(0) = 20, O = | [ 000 = 1y, 0 0)] < [ 10 ) = 00 6, ()0

-

Part 3. By the construction of the mollified version of the critical value, we have ¢, ,, € C*(©) (Adams and

1600 — ) — 6n(0)] 6. () < cgnf 6. (V)dv < Ce.
B.,

™n

Fournier, 2003, Theorem 2.29). Therefore it has derivatives of all order. Using the multi-index notation, for any

s> 0 and |a| < s, the partial derivative V¢, ;. is bounded by some constant M > 0 on the compact set ©, and



hence
f |V, (0)]2dv(0) < Mv(0©) < o,
©

where v denote the Lebesgue measure on R, This ensures V¢, . € L2(0) for all |a| < s. Hence, &, ., is in the
Sobolev-Hilbert space H*(0°) for any s > 0. Note that when a Matérn kernel with v < < is used and é, ., is
continuous, Lemma 3 in Bull (2011) implies that the RKHS-norm | - |3, (in #3(©)) and the Sobolev-Hilbert norm

| - | gv+ar2 are equivalent. Hence, there is R > 0 such that ||é, -,

HB < CHénﬂ—n ‘|I’I”+d/2 g R
Part 4. By Part 2 and the definition of &, , . in (B.4), it follows that

WV
o2

p0n) —en (B.21)
p(en) — €n,

émpﬂ'n (977«) n
= cfl

for some e, = Op(e,), where the second inequality follows from the construction of ng, , in the proof of Lemma
E.1. Note that Lemma E.3 and the fact that ¢, = op(1) by Part 1 imply c,IW(Gn) —en 3 c*,. Replicate equation
(E.22) with &, , r, replacing ¢, ,, and mimic the argument following (E.22) in the proof of Lemma E.1. Then, the
conclusion of the lemma follows. O

B.2 The kernel of the Gaussian Process and its Associated Function Space

Following Bull (2011), we consider two commonly used classes of kernels. The first one is the Gaussian kernel,

which is given by
d —
KB(Q,Q’ _eXp Z 91670/ /ﬂk| ) Bke[ék7ﬂk]a k:]-?"'ada (B22)
where 0 < gk < B < o for all k. The second one is the class of Matérn kernels defined by

Kg(0—0') =

(fy2| —0,)/54] ) (\/iyzd] |6 — 00)/Bil?), v e (0,0), v N,

where D is the gamma function, and k, is the modified Bessel function of the second kind.** The index v controls
the smoothness of Kg. In particular, the Fourier transform K 5(¢) of the Matérn kernel is bounded from above
and below by the order of [[¢[|72*~% as |¢| — o0, i.e. Kz(¢) = O(|¢|~2*~%). Similarly, the Fourier transform of
the Gaussian kernel satisfies K3(¢) = O(||¢|~2¥~%) for any v > 0. Below, we treat the Gaussian kernel as a kernel
associated with v = oo.

Each kernel is associated with a space of functions Hz(R?), called the reproducing kernel Hilbert space (RKHS).
Below, we give some background on this space and refer to Steinwart and Christmann (2008); van der Vaart and
van Zanten (2008) for further details. For D < R% let K : D x D — R be a symmetric and positive definite
function. K is said to be a reproducing kernel of a Hilbert space H(D) if K(-,6") € H(D) for all §' € D, and

f(0) = {f, K(,0)n(p)

holds for all f € H(D) and 6 € D. The space H(D) is called a reproducing kernel Hilbert space (RKHS) over
D if for all § € D, the point evaluation functional g : H(D) — R defined by do(f) = f(#) is continuous. When

“The requirement v ¢ N is not essential for the convergence result. However, it simplifies some of the arguments as one
can exploit the 2v-Holder continuity of K at the origin without a log factor (Bull, 2011, Assumption 4).

[6]



K(6,0") = Kg(6 —0') is used as the correlation functional of the Gaussian process, we denote the associated RKHS
by Hp(D). Using Fourier transforms, the norm on Hg(D) can be written as

o [©
HfH’HB = g\Diff Xﬁ(() d(a (B23)

where the infimum is taken over functions g : R¢ — R whose restrictions to D coincide with f, and we take 0/0 = 0.

The RKHS has a connection to other well-known classes of functions. In particular, when D is a Lipschitz
domain, i.e. the boundary of D is locally the graph of a Lipschitz function (Tartar, 2007) and the kernel is
associated with v € (0,00), Hg(D) is equivalent to the Sobolev-Hilbert space HY*%2(D°), which is the space of

functions on D? such that

. ()
I ponan = int | i (824

glpo=f

is finite, where the infimum is taken over functions ¢ : R¢ — R whose restrictions to D° coincide with f. Further,
if v = o0, Hg(D) is continuously embedded in H*(D?) for all s > 0 (Bull, 2011, Lemma 3).

Theorem 3.1 requires that ¢ has a finite RKHS norm. This is to ensure that the approximation error made
by the best linear predictor ¢j, of the Gaussian process regression is controlled uniformly (Narcowich, Ward, and
Wendland, 2003). When a Matérn kernel is used, it suffices to bound the norm in the Sobolev-Hilbert space H vtd/2

to bound ¢’s RKHS norm. We do so in Theorem B.1 by introducing a mollified version of é,.

B.3 A Reformulation of the M-step as a Nonlinear Program

In (3.13), 6L+ is defined as the maximizer of the following maximization problem

/0~ p/op). (1 - o (20—, (B.25)

where §(#) = max;—1.... sg;(#). Since ® is strictly increasing, one may rewrite the objective function as

0= 1051+ (1= s 0P TGE)) = im0 - o (1 0 (M)

Hence, (X1 is a solution to the maximin problem:

: 1y g% _ 9i(0) —cL(8)
max min (70— p07) (1- (25— ),

which can be solved, for example, by Matlab’s fminimax function. It can also be rewritten as a nonlinear program:

max v
(0,v)e®XR

st (00— p'05) 4 (1- @(M

$sr(0)

which can be solved by nonlinear optimization solvers, e.g. Matlab’s fmincon or KNITRO. We note that the objective

)) >U7j:1,"',J,

function and constraints together with their gradients are available in closed form.

B.4 Root-Finding Algorithm Used to Compute ¢,(0)

This section explains in detail how é,(#) in equation (3.5) is computed. For a given § € ©, P*(Ab (6, p,c) n {p'\ =
0} # &) increases in ¢ (with A% (6, p,c) defined in (3.1)), and so ¢,(f) can be quickly computed via a root-

[7]



finding algorithm, such as the Brent-Dekker Method (BDM), see Brent (1971) and Dekker (1969). To do so, define
ha(€) = % 2oy Yb(c) — (1 — @) where

du(c(0)) = LA (0, p,c) 0 {p'A = 0} # ).

Let &) be an upper bound on é,(#) (for example, the asymptotic Bonferroni bound &(f) = ®~1(1 — «/J)).
It remains to find ¢é,(0) so that h,(é,(0)) = 0 if ho(0) < 0. It is possible that hs(0) > 0 in which case we
output é,(0) = 0. Otherwise, we use BDM to find the unique root to hq(c) on [0,(0)] where, by construction,
ha(€,(6)) = 0. We propose the following algorithm:

Step O (Initialize)

(i) Set Tol equal to a chosen tolerance value;
(ii) Set ¢, = 0 and cy = ¢(#) (values of ¢ that bracket the root é,(6));

(iii) Set c_1 = ¢z, and ¢_5 = [] to be undefined for now (proposed values of ¢ from 1 and 2 iterations prior). Also

set cg = cr, and ¢; = ¢p.

) Compute ;(§n;(0)) j =1, J;

) Compute Dp,,(6);

(vi) Compute Gfl’j forb=1,---,B,j=1,---,J;
) Compute t(cr) and ¥p(cy) for b=1,--- | B;
) Compute h(cr) and hq(cy).

Step 1 (Method Selection)

Use the BDM rule to select the updated value of ¢, say co. The value is updated using one of three methods:
Inverse Quadratic Interpolation, Secant, or Bisection. The selection rule is based on the values of ¢;, i =

—2,—1,0,1 and the corresponding function values.
Step 2 (Update Value Function)

Update the value of h (c2). We can exploit previous computation and monotonicity function 1y (c2) to reduce

computational time:
1. If p(er) = ¥p(cy) = 0, then 1y(ca) = 0;
2. If Yp(cr) = p(ey) = 1, then ¢p(ca) = 1.
Step 3 (Update)
(i) If ha(c2) = 0, then set ¢y = co. Otherwise set cf, = ca.
(ii) Set c_9 = c_1, c_1 = ¢g, ¢o = cr,, and ¢1 = ¢y .
(iii) Update corresponding function values hq,(-).
Step 4 (Convergence)

(i) If ho(ey) < Tol or if |ey — er| < Tol, then output é,(6) = ¢y and exit. Note: hy(cy) = 0, so this criterion

ensures that we have at least 1 — a coverage.

(ii) Otherwise, return to Step 1.



The computationally difficult part of the algorithm is computing 4, (+) in Step 2. This is simplified for two reasons.
First, evaluation of i3 (c) entails determining whether a constraint set comprised of J + 2d — 2 linear inequalities in
d — 1 variables is feasible. This can be accomplished efficiently employing commonly used software.*> Second, we

exploit monotonicity in ) (+), reducing the number of linear programs needed to be solved.

Appendix C Verification of Assumptions for the Canonical Moment

(In)equalities Examples

In this section we verify: (i) Assumption B.1 which is the crucial condition in Theorem B.1, and (ii) Assumption

4.3-(II), for the canonical examples in the moment (in)equalities literature:

1. Mean with interval data (of which missing data is a special case). Here we assume that Wy, W; are
two observable random variables such that P(Wy < W;) = 1. The identified set is defined as

@](P)={HGG‘)CR:EP(W())—9<O79—EP(W1)§0}. (Cl)

2. Linear regression with interval outcome data and discrete regressors. Here the modeling assumption
is that W = Z'0 + u, where Z = [Z3;...;Z4] is a d x 1 random vector with Z; = 1. We assume that Z
has k points of support denoted z!,...,2*¥ € R? with max,—1,__j[2"| < M < c0. The researcher observes
{Wo, W1, Z} with P(Wy < W < W4|Z =2") = 1,r = 1,..., k. The identified set is

O/(P)={0e®@cR: Ep(Wy|Z =2") =270 < 0,270 — Ep(W1|Z =2") < 0,r = 1,...,k}. (C.2)

3. Best linear prediction with interval outcome data and discrete regressors. Here the variables are
defined as for the linear regression case. Beresteanu and Molinari (2008) show that the identified set for the
parameters of a best linear predictor of W conditional on Z is given by the set ©;(P) = Ep(ZZ')"*Ep(ZW),
where W = [Wy, W] is a random closed set and, with some abuse of notation, Ep(ZW) denotes the Aumann
expectation of ZW.

Here we go beyond the results in Beresteanu and Molinari (2008) and derive a moment inequality representa-
tion for ©;(P) when Z has a discrete distribution. We denote by u” the vector u” = " (MpMp) *MpEp(ZZ'),
r=1,...,k, where e” is the r-th basis vector in R¥ and Mp is a d x K matrix with r-th column equal to P(Z =
2")2"; welet ¢" = u"Ep(ZZ')~'. Observe that for any selection W € W a.s. one has u” Ep(ZZ') ' Ep(ZW) =
e"[Ep(W|Z = 2Y);...; Ep(W|Z = 2*)], so that the support function in direction " is maximized /minimized
by setting Ep(W|Z = 2") equal to Ep(W1|Z = 2") and Ep(Wo|Z = z"), respectively. Hence, the identified
set can be written in terms of moment inequalities as
O;(P)={#cOcR: ("[Ep(Z(Z'0 — Wy —1(¢"Z > 0) (W1 — Wp)))] <0
—q"|[Ep(Z(Z'0 — Wy —1(q"Z < 0) (W1 — W) < 0,7 =1,...,k}. (C.3)
The set is expressed through evaluation of its support function, given in Bontemps, Magnac, and Maurin

(2012, Proposition 2), at directions tu"; these are the directions orthogonal to the flat faces of ©;(P).

4. Complete information entry games with pure strategy Nash equilibrium as solution concept.

4SExamples of high-speed solves for linear programs include CVXGEN, availiable from http://www.cvxgen.com and
Gurobi, available from http://www.gurobi.com.


http://www.cvxgen.com
http://www.gurobi.com

Here again we assume that the vector Z has k points of support with bounded norm, and the identified set is

0;(P) ={#e© cR?: equations (5.1),(5.2),(5.3), (5.4) hold for all Z = 2",r =1,...,k}. (C4)

In the first three examples we let X = (Wy, W1, Z)’. In the last example we let X = (Y1,Y5, Z)". Throughout, we
propose to estimate Ep(Wy|Z = z") and Ep(Y1 = s, Ya =t|Z =2"), £ =0,1, (s,t) € {0,1} x {0,1} and r = 1,... K,

using

: S, Weal(Z: = 27)
E,(W|Z =2") = =5— :
" Zizl 1(Z; =2")

- Pl =Y =t,Z; = 2"
En(}/l = 57}/2 :t|Z= ZT) = ZZ:l ( 17n 522 I : )a
Zi:l 1(Z; =2")

as it is done in, e.g., Ciliberto and Tamer (2009). We assume that for each of the four canonical examples under

(C.5)

(C.6)

consideration, Assumption 4.1 as well as one of the assumptions below hold.

AssuMPTION C.1: The model P for P satisfies ming_o 1 min,—1,_p Varp(Wy|Z = 2") > g > 0 and
min,—1, x P(Z=2") >w > 0.

AsSuMPTION C.2: The model P for P satisfies: (1) eig(MpMp) >s; (2) eig(Ep(ZZ")) > s;
(3) eig(Corrp([vech(ZZ"); Wy])) > < and eig(Corrp([vech(ZZ"); Wh])) > <; for some ¢ > 0, where vech(A) denotes

the half-vectorization of the matriz A.
AssuMPTION C.3: The model P for P satisfies min,_y, i (st)ef0,13xf0,1} P(Y1 =8,Yo =1,Z7 =2") > @ > 0.

These are simple to verify low level conditions. We note that Imbens and Manski (2004) and Stoye (2009)

directly assume the unconditional version of C.1, while Beresteanu and Molinari (2008) assume C.1 itself.

C.1 Verification of Assumption B.1 in Theorem B.1

We show that in each of the four examples ?P ) j=1,...,J is Lipschitz continuous in 8 € © for all x € X and
»J

that Dp can be estimated at rate n=/2.

1. Mean with interval data. Here opy(0) = opy, and under Assumption C.1 it is uniformly bounded from

below. Then
my(w,0) _mylw0)| @ -0l ,_,
op,; op, op;(0) o
—1)@-0)
Do) = S im0t
opy

Assumption C.1 then guarantees that Assumption B.1 is satisfied.

2. Linear regression with interval outcome data and discrete regressors. Here again op - (8) = op e,

and under Assumptions C.1-C.2 it is uniformly bounded from below. We first consider the rescaled function

(1) (Wel(Z==")/P(Z=2")=2""0)
Oper

(1) Wl(Z =2")/P(Z =2") —2"0)  (“1)Y(Wel(Z =2")/P(Z=2")—2"0)| . 100" =0 ,_
|27 | =——=, €=0,1,
op.r oPor op,er(6)

[10]



so that Assumption B.1 is satisfied for these rescaled functions by Assumptions C.1-C.2. Next, we observe
that
—1)(1=3) g
Dp; = EV T o =1,.. ok,
’ opr

and it can be estimated at rate n~/? by Lemma E.12. Theorem B.1 then holds observing that |P(Z =
2/ S0 1(Z; = ") — 1| = Op(n~/?) and treating this random element similarly to how we treat 7,, ;(-) in
the proof of Theorem B.1.

3. Best linear prediction with interval outcome data and discrete regressors. Here
mT(XZ-, 9) = qT[Zz(ZZ’H — (WO,i + 1((]TZZ > 0)(Wl,z — WO’L)))] (C?)

hence is Lipschitz in 6 with constant Z;Z!. Under Assumptions C.1-C.2, Varp(m,(X;,0)) is uniformly

bounded from below, and Lipschitz in § with a constant that depends on Z#. Hence ";;(X(ié')g) is Lipschitz in 6

with a constant that depends on powers of Z. Because Z has bounded support, Assumption B.1 is satisfied.

A simple argument yields that Dp can be estimated at rate n~1/2.

4. Complete information entry games with pure strategy Nash equilibrium as solution concept.
Here again op 4, (0) = 0p s, and under Assumptions 4.1 and C.3 it is uniformly bounded from below. The
result then follows from a similar argument as the one used in Example 2 (Linear regression with interval

outcome data and discrete regressors), observing that the rescaled function of interest is now

1Yy =s8,Yo =t|Z =2")/P(Z = 2") — getrr(0)

op,str

, (s,0)€{0,1} x{0,1},r =1,...,k,

and the gradient is

1

Op,str

Vogsir(0), (s,t)€{0,1} x {0,1},r=1,... k,

where gg-(0) are model-implied entry probabilities, and hence taking their values in [0, 1]. The entry models
typically posited assume that payoff shocks have smooth distributions (e.g., multivariate normal), yielding
that Vggst-(0) is well defined and bounded.

C.2 Verification of Assumption 4.3-(II)

Here we verify Assumption 4.3-(IT) for the canonical examples in the moment (in)equalities literature:

1. Mean with interval data. In the generalization of this example in Imbens and Manski (2004) and Stoye

(2009), equations (4.1)-(4.2) are satisfied by construction, equation (4.3) is directly assumed.

2. Linear regression with interval outcome data and discrete regressors. Equation (4.1) is satisfied by
construction. Given the estimator that we use for the population moment conditions, we verify equation (4.3)
for the variances of the limit distribution of the vector [v/n(E,(Wi|Z = ") — Ep(W,|Z = 2" Neeto,1y,r=1,... k-
We then have that equation (4.3) follows from Assumption C.1. Concerning equation (4.3), this needs to be

.

verified for the correlation matrix of the limit distribution of a r x 1 random vector that for each r = 1,... )k
equals any choice in {/n(E,(Wo|Z = 27) — Ep(Wo|Z = 27)), V/n(En(W1|Z = 27) — Ep(W1|Z = 27))}, which
suffices for our results to hold. We then have that (4.2) holds because the correlation matrix is diagonal.
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3. Best linear prediction with interval outcome data and discrete regressors. Equation (4.1) is again
satisfied by construction. Equation (4.2) holds under Assumptions C.1-C.2. Equation (4.3) is verified to hold
under Assumption C.1 in Beresteanu and Molinari (2008, p. 808).

4. Complete information entry games with pure strategy Nash equilibrium as solution concept.
In this case equations (5.3) and (5.4) are paired, but the corresponding moment functions differ by the model
implied probability of the region of multiplicity, hence equation (4.1) is satisfied by construction. Given
the estimator that we use for the population moment conditions, we verify equations (4.2) and (4.3) for the
variances and for the correlation matrix of the limit distribution of the vector /n(E,(Y; = s,Ys = t|Z =
2") = Ep(Y1 = 8,Y2 = t|Z = 2")(s,1)e{0,1}x{0,1},r=1,....k), Which suffices for our results to hold. Equation
(4.2) holds provided that |Corr(Yi1(1 — Yia), Yi1Yi2)| < 1 — € for some € > 0 and Assumption C.3 holds.*¢
To see that equation (4.3) also holds, note that Assumption C.3 yields that P(Y;; = 1,Y;2 = 0,7; = 2") is
uniformly bounded away from 0 and 1, thereby implying that for each (s,t) € {0,1} x {0,1},7 = 1,...,k,
(PY1=s8,Yo=t|Z=2")1-P(Y1 =s,Yo=t|Z=2")))/(P(Z=2")1—P(Z = 2"))) is uniformly bounded

away from zero.

46Tn more general instances with more than two players, it follows if the multinomial distribution of outcomes of the game
(reduced by one element) has a correlation matrix with eigenvalues uniformly bounded away from zero.
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Appendix D Proof of Theorems 4.1, 4.2, 4.3 and 4.4

D.1 Notation and Structure of the Proof of Theorem 4.1

For any sequence of random variables {X,,} and a positive sequence a,,, we write X,, = op(a,) if for any €, > 0,
there is N € N such that suppep P(|Xn/an| > €) <n,¥n = N. We write X,, = Op(a,) if for any n > 0, there is a
M e R, and N € N such that suppep P(|Xn/an| > M) <n,¥n = N.

Table D.0: Important notation. Here (P,,0,) € {(P,0) : P € P,6 € O;(P)} is a subsequence as defined in (D.3)-(D.4) below,
0, € (O + p/v/nBY) 0 ©, Bl = {w e RY: |z, < 1,i = 1,...,d}, BL, = Y0 — 0,) 0 B, Be = lim,, o, B, and A € R%.

n,p n,p?

G, () = ﬁ(m""('zf;Eéf)(m’(X“'m, ji=1,...,J Sample empirical process.
. y
n(mb ()= ; (- . iri
(Gl,’”() = %()M j=1,....J Bootstrap empirical process.
> n,j
Mg () = Zpifgg -1, j=1,...,J Estimation error in sample moments’ asymptotic standard deviation.
. i
Dp;(+) = Vy (W;npji(f)’))) ,i=1...,J Gradient of population moments w.r.t. 6, with estimator ﬁw-(-).
, g
Y1,Pn,5 (%) %&X)‘)), j=1,...,J Studentized population moments.
. - nsJ
T = limyo &y v/nm,p,, (00) Limit of rescaled population moments, constant V6!, € (6,, + p//nB?) N ©
by Lemma E.5.
0, ifm;=0,
i = Lo “Oracle” GMS.
b —00, if T,y < 0.
- i ()60 (), G=1,...,.J,
En,ji() = Ko v/ ()05 (1), ] el Rescaled studentized sample moments, set to 0 for equalities.
: 0, G=d+l,.
@j(§) m;=0
ga;‘ €3) = -0 ;<0 Infeasible GMS that is less conservative than ¢;.
0 G=Ji 1,
Unjo,(A) = {Gnj(On+ %) + pDp, ;(0n)\ + 7} (L + 10 (O + %)) Mean value expansion of nonlinear constraints with sample empirical process
and “oracle” GMS, with 6,, componentwise between 6,, and 6,, + %.
U, (On,c) = {)\ € B;f.p PA=00 U 9, (N) <c, Vi=1,..., J} Feasible set for nonlinear sample problem intersected with p’A = 0.
w;(\) = Zj+pDjA+7i; Linearized constraints with a Gaussian shift and “oracle” GMS.
W(c) = {)\ € ‘Bg P A=0nw;A\)<c¢, Vi=1,..., J} Feasible set for linearized limit problem intersected with p'A = 0.
Cr = inf{ce Ry :Pr(W(c) # &) = 1 —a}. Limit problem critical level.
vb o (N = GIT)L,j (0,) + pDy j(O)N + QOj(én,j (C8))] Linearized constraints with bootstrap empirical process and sample GMS.
Vb, c) = {re B;f.p P A=0n vﬁ.jﬁ’ N <eVi=1,...J} Feasible set for linearized bootstrap problem with sample GMS and p'A = 0.
Uir,jﬂ’ N = GZJ(%) + pDn (0N + o5 (€0 (82) Linearized constraints with bootstrap empirical process and infeasible sample GMS.
Vi e = {re Bg.p pA=0n ’Ué‘j‘g, N <e Vi=1,...J} Feasible set for linearized bootstrap problem with infeasible sample GMS and p’A = 0.
én(0) = inf{ce R, : P*(VP(0,c) # &) =1—a} Bootstrap critical level.
Cn,p(0) = infyepe, Cn (0 + %) Smallest value of the bootstrap critical level in a Bg‘p neighborhood of 6.
6%(0) = finj(0)6n;(0) + (1 — finj(0))n 4+ R, (0) Weighted sum of the estimators of the standard deviations of paired inequalities

[13]



Figure D.1: Structure of Lemmas used in the proof of Theorem 4.1.

Theorem 4.1

Lemma E.1

Lemma E.3

I
Lemma E.4 Lemma E.5

‘ Lemma E.6
’ Lemma E.7 ‘ —{ Lemma E.8 ‘ Lemma E.9

Table D.1: Heuristics for the role of each Lemma in the proof of Theorem 4.1. Notes: (i) Uniformity in Theorem 4.1 is enforced
arguing along subsequences; (ii) When needed, random variables are realized on the same probability space as shown in Lemma
E.1 and Lemma E.17 (see Appendix E.3 for details); (iii) Here (P,,,0,) € {(P,0) : P € P,0 € ©;(P)} is a subsequence as defined in
(D.3)-(D.4) below; (iv) All results hold for any ¢, € (6,, + p//nB%) n ©.

Theorem 4.1

Lemma E.1

Lemma E.2

Lemma E.3

Lemma E.4

Lemma E.5

Lemma E.6

Lemma E.7

Lemma E.8

Lemma E.9

Lemma E.10

P,(p'0n € CI) = P, (Up(0n,énp(0n)) # &) .
Coverage is conservatively estimated by the probability that U, is nonempty.

liminf P, (U (0, Cnp(6n)) # &) = 1 — .

Po(U(n, ci(0n)) # &, W(epr) = &) + Pa(U(On, ¢}, (0n)) = &, W(err) # &) = op(1).
Argued by comparing U, and its limit 20 (after coupling).

PEV(0,¢) # &) — Pr(20(c) # @) — 0 and c}(0,) 5 cox if cox > 0.
The bootstrap critical value that uses the less conservative GMS yileds a convergent critical value.

SUpyepe | max; (un j 0, () — cb(0,)) — max;(t;(A) — czx)| = op(1), and similarly for w; and U{l,j,%'

The criterion functions entering U,, and 2J converge to each other.

1/2 -1

Local-to-binding constraints are selected by GMS uniformly over the p-box (intuition: pn="* = op(k, ")),

and [£,(0,) = rp ' vnop! (00) Ep, [mi (X, 0,)]] = op(1).
vy > 0130 >0,: Pr({20(c) # &} n {W~°(c) = &}) <7, and similarly for V,!.
It is unlikely that these sets are nonempty but become empty upon slightly tightening stochastic constraints.

Intersections of constraints whose gradients are almost linearly dependent are unlikely to realize inside 20.
Hence, we can ignore irregularities that occur as linear dependence is approached.

If there are weakly more equality constraints than parameters, then c is uniformly bounded away from zero.
This simplifies some arguments.

If two paired inequalities are local to binding, then they are also asymptotically identical up to sign.
This justifies “merging” them.

7, (+) converges to zero uniformly in P and 6.

[14]



D.2 Proof of Theorems 4.1 and 4.2

D.2.1 Main Proofs

Proof of Theorem 4.1
Following Andrews and Guggenberger (2009), we index distributions by a vector of nuisance parameters relevant

for the asymptotic size. For this, let vp = (71,p,V2,P,V3,P), Where v1 p = (Y1,p1,- -+ ,71,p,J) With
,p;(0) = 0p5(0)Ep[m;(Xi,0)], 5 =1,---,J, (D.1)

~Ya,p = (s(p, ©1(P)),vech(Qp(0)),vec(Dp(0))), and 73 p = P. We proceed in steps.
Step 1. Let {P,,0,} € {(P,0): PcP,0 € O;(P)} be a sequence such that

liminf inf inf P(p'0 € CI,) = liminf P,(p'0, € C1,,), D.2
im in érépeeér}m) (p'0 € ClL,) = liminf P, (p'0,, € CI) (D.2)

with CI,, = [—s(—p,Cpn(én)), s(p,Cn(é,))]. We then let {l,} be a subsequence of {n} such that
liminf P, (p'0,, € CI,,) = lim P, (p'0,, € C1,,). (D.3)
n—0o0 n—o0

Then there is a further subsequence {a,} of {l,,} such that

lim &, \/anUPa 0o, )Ep, [mj(Xi,0a,)] =m; €R0), j=1,...,J (D.4)

Gy —00

To avoid multiple subscripts, with some abuse of notation we write (P,,6,,) to refer to (P,,,0,,) throughout this
Appendix. We let

0 ifm;=0
;= 1 T ’ (D.5)
—oo if T, < 0.

The projection of ,, is covered when

— 8(—=p,Cn(én)) < P'On < s(p,Cn(cn))

inf p'? <o < sup p'd
< < n m
sthed, Yamald <o) vif ~F stde®, Yol < () vj

infy p'A

stae (o —g,), Yol

Gn _](0 + )
sup, p’'A
Vama s 0,428) , (D-6)
stAe X= (@ 0n), mgcn(en+%)vv]
inf,\p’/\
. sthe LHO —0,), <0
(G (O + 28) + pDp, 5 (0N + V11 p, i (O + )L+ 100, (Bn + 28)) < én(0n + 25), )
supy p'A
< sthe YO —0,), . (D7)

(Gos (O +22) + pDiy 3 BN + V1 g )} (L + g (B + 22)) < 600 + 22), ¥

with n, j(-) = op;(-)/6n,;(-) — 1 and where we localized 9 in a 4/n/p-neighborhood of © — 6,, and we took a mean

[15]



value expansion yielding Vj

\/7777% (0 + M) A _ A
: (G (On + Z2) + pDr, 5 (Ba)N + V71,2, (0) (10 (0 + 2

Guslba 22) T o B
n,j vn

Denote Bf , = ?(@ —0,) n B with B4 = {x e R : |2;] < 1,i = 1,...,d}. The event in (D.7) is implied by

inf,\p’)\
= s.t.Ae BY P <0
{Gnj (O + J8) + pDp, j(0u)A + V171,75 (00) (L + 10 (0 + JB)) < En(B + 2£), V5
supy p'A
< st e BY P ,

{Gu,j(On + 28) + pDp, ()X + /11, P, 5 (00) (L + 11,5 (O + 5£)) < &0 (0 + 2£), Vi
(D.9)

Step 2. This step is used only when Assumption 4.3-(II) is invoked. When this assumption is invoked, recall that
in equation (2.5) we use the estimator specified in Lemma E.10 equation (E.188) for op;,j = 1,...,2R; (with
Ry < J1/2 defined in the statement of the assumption). In equation (3.1) we use the sample analog estimators of
op; forall j =1,...,J. To keep notation manageable, we explicitly denote the estimator used in (2.5) by 65\4 only
in this step but in almost all other parts of this Appendix we use the generic notation &;.

For each j = 1,..., Ry such that

T =Tl +r =0, (D.10)
where 7§ is defined in (D.5), let
i 1 if 91.p,,5(0n) =0 =71.p,.j+R, (6n),
My = V1P g+ Ry (0n) (L4004 Ry (Ot 22)) otherwise, (D.11)
Y1,Pn i+ Ry (0n) (1470 j+ Ry (97L+\/*))+71 Ppj (0n) (1470, J(G”Jrﬁ))
i 0 if 91,P,,5(0n) = 0 =71.p, j+R: (6n),
fij+r, = V1, P i (On) (L4100, (O + 2£)) otherwise (D.12)
Y1,Pp i+ Ry (On) (1470, 5+ Ry (On + ﬁ))+71,Pn 3 (0n) (L0, (0 + ) ’
For each j = 1,..., Ry, replace the constraint indexed by 7, that is
\an "(en + M) A
AM ; )\p\/» < én(gn + 7%)7 (D13)
L0, + 22)
with the following weighted sum of the paired inequalities
- \anj(e "‘M) B fm]+Rln(9 "‘f) 0 +/\p) (D.14)
Hj— — Mj+R - < cn n ) .
M(c9 —I—yi) ' U%ﬁRl(G -I—f) \Vn
and for each j = 1,..., Ry, replace the constraint indexed by j + Ry, that is
\/ﬁmj-&-R],n(Gn + %) )\p
< ¢ _ &
6,1 ) < &, (0 + \/ﬁ)’ (D.15)
n,j+R \" 1 Vn
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with

B \/ﬁmnd(en + %) iy \/’E’mj-i-Rh"(en + /\72) <4 (9 + )\p
K= (0, + 22) Hi+Ra oM g, (O + %) Vvn

On,j vn
It then follows from Assumption 4.3-(II) that these replacements are conservative because

); (D.16)

mj+R1,n(9n + %) mn,j(en + %)

G+ 22) S oM (9, 4 22)
n.j+R: \Un T 75 n,j\On T 5

and therefore (D.14) implies (D.13) and (D.16) implies (D.15).

Step 3. Next, we make the following comparisons:

Ty = 0=71; = Ve, ;(0n), (D.17)

*

Ty = =0 = Vnm,p, ;(0n) > —0. (D.18)

For any constraint j for which ¥ ; = 0, (D.17) yields that replacing v/ny1,p,,;(0n) in (D.9) with 7f ; introduces a
conservative distortion. Under Assumption 4.3-(II), for any j such that (D.10) holds, the substitutions in (D.14)
and (D.16) yield fijv/m71,p,,5(0n) (1 + 1,5 (0n + 22)) = BeRo VAN, Py Ry (On) (14 sy (0 + 22)) = 0, and
therefore replacing this term with 7ri"7 ;=0= 7ri"’ j+Ry 18 inconsequential.

For any j for which 7§ ; = —c0, (D.18) yields that for n large enough, v/nv1,p, ;(0») can be replaced with 7} ..

To see this, note that by the Cauchy-Schwarz inequality, Assumption 4.4 (i)-(ii), and A € B2 . it follows that

n,p’
pDp, j(0)A < pVd(|Dp, j(8n) = D, ;(6x)| + | Dp, j(8)]) < pVd(pM /i + M), (D.19)

where M and M are as defined in Assumption 4.4-(i) and (ii) respectively, and we used that 6,, lies component-wise
between 6, and 6,, + %. Using that G, ; is asymptotically tight by Assumption 4.5, we have that for any 7 > 0,
there exists a T > 0 and Ny € N such that for all n > N,

P, < max {Gn (00 + AP
g

_ A
%) + prmj(Gn)A + \/’E’}/l’pmj(en)}(]. + nn,j(en + l)) < 07 Ve Bg,p> >1—- 7'/2.
1,j=®©

\/ﬁ
(D.20)

To see this, note that 7'('2} = —oo if and only if lim,, g’hpnj (0n) = m1j € [-0,0). Suppose first that my; > —o0.

Then for all € > 0 there exists Ny € N such that X—f’ylpnj (0,) —m;| <€, for all n = Ny. Choose € > 0 such that

[17]



m1j + € <0. Let N = max{Nq, No}. Then we have

Ap h Ap d
P, max {G, (0, + —=) + pDp, j(0n)X + Vny1,p, i (00) (1 + 0 (0, + —=)) <0, VA€ B
(] 771] - 7 \/ﬁ ! ! ! \/ﬁ P

Ap Ap
> P, max T+ p(M + pM + 0 1+ (0, +—=)<0n max G, ,;60,+—=)<T
( ax [T+ o0+ M) s B} 14 s B+ ) <00 s GO+ ) )
. Ap Ap
> P, max {T + p(M + pM/+/n) + k(715 + €)1 4+ 0y (0 + <0n max G, (0, + <T
(jmn_w{ UL+ MV + i + )L g 4 SE) <00 Gl +22) )
=P max {T—F(M—l- M/\/n) + (7r'+€)}(1+ (0 —I—)\p))<0m max G, (0 +M)<T
" jir¥ == (Kn  Kn P Y I3 Vn b jim j=—c0 " Vn h
=P max G, ;(0 +M)<T >1-7/2, Vn=N
VS S AR e
If m1; = —o0 the same argument applies a fortiori. We therefore have that for n > N,
inf)\p’/\
Pn< sit.\e BY o <0
{Gnj(On + 28) + pDp, i (0 + V171,55 (00) (L4 110 (0 + J5)) < En(0r + 2£), Vi
supy p'A
< sit.\e BY P )
{Gn,;(0n + %) + pDij(én)/\ +V1v1,P, 5 (0n) (1 4 1,5 (0 + \/\/%)) < En(On + %),Vj
(D.21)
infy p'A
>Pg< st.he B, <0
(s (O + 22) + pDip, 5 (B)A + 8} (L + 1y (0 + 22) < 206, + 22), )
sup,y p'A
< st.heBE >Tm.(D2m
{Grj(On + 28) + pDp, j(0n)X + 78 H (14 1105 (0n + 2£)) < &0 (00 + 2£),Vj

Since the choice of 7 is arbitrary, the limit of the term in (D.21) is not smaller than the limit of the first term in
(D.22). Hence, we continue arguing for the event whose probability is evaluated in (D.22).

Finally, by definition ¢, (+) = 0 and therefore inf ¢ B, én(0n + f) exists. Therefore, the event whose probability
is evaluated in (D.22) is implied by the event

ianp’/\
st.Ae B, <0
{Gr,j(On + 28) + pDp, j(O)X + 7F 31+ 1105 (0n + 2£)) < infrcpg  En(0n + 2£),Vj

supy p'A
sit.Ae BY (D.23)

n,p’

<
{{G ,J(Hn ) + pDP (é )/\ + 71'1’]‘}(1 + 77n,](0n + %)) < inf}\eB;{,p én(an + %)avj
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For each X € R%, define

Un,j.0,(A) = {G,, ;(0, + j}ﬂ) +pDp, ;(0)\ + w{jj}(l + 1, (0 + \/\/%)), (D.24)

where under Assumption 4.3-(1I) when 7{ ; = 0 and ¥ ;, p = 0 the substitutions of equation (D.13) with equation
(D.14) and of equation (D.15) with equation (D.16) have been performed. Let

Up(0n,c) = {\ e BY a i DPA=00 U 9, () <c, Vi=1,...,J}, (D.25)
and define
. Ap
Cnp = f ¢,(0+—). D.26
bop =\ J00 G0+ 2 (D-26)

Then by (D.23) and the definition of U,,, we obtain
Po(p'0n € Cl,) = Py (Un (00, Cnp) # D) - (D.27)
By passing to a further subsequence, we may assume that
Dp,(0n) — D, (D.28)

for some J x d matrix D such that | D| < M and Qp, > Q for some correlation matrix . By Lemma 2 in Andrews
and Guggenberger (2009) and Assumption 4.5 (i), uniformly in A\ € B¢, G,,(6,, + \F) < 7 for a normal random
vector with the correlation matrix 2. By Lemma E.1,

limiolngn (Un(0n,np) # F)=1—a. (D.29)
n—

The conclusion of the theorem then follows from (D.2), (D.3), (D.27), and (D.29). O

Proof of Theorem 4.2
The argument of proof is the same as for Theorem 4.1, with the following modification. Take (P, 8,,) as defined
following equation (D.4). Then f(6,,) is covered when

inf f(¥) sup f(v)
{s.t.ﬁe@, Vrmag ) o (9 ),v;} < Jn) < {s.t.ﬂe@, Vma ) o (9 ),Vj}

IO n IEZRION n
infy V f(6n) A
sthe L0 —0,), “fw(—i;%)\f(e + 28),Vj <0
supy V£ (6)A
sthe YO - 0,), —C’jﬂ"(;(ef{) <el(0n+ 2205 [
where we took a mean value expansion yielding
O+ 22) = £(8.) + L=V FBA (D.30)

NG
for ,, a mean value that lies componentwise between 6,, and 6,, + %, and we used that the sign of the last term

in (D.30) is the same as the sign of V f(6,)\. With the objective function in (D.30) so redefined, all expression in
the proof of Theorem 4.1 up to (D.24) continue to be valid. We can then redefine the set Uy, (6,,c) in (D.25) as
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Un(Onyc) = {Xe BL IV F(0,)] V)N =00 w0, (N) <c, Vj=1,...,J}

Replace p’ with |V f(8,,)] "'V f(6,) in all expressions involving the set Uy, (6,,, & (6,,)), and replace p’ with |V £(8,,)| 'V f(6.,)

n Cnp

in all expressions for the sets V,/(6/,,¢/(6,)), and in all the almost sure representation counterparts of these sets.

Observe that we can select a convergent subsequence from {|V f(6,,)'| "1V f(¢,,)} that converges to some p in the
unit sphere, so that the form of 20(c, ) in (E.17) is unchanged. This yields the result, noting that by the assumption

IVf(82) = V£(8,)] = Op(p/v/n) O
D.2.2 A High Level Condition Replacing Assumption 4.3 and the p-Box Constraints

Next, we consider an assumption which is composed of two parts. The first part aims at informally mimicking
Assumption A.2 in Bugni, Canay, and Shi (2017) and replaces Assumption 4.3. The second part replaces the use

of the p-box constraints. Below, for a given set A = RY, let | A|z = sup,e 4 |la| denote its Hausdorff norm.
AssuMPTION D.1: Consider any sequence {P,,0,} € {(P,0) : P P,0 € ©;(P)} such that

H:Ll\/ﬁ71,Pn,j(07L) — T € R[—oo]» .] = 17 cee ‘]7

QPn ﬂ’ Q7
Dp, (6,) — D.
Let 7ri“j =014 my; =0 and ﬂTj = —00 if m; < 0. Let Z be a Gaussian process with covariance kernel Q. Let
mj(/\) EZj +pD]’/\+7Tij. (D31)
(1) Let
W(e)={AeBL:pPA=0ntw;(N) <c, Vj=1,...,J}, (D.32)
cox =inf{ce Ry : Pr(W(c) # &) =1 — al. (D.33)
Then:

(a) If cox > 0, Pr(2W(c) # &) is continuous and strictly increasing at ¢ = Cy#.

(b) If cpx = 0, liminf,, o Pn(Un(0,,0) # &) =1 — «, where Uy, (0p,c¢), ¢ =0 is as in (D.25).

(1) Let
@(C)E{)\ERd:p')\=OmmJ()\) <c¢ Vj=1,...,J},

which differs from (D.32) by not constraining A to %ﬁ, and let ¢ = ®~1(1 — a/J) denote the asymptotic
Bonferroni critical value. Then for every n > 0 there exists M, < o s.t. Pr(|20(¢)|u > M,) <.

D.2.3 Proof of Theorem 4.1 with High Level Assumption D.1-(I) Replacing Assumption
4.3, and Dropping the p-Box Constraints Under Assumption D.1-(II)

LEMMA D.1: Suppose that Assumption 4.1, 4.2, 4.4 and 4.5 hold.

[20]



(1) Let also Assumption D.1-(I) hold. Let 0 < o < 1/2. Then,

liminf inf inf P(p'0eCIl,)>1-a.
n—o PeP e (P)

(II) Let also Assumption D.1-(II) and either Assumption 4.3 or D.1-(I) hold. Let ¢, = inf{c e Ry : P*({A% (0, +00,c)n
{PA=0}} # &) = 1—a}, where A is defined in equation (3.1) and CI, = [—5(—p,Cn(é,)), 5(p,Cn(én))]
with s(q,Cpn(¢n)),q € {p, —p} defined in equation (2.5). Then

liminf inf inf P(p'0eCIl,)>1-a.
n—w PeP 9O (P)

Proof. We establish each part of the Lemma separately.

Part (I). This part of the lemma replaces Assumptions 4.3 with Assumption D.1-(I). Hence we establish the

result by showing that all claims that were made under Assumption 4.3 remain valid under Assumption D.1-(I).

We proceed in steps.

Step 1. Revisiting the proof of Lemma E.6, equation (E.133).

Let J* be as defined in (E.29). If 7* = ¢J we immediately have that Lemma E.6 continues to hold. Hence we
assume that J* # ¢J. To keep the notation simple, below we argue as if all j = 1,...,J belong to J*.
Consider the case that ¢ x > 0. For some ¢+ > > 0, let

W(e—08)={reBl:pPA=0nw;(\)<c—4,Vj=1,...,J}, (D.34)

where we emphasize that the set 20(c — §) is obtained by a d-contraction of all constraints, including those indexed
by j =J1+1,...,J. By Assumption D.1-(I), for any 7 > 0 there exists a § such that

n = |Pr(W(cex) # &) — Pr(W(crs — ) # )| = Pr({W(crx) # T} 0 {W(crex —0) = T},
n = |Pr(W(ces +06) # &) — Pr(W(cyx) # )| = Pr({W(crx +96) # T} 0 {W(erx) = T} -
The result follows.

Step 2. Revisiting the proof of Lemma E.2.

Case 1 of Lemma E.2 is unaltered. Case 2 of Lemma E.2 follows from the same argument as used in Case 1 of
Lemma E.2, because under Assumption D.1-(I) as shown in step 1 of this proof all inequalities are tightened. In
Case 3 of Lemma E.2 the result in (D.29) holds automatically by Assumption D.1-(I)-(ii). (As a remark, Lemmas
E.7-E.8 are no longer needed to establish Lemma E.2.)

Step 3. Revisiting the proof of Lemma E.3. Under Assumption D.1 we do not need to merge paired inequalities.

Hence, part (iii) of Lemma E.3 holds automatically because ¢} (§) < ¢;(§) for any j and £. We are left to establish
parts (i) and (ii) of Lemma E.3. These follow immediately, because Lemma E.6 remains valid as shown in step 1
and by Assumption D.1-(I), Pr(20(c) # &) is strictly increasing at ¢ = ¢ * if ¢+ > 0. (As a remark, Lemma E.9

is no longer needed to establish Lemma E.3.)

In summary, the desired result follows by applying Lemma E.1 in the proof of Theorem 4.1 as Lemmas E.2, E.3
and E.6 remain valid, Lemmas E.4, E.5, E.10 and the Lemmas in Appendix E.3 are unaffected, and Lemmas E.7,
E.8, E.9 are no longer needed.

Part (II). This is established by adapting the proof of Theorem 4.1 as follows:

In the main proof, we pass to an a.s. representation early on, so that 2 realizes jointly with other random

variables (we denote almost sure representations adding a superscript “*” on the original variable). At the same
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time, we entirely drop p. This means that algebraic expressions, e.g. in the main proof, simplify as if p = 1, but it

also removes any constraints along the lines of A € Bff,p in equation (D.9). Indeed, (D.9) is replaced by:

infy p'A
Ce= s.t.\ e W*(e), <0
{G}; (O + X/v/0) + Dp, j(0n)X + /171, 5 (0n)}(1 + 10,3 (O + X/v/)) < En(0n + A//1), V]
sup, p'A
< s.t.\ € W*(e),

{G}, ;(0n + X/v/n) + Dp, j(0n)A + V/nm1 b, 5 (0n) (1 + 10 (On + A/ v/1)) < En(0n + A//1), V)

yielding a new definition of the set U* as

Uk(On,c) ={AeW* @) : pPA=0nu’_ iy (\)<c Vj=1,...,J}.

n,,60n

Subsequent uses of p in the main proof use that || < v/dp = Op(1). For example, consider the argument following
equation (E.30) or the argument just preceding equation (D.29), and so on. All these continue to go through because
20*(¢) = O(1) by assumption.

Similar uses occur in Lemma E.1. The next major adaptation is that in (E.27) and (E.28): we again drop p
but nominally introduce the constraint that A € 20*(¢). However, for ¢ < ¢, this condition cannot constrain 20*(c),
and so we can as well drop it: The modified 20*(c) equals 20*(c).

Next we argue that Lemma E.7 continues to hold, now claimed for 20*. To verify that this is the case, replace
B? with 2J(¢) throughout in Lemma E.7. This requires straightforward adaptation of algebra as 20(¢) is only
stochastically and not deterministically bounded.

Finally, in Lemma E.3 we remove the p-constraint from V> and V! without replacement, and note that the
lemma is now claimed for 0!, € 6 + |20(¢)| z/v/nB?. Recall that in the lemma the a.s. representation of a set A is
denoted by A, and with some abuse of notation let the a.s. representation of 2 be denoted Qﬁzﬂl Now we compare
VP and V! with 0. To ensure that \ is uniformly stochastically bounded in expressions like (E.95), we verify that
the modified f/?f and an inherit the property in Assumption D.1-(II). To see this, fix any unit vector ¢ 1 p and
notice that any t = A/|A| for A € ﬁ}(c) or for A e V(6 ¢) or for A € VI(6.,,¢), 0 < ¢ < G, satisfies this condition.
By Assumption D.1-(II) and the Cauchy-Schwarz inequality, max, ~ © t'A = O(1) for any ¢ < & Since the value
of this program is necessarily attained by a basic solution whose associated gradients span ¢, it must be the case
that such solution is itself O(1). Formally, let C' be the index set characterizing the solution, Z¢ be the vector
of realizations Zg corresponding to j € C, and K¢(6’) the matrix that stacks the corresponding gradients; then
(KC(0,))~1(c1 — Z€) = O(1). By Lemma E.7 and the fact that D,(¢,) & D by Assumption 4.4, we then also
have that (K€ (0,))~(c1 — G? ;) = Op(1), and so for ¢ < ¢, V* is bounded in this same direction. It follows that,
by similar reasoning to the preceding paragraph, the comparison between V! (0’ ,¢) and 2(c) in Lemma E.3 goes
through. O
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D.3 Proof of Theorems 4.3 and 4.4

D.3.1 Assumptions in Pakes, Porter, Ho, and Ishii (2011), Chernozhukov, Hong, and
Tamer (2007), and Bugni, Canay, and Shi (2017) That Allow for Simplifications
of the Method

We analyze calibrated projection under assumptions that are more stringent than for Theorem 4.1. The reward
is considerable computational simplification and, in some cases, removal of a tuning parameter. The additional
assumptions have been used in the related literature. Their logical relation to each other and to explicit constraint
qualifications is further analyzed in Kaido, Molinari, and Stoye (2017). For our purposes in this paper, we just state
without proof that, given Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5, all assumptions below, including the minorant
assumptions attributed to other papers, are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011); hence,
all results reported below apply under the Pakes, Porter, Ho, and Ishii (2011) assumptions.*”

For 0 € 00(P), denote by J(P,0) the set of inequalities j s.t. Ep (m;(X;,0)) = 0. Denote by N(P,0) the
positive span of (Dp ;) e (pg) and by T(P,0) = {t : D ;t < 0,5 € J(P,0)} the corresponding dual cone. (These
are the normal and tangent cones of ©7(P) at §.) For a given p e R? : |p| = 1, let s(p,0;(P)) = maxgee, (p) p'0
and H(p, ©;(P)) = arg maxgecq, (p) P'0-

AssUMPTION D.2 (A weakening of Assumption 4(a) in Pakes, Porter, Ho, and Ishii (2011)): There is a class
of DGPs Q < P such that any P € Q satisfies the following conditions:

1. There exists a (universal) ep > 0 s.t.

min min max t'Dp;(0) < —ep.
0eH (p,©1(P)) |t|=1 je{1,....J}:
Ep(m;(X;,0)/0;(0))>—¢p

2. There exists a (universal) ep > 0 s.t.

min max t'Dp;(0) < —ep.
(P) lth=1 je{l,..,J}:
Ep(m;(Xi,0)/0;(0))>—ep

max
0cH (p,O;

There are two layers to these assumptions. First, they say that from some support point (part (1)) or all support
points (part (2)), there are directions that point uniformly inside ©;(P) in the sense of all moment inequalities
decreasing in value. The obvious counterexample would be an extremely pointy corner (a “spike”).

In addition, the assumptions apply to “tightened” tangent cones that use all inequalities which are almost
binding, where “almost” is operationalized with the small but positive constant ep. Together with smoothness of
moment conditions, this implies that, by moving a small (but boundedly nonzero) distance in the direction of steepest
descent from the support point, one can find a point § at which max; Ep (m;(X;,0)/0;(0)) is boundedly negative.
This implies that the sample analog of ©;(P) is nonempty with probability approaching 1 (the proof in Appendix
D.3.2 includes a formal version of this argument). In particular, it implies that a vestige of the “degeneracy”
assumption in Chernozhukov, Hong, and Tamer (2007) is imposed. Some invocations of the assumption strictly
speaking only use one of the two features (again, see Kaido, Molinari, and Stoye (2017) for details), but we do not
disentangle them here. Note, however, that the second implication renders the assumption implausible whenever

the sample analog of ©(P) is empty, an empirically frequent occurrence.

“TOur own assumptions meaningfully exceed those of Pakes, Porter, Ho, and Ishii (2011) only through Assumption 4.3.
The absence of such an assumption in Pakes, Porter, Ho, and Ishii (2011) is actually an oversight, and ours or a similar
assumption must be added for their Theorem 2 to hold.
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Next, consider:

AssuMPTION D.3 (Linear Minorant — Chernozhukov, Hong, and Tamer (2007) display (4.5)): There ezist
universal constants C,6 > 0 and a class of DGPs Q < P such that for each P € Q,
‘ maxJEp (m;(X;,0)/0;(8)) = Cmin{d,d (8,0:(P))}.

Jj=1,...,

AssuMPTION D.4 (Linear Minorant Along Support Plane — Bugni, Canay, and Shi (2017) Assumption A3(a)):
There exist universal constants C,6 > 0 and a class of DGPs Q < P such that for each P € Q and for each

q € {p,—p},
max_ Ep (m;(Xi,0)/0;(0)) > Cmin {6, d (0, H(q, 01(P)))}

Jj=1,...,

for all 0 with ¢'6 = s(q,©1(P)).

These assumptions are lifted from the cited papers. In the original papers, they are polynomial minorant
conditions: The minima are raised to some power y. However, for our setting and criterion function, the special
case x = 1 applies. Note also that Assumption D.4 is closely analogous to Assumption D.3 but imposes the
minorant condition on the “null restricted model” in which the parameter space is restricted to the true supporting
hyperplane of ©;(P). It is easy to see that the assumptions are logically independent.

A further strengthening of assumptions is:

AssuMPTION D.5 (A Weakening of Assumption 3 in Pakes, Porter, Ho, and Ishii (2011)): There exists a
universal constant & > 0 and a class of DGPs Q < P such that for any P € Q and for each q € {p,—p} and any
0 € H(q,©1(P)), T(0) < {t:q't/|t] < —0}.

Note the implication that 7 (P,#) is uniformly pointy. The assumption is weaker than in Pakes, Porter, Ho,
and Ishii (2011) because they also assume ©;(P) < T (6) and separately (although it is also an implication) that
H(p,©;(P)) is a singleton.

Our final assumption gives a further strengthening by requiring the support set in direction of projection to be

a singleton:

AsSsuMPTION D.6 (Assumption 1 in Pakes, Porter, Ho, and Ishii (2011)): There is a class of DGPs Q < P such
that for any P € Q and q € {p, —p}, H(q,01(P)) is a singleton. (Its sole element will be denoted 0} below.)

D.3.2 Proof of Theorem 4.3: Simplifications for Calibrated Projection

Part 1

Let 6 attain the outer minimum in Assumption D.2-1, let t* attain the inner minimum given 9;, and consider
any 7 < ep/2M, where ep is from Assumption D.2-1 and M is from Assumption 4.4(ii). Then a Mean Value
Theorem yields

Ep(m;(Xi, 0% + nt* Ep(m;(X;, 0% )
P(m]( - D *77 )) _ P(m]( p)) +77DPJ(0)t*
O’p’j(ep +nt ) O’pvj(a;;)
< 04 n(nM —ep)
Ep(mj(Xi,G;“ +77t*))
< - 2. D.35
:>m]ax OP,j(G;k ) nep/ ( )
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This will be used later but also implies

Ep(mj(X;,0F + t*ep/2M))

Dp < —e2/AM < 0 D.36
m]aX O'pj(a* —|—t*e’:‘D/2M) ED/ = ( )
X, 0% +t*ep/2M
— P<max my (X, 05 + tep/2M) 0)H1
i 60 +t*ep/2M))

—  P(0F +t*cp/2M € CIL,) — 1

uniformly in Q. Hence, noncoverage risk for any v € [—s(—p, ©;(P)),p (0} + t*ep/2M)] is entirely driven by the
possibility that C1,, is too high, and conversely for ~ € [p/(e;; + t*ep/2M, s(p, ©1(P)))]. As these noncoverage risks

are monotonic in -, the simplification is justified. O

Part 11
Note first that, as an immediate implication of D.36, the event that mingee max; [y ;(6)/6x,;(0)|, = 0, hence

this value is attained on © I, occurs w.p.a. 1 uniformly in Q.
Next, we show that v/n(s(p,01) — s(p, 01(P))) = Og(1). Define

C(—¢) = {9 €O max Ep (m,(Xi,0)/or,(0)) < —g}.

Note that in this notation, ©7(P) = C(0). By (D.36) and because C(—¢) is closed by assumptions on m;, we have
that H(p,C(—¢)) is nonempty for ¢ € [0,¢%,/4M]. Next, consider any n < ep/2M, then p/ (6% + nt*) > p/'0% —n
which together with (D.35) implies

s(p,C(=nep/2)) = s(p,O1) = =1,
Set & = nep/2, then equivalently we find that for ¢ < £%,/4M, s(p,C(—¢) — s(p,O1)) = —2¢/ep. Next, we have that
uniformly over 6 € U co,c2 jan H (P, C(—¢)),

\/ﬁm?‘x‘mn,jw)/&n,jw)u = mjax{(l_nn,j }G ,J +\/7EP m](Xl79)/OPJ( )>|+}
< Z(l—nnu |Gr n,j(0) + v/nEp (m;(X;,0)/op,; (0 ))|+
< J(1+00(1))|0g(1) — Vel

so in analogy to CHT (Theorem 4.2, step 1 of proof) we find /n|s(p, ©1) — s(p, ©1)|— = Og(1). On the other hand,
from Assumption D.3 we have that uniformly over 6 € ©,

Vima [ 5 (6)/60,5(6)], = max {(1 3 (0)) (G5 (0) + VR Ep (my (X0, 0) /or,; (0))], |

J

\Y

= 0,3 (0) |G i (0) + VnEp (m;(Xi,0)/op;(9))]

km—‘

> (14 00(1))[Oo(1) + v/nC min {5,d(0,0:(P))}|, ,

k\*—‘

i

hence v/ns(p, ©1) — s(p, ©1(P))|+ = Oa(1).
We next argue that d(6,, H(p,0;(P))) = Og(n~'/?) (the proof for d(f_,, H(—p,0;(P))) is identical). To do
so, let k = s(p,0;7(P)) — s(p,©;) and define § = 6, + kp, noting that p'6 = s(p,©;(P)) by construction and so
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Assumption D.4 applies to 6. Let § € H(p, ©;(P)) be such that d(8, H(p,0;(P))) = |6 — 6], then

4 (00, 1(p. 01(P))) < (6,,0) + 4 (8.5, 01(P)) < [0, -] + |3 9] - |

0 — 5” + k.
We already have \/nk = Og(1), so it suffices to show y/n|f — 0] = Og(1). Using Assumption D.4, we have

Cmin {610 -9} < _max { EP51200)
Jj=1,...,. J O'P,j(e)

- {Ep(mm{i,ép))
J

op,;(0p)

+ /%DPJ- (éj)p}

Ep(m;(X;,0 .
< max M + max {kDpj (GJ»)p}.
J=1,d opj(0,) J=1yd

Here, the equality step uses that 6 = ép + l%p and introduces éj, which lies componentwise between 6 and ép. In
the last line, the first term equals 0 w.p.a. 1 because ép €O 1, and the second term is bounded by kM , hence the
result. To justify Simplification 2, combine the above algebra with the following observations:

(i) For a sequence P, € Q, coverage of p'# for some 6 € H(p,©;(P,)) implies coverage of s(p,0;(P,)). In
the proof of Theorem 4.1, starting with display D.7, it therefore suffices to show the claim for some, possibly
data dependent, sequence 6, € H(p,Or(P,)), and then again (in case of two-sided testing) for a sequence 6,, €
H(—p,01(F)).

(ii) All proofs go through if coverage is evaluated at 6, but Dp; and G, ; are estimated at some én,p =

0,, + Og(n~1/?). To give one example, Assumption 4.4 implies that HDR](énp) —Dp, ;j(0,)] = 00(1).

Part III
This is established by showing that Assumption D.1-(II) is implied. Thus, let 27 be as in (D.32). Because the

marginals of Z are standard normal, for any 1 > 0 we have the Bonferroni bounds
Pr(2(c) < L) = 1—n,
where

L, = {/\ eRY:pP'A=0n max {®~!(n/J) + Dp, A} < E}
: .

{/\ eRY:pPA=0n max Dp, A < c+ol(1 —n/J)}.
J

It remains to bound ||L, |, = max {|A|| : A € L, }. To do so, we show below that

\/1+52—1€
V1+62+1 b
A —

=:a

PA = 0= max {Dp A A} > (D.37)
J

where ¢ is from Assumption D.5 and e p is from Assumption D.2. Solving (D.37) for |A| and inspecting the definition
of L, yields

o
max {|A] s Ae L} < 2L =0/))

agp
and therefore an O(1) upper bound on [|20(¢)|. It remains to show (D.37). Suppose by contradiction that
max; {D;\/[|A|} < aep. Let the unit vector t* achieve the minimum from Assumption D.2-2, then max; {D;(\/[|A| + dt*)} <
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0 and therefore ¢t = A/ |A| + dt* € T. We compute

* Nt*
Ne N (B +ar*) _ ltaeqy
Al e N
IMEL HWJ”“*H Hm+at*

LSS YN )
a

1+

where the inequality is strict because A # t*. We conclude that max;e m > 1/4/1+ 62. In particular, if s
the projection of X\ onto 7, then m > 1/4/1 4 62,48

However, we also have p’A/|A| < —8 by Assumption D.5. It follows that p'(A — A)/|A| = &, hence |A — A2 >
62| A2 by Cauchy-Schwarz (recall p is a unit vector). But also | A — |2 + |A|2 = | A[2. Slmple algebra then yields
IAI/IAl < 1/4/1 + 62, But |A|/|A| is also the cosine of the angle formed by A and A. Thus, m <1/A/1+462 a

contradiction.*?

D.3.3 Proof of Theorem 4.4: Asymptotic Equivalence with BCS-Profiling in Well-Behaved

Cases

Recall that under this Theorem’s assumptions, H(p,©;) is a singleton {65} whose element is \/n-consistently
estimated by a sample analog 9 We restrict attention to s > p'(0) +t*ep/2M), where terms are as in the proof of
Theorem 4.3-(I). The proof for s < p'(0 +t*ep/2M) is analogous. Similarly to earlier proofs, consider a sequence
(Py, sn) that asymptotically minimizes the probability from the Theorem. If y/n(s, — s(p,0;(P,))) — oo, then
mingyg—s, T5,(#) — o by arguments in the proof of Theorem 4.3-(II), and the conclusion obtains because both
indicator functions vanish. Similarly, if \/n(s, — s(p, ©1(P,))) — —o0, then both indicator functions equal 1 with
probability approaching 1 (indeed, recall the sample support function is y/n-consistent). It remains to analyze the
case where y/n(s, — s(p,01(Fy))) = Og(1).
Recalling that no p-box is used, én(ép) is the (1 — ) quantile of

T = n)l\lnomaX{Gb (Op) + 1 i (0p) 60,5 0)] _ + D3 (B0}
! J

—~
~—

Y min max {Gb (0,) + K N Ep|m;(Xi,0,)/op;(0,)] + [)n,j(ép)x} +00(1)

—
~

2 min mJaX{GZ](O*)+/£ L nEp|m; (X, p)/apj(e*)|7+Dn,j(e;)A}+oQ(1),

Here, (1) uses Lemma E.5-(iii). Step (2) uses that by Theorem 4.3-(IIT), the values of A solving the optimization
problems are Og(1); by 4.3-(11), 4/n (é - 9*) Og(1); and smoothness conditions as well as consistent estimation
of gradients. These jointly imply that |D,,. ]( p)A — Dy j(0%)A] = 0g(1) uniformly over the relevant range of .

To compare BCS-profiling, let Hp,sn be the selection from argminyg—s, |17, ;(6)/6y.;(0)], that solves the prob-
lem in the definition of T.P%(s,) below. Arguments very similar to Theorem 4.3-(II) imply that v/n(6,.s, — o) =

48Verbally, if A is near tangential to all constraints, it is near tangential to 7. The counterexample to this would be a
“spike,” which is excluded by Assumption D.2-2.

49Verbally, if p’X = 0, then A cannot be near tangential to 7 because of the “pointy cone” assumption D.5, yielding a
contradiction.
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Og(1). We can use this, again Lemma E.5-(iii), and smoothness conditions to write

TPR(s) = minma (€4 (6) + i, Vi s (6)/0n O} st 0 € arg min max i (6)/3,50)]

masc { €0, + 'Vl 5 By, )55 By, )|}

= max { G (0ps,) + 1 VRER|m; (Xi, 00 ) 005 (Bps, )|} + 00(1)

mjax {GZJ(O;) + KT_LI\/EEP |7’le()<i7 9;;)/0'pd(9;;)|_} + Og(l).

Next,

PR : b -1 ~ ~
T, %) = min  max{G; ;(6) +r, " vnm,;(6)/60,:(0)}

—~
N2

D min max {6 (0) + K VRER (m;(Xi.0)/or,(0))} + 0o(1)

o, i {Gh(6) + w5 VR Ep (m(X0.0)/p,(9))) + 0o (1)

min max {Gzﬁj(ﬁ;" + M) 4 kB p (my (X, 0% + Mepn ™) Jop (07 + )\nnn_l/z))} + 00(1)

p’A=0 j
(4) . b _
i pI/I)l\I:no mjax {Gn,j(GZ‘) + Knl\/ﬁEP (mj(Xi, :)/0’;37](9;)) + Dp,j(Q;)A} + OQ(l)
(5) : b -1
et pI'I)l\I:nO mjax {Gnd(e;k) + K, \/ﬁEp |mj(Xi, 9;)/0P,j(9;>|_ + Dp,j(e;))\} + OQ(l)

Here, (1) uses Lemma E.5-(iii). The first crucial step is (2), which uses that the distance between the hyperplanes
{(p'0 = s,} and {p'0 = 5(O1,p)} is of order Og(n~"/?), together with smoothness conditions. Step (3) reparam-
eterizes 0 = 0 + Men,n =12, Crucially, BCS prove that the A solving the problem is Og(1). This means the
problem can be uniformly linearized, justifying step (4). Step (4) also observes cancellation of factors multiplying
Dp;(0%)A. Step (5) uses that 6 € ©;. Finally, Assumption 4.3 ensures that the true distribution of T,,, as well as
the above approximations, are of order Og(1). We conclude that T2 (s,,) asymptotically agrees with, and T2 (s,,)
asymptotically dominates, T°. O

Appendix E Auxiliary Lemmas

E.1 Lemmas Used to Prove Theorems 4.1 and 4.2

Throughout this Appendix, we let (Py,,0,) € {(P,0) : P € P,0 € ©;(P)} be a subsequence as defined in the proof
of Theorem 4.1. That is, along (P,,0,), one has

n;l\/ﬁ%ﬁm(@n) —>7T1jER[_OO], j = 17...,J, (El)
Qp, = Q, (E.2)
Dp, (6,) — D. (E.3)

Fix ¢ = 0. For each A € R? and 0 € (6,, + p/y/nB%) n O, let

I‘Uj()\) =7Z; +ij)\+7Tik’j, (E4)
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where 7{ ; is defined in (D.5) and we used Lemma E.5. Under Assumption 4.3-(II) if

Ty = 0= T R (E.5)
we replace the constraints
Z; + pD;) < c, (E.6)
Zj+R1 + ij+R1>\ < c, (E7)
with
i (O1Z; + pDjA}Y — pjsry (O{Zj+ R, + pDjrr, A} < (E.8)
=i (ONZ; + pDiA} + pjsry (O{Zj+ ry + pDjsr, A} < ¢, (E.9)
where
1 if v1,p,5(0) =0="91p, +r (9),
;i (0) = { 1 Pnis ey (0) ! herwi o (E.10)
Y1,Pn,i+ Ry (0)+71,P, 5 (0) otherwise,
0 if v1.p,;(0)=0="1p, g (0),
fj+ Ry (0) = s (0) o o (E.11)
T {71,Pn,.7’+71;1129)ﬁr’Yl,Pn,j(9) otherwise,

When Assumption 4.3-(II) is invoked with hard-threshold GMS, replace constraints j and j+ R; in the definition
of Ab(0!,p,c),0. € (0, + p/v/nB%) N O in equation (3.1) as described on p.14 of the paper; when it is invoked with

a GMS function ¢ that is smooth in its argument, replace them, respectively, with

fin g (OL){GE, (00, + Do (00N} — fin iy (On){Gh i 1y (00) + Doy (00)A} + 05 (6n,5(05)) < c, (E.12)
i (OW{GL (00) + D (0L)N} + fin oy (OG54 5 (00) + Doy (00N} + 05y (Gnjarra (05)) < ¢, (E.13)

where
f”n,j(%)
g (0) = min § mae (0, - @ ) gL (E.14)
Onj+Ry (607,) 6n,;(67,)
fin i (0) =1 = fin j+ry (0,)- (E.15)

Let %z = lim,, Bg’p. Let the intersection of {\ € ‘Bz : p'A = 0} with the level set associated with the so
defined function w;(\) be

W(e)={AeBL:pA=0nw;(\) <c, Vji=1,...,J}. (E.16)

Due to the substitutions in equations (E.6)-(E.9), the paired inequalities (i.e., inequalities for which (E.5) holds
under Assumption 4.3-(II)) are now genuine equalities relaxed by c. With some abuse of notation, we index them

among the j = J; + 1,...,J. With that convention, for given ¢ € R, define

W(e)={AeBL:pPA=0nw;(\)<c+d, Vj=1,...J,
;A <ec Vji=Ji+1,...,J} (E.17)
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Define the (J + 2d + 2) x d matrix

[pDp;(0)]7L1”
[_pDP,]*J2 (9)]3]=.]1+.]2+1

Kp(0,p) = . (E.18)

Given a square matrix A, we let eig(A) denote its smallest eigenvalue. In all Lemmas below, we assume « < 1/2.

LEMMA E.1: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let {P,,0,} be a sequence such that P, € P and
On € ©1(Py) for all n and k' /ny p, j(0n) = T € Ri_g, j=1,...,J, Qp, = Q, and Dp, (0,) — D. Then,

lim iOIclf Py (Un(On,énp) # D) 21— qu (E.19)

Proof. We consider a subsequence along which lim inf,, o P, (U, (0n, é,,p # ) is achieved as a limit. For notational
simplicity, we use {n} for this subsequence below.

Below, we construct a sequence of critical values such that
&n(0,,) = c)(6,,) + op, (1), (E.20)

and ¢l (6)) 25 ¢ for any 0! € (0, +p//nB?) nO. The construction is as follows. When ¢+ = 0, let ¢Z(6!,) = 0 for
all 0!, € (0., + p/v/nB?) N O, and hence c,(¢,) =5 By s, I cpne > 0, let cl(0,) =inf{ce Ry : P*(V.I(0,,c)) = 1—a},
where V! is defined as in Lemma E.3. By Lemma E.3 (iii), this critical value sequence satisfies (E.20) with
probability approaching 1. Further, by Lemma E.3 (ii), ¢/ (¢) Dy % for any 0!, € (0, + p/x/nB) N O.

For each 0 € O, let

Ap
I = f
Cn,p(0) )\Elgd c (9—%—\/%

Since the op, (1) term in (E.20) does not affect the argument below, we redefine ¢/, ,(6,) as ¢} ,(6,) + op, (1). By

). (E.21)

(E.20) and simple addition and subtraction,
Po(Un(Busnp(02)) # D) = Pa(Un(Basch ,(6.)) # )
— Pr(W(exn) # D) + | Pa(Un(Ons ch p(02) # D) = Pr (Wews) 2 @) | (B:22)

As previously argued, G, (0,, + f) “ 7. Moreover, by Lemma E.10, SUPgeo |7n ()] %> 0 uniformly in P, and by
Lemma E.3, ¢! (6,)) % c.«. Therefore, uniformly in A € B¢, the sequence {(G,, (0, + f) M (On + %) ek (0.))}

» Enp »Cnp

satisfies

(G (6, + %),nnwn + 22 el (00) 5 (2,0, con). (E.23)

In what follows, using Lemma 1.10.4 in van der Vaart and Wellner (2000) we take (G (6, + \A/ﬂ

almost sure representation o + nt =), ¢ n efined on some probability space ({2, F, suc
1 'f(GﬁfH\A/%IGdﬁd babili Q,F,P) such

s “n,p
that (G%(6,, + yi) nk, ck) 3 (Z*,0, cpx ), where Z* LA

), mE, c*) to be the

no n
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For each \ € R, we define analogs to the quantities in (D.24) and (E.4) as

Ap ~
0, () = (G500 + ) + pDr (O + 7,11+, (E.24)
w7 () = Z5 + pDjA + 77 . (E.25)

where we used that by Lemma E.5, k,, 'v/ny1, p; (0n) =, v/, pj (0),) = o(1) uniformly over 0), € (6,,+p//nB4)nO
and therefore 71'1"’ ; Is constant over this neighborhood, and we applied a similar replacement as described in equations
(E.6)-(E.9) for the case that nf; =0 =7}, p . Similarly, we define analogs to the sets in (D.25) and (E.16) as

Uk (On, k) ={Ne Bl ,:pPA=0nul} JG(A)gc*,Vj:L...,J}, (E.26)
W™ (crex ) {)\e%d p)\—Omm N) < cpx, Vj = .,J}. (E.27)

It then follows that equation (E.22) can be rewritten as
P, (Un(Hn,cnp( ) # @) P (co) # &) + [P(U:(@n,c;’;) # @) - P(QH*(CW*) ” @)]. (E.28)

By the definition of ¢+, we have P(2*(c,+) # ) = 1 — a. Therefore, we are left to show that the second term
on the right hand side of (E.28) tends to 0 as n — o0.
Define
j*E{j=1,---,J:7‘ri")j=0}. (E.29)

Case 1. Suppose first that J* = &, which implies J, = 0 and 7rfj = —oo for all j. Then we have
Uk(On.cl) ={AeBi ,: p'A=0}, W*(cps) ={AeBL:p'A=0}, (E.30)
with probability 1, and hence
P({U:(en,c:;) £ O} A 0 (ern) # @}) —1. (E.31)
This in turn implies that
‘P(U;f(é)n,cjj) " @}) - P(QB*(CW*) " @})) —0, (E.32)

where we used |[P(A) — P(B)| < P(AAB) < 1—P(A n B) for any pair of events A and B. Hence, the term in the
square brackets in (E.28) is 0.

Case 2. Now consider the case that J* # . We show that the term in the square brackets in (E.28) converges
to 0. To that end, note that for any events A, B,

P(A+ @)~ P(B+2)| <|P{A=2}n{B+2}) +P({A+ 2} (B =) (E.33)

Hence, we aim to establish that for A = U*(0,,,¢}), B = 20%(c,* ), the right hand side of equation (E.33) converges

to zero. But this is guaranteed by Lemma E.2. Therefore, the conclusion of the lemma follows. O

LEMMA E.2: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let (P,,0,) have the almost sure representations
given in Lemma E.1, and let J* be defined as in (E.29). Assume that J* # . Then for any n > 0, there exists
N e N such that

P({U (0ns k) # @} 0 (2" (cxr) = @}) < /2 (E:34)
P({U3(0n,c3) = @} 0 (W (exw) # B}) < /2, (E.35)
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for allm = N, where the sets in the above expressions are defined in equations (E.26) and (E.27).

Proof. We begin by observing that for j ¢ J*, ij = —o0, and therefore the corresponding inequalities

Ap -
(G;’;J(an + %) + pDp, i (00)X + 7@) (1+ n;‘ij) <k,

Z;'f + pDiX\ + WTJ < Cpx

are satisfied with probability approaching one by similar arguments as in (D.20). Hence, we can redefine the sets

of interest as

Uk(On, k) ={NeBL,:pA=0nuk;, () <ck, VjeT*}, (E.36)
WH(cps) = {AeBL:p'A =01 1wF(\) < crx, Vje T} (E.37)

We first show (E.34). For this, we start by defining the events

Ay =4 sup max |(uh 5 (A) =) — (wF(A) —cqn)| =6 ¢ (E.38)
AeBd JET* o ’

By Lemma E.4, using the assumption that J* # &, for any n > 0 there exists N € N such that
P(A4,) <n/2, Vn = N. (E.39)

Define the sets of As, U**+% and 20%+9 by relaxing the constraints shaping U* and 20* by 4:

Ukt (On,c) ={ e BL i pA=0nuk, (\) <c+d, jeT*}, (E.40)

Wt (c)={AeBL:pPA=0nwiA)<c+d, jeT*} (E.41)

Compared to the set in equation (E.17), here we replace uy ;5 (A) for un 0, (A) and w}(A) for w;(A), we retain
only constraints in J*, and we relax all such constraints by ¢ > 0 instead of relaxing only those in {1,...,J1}.

Next, define the event L,, = {U*(6,,c*) < 2*°(c,+)} and note that A < L,,.
We may then bound the left hand side of (E.34) as

P ({U3 (00, c5) # D} 0 {2 (en) = B}) < P({U0nc5) # D) 0 {2 (cre) = 21}
+ P({QU*’”(c,r*) % O} A W (ers) = @}), (E.42)

where we used P(An B) < P(An C) + P(B n C°) for any events A, B, and C. The first term on the right hand
side of (E.42) can further be bounded as

P ({Ut (0n: k) # D} 0 {W* ¥ (c0n) = @) < P({UF(00,¢5) & W5 (crm)})
=P(L%) <P(A,) <7/2, \n > N | (E.43)

where the penultimate inequality follows from AS < L,, as argued above, and the last inequality follows from (E.39).
For the second term on the left hand side of (E.42), by Lemma E.G, there exists N’ € N such that

P({QU*’JF‘;(CW*) £ O} A (W (cpn) = g}) <n/2, ¥n > N'. (E.44)

Hence, (E.34) follows from (E.42), (E.43), and (E.44).
To establish (E.35), we distinguish three cases.
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Case 1. Suppose first that Jo = 0 (recalling that under Assumption 4.3-(II) this means that thereisnoj = 1,..., Ry
such that 7 ; =0 =}, » ), and hence one has only moment inequalities. In this case, by (E.36) and (E.37), one

may write

Uk(On,c) ={Ae Bl P A=0nul o (N <c, jeT*}, (E.45)

n

W (c) = {Ne %Z PA=0nwi\) <c—46, jeT*}, (E.46)
where 20% 9, § > 0, is obtained by tightening the inequality constraints shaping 20*. Define the event
Roy = {0% % (s ) < U (0, ¢}, (E.47)

and note that A% < Rs,. The result in equation (E.35) then follows by Lemma E.6 using again similar steps to
(E.42)-(E.44).

Case 2. Next suppose that Jy > d. In this case, we define 20%~% to be the set obtained by tightening by § the
inequality constraints as well as each of the two opposing inequalities obtained from the equality constraints. That

is,

W (cpn) ={AEBL:PA=0nw¥\) <c—6, jeT*}, (E.48)

that is, the same set as in (E.133) with ¥ ()) replacing 1;(\) and defining the set using only inequalities in J*.
Note that, by Lemma E.8, there exists N € N such that for all n > N ¢ () is bounded from below by some ¢ > 0
with probability approaching one uniformly in P € P and § € ©;(P). This ensures ¢, is bounded from below
by ¢ > 0. This in turn allows us to construct a non-empty tightened constraint set with probability approaching
1. Namely, for 6 < ¢, 2% %(c %) is nonempty with probability approaching 1 by Lemma E.6, and hence its
superset 2* (¢« ) is also non-empty with probability approaching 1. However, note that AS € Ra,, where Ry, is
in (E.47) now defined using the tightened constraint set 20% ~%(c,«) being defined as in (E.48), and therefore the
same argument as in the previous case applies.
Case 3. Finally, suppose that 1 < Js < d. Recall that, with probability 1 (under P),

Cak = nh_r)rgo cr, (E.49)
and note that by construction ¢ % > 0. Consider first the case that ¢+ > 0. Then, by taking § < ¢, the argument
in Case 2 applies.

Next consider the case that ¢+ = 0. Observe that
P (U (00, k) = D} 0 {20 (enn) # D)) < P({U (00, 5) = D) 0 {W57°(0) = 21}
+ P ({20%79(0) = @} 0 {(204(0) # B1}), (E50)

with 20%79(0) defined as in (E.17) with ¢ = 0 and with 107 (A) replacing 1;(A). By Lemma E.6, for any 1 > 0 there
exists 6 > 0 and N € N such that

P({QU*’*‘S(O) — &) A (05(0) # @}) <n/3Vn = N. (E.51)

Therefore, the second term on the right hand side of (E.50) can be made arbitrarily small.
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We now consider the first term on the right hand side of (E.50). Let g be a J + 2d + 2 vector with

*Zjv jej*,

0, jE{l,'“,J}\j*,

1, j=J+1,...,J+2d

0, j=J+2d+1,J+2d+2,

9 = (E.52)

where we used that 7r’1"7 ;=0 for j € J* and where the last assignment is without loss of generality because of the
considerations leading to the sets in (E.36)-(E.37).

For a given set C' < {1,...,J + 2d + 2}, let the vector g© collect the entries of g¢ corresponding to indices in
C. Let

J1+J:
[PDj]jl;l_ :

[*PDj—Jz]JJ:J1+J2+1

=
Il

(E.53)

Let the matrix K¢ collect the rows of K corresponding to indices in C.

Let C collect all size d subsets C' of {1,...,J + 2d + 2} ordered lexicographically by their smallest, then second
smallest, etc. elements. Let the random variable C equal the first element of C st. det K€ # 0 and \C =
(K)~1g% e 20%~9(0) if such an element exists; else, let C = {J + 1,...,.J +d} and A\ = 14, where 14 denotes a d
vector with each entry equal to 1. Recall that 20*7%(0) is a (possibly empty) measurable random polyhedron in
a compact subset of R%, see, e.g., Molchanov (2005, Definition 1.1.1). Thus, if 20%79(0) # ¢, then 20*7°(0) has
extreme points, each of which is characterized as the intersection of d (not necessarily unique) linearly independent
constraints interpreted as equalities. Therefore, 20%~9(0) # ¢ implies that A¢ € 20*7°(0) and therefore also that
Cc J*u{J+1,...,J+2d+2}. Note that the associated random vector A is a measurable selection of a random
closed set that equals 20%79(0) if 20%79(0) # & and equals %ﬁ otherwise, see, e.g., Molchanov (2005, Definition
1.2.2).

Lemma E.7 establishes that for any n > 0, there exist €, > 0 and N s.t. n > N implies

P (W%7°(0) # &, |det K¢| < &) <, (E.54)
which in turn, given our definition of C, yields that there is M > 0 and N such that
P(|det (K°) ' |< M) >1—7, ¥n =N, (E.55)
Let g, be a J + 2d + 2 vector with

cn/(1 +77;1k,j) _G:,jw"‘ M) if jeJ*,

\/ﬁ
07 1fj€{17,J}\j*,
B4 A = E.56
Ini( //n) 3 ifj=J+1,...,J+2d, (E.56)
0, if j=J+2d+1,J+2d+2,

[34]



using again that 77 ; = 0 for j € J*. For each P € P, let

[pDp;(0)]7L1”
[_pDP,J—Jz (9)]}]=J1+J2+1
14

Kp(0,p) 1,

(E.57)

For each n and A € B?, define the mapping ¢, : B¢ — R¢

[+0] by

Ap
vn'

Where the notation 0(6,,, A) emphasizes that 6 depends on 6,, and X because it lies component-wise between 6,, and

Sn(N) = (KS, (0(6,, 7)) 9S00 + 22), (E.58)

0, + \F We show that ¢,, is a contraction mapping and hence has a fixed point.
For any A\, \ € BY write

[62(8) = 0u (V)| = | (KF, (006, X). ) 650 +j”—> (K%A@(W’)’P))_lgﬁwn+i@)

-1 Ap Np
G5O+ 25) — g5(0n + —)H

<[ (%5, @6, 2).0)) = =

_ _ )\'p
KS, (0(0,,0),0)) " — 062, X),0)) " 2P E.59
| (K8, 000, ),0) 7 = (K5, (000, 6 0n+ ). (E.59)
where || - |2 denotes the spectral norm (induced by the Euclidean norm).
By Assumption 4.5 (ii), for any n > 0, k > 0, there is N € N such that
Ap Np
P (6500 + =) —g5(0n + =) <k|x—X
(Joscen+ 22) - g0+ 22 < ix -1
=P(|GEC(0, + Ap) GEC(0, + &)H <SkA=XN])=1-n, Vn>=N. (E.60)
NG v
Moreover, by arguing as in equation (D.20), for any 7 there exist 0 < L < o0 and N € N such that Vn > N
P < sup g5 (6, + Xp)H < L) >1—n. (E.61)
NeBd Vn

For any invertible matrix K, [K~!|> = (min{/a : a is an eigenvalue of KK’})_I. Hence, by the proof of Lemma
E.7 and the definition of C, for any n > 0, there exist 0 < L < o0 and N € N such that

P(|(K°) M, <L)>1-n, ¥n>N, (E.62)
By Horn and Johnson (1985, ch. 5.8), for any invertible matrices K, K such that |K (K — K)|2 < 1,

| K~ (K ~ K2

[E - Ry < —Am 22
I—|E (K — k)

K2 (E.63)

By the assumption that Dp, (6,) — D and Assumption 4.4, for any n > 0, there exists N € N such that

sup |K%, (0(05, ), p) — K€|2 <, Yn = N. (E.64)
AeBd
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By (E.63), the definition of the spectral norm, and the triangle inequality, for any 1 > 0, there exist 0 < Ly, Ly < o©
and N e N such that

P(sup | (5, (00, X).p) [, < 211)

A
> P(|(K) 7, + sup |KE, (600, X))~ = ()2 < 2La)
€

_ K¢ —1y2 B I
> P(H(KC) ', < Ly, — “(C )_I: < Ly, sup |KS, (6(6n,7),p) — Ko < Ll)
L= [[(K€) ™ (KS, (00, N), p) = K©)]2 AeB )
>1—-2n, Yn>= N, (F.65)

Again by applying (E.63), for any k > 0, there exists N € N such that

P (| (K5, (6060, 1) " = (KE, (062, 1)) [, < kIA=N])

> P( sup || (K%n (é(HnJ)))_lHi
AeBd4

Mpl(8a, X) = 062, X)| < KA = X]) = 1= n, ¥n > N, (E66)
where the first inequality follows from |K§ (0(6n,A)) —K§ (065, N))|2 < Mp|0(65, A) —0(6n, X)| < Mp?//n|A—
A'| by Assumption 4.4 (ii), and the last inequality follows from (E.65).

By (E.59)-(E.61) and (E.65)-(E.66), it then follows that there exists S € [0,1) such that for any n > 0, there
exists N € N such that

P (|pn(A) = 0N < BIA= N[, YA, N eB?) =1—n, ¥n= N. (E.67)

This implies that with probability approaching 1, each ¢,(-) is a contraction, and therefore by the Contraction
Mapping Theorem it has a fixed point (e.g., Pata (2014, Theorem 1.3)). This in turn implies that for any n > 0
there exists a N € N such that

PO M =¢,(M))=1-n, ¥n=N. (E.68)

Next, define the mapping
-1
(N = (K€) ¢ (E.69)

This map is constant in A and hence is uniformly continuous and a contraction with Lipschitz constant equal to
zero. It therefore has A as its fixed point. Moreover, by (E.58) and (E.69) arguing as in (E.59), it follows that for
any A\ € B,

90 (3) = En V] < [ (K8, (002, 2,0) "] |0 = 6500 + %H

Jn
+ [ (5€) T = (18, @00 2, 0) 7' I5°| (8.70)
By (E.52) and (E.56)
C_ € M _ k% * * M
Hg 9 (On + ﬁ)(‘ < max | = ZF = /(L4 ;) + G (0n + 20
* * M % *
< max 2§ — Gy, ;(0n + ﬁ)l + max lei/ (L + 7 )] (E.71)

We note that when Assumption 4.3-(II) is used, for each j = 1,..., Ry such that 7 ; =0 = WfﬁﬂRl we have that
|&; — pj] = op(1) because supgeg |n;(8)| = op(1), where fi; and p; were defined in (D.11)-(D.12) and (E.10)-(E.11)

[36]



respectively. Moreover, G}, (0, + %) ©5 Z* and (E.49) implies c* — 0 so that we have

Ap

c C a.s.
sup |l¢” — g, (0 + —=)| = 0. E.72
sup 15 =550+ )] (B.72)
Further, by (E.63), Dp, — D and, Assumption 4.4-(ii), for any n > 0, there exists N € N such that
sup |(K€) 7" = (K& (fi(@),i,A),p))*lH2 <, ¥n = N. (E.73)
AeBd

In sum, by (E.61), (E.65), and (E.71)-(E.73), for any n,v > 0, there exists N > N such that
P <sup [1n(A) — pn(N)] < 1/) >1-—n, Yn>=N. (E.74)
XeBd
Hence, for a specific choice of v = k(1 — ), where § is defined in equation (E.67), we have that supycpga [1n(A) —
bu(N)] < w(1 — B) implies
1AL = A0l = 1a(A5) = dn(AD)]
< oa(X5) = a (WD + [¢n (A7) = ¢n (M)
< K(1=B)+ BN = Al (E.75)

Rearranging terms, we obtain [A$ — A | < k. Note that by Assumptions 4.4 (i) and 4.5 (i), for any 6 > 0, there
exists kg > 0 and N € N such that

P( sup  [uk o (A) —ul g (V)] < 5) >1-n, Vn>N. (E.76)

IA=N<rs
For X¢ € 20%~9(0), one has
WAL +6 <0, je{l,---, i} nJ* (E.77)
Hence, by (E.39), (E.49), and (E.76)-(E.77), [|]AS — M| < kg4, for each j € {1,---,J1} n J* we have
wh g0, (L) = h(0) S ujh o, (AD) = € (6a) + 0/4 <0} (AT) +6/2 < 0. (E.78)

For je{Ji +1,---,2J3} n J*, the inequalities hold by construction given the definition of C.
In sum, for any 1 > 0 there exists 6 > 0 and N € N such that for all n > N we have

P (U (80, k) = @} 0 {2057°(0) = @1}) < P(BN, € U (60n,¢5), 30 € 20%79(0))

<P ({sup 10a0)  6a 0] < 1= 5 0 4} ) <3 (B.79)
AeB
where A¢ denotes the complement of the set A, and the last inequality follows from (E.39) and (E.74). O

LEMMA E.3: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let {P,,0,} € {(P,0): P€ P,0 € O;(P)}
be a sequence satisfying (E.1)-(E.3). For each j, let

Vn g0, (N) =G ;(02) + D (Bu)A + @ (60, (0n)), (E.80)
mj()\) =7Z; +ij)\+7Tik)j, (E81)
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where

@i(€) m,;=0
e =3 -0 m,;<0 (E.82)
0 j=Jdh+1--,J
For each ¢ = 0, define
an(gnvc) = {)‘ € Bg,p :pl>‘ =0n vrIL,j,Gn(A) < C,j = ]-7 e ,J}v (E83)
W(e)={AeBl:pA=0nw;(\) <ec, Vj=1,...J} (E.84)

We then let cL(0,) = inf{ce R, : P¥*(V1(0,,c) # &) =1 —a} and cx = inf{ce R, : Pr(W(c) # &) > 1 — a}.
Then, (i) for any ¢ > 0 and {0.,} = © such that 0!, € (0,, + p/x/nB?) " O for all n,

PV, (0;,,¢) # &) — Pr(2(c) # &) — 0, (E.85)

with probability approaching 1;
(ii) If e > 0, cL(02) 55 e
(iii) For any {0} < © such that 0!, € (0,, + p//nB?) N O for all n,

én(0),) = ,(0,) + op, (1) (E.86)

Proof. Throughout, let ¢ > 0 and let {#/,} = © be a sequence such that 0/, € (6,, + p/x/nB?) n © for all n. By
Lemma E.15, in [*(0) uniformly in P conditional on {X;}%,, and by Assumption 4.4 |D,,(0.,) — Dp, (6,)] = 0.
Further, by Lemma E.5, én,j o) il w1 ;. Therefore,

(GL(0.,), Du(0,), Ea (O {X}E) S (Z,D,my). (E.87)

for almost all sample paths {X;}?°,. By Lemma E.17, conditional on the sample path, there exists an almost sure
representation (G2 (6",), Dy, &,) of (G2(0.,), D (6,),£,(6,)) defined on another probability space (Q, F,P) such
that (G2 (0.,), D, &) 2 (GE(0.,), D (0),),€,(6",)) conditional on the sample path. In particular, conditional on the
sample, (D,,(0.,),&,(0))) are non-stochastic. Therefore, we set (Dp, &) = (Dn(6.,),6,(0))), P — a.s. The almost
sure representation satisfies (G% .,), D,, énj) 5 (Z, D, ) for almost all sample paths, where 7 £ 7. The almost
sure representation (wa bn, én) is defined for each sample path * = {z;}°,, but we suppress its dependence on

x® for notational simplicity (see Appendix E.3 for details). Using this representation, define
17711,3‘,0;()‘) =G}, ;(0,) + pDuX + 9% (6n.j), (E.88)
and
w;(\) = Z;j + pDjX + 77, (E.89)

where Z £ 7, and G4 (6#") — Z,P — a.s. conditional on {X;},. With this construction, one may write

[P (VA (6),,0) # @) = Pr(2W(c) # @)| = [P(V,[(0),,¢) # @) — P(W(c) # D)
< [P(V;(6),,0) = @ 0 W(c) # @) + PV, (0,¢) = & nW(e) = @), (B.90)
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where the inequality is due to (E.33). First, we bound the first term on the right hand side of (E.90). Note that

PV, (0).c) = @ nW(c) # &) <PV, H(0),,¢) = B nW(c) # @) + PVL(0,,0) # @ nV5(0.0) = D),

(E.01)
where V.19 is defined as
V,{*éz{Aede p)\—Omvnjgl(A)éc—i—&,jej*}. (E.92)
Let
A, = {w e: )\s;g)djrg2§ |Tn ;. o (A) —10;(N)| = 5}. (E.93)
Let
E = {{z:i}2, : |Da(6;,) — D < 1, max |ij (a3 (07)) = 5] < ). (E.94)

Note that, P,(E) > 1 — n for all n sufficiently large by Assumption 4.4 and Lemma E.5. On E, we therefore have
|D,, — D <1 and maxez# |€,,; — Tl <m, P — a.s. Below, we condition on {X;}*, € E. For any j € J*,

(7.0, (\) = 05N < |G, ;(07,) = Zs| + p|Dj — DyllIA] + 9% (€ng) = 751 < 2+ p), (E.95)
uniformly in A € B%, where we used @fl — 7,P — a.s. Since 1 can be chosen arbitrarily small, this in turn implies
f’(An) <n/2,

for all n sufficiently large. Note also that supycpgs max;e 7+ |'D7Il,j’9, (A) —10;(\)| < § implies W(c) < V190, ¢),

and hence A¢ is a subset of
L= {w eQ:MW(e) < 177{’”(9;1,@}. (E.96)
Using this,
PV, 0(0,,0) = @ nW(e) # &) < P(W(e) €V, 70(0,,.¢) = P(Ly) < P(A,) </2, (E.97)
for all n sufficiently large. Also, by Lemma E.6,
PV, (0, 0) # B V(60,,,¢) = @) </2, (E.98)

for all n sufficiently large.
Combining (E.91), (E.93), (E.97), (E.98), and using P, (E) > 1 — n for all n, we have

JEP(VJ(G;,@ =& N W(c) # )P, + f P(VI(0),,c) =3 nW(c) # &)dP, <n(l—n) +n<2n. (E.99)

c

The second term of the right hand side of (E.90) can be bounded similarly. Therefore, |P*(V,!(¢.,,c) # &) —
Pr(2(c) # &)| — 0 with probability (under P,) approaching 1. This establishes the first claim.
(ii) By Part (i), for ¢ > 0, we have

P}V, (6,,,¢) # &) — Pr(W(c) # &) — 0. (E.100)
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Fix ¢ > 0, and set

C—*Zj, j = L‘..”L
gi =1 1, j=J+1,...,J+2d, (E.101)
0, j=J+2d+1,J+2d+2.

Mimic the argument following (E.137). Then, this yields

[Pr (2(c) # &) — Pr (W(e — ) # @)| = Pr({W(e) # B} n {W(e— ) = @}) <, (E.102)
IPr (W(c +0) # &) — Pr(W(e) # &)| = Pr({W(c +6) # B} n {W(e) = F}) <, (E.103)

which therefore ensures that ¢ — Pr(20(c) # &) is continuous at ¢ > 0.
Next, we show ¢ — Pr (20(c) # ) is strictly increasing at any ¢ > 0. For this, consider ¢ > 0 and ¢ —§ > 0 for
0 > 0. Define the J vector e to have elements e; = ¢ —Z;, j = 1,...,J. Suppose for simplicity that J* contains

[1:%]

the first J* inequality constraints. Let e denote the subvector of e that only contains elements corresponding

to j € J*, define D7+ correspondingly, and write

Dt el1:%] 1
14 p-1lg 04
K= -1y , g = p-1g |, 7= 04 . (E.104)
P 0 0
—p' 0 0

By Farkas’ lemma (Rockafellar, 1970, Theorem 22.1) and arguing as in (E.142),

Pr({2(c) # @} n {W(c —8) = @}) = Pr({p'g = 0,Ype M} n {1/(g — 67) < 0,3pe M}), (E.105)
where M = {u € Ri* +2d+2 . 'K = 0}. By Minkowski-Weyl’s theorem (Rockafellar and Wets, 2005, Theorem 3.52),
there exists {v* € M,t=1,---,T}, for which one may write
T T
M={u:u=b2atl/t7b>07at20,2at=1}. (E.106)
t=1 t=1

This implies

Wg=0, YueM = vWg=>0, Vte{l,---,T} (E.107)
W(g—061)<0, Ipe M < vWg<évt'r, te{l,--- T} (E.108)

Hence,
Pr({#'g=0,Yue M} n{i/(g—07) <0,3pe M}) =Pr(0<v®g, 0<v'g<dv'r, Vs, 3t) (E.109)

Note that by (E.104), for each s € {1,---,T},

. J*+2d 4
v'g = vV e — Zgw) 4+ p Z vl (E.110)
j=J%+1
J*
Sl — 2 sl (E.111)
j=1



For each s € {1,--- ,T}, let

J*+2d
h=c Z vlilep M (E.112)
j=J%¥+1
—8) Z vl (E.113)
j=1
where 0 < ht < hU for all se {1,--- , T} dueto 0 < c— 6§ < cand v* € Ri*”dH. One may therefore rewrite the

probability on the right hand side of (E.109) as
Pr (0 <v'g, 0 <vg < ovt'r, ¥s,3t) = Pr (us’[“*l’zj* < hY hE < vt 7 0 < BY s, 3t> >0, (E.114)

where the last inequality follows because Z 7x’s correlation matrix €2 has an eigenvalue bounded away from 0 by
Assumption 4.3. By (E.105), (E.109), and (E.114), ¢ — Pr (2(c) # &) is strictly increasing at any ¢ > 0.

Suppose that ¢ % > 0, then arguing as in Lemma 5.(1) of Andrews and Guggenberger (2010), we obtain

ckor) By s

(iii) Begin with observing that one can equivalently express ¢, (originally defined in (3.5)) as ¢,(0) = inf{c €
Ry : P¥(VE(0,¢) # &) =1 — a}.

Suppose first that Assumption 4.3-(I) holds. In this case, there are no paired inequalities, and V;! differs from
V¥ only in terms of the function ¢¥ in (E.82) used in place of the GMS function ¢;. In particular, ¢¥(£) < ¢;(§)
for any j and £, and therefore é,(6,,) = £ (6,,) by construction.

Next, suppose Assumption 4.3-(I1) holds and V,1 (6!, ¢) is defined with hard threshold GMS as in equation (3.3),

i.e. with GMS function ¢! in AS. The only case that might create concern is one in which
1,5 € [71,0) and T1,j+Ry = 0. (E115)

In this case, only the j + R;-th inequality binds in the limit, but with probability approaching 1, GMS selects both
of the pair. Therefore, we have

;= —m, and 7f ;g =0, (E.116)
5 (6n,(0,)) = 0, and @1, (€n g, (05)) = 0, (E.117)
so that in V,I(0/, c), inequality j + R, which is
G jr, (0) + pDnjur, (0)A < ¢, (E.118)
is replaced with inequality
—G, ;(0,) — pDn j(0,)X < ¢, (E.119)

as explained in Section 4.1. In this case, é,(6,,) = c.(6,,) is not guaranteed in finite sample. However, let v.” be as
1{1 (E.80) but replacing j + R1-th component G? R, (On) + Do i, 0\ + iR, (€n.jsry (0n)) with —GZJ—(G”) -
Dy j(0n)A — ©F (§n$j( 1)). Define V.I” as in (E.83) but replacing v with v!”. Define ¢/ (6,) = inf{c € R, :
P*(V.IP(0,,¢)) = 1 —a}. By construction, ¢é,(0,) = cLF (8! for any 0!, € (0,, + p//nB?) n ©. Therefore, it suffices
to show that c/F(0) — cL(6!) 5 0. For this, note that Lemma E.9-(3) establishes

sup nGlew')+po+Rl<9n>A+sz< L)+ oDy (0] = opx (1), (E.120)
AeBZ
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for almost all sample paths {X;}?% . Therefore, replacing the j + R;-th inequality with the j-th inequality in V,/¥
is asymptotically negligible. Mimicking the arguments in Parts (i) and (ii) then yields

IP(Q/ ) Py Cre. (E.121)

This therefore ensures cZF(0!) — cL(61,) B0
If the set V.1 (6, c) is defined with a GMS function satisfying Assumption 4.2 and continuous in its argument,
we can mimic the above argument using the replacements in (E.12)-(E.13) with /i, j+r, as defined in (E.14) and
fin;(0),) as in (E.15). Then when both 7; € (—00,0] and 7,4+ g, € (—0,0] we have:
A(p, o) = | fun g (OGS, ;(07) + pDu (00N} = fin s 7 (0,){G5, 4 5, (07) + Dy, (6,)M)

301G ;(0) + pDog 0N} + 1y (O){Gh  r, (01) + pDo iy (9)N}| = 0p (1),

where p;, i1+ r, are defined in equations (E.10)-(E.11) for 6 € 0,, + (6, + p/v/nB?) n©. Replacing fin j = 1 —fin j+ R,
and pj =1 — pj4 g, in the definition of A(u, i), we have

Ap, fr) <

If both m; € (—0,0], mj+r, € (—0,0], the result follows by the fact that A € B;‘f,p and fin j, fin,j+Rys M, Hj+R, aLE

fin g1, (07) = i1, (0)|[{Gh o, (07) + Dy (0,)A} + (G2, (07,) + pDn ()N (E.122)

bounded in [0, 1], by Lemma E.9-(3)-(4), and by Assumption 4.4-(i). The rest of the argument follows similarly as
for the case of hard-threshold GMS. O

LEMMA E.4: Let Assumptions 4.1, 4.2, 4.4, and 4.5 hold. Let (P,,0,) be the sequence satisfying (E.1)-(E.3),
let J* be defined as in (E.29), and assume that J* # &. Then, for any €,n > 0 and 0., € (0,, + p/x/nB%) n O,
there exists N’ € N and N € N such that for all n = max{N’,N"},

P<Asug)d ;Joax J(U:,j,en()‘) — ) - ;Joax J(m;k()\) — )| = E> <, (E.123)
e =14
P(fug)d ; rrllameJ()\) - j,rrll%}.iJﬁrll,j79;(>\) = E) <n, wp.l, (E.124)
e =1,

where the functions u¥, w* 0,,10 are defined in equations (E.24),(E.25), (E.88), and (E.89).

Proof. We first establish (E.123). By definition, 7f ; = —o0 for all j ¢ J* and therefore

P( oo (A —c*)— i) — > )
f;§d|]%axj(“nu,on( )= n) = jmax (w7(A) —crx)| > €

_ * ) * _
_P<f’£d|$%§( mds0n (A) =€) mmax (1 (A) cw*>|>€)- (E.125)

Hence, for the conclusion of the lemma, it suffices to show, for any € > 0,

(V) — ) — max (0 (\) — cpx)| = 5) —0.

lim P( sup | max(u max
je

*
n—o0 AeBd jET* n’J’G"

For each A\ € RY, define 7, .0, (\) = (up i9, (A) —ci) — (wF(A) — ¢,). Using the fact that 7§ ; = 0 for j € J*,

n J
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and the triangle and Cauchy-Schwarz inequalities, for any A € B¢ n @(@ —0,) and j € J*, we have

Ap _
%) — Z7| + p|Dp, (0n) — D[]

Ap _
+ |G;kz,j(9n + %) + pDP,L,j(9n>)‘|77:;,j + |ef = crxl

j%) 22| + o(1) + {Op(1) + O}, + op(1)

= op(1) (E.126)

7n.j.0, (M| < |G, ;(0n +

= |G:,j(9n

where the first equality follows from |\| < v/d, Dp,(0,) — D due to Dp,(0,) — D, Assumption 4.4-(ii), and
0,, being a mean value between 6,, and 6,, + Ap/y/n. We also note that |G, ;(0 + A\/vn)| = Op(1), |Dp;(0)|

being uniformly bounded for § € ©;(P) (Assumption 4.4-(i)), and ¢ =5 ¢ «. The last equality follows from
G} (0n + \F) zx “30 and supgee |7, (0)] = op(1) by Lemma E.10.

We note that When paired inequalities are merged, for each j = 1,..., Ry such that 7ri"’j =0 = 7r1" + R, We
have that |fi; — p;| = op(1) because supgeg |7;(0)| = op(1), where fi; and p; were defined in (D.11)-(D.12) and
(E.10)-(E.11) respectively.

By (E.126) and the fact that j € J*, we have

sup | max(u* ., (A) — ) — max (0¥ (\) — cpx)| < sup max |r, ; =op(1). E.127
sup | (3,0, () = ) — max(o () = coe)| < sup max s, ] = 0p(). (E20)

The conclusion of the lemma then follows from (E.125) and (E.127).
The result in (E.124) follows from similar arguments. O

LEMMA E.5: Let Assumptions 4.1, 4.2, 4.4, and 4.5 hold. Given a sequence {Q,,9,} € {(P,8) : P € P, €
O1(P)} such that lim, o Ky, '\/ny1,0,,,(Un) exists for each j = 1,...,J, let x;({Qn,Yn}) be a function of the
sequence {Qn,V,} defined as

0, if limy,_ e Hgl\/ﬁ'yl’Qmj (9,) =0,

o (E.128)
—c0, if limy—e ki t/m71,0, 5 (9n) < 0.

X ({@n,9n}) = {

Then for any 0!, € 0,,+ de for alln, one has: (i) K, /my,p, j(0n) — Ky 'v/nm e, (05) = o(1); (ii) x({Pn, 0n}) =
x({Pn, 0. ) 771_1]) and (ii) Hfl Vi (07,) _ gl \FEPTL[WJ(XHGTL)] = op(1).

AN n oy, (07)

Proof. For (i), the mean value theorem yields

VnEp(m;(X,0))  /nEp(m;(X,0))

sup sup
PEP €0, (P),0'c0+p//nB? Kknop,;(0) Knop,;(0')
Dp.(0)||]0 — 6
< sup sup V| Dp,;(6)]] | _ o(1), (E.129)
PeP 0O (P),0'€0+p/+/nBd Kn

where 0 represents a mean value that lies componentwise between 6 and 6’ and where we used the fact that D p;(0)

is Lipschitz continuous and sup pep Supgeo, (p) [Dp,;(0)] < M. Result (ii) then follows immediately from (E.128).
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For (iii), note that

I 0) B, 0]
i Un,j( ") " O'Pn,j(e%)

-1 Vn(ma,;(0,,) — Ep, [m;(X;,0,)])
" on,j(07,)

sup
0!,€0,,+p//nB1

’ . VnEp, [m;(X;,0,)]
(1 + n,](e )) Kn O-Pn,j(eiz)

E X;
< s RGO + (@) + [ VIR (X 0]
9;,69n+p/\/ﬁBd KnOPp, ](0 )

< sup
0, €6,,+p/r/mBI

U 71(9/)

n.i(0n)| = op(1), (E.130)

where the last equality follows from supgeg |G, (0)| = Op(1) due to asymptotic tightness of {G,,} (uniformly in P)

by Lemma D.1 in Bugni, Canay, and Shi (2015), Theorem 3.6.1 and Lemma 1.3.8 in van der Vaart and Wellner

(2000), and supgeg |1n,;(0)] = op(1) by Lemma E.10-(i). O
LEMMA E.6: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. For any @', € (6, + p/x/nB%) n ©

(i) For any n > 0, there exist 6 > 0 such that

sup Pr({20(c) # &} n {207%(c) = &}) < n. (E.131)

c=0

Moreover, for any n > 0, there exist 6 > 0 and N € N such that

sup Pr({V (0, ¢) # &} 0 {V: 2 (0,,¢) = @}) <, Yn = N. (E.132)
c=0
(i) Fix ¢ > 0 and redefine
W e)={AeBL:pPA=0nw;(\)<c—0,Vj=1,...,J} (E.133)
and
Vo0, c)={ e By i pPA=00nv) 0 (N)<c—6,Vi=1,...,J}. (E.134)

Then for any n > 0, there exists 6 > 0 such that

sup Pr({20(c) # &} n {0 7%(c) = &}) <. (E.135)

czc

with W%(c) defined in (E.133). Moreover, for any n > 0, there exist 6 > 0 and N € N such that

sup P ({V) (6, ) # @} 0 {V,/ (0, ¢) = &}) <m, Yn > N, (E.136)

czc

with V,7°(0!,,¢) defined in (E.134).

Proof. We first show (E.131). If J* = ¢, with J* as defined in (E.29), then the result is immediate. Assume then
that J* # . Any inequality indexed by j ¢ J* is satisfied with probability approaching one by similar arguments
as in (D.20) (both with ¢ and with ¢ — §). Hence, one could argue for sets 2(c),207%(c) defined as in equations
(E.16) and (E.17) but with j € J*. To keep the notation simple, below we argue as if all j = 1,...,J belong to
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J*. Let ¢ = 0 be given. Let g be a J + 2d + 2 vector with entries

C—Zj, j:].,...,J,
gi =1 1, j=J+1,...,J+2d, (E.137)
0, j=J+2d+1,J+2d+2,
recalling that 7y ; = 0 for j = J; +1,---,J. Let 7 be a (J + 2d + 2) vector with entries
1, j=1,...,J
=4 0 T (E.138)
0, j=J+1,...,J+2d+2.
Then we can express the sets of interest as
W(e) ={\: KX < g}, (E.139)
WO(c)={\: KA<g— o7} (E.140)

By Farkas’ Lemma, e.g. Rockafellar (1970, Theorem 22.1), a solution to the system of linear inequalities in (E.139)

J+2d+2
R+

exists if and only if for all u € such that p/K = 0, one has g = 0. Similarly, a solution to the system of

linear inequalities in (E.140) exists if and only if for all g € R7*24+2 such that u/K = 0, one has p/(g — 67) = 0.
Define

M= {pe R /K = 0}. (E.141)
Then, one may write

Pr({20(c) # @} 0 {W°(6;,,¢) = &})
=Pr({s'g > 0,Yue M} n {§/(g - d7) < 0,3pe M})
=Pr({u'g = 0,Yue M} n{ig < du'r,3pe M}). (E.142)
Note that the set M is a non-stochastic polyhedral cone which may change with n. By Minkowski-Weyl’s theorem

(see, e.g. Rockafellar and Wets (2005, Theorem 3.52)), for each n there exist {v € M,t =1,--- T}, with T' < o©
a constant that depends only on J and d, such that any p € M can be represented as

T
w=">b Z at, (E.143)
t=1

whereb>0anda; >0, t=1,...,T, ZtT=1 a; = 1. Hence, if p € M satisfies u'g < du’7, denoting v* the transpose
of vector v¢, we have

T T
Z av’g <o Z a''T. (E.144)
i=1 t=1

However, due to a; > 0,Vt and v* € M, this means v¥g < 6v¥'7 for some ¢ € {1,...,T}. Furthermore, since v* € M,
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we have 0 < v¥g. Therefore,
Pr({p'g = 0,Ype M} n{i'g <du'r,3pe M})

T
<Pr(0<v’g<ovr,3te{l, - T} < Z Pr(0<vg<évr). (E.145)
=1

Case 1. Consider first any ¢ = 1,...,T such that v! assigns positive weight only to constraints in {J + 1,...,J +
2d + 2}. Then

J+2d
tr t
Vo= ), v
j=J+1
J+2d+2
t_ t_
o't =46 }: vty =0,
j=J+1

where the last equality follows by (E.138). Therefore Pr (0 < v¥g < dvt'7) = 0.

Case 2. Consider now any ¢ = 1,...,T such that v* assigns positive weight also to constraints in {1,...,J}. Recall
that indices j = J; + 1,...,J; + 2J5 correspond to moment equalities, each of which is written as two moment
inequalities, therefore yielding a total of 2J, inequalities with D;; 5, = —D; for j = J1 +1,...,J1 + J2, and:

—7, Ny A T
g=1{ 2 7 L (E.146)
C+Zj,J2 j=++1,...,J
For each v, (E.146) implies
J1+2J2 J1+2J5 Ji+J2
Z vig; = c Z i+ Z V) — v, 1) ;. (E.147)
j=J1+1 j=Ji1+1 j=Ji1+1
For each j =1,--- ,J1 + Jo, define
vt j=1,--- 7]
pt=1{" J ! . (E.148)
l/; V§+J j=J1+1, s J1 4+ Jo
We then let 7% = (7}, 1,---, 9} ; ,;,)" and have
J1+Js J J+2d
Vg = Z DT + ¢ Z Vi + Z vl (E.149)
j=1 P B K

Case 2-a. Suppose ' # 0. Then, by (E.149), Zi—:ﬁ is a normal random variable with variance (#7)~20"'Qit. By
Assumption 4.3, there exists a constant w > 0 such that the smallest eigenvalue of £ is bounded from below by w

for all ¢/,. Hence, letting | - |, denote the p-norm in R7*24+2  we have

vt - w| o3 w

= = . Ea].
)2 = (T +2d+ 2278~ (J +2d +2)° (E-150)

Therefore, the variance of the normal random variable in (E.145) is uniformly bounded away from 0, which in turn

allows one to find § > 0 such that Pr(0 < % <) <n/T.

Case 2-b. Next, consider the case 7' = 0. Because we are in the case that v! assigns positive weight also to
¢

constraints in {1,...,J}, this must be because v; = 0 for all j = 1,---,J; and v} = vi, ; for all j = J; +

[46]



Lo, Ji + Jo, while v§ # 0 for some j = J; +1,---,J; + Jo. Then we have Z;.le vig = 0, and ijl vitj =0
because 7; = 0 for each j = J; + 1,...,J. Hence, the argument for the case that v* assigns positive weight only to

constraints in {J +1,...,J +2d+ 2} applies and again Pr (0 < v¥g < év¥7) = 0. This establishes equation (E.131).

To see why equation (E.132) holds, observe that the bootstrap distribution is conditional on X1, ..., X,,. There-
fore, the matrix Kn, defined as the matrix in equation (E.57) but with D, replacing Dp, can be treated as non-
stochastic. This implies that the set M., defined as the set in equation (E.141) but with K, replacing K, can be
treated as nonstochastic as well.

By an application of Lemma D.2.8 in Bugni, Canay, and Shi (2015) together with Lemma E.17 (through an

argument similar to that following equation (E.87)), G2, 4 Gpin [*(0©) uniformly in P conditional on { X7, --- , X},
and by Assumption 4.4 ﬁn(%) By D, for almost all sample paths. Set
cfgoj(fﬂ,](G;L))iGgL,](aiL)v j=1,...,J,
gpmj(%) = 1, j=J+1,....J+2d, (E151)
0, j=J+2d+1,J+2d+2,

and note that [* (&, ;(6;,))] <7 for all j € J*, and G}, ;(0,)|[{Xi}2, % N(0,9). Then one can mimic the argument
following (E.137) to conclude (E.132).
The results in (E.135)-(E.136) follow by similar arguments, with proper redefinition of 7 in equation (E.138). O

LEMMA E.7: Let Assumptions 4.3 and 4.5 hold. Let (P,,0,) have the almost sure representations given in
Lemma E.1, let J* be defined as in (E.29), and assume that J* # . Let C collect all size d subsets C of
{1,....,J + 2d + 2} ordered lexicographically by their smallest, then second smallest, etc. elements. Let the random
variable C equal the first element ofCN s.t. det K€ # 0 and \© = (K€)71g% e W*79(0) if such an element exists;
else, let C = {J +1,...,J +d} and \® = 14, where 14 denotes a d vector with each entry equal to 1, and K, g and
0% % are as defined in Lemma E.2. Then, for any n > 0, there exist 0 < ey <00 and N € N s.t. n = N implies

P (W*7°(0) # &, |[det K€| < &) <. (E.152)

Proof. We bound the probability in (E.152) as follows:

P (W*°(0) # &, |det K¢| <e,) < P (ac eC: 2% e BY |det KC| < gn) (E.153)
< > P (\“ e BY) (E.154)

CEC~:|det Ko‘éan
< > P(\YeBY), (E.155)

CECN:|aC|SEf7/d

where a® denote the smallest eigenvalue of K¢ K¢’. Here, the first inequality holds because 209 < B? and so
the event in the first probability implies the event in the next one; the second inequality is Boolean algebra; the
last inequality follows because | det K€| > |aC|%2. Noting that C has (J+2dd+2) elements, it suffices to show that

.
(J+2dd+2)

|ac| < ei/d — P ()\C € Bd) <7

Thus, fix C' € C. Let ¢© denote the eigenvector associated with a® and recall that because K¢ K¢’ is symmetric,
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HqCH = 1. Thus the claim is equivalent to:
|qC/KCKC/qC| < 6fl/d — P((KC)_lgC c %z) <7 (E.156)

Now, if |’ KCK“"¢“| < ef/d and (K¢)"1g% e %g, then the Cauchy-Schwarz inequality yields

%98, | = [a“' K (K9) ™" °| < Vaey, (B.157)

hence
P((KC) 1% e BY) < P(|qc'gc| < \/&e}/d). (E.158)

If ¢© assigns non-zero weight only to non-stochastic constraints, the result follows immediately. If ¢ assigns

non-zero weight also to stochastic constraints, Assumptions 4.3 and 4.5 (iii) yield

eig(Q) > w
— Varp(q®¢%) > w
=P

— P (|qC’gC| < \/35717/‘{) (—\/EE}/d <q“¢% < \/geé/d>

1/d
- Mﬂ, (E.159)
2w

where the result in (E.159) uses that the density of a normal r.v. is maximized at the expected value. The result

follows by choosing

- (2

LEMMA E.8: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. If Jo = d, then 3¢ > 0 s.t.

WV
s}

liminf inf inf P(cL(0)

)=1.
n—w PeP 9eO(P)

Proof. Fix any ¢ > 0 and restrict attention to constraints {J1 + 1,....,.J1 + d,J1 + Jo + 1,...,J1 + Jo + d}, ie.
the inequalities that jointly correspond to the first d equalities. We separately analyze the case when (i) the
corresponding estimated gradients {D,, j() : j = Ji + 1,...,J; + d} are linearly independent and (ii) they are
not. If {bn] 0):j=J+1,..,J1 +d} converge to linearly independent limits, then only the former case occurs
infinitely often; else, both may occur infinitely often, and we conduct the argument along two separate subsequences
if necessary.

For the remainder of this proof, because the sequence {6,,} is fixed and plays no direct role in the proof, we
suppress dependence of D, ;(#) and (GI;LJ () on 0. Also, if C' is an index set picking certain constraints, then DS is
the matrix collecting the corresponding estimated gradients, and similarly for G%¢.

Suppose now case (i), then there exists an index set C < {J; +1,...,J1 +d, J1 + Jo +1,...,J; + Jo +d} picking
one direction of each constraint s.t. p is a positive linear combination of the rows of ﬁg (This choice ensures
that a Karush-Kuhn-Tucker condition holds, justifying the step from (E.160) to (E.161) below.) Then the coverage
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probability P*(V,1(6,¢) # &) is asymptotically bounded above by

P*( sup {p')\ Dy h <c— Gfl_j,j € J*} > 0) <P*( sup {p’)\ :DpA<c— (Gflj,j € C'} > O) (E.160)
XepBd ’ AeR¢ ’

=P (D) (e14 - G = 0) (E.161)
_p*< PO (la —GRY) 0)
P(DS)1QG(DS)~1p
_P*< padj(Dy)) 7( clq — GY 7) - 0) (E.163)
P/ (adi(DS)0Gadi(DG)p

(E.162)

( p'adj(Dg)elq > +op(1) (E.164)
\/p (adj(DS)NGadj(DS )p
<®(dw™ 1/20) +op(1). (E.165)

Here, (E.160) removes constraints and hence enlarges the feasible set; (E.161) solves in closed form; (E.162) divides

through by a positive scalar; (E.163) eliminates the determinant of D¢ using that rows of f),? can always be

n
rearranged so that the determinant is positive; (E.164) follows by Assumption 4.5, using that the term multiplying
GbC is Op(1); and (E.165) uses that by Assumption 4.3, there exists a constant w > 0 that does not depend
on # such that the smallest eigenvalue of Qp is bounded from below by w. The result follows for any choice of
€ (0,071 — ) x w'/2/d).

In case (ii), there exists an index set C < {J; +2,....J; +d,J; + Jo + 2,...,J; + Jo + d} collecting d — 1 or
fewer linearly independent constraints s.t. Dn J,+1 is a positive linear combination of the rows of jjjc; (Note that
C cannot contain J; + 1 or J; + Jo + 1.) One can then write

P sup {pA: Dugh<e—Gh . jeCuls+ h+1}}>0) (E.166)
XepBe ’
< P* (HA:f)n’j)\gc—GfL’j,je@u{‘h +J2+1}) (E.167)
< P*( sup {EthA Do A<c—Gh je C} inf {bn,,,mA : Doogisgarih < ¢ — Gz,m‘,ﬁl})
XepBY |, AepBi ,
(E.168)
_p* (DH,JM[)S’(DSDS) Yelg— GEO) > —c + GgJﬁbH) . (E.169)

Here, the reasoning from (E.166) to (E.168) holds because we evaluate the probability of increasingly larger events;
in particular, if the event in (E.168) fails, then the constraint sets corresponding to the sup and inf can be separated
by a hyperplane with gradient ﬁn J,+1 and so cannot intersect. The last step solves the optimization problems
in closed form, using (for the sup) that a Karush-Kuhn-Tucker condition again holds by construction and (for the
inf) that Dy s, 47,41 = —Dn.s,11. Expression (E.169) resembles (E.162), and the argument can be concluded in
analogy to (E.163)-(E.165). O

LEMMA E.9: Let Assumptions 4.1, 4.2, 4.3-(II), 4.4, and 4.5 hold. Suppose that both m ; and 7 jig, are
finite, with m1 4, j =1,...,J, defined in (D.4). Let (P,,0,) be the sequence satisfying the conditions of Lemma
E.3. Then for any 0., € (0, + p/x/nB%) n 6,

(1) o ;(0,)/0% ;ig,(0,) =1 forj=1,--- Ry

[49]



(2) Corrp, (m;(Xi,0;,),m;1r,(Xi,0,)) > =1 forj =1, Ry.

*
(8) Gy ;(0,,) + Gy jsr, (6,)] Py 0, and \G’,’m-( ')+ GTLJ+R1( a1 o for almost all {X;} .

(4) PIDp, j+r.(07) + Dp, ;(60,)] = 0.

—1v/nEp, [m; (X,,Q )]

Proof. By Lemma E.5, for each j, lim,_,o x,, o (07

= 71,5, and hence the condition that m ;,m ;4 g,
—1v/nEp,[m;(Xi,0;)]

are finite is inherited by the limit of the corresponding sequences x., = . and k! VnBp, s 11(3(“9")] .
Pr. (07,) opy,,j+711(0},)
We first establish Claims 1 and 2. We consider two cases.
Case 1.
. K
lim j%apn,jw;) >0, (E.170)

which implies that op, ;(6],) — oo at rate \/n/ky or faster. Claim 1 then holds because

Thy e (00) 0%, (00 + Varn, (4(X,s0) + 2Coup, (my (X0 0. 15X 0)) oo
A 7o) o (AT
O'ij n P

)i

where the convergence follows because Varp, (t;(X;,0,,)) is bounded due to Assumption 4.3-(II),

|Covp, (m;(X:,6,,),t;(Xi,0,)) /0%, ;0,)] < (Varp, (t;(X:.6,))) " /op, ;(6,),

and the fact that op, ;(6;,) — c0. A similar argument yields Claim 2.
Case 2.

nll_r)récfapnd(G') 0. (E.172)

In this case, m; ; being finite implies that Ep, m;(X;,6,,) — 0. Again using the upper bound on t;(X;, ¢),) similarly
o (E.171), it also follows that

nhl}go \/*O.Pn J+ R (0/ ) = 07 (E173)

and hence that Ep, (t;(X;,0;)) — 0. We then have, using Assumption 4.3-(II) again,

VYn

Varp, (t;(X:,0)) = f 1 (,0),)2dP, () — Ep, [t;(X,.60,)]?

<M [ 430, 0,4, (0) — Ep,[6, (X, 0P = . (E.174)
Hence,
%, jrr (00) _ op, j(0,) + Varp, (t;(Xi,0;,)) + 2Covp, (m;(Xi,0;,), (X, 6,,))
op, i (0n) o5, ()
_ TP (00) + Vare, (£(X5,6,)) | 2Vare, (t;(X:,6,))"2
U%n \J (0,) OP,.j (67,)
-1 (E.175)

and the first claim follows.
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To obtain claim 2, note that

O.anj (0%)0P7L7j+R1 (071)
-, (E.176)

Corrp, (m;(X,0,),mj i, (X,6,,)) = 0,4 (0n) = Cove, (m;(Xs,0,,),1;(X:. 0,,))

19 Yn 2 Yn

where the result follows from (E.174) and (E.175).
To establish Claim 3, consider G,, below. Note that, for j =1,--- , Ry,

/ RPN 1(mg(X7, n) Ep,, [m; (X:,00)])
Grath) |~ M 1) / (E.177)
G (9/) - I 1(m(X4,6, )_EP7L[m_](XL79,n)])+\/72:’ L (65 (X0,00)—Ep, [t;(X:,00)]) | - .
ot " _ﬁ OPp,j+R1 (9 )

Under the conditions of Case 1 above, we immediately obtain

(Ginj (04) + Gy (6)] 23 0. (E.178)

Under the conditions in Case 2 above, ﬁ S (4(X,0,) — Ep, [t;(X:,0,)] = op(1) due to the variance of this

Y n Y n

term being equal to Varp, (t;(X;,6,,)) — 0 and Chebyshev’s 1nequahty. Therefore, (E.178) obtains again. These
results imply that Z; +Z;; g, = 0,a.s. By Lemma E.15, {G%} converges in law to the same limit as {G,,} for almost
all sample paths {X;}° ;. This and (E.178) then imply the second half of Claim 3.

To establish Claim 4, finiteness of 7, ; and my j4+r, implies that

my(X,00)  myem (X e’>> <>
E JY o/ T R 0] . E.179
P”(opn,j(em omam@) ) =7\ (B-179)

Define the 1 x d vector

4n = Dp, j+r,(0,) + Dp, ;(0,). (E.180)
Suppose by contradiction that
pan — s # 0,
where |¢| might be infinite. Write
/
= ol s
Let
Ty = Fppk /A0 (E.182)

Using a mean value expansion (where ,, and 6,, in the expressions below are two potentially different vectors that

lie component-wise between 6/, and 0/, + r,,) we obtain

Ep (mj(X, O +7n) | mjrr (X0, +7"n)> _ B, (mj(X, 0n) MR, (X,0)
op,i(0n, +1n)  op, iR, (0, +70) "\op,;0,)  op,jir (0)

> + (D, 3(00) + Dr, g (B)) 7o

=OP(%) +(Dp, ;(0;) + Dp, j+£r.(0,)) n + (Dp,,j(00) — Dp,,j(07,)) 7 + (DPn,j+R1(9n) - DPn,j+R1(9§L)) Tn
oy s 5 o
OP(\/H) + N + Op( " ). (E.183)

It then follows that there exists N € N such that for all n > N, the right hand side in (E.183) is strictly greater
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than zero.
Next, observe that
(mj(X, 0, + 1) L+ Myt Ry (X,0], + rn)>
Pn
0P, j(0n +1n) 0P, iR (0], +Tn)
_Ep (mj(X’ Op +rn) | mytr (X0, + m)) 3 (UPn,j+R1 (0, +1n) 1) Ep, (mj1r, (X, 0, +172))

op, (0 +mn) 0P, (05 +1n) op,j(0 + 1) 0P, j+R: (07 + 7n)
m;(X,0, +r,)  mir, (X,0 +7’n)> pK2
=F J rYn J 1 »Yn o Fn . E.184
n (e e ) o) (.18

Here, the last step is established as follows. First, using that op, ;(6], + ;) is bounded away from zero for n large

enough by the continuity of o(-) and Assumption 4.3-(II), we have

) 9’ . ) 0’
UPn,,]+R1( ntT ) 1 O-an]‘FRl( n) -1 +O'P(1) _ 077(1)7 (E185)

op,i(0 +7n) op,.;(07)
where we used Claim 1. Second, using Assumption 4.4, we have that

Ep,(mj+r, (X, 0, + 1)) _ Ep,(mjir,(X,0,))
0P, g+ R (07 + 1) 0P, .+ R (07,)

5 Kn pK2
+ .DPn,,jJrRl (Gn)'f'n = OP(%) + 073(7) (E186)

The product of (E.185) and (E.186) is therefore OP(%) and (E.184) follows.

To conclude the argument, note that for n large enough, m;, g, (X, 0., + r,) < —m;(X,0,, + r,) a.s. because
for any 6,, € ©7(P,) and 0, € (0,, + p//nB?) N O for n large enough, ¢/, +r, € ©¢ and Assumption 4.3-(IT) applies.
Therefore, there exists N € N such that for all n > N, the left hand side in (E.183) is strictly less than the right
hand side, yielding a contradiction. O

Below, we let Rl = {1, ,Rl} and RQ = {Rl + 1,-~- ,2R1}.

LEMMA E.10: Suppose Assumptions 4.1, 4.2, and 4.5 hold. For each 0 € ©, let 0, ;(0) = op;(6)/6n,;(0) — 1.
Then, (i) for each j =1,...,J1 + Jo

EE%P(ZZS 7.3 ()] — 0) —1. (E.187)
(i) For any j =1,..., Ry let
G35(0) = 6311 7y (0) = fin 5 (0)G0 5 (0) + (1 = fin 5(0))Fn 1, (6). (E.188)

Let (Pp,0,) be a sequence such that P, € P, 0, € © for all n, and k,*\/ny1 p, ;j(0,) — T1; € R_oo7. Let T* be
defined as in (E.29). Then, for any n > 0, there exists N € N such that

oPp, (an)
Pn( max —n R 1’ > ) < £-189
JE(R1IUR2)NT* U%j<0n) ! ! ( )

for alln = N.
Proof. We first show that, for any € > 0 and for any j =1,...,J; + Jo,

. &n (9)
inf P( sup su -
PpeP m;; 9eg UP,j(H)

- 1‘ < e) S (E.190)
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For this, define the following sets:

M; = {m;(,0)/op;(0):0€0,PeP} (E.191)
Sj = {(mj(~,9)/ap,j(9))2 ZGEG,PGP}. (E192)

By Assumptions 4.1-(a), 4.1 (iv), 4.5 (i), (iii), and arguing as in the proof of Lemma D.2.2 (and D.2.1) in Bugni,
Canay, and Shi (2015), it follows that S; and M; are Glivenko-Cantelli (GC) classes uniformly in P € P (in the
sense of van der Vaart and Wellner, 2000, page 167).

Therefore, for any € > 0,

SIS my(X,0)°  Eplm;(X,0)?
inf P( sup sup z 21:21 my (X, ) _ P[W;]( .9) ]‘ < e) —1 (E.193)
PeP m>=n 0e© O'Pj(g) UP,j(e)
: Mn,;(0) — Ep[m;(X,0)]
f P o : <e)—1 E.194
O I A B0y

Note that, by Assumption 4.1 (iv), |[Ep[m;(X,0)]/op,(0)] < M for some constant M > 0 that does not depend on
P and (22 —y?) < |z + y||lz — y| < 2M|x — y| for all z,y € [-M, M]. By (E.194), for any € > 0, it follows that

1 (0)2 — Ep[m; (X, 0)]2
inf P( Sup sup | 4(0) 5 plm; (X, 6)] ‘ < e) — 1. (E.195)
PeP m=n 0e© Op,; (0)

By the uniform continuity of « — 4/x on R, for any € > 0, there is a constant n > 0 such that

G3.5(0) Gn,j(0)
O’%; 0) op;(0)

~1 <

- 1’ <e (E.196)

By the definition of o3 ;(f) and the triangle inequality,

&55(0) B n~tY m(X;,0)2 — E[mj(X;,0)?] Tin;(0)2 — E[m;(X;,0)]2
U?D,j () 1‘ < ‘ 0'12373. (9) ‘ + ‘ U%,j 0) (E.197)

By (E.196)-(E.197), bounding each of the terms on the right hand side of (E.197) by n/2 implies |6, ;(8)/op;(6) —
1] < e. This, together with (E.193) and (E.195), ensures that, for any € > 0, (E.190) holds.

Note that |6, ;(0)/op,;(0) — 1| < € implies 6, ;(¢) > 0, and argue as in the proof of Lemma D.2.4 in Bugni,
Canay, and Shi (2015) to conclude that

inf P(
pPeP m=n fe®

TPi\9) 1‘ ) 1. (E.108)

Un]

Finally, recall that n, ;(0) = op;(8)/6,,;(0) — 1 and note that for any e > 0,

1= lim inf P( sup sup |1y, ; (¢ |<6)

n—o0 PeP m=n 0e©

< inf 1 (0] <

it Jz%cp(mf]n{zgglnw 1<)

= IlgrelgDP( lgn mon{sup |7, (0 e})

= inf P(sup |7, (8)] <€, for almost all n), (E.199)
PeP 9cO

where the second equality is due to the continuity of probability with respect to monotone sequences. Therefore,

the first conclusion of the lemma follows.
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(ii) We first give the limit of /i, ;(,). Recall the definitions of fi, j+r, and fi, ;(6,) in (E.14)-(E.15).
Note that

[ Y] _ B (X))
p K:n /
a/neener/\/ﬁBd n,5(07,) op,,i(0)
n(mn,;(0,) — Ep,[m;(X;,0,,)]) / -1 VnEp,[m;(X;,0,)] /
< sup n 1+n,;(00,)+k M5 (05,
0,,€0,+p//nB? on,j(0},) ( #(6n)) op,,;(07,) i(6n)

E X;, 0,
< s GO (o) + [V O]

i (07,)] = op(1), (E.200
0!.€0,,+p/r/nB? HnUP,,L7j(91/,L) n ,J( ) P( ) ( )

where the last equality follows from supgcg |G, (0)| = Op(1) due to asymptotic tightness of {G,} (uniformly in P)
by Lemma D.1 in Bugni, Canay, and Shi (2015), Theorem 3.6.1 and Lemma 1.3.8 in van der Vaart and Wellner
(2000), and supgeg |7, (0)] = op(1) by part (i) of this Lemma. Hence,

i (60 ﬂl—min{max 0, i ,1}, E.201
fn6:) 0 ) (B.201)
unless 1 j4r, + m1,; = 0 (this case is considered later). This implies that if w1 ; € (—c0,0] and 7 j1r, = —00, one
has
. Py
fin,j(On) = 1. (E.202)
Similarly, if m; ; = —00 and 7y j4 g, € (—0,0], one has
N Py,
fim o (0) 531 (E.203)

Now, one may write

) - ) () ) (Bt ) 0 (3500 1) o,

n,J n,J
where the second equality follows from the first conclusion of the lemma. Hence, for the second conclusion of the

lemma, it suffices to show &, ;(0,)/6)":(0,) —1 = op(1). For this, we consider three cases.
Suppose first j € Ry n J* and j + Ry ¢ J*. Then, wf)j = 0 and WT,HR] = —o0. Then,

1,5 (0n) + (1= fin,j(00))0n,j+ R, (On) (E.205)
1))6n,j(0n) + (1 = fin,j(6))Op, (6,5 (0n)), (E.206)

where the second equality follows from (E.202) and the fact that
_— _ 1/2
Gugeit (On) = (62(00) + 2C00, (m; (X, 0),45(X,0)) + Vara(t(X,,0))

1/2
= (62 1(60) + Op, (50,5(62)) + Op, (1)) = Op, (65(60)),  (B:207)

where the second equality follows from, Varp, (¢t;(X;,0)) being bounded by Assumption 4.3-(II) and

Var,(t;(X;,0)) = Varp, (t;(X;,0)) + op, (1) (E.208)
Covn (m;(X;,0),15(X;,0)) < 603 (0n)Vary(t;(Xi, 0))2, (E.209)

where the last inequality is due to the Cauchy-Schwarz inequality.
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Therefore,

Gnj(0n) | _ Onil0n) = 605(0n) _ (1= fin 3 (0))Op, (J,3(6n)) _op (1), (E210)
‘ATﬁ/,Ij (071) 6%;’ (en) (1 + OPn(l))&n,j (971) + (1 - ﬂn,j (en))OPn (&n,j(en)) e
where we used &;3- (6n) = Op, (1) by equation (4.3) and part (i) of the lemma. By (E.204) and (E.210), op, ;(0n)/6,);(0,)—

1=o0p,(1). Using a similar argument, the same conclusion follows when j € R1,j ¢ J*, but j + R1 € Ro n J*.

Now consider the case j € R1 n J* and j + Ry € Ro n J*. Then, nf; = 0 and 7f; p = 0. In this case,
fin,;(65) € [0,1] for all n and by Lemma E.9 (1),

_92uiln) | o 1), for =1, Ry, (E.211)
0P,.j+R, (On)
and therefore,
UPan(Hn) _ 1 _ O-anj(en) - A'Ijle(e"l)
o) (0n) o) ()
_ [ﬂn,j (en) + (1 — ﬂn,j (en))]Uij (en) — [ﬂmj (en)6n,j (an) + (1 — ﬂn,j(en))a’n,j-&-Rl (en)]
o (0,)
fin,j(On)[op, j(0n) = Gni(0n)] (L= fin,j(0n))[oP,,j+R: (6n) = Onjt+ri (On) + op, (1)]
= E.212
(}%j(en) * &%J<9n) ) ( )

where the second equality follows from the definition of &g{j (6r), and the third equality follows from (E.211) and
op, j+r, bounded away from 0 due to (4.3). Note that

i O 0n) = Gns )] _ o 0On) (Tras(P) 1y _
G (6n) _“"”(9”)&%(9”)(&n,j(gn) 1)— p. (1), (E.213)

where the second equality follows from the first conclusion of the lemma. Similarly,

(1 = fin,j(0n))[oP, i+ By (On) — Fnj+ R, (On) + op, (1)]

Gy (On)
~ &n i+R (en) op,.j+R (9774)
= (1= fin.i(0,)) 2Lt o)t —14o0p (1)) =op, (1). (E.214
(1= s ) 70y 32 (2255 — 1+ o (1) = on (1. (B214
By (E.212)-(E.214), it follows that op, ;(0,)/65";(6,) — 1 = op, (1). Therefore, the second conclusion holds for all
subcases. O

E.2 Lemmas Used to Prove Theorem B.1

Let {Xf » , denote a bootstrap sample drawn randomly from the empirical distribution. Define
1 n
b _ b -
®ni(0) = 7 ; (m;(X7,0) = mn(9)) fop;(6)

= % 2 (Mo = 1)m; (X5, 0)/op5(6), (E.215)

where {M,, ;}?' ; denotes the multinomial weights on the original sample, and we let P} denote the conditional
distribution of {M,, ;}1_; given the sample path {X;}°, (see Appendix E.3 for details on the construction of the

bootstrapped empirical process).
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LEMMA E.11: (i) Let Mp = {f : X > R : f(:) = op;(0) " m;(-,0),0 € ©,5 = 1,--- ,J} and let F be its
envelope. Suppose that (i) there exist constants K,v > 0 that do not depend on P such that

sup N(e\|F||L%,Mp,L2Q) <Ke? 0<e<l, (E.216)
Q
where the supremum is taken over all discrete distributions; (ii) There exists a positive constant v > 0 such that
[(61,61) — (62,62) <6 = Sup |Qp(61,61) — Qp(6s,0:)| < M5 (E.217)
€

Let 6,, be a positive sequence tending to 0 and let €, be a positive sequence such that €,/|6) Inéd,| — © as n — 0.
Then,

sup P < sup |G, (0) — G,(0")] > en> = o(1). (E.218)
PeP 16—6"1<5n
Further,
lim PF( sup  [85(6) — 4(0)] > eul{X}Z, | = 0. (E.219)
e l6—6"]<6n

for almost all sample paths {X;}32, uniformly in P € P.

Proof. For the first conclusion of the lemma, it suffices to show that there is a sequence {e, } such that, uniformly
in P:

60— <5, 3=1 T

P ( sup max |G, ;(0) -G, ;@) > €n> =o(1). (E.220)
\

For this purpose, we mostly mimic the argument required to show the stochastic equicontinuity of empirical processes
(see e.g. van der Vaart and Wellner, 2000, Ch.2.5). Before doing so, note that, arguing as in the proof of Lemma
D.1 (Part 1) in Bugni, Canay, and Shi (2015), one has

10—0) <6, = o0p(0,0)<5,, (E.221)
where 6, = O(6) by assumption. Define

Mps = 1{op;(0)"'m;(-,0) —op, ()" m;(-,61)0,0' € ©,0p(6,0) < bn,j =1, ,J}. (E.222)

Define Z,,(6,) = supgepnq, [vn(Pn — P)f|. Then, by (E.221), one has

Pl sup  max |G, ;(0) =G, ;(0)] > en) < P(Zn(6,) > €n |- (E.223)
10—0|<6, =17

From here, we deal with the supremum of empirical processes though symmetrization and an application of a
maximal inequality. By Markov’s inequality and Lemma 2.3.1 (symmetrization lemma) in van der Vaart and
Wellner (2000), one has

< 2
P(Zn(0n) > €n) < —Epypw | sup
€n fEMP,Sn

3 S| -

where {W;}"_, are i.i.d. Rademacher random variables independent of {X;}*; whose law is denoted by P". Now,
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fix the sample path {X;}" ;, and let P, be the empirical distribution. By Hoeffding’s inequality, the stochastic
process f — {n"YV23" W, f(X;)} is sub-Gaussian for the L% seminorm HfHLz = (7' XL, f(X)?)Y2. By the
maximal inequality (Corollary 2.2.8) and arguing as in the prooLf of Theorem 2. 5 2 in in van der Vaart and Wellner
(2000), one then has

Epw | sup

fE./Vlgn

\}ﬁinf(

Sn
Xi)] < KJ \/lnN(e,MRgn,L% )de
O n

Kjé IE] Lz, \/1 N(e|Flpe Mp.12)d
< sup 4 /In V(e 2, Mp, €
0 Q o @

on/IFl L
< K/J v —vln ede, (E.225)
0

for some K’ > 0, where the last inequality follows from (E.216). Note that v/—Ine < —1Ine for € < n/HFHL2 with

n sufficiently large. Hence,

ﬁ;WJ(

By (E.224) and taking expectations with respect to P in (E.226), it follows that

Epw | sup
feMs;

n/IF | 2 - ~ ~
X;) ] < K/vl/QJ = (—Ine)de = K'v'/2(6,, — 6, In(d,,)). (E.226)
0

P(Z(8,) > €n) < 2K'0Y2(6,, — 6, 0(0,,))/en = O(8) Jen) + O(|67 In(6,,)|/en) = 0(1), (E.227)

where the last equality follows from the rate condition on €,. By (E.223) and (E.227), conclude that the first claim
of the lemma holds.

For the second claim, define Z*(5,) = SUP re ;s |v/n(P* — P,)f|, where P* is the empirical distribution of
{X?}"_,. Then, by (E.221), one has

pP¥ sup  max |60 5(6) — &) (0')] > en
j0—0"| <8y =L ’

{Xi}?&) < PH(ZE(8,) > e {Xi}0)- (E.228)

By Markov’s inequality and Lemma 2.3.1 (symmetrization lemma) in van der Vaart and Wellner (2000), one has

2

PH(ZE(0n) > en|{Xi}71) < G—Epﬁxpw l sup ’\f Z W, f(X?)

X2 ] (E.229)

= %Epf lEpw l sup ‘% Z Wi f(X?) {th{Xi}?L} |{Xi}?111 , (E.230)

femM P,5n

where {W;}?_; are i.i.d. Rademacher random variables independent of {X;}2; and {M,, ;}_ ;. Argue as in (E.224)-
(E.227). Then, it follows that

P:(Z:(Sn) > e [{Xi}i21) = O(07/en) + O(=0, In(6,) /€n) = o(1),
for almost all sample paths. Hence, the second claim of the lemma follows. O

LEMMA E.12: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Let Sp={f: X - R: f(:) = ap,j(ﬂ)_2m?(-,9),9 €

0,j=1,---,J} and let F be its envelope. (i) If Sp is Donsker and pre-Gaussian uniformly in P € P, then

sup |17, (0)]* = Op(1/v/n); (E.231)
0O
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(ii) If |op(0) " tm;(z,0) — op;(0") " tm;(z,0)] < M(z)|0 — 0| with Ep[M(X)?] < M for all 6,0’ € ©, z € X,
j=1,---,J, and P € P, then, for any n > 0, there exists a constant C > 0 such that

lim sup sup P( max — sup |nn;(6) — Mn,i (07)] > C’(S) <. (E.232)
n—o PeP NI=LoJ -0 <6

Proof. We show the claim by first showing that, for any § > 0, there exist M > 0 and N € N such that

inf P® (
PeP 9,5@

M_ < >1_ >
ol 1’ < M/\/ﬁ) >1-4, ¥n> N. (E.233)

By Assumptions 4.1 (iv), 4.5 and Theorem 2.8.2 in van der Vaart and Wellner (2000), Mp is a Donsker class
uniformly in P € P. By hypothesis, Sp is a Donsker class uniformly in P € P.

Therefore, by the continuous mapping theorem, for any € > 0,

n-13m (X
‘P( T sup Zz=21 m; (X;, 0)? _ Brlm (X, 6) )’ ‘ < 01) — Pr(sup |Hp, (0)] < C1)| < e (E.234)
0e6 op;(0) o5 (0) 0c0
‘P( nsup 1in.; (%) plmy 0)]‘ < C’g) — Pr(sup|Gp;(0)] < 02)‘ <e (E.235)
0c6 op,;(0) e

for n sufficiently large uniformly in P € P, where Hp; and Gp; are tight Gaussian processes, and C; and C»
are the continuity points of the distributions of supgeg [Hp;(0)| and supgeg |Gp,;(#)| respectively. As in the proof

of Lemma E.10 (i), bounding each term of the right hand side of (E.197) by Ci/+/n and Cy/4/n implies that
(9

SUPgee | 557 3 — ’ < C/4/n for some constant C' > 0. Now choose C; > 0 and Cs > 0 so that
Pr(sup |Hp;(0)| < C1) >1—4§/3, and Pr(sup|Gp,(0)] < Cs)>1-4/3, (E.236)
0e© 0e©

and set € > 0 sufficiently small so that 1 — 2§/3 — 2e > 1 — §. The existence of such continuity points Cy,Cy > 0 is
due to Theorem 11.1 in Davydov, Lifshitz, and Smorodina (1995) applied to supgee [Hp ;(0)| and supgeg |Gp,;(6)]
respectively. Then, for sufficiently large n,

—1 2 . 2
1—5<P(\/ﬁsup i lm]( .9 *EP[W;](X’G) | < (Ch,
0e© Up (9) Up,j(e)
M i(0) — B (X,0)]
Visup|™ i(8) = Bp[m;( ‘\ C:)
0e© op,;(0)
A2 0
<P( 9 —1‘ C/f) (E.237)
0O

uniformly in P € P.
Next, note that, for > 0 and 0 < n < 1, [#2 — 1| < 5 implies |z — 1| < 1— (1 —7)"/? < 7, and hence by (E.237),

for sufficiently large n,

(0

1—(5<P(sup M
geo lop;(6)

- 1‘ < C/\/ﬁ), (E.238)

uniformly in P € P. Finally, note again that |6, ;(0)/op;(0) — 1| < € implies &,, ;(#) > 0, and by the local Lipshitz

continuity of  — 1/x on a neighborhood around 1, there is a constant C’ such that
P(sup 1,5 (0)] < C//\/ﬁ) >1-9, (E.239)
4G

uniformly in P € P for all n sufficiently large. This establishes the first claim of the lemma.
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(ii) First, consider
2
52 () m(X;,0) 2 om(X;,0)
Tng®) _ n~t = —|n Dy /2 . E.240
ap;(0) Z ( op;(0 ) Z (0) ( )

We claim that this function is Lipschitz with probability approaching 1. To see this, note that, for any 0,6’ € ©,
X 0 = X 0’
—1 17 —1 27
_ —1 i lee (Xiael) m(XZae) _ m(leel)
ors(0) " ops(0) op;(0)  op;(0')

(X,.0)
—1225@ L‘M Do —e]. (E.241)
i—1 0€© JPJ

Define B, =n~!' > | 2suppeo “ ). By Markov and Cauchy-Schwarz inequalities,
_ 1/2
XHG) 2
E[B,] 2Bp [Supﬂe@ op.; (0 ] Ep [M (X3) ] 2M
P(B, > () < < < (E.242)

c - c S c
where the third inequality is due to Assumptions 4.1 (iv) and the assumption on M. Hence, for any 7 > 0, one may
find C > 0 such that supp.p P(B, > C) < 7 for all n.

Similarly, for any 6,6’ € ©,

-1 Xwe -1 S m(Xiﬂel) ’

‘ 12 XZ,G ,12”3 X“Q

‘ 12 XZ,(‘) 12 XZ,G’

O'P,] i1 O'p O'P,]
_ n ,rn()(2 0) . n B
<n! 2sup |———=|n M(X;)||6 —¢']. .
i=21 oco | op;(0) Z; (Xa)] I (E213)
m(X;,0)

Define Bn =n"! Z?:l 28upgeg

o1 (0) ‘ I3 M(X;). By Markov, Cauchy-Schwarz, and Jensen’s inequalities,

(~ - 0) < E[Bn] _ QEP[(n_lZsupge@ ZL;J_”(’:))‘)Q]l/zEpKn_l > M(Xi))z]l/z
" o C
h 2 [S - |7ZP;(£))C] - GCON < 2C , (E.244)

where the last inequality is due to Assumptions 4.1 (iv) and the assumption on M. Hence, for any 5 > 0, one may
find C' > 0 such that suppep P(B, > C) < 7 for all n.

Finally, let g(y) = y~%/? — 1 and note that |g(y) — g(v/)| < 3 SUDge(1_c1t0) 15|72y — 9| on (1 —¢€,1 +¢€). As
shown in (E.238), 7, j( )% ;(0) converges to 1 in probability, and g is locally Lipschitz on a neighborhood of 1.
Combining this with (E.240)-(E.244) yields the desired result. O

LEMMA E.13: Suppose Assumption 4.1 holds. Suppose further that |op;(0) " m;(z,0) — op;(0') " tm;(z,0")] <
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M(z)|0 — ¢'|| with Ep[M(X)?] < M for all0,0'€©, x€ X, j=1,---,J, and P P.
Then,

sup |Qp(01,01) — Qp(02,02)| < M](01,01) — (62,05)], (E.245)
€
for some M > 0 and for all 91,51,92,52 € 0.

Proof. Recall that

[Qr(61,61)]; 5 = Ep[mj(X”’el) m’f(X"ial)] _E [mj(X“el)]E [m’“(XiLH”]. (B.246)
op;(01) op(61) op,j(61) op(61)
For any 91,@1,92,@2 € @,
‘Ep[mj(Xi,ﬂ) mk(Xilél)] _B [mj(Xi,Qz) mk(Xiléz)”
opj(1) op(6)) opj(02)  opr(fs)
< ‘EP[(mj(Xi,el) B mj(Xi,02)> mk(Xilaz)” ‘E [mj(Xi,el) (mk(Xi,ﬂl) B mk(xilag))”
op,;(01) opj(02) / opr(fs) opj(01) \ opr(fy) op(02)
mg Xzya XZ,G

< Ep[sup 7’]\/[ ]H91 Oa| + Ep[sup 7‘M ]Hﬁl 0y

9o | opi( 9o | op;(0
M (|61 — 02] + 61 — 62]), (E.247)

where the last inequality is due to the Cauchy-Schwarz inequality, Assumption 4.1 (iv), and the assumption on M.
Similarly, for any 6y, 6,605,065 € ©,

‘Ep[mj(Xi,el)]EP[mk(Xi,él):l B I:mj(XZ‘,GQ)]E [mk(Xi,ég>”

op,;(01) opk(61) op,;(02) opi(02) ] ]
R ) It L YRR
< B[ s W\]Ep[mmwl — 2] + Epsup m)]fzp[ (X116 — 6]
M(|61 = 0 + 61 — 65]), (E.248)

where the last inequality is due to the Cauchy-Schwarz inequality, Assumption 4.1 (iv), and the assumption on M.
The conclusion of the lemma then follows from (E.246)-(E.248). O

E.3 Almost Sure Representation Lemma and Related Results

In this appendix, we provide details on the almost sure representation used in Lemmas E.3, E.4, E.6, and E.9. We
start with stating a uniform version of the bootstrap consistency in van der Vaart and Wellner (2000). For this, we
define the original sample X* = (X1, X5, ---) and a n-dimensional multinomial vector M,, on a common probability
space (X, A%, P®) x (£,C,Q). We then view X® as the coordinate projection on the first o0 coordinates of the
probability space above. Similarly, we view M,, as the coordinate projection on Z. Here, M, follows a multinomial
distribution with parameter (n;1/n,---,1/n) and is independent of X®. We then let Ep/[-|X® = 2%] denote the
conditional expectation of M,, given X* = z®. Throughout, we let £*(0,R”) denote uniformly bounded R”-valued
functions on ©. We simply write {*°(©) when J = 1.
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Using the multinomial weight, we rewrite the empirical bootstrap process as
‘ 1 < R .
Gy () = g;(X*, M,) = n Z(Mn,i = Dmy(Xi,)/6n,i(), 5=1,--,J, (E.249)

where g; : X* x Z — (*(0) is a function that maps the sample path and the multinomial weight (X*, M,,) to the
empirical bootstrap process Gb . We then let g : X* x Z — (°(0,R’) be defined by g = (g1,--- ,g)". For any
function f: ¢*(0,R7) — R, the conditional expectation of f(G) given the sample path X® is

M F(GL)[ X% = 2] = j £ 0 (2%, ma)dQ(my), (E.250)

where, with a slight abuse of notation, we use @ for the induced law of M,,.
Let F be the function space {f(-) = (m1(-,8)/0p1(8),--- ,m;(-,6)/op ;(8)),6 € ©, P € P}. For each j, define

a bootstrapped empirical process standardized by op; as follows:

%\

n,t m](Xzae)/UP,J( ) (E251)

7 2 (K80 = (0) for,0
7 50

%\

The following result was shown in the proof of Lemma D.2.8 in Bugni, Canay, and Shi (2015), which is a uniform
version of (a part of) Theorem 3.6.2 in van der Vaart and Wellner (2000). For the definition of a uniform version
of Donskerness and pre-Gaussianity, we refer to van der Vaart and Wellner (2000) pages 168-169. Below, we let
P* denote the outer probability of P and let T* denote the minimal measurable majorant of any (not necessarily

measurable) random element 7.

LEMMA E.14: Let F be a class of measurable functions with finite envelope function. Suppose F is such that
(i) F is Donsker and pre-Gaussian uniformly in P € P; and (ii) sup pep P*| f — Pf|% < . Then,

sup |Ear[h(®,)|X*] = E[h(Gp)]| 0, (E.252)
heBL4

uniformly in P € P.

The result above gives uniform consistency of the standardized bootstrap process %. We now extend this to

the studentized bootstrap process GY.
LEMMA E.15: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Then,

sup |En[h(GY)|X*] — E[h(Gp)]| 50, (E.253)
h€BL1

uniformly in P € P.

Proof. By Assumptions 4.1 (iv) and 4.5, Assumptions A.1-A.4 in Bugni, Canay, and Shi (2015) hold, which in turn
implies that, by their Lemma D.1.2, F is Donsker and pre-Gaussian uniformly in P € P. Further, by Assumption
4.1 (iv) again, suppep P*|f — Pf|r < . Hence, by Lemma E.14,

inf P* ( sup |En[h(88)|X*] — E[M(Gp)]|* — o) ~1. (E.254)
P heBL,
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For later use, we define the following set of sample paths, which has probability 1 uniformly in P € P.

A= {xw e X*: sup |En[h(8%)|X* = 2®] — E[h(Gp)]|* — 0}. (E.255)
heBL,

Note that G® . and &° . are related to each other by the following relationship:

n,j n,j

op,;(0)
Gn,; (6)
By Assumptions 4.1, 4.2, and 4.5, Lemma E.10 applies. Hence,

G ,(0) — 6L, (6) = &, (0) ( - 1) — 68, (6 (6), O O. (2.256)

inf P ((sup [, ;(0)* —0) = 1. E.2
Jnf, P sup [, (B)]* — 0 (E.257)
Define the following set of sample paths:
B= {xw e X :sup|n, ;(0)* - 0,Vj=1,--- ,J}. (E.258)
0cO

For any ™ € A n B, it then follows that

sup |Ear[h(GY)|X* = 2] — E[M(Gp)]|" — 0, (E.259)

hGBLl
due to (E.254) and (E.256), h being Lipschitz, 62,]‘ being bounded (given ), and supgeg |7n,;(0)|* — 0 for all
j. Finally, note that infpep PP(A n B) =1 due to (E.254), (E.257), and De Morgan’s law. This establishes the
conclusion of the lemma. O

The following lemma shows that, for almost all sample path %, one can find an almost sure representation of

the bootstrapped empirical process that is convergent.

LEMMA E.16: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Then, for each x™ € X%, there exists a sequence
{énzw e L(0,R7),n = 1} and a random element ép7moo € ((0,R”) defined on some probability space (Q, A, 13) such
that

Jh o g(x®, my)dQ(my,) = Jh(émw (@))dP*(@), Yh e BL, (E.260)

f h(Gp(w))dP(w) = f WG ppe (©))dP* (&), Yh e BLy, (E.261)
for all x* € C for some set C < X* such that inf pep P*(C) =1 and
. ~ 1370.5 =

inf P ({2 € X% 1 Goun "5 Gpan}) = 1. (E.262)

Proof. Define the following set of sample paths:

C= {xw e X sup |En[h(Gh )| X* = 2®] — E[A(Gp)]* — o}. (E.263)
heBL,
By Lemma E.15, inf pep P*(C) = 1.
For each fixed sample path ® € C, consider the bootstrap empirical process g(x®, M,,) in (E.249). This is a
random element in /* (0, R7) with a law governed by Q. For each * € C, by Lemma E.15,

*

sup — 0. (E.264)

heBL;

Jh o g(z*,my)dQ(m,) — E[L(Gp)]
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Hence, by Theorem 1.10.4 in van der Vaart and Wellner (2000), for each 2® € C, one may find an almost sure

representation énzoo of g(x®, M,,) on some probability space (Q, A, f’) such that
fh o g(a%, mn)dQ(m,,) — J 1(Cin e (@))dP* (@), Vh € BL. (B.265)

In particular, the proof of Theorem 1.10.4 in van der Vaart and Wellner (2000) (see also Addendum 1.10.5) allows
us to take én7moo to be defined for each @ € Q as

Ghwe (0) = (2, My (60 (@))), (E.266)
for some perfect map ¢, : Q — 2 (see the construction of ¢, in the middle of page 61 in VW). One may define
CNT'n,Ioo arbitrarily for any 2® ¢ C. The almost sure representation G pa» of Gp is defined similarly.

By Theorem 1.10.4 in van der Vaart and Wellner (2000), Eq. (E.259), and inf pep P(C) = 1, it follows that

inf P ({2 € X% 1 G P Gpae}) = 1 (E.267)
This establishes the claim of the lemma. O

LEMMA E.17: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Let W,, = (G5, Y,,) be a sequence in W = £(0O,R7) x
R such that Y, = §(X®, M,,) for some map §: X* x Z — R¥ and

inf P*( sup |[En[h(W,)| X =2®]— E[R(W)]|* - 0) =1, (E.268)
pPeP heBL,

where W = (G,Y) is a Borel measurable random element in W .
Then, for each * € X*, there exists a sequence {W .. € W,n > 1} and a random element W, € W defined

on some probability space (Q, A, 13) such that
Ey[h(W,)|X® = 2] = J h(W or (@))dP* (@), Yh e BLy (E.269)
E[h(W)] = J h(WE. (&))dP*(&), Vh e BL, (E.270)

for all x* € C for some set C < X* such that inf pep P*(C) =1, and

inf P°°<{xoo e X* W, PTE* ;*;o}) ~1. (E.271)
pepP ’
Proof. Let C = {x® : supycpr, |[Ep[M(W,)|X® = 2®] = E[R(W)][* — 0}. The rest of the proof is the same as the
one for Lemma E.16 and is therefore omitted. O

REMARK E.1: When called by the Lemmas in Appendix E, Lemma E.17 is applied, for example, with Y,, =
(vee(Dn(0},)),6a(0,)) and Y = (vec(D), ).

Appendix F Further Comparison of Calibrated Projection and BCS-
Profiling

We next show that finite sample power can be higher with calibrated projection than with BCS-profiling, and
that, due to the slow rate at which x,, diverges, this effect can be large in samples of considerable size. Thus, the

approaches are not nested in terms of power in empirically relevant examples. We then provide an example where
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all of calibrated projection, BCS-profiling and the method of Pakes, Porter, Ho, and Ishii (2011) fail in a specific

instance where Assumption 4.3 is not satisfied.

F.1 Finite Sample Comparison in a Specific Example

We next analyze a stylized example of one-sided testing when the support set in direction p is a singleton identified
as the intersection of d moment inequalities with regular geometry. In this example, calibrated projection has more
power (less false coverage) than BCS-profiling, and the numerical difference can be large. The example resembles
empirically important cases, namely polyhedral identified sets with large interior, e.g. linear regression with interval
outcome data; recall that by Theorem 4.3, the two-sided testing problem reduces to two one-sided ones in these
cases. At the same time, we emphasize that other examples will go the other way, especially as the present example
utilizes the simplifications from Theorem 4.3 and therefore has no p-box.

Let 0 be partially identified by moment conditions
Ep(z'0 - X;)<0,j=1,...,d.

Note that to simplify the analysis, we assume exactly d conditions. Assume that {2, ..., 2%} are linearly independent
and also that p is in their positive span, so that ©; is bounded in direction p but not —p. The confidence intervals
will be accordingly one-sided. Since gradients are known, all simplifications from Theorem 4.3 apply. We borrow
from algebra in the proof of Theorem 4.4 to observe that, with the simplifications in place, CI,, and CIP™/ invert

tests that use the same test statistic but different bootstrap approximations to its distribution as follows:

DR _ b
TY = max{Gy,}
igE . — X Jt
3 n e j 23\
TfR(Sn) = min max < GIT’L], + £ P.sn -
p’A=0 j B Kn O',,.LJ- O_n,j
>0
.
s /
: n 0% — X; 2\ .
T° = min max Gf’lj + Vn P : < min{TPR, TPR(s,)).
PA=0 ] ' Rn On,j On,j

where (as in Theorem 4.3) s, is the value of p'8 being tested and ép,sn minimizes the sample criterion subject to
p'0 = s,. The last inequality is strict unless the problem defining 7? is solved by A = 0. The assessments of
intercept terms in X% (s,) and T? use that by construction of the example, all sample constraints bind at é;," and

are violated at é;s” (else, the test statistic would be 0 and the critical value not computed). Equality thus requires

b
n,j’

0 for typical empirical samples. We conclude that the calibrated projection C1I,, is deterministically a weak (and

knife-edge realizations of G} ., so its probability vanishes as (GI,’L’ ; approaches multivariate normality and is in fact

essentially always a strict) subset of the BCS-profiling CI27°f in this example.
We next provide a numerical comparison in a further stripped-down version of the example. Thus, consider

one-sided testing with moment conditions

—01 + 65 — Ep(Xl)
01 +92—EP(X2) <

N

0
0
where the data are (X1, X5) ~ N((Ep(X1), Ep(X2)),I2) and Ep(X1) = Ep(X3) = 0. All of these facts other than
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Ep(Xy) = Ep(X2) = 0, but including the gradients and variance matrix, are known. This enables closed form

arguments. Also, for a researcher knowing this, the natural bootstrap implementation is a parametric bootstrap:
(Xf7 XS) ~ N((Xla XQ)v 12)
— Vn(X? - X1, X5 - X)) = (Z1,25) ~ N(0,I)

which we will use, i.e. (Z1,Z2) will take the role of (G} ;,G? ,). Numerical computations refer to a = 5%.

n,ls
Let p = (0,1). We construct one-sided confidence intervals for s(p, ©;(P)). All intervals contain (—c0, s(p, ©1)],
and simple algebra shows s(p, @1) = % Also noting that in this example s(p, ©;(P)) = 0 and, for s,, > s(p, @1),
. “Xi+X X1+ X
H(pa @1) = s ) LA
2 2
N . —Xl + Xg
= : '0 = < n = A  9n
Or(sn) {96@ P'0 = s,, Qn(0) 96@:1;%:5”62 (9)} {( 5 , S )}
X1+ X
Tn(sn) = \/ﬁmax{sn—l—;z,O},

where Q,,(0) = max;—1___j, (v/nmy, ;(0)/6,,;(8))+, we compute

TPR =  min max{yn (X} - X1),vn(X: - X5),0}
96@1(5‘”)
= max{\/ﬁ(Xf—Xl),\/ﬁ(Xé’—Xg),O} ~ max{Zy, Zs,0}
TTILDR(Sn) = gllé%maX{\/ﬁ(Xf—Xl) +m;1\/ﬁ(—91+sn—)_(1),\/ﬁ()_(§—)_(2) +m;1\/ﬁ(91+sn—)_(2),0}.

Unless its value is 0, the minimization problem defining 775 (s,,) is solved by setting two terms equal:

Vi (XD = i) = Vi (XE = Xo) + m v (Ko — X0)

b = 26n /10 ’
leading to
Tf(on) = max { e e R (- "57) ’0}
= maX{ZI;Z2 + ki, t/n <sn - )_(1-;)_(2> ,0} = maX{Zl—;ZQ + n;lTn(sn),O} .
Finally, very similar reasoning to the above gives
" = I){leiﬁlmax{\/ﬁ(X{’ —X1) + &, 'v/nmin (Xl ;XQ + X ;Xz - X1,0> -\

2 2
= r)r\li]gmax{\/ﬁ ()_(f — )_(1) —\/n (Xé’ — )_(2) + )\,O}
€.

= max{\/ﬁ(xf_Xl)_F\/ﬁ(Xg_Xg) 0}

2
{Z1+ZQ }
= max T’O .

Thus calibrated projection yields a critical value of ¢, = ®~1(1 —a)/+/2 ~ 1.16, whereas simple projection uses

_ _ X1 +Xy, X1+ X _
\/E(XS—XQ)—H%I\/ﬁmin( s s s 2—X2,0)+>\,0}
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Table F.1: Finite sample noncoverage rates in a specific example.

Type of cv n Value Power at 'ynfl/z, vy =...

0 1 2 3 4
eproi any | 1.95 |.003 .089 .523 .930 .998
gorof 103 | 1.63 |.011 .188 .701 .974 1.000
gorol 10° 1.52 | .016 .231 .751 .982 1.000
gorof 107 | 147 |.019 .254 774 .985 1.000
gorol 109 | 1.43 |.022 271 .790 .987 1.000
gorol 101" | 1.40 |.024 .284 .800 .988 1.000
gorel 102 | 1.38 |.025 .292 .807 .989 1.000
gorol 10 | 1.37 | .026 .299 .813 .989 1.000
gorel 107 | 1.36 | .027 .307 .819 .990 1.000
gorol 101 | 1.35 |.028 .313 .823 .990 1.000
gorol 10°0 | 1.28 | .036 .348 .847 .993 1.000
gorol 10190 | 1.24 | .039 .366 .858 .994 1.000
én any | 1.16 |.050 .409 .882 .995 1.000

érrol = 1(4/T — a) ~ 1.95; both are independent of s,, as well as n. BCS-profiling uses a critical value ¢2°f(s,,)
that increases in the test statistic (hence, conditional on the data, in s,,) because the statistic itself enters T®. To
facilitate a comparison, one can compute the fixed point at which T}, (s,,) = é27°/(s,,). BCS-profiling is equivalent to

comparing T),(s,) to that fixed point at all s,,, and we will therefore equate it with use of this critical value, labeled

—1
n

érof below. This critical value converges to ¢, at a rate of x illustrating asymptotic equivalence of inference
methods off the null in this case. However, for the popular choice of x, = 1/logn, convergence is so slow that it
should not be taken to describe behavior at realistic sample sizes. Table F.1 displays the numerical value of &°f
and the implied noncoverage probability (or power) at v/y/n for v € {0, 1,2, 3,4}; note that v = 0 corresponds to the
true support function. By construction, é27°/ interpolates between ¢2"°/ and ¢, in this example, but convergence
to ¢, requires extreme sample sizes. For example, on the boundary edge of the true projection C'T g%of has finite

sample coverage of .975, which is effectively halfway between projection and calibrated projection, for n = 10'3.

F.2 Example of Methods Failure When Assumption 4.3 Fails

Consider one-sided testing with two inequality constraints in R2. The constraints are

01 +60; < EP(Xl)
01—02 < EP(XQ)
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The projection of ©;(P) in direction p = (1,0) is (—o0, (Ep(X1) + Ep(X2))/2], the support set is H(p,0;) =
{(Ep(X1)+Ep(X2))/2,(Ep(X1)—Ep(X2))/2)}, and the support function takes value 0F = (Ep(X1)+ Ep(X2))/2.

The random variables (X7, X3)" have a mixture distribution as follows:

1 -1
l X, ] N <O7 l L1 ]) with probability 1 — 1/n,
Xo

d(1,1) (degenerate) otherwise,

hence Ep(X;) = Ep(X2) = 0F = 1/n. Note in particular the implication that

2

X1+ Xy | 0 with probability 1 —1/n,
| 1 otherwise.

The natural estimator of 6% is 0% = (X; + X5)/2. It is distributed as Z/n, where Z is Binomial with parameters
(1/n,n). For large n, the distribution of Z is well approximated as Poisson with parameter 1. In particular, with
probability approximately e~ ~ 37%, every sample realization of (X + X5)/2 equals zero. In this case, the following
happens: (i) The projection of the sample analog of the identified set is (—o0, 0], so that a strictly positive critical
value or level would be needed to cover the true projection. (ii) Because the empirical distribution of (X; + X5)/2
is degenerate at zero, the distribution of (X? + X3)/2 is as well. Hence, all of Pakes, Porter, Ho, and Ishii (2011),
Bugni, Canay, and Shi (2017), and calibrated projection (each with either parametric or nonparametric bootstrap)
compute critical values or relaxation levels of 0.

This bounds from above the true coverage of all of these methods at e~! ~ 63%. Note that (m < n)-subsampling

will encounter the same problem. Next we provide some discussion of the example.
Violation of Assumptions. The example violates our Assumption 4.3 because Cov(X7, X5) — 1. It also violates
Assumption 2 in Bugni, Canay, and Shi (2017): Their Assumption A2-(b) should apply, but the profiled test statistic
on the true null concentrates at 1/n. The example satisfies the assumptions explicitly stated in Pakes, Porter, Ho,
and Ishii (2011), illustrating an oversight in their Theorem 2. (We here refer to the inference part of their 2011
working paper. We identified corresponding oversights in the proof of their Proposition 6.)

The example satisfies the assumptions of Andrews and Soares (2010) and Andrews and Guggenberger (2009),

and both methods work here. The reason is that both focus on the distribution of the criterion function at a fixed
0 and are not affected by the irregularity of éi“
Relation to Mammen (1992). In this example, all of Bugni, Canay, and Shi (2017), Pakes, Porter, Ho, and Ishii
(2011), and our calibrated projection method reduce to one-sided nonparametric percentile bootstrap confidence
intervals for (Ep(X1)+Ep(X2))/2 estimated by (X;+X2)/2. By Mammen (1992, Theorem 1), asymptotic normality
of an appropriately standardized estimator, i.e.

Han) : an (X1 + X2) — (Bp(X1) + Ep(X2))) 5 N(0,1),

is necessary and sufficient for this interval to be valid. This fails (the true limit is recentered Poisson at rate a,, = n),

so that validity of any of the aforementioned methods would contradict the Theorem.
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Appendix G Comparison with Projection of AS

In this Appendix we establish that for each n € N, CI,, is a subset of a confidence interval obtained by projecting an
AS confidence set and denoted C' 27750 Moreover, we derive simple conditions under which our confidence interval

is a proper subset of the projection of AS’s confidence set. Below we let 2% denote the critical value obtained apply-

ing AS with criterion function @, (0) = max {max;_1 s, (v/nimy ;(0)/64.;(0)) 1, max;— g, 41.... gy 45 |10 ;(0)/5n ;(0)]}
and with the same choice as for ¢, of GMS function ¢ and tuning parameter x,,.

THEOREM G.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 < o < 1/2. Then for each n € N
CIn < [—S(—p, Cn(éﬁmj))v S(p, Cn(éfz”)j))]v (Gl)
where for given function ¢, Cy(c) is defined in (1.1)

Proof. For given 6, the event

max {6l ,(0) + oy6s(6)) ) < c (G.2)

implies the event
'A=0> i '\, G.3
AeArél&}?(p,c)p )\GAI;bl;l(lg}pp)p (G.3)

.....

optimization problems in (G.3), hence the event in (G.3) is implied. In turn this yields that for each n € N and
feo,
0T (0) = ¢,(6), (G.4)

and therefore the result follows. O

The result in Theorem G.1 is due to the following fact. Recall that AS’s confidence region calibrates its critical
value so that, at each 6, the following event occurs with probability at least 1 — a:

max {Gh,(0) + 9;(éns(0)} <c (G.5)

j=1,...,

A natural question is, then, whether there are conditions under which C1T,, is strictly shorter than the projection
of AS’s confidence region. Heuristically, this is the case with probability approaching 1 when é,(6) is strictly less
than ¢27°7(6) at each 6 that is relevant for projection. For this, restrict ¢(-) to satisfy ¢;(x) < 0 for all z, fix 6 and

consider the pointwise limit of (G.5):
GPJ(Q)+<PJ(9)<C7 Jg=1-,J (GG)

where {Gp;(0),j =1,---,J} follows a multivariate normal distribution, and (p;(0) = (—0)1(y/ny1,p;(6) < 0) is
the pointwise limit of @j(fn,j (0)) (with the convention that (—c0)0 = 0). Under mild regularity conditions, ¢£"%7 (6)
then converges in probability to a critical value ¢ = ¢?"%/ () such that (G.6) holds with probability 1 — . Similarly,

the limiting event that corresponds to our problem (3.4) is

A0, p,c) n{p'A =0} = &, (G.7)

500f course, AS designed their confidence set to uniformly cover each vector in ©; with prespecified asymptotic probability,
a different inferential problem than the one considered here.
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where the limiting feasibility set A(6, p, ¢) is given by
A0, p,c) = {\epBf , :Gp;(0) + Dp;(0)A+ Cpi(0) <c,j=1,---,J} (G.8)

Note that if the gradient Dp () is a scalar multiple of p, i.e. Dp;(0)/|Dp,;(0)| € {p, —p}, for all j such that
¢p,j(0) = 0, the two problems are equivalent because (G.6) implies (G.7) (by arguing that A = 0 is in A(6, p, ¢)),
and for the converse implication, whenever (G.7) holds, there is A such that Gp;(8) + Dp;(0)\ + (p;(0) < c and
p’A = 0. Since Dp ;(0)\ = 0 for all j such that (p;(0) = 0, one has Gp;(0) + (p;(0) < c for all j.>! In this special
case, the limits of the two critical values coincide asymptotically, but any other case is characterized by projection
conservatism. Lemma G.1 below formalizes this insight. Specifically, for fixed 0, the limit of &,(0) is strictly less
than the limit of ¢27°7(6) if and only if there is a constraint that binds or is violated at § and has a gradient that
is not a scalar multiple of p.52

The parameter values that are relevant for the lengths of the confidence intervals are the ones whose projections
are in a neighborhood of the projection of the identified set. Therefore, a leading case in which our confidence
interval is strictly shorter than the projection of AS asymptotically is that in which at any € (in that neighborhood
of the projection of the identified set) at least one local-to-binding or violated constraint has a gradient that is not

parallel to p. We illustrate this case with an example based on Manski and Tamer (2002).

EXAMPLE G.1 (Linear regression with an interval valued outcome): Consider a linear regression model:
ElY|Z] = Z'0, (G.9)

where Y is an unobserved outcome variable, which takes values in the interval [Y7, Yy ] with probability one, and
Y., Yy are observed. The vector Z collects regressors taking values in a finite set Sz = {21, -+, 2K}, K € N. We

then obtain the following conditional moment inequalities:
EP[YL|Z = Zj] < Z;@ < EP[YU|Z = Zj], j = 1, s ,K, (GlO)
which can be converted into unconditional moment inequalities with J; = 2K and

YLl{Z = Z]}/g(zj) 72:;63 .7: 17 aK

(G.11)
2i g 0 =YolZ = zj_Kk}/9(zj-x) j=K+1,- 2K,

m;(X,0) =
where g denotes the marginal distribution of Z, which is assumed known for simplicity. Consider making inference
for the value of the regression function evaluated at a counterfactual value z ¢ Sz. Then, the projection of interest
is 2’6. Note that the identified set is a polyhedron whose gradients are given by Dp;(0) = —z;/op;,j =1,--- , K
and Dp;(0) = zj_k/oj—Kk,j = K +1,--- ,2K. This and Z ¢ Sz imply that for any # not in the interior of the
identified set, there exists a binding or violated constraint whose gradient is not a scalar multiple of p. Hence, for
all such 6, our critical value is strictly smaller than ¢/ (6) asymptotically. In this case, our confidence interval
becomes strictly shorter than that of AS asymptotically. We also note that the same argument applies even if the
marginal distribution of Z is unknown. In such a setting, one needs to work with a sample constraint of the form
Y Y {Z = 2z /nmt Y 1{Z; = z;} — 2;0 (and similarly for the upper bound). This change only alters

*The gradients of the non-binding moment inequalities do not matter here because Gp;(6) 4+ Cp,;(8) < ¢ holds due to
¢p,j(0) = —co for such constraints.

52The condition that all binding moment inequalities have gradient collinear with p is not as exotic as one might think. An
important case where it obtains is the “smooth maximum,” i.e. the support set is a point of differentiability of the boundary
Of @[.
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Table G.1: Conservatism from projection in a one-sided testing problem as a function of d

d 1 2 3 4 5 6 7T 8 9 10 100
én 1.64 1.16 095 0.82 0.74 067 062 058 055 052 016 0
errol 164 1.95 212 223 232 239 244 249 253 257 328
l1—a* 95 77 57 40 27 .18 .11 .07 .04 .03 107% 0

the (co)variance of the Gaussian process in our limiting approximation but does not affect any other term.

We now provide a numerical illustration for a further simplified example. Assume that p = (d~/2,...,d="/?) e R?
and that there are d binding moment inequalities whose gradients are known and correspond to rows of the identity
matrix. Assume furthermore that G is known to be exactly d-dimensional multivariate standard Normal. (Thus,
©; is the negative quadrant. Its unboundedness from below is strictly for simplicity.) Also, by Theorem 4.3, one
can set p = +00 in this example.

Under these simplifying assumptions (which can, of course, be thought of as asymptotic approximations), it is

easy to calculate in closed form that

én = d7V207N(1—a),
éproj _ @71 ((1 _ a)l/d) )

n

Furthermore, for any « < 1/2, one can compute o* s.t. applying &, with target coverage (1 — ) yields the same
confidence interval as using ¢P™°/ with target coverage (1 —a*).%3 Some numerical values are provided in Table G.1
(with a = 0.05).

To cover p’# in RV with probability 95%, it suffices to project an AS-confidence region of size 3%. The example
is designed to make a point; our Monte Carlo analyses in Section 5 showcase less extreme cases. However, the core
defining feature of the example — namely, the identified set has a thick interior, and the support set is the intersection
of d moment inequalities — frequently occurs in practice, and all such examples will qualitatively resemble this one

as d grows large.

G.1 Necessary and Sufficient Condition for ¢,(6) < 77 (6)

The following lemma establishes the effect of p on é,(f). In doing so it establishes a necessary and sufficient
condition for é,(0) < ¢TI (), because the latter can be seen as the former calibrated with p set equal to zero. The

lemma requires ¢, (z) < 0 for all z.54

LEMMA G.1: Fizx 0 € ©, P e P and a value p € Ry . Suppose Assumptions 4.1, 4.2, 4.8, 4.4 and 4.5 hold and
also that @;(z) <0 for all x and j. Let 0 < § < p. Forn = N, let ¢,(0) be calibrated using p in place of p, which

P Equivalently, (1—a*) is the probability that C,(¢%"°?) contains {0}, the true support set in direction p which furthermore,
in this example, minimizes coverage within ©7(P). The closed-form expression is 1 — a* = ®&(d~2®7!(1 — a))?. AS prove
validity of their method only for a < 1/2, but this is not important for the point made here.

54To keep the treatment general, we have not imposed this restriction throughout the paper. However, we only recommend
functions ¢; with this feature anyway: for any ¢; that can take strictly positive values, substituting min{y;(z),0} attains
the same asymptotic size but generates Cls that are weakly shorter for all and strictly shorter for some sample realizations.
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necessarily yields a larger value for ¢,(0). With a modification of notation, explicitly highlight ¢, (0)’s dependence
on p through the notation é,(0,p). Then

16(0,p) — En(0,p— )| B0 (G.12)
if and only if Dp;(0)/|Dp;(0)| € {p, —p} for all j € T*(0) = {j : Ep[m;(X;,0)] > 0}.

REMARK G.1: For 6 such that 7*(#) = &, we have ¢,(6, p) 2 0 but also é&7°7(#) % 0. This is consistent with

Lemma G.1 because the condition on gradients vacuously holds in this case.

Proof. Recall that 6 and P are fixed, i.e. we assume a pointwise perspective. Then
én(0,p) B inf{lc=0: P({\e pB,‘f,p :Gp;i(0)+ Dpj(ON<c,jeT*O)} n{pP =0} # ) >1—a}. (G.13)

Here, we used convergence of G? (0) to Gp(#) and of D;() to Dp j(#), boundedness of gradients, and the fact that

e "
i Vi () fop o) 51" F ST @14
—o0  otherwise,

where the first of those cases uses nonpositivity of ;. It therefore suffices to show that the right hand side of G.13

strictly decreases in p if and only if the conditions of the Lemma hold.
To simplify notation, henceforth omit dependence of Gp ;(6), Dp(6), and J*(0) on P and 6. Define the J
vector e to have elements e; = ¢ —Gj, j = 1,...,J. Suppose for simplicity that J* contains the first J* inequality
constraints. Let e[1/*] denote the subvector of e that only contains elements corresponding to j € J*, define

plLI*] correspondingly, and write

plLg*;] el1:J%] 0- 1%
1, p-1g 14
K= -1 , g= p-14 , T = 14
P’ 0 0
—p' 0 0

where I; denotes the d x d identity matrix. By Farkas’ Lemma (Rockafellar, 1970, Theorem 22.1), the linear system

K\ < g has a solution if and only if for all 4 € R +2%+2,

WK=0=p'g=0. (G.15)

To further simplify expressions, fix p=[10 ... 0]. Let M = {u € Ri*+2d+2 : W' K = 0}.
Step 1. This step shows that

P({XepBy ,:Gpj+DpjA<c,jeJ*}n{pX=0}+ )
> P({Ae(p—06)pBL,:Gpj+DpjA<c,jeT*}n{pA=0}# ) (G.16)

if and only if the condition on gradients holds. This is done by showing that

P{u'g=0Yue M}n{yg—6r<03ueM})>0. (G.17)
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under that same condition. The event {1'g = 0 Vu € M} obtains if and only if

min  {@g: WK=0}>0 (G.18)

J¥ 42d+2
HER?

and analogously for p/ (9 — d7) = 0. The values of these programs are not affected by adding a constraint as follows:

min wg: W K=0, pearg min (i'g: ﬂ,[l:‘]*] = u[l:J*],ﬂ’K =0)r, (G.19)
#ER1*+24+2 ﬁeRi*+2d+2

That is, we can restrict attention to a concentrated out subset of vectors u, where the last (2d 4+ 2) components of
any p minimize the objective function among all vectors that agree with y in the first J* components. The inner
minimization problem in equation (G.19) can be written as

Bgeq1 — Bysyde1 T Bgkr2de1 — BJ*p2de2
* ~ ~
sl Hgx42 — Lk 4+d+2

. - gk LTk
min fj st ) = —plt/ T plt®a,
ﬂ[J*+J:J*+2d+2]ERid+2 .

j=J*+1
Psyd — fLy%q2d
(G.20)
Thus, the solution of the problem is uniquely pinned down as
_ 0 .
. |:D[1:J*,2:d]/u[1;J*] AQ- ]-d—l:l
M[J*+1:J*+2d+2] _ 0 (G.21)

D[l:J*’Z:d]/M[l:J*] vO- 1d—1 )
- D[li‘]*vl]’,u[l“]*] A0
DL

where D[1:J*72:d]’u[1:J Tvo- 141 indicates a component-wise comparison. Now we consider the following case
distinction:

Case (i). If D;/|D;| € {p,—p} for all j € J*, then pl/*VD — (H[LJ*]’D[LJ*J],O,...,O)’ and therefore all
but the last two entries of pl/*+1:7%+2d+2]
N[J*+1:J*+2d]

The probability in equation (G.17) is therefore zero.

equal zero. One can, therefore, restrict attention to vectors p with

= 0. But for these vectors, p’7 = 0 and so the programs we compare necessarily have the same value.

Case (ii). Suppose that at least one row of D, say its first row (though it can be one direction of an equality
constraint), is not collinear with p, so that | D2dl|| 2 0.

Let
1

0- ].J*_l
0
— [(DZd)y A 0 144]
0
(D2 v 0144
— [(DI) A 0]
(D) v o

(G.22)
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and note that w!/*+1:7*+2d] £ 0 hence w'r > 0.
As in the proof of Lemma E.6, the set M can be expressed as positive span of a finite, nonstochastic set of

1 *
affinely independent vectors v! e Ry T2¢+2

that are determined only up to multiplication by a positive scalar.
All of these vectors have the “concentrated out structure” in equation (G.21). But then w must be one of them
because it is the unique concentrated out vector with wllI*] = (1,0,...,0), and (1,0, ...,0)" cannot be spanned by
nonnegative J*-vectors other than positive multiples of itself.

We now establish positive probability of the event

vWg = 0, all vt

v (g—9d1) < 0, some vt

by observing that if we define
_ d a1

=P o }D[L ]|
k-1 _q

-1
= prd 7 (G.23)
p-1la

0

0

then we have
0=wi = mtin VWi,

[2:7%1 = 0 and so for any such vector, vty strictly increases in k. As

Any other spanning vector v* will not have @
there are finitely many spanning vectors, all of them have strictly positive inner product with ¢ if k is chosen large
enough.

A realization of g = 1, would, therefore, yield

Wg=0We M, and @w” (g — 67) < —e, (G.24)
for some € > 0. Let
Te={t:t=1r+¢€/2b, [b] <1and @'db>0}. (G.25)
Then
Wiz 0vVrte M, and @' (1 — 07) < —¢/2, Vi eTy. (G.26)

The probability in equation (G.17) is therefore strictly positive.
Step 2. Next, we argue that

P{XepBl,: Gj+DjA<c,jeT*}n{pA=0}# &) (G.27)

strictly continuously increases in ¢. The rigorous argument is very similar to the use of Farkas’ Lemma in step 1
and in Lemma E.6. We leave it at an intuition: As c increases, the set of vectors g fulfilling the right hand side of
(G.15) strictly increases, hence the set of realizations of G; that render the program feasible strictly increases, and

G; has full support.
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Step 3. Steps 1 and 2 imply that
inf{P({)e pBL G+ DA< c,jeT*n{pA=0}# @) >1—a}
> gg{P({)\ €(p— 6)pBg’p G+ DA<, jeT I n{PA=0}#D)=1—qa} (G.28)

and hence the result. O

References
ApaAMs, R. A., AND J. J. FOURNIER (2003): Sobolev spaces, vol. 140. Academic press.

ANDREWS, D. W. (1994): “Chapter 37 Empirical process methods in econometrics,” Handbook of Econometrics,
4, 2247 — 2294.

ANDREWS, D. W. K., AND P. GUGGENBERGER (2009): “Validity of Subsampling and 'Plug-In Asymptotic’
Inference for Parameters Defined by Moment Inequalities,” Econometric Theory, 25(3), 669-709.

(2010): “Asymptotic Size and a Problem With Subsampling and With the m Out Of n Bootstrap,”
FEconometric Theory, 26, 426—468.

ANDREWS, D. W. K., AND G. SOARES (2010): “Inference for Parameters Defined by Moment Inequalities Using

Generalized Moment Selection,” Econometrica, 78, 119-157.

BERESTEANU, A., AND F. MOLINARI (2008): “Asymptotic properties for a class of partially identified models,”
Econometrica, 76, 763-814.

BonTEMPS, C., T. MAGNAC, AND E. MAURIN (2012): “Set Identified Linear Models,” Econometrica, 80, 1129—
1155.

BRENT, R. P. (1971): “An algorithm with guaranteed convergence for finding a zero of a function,” The Computer
Journal, 14(4), 422-425.

Buani, F. A., I. A. CaNay, anD X. SHI (2015): “Specification tests for partially identified models defined by

moment inequalities,” Journal of Econometrics, 185(1), 259-282.

(2017): “Inference for subvectors and other functions of partially identified parameters in moment inequality

models,” Quantitative Economics, 8(1), 1-38.

BuLL, A. D. (2011): “Convergence rates of efficient global optimization algorithms,” Journal of Machine Learning
Research, 12(Oct), 2879-2904.

CHERNOZHUKOV, V., H. HONG, AND E. TAMER (2007): “Estimation and Confidence Regions for Parameter Sets
In Econometric Models,” Econometrica, 75, 1243-1284.

CILIBERTO, F., AND E. TAMER (2009): “Market Structure and Multiple Equilibria in Airline Markets,” Econo-
metrica, 77, 1791-1828.

[74]



Davypov, Y. A., M. LirsHITZ, AND N. SMORODINA (1995): Local properties of distributions of stochastic func-

tionals. American Mathematical Society.

DEKKER, T. (1969): “Finding a zero by means of successive linear interpolation,” Constructive aspects of the

fundamental theorem of algebra, pp. 37-51.
HorN, R. A.,; AND C. R. JOHNSON (1985): Matriz Analysis. Cambdridge University Press.

IMBENS, G. W., AND C. F. MANSKI (2004): “Confidence Intervals for Partially Identified Parameters,” Econo-
metrica, 72, 1845-1857.

Kamo, H., F. MOLINARI, AND J. STOYE (2017): “Constraint qualifications in projection inference,” Work in

progress.

MAaMMEN, E. (1992): When Does Bootstrap Work? Asymptotic Results and Simulations. Spinger Verlag, New
York, NY.

Manski, C. F., AND E. TAMER (2002): “Inference on Regressions with Interval Data on a Regressor or Outcome,”
Econometrica, 70(2), 519-546.

MorLcHaNov, 1. (2005): Theory of Random Sets. Springer, London.

NarcowicH, F.; J. WARD, AND H. WENDLAND (2003): “Refined error estimates for radial basis function inter-

polation,” Constructive approximation.

PAKES, A., J. PORTER, K. Ho, AND J. IsHII (2011): “Moment Inequalities and Their Application,” Discussion

Paper, Harvard University.
PATA, V. (2014): “Fixed Point Theorems and Applications,” Mimeo.
ROCKAFELLAR, R. T. (1970): Conver Analysis. Princeton University Press, Princeton.
ROCKAFELLAR, R. T., AND R. J.-B. WETSs (2005): Variational Analysis, Second Edition. Springer-Verlag, Berlin.
STEINWART, I., AND A. CHRISTMANN (2008): Support vector machines. Springer Science & Business Media.
STOYE, J. (2009): “More on Confidence Intervals for Partially Identified Parameters,” Econometrica, 77, 1299-1315.

TARTAR, L. (2007): An introduction to Sobolev spaces and interpolation spaces, vol. 3. Springer Science & Business
Media.

VAN DER VAART, A., AND J. WELLNER (2000): Weak Convergence and Empirical Processes: With Applications
to Statistics. Springer-Verlag, Berlin.

VAN DER VAART, A. W., AND J. H. VAN ZANTEN (2008): “Reproducing kernel Hilbert spaces of Gaussian priors,”
in Pushing the limits of contemporary statistics: contributions in honor of Jayanta K. Ghosh, pp. 200-222.

Institute of Mathematical Statistics.

[75]



	cover1



