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Abstract

We propose a bootstrap-based calibrated projection procedure to build confidence in-
tervals for single components and for smooth functions of a partially identified parameter
vector in moment (in)equality models. The method controls asymptotic coverage uni-
formly over a large class of data generating processes.

The extreme points of the calibrated projection confidence interval are obtained by
extremizing the value of the component (or function) of interest subject to a proper
relaxation of studentized sample analogs of the moment (in)equality conditions. The
degree of relaxation, or critical level, is calibrated so that the component (or function)
of θ, not θ itself, is uniformly asymptotically covered with prespecified probability. This
calibration is based on repeatedly checking feasibility of linear programming problems,
rendering it computationally attractive.

Nonetheless, the program defining an extreme point of the confidence interval is gener-
ally nonlinear and potentially intricate. We provide an algorithm, based on the response
surface method for global optimization, that approximates the solution rapidly and ac-
curately. The algorithm is of independent interest for inference on optimal values of
stochastic nonlinear programs. We establish its convergence under conditions satisfied by
canonical examples in the moment (in)equalities literature.

Our assumptions and those used in the leading alternative approach (a profiling based
method) are not nested. An extensive Monte Carlo analysis confirms the accuracy of
the solution algorithm and the good statistical as well as computational performance of
calibrated projection, including in comparison to other methods.

Keywords: Partial identification; Inference on projections; Moment inequalities; Uni-
form inference.
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1 Introduction

This paper provides theoretically and computationally attractive confidence intervals for pro-

jections and smooth functions of a parameter vector θ P Θ Ă Rd, d ă 8, that is partially

or point identified through a finite number of moment (in)equalities. The values of θ that

satisfy these (in)equalities constitute the identification region ΘI .

Until recently, the rich literature on inference in this class of models focused on confidence

sets for the entire vector θ, usually obtained by test inversion as

Cnpc1´αq ” tθ P Θ : Tnpθq ď c1´αpθqu , (1.1)

where Tnpθq is a test statistic that aggregates violations of the sample analog of the moment

(in)equalities, and c1´αpθq is a critical value that controls asymptotic coverage, often uni-

formly over a large class of data generating processes (DGPs). In point identified moment

equality models, this would be akin to building confidence ellipsoids for θ by inversion of the

F -test statistic proposed by Anderson and Rubin (1949).

However, applied researchers are frequently primarily interested in a specific component

(or function) of θ, e.g., the returns to education. Even if not, they may simply want to report

separate confidence intervals for components of a vector, as is standard practice in other

contexts. Thus, consider the projection p1θ, where p is a known unit vector. To date, it has

been common to report as confidence interval for p1θ the projection of Cnpc1´αq:

CIprojn “

«

inf
θPCnpc1´αq

p1θ, sup
θPCnpc1´αq

p1θ

ff

, (1.2)

where n denotes sample size; see for example Ciliberto and Tamer (2009), Grieco (2014) and

Dickstein and Morales (2016). Such projection is asymptotically valid, but typically yields

conservative and therefore needlessly large confidence intervals. The potential severity of this

effect is easily appreciated in a point identified example. Given a
?
n-consistent estimator

θ̂n P Rd with limiting covariance matrix equal to the identity matrix, a 95% confidence

interval for θk is obtained as θ̂n,k ˘ 1.96, k “ 1, . . . , d. In contrast, if d “ 10, then projection

of a 95% Wald confidence ellipsoid yields θ̂n,k ˘ 4.28 with true coverage of essentially 1. We

refer to this problem as projection conservatism.

Our first contribution is to provide a bootstrap-based calibrated projection method that

largely anticipates and corrects for projection conservatism. For each candidate θ, ĉnpθq is

calibrated so that across bootstrap repetitions the projection of θ is covered with at least some

pre-specified probability. Computationally, this bootstrap is relatively attractive because we

linearize all constraints around θ, so that coverage of p1θ corresponds to the projection of a
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stochastic linear constraint set covering zero. We then propose the confidence interval

CIn ”

«

inf
θPCnpĉnq

p1θ, sup
θPCnpĉnq

p1θ

ff

. (1.3)

We prove that CIn asymptotically covers p1θ with probability at least 1 ´ α uniformly over

a large class of DGPs and that it is weakly shorter than (1.2) for each n.1 We also provide

simple conditions under which it is asymptotically strictly shorter.

Our second contribution is a general method to accurately and rapidly compute projection-

based confidence intervals. These can be our calibrated projection confidence intervals, but

they can also correspond to projection of many other methods for inference on either θ

or its identified set ΘI . Examples include Chernozhukov, Hong, and Tamer (2007), An-

drews and Soares (2010), or (for conditional moment inequalities) Andrews and Shi (2013).

Projection-based inference extends well beyond its application in partial identification, hence

our computational method proves useful more broadly. For example, Freyberger and Reeves

(2017a,b, Section S.3) use it to construct uniform confidence bands for an unknown function

of interest under (nonparametric) shape restrictions.

We propose an algorithm that is based on the response surface method, thus it resembles

an expected improvement algorithm (see e.g. Jones, 2001; Jones, Schonlau, and Welch, 1998,

and references therein). Bull (2011) established convergence of the expected improvement

algorithm for unconstrained optimization problems where the objective is a “black box”

function. Building on his results, we show convergence of our algorithm for constrained

optimization problems in which the constraint functions are “black box” functions, assuming

that they are sufficiently smooth. We then verify this smoothness condition for canonical

examples in the moment (in)equalities literature. Our extensive Monte Carlo experiments

confirm that the algorithm is fast and accurate.2

Previous implementations of projection-based inference were based on approximating the

set Cnpc1´αq Ă Rd by searching for vectors θ P Θ such that Tnpθq ď c1´αpθq (using, e.g., grid-

search or simulated annealing with no cooling), and reporting the smallest and largest value

of p1θ among parameter values that were “guessed and verified” to belong to Cnpc1´αq. This

becomes computationally cumbersome as d increases because it typically requires a number of

evaluation points that grows exponentially with d. In contrast, our method typically requires

a number of evaluation points that grows linearly with d.

The main alternative inference prodedure for projections was introduced in Romano and

Shaikh (2008) and significantly advanced in Bugni, Canay, and Shi (2017, BCS henceforth).

It is based on profiling out a test statistic. The classes of DGPs for which our procedure and

1This comparison is based on projection of the confidence set of Andrews and Soares (2010) and holds the
choice of tuning parameters and criterion function in (1.2) and (1.3) constant across methods.

2Freyberger and Reeves (2017b, Section S.3) similarly find our method to be accurate and to considerably
reduce computational time.
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the profiling-based method of BCS (BCS-profiling henceforth) can be shown to be uniformly

valid are non-nested. We show that in well behaved cases, calibrated projection and BCS-

profiling are asymptotically equivalent. We also provide conditions under which calibrated

projection has lower probability of false coverage, thereby establishing that the two methods’

power properties are non-ranked. Computationally, calibrated projection has the advantage

that the bootstrap iterates over linear as opposed to nonlinear programming problems. While

the “outer” optimization problems in (1.3) are potentially intricate, our algorithm is geared

toward them. Our Monte Carlo simulations suggest that these two factors give calibrated

projection a considerable computational edge over BCS-profiling, with an average speed gain

of about 78-times.

In an influential paper, Pakes, Porter, Ho, and Ishii (2011) also use linearization but,

subject to this approximation, directly bootstrap the sample projection.3 This is valid only

under stringent conditions, and we show that calibrated projection can be much simplified

under those conditions. Other related papers that explicitly consider inference on projections

include Andrews, Berry, and Jia (2004), Beresteanu and Molinari (2008), Bontemps, Magnac,

and Maurin (2012), Chen, Tamer, and Torgovitsky (2011), Kaido (2016), Kitagawa (2012),

Kline and Tamer (2015), and Wan (2013). However, some are Bayesian, as opposed to

our frequentist approach, and none of them establish uniform validity of confidence sets.

Chen, Christensen, and Tamer (2017) establish uniform validity of MCMC-based confidence

intervals for projections, but these are aimed at covering the entire set tp1θ : θ P ΘIpP qu,

whereas we aim at covering the projection of θ. Finally, Gafarov, Meier, and Montiel-Olea

(2016) have used our insight in the context of set identified spatial VARs.

Structure of the paper. Section 2 sets up notation and describes our approach in

detail. Section 3 describes computational implementation of the method and establishes

convergence of our proposed algorithm. Section 4 lays out our assumptions and, under these

assumptions, establishes uniform validity of calibrated projection for inference on projections

and smooth functions of θ. It also shows that more stringent conditions allow for several

simplifications to the method, including that it can suffice to evaluate ĉn at only two values

of θ and that one can dispense with a tuning parameter. The section closes with a formal

comparison of calibrated projection and BCS-profiling. Section 5 reports the results of Monte

Carlo simulations. Section 6 draws conclusions. The proof of convergence of our algorithm

is in Appendix A. All other proofs, background material for our algorithm, and additional

results are in the Online Appendix.4

3The published version, i.e. Pakes, Porter, Ho, and Ishii (2015), does not contain the inference part.
4Section B provides convergence-related results and background material for our algorithm and describes

how to compute ĉnpθq. Section C verifies, for a number of canonical moment (in)equality models, the assump-
tions that we invoke to show validity of our inference procedure and for our algorithm. Section D contains
proofs of the Theorems in this paper’s Section 4. Section E collects Lemmas supporting the preceding proofs.
Section F provides further comparisons with the profiling method of Bugni, Canay, and Shi (2017), including
an example where calibrated projection has higher power in finite sample. Section G provides comparisons with
“uncalibrated” projection of the confidence region in Andrews and Soares (2010), including simple conditions
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2 Detailed Explanation of the Method

Let Xi P X Ď RdX be a random vector with distribution P , let Θ Ď Rd denote the parameter

space, and let mj : X ˆ Θ Ñ R for j “ 1, . . . , J1 ` J2 denote measurable functions char-

acterizing the model, known up to parameter vector θ P Θ. The true parameter value θ is

assumed to satisfy the moment inequality and equality restrictions

EP rmjpXi, θqs ď 0, j “ 1, ¨ ¨ ¨ , J1 (2.1)

EP rmjpXi, θqs “ 0, j “ J1 ` 1, ¨ ¨ ¨ , J1 ` J2. (2.2)

The identification region ΘIpP q is the set of parameter values in Θ satisfying (2.1)-(2.2). For

a random sample tXi, i “ 1, ¨ ¨ ¨ , nu of observations drawn from P , we write

m̄n,jpθq ” n´1
řn
i“1mjpXi, θq, j “ 1, ¨ ¨ ¨ , J1 ` J2 (2.3)

σ̂n,j ” pn
´1

řn
i“1rmjpXi, θqs

2 ´ rm̄n,jpθqs
2q1{2, j “ 1, ¨ ¨ ¨ , J1 ` J2 (2.4)

for the sample moments and the analog estimators of the population moment functions’

standard deviations σP,j .
5

The confidence interval in (1.3) then becomes CIn “ r´sp´p, Cnpĉnqq, spp, Cnpĉnqqs, where

spp, Cnpĉnqq ” sup
θPΘ

p1θ s.t.
?
n
m̄n,jpθq

σ̂n,jpθq
ď ĉnpθq, j “ 1, ¨ ¨ ¨ , J (2.5)

and similarly for p´pq. Here, we define J ” J1 ` 2J2 moments, where m̄n,J1`J2`kpθq “

´m̄J1`kpθq for k “ 1, ¨ ¨ ¨ , J2. That is, we split moment equality constraints into two opposing

inequality constraints and relax them separately.6

For a class of DGPs P that we specify below, define the asymptotic size of CIn by

lim inf
nÑ8

inf
PPP

inf
θPΘIpP q

P pp1θ P CInq. (2.6)

Our goal is to calibrate ĉn so that (2.6) is at least equal to a prespecified level 1´α ě 1{2

while anticipating projection conservatism. To build intuition, fix pθ, P q s.t. θ P ΘIpP q, P P

under which CIn is asymptotically strictly shorter than CIprojn .
5Under Assumption 4.3-(II), in equation (2.5) instead of σ̂n,j we use the estimator σ̂Mn,j specified in (E.188)

in Lemma E.10 p.50 of the Online Appendix for j “ 1, . . . , 2R1 (with R1 ď J1{2 defined in the assumption).
In equation (3.2) we use σ̂n,j for all j “ 1, . . . , J . To ease notation, we distinguish the two only where needed.

6For a simple analogy, consider the point identified model defined by the single moment equality
EP pm1pXi, θqq “ EP pXiq ´ θ “ 0, where θ is a scalar. In this case, Cnpĉnq “ X̄ ˘ ĉnσ̂n{

?
n. The upper

endpoint of the confidence interval can be written as supθ tp
1θ s.t. ´ ĉn ď

?
npX̄ ´ θq{σ̂n ď ĉnu, with p “ 1,

and similarly for the lower endpoint.
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P. The projection of θ is covered when

´ sp´p, Cnpĉnqq ď p1θ ď spp, Cnpĉnqq

ô

#

infϑ p
1ϑ

s.t. ϑ P Θ,
?
nm̄n,jpϑq
σ̂n,jpϑq

ď ĉnpϑq,@j

+

ď p1θ ď

#

supϑ p
1ϑ

s.t. ϑ P Θ,
?
nm̄n,jpϑq
σ̂n,jpϑq

ď ĉnpϑq,@j

+

ô

$

’

&

’

%

infλP
?
npΘ´θq p

1λ

s.t.

?
nm̄n,j

´

θ` λ?
n

¯

σ̂n,j

´

θ` λ?
n

¯ ď ĉn

´

θ ` λ?
n

¯

,@j

,

/

.

/

-

ď 0 ď

$

’

&

’

%

supλP
?
npΘ´θq p

1λ

s.t.

?
nm̄n,j

´

θ` λ?
n

¯

σ̂n,j

´

θ` λ?
n

¯ ď ĉn

´

θ ` λ?
n

¯

,@j

,

/

.

/

-

,

(2.7)

where the second equivalence follows from substituting ϑ “ θ` λ{
?
n and taking λ to be the

choice parameter. (Intuitively, we localize around θ at rate 1{
?
n.)

We control asymptotic size by finding ĉn such that 0 asymptotically lies within the optimal

values of the NLPs in (2.7) with probability 1 ´ α. To reduce computational burden, we

approximate the event in equation (2.7) through linear expansion in λ of the constraint set.

To each constraint j, we add and subtract
?
nEP rmjpXi, θ ` λ{

?
nqs{σ̂n,jpθ ` λ{

?
nq and

apply the mean value theorem to obtain

?
nm̄n,j

ˆ

θ`
λ?
n

˙

σ̂n,j

ˆ

θ`
λ?
n

˙ “

!

Gn,j

´

θ ` λ?
n

¯

`DP,jpθ̄qλ`
?
nγ1,P,jpθq

) σP,j

ˆ

θ`
λ?
n

˙

σ̂n,j

ˆ

θ`
λ?
n

˙ . (2.8)

Here Gn,jp¨q ”
?
npm̄n,jp¨q´EP rmjpXi, ¨qsq{σP,jp¨q is a normalized empirical process indexed

by θ P Θ, DP,jp¨q ” ∇θtEP rmjpXi, ¨qs{σP,jp¨qu is the gradient of the normalized moment,

γ1,P,jp¨q ” EP pmjpXi, ¨qq{σP,jp¨q is the studentized population moment, and the mean value

θ̄ lies componentwise between θ and θ ` λ{
?
n.7

Calibration of ĉn requires careful analysis of the local behavior of the moment restric-

tions at each point in the identification region. This is because the extent of projection

conservatism depends on (i) the asymptotic behavior of the sample moments entering the

inequality restrictions, which can change discontinuously depending on whether they bind at

θ (γ1,P,jpθq “ 0) or not, and (ii) the local geometry of the identification region at θ, i.e. the

shape of the constraint set formed by the moment restrictions, and its relation to the level

set of the objective function p1θ. Features (i) and (ii) can be quite different at different points

in ΘIpP q, making uniform inference for the projection challenging. In particular, (ii) does

not arise if one only considers inference for the entire parameter vector, and hence is a new

challenge requiring new methods.8 This is where this paper’s core theoretical innovation lies.

7The mean value θ̄ changes with j but we omit the dependence to ease notation.
8This is perhaps best expressed in the testing framework: Inference for projections entails a null hypothesis

specifying the value of a single component (or a function) of θ. The components not under test become
additional nuisance parameters, and dealing with them presents challenges that one does not face when
testing hypotheses that specify the value of the entire vector θ.
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An important component of this innovation is to add to (2.7) the constraint that λ P

ρBd, where Bd “ r´1, 1sd and ρ ą 0 a tuning parameter. This is slightly conservative but

regularizes the effect of the local geometry of ΘIpP q at θ on the inference problem. See

Section 4.3 for further discussion. We show that the probability of the event in (2.7), with

λ restricted to be in ρBd, is asymptotically approximated by the probability that 0 lies

between the optimal values of two programs that are linear in λ. The constraint sets of these

programs are characterized by (i) a Gaussian process GP,jpθq evaluated at θ (that we can

approximate through a simple nonparametric bootstrap), (ii) a gradient DP,jpθq (that we

can uniformly consistently estimate9 on compact sets), and (iii) the parameter γ1,P,jpθq that

measures the extent to which each moment inequality is binding (that we can conservatively

estimate using insights from Andrews and Soares (2010)). This suggests a computationally

attractive bootstrap procedure based on linear programs.

3 Computing Calibrated Projection Confidence Intervals

3.1 Computing the Critical Level

For a given θ P Θ, we calibrate ĉnpθq through a bootstrap procedure that iterates over linear

programs.10 Define

Λbnpθ, ρ, cq “ tλ P
?
npΘ´ θq X ρBd : Gbn,jpθq ` D̂n,jpθqλ` ϕjpξ̂n,jpθqq ď c, j “ 1, . . . , Ju, (3.1)

where Gb
n,jp¨q “ n´1{2

řn
i“1pmjpX

b
i , ¨q´m̄n,jp¨qq{σ̂n,jp¨q is a bootstrap analog of GP,j ,

11 D̂n,jp¨q

is a consistent estimator of DP,jp¨q, ρ ą 0 is a constant chosen by the researcher (see Section

4.3), Bd “ r´1, 1sd, and ξ̂n,j is defined by

ξ̂n,jpθq ”

$

&

%

κ´1
n

?
nm̄n,jpθq{σ̂n,jpθq j “ 1, . . . , J1

0 j “ J1 ` 1, . . . , J,
(3.2)

where κn is a user-specified thresholding sequence such that κn Ñ 8, ϕ : RJ
r˘8s

Ñ RJ
r˘8s

is

one of the generalized moment selection (GMS) functions proposed by Andrews and Soares

(2010), and Rr˘8s “ RY t˘8u. A common choice of ϕ is given component-wise by

ϕjpxq “

$

&

%

0 if x ě ´1

´8 if x ă ´1.
(3.3)

Restrictions on ϕ and the rate at which κn diverges are imposed in Assumption 4.2.

9See Online Appendix C for proposal of such estimators in some canonical moment (in)equality examples.
10If Θ is defined through smooth convex (in)equalities, these can be linearized too.
11Bugni, Canay, and Shi (2017) approximate the stochastic process GP,j using n´1{2 řn

i“1rpmjpXi, ¨q ´
m̄n,jp¨qq{σ̂n,jp¨qsχi with tχi „ Np0, 1quni“1 i.i.d. This approximation is equally valid in our approach, and can
be computationally faster as it avoids repeated evaluation of mjpX

b
i , ¨q across bootstrap replications.
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Remark 3.1: For concreteness, in (3.3) we write out the “hard thresholding” GMS func-

tion. As we establish below, our results apply to all but one of the GMS functions in Andrews

and Soares (2010).12

Heuristically, the random convex polyhedral set Λbnpθ, ρ, cq in (3.1) is a local (to θ) lin-

earized bootstrap approximation to the random constraint set in (2.7). To see this, note

that the bootstrapped empirical process and the estimator of the gradient approximate the

first two terms in the constraint in (2.7) as linearized in (2.8). Next, for θ P ΘIpP q, the

GMS function conservatively approximates the local slackness parameter
?
nγ1,P,jpθq. This

is needed because the scaling of
?
nγ1,P,jpθq precludes consistent estimation. The problem

is resolved by shrinking estimated intercepts toward zero, thereby tightening constraints and

hence increasing ĉnpθq. As with other uses of GMS, the resulting conservative distortion

vanishes pointwise but not uniformly. Finally, restricting λ to the “ρ-box” ρBd has a strong

regularizing effect: It ensures uniform validity in challenging situations, including several that

are assumed away in most of the literature. We discuss this point in more detail in Section

4.3.

The critical level ĉnpθq to be used in (1.3) is the smallest value of c that makes the

bootstrap probability of the event

min
λPΛbnpθ,ρ,cq

p1λ ď 0 ď max
λPΛbnpθ,ρ,cq

p1λ (3.4)

at least 1´ α. Because Λbnpθ, ρ, cq is convex, we have

"

min
λPΛbnpθ,ρ,cq

p1λ ď 0 ď max
λPΛbnpθ,ρ,cq

p1λ

*

ðñ

!

Λbnpθ, ρ, cq X tp
1λ “ 0u ‰ H

)

,

so that we can equivalently define

ĉnpθq ” inftc P R` : P ˚pΛbnpθ, ρ, cq X tp
1λ “ 0u ‰ Hq ě 1´ αu, (3.5)

where P ˚ denotes the law of the random set Λbnpθ, ρ, cq induced by the bootstrap sampling

process, i.e. by the distribution of pXb
1, . . . , X

b
nq, conditional on the data. Importantly, P ˚

can be assessed by repeatedly checking feasibility of a linear program.13 We describe in detail

in Online Appendix B.4 how we compute ĉnpθq through a root-finding algorithm.

12These are ϕ1
´ ϕ4 in Andrews and Soares (2010), all of which depend on κ´1

n

?
nm̄n,jpθq{σ̂n,jpθq. We do

not consider GMS function ϕ5 in Andrews and Soares (2010), which depends also on the covariance matrix of
the moment functions.

13We implement a program in Rd for simplicity but, because p1λ “ 0 defines a linear subspace, one could
reduce this to Rd´1.
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3.2 Computation of the Outer Maximization Problem

Projection based methods as in (1.2) and (1.3) have nonlinear constraints involving a critical

value which in general is an unknown function of θ. Moreover, in all methods, including ours

and Andrews and Soares (2010), the gradients of the critical values with respect to θ are

not available in closed form. When the dimension of the parameter vector is large, directly

solving optimization problems with such constraints can be expensive even if evaluating the

critical value at each θ is cheap.

To mitigate this issue, we provide an algorithm that is a contribution to the moment

(in)equalities literature in its own right and that can be helpful for implementing other

approaches.14 We apply it to constrained optimization problems of the following form:

p1θ˚ ” sup
θPΘ

p1θ

s.t. gjpθq ď cpθq, j “ 1, ¨ ¨ ¨ , J, (3.6)

where θ˚ is an optimal solution of the problem, gj , j “ 1, . . . , J are known functions, and c is a

function that requires a higher computational cost. In our context, gjpθq “
?
nm̄n,jpθq{σ̂n,jpθq

and, for calibrated projection, cpθq “ ĉnpθq. Conditional on the data tX1, ¨ ¨ ¨ , Xnu, these

functions are considered deterministic. A key feature of the problem is that the function

cp¨q is relatively costly to evaluate.15 Our algorithm evaluates cp¨q on finitely many values

of θ. For other values, it imposes a probabilistic model that gets updated as specific values

are computed and that is used to determine the next evaluation point. Under reasonable

conditions, the resulting sequence of approximate optimal values converges to p1θ˚.

Specifically, after drawing an initial set of evaluation points that grows linearly with the

dimensionality of parameter space, the algorithm has three steps called E, A, and M below.

Initialization-step: Draw randomly (uniformly) over Θ a set pθp1q, ¨ ¨ ¨ , θpkqq of initial eval-

uation points. We suggest setting k “ 10d` 1.

E-step: (Evaluation) Evaluate cpθp`qq for ` “ 1, ¨ ¨ ¨ , L, where L ě k. Set Υp`q “ cpθp`qq, ` “

1, ¨ ¨ ¨ , L. The current estimate p1θ˚,L of the optimal value can be computed using

θ˚,L P argmaxθPCLp
1θ, (3.7)

where CL ” tθp`q : ` P t1, ¨ ¨ ¨ , Lu, gjpθ
p`qq ď cpθp`qq, j “ 1, ¨ ¨ ¨ , Ju is the set of feasible

evaluation points.

14This algorithm is based on the response surface method used in the optimization literature; see Jones
(2001), Jones, Schonlau, and Welch (1998), and references therein.

15Here we assume that computing the sample moments is less expensive than computing the critical value.
When computation of moments is also very expensive, our proposed algorithm can be used to approximate
these too.
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A-step: (Approximation) Approximate θ ÞÑ cpθq by a flexible auxiliary model. We use a

Gaussian-process regression model (or kriging), which for a mean-zero Gaussian process

εp¨q indexed by θ and with constant variance ς2 specifies

Υp`q “ µ` εpθp`qq, ` “ 1, ¨ ¨ ¨ , L (3.8)

Corrpεpθq, εpθ1qq “ Kβpθ ´ θ
1q, θ, θ1 P Θ, (3.9)

where Kβ is a kernel with parameter vector β P
Śd

k“1rβk, βks Ă Rd``, e.g. Kβpθ´θ
1q “

expp´
řd
k“1 |θk´θ

1
k|

2{βkq. The unknown parameters pµ, ς2q can be estimated by running

a GLS regression of Υ “ pΥp1q, ¨ ¨ ¨ ,ΥpLqq1 on a constant with the given correlation

matrix. The unknown parameters β can be estimated by a (concentrated) MLE.

The (best linear) predictor of the critical value and its gradient at an arbitrary point

are then given by

cLpθq “ µ̂` rLpθq
1R´1

L pΥ´ µ̂1q, (3.10)

∇θcLpθq “ µ̂`QLpθqR
´1
L pΥ´ µ̂1q, (3.11)

where rLpθq is a vector whose `-th component is Corrpεpθq, εpθp`qqq as given above

with estimated parameters, QLpθq “ ∇θrLpθq1, and RL is an L-by-L matrix whose

p`, `1q entry is Corrpεpθp`qq, εpθp`
1qqq with estimated parameters. This approximating

(or surrogate) model has the property that its predictor satisfies cLpθ
p`qq “ cpθp`qq, ` “

1, ¨ ¨ ¨ , L. Hence, it provides an analytical interpolation to the evaluated critical values

together with an analytical gradient.16 Further, the amount of uncertainty left in cpθq

(at an arbitrary point) is captured by the following variance:

ς̂2s2
Lpθq “ ς̂2

´

1´ rLpθq
1R´1

L rLpθq `
p1´ 11R´1

L rLpθqq
2

11R´1
L 1

¯

. (3.12)

M-step: (Maximization): With probability 1 ´ ε, maximize the expected improvement

function EIL to obtain the next evaluation point, with:

θpL`1q ” arg max
θPΘ

EILpθq “ arg max
θPΘ

pp1θ ´ p1θ˚,Lq`

´

1´ Φ
´ ḡpθq ´ cLpθq

ς̂sLpθq

¯¯

, (3.13)

where ḡpθq “ maxj“1,¨¨¨ ,Jgjpθq. This step can be implemented by standard nonlinear

optimization solvers, e.g. Matlab’s fmincon or KNITRO (see Appendix B.3 for details).

With probability ε, draw θpL`1q randomly from a uniform distribution over Θ.

Once the next evaluation point θpL`1q is determined, one adds it to the set of evaluation

16See details in Jones, Schonlau, and Welch (1998). We use the DACE Matlab kriging toolbox (http:
//www2.imm.dtu.dk/projects/dace/) for this step in our Monte Carlo experiments.
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points and iterates the E-A-M steps. This yields an increasing sequence of approximate

optimal values p1θ˚,L, L “ k ` 1, k ` 2, ¨ ¨ ¨ . Once a convergence criterion is met, the value

p1θ˚,L is reported as the end point of CIn. We discuss convergence criteria in Section 5.

Remark 3.2: The advantages of E-A-M are as follows. First, we control the number of

points at which we evaluate the critical value. Since the evaluation of the critical value is the

relatively expensive step, controlling the number of evaluations is important. One should also

note that the E-step with the initial k evaluation points can easily be parallelized. For any

additional E-step (i.e. L ą k), one needs to evaluate cp¨q only at a single point θpL`1q. The

M-step is crucial for reducing the number of additional evaluation points. To determine the

next evaluation point, one needs to take into account the trade-off between “exploitation”

(i.e. the benefit of drawing a point at which the optimal value is high) and “exploration” (i.e.

the benefit of drawing a point in a region in which the approximation error of c is currently

large). The expected improvement function in (3.13) quantifies this trade-off, and draws a

point only in an area where one can expect the largest improvement in the optimal value,

yielding substantial computational savings.17

Second, the proposed algorithm simplifies the M-step by providing constraints and their

gradients for program (3.13) in closed form. Availability of analytical gradients greatly aids

fast and stable numerical optimization. The price is the additional approximation step. In

the numerical exercises of Section 5, this price turns out to be low.

3.3 Convergence of the E-A-M Algorithm

We now provide formal conditions under which p1θ˚,L converges to the true end point of

CIn as L Ñ 8.18 Our convergence result recognizes that the parameters of the Gaussian

process prior in (3.8) are estimated for each iteration of the A-step using the “observations”

tθ`, cpθ`quL`“1, and hence change with L. Because of this, a requirement for convergence

is that cpθq is a sufficiently smooth function of θ. We show that a high-level condition

guaranteeing this level of smoothness ensures a general convergence result for the E-A-M

algorithm. This is a novel contribution to the literature on response surface methods for

constrained optimization.

In the statement of Theorem 3.1 below, HβpΘq is the reproducing kernel Hilbert space

(RKHS) on Θ Ď Rd determined by the kernel used to define the correlation functional in (3.9).

The norm on this space is } ¨ }Hβ
; see Online Appendix B.2 for details. Also, the expectation

EQ is taken with respect to the law of pθp1q, ¨ ¨ ¨ , θpLqq determined by the Initialization-step

and the M-step, holding the sample fixed. See Appendix A for a precise definition of EQ and

a proof of the theorem.

17It is also possible to draw multiple points in each iteration. See Schonlau, Welch, and Jones (1998).
18We build on Bull (2011), who proves a convergence result for the algorithm proposed by Jones, Schonlau,

and Welch (1998) applied to an unconstrained optimization problem in which the objective function is unknown
outside the evaluation points.
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Theorem 3.1: Suppose Θ Ă Rd is a compact hyperrectangle with nonempty interior and

that }p} “ 1. Let the evaluation points pθp1q, ¨ ¨ ¨ , θpLqq be drawn according to the Initialization

and the M steps. Let Kβ in (3.9) be a Matérn kernel with index ν P p0,8q and ν R N. Let

c : Θ ÞÑ R satisfy }c}Hβ̄
ď R for some R ą 0, where β̄ “ pβ̄1, ¨ ¨ ¨ , β̄dq

1. Then

EQ
“

p1θ˚ ´ p1θ˚,L`1
‰

Ñ 0 as LÑ8. (3.14)

Remark 3.3: The requirement that Θ is a compact hyperrectangle with nonempty inte-

rior can be replaced by a requirement that Θ belongs to the interior of a closed hyperrectangle

in Rd such that c satisfies the smoothness requirement in Theorem 3.1 on that rectangle.

In order to apply Theorem 3.1 to calibrated projection, we provide low level conditions

(Assumption B.1 in Online Appendix B.1.1) under which the map θ ÞÑ ĉnpθq uniformly

stochastically satisfies a Lipschitz-type condition. To get smoothness, we work with a mollified

version of ĉn, denoted ĉn,τn and provided in equation (B.1), with τn “ opn´1{2q.19 Theorem

B.1 in the Online Appendix shows that ĉn and ĉn,τn can be made uniformly arbitrarily close

to each other and that ĉn,τn yields valid inference in the sense of equation (2.6). In practice,

one may therefore directly apply the E-A-M steps to ĉn.

Remark 3.4: The key condition imposed in Theorem B.1 is Assumption B.1. It requires

that the GMS function used is Lipschitz in its argument, and that the standardized moment

functions are Lipschitz in θ. In Online Appendix C.1 we establish that the latter condition

is satisfied by some canonical examples in the moment (in)equality literature, namely the

mean with missing data, linear regression and best linear prediction with interval data (and

discrete covariates), and entry games with multiple equilibria (and discrete covariates).20

4 Asymptotic Validity of Inference

4.1 Assumptions

We posit that P , the distribution of the observed data, belongs to a class of distributions

denoted by P. We write stochastic order relations that hold uniformly over P P P using the

notations oP and OP ; see Online Appendix D.1 for the formal definitions. Below, ε, ε, δ,

ω, σ, M , M̄ denote generic constants which may be different in different appearances but

cannot depend on P . Given a square matrix A, we write eigpAq for its smallest eigenvalue.

Assumption 4.1: (a) Θ Ă Rd is a compact hyperrectangle with nonempty interior.

(b) All distributions P P P satisfy the following:

19For a discussion of mollification, see e.g. Rockafellar and Wets (2005, Example 7.19)
20It can also be shown to hold in semi-parametric binary regression models with discrete or interval valued

covariates under the assumptions of Magnac and Maurin (2008).
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(i) EP rmjpXi, θqs ď 0, j “ 1, . . . , J1 and EP rmjpXi, θqs “ 0, j “ J1 ` 1, ¨ ¨ ¨ , J1 ` J2 for

some θ P Θ;

(ii) tXi, i ě 1u are i.i.d.;

(iii) σ2
P,jpθq P p0,8q for j “ 1, ¨ ¨ ¨ , J for all θ P Θ;

(iv) For some δ ą 0 and M P p0,8q and for all j, EP rsupθPΘ |mjpXi, θq{σP,jpθq|
2`δs ďM .

Assumption 4.2: The function ϕj is continuous at all x ě 0 and ϕjp0q “ 0; κn Ñ 8

and κn “ opn1{2q. If Assumption 4.3-(II) is imposed, κn “ opn1{4q.

Assumption 4.1-(a) requires that Θ is a hyperrectangle, but can be replaced with the

assumption that θ is defined through a finite number of nonstochastic inequality constraints

smooth in θ and such that Θ is convex. Compactness is a standard assumption on Θ for

extremum estimation. We additionally require convexity as we use mean value expansions of

EP rmjpXi, θqs{σP,jpθq in θ; see (2.8). Assumption 4.1-(b) defines our moment (in)equalities

model. Assumption 4.2 constrains the GMS function and the rate at which its tuning param-

eter diverges. Both 4.1-(b) and 4.2 are based on Andrews and Soares (2010) and are standard

in the literature,21 although typically with κn “ opn1{2q. The slower rate κn “ opn1{4q is

satisfied for the popular choice, recommended by Andrews and Soares (2010), of κn “
?

lnn.

Next, and unlike some other papers in the literature, we impose restrictions on the cor-

relation matrix of the moment functions. These conditions can be easily verified in practice

because they are implied when the correlation matrix of the moment equality functions and

the moment inequality functions specified below have a determinant larger than a predefined

constant for any θ P Θ.

Assumption 4.3: All distributions P P P satisfy one of the following two conditions for

some constants ω ą 0, σ ą 0, ε ą 0, ε ą 0,M ă 8:

(I) Let J pP, θ; εq ” tj P t1, ¨ ¨ ¨ , J1u : EP rmjpXi, θqs{σP,jpθq ě ´εu. Denote

m̃pXi, θq ”
`

tmjpXi, θqujPJ pP,θ;εq,mJ1`1pXi, θq, ¨ ¨ ¨ ,mJ1`J2pXi, θq
˘1
,

Ω̃P pθq ” CorrP pm̃pXi, θqq.

Then infθPΘIpP q eigpΩ̃P pθqq ě ω.

(II) The functions mjpXi, θq are defined on Θε “ tθ P Rd : dpθ,Θq ď εu. There exists

R1 P N, 1 ď R1 ď J1{2, and measurable functions tj : X ˆ Θε Ñ r0,M s, j P R1 ”

t1, . . . , R1u, such that for each j P R1,

mj`R1pXi, θq “ ´mjpXi, θq ´ tjpXi, θq. (4.1)

21Continuity of ϕj for x ě 0 is restrictive only for GMS function ϕp2q in Andrews and Soares (2010).
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For each j P R1 X J pP, θ; εq and any choice :mjpXi, θq P tmjpXi, θq,mj`R1pXi, θqu,

denoting Ω̃P pθq ” CorrP pm̃pXi, θqq, where

m̃pXi, θq ”
´

t :mjpXi, θqujPR1XJ pP,θ;εq,

tmjpXi, θqujPJ pP,θ;εqzt1,...,2R1u,mJ1`1pXi, θq, ¨ ¨ ¨ ,mJ1`J2pXi, θq
¯1

,

one has

inf
θPΘIpP q

eigpΩ̃P pθqq ě ω. (4.2)

Finally,

inf
θPΘIpP q

σP,jpθq ą σ for j “ 1, . . . , R1. (4.3)

Assumption 4.3-(I) requires that the correlation matrix of the moment functions cor-

responding to close-to-binding moment conditions has eigenvalues uniformly bounded from

below. This assumption holds in many applications of interest, including: (i) instances when

the data is collected by intervals with minimum width;22 (ii) in treatment effect models

with (uniform) overlap; (iii) in static complete information entry games under weak solution

concepts, e.g. rationality of level 1, see Aradillas-Lopez and Tamer (2008).

We are aware of two examples in which Assumption 4.3-(I) may fail. One are missing

data scenarios, e.g. scalar mean, linear regression, and best linear prediction, with a vanishing

probability of missing data. The other example, which is extensively simulated in Section

5, is the Ciliberto and Tamer (2009) entry game model when the solution concept is pure

strategy Nash equilibrium. We show in Online Appendix C.2 that these examples satisfy

Assumption 4.3-(II).

Remark 4.1: Assumption 4.3-(II) weakens 4.3-(I) by allowing for (drifting to) perfect

correlation among moment inequalities that cannot cross. This assumption is often satisfied

in moment conditions that are separable in data and parameters, i.e. for each j “ 1, . . . , J ,

EP rmjpXi, θqs “ EP rhjpXiqs ´ vjpθq, (4.4)

for some measurable functions hj : X Ñ R and vj : Θ Ñ R. Models like the one in Ciliberto

and Tamer (2009) fall in this category, and we verify Assumption 4.3-(II) for them in Online

Appendix C.2. The argument can be generalized to other separable models.

22 Empirically relevant examples are that of: (a) the Occupational Employment Statistics (OES) program
at the Bureau of Labor Statistics, which collects wage data from employers as intervals of positive width, and
uses these data to construct estimates for wage and salary workers in 22 major occupational groups and 801
detailed occupations; and (b) when, due to concerns for privacy, data is reported as the number of individuals
who belong to each of a finite number of cells (for example, in public use tax data).
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In Online Appendix C.2, we also verify Assumption 4.3-(II) for some models that are

not separable in the sense of equation (4.4), for example best linear prediction with interval

outcome data. The proof can be extended to cover (again non-separable) binary models with

discrete or interval valued covariates under the assumptions of Magnac and Maurin (2008).

In what follows, we refer to pairs of inequality constraints indexed by tj, j`R1u and sat-

isfying (4.1) as “paired inequalities.” Their presence requires a modification of the bootstrap

procedure. This modification exclusively concerns the definition of Λbnpθ, ρ, cq in equation

(3.1). We explain it here for the case that the GMS function ϕj is the hard-thresholding one

in (3.3), and refer to Online Appendix E equations (E.12)-(E.13) for the general case. If

ϕjpξ̂n,jpθqq “ 0 “ ϕjpξ̂n,j`R1pθqq,

we replace Gb
n,j`R1

pθq with ´Gb
n,jpθq and D̂n,j`R1pθq with ´D̂n,jpθq, so that inequality

Gb
n,j`R1

pθq ` D̂n,j`R1pθqλ ď c is replaced with ´Gb
n,jpθq ´ D̂n,jpθqλ ď c in equation (3.1). In

words, when hard threshold GMS indicates that both paired inequalities bind, we pick one of

them, treat it as an equality, and drop the other one. In the proof of Theorem 4.1, we show

that this tightens the stochastic program.23 The rest of the procedure is unchanged.

Instead of Assumption 4.3, BCS (Assumption 2) impose the following high-level condition:

(a) The limit distribution of their profiled test statistic is continuous at its 1 ´ α quantile

if this quantile is positive; (b) else, their test is asymptotically valid with a critical value of

zero. In Online Appendix D.2.3, we show that we can replace Assumption 4.3 with a weaker

high level condition (Assumption D.1-(I)) that resembles the BCS assumption but constrains

the limiting coverage probability. (We do not claim that the conditions are equivalent.) The

substantial amount of work required for us to show that Assumption 4.3 implies Assumption

D.1-(I) is suggestive of how difficult these high-level conditions can be to verify.24 Moreover, in

Online Appendix F.2 we provide a simple example that violates Assumption 4.3 and in which

all of calibrated projection, BCS-profiling, and the boosttrap procedure in Pakes, Porter, Ho,

and Ishii (2011) fail. The example leverages the fact that when binding constraints are

near-perfectly correlated, the projection may be estimated superconsistently, invalidating the

simple nonparametric bootstrap.25

Together with imposition of the ρ-box constraints, Assumption 4.3 allows us to dispense

with restrictions on the local geometry of the set ΘIpP q. Restrictions of this type, which

are akin to constraint qualification conditions, are imposed by BCS (Assumption A.3-(a)),

23When paired inequalities are present, in equation (2.5) instead of σ̂n,j we use the estimator σ̂Mn,j specified
in (E.188) in Lemma E.10 p.50 of the Online Appendix for σP,j , j “ 1, . . . , 2R1 (with R1 ď J1{2 defined in
the assumption). In equation (3.2) we use σ̂n,j for all j “ 1, . . . , J . To ease notation, we do not distinguish
the two unless it is needed.

24Assumption 4.3 is used exclusively to obtain the conclusions of Lemma E.6, E.7 and E.8, hence any
alternative assumption that delivers such results can be used.

25The example we provide satisfies all assumptions explicitly stated in Pakes, Porter, Ho, and Ishii (2011),
illustrating an oversight in their Theorem 2.
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Pakes, Porter, Ho, and Ishii (2011, Assumptions A.3-A.4), Chernozhukov, Hong, and Tamer

(2007, Condition C.2), and elsewhere. In practice, they can be hard to verify or pre-test for.

We study this matter in detail in Kaido, Molinari, and Stoye (2017).

We next lay out regularity conditions on the gradients of the moments.

Assumption 4.4: All distributions P P P satisfy the following conditions:

(i) For each j, there exist DP,jp¨q ” ∇θtEP rmjpX, ¨qs{σP,jp¨qu and its estimator D̂n,jp¨q

such that supθPΘε }D̂n,jpθq ´DP,jpθq} “ oPp1q.

(ii) There exist M,M̄ ă 8 such that for all θ, θ̃ P Θε maxj“1,¨¨¨ ,J }DP,jpθq ´ DP,jpθ̃q} ď

M}θ ´ θ̃} and maxj“1,¨¨¨ ,J supθPΘIpP q }DP,jpθq} ď M̄ .

Assumption 4.4 requires that each of the J normalized population moments is differen-

tiable, that its derivative is Lipschitz continuous, and that this derivative can be consistently

estimated uniformly in θ and P .26 We require these conditions because we use a linear ex-

pansion of the population moments to obtain a first-order approximation to the nonlinear

programs defining CIn, and because our bootstrap procedure requires an estimator of DP .

A final set of assumptions is on the normalized empirical process. For this, define the

variance semimetric %P by

%P pθ, θ̃q ”
›

›

›

 “

V arP
`

σ´1
P,jpθqmjpX, θq ´ σ

´1
P,jpθ̃qmjpX, θ̃q

˘‰1{2(J

j“1

›

›

›
. (4.5)

For each θ, θ̃ P Θ and P , let QP pθ, θ̃q denote a J-by-J matrix whose pj, kq-th element is the

covariance between mjpXi, θq{σP,jpθq and mkpXi, θ̃qq{σP,kpθ̃q.

Assumption 4.5: All distributions P P P satisfy the following conditions:

(i) The class of functions tσ´1
P,jpθqmjp¨, θq : X Ñ R, θ P Θu is measurable for each j “

1, ¨ ¨ ¨ , J .

(ii) The empirical process Gn with j-th component Gn,j is uniformly asymptotically %P -

equicontinuous. That is, for any ε ą 0,

lim
δÓ0

lim sup
nÑ8

sup
PPP

P

˜

sup
%P pθ,θ̃qăδ

}Gnpθq ´Gnpθ̃q} ą ε

¸

“ 0. (4.6)

(iii) QP satisfies

lim
δÓ0

sup
}pθ1,θ̃1q´pθ2,θ̃2q}ăδ

sup
PPP

}QP pθ1, θ̃1q ´QP pθ2, θ̃2q} “ 0. (4.7)

26The requirements are imposed on Θε. Under Assumption 4.3-(I) it suffices they hold on Θ.
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Under this assumption, the class of normalized moment functions is uniformly Donsker

(Bugni, Canay, and Shi, 2015). We use this fact to show validity of our method.

4.2 Theoretical Results

First set of results: Uniform asymptotic validity in the general case.

The following theorem establishes the asymptotic validity of the proposed confidence

interval CIn ” r´sp´p, Cnpĉnqq, spp, Cnpĉnqqs, where spp, Cnpĉnqq was defined in equation (2.5)

and ĉn in (3.5).

Theorem 4.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 ă α ă 1{2.

Then

lim inf
nÑ8

inf
PPP

inf
θPΘIpP q

P pp1θ P CInq ě 1´ α. (4.8)

A simple corollary to Theorem 4.1, whose proof is omitted, is that we can provide joint

confidence regions for several projections, in particular confidence hyperrectangles for sub-

vectors. Thus, let p1, . . . , pk denote unit vectors in Rd, k ď d. Then:

Corollary 4.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 ă α ă 1{2.

Then,

lim inf
nÑ8

inf
PPP

inf
θPΘIpP q

P pp`1θ P CIn,`, ` “ 1, . . . , kq ě 1´ α, (4.9)

where CIn,` “
”

infθPCnpĉknq p
`1θ, supθPCnpĉknq p

`1θ
ı

and ĉknpθq ” inftc P R` : P ˚pΛbnpθ, ρ, cq X

tXk`“1tp
`1λ “ 0uu ‰ Hq ě 1´ αu.

The difference in this Corollary compared to Theorem 4.1 is that ĉkn is calibrated so that

(3.4) holds for all p1, . . . , pk simultaneously.

In applications, a researcher might wish to obtain a confidence interval for a known non-

linear function f : Θ ÞÑ R. Examples include policy analysis and counterfactual estimation

in the presence of partial identification, or demand extrapolation subject to rationality con-

straints. It is possible to extend our results to uniformly continuously differentiable functions

f . Because the function f is known, the conditions on its gradient required below can be

easily verified in practice (especially if the first one is strengthened to hold over Θ).

Theorem 4.2: Let CIfn be a confidence interval whose lower and upper points are obtained

solving

inf
θPΘ

{ sup
θPΘ

fpθq s.t.
?
nm̄n,jpθq{σ̂n,jpθq ď ĉfnpθq, j “ 1, ¨ ¨ ¨ , J,
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where ĉfnpθq ” inftc ě 0 : P ˚pΛbnpθ, ρ, cqXt}∇θfpθq}´1∇θfpθqλ “ 0u ‰ Hq ě 1´αu. Suppose

Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Suppose that there exist $ ą 0 and M ă 8

such that infPPP infθPΘIpP q }∇fpθq} ě $ and supθ,θ̄PΘ }∇fpθq ´ ∇fpθ̄q} ď M}θ ´ θ̄}, where

∇θfpθq is the gradient of fpθq. Let 0 ă α ă 1{2. Then,

lim inf
nÑ8

inf
PPP

inf
θPΘIpP q

P pfpθq P CIfnq ě 1´ α. (4.10)

Second set of results: Simplifications for special cases.

We now consider more restrictive assumptions on the model, defining a subset of DGPs

Q Ă P; across theorems below, the set Q differs based on which assumptions are maintained.

If P P Q, a number of simplifications to the method, including dropping the ρ-box constraints,

are possible. Here we state the formal results and then we give a heuristic explanation of

the conditions needed for these simplifications. Online Appendix D.3.1 contains the exact

assumptions and Online Appendix D.3.2 the proofs. We remark that all of the additional

assumptions are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011), hence under

their conditions Theorem 4.3 applies in its entirety.

Theorem 4.3: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 ă α ă 1{2.

(I) If Assumption D.2-(1) holds for either p or ´p (or both), then setting

CIn “
“

inf
θPCnpĉn,´pq

p1θ, sup
θPCnpĉn,pq

p1θ
‰

, (4.11)

ĉn,qpθq “ inftc P R` : P ˚pΛbnpθ, ρ, cq X tq
1λ ě 0u ‰ Hq ě 1´ αu, q P tp,´pu, (4.12)

we have

lim inf
nÑ8

inf
PPQ

inf
θPΘIpP q

P pp1θ P CInq ě 1´ α. (4.13)

(II) If Assumptions D.2-(1) (for either p or ´p or both), D.3 and D.4 hold, then (4.13)

continues to be satisfied with CIn as defined in (4.11) and evaluated at ĉn,qpθq “ ĉn,qpθ̂qq

for q P t´p, pu and for all θ P Θ in (4.12), where θ̂q P arg maxθPΘ̂I q
1θ and Θ̂I “ tθ P

Θ : m̄n,jpθq ď 0, j “ 1, . . . , Ju.

(III) If Assumptions D.2-(2) (for either p or ´p or both) and D.5 hold, then setting ρ “ `8

to obtain ĉn,qpθ̂qq in (4.12) and using these values for q P t´p, pu for each θ P Θ in

computing CIn as defined in (4.11), we have that (4.13) continues to be satisfied.

Remark 4.2: If Theorem 4.3-(II) applies and the standardized moment conditions in

(2.5) are linear in θ, then CIn can be computed by solving just two linear programs.
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Assumption D.2-(1) in Theorem 4.3-(I) ensures that some point in tp1θ, θ P ΘIpP qu is

covered with probability approaching 1. Hence, the inference problem is effectively one-

sided at the projection’s end points and degenerate in between. It then suffices to intersect

two one-sided p1 ´ αq-confidence intervals. Under Assumptions 4.1-4.5, Assumption D.2 is

implied both by a “degeneracy condition”in Chernozhukov, Hong, and Tamer (2007) and by

an assumption in Pakes, Porter, Ho, and Ishii (2011). A simple sufficient condition is that

there exists a parameter value at which all population constraints hold with slack.

Assumptions D.3 and D.4 in Theorem 4.3-(II) are logically independent “polynomial

minorant” conditions imposed in Chernozhukov, Hong, and Tamer (2007) and Bugni, Canay,

and Shi (2017). Jointly, they assure that the sample support set Hpp, Θ̂Iq is an “inner

consistent” estimator of the population support set Hpp,ΘIq.
27 That is, any accumulation

point of a selection from Hpp, Θ̂Iq is in Hpp,ΘIq, but Hpp, Θ̂Iq may be much smaller than

Hpp,ΘIq. Then for one-sided inference, it suffices to compute ĉnpθq exactly once, namely at

one arbitrary selection θ̂ P Hpp, Θ̂Iq, and to set ĉnpθq “ ĉnpθ̂q for all θ. We again remark that

these conditions are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011).

Assumptions D.2-(2) and D.5 in Theorem 4.3-(III) yield that the support set is a singleton

and the tangent cone at the support set is pointy (in a uniform sense). We show that, in this

case, the ρ-box constraints can be entirely dropped. This assumption is directly imposed by

Pakes, Porter, Ho, and Ishii (2011), but we weaken it by showing that it is only needed in a

local sense; hence, it suffices that the support set consists of distinct extreme points and all

corresponding tangent cones are pointy.

Result 3: A comparison with BCS-profiling. We finally compare calibrated projection

to BCS-profiling in well behaved cases. Suppose that Theorem 4.3 applies. Then CIn is the

intersection of two one-sided confidence intervals and we can set ρ “ `8. Hence, a scalar s

is in the one-sided (unbounded from below) confidence interval for p1θ if

min
p1θ“s

Tnpθq ď ĉnpθ̂pq, (4.14)

Tnpθq ”
?
nmax

j
m̄n,jpθq{σ̂n,jpθq. (4.15)

While it was not originally constructed in this manner, this simplified confidence interval

is the lower contour set of a profiled test statistic.28 Indeed, up to an inconsequential squaring,

Tn is a special case of the statistic used in Bugni, Canay, and Shi (2017). This raises the

question of how the tests compare. In the especially regular case where all parts of Theorem

4.3 apply, and assuming that calibrated projection is implemented with the corresponding

simplifications, the answer is as follows:

27For a given unit vector p and compact set A Ă Rd, the support set of A is Hpp,Aq ” arg maxaPA p
1a.

28By contrast, the corresponding expression without Theorem 4.3-(II) is minp1θ“stTnpθq´ ĉnpθqu ď 0, which
is not usefully interpreted as test inversion.
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Theorem 4.4: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, 4.5, D.2, D.3, D.4, D.5, and

D.6 hold. Let BCS-profiling be implemented with the criterion function in equation (4.15)

and GMS function ϕpxq “ mint0, xu.29 Let calibrated projection be implemented using the

simplifications from Theorem 4.3, including setting ρ “ `8. If both methods furthermore

use the same κn, they are uniformly asymptotically equivalent:

lim inf
nÑ8

inf
PPQ

inf
sPrminθPΘ p1θ,maxθPΘ p1θs

P
´

1ts P CInu “ 1ts P CIprofn u

¯

Ñ 1,

where CIprofn denotes the confidence interval resulting from the BCS-profiling method.

Thus there is strong agreement between methods in extremely well-behaved cases.30 We

also show in Online Appendix F.1 that, in a further specialization of the above setting, finite

sample power is higher with calibrated projection. This effect is due to a conservative dis-

tortion of order 1{κn in Bugni, Canay, and Shi (2017) and therefore vanishes asymptotically;

however, due to the slow rate at which κn diverges, it can be large in samples of consider-

able size. In sum, the approaches are not ranked in terms of power in empirically relevant

examples.

4.3 Role of the ρ-box Constraints and Heuristics for Choosing ρ

When we use the bootstrap to calibrate ĉnp¨q, we restrict the localization vector λ to lie in a

ρ-box; see equation (3.1). This restriction has a crucial regularization effect. Comparing (2.7)

and (3.4), it is apparent that we estimate coverage probabilities by replacing a nonlinear pro-

gram with a linear one. It is intuitive that a Karush-Kuhn-Tucker condition (with uniformly

bounded Lagrange multipliers) is needed for this to work (uniformly), and also that the lin-

earization in (2.8) should be uniformly valid. But direct imposition of a Karush-Kuhn-Tucker

condition would amount to a hard-to-verify constraint qualification. Rather than doing this,

we show that Assumption 4.3 and imposition of the ρ-box constraints jointly yield such con-

straint qualification conditions on the set Λbnpθ, ρ, cq (defined in (3.1)) with arbitrarily high

probability for n large enough, as well as uniform validity of the linearization. If one knows

(or assumes) a priori that the population (limit) counterpart of the constraint set in (2.7) is

contained in a ball with a radius bounded in probability (see Assumption D.1-(II) in Online

Appendix D.2.2), then ρ can be set equal to `8. The assumptions in Theorem 4.3-(III) are

sufficient for this condition to hold.31

In practice, the choice of ρ requires trading off how much conservative bias one is willing

to bear in well-behaved cases against how much finite-sample size distortion one is willing

29The restriction on the GMS function is needed only because the “penalized resampling” approximation
in BCS employs a specific “slackness function” equal to ξ̂n,j .

30This is not true for Pakes, Porter, Ho, and Ishii (2011) because they do not studentize the moment
inequalities.

31See Online Appendix D.1 for proofs of these statements.
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to bear in ill-behaved cases.32 We propose a heuristic approach to calibrate ρ focusing

on conservative bias in the well behaved cases just considered, i.e. cases such as those

characterized in Assumptions D.2, D.3, D.4, D.5 and D.6, in which the ρ-box could be

dropped. In these cases, the optimal value of each of the two programs in equation (3.4) is

distributed asymptotically normal as a linear combination of d binding inequalities. When

in fact J1 ` J2 “ d, constraining λ P ρBd increases the coverage probability by at most

η “ 1´r1´2Φp´ρqsd. The parameter ρ can therefore be calibrated to achieve a conservative

bias of at most η. When J1 ` J2 ą d, we propose to calibrate ρ using the benchmark

η “ 1´ r1´ 2Φp´ρqsdp
J1`J2
d q, (4.16)

again achieving a target conservative bias (in well-behaved cases) of η. For a few numerical

examples, set η “ 0.01: then J1 ` J2 “ 10 and d “ 3 imply ρ “ 4.2, whereas J1 ` J2 “ 100

and d “ 10 imply ρ “ 8.4. In the Monte Carlo experiments of Section 5, we investigate

sensitivity of calibrated projection to the choice of ρ.

5 Monte Carlo Simulations

We evaluate the statistical and numerical performance of calibrated projection and EAM in

two sets of Monte Carlo experiments run on a server with two Intel Xeon X5680 processors

rated at 3.33GHz with 6 cores each and with a memory capacity of 24Gb rated at 1333MHz.33

Both simulate a two-player entry game. The first experiment compares calibrated projec-

tion and BCS-profiling in the Monte Carlo exercise of BCS, using their code.34 The other

experiments feature a considerably more involved entry model with and without correlated

unobservables. We were unable to numerically implement BCS-profiling for this model.35

5.1 The General Entry Game Model

We consider a two player entry game based on Ciliberto and Tamer (2009):

Y2 “ 0 Y2 “ 1

Y1 “ 0 0, 0 0, Z 12ζ1 ` u2

Y1 “ 1 Z 11ζ1 ` u1, 0 Z 11pζ1 `∆1q ` u1, Z
1
2pζ2 `∆2q ` u2

Here, Y`, Z`, and u` denote player `1s binary action, observed characteristics, and unobserved

characteristics. The strategic interaction effects Z 1`∆` ď 0 measure the impact of the oppo-

nent’s entry into the market. We let X ” pY1, Y2, Z
1
1, Z

1
2q
1. We generate Z “ pZ1, Z2q as

32In Kaido, Molinari, and Stoye (2017) we provide examples of well-behaved and ill-behaved cases.
33To run the more than 120 distinct simulations reported here, we employed multiple servers. We benched

the relative speed of each and report average computation time normalized to the server just described.
34See http://qeconomics.org/ojs/index.php/qe/article/downloadSuppFile/431/1411.
35For implementations of calibrated projection with real-world data, we refer the reader to Mohapatra and

Chatterjee (2015), where d “ 5, J1 “ 44, and J2 “ 0.
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an i.i.d. random vector taking values in a finite set whose distribution pz “ P pZ “ zq is

known. We let u “ pu1, u2q be independent of Z and such that Corrpu1, u2q ” r P r0, 1s

and V arpu`q “ 1, ` “ 1, 2. We let θ ” pζ 11, ζ
1
2,∆

1
1,∆

1
2, rq

1. For a given set A Ă R2, we define

GrpAq ” P pu P Aq. We choose Gr so that the c.d.f. of u is continuous, differentiable, and

has a bounded p.d.f. The outcome Y “ pY1, Y2q results from pure strategy Nash equilibrium

play. For some value of Z and u, the model predicts monopoly outcomes Y “ p0, 1q and p1, 0q

as multiple equilibria. When this occurs, we select outcome p0, 1q by independent Bernoulli

trials with parameter µ P r0, 1s. This gives rise to the following restrictions:

Er1tY “ p0, 0qu1tZ “ zus ´Grpp´8,´z
1
1ζ1q ˆ p´8,´z

1
2ζ2qqpz “ 0 (5.1)

Er1tY “ p1, 1qu1tZ “ zus ´Grpr´z
1
1pζ1 `∆1q,`8q ˆ r´z

1
2pζ2 `∆2q,`8qqpz “ 0 (5.2)

Er1tY “ p0, 1qu1tZ “ zus ´Grpp´8,´z
1
1pζ1 `∆1qq ˆ r´z

1
2ζ2,`8qqpz ď 0 (5.3)

´Er1tY “ p0, 1qu1tZ “ zus `
”

Grpp´8,´z
1
1pζ1 `∆1qq ˆ r´z

1
2ζ2,`8q

´Grpr´z
1
1ζ1,´z

1
1pζ1 `∆1qq ˆ r´z

1
2ζ2,´z

1
2pζ2 `∆2qq

ı

pz ď 0. (5.4)

We show in Online Appendix C that this model satisfies Assumptions B.1 and 4.3-(II).36

Throughout, we analytically compute the moments’ gradients and studentize them using

sample analogs of their standard deviations.

5.2 Specific Implementations and Results

Set 1: A comparison with BCS-Profiling

BCS specialize this model as follows. First, u1, u2 are independently uniformly distributed

on r0, 1s and the researcher knows r “ 0. Equality (5.1) disappears because p0, 0q is never

an equilibrium. Next, Z1 “ Z2 “ r1; tWku
dW
k“0s, where Wk are observed market type in-

dicators, ∆` “ rδ`; 0dW s for ` “ 1, 2, and ζ1 “ ζ2 “ ζ “ r0; tζrksudWk“0s.
37 The parameter

vector is θ “ rδ1; δ2; ζs with parameter space Θ “ tθ P R2`dW : pδ1, δ2q P r0, 1s
2, ζk P

r0,mintδ1, δ2us, k “ 1, . . . , dW u. This leaves 4 moment equalities and 8 moment inequali-

ties (so J “ 16); compare equation (5.1) in BCS. We set dW “ 3, P pWk “ 1q “ 1{4, k “

0, 1, 2, 3, θ “ r0.4; 0.6; 0.1; 0.2; 0.3s, and µ “ 0.6. The implied true bounds on parameters are

δ1 P r0.3872, 0.4239s, δ2 P r0.5834, 0.6084s, ζr1s P r0.0996, 0.1006s, ζr2s P r0.1994, 0.2010s, and

ζr3s P r0.2992, 0.3014s.

The BCS-profiling confidence interval CIprofn inverts a test of H0 : p1θ “ s0 over a grid for

s0. We do not in practice exhaust the grid but search inward from the extreme points of Θ in

directions ˘p. At each s0 that is visited, we compute (the square of) a profiled test statistic

36The specialization in which we compare to BCS also fulfils their assumptions. The assumptions in Pakes,
Porter, Ho, and Ishii (2011) exclude any DGP that has moment equalities.

37This allows for market-type homogeneous fixed effects but not for player-specific covariates nor for observed
heterogeneity in interaction effects.
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minp1θ“s0 Tnpθq; see equations (4.14)-(4.15) above. The corresponding critical value ĉprofn ps0q

is a quantile of the minimum of two distinct bootstrap approximations, each of which solves

a nonlinear program for each bootstrap draw. Computational cost quickly increases with

grid resolution, bootstrap size, and the number of starting points used to solve the nonlinear

programs.

Calibrated projection computes ĉnpθq by solving a series of linear programs for each

bootstrap draw.38 It computes the extreme points of CIn by solving NLP (2.5) twice, a task

that is much accelerated by the E-A-M algorithm. Projection of Andrews and Soares (2010)

operates very similarly but computes its critical value ĉprojn pθq through bootstrap simulation

without any optimization.

We align grid resolution in BCS-profiling with the E-A-M algorithm’s convergence thresh-

old of 0.005.39 We run all methods with B “ 301 bootstrap draws, and calibrated and

“uncalibrated” (i.e., based on Andrews and Soares (2010)) projection also with B “ 1001.40

Some other choices differ: BCS-profiling is implemented with their own choice to multi-start

the nonlinear programs at 3 oracle starting points, i.e. using knowledge of the true DGP;

our implementation of both other methods multi-starts the nonlinear programs from 30 data

dependent random points (see Kaido, Molinari, Stoye, and Thirkettle (2017) for details).

Table 1 displays results for pδ1, δ2q and for 300 Monte Carlo repetitions of all three meth-

ods. All confidence intervals are conservative, reflecting the effect of GMS. As expected,

uncalibrated projection is most conservative, with coverage of essentially 1. Also, BCS-

profiling is more conservative than calibrated projection. We suspect this relates to the

conservative effect highlighted in Online Appendix F.1. The most striking contrast is in com-

putational effort, where uncalibrated projection is fastest but calibrated projection also beats

BCS-profiling by a factor of about 78. There are two effects at work here: First, because

the calibrated projection bootstrap iterates over linear programs, it is much faster than the

BCS-profiling one. Second, both uncalibrated projection and calibrated projection confidence

intervals were computed using the E-A-M algorithm. Indeed, the computation times reported

for uncalibrated projection indicate that, in contrast to received wisdom, this procedure is

computationally somewhat easy. This is due to the E-A-M algorithm and therefore part of

this paper’s contribution.

Table 2 extends the analysis to all components of θ and to 1000 Monte Carlo repetitions.

We were unable to compute this or any of the next tables for BCS-profiling.

Set 2: Heterogeneous interaction effects and potentially correlated errors

38We implement this step using the high-speed solver CVXGEN, available from http://cvxgen.com and
described in Mattingley and Boyd (2012).

39This is only one of several individually necessary stopping criteria. Others include that the current
optimum θ˚,L and the expected improvement maximizer θL`1 (see equation (3.13)) satisfy |p1pθL`1

´θ˚,Lq| ď
0.005. See Kaido, Molinari, Stoye, and Thirkettle (2017) for the full list of convergence requirements.

40Based on some trial runs of BCS-profiling for δ1, we estimate that running it with B “ 1001 throughout
would take 3.14-times longer than the computation times reported in Table 1. By comparison, calibrated
projection takes only 1.75-times longer when implemented with B “ 1001 instead of B “ 301.
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In our second set of experiments, we let u “ pu1, u2q be bivariate Normal with (nondegen-

erate) correlation r, so all outcomes have positive probability. We let Z include a constant

and a player specific, binary covariate, so Z1 P tp1,´1q, p1, 1qu and Z2 P tp1,´1q, p1, 1qu. This

implies J1 “ J2 “ 8, hence J “ 24. The marginal distribution of pZ
r2s
1 , Z

r2s
2 q is multinomial

with weights p0.1, 0.2, 0.3, 0.4q on pp´1,´1q, p´1, 1q, p1,´1q, p1, 1qq.

In our Set 2-DGP1, we set ζ1 “ p.5, .25q1, ∆1 “ p´1,´1q1, and r “ 0. Set 2-DGP2 differs

by setting ∆1 “ p´1,´.75q1. In both cases, pζ2,∆2q “ pζ1,∆1q and µ “ 0.5; we only report

results for pζ1,∆1q. Although parameter values are similar, there is a qualitative difference:

In DGP1, parameters are point identified; in DGP2, they are not but the true bounds (ζ
r1s
1 P

r0.405, 0.589s, ζ
r2s
1 P r0.236, 0.266s, ∆

r1s
1 P r´1.158,´0.832s, ∆

r2s
1 P r´0.790,´0.716s) are not

wide compared to sampling uncertainty. We therefore expect all methods that use GMS to

be conservative in DGP2.41 In both Set 2-DGP1& DGP2 we use knowledge that r “ 0, so

that d “ 8. Our Set 2-DGP3 preserves the same payoff parameters values as in Set 2-DGP2

but sets r “ 0.5 and this parameter is also unknown, so that d “ 9.

Within Set 2-DGP2, we also experiment with the sensitivity of coverage probability and

length of CIn to the choice of ρ and κn. We consider choices of ρ that are (1) very large or

“liberal”, so that in well behaved cases the ρ-box constraints induce an amount η of over-

coverage in CIn smaller than machine precision (see equation (4.16)); (2) “default”, so that

η “ 0.01; (3) small or “conservative”, so that η “ 0.025. For κn, we have experimented with

a “conservative” choice κn “ n1{7, and a “liberal” choice κn “
?

ln lnn, while out “default”

is κn “
?

lnn.

Results are reported in Tables 3 through 7. An interesting feature of Table 3 is that

in this (point identified) DGP, calibrated projection is not conservative at all. This pre-

sumably reflects an absence of near-binding inequalities. Conservative bias is larger in the

partially identified Set 2-DGP2 in Table 4. For these two tables, we do note the increased

computational advantage of uncalibrated projection over calibrated projection. This advan-

tage is bound to increase as DGP’s, and therefore the linear programs iterated over in the

bootstrap, become more complex. Table 5 shows that allowing for correlation of the errors

does not change the results much in terms of the confidence intervals’ length and coverage

probabilities. However, due to the repeated evaluation of the bivariate normal CDFs, both

calibrated and uncalibrated projection have higher computational time than the case with

r “ 0. Another feature to note is that both confidence intervals for r tend to be wide although

the projection of ΘI is short, which suggests that this component may be weakly identified.

Table 6 examines the effect of varying the tuning parameter ρ. Increasing ρ necessarily

(weakly) decreases length and also coverage of intervals, and this effect is evident in the

table but is arguably small. This is even more the case for the GMS tuning parameter

κn. Numerically, for n “ 4000, the values explored in the table are rather different at

41We also note that this is a case where non-uniform methods may severely undercover in finite sample.
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40001{7 « 3.27 and
a

lnplnp4000qq « 1.45, but the effect on inference is very limited, see

Table 7. Indeed, differences in coverage are so small that reported results are occasionally

slightly nonmonotonic, reflecting numerical and simulation noise.

6 Conclusions

This paper introduces a computationally attractive confidence interval for linear functions of

parameter vectors that are partially identified through finitely many moment (in)equalities.

The extreme points of our calibrated projection confidence interval are obtained by minimizing

and maximizing p1θ subject to properly relaxed sample analogs of the moment conditions.

The relaxation amount, or critical level, is computed to insure uniform asymptotic coverage

of p1θ rather than θ itself. Its calibration is computationally attractive because it is based on

repeatedly checking feasibility of (bootstrap) linear programming problems. Computation of

the extreme points of the confidence intervals is also computationally attractive thanks to an

application, novel to this paper, of the response surface method for global optimization that

is of independent interest in the partial identification literature. Indeed, a key contribution

of the paper is to establish convergence of this algorithm.

Our Monte Carlo analysis shows that, in the DGPs that we considered, calibrated pro-

jection is fast and accurate: Computation of the confidence intervals is orders of magnitude

faster than for the main alternative to our method, a profiling-based procedure due to Bugni,

Canay, and Shi (2017). The class of DGPs over which we can establish uniform validity of our

procedure is non-nested with corresponding class for the alternative method. Important cases

covered here but not elsewhere include linear functions of best linear predictor parameters

with interval valued outcomes and discrete covariates. The price to pay for this generality is

the use of one additional (non-drifting) tuning parameter. We provide conditions under which

this parameter can be eliminated and compare the power properties of calibrated projection

and BCS-profiling. The false coverage properties of the two methods are non-ranked but are

asymptotically the same in very well-behaved cases. We establish considerable finite sample

advantage in a specific case.

Similarly to confidence regions proposed in Andrews and Soares (2010), Bugni, Canay,

and Shi (2017), Stoye (2009), and elsewhere, our confidence interval can be empty, namely if

sample violations of moment inequalities exceed ĉnpθq at each θ. This event can be interpreted

as rejection of maintained assumptions. See Stoye (2009) and especially Andrews and Soares

(2010) for further discussion and Bugni, Canay, and Shi (2015) for a paper that focuses on

this interpretation and improves on ĉprojn for the purpose of specification testing. We leave a

detailed analysis of our implied specification test to future research.
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A Convergence of the E-A-M Algorithm

In this appendix, we provide details on the algorithm used to solve the outer maximization problem

as described in Section 3.2. Below, let pΩ,Fq be a measurable space and ω a generic element of Ω. Let

L P N and let pθp1q, ¨ ¨ ¨ , θpLqq be a measurable map on pΩ,Fq whose law is specified below. The value

of the function c in (3.6) is unknown ex ante. Once the evaluation points θp`q, ` “ 1, ¨ ¨ ¨ , L realize,

the corresponding values of c, i.e. Υp`q ” cpθp`qq, ` “ 1, ¨ ¨ ¨ , L, are known. We may therefore define

the information set

FL ” σpθp`q,Υp`q, ` “ 1, ¨ ¨ ¨ , Lq. (A.1)

We note that θ˚,L ” argmaxθPCLp
1θ is measurable with respect to FL.

Our algorithm iteratively determines evaluation points based on the expected improvement (Jones,

Schonlau, and Welch, 1998). For this, we formally introduce a model that describes the uncertainty

associated with the values of c outside the current evaluation points. Specifically, the unknown function

c is modeled as a Gaussian process such that42

Ercpθqs “ µ, Covpcpθq, cpθ1qq “ ς2Kβpθ ´ θ
1q, (A.2)

where β “ pβ1, ¨ ¨ ¨ , βdq P Rd controls the length-scales of the process. Two values cpθq and cpθ1q are

highly correlated when θk´ θ
1
k is small relative to βk. Throughout, we assume β

k
ď βk ď βk for some

0 ă β
k
ă βk ă 8 for k “ 1, ¨ ¨ ¨ , d. We let β̄ “ pβ̄1, ¨ ¨ ¨ , β̄dq

1 P Rd. Specific suggestions on the forms

of Kβ are given in Appendix B.2.

For a given pµ, ς, βq, the posterior distribution of c given FL is then another Gaussian process

whose mean cLp¨q and variance ς2s2
Lp¨q are given as follows (Santner, Williams, and Notz, 2013, Section

4.1.3):

cLpθq “ µ` rLpθq
1R´1

L pΥ´ µ1q (A.3)

ς2s2
Lpθq “ ς2

´

1´ rLpθq
1R´1

L rLpθq `
p1´ 11R´1

L rLpθqq
2

11R´1
L 1

¯

. (A.4)

Given this, the expected improvement function can be written as

EILpθq ” Erpp1θ ´ p1θ˚,Lq`1tḡpθq ď cpθqu|FLs

“ pp1θ ´ p1θ˚,Lq`Ppcpθq ě max
j“1,¨¨¨ ,J

gjpθq|FLq

“ pp1θ ´ p1θ˚,Lq`P
ˆ

cpθq ´ cLpθq

ςsLpθq
ě

maxj“1,¨¨¨ ,J gjpθq ´ cLpθq

ςsLpθq

˙

“ pp1θ ´ p1θ˚,Lq`

´

1´ Φ
´ ḡpθq ´ cLpθq

ςsLpθq

¯¯

, (A.5)

The evaluation points pθp1q, ¨ ¨ ¨ , θpLqq are then generated according to the following algorithm (M-step

in Section 3.2).

42We use P and E to denote the probability and expectation for the prior and posterior distributions of c
to distinguish them from P and E used for the sampling uncertainty for Xi.
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Algorithm A.1: Let k P N.

Step 1: Initial evaluation points θp1q, ¨ ¨ ¨ , θpkq are drawn randomly independent of c.

Step 2: For L ě k, with probability 1 ´ ε, let θpL`1q “ argmaxθPΘEILpθq. With probability ε, draw

θpL`1q uniformly at random from Θ.

Below, we use Q to denote the law of pθp1q, ¨ ¨ ¨ , θpLqq determined by the algorithm above. We also

note that θ˚,L`1 “ arg maxθPCL`1 p1θ is a function of the evaluation points and therefore is a random

variable whose law is governed by Q.

A.1 Proof of Theorem 3.1

Proof. We adopt the method used in the proof of Theorem 5 in Bull (2011), who proves a convergence

result for an unconstrained optimization problem in which the objective function is unknown outside

the evaluation points.

Below, we let L ě 2k. Let 0 ă ν ă 8. Let 0 ă η ă ε and AL P F be the event that at least

tηLu of the points θpk`1q, ¨ ¨ ¨ , θpLq are drawn independently from a uniform distribution on Θ. Let

BL P F be the event that one of the points θpL`1q, ¨ ¨ ¨ , θp2Lq is chosen by maximizing the expected

improvement. For each L, define the mesh norm:

hL ” sup
θPΘ

min
`“1,¨¨¨L

}θ ´ θp`q}. (A.6)

For a given M̄ ą 0, let CL P F be the event that hL ď M̄pL{ lnLq´1{d. We then let

DL ” AL XBL X CL. (A.7)

On DL, the following results hold. First, let βL be the estimated parameter. Noting that there

are tηLu uniformly sampled points and arguing as in (A.24)-(A.25), it follows that

sup
θPΘ

sLpθ;βLq ďMrL, (A.8)

for some constant M ą 0 by ω P CL, and rL is defined by

rL ” pL{ lnLq´ν{d. (A.9)

For later use, we note that, for any L ě 2,

rL´1{rL “
` L

L´ 1

˘ν{d` lnpL´ 1q

lnL

˘ν{d
ď 2ν{d. (A.10)

Second, by ω P BL, there is ` such that L ď ` ď 2L and θp`q is chosen by maximizing the expected

improvement. For θ P Θ and L P N, let ILpθq ” pp
1θ ´ p1θ˚,Lq`1tḡpθq ď cpθqu. Recall that θ˚ is an
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optimal solution to (3.6). Then,

p1θ˚ ´ p1θ˚,`´1 p1q“ I`´1pθ
˚q

p2q
ď EI`´1pθ

˚q
`

1´ Φ
`R

ς

˘˘´1

p3q
ď EI`´1pθ

p`qq
`

1´ Φ
`R

ς

˘˘´1

p4q
ď

´

I`´1pθ
p`qq `M1s`´1pθ

p`qq expp´M2s`´1pθ
p`qq´2q

¯

`

1´ Φ
`R

ς

˘˘´1

p5q
ď

´

I`´1pθ
p`qq `MM1r`´1 expp´M´2M2r

´2
`´1q

¯

`

1´ Φ
`R

ς

˘˘´1

p6q
ď

´

I`´1pθ
p`qq ` 2ν{dMM1r` expp´p2ν{dMq´2M2r

´2
` q

¯

`

1´ Φ
`R

ς

˘˘´1

“

´

pp1θp`q ´ p1θ˚,`´1q1tḡpθp`qq ď cpθp`qqu ` 2ν{dMM1r` expp´p2ν{dMq´2M2r
´2
` q

¯

`

1´ Φ
`R

ς

˘˘´1

p7q
ď

´

pp1θ˚,` ´ p1θ˚,`´1q ` 2ν{dMM1r` expp´p2ν{dMq´2M2r
´2
` q

¯

`

1´ Φ
`R

ς

˘˘´1

p8q
ď

´

h` ` 2ν{dMM1r` expp´p2ν{dMq´2M2r
´2
` q

¯

`

1´ Φ
`R

ς

˘˘´1
, (A.11)

where (1) follows by construction, (2) follows from Lemma A.1 (ii), (3) follows from θp`q being the

maximizer of the expected improvement, (4) follows from Lemma A.1 (i), (5) follows from (A.8), (6)

follows from r`´1 ď 2ν{dr` for ` ě 2 by (A.10), (7) follows from θ˚,` “ argmaxθPC`p
1θ, (8) follows from

p1θ˚,` ´ p1θ˚,`´1 being dominated by the mesh-norm. Therefore, by ω P CL, there exists a constant

M ą 0 such that

p1θ˚ ´ p1θ˚,`´1 ď

´

Mp`{ ln `q´1{d `Mr` expp´Mr´2
` q

¯

`

1´ Φ
`R

ς

˘˘´1
. (A.12)

Since L ď ` ď 2L, p1θ˚,L is non-decreasing in L, and rL is non-increasing in L, we have

p1θ˚ ´ p1θ˚,2L ď
´

MpL{ lnLq´1{d `MrL expp´Mr´2
L q

¯

`

1´ Φ
`R

ς

˘˘´1

“ Opp2L{ ln 2Lq´1{dq `Opr2L expp´Mr´2
2L qq, (A.13)

where the last equality follows from the existence of a positive constant C such that rL “ Cr2L and

redefining multiplying constants properly.

Now consider the case ω R DL. By (A.7),

QpDc
Lq ď QpAcLq `QpBcLq `QpCcLq. (A.14)

Let Z` be a Bernoulli random variable such that Z` “ 1 if θp`q is randomly drawn from a uniform

distribution. Then, by the Chernoff bounds (see e.g. Boucheron, Lugosi, and Massart, 2013, p.48),

QpAcLq “ Qp
L
ÿ

`“k`1

Z` ă tηLuq ď expp´pL´ k ` 1qεpε´ ηq2{2q. (A.15)
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Further, by the definition of BL,

QpBcLq “ εL, (A.16)

and finally by taking M̄ large upon defining the event CL and applying Lemma 4 in Bull (2011), one

has

QpCcLq “ OppL{ lnLq´γq, (A.17)

for any γ ą 0. Combining (A.14)-(A.17), for any γ ą 0,

QpDc
Lq “ OppL{ lnLq´γq. (A.18)

Finally, noting that p1θ˚ ´ p1θ˚,2L is bounded by some constant M ą 0 due to the boundedness of Θ,

we have

EQ
“

p1θ˚ ´ p1θ˚,2L
‰

“

ż

DL

p1θ˚ ´ p1θ˚,2LdQ`
ż

DcL

p1θ˚ ´ p1θ˚,2LdQ

“ Opp2L{ ln 2Lq´1{dq `Opr2L expp´Mr´2
2L qq `Opp2L{ ln 2Lq´γq “ op1q, (A.19)

where the second equality follows from (A.13) and (A.18). This completes the proof.

The following lemma is an analog of Lemma 8 in Bull (2011), which links the expected improvement

to the actual improvement achieved by a new evaluation point θ.

Lemma A.1: Suppose Θ Ă Rd is bounded and p P Sd´1. Suppose the evaluation points pθp1q, ¨ ¨ ¨ , θpLqq

are drawn by Algorithm A.1 and }c}Hβ̄
ď R for some R ą 0. For θ P Θ and L P N, let ILpθq ”

pp1θ ´ p1θ˚,Lq`1tḡpθq ď cpθqu. Then, (i) there exist constants Mj ą 0, j “ 1, 2 that only depend on

pς, Rq and an integer L̄ P N such that

EILpθq ď ILpθq `M1sLpθq expp´M2s
´2
L pθqq (A.20)

for all L ě L̄. Further, (ii) for any L P N and θ P Θ,

ILpθq ď EILpθq
´

1´ Φ
´R

ς

¯¯´1

. (A.21)

Proof of Lemma A.1. (i) If sLpθq “ 0, then the posterior variance of cpθq is zero. Hence, EILpθq “
ILpθq, and the claim of the lemma holds.

For sLpθq ą 0, we first show the upper bound. Let u ” pḡpθq ´ cLpθqq{sLpθq and t ” pḡpθq ´
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cpθqq{sLpθq. By Lemma 6 in Bull (2011), we have |u´ t| ď R. Since 1´ Φp¨q is decreasing, we have

EILpθq “ pp1θ ´ p1θ˚,Lq`
´

1´ Φ
´u

ς

¯¯

ď pp1θ ´ p1θ˚,Lq`

´

1´ Φ
´ t´R

ς

¯¯

“ pp1θ ´ p1θ˚,Lq`p1tḡpθq ď cpθqu ` 1tḡpθq ą cpθquq
´

1´ Φ
´ t´R

ς

¯¯

ď ILpθq ` pp
1θ ´ p1θ˚,Lq`1tḡpθq ą cpθqu

´

1´ Φ
´ t´R

ς

¯¯

, (A.22)

where the last inequality used 1´ Φpxq ď 1 for any x P R. Note that one may write

1tḡpθq ą cpθqu
´

1´ Φ
´ t´R

ς

¯¯

“ 1tḡpθq ą cpθqu
´

1´ Φ
´ ḡpθq ´ cpθq ´ sLpθqR

ςsLpθq

¯¯

. (A.23)

Below we assume ḡpθq ą cpθq because otherwise, the expression above is 0, and the claim holds. To

be clear about the parameter value at which we evaluate sL, we will write sLpθ;βq. By the hypothesis

that }c}Hβ̄
ď R and Lemma 4 in Bull (2011), we have

}c}HβL
ď S, (A.24)

where S “ R2
śd
k“1pβk{βkq. Note that there are tηLu uniformly sampled points, and Kβ is associated

with index ν P p0,8q, ν R N. By Corollary 6.4 in Narcowich, Ward, and Wendland (2003),

sup
θPΘ

sLpθ;βq “ OpMpβqhνLq, (A.25)

uniformly in β, where hL “ supθPΘ min`“1,¨¨¨L }θ´ θ
p`q} and β ÞÑMpβq is a continuous function (note

that the exponent ν in our notation matches matches pk` νq{2 in theirs). Hence, sLpθq “ op1q. This,

together with ḡpθq ą cpθq, implies that there are a constant M and L̄ P N such that

0 ăM ă pḡpθq ´ cpθq ´ sLpθqRq{ς, @L ě L̄. (A.26)

Therefore, again by the fact that 1´ Φp¨q is decreasing, one obtains

1tḡpθq ą cpθqu
´

1´ Φ
´ ḡpθq ´ cpθq ´ sLpθqR

ςsLpθq

¯¯

ď

´

1´ Φ
´ M

sLpθq

¯¯

ď
sLpθq

M
φ
´ M

sLpθq

¯

, (A.27)

where φ is the density of the standard normal distribution, and the last inequality follows from

1´Φpxq ď φpxq{x, which is due to Gordon (1941). The claim on the upper bound then follows from

(A.22), pp1θ ´ p1θ˚,Lq ďM for some M ą 0 due to Θ being bounded, and (A.27).
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(ii) For the lower bound in (A.21), we have

EILpθq ě pp1θ ´ p1θ˚,Lq`
´

1´ Φ
´ t`R

ς

¯¯

“ pp1θ ´ p1θ˚,Lq`1tḡpθq ď cpθqu
´

1´ Φ
´ t`R

ς

¯¯

ě ILpθq
´

1´ Φ
´R

ς

¯¯

, (A.28)

where the last inequality follows from t “ pḡpθq ´ cpθqq{sLpθq ď 0 and the fact that 1 ´ Φp¨q is

decreasing.
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Tables

Table 1: Results for Set 1 with n “ 4000, MCs “ 300, B “ 301, ρ “ 5.04, κn “
?

lnn.

1´ α
Median CI CIprofn Coverage CIn Coverage CIprojn Coverage Average Time

CIprofn CIn CIprojn Lower Upper Lower Upper Lower Upper CIprofn CIn CIprojn

δ1 “ 0.4

0.95 [0.330,0.495] [0.336,0.482] [0.290,0.557] 0.997 0.990 0.993 0.973 1 1 1858.42 22.86 13.82

0.90 [0.340,0.485] [0.342,0.474] [0.298,0.543] 0.990 0.980 0.980 0.963 1 1 1873.23 22.26 15.81

0.85 [0.345,0.475] [0.348,0.466] [0.303,0.536] 0.970 0.970 0.960 0.937 1 1 1907.84 23.00 13.98

δ2 “ 0.6

0.95 [0.515,0.655] [0.518,0.650] [0.461,0.682] 0.987 0.993 0.980 0.987 1 1 1753.54 23.84 19.10

0.90 [0.525,0.647] [0.533,0.643] [0.473,0.675] 0.977 0.973 0.957 0.953 1 1 1782.91 24.45 17.16

0.85 [0.530,0.640] [0.540,0.639] [0.481,0.670] 0.967 0.957 0.943 0.923 1 1 1809.65 23.38 17.33

Notes: (1) Projections of ΘI are: δ1 P r0.3872, 0.4239s, δ2 P r0.5834, 0.6084s, ζ1 P r0.0996, 0.1006s, ζ2 P r0.1994, 0.2010s, ζ3 P r0.2992, 0.3014s. (2) “Upper” coverage

is for maxθPΘI pP q p
1θ, and similarly for “Lower”. (3) “Average time” is computation time in seconds averaged over MC replications. (4) CIprofn results from

BCS-profiling, CIn is calibrated projection, and CIprojn is uncalibrated projection.

Table 2: Results for Set 1 with n “ 4000, MCs “ 1000, B “ 1001, ρ “ 5.04, κn “
?

lnn.

1´ α
Median CI CIn Coverage CIprojn Coverage Average Time

CIn CIprojn Lower Upper Lower Upper CIn CIprojn

δ1 “ 0.4

0.95 [0.333,0.479] [0.288,0.555] 0.990 0.979 1 1 42.35 15.79

0.90 [0.342,0.470] [0.296,0.542] 0.978 0.957 1 1 41.13 11.60

0.85 [0.347,0.464] [0.302,0.534] 0.960 0.942 1 1 39.91 15.36

δ2 “ 0.6

0.95 [0.526,0.653] [0.466,0.683] 0.969 0.978 1 1 41.40 24.30

0.90 [0.538,0.646] [0.478,0.677] 0.948 0.959 1 0.999 41.39 32.78

0.85 [0.545,0.642] [0.485,0.672] 0.925 0.941 1 1 38.49 31.55

ζr1s “ 0.1

0.95 [0.054,0.143] [0.020,0.179] 0.951 0.952 1 1 35.57 20.80

0.90 [0.060,0.137] [0.028,0.171] 0.916 0.916 0.998 0.998 38.42 28.07

0.85 [0.064,0.132] [0.033,0.166] 0.868 0.863 0.998 0.998 38.63 28.77

ζr2s “ 0.2

0.95 [0.156,0.245] [0.120,0.281] 0.950 0.949 1 1 35.99 18.07

0.90 [0.162,0.238] [0.128,0.273] 0.910 0.908 0.999 0.998 33.29 23.13

0.85 [0.166,0.235] [0.133,0.268] 0.869 0.863 0.995 0.995 33.76 17.33

ζr3s “ 0.3

0.95 [0.257,0.344] [0.222,0.379] 0.945 0.944 1 1 39.92 31.27

0.90 [0.262,0.337] [0.230,0.371] 0.896 0.900 0.998 0.998 43.37 29.17

0.85 [0.266,0.333] [0.235,0.366] 0.866 0.863 0.995 0.995 43.60 26.99

Notes: Same DGP and conventions as in Table 1.
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Table 3: Results for Set 2-DGP1, Corrpu1, u2q “ 0, n “ 4000, MCs “ 1000, ρ “ 6.02, κn “
?

lnn.

1´ α
Median CI Coverage Average Time

CIn CIprojn CIn CIprojn CIn CIprojn

ζ
r1s
1 “ 0.50

0.95 [0.355,0.715] [0.127,0.938] 0.948 1 82.34 23.56

0.90 [0.374,0.687] [0.172,0.902] 0.902 0.999 84.33 21.61

0.85 [0.387,0.669] [0.200,0.878] 0.856 0.996 87.33 22.31

ζ
r2s
1 “ 0.25

0.95 [0.115,0.354] [0.003,0.488] 0.954 0.998 103.58 32.63

0.90 [0.132,0.340] [0.024,0.464] 0.904 0.996 106.20 26.52

0.85 [0.142,0.330] [0.040,0.448] 0.848 0.996 110.10 32.01

∆
r1s
1 “ ´1

0.95 [-1.321,-0.716] [-1.712,-0.296] 0.946 1 88.21 22.11

0.90 [-1.284,-0.755] [-1.647,-0.368] 0.895 0.999 94.38 22.65

0.85 [-1.259,-0.778] [-1.611,-0.416] 0.849 0.997 92.77 27.52

∆
r2s
1 “ ´1

0.95 [-1.179,-0.791] [-1.443,0.500] 0.950 1 96.97 27.31

0.90 [-1.153,-0.814] [-1.398,-0.544] 0.891 0.999 98.69 25.13

0.85 [-1.136,-0.832] [-1.370,-0.575] 0.853 0.999 102.16 25.11

Table notes: (1) ΘI is a singleton in this DGP. (2) B “ 1001 bootstrap draws. (3) “Average time” is computation time in

seconds averaged over MC replications. (4) CIn is calibrated projection and CIprojn is uncalibrated projection.

Table 4: Results for Set 2-DGP2, Corrpu1, u2q “ 0, n “ 4000, MCs “ 1000, ρ “ 6.02, κn “
?

lnn.

1´ α
Median CI CIn Coverage CIprojn Coverage Average Time

CIn CIprojn Lower Upper Lower Upper CIn CIprojn

ζ
r1s
1 “ 0.50

0.95 [0.249,0.790] [-0.007,1.004] 0.954 0.971 0.999 1 85.76 50.10

0.90 [0.271,0.765] [0.038,0.969] 0.918 0.941 0.998 1 91.47 50.51

0.85 [0.287,0.750] [0.067,0.948] 0.883 0.919 0.999 1 91.39 61.10

ζ
r2s
1 “ 0.25

0.95 [0.112,0.376] [0.009,0.523] 0.969 0.963 0.998 1 94.09 36.46

0.90 [0.128,0.359] [0.025,0.498] 0.938 0.927 0.997 0.999 93.26 52.80

0.85 [0.138,0.348] [0.038,0.489] 0.909 0.891 0.998 0.996 95.68 61.25

∆
r1s
1 “ ´1

0.95 [-1.467,-0.497] [-1.869,-0.003] 0.960 0.967 0.999 0.999 82.54 27.25

0.90 [-1.432,-0.544] [-1.806,-0.091] 0.932 0.939 1 0.999 89.97 28.63

0.85 [-1.408,-0.571] [-1.766,-0.146] 0.901 0.902 1 0.999 91.72 28.38

∆
r2s
1 “ ´0.75

0.95 [-0.979,-0.514] [-1.276,-0.237] 0.973 0.969 1 1 97.75 32.09

0.90 [-0.953,-0.539] [-1.226,-0.282] 0.941 0.940 1 1 95.86 27.34

0.85 [-0.936,-0.556] [-1.194,-0.312] 0.916 0.917 1 0.999 104.52 31.15

Notes: (1) Projections of ΘI are: ζ
r1s
1 P r0.405, 0.589s; ζ

r2s
1 P r0.236, 0.266s; ∆

r1s
1 P r´1.158,´0.832s; ∆

r2s
1 P r´0.790,´0.716s.

(2) “Upper” coverage refers to coverage of maxtp1θ : θ P ΘIpP qu, and similarly for “Lower”. (3) “Average time” is

computation time in seconds averaged over MC replications. (4) B “ 1001 bootstrap draws. (5) CIn is calibrated projection

and CIprojn is uncalibrated projection.
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Table 5: Results for Set 2-DGP3, Corrpu1, u2q “ 0.5, n “ 4000, MCs “ 1000, ρ “ 6.02, κn “
?

lnn.

1´ α
Median CI CIn Coverage CIprojn Coverage Average Time

CIn CIprojn Lower Upper Lower Upper CIn CIprojn

ζ
r1s
1 “ 0.50

0.95 [0.196,0.895] [-0.043,1.053] 0.978 0.978 0.996 0.995 561.66 163.42

0.90 [0.224,0.864] [-0.009,1.009] 0.958 0.966 0.993 0.984 583.80 163.42

0.85 [0.244,0.844] [0.015,1.000] 0.945 0.945 0.989 0.972 562.05 99.90

ζ
r2s
1 “ 0.25

0.95 [0.099,0.436] [0.001,0.586] 0.974 0.969 0.997 0.996 626.00 245.39

0.90 [0.115,0.417] [0.016,0.583] 0.951 0.950 0.997 0.997 597.29 206.35

0.85 [0.126,0.404] [0.031,0.564] 0.939 0.941 0.993 0.994 681.24 234.50

∆
r1s
1 “ ´1

0.95 [-1.664,-0.372] [-1.956,-0.000] 0.957 0.962 0.986 0.993 578.63 156.00

0.90 [-1.609,-0.441] [-1.929,-0.000] 0.939 0.930 0.986 0.996 594.27 145.85

0.85 [-1.568,-0.490] [-1.912,-0.000] 0.909 0.916 0.986 0.994 638.16 132.73

∆
r2s
1 “ ´0.75

0.95 [-1.065,-0.504] [-1.312,-0.1938] 0.956 0.955 0.994 0.995 559.10 214.71

0.90 [-1.037,-0.525] [-1.286,-0.241] 0.940 0.947 0.994 0.997 553.53 128.71

0.85 [-1.021,-0.542] [-1.276,-0.266] 0.918 0.928 0.989 0.998 645.54 129.67

r “ 0.5

0.95 [0.000,0.830] [0.000,0.925] 0.968 0.968 0.995 0.995 269.98 42.66

0.90 [0.000,0.802] [0.000,0.925] 0.935 0.935 0.994 0.995 308.58 47.55

0.85 [0.042,0.784] [0.000,0.925] 0.897 0.897 0.995 0.995 334.43 49.54

Notes: (1) Projections of ΘI are: ζ
r1s
1 P r0.465, 0.533s; ζ

r2s
1 P r0.240, 0.261s; ∆

r1s
1 P r´1.069,´0.927s; ∆

r2s
1 P

r´0.782,´0.720s; r P r0.4998, 0.5000s. (2) “Upper” coverage refers to coverage of maxtp1θ : θ P ΘIpP qu, and

similarly for “Lower”. (3) “Average time” is computation time in seconds averaged over MC replications. (4)

B “ 1001 bootstrap draws. (5) CIn is calibrated projection and CIprojn is uncalibrated projection.
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Table 6: Results for Set 2-DGP2, Corrpu1, u2q “ 0, n “ 4000, MCs “ 1000, varying ρ, κn “
?

lnn.

1´ α

Median CIn CIn Coverage Average Time

ρ “ 5.87 ρ “ 10 ρ “ 5.87 ρ “ 10 ρ “ 5.87 ρ “ 10

Lower Upper Lower Upper

ζ
r1s
1 “ 0.50

0.95 [0.248,0.790] [0.254,0.776] 0.959 0.971 0.947 0.962 116.19 104.14

0.90 [0.271,0.766] [0.275,0.754] 0.921 0.939 0.908 0.925 121.24 115.65

0.85 [0.286,0.749] [0.289,0.738] 0.888 0.916 0.868 0.895 115.41 112.38

∆
r1s
1 “ ´1

0.95 [-1.471,-0.498] [-1.454,-0.512] 0.964 0.965 0.955 0.959 104.34 108.77

0.90 [-1.434,-0.543] [-1.418,-0.555] 0.933 0.940 0.927 0.924 113.63 114.74

0.85 [-1.410,-0.571] [-1.394,-0.583] 0.904 0.905 0.887 0.895 114.23 119.55

Notes: Same DGP, number of bootstrap draws and conventions as in Table 4. Results are for calibrated

projection CIn.

Table 7: Results for Set 2-DGP2, Corrpu1, u2q “ 0, n “ 4000, MCs “ 1000, ρ “ 6.02, varying κn.

1´ α

Median CIn CIn Coverage Average Time

κn “ n1{7 κn “
?

ln lnn κn “ n1{7 κn “
?

ln lnn κn “ n1{7 κn “
?

ln lnn

Lower Upper Lower Upper

ζ
r1s
1 “ 0.50

0.95 [0.249,0.790] [0.250,0.787] 0.955 0.972 0.955 0.970 85.11 89.65

0.90 [0.270,0.765] [0.274,0.763] 0.922 0.943 0.914 0.936 89.12 94.49

0.85 [0.286,0.748] [0.287,0.746] 0.891 0.916 0.870 0.901 89.82 92.15

∆
r1s
1 “ ´1

0.95 [-1.469,-0.497] [-1.464,-0.501] 0.966 0.968 0.956 0.959 80.33 81.70

0.90 [-1.432,-0.542] [-1.426,-0.548] 0.935 0.938 0.926 0.923 85.12 88.07

0.85 [-1.408,-0.568] [-1.402,-0.577] 0.909 0.908 0.889 0.892 86.95 89.34

Notes: Same DGP, number of bootstrap draws and conventions as in Table 4. Results are for calibrated

projection CIn.
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Structure of the Appendix

Section B states and proofs Theorem B.1, which establishes convergence-related results for our E-A-M algorithm.

It also provides provides background material for the E-A-M algorithm, and details on the root-finding algorithm
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that we use to compute ĉnpθq. Section C verifies some of our main assumptions for moment (in)equality models

that have received much attention in the literature. Section D summarizes the notation we use and the structure

of the proof of Theorem 4.1,43 and provides a proof of Theorems 4.1 (both under our main assumptions and under

a high level assumption replacing Assumption 4.3 and dropping the ρ-box constraints), 4.2, 4.3 and 4.4. Section

E contains the statements and proofs of the lemmas used to establish Theorems 4.1 and B.1, as well as a rigorous

derivation of the almost sure representation result for the bootstrap empirical process that we use in the proof

of Theorem 4.1. Section F provides further results comparing our calibrated projection method and the profiling

method proposed by Bugni, Canay, and Shi (2017, BCS-profiling henceforth), and gives an example of methods’

failure (including calibrated projection, BCS-profiling and the method in Pakes, Porter, Ho, and Ishii (2011)) when

some key assumptions are violated. Section G provides a formal comparison of our calibrated projection method

and projection of the confidence set of Andrews and Soares (2010, AS henceforth).

Throughout the Appendix we use the convention 8 ¨ 0 “ 0.

Appendix B Additional Convergence Results and Background Mate-

rials for the E-A-M algorithm and for Computation of

ĉnpθq

B.1 Theorem B.1: An Approximating Critical Level Sequence for the E-A-M Algo-

rithm

B.1.1 Assumption B.1: A Low Level Condition Yielding a Stochastic Lipschitz-Type Prop-

erty for ĉn

In order to establish convergence of our E-A-M algorithm, we need ĉn to uniformly stochastically exhibit a Lipschitz-

type property so that its mollified counterpart (see equation (B.1)) is sufficiently smooth and yields valid inference.

Below we provide a low level condition under which we are able to establish the Lipschitz-type property. In Appendix

C.1 we verify the condition for the canonical examples in the moment (in)equality literature.

Assumption B.1: The model P for P satisfies:

(i) |σP,jpθq
´1mjpx, θq ´ σP,jpθ

1q´1mjpx, θ
1q| ď M̄pxq}θ ´ θ1} with EP rM̄pXq

2s ă M for all θ, θ1 P Θ, x P

X , j “ 1, ¨ ¨ ¨ , J , and there exists a function F such that |σP,jpθq
´1mjp¨, θq| ď F p¨q for all θ P Θ and

EP r|F pXqM̄pXq|
2s ăM .

(ii) ϕj is Lipschitz continuous in x P R for all j “ 1, . . . , J.

B.1.2 Statement and Proof of Theorem B.1

For all τ ą 0 let ĉn,τ pθq be a mollified version of ĉnpθq, i.e.:

ĉn,τ pθq “

ż

Rd
ĉnpθ ´ νqφτ pνqdν “

ż

Rd
ĉnpθqφτ pθ ´ νqdν, (B.1)

43Section D.1 provides in Table D.0 a summary of the notation used throughout, and in Figure D.1 and Table D.1 a flow
diagram and heuristic explanation of how each lemma contributes to the proof of Theorem 4.1.
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where the family of functions φτ is a mollifier as defined in Rockafellar and Wets (2005, Example 7.19). Choose it

to be a family of bounded, measurable, smooth functions such that φτ pzq ě 0 @z P Rd,
ş

Rd φτ pzqdz “ 1 and with

Bτ “ tz : φτ pzq ą 0u “ tz : }z} ď τu.

Theorem B.1: Suppose Assumptions 4.1, 4.2, 4.4, 4.5 and B.1 hold. Let τn be a positive sequence such that

τn “ n´ζ with ζ ą 1{2. Let tβnu be a positive sequence such that βn “ op1q and }D̂n ´ DP }8 “ OPpβnq. Let

εn “ κ´1
n

?
nτn _ βn. Then,

1.

lim sup
nÑ8

sup
PPP

P

˜

sup
}θ´θ1}ďτn

|ĉnpθq ´ ĉnpθ
1q| ą Cεn

¸

“ 0; (B.2)

2. Let ĉn,τn be defined as in (B.1) with τn replacing τ . Then there exists C ą 0 such that

lim inf
nÑ8

inf
PPP

P
´

}ĉn ´ ĉn,τn}8 ď Cεn

¯

“ 1; (B.3)

3. There exists R ą 0 such that }ĉn,τn}Hβ
ď R.

4. Let Assumption 4.3 also hold. Let tPn, θnu be a sequence such that Pn P P and θn P ΘIpPnq for all n and

κ´1
n

?
nγ1,Pn,jpθnq Ñ π1j P Rr´8s, j “ 1, . . . , J, ΩPn

u
Ñ Ω, and DPnpθnq Ñ D. Let

ĉn,ρ,τ pθq ” inf
λPBdn,ρ

ĉn,τ pθ `
λρ
?
n
q. (B.4)

For c ě 0, let Unpθn, cq be defined as in (D.25). Then,

lim inf
nÑ8

Pn pUnpθn, ĉn,ρ,τnq ‰ Hq ě 1´ α. (B.5)

Proof. We establish each part of the theorem separately.

Part 1. Throughout, let C ą 0 denote a positive constant, which may be different in different appearances.

Define the event

En ”
 

x8 P X8 : }D̂n ´DP }8 ď Cβn, sup
}θ´θ1}ďτn

}Gnpθq ´Gnpθ1qq} ď plnnq2τn,

sup
θPΘ

|ηn,jpθq| ď C{
?
n, max

j“1,¨¨¨ ,J
sup

}θ´θ1}ăτn

|ηn,jpθq ´ ηn,jpθ
1q| ď Cτn

(

. (B.6)

Note that plnnq2τn{p´τn ln τnq “ plnnq
2{ζ lnn “ lnn{ζ, and hence tends to 8. By Assumption B.1-(i) and arguing

as in the proof of Theorem 2 in Andrews (1994), condition (E.216) in Lemma E.11 is satisfied with v “ d. Also, by

Lemma E.13, (E.217) in Lemma E.11 holds with γ “ 1. This therefore ensures the conditions of Lemma E.11.

Similarly, by Assumption B.1-(i) m2
j px, θq{σ

2
P,jpθq satisfies

ˇ

ˇ

ˇ

m2
j px, θq

σ2
P,jpθq

´
m2
j px, θq

σ2
P,jpθq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

mjpx, θq

σP,jpθq
`
mjpx, θ

1q

σP,jpθ1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

mjpx, θq

σP,jpθq
´
mjpx, θ

1q

σP,jpθ1q

ˇ

ˇ

ˇ
(B.7)

ď 2F pxqM̄pxq}θ ´ θ1}. (B.8)

Let F̄ pxq ” 2F pxqM̄pxq. By Theorem 2.7.11 in van der Vaart and Wellner (2000),

Nrspε}F̄ }L2
P
,M2

P , } ¨ }L2
P
q ď Npε,Θ, } ¨ }q ď pdiampΘq{εqd, (B.9)
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where Npε,Θ, } ¨ }q is the covering number of Θ. This ensures

ż 8

0

sup
PPP

b

lnNrspε}F̄ }L2
P
,M2

P , } ¨ }L2
P
qdε ă 8. (B.10)

Further, for any C ą 0

EP rF̄
2pXq1tF̄ pXq ą Cus ď EP rF̄

2pXqsP pF̄ pXq ą Cq

ď 4EP r|F pXqMpXq|
2s
}F̄ }L1

P

C
ď

4M2

C
, (B.11)

which implies limCÑ8 supPPP EP rF̄
2pXq1tF̄ pXq ą Cus “ 0. By Theorems 2.8.4 and 2.8.2 in van der Vaart and

Wellner (2000), this implies that SP is Donsker and pre-Gaussian uniformly in P P P. This therefore ensures

the conditions of Lemma E.12 (i). Note also that Assumption B.1-(i) ensures the conditions of Lemma E.12 (ii).

Therefore, by Lemmas E.11-E.12 and Assumption 4.4, for any η ą 0, there exists C ą 0 such that infPPP P pEnq ě

1´ η for all n sufficiently large.

Let θ, θ1 P Θ. For each j, we have

ˇ

ˇ

ˇ
Gbn,jpθq ` ρD̂n,jpθqλ` ϕjpξ̂n,jpθqq ´Gbn,jpθ1q ´ ρD̂n,jpθ

1qλ´ ϕjpξ̂n,jpθ
1qq

ˇ

ˇ

ˇ

ď |Gbn,jpθq ´Gbn,jpθ1q| ` ρ}D̂n,jpθq ´ D̂n,jpθ
1q} sup

λPBd
}λ} ` |ϕjpξ̂n,jpθqq ´ ϕjpξ̂n,jpθ

1qq|. (B.12)

Assume that the sample path tXiu
8
i“1 is such that the event En holds. Conditional on tXiu

8
i“1 and using Gbn,jpθq´

Gbn,jpθq “ Gbn,jpθqηn,jpθq,

|Gbn,jpθq ´Gbn,jpθ1q| ď |Gbn,jpθq ´Gbn,jpθ
1q| ` 2 sup

θPΘ
|Gbn,jpθq| sup

θPΘ
|ηn,jpθq|

ď |Gbn,jpθq ´Gbn,jpθ
1q| ` 2 sup

θPΘ
|Gbn,jpθq|

C
?
n
. (B.13)

Define the event Fn P C for the bootstrap weights by

Fn ”
 

mn P Q : sup
}θ´θ1}ďτn

}Gbnpθq ´Gbnpθ
1q} ď plnnq2τn, sup

θPΘ
}Gbnpθq} ď C

(

. (B.14)

By Lemma E.11 (ii) and the asymptotic tightness of Gbn, for any η ą 0, there exists a C such that P˚n pFnq ě 1´ η

for all n sufficiently large. Suppose that the multinomial bootstrap weight Mn is such that Fn holds. Then, the

right hand side of (B.13) is bounded by plnnq2τn ` C{
?
n for some C ą 0.

Next, by the triangle inequality and Assumption 4.4,

}D̂n,jpθq ´ D̂n,jpθ
1q} ď }D̂n,jpθq ´DP,jpθq} ` }DP,jpθq ´DP,jpθ

1q} ` }D̂n,jpθ
1q ´DP,jpθ

1q}

ď Cβn ` Cτn. (B.15)

Finally, note that by the Lipschitzness of ϕj , |ϕjpξ̂n,jpθqq ´ ϕjpξ̂n,jpθ
1qq| ď C|ξ̂n,jpθq ´ ξ̂n,jpθ

1q| and

ξ̂n,jpθq ´ ξ̂n,jpθ
1q

“ κ´1
n

”?
n
´m̄n,jpθq

σP,jpθq
p1` ηn,jpθqq ´

EP rmjpX, θqs

σP,jpθq

¯

´
?
n
´m̄n,jpθ

1q

σP,jpθ1q
p1` ηn,jpθ

1qq ´
EP rmjpX, θ

1qs

σP,jpθ1q

¯ı

` κ´1
n

?
n
´EP rmjpX, θqs

σP,jpθq
´
EP rmjpX, θ

1qs

σP,jpθ1q

¯

. (B.16)
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Hence,

|ξ̂n,jpθq ´ ξ̂n,jpθ
1q| ď κ´1

n |Gn,jpθq ´Gn,jpθ1q|

` κ´1
n

?
n
ˇ

ˇ

ˇ

m̄n,jpθq

σP,jpθq
ηn,jpθq ´

m̄n,jpθ
1q

σP,jpθ1q
ηn,jpθ

1q

ˇ

ˇ

ˇ
` κ´1

n

?
nDP,jpθ̄q}θ ´ θ

1}. (B.17)

By Lemma E.11, the right hand side of (B.17) can be further bounded by

κ´1
n plnnq

2τn ` κ
´1
n

?
n
ˇ

ˇ

ˇ

m̄n,jpθq

σP,jpθq
´
m̄n,jpθ

1q

σP,jpθ1q

ˇ

ˇ

ˇ
|ηn,jpθq|

` κ´1
n

?
n
ˇ

ˇ

ˇ

m̄n,jpθ
1q

σP,jpθ1q

ˇ

ˇ

ˇ
|ηn,jpθq ´ ηn,jpθ

1q| ` Cκ´1
n

?
nτn

ď κ´1
n plnnq

2τn ` κ
´1
n

?
nτn

C
?
n
` Cκ´1

n

?
nτn ` Cκ

´1
n

?
nτn, (B.18)

where the last inequality follows from Condition (i) and Lemma E.12 (ii).

Combining (B.12), (B.13), (B.15), and (B.16)-(B.18), we obtain
ˇ

ˇ

ˇ
Gbn,jpθq ` D̂n,jpθqλ` ϕjpξ̂n,jpθqq ´Gbn,jpθ1q ´ D̂n,jpθ

1qλ´ ϕjpξ̂n,jpθ
1qq

ˇ

ˇ

ˇ
ď Cεn. (B.19)

In particular, if 1
`

Λbnpθ, ρ, ĉnpθqq X tp
1λ “ 0u ‰ H

˘

“ 1, it also holds that 1
`

Λbnpθ
1, ρ, ĉnpθq ` Cεnq X tp

1λ “ 0u ‰

H
˘

“ 1 because

Gbn,jpθ1q ` D̂n,jpθ
1qλ` ϕjpξ̂n,jpθ

1qq ď Gbn,jpθq ` D̂n,jpθqλ` ϕjpξ̂n,jpθqq ` Cεn ď ĉnpθq ` Cεn,

Recalling that P˚n pFnq ě 1´ η for all n sufficiently large, we then have

P˚n
` 

Λbnpθ
1, ρ, ĉnpθq ` Cεnq X tp

1λ “ 0u ‰ H
(˘

ě P˚n
` 

Λbnpθ
1, ρ, ĉnpθq ` Cεnq X tp

1λ “ 0u ‰ H
(

X Fn
˘

ě P˚n
` 

Λbnpθ, ρ, ĉnpθqq X tp
1λ “ 0u ‰ H

(

X Fn
˘

ě 1´ α´ η. (B.20)

Since η is arbitrary, we have

ĉnpθ
1q ď ĉnpθq ` Cεn.

Reversing the roles of θ and θ1 and noting that supPPP P pEnq Ñ 0 yields the first claim of the lemma.

Part 2. To obtain the result in equation (B.3), we use that for any θ, θ1 P Θ such that }θ ´ θ1} ď τn,

|ĉnpθq ´ ĉnpθ
1q| ď Cεn with probability approaching 1 uniformly in P P P by the result in Part 1. This implies

|ĉnpθq ´ ĉn,τnpθq| “

ˇ

ˇ

ˇ

ˇ

ż

Rd
ĉnpθ ´ νqφτnpνqdν ´ ĉnpθq

ˇ

ˇ

ˇ

ˇ

ď

ż

Rd
|ĉnpθ ´ νq ´ ĉnpθq|φτnpνqdν

“

ż

Bτn
|ĉnpθ ´ νq ´ ĉnpθq|φτnpνqdν ď Cεn

ż

Bτn
φτnpνqdν ď Cεn.

Part 3. By the construction of the mollified version of the critical value, we have ĉn,τn P C8pΘq (Adams and

Fournier, 2003, Theorem 2.29). Therefore it has derivatives of all order. Using the multi-index notation, for any

s ą 0 and |α| ď s, the partial derivative ∇αĉn,τn is bounded by some constant M ą 0 on the compact set Θ, and
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hence
ż

Θ

|∇αĉn,τnpθq|2dυpθq ďMυpΘq ă 8,

where υ denote the Lebesgue measure on Rd. This ensures ∇αĉn,τn P L2
υpΘq for all |α| ď s. Hence, ĉn,τn is in the

Sobolev-Hilbert space HspΘoq for any s ą 0. Note that when a Matérn kernel with ν ă 8 is used and ĉn,τn is

continuous, Lemma 3 in Bull (2011) implies that the RKHS-norm } ¨ }Hβ̄
(in Hβ̄pΘq) and the Sobolev-Hilbert norm

} ¨ }Hν`d{2 are equivalent. Hence, there is R ą 0 such that }ĉn,τn}Hβ
ď C}ĉn,τn}Hν`d{2 ď R.

Part 4. By Part 2 and the definition of ĉn,ρ,τ in (B.4), it follows that

ĉn,ρ,τnpθnq ě ĉn,ρpθnq ´ en (B.21)

ě cIn,ρpθnq ´ en,

for some en “ OPpεnq, where the second inequality follows from the construction of cIn,ρ in the proof of Lemma

E.1. Note that Lemma E.3 and the fact that εn “ oPp1q by Part 1 imply cIn,ρpθnq ´ en
Pn
Ñ c˚π˚ . Replicate equation

(E.22) with ĉn,ρ,τn replacing ĉn,ρ, and mimic the argument following (E.22) in the proof of Lemma E.1. Then, the

conclusion of the lemma follows.

B.2 The kernel of the Gaussian Process and its Associated Function Space

Following Bull (2011), we consider two commonly used classes of kernels. The first one is the Gaussian kernel,

which is given by

Kβpθ ´ θ
1q “ exp

`

´

d
ÿ

k“1

|pθk ´ θ
1
kq{βk|

2
˘

, βk P rβk, βks, k “ 1, ¨ ¨ ¨ , d, (B.22)

where 0 ă β
k
ă βk ă 8 for all k. The second one is the class of Matérn kernels defined by

Kβpθ ´ θ
1q “

21´ν

Dpνq

´?
2ν

d
ÿ

k“1

|pθk ´ θ
1
kq{βk|

2
¯ν

kν

´?
2ν

d
ÿ

k“1

|pθk ´ θ
1
kq{βk|

2
¯

, ν P p0,8q, ν R N,

where D is the gamma function, and kν is the modified Bessel function of the second kind.44 The index ν controls

the smoothness of Kβ . In particular, the Fourier transform K̂βpζq of the Matérn kernel is bounded from above

and below by the order of }ζ}´2ν´d as }ζ} Ñ 8, i.e. K̂βpζq “ Θp}ζ}´2ν´dq. Similarly, the Fourier transform of

the Gaussian kernel satisfies K̂βpζq “ Op}ζ}´2ν´dq for any ν ą 0. Below, we treat the Gaussian kernel as a kernel

associated with ν “ 8.

Each kernel is associated with a space of functions HβpRdq, called the reproducing kernel Hilbert space (RKHS).

Below, we give some background on this space and refer to Steinwart and Christmann (2008); van der Vaart and

van Zanten (2008) for further details. For D Ď Rd, let K : D ˆ D Ñ R be a symmetric and positive definite

function. K is said to be a reproducing kernel of a Hilbert space HpDq if Kp¨, θ1q P HpDq for all θ1 P D, and

fpθq “ xf,Kp¨, θqyHpDq

holds for all f P HpDq and θ P D. The space HpDq is called a reproducing kernel Hilbert space (RKHS) over

D if for all θ P D, the point evaluation functional δθ : HpDq Ñ R defined by δθpfq “ fpθq is continuous. When

44The requirement ν R N is not essential for the convergence result. However, it simplifies some of the arguments as one
can exploit the 2ν-Hölder continuity of Kβ at the origin without a log factor (Bull, 2011, Assumption 4).
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Kpθ, θ1q “ Kβpθ´ θ
1q is used as the correlation functional of the Gaussian process, we denote the associated RKHS

by HβpDq. Using Fourier transforms, the norm on HβpDq can be written as

}f}Hβ
” inf
g|D“f

ż

ĝpζq

K̂βpζq
dζ, (B.23)

where the infimum is taken over functions g : Rd Ñ R whose restrictions to D coincide with f , and we take 0{0 “ 0.

The RKHS has a connection to other well-known classes of functions. In particular, when D is a Lipschitz

domain, i.e. the boundary of D is locally the graph of a Lipschitz function (Tartar, 2007) and the kernel is

associated with ν P p0,8q, HβpDq is equivalent to the Sobolev-Hilbert space Hν`d{2pDoq, which is the space of

functions on Do such that

}f}2Hν`d{2 ” inf
g|Do“f

ż

ĝpζq

p1` }ζ}2qν`d{2
dζ (B.24)

is finite, where the infimum is taken over functions g : Rd Ñ R whose restrictions to Do coincide with f . Further,

if ν “ 8, HβpDq is continuously embedded in HspDoq for all s ą 0 (Bull, 2011, Lemma 3).

Theorem 3.1 requires that c has a finite RKHS norm. This is to ensure that the approximation error made

by the best linear predictor cL of the Gaussian process regression is controlled uniformly (Narcowich, Ward, and

Wendland, 2003). When a Matérn kernel is used, it suffices to bound the norm in the Sobolev-Hilbert space Hν`d{2

to bound c’s RKHS norm. We do so in Theorem B.1 by introducing a mollified version of ĉn.

B.3 A Reformulation of the M-step as a Nonlinear Program

In (3.13), θpL`1q is defined as the maximizer of the following maximization problem

max
θPΘ

pp1θ ´ p1θ˚Lq`

´

1´ Φ
´ ḡpθq ´ cLpθq

ς̂sLpθq

¯¯

, (B.25)

where ḡpθq “ maxj“1,¨¨¨ ,Jgjpθq. Since Φ is strictly increasing, one may rewrite the objective function as

pp1θ ´ p1θ˚Lq`

´

1´ max
j“1,¨¨¨ ,J

Φ
´gjpθq ´ cLpθq

ς̂sLpθq

¯¯

“ min
j“1,¨¨¨ ,J

pp1θ ´ p1θ˚Lq`

´

1´ Φ
´gjpθq ´ cLpθq

ς̂sLpθq

¯¯

.

Hence, θpL`1q is a solution to the maximin problem:

max
θPΘ

min
j“1,¨¨¨ ,J

pp1θ ´ p1θ˚Lq`

´

1´ Φ
´gjpθq ´ cLpθq

ς̂sLpθq

¯¯

,

which can be solved, for example, by Matlab’s fminimax function. It can also be rewritten as a nonlinear program:

max
pθ,vqPΘˆR

v

s.t.pp1θ ´ p1θ˚Lq`

´

1´ Φ
´gjpθq ´ cLpθq

ς̂sLpθq

¯¯

ě v, j “ 1, ¨ ¨ ¨ , J,

which can be solved by nonlinear optimization solvers, e.g. Matlab’s fmincon or KNITRO. We note that the objective

function and constraints together with their gradients are available in closed form.

B.4 Root-Finding Algorithm Used to Compute ĉnpθq

This section explains in detail how ĉnpθq in equation (3.5) is computed. For a given θ P Θ, P˚pΛbnpθ, ρ, cq X tp
1λ “

0u ‰ Hq increases in c (with Λbnpθ, ρ, cq defined in (3.1)), and so ĉnpθq can be quickly computed via a root-
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finding algorithm, such as the Brent-Dekker Method (BDM), see Brent (1971) and Dekker (1969). To do so, define

hαpcq “
1
B

řB
b“1 ψbpcq ´ p1´ αq where

ψbpcpθqq “ 1pΛbnpθ, ρ, cq X tp
1λ “ 0u ‰ Hq.

Let c̄pθq be an upper bound on ĉnpθq (for example, the asymptotic Bonferroni bound c̄pθq ” Φ´1p1 ´ α{Jqq.

It remains to find ĉnpθq so that hαpĉnpθqq “ 0 if hαp0q ď 0. It is possible that hαp0q ą 0 in which case we

output ĉnpθq “ 0. Otherwise, we use BDM to find the unique root to hαpcq on r0, c̄pθqs where, by construction,

hαpc̄npθqq ě 0. We propose the following algorithm:

Step 0 (Initialize)

(i) Set Tol equal to a chosen tolerance value;

(ii) Set cL “ 0 and cU “ c̄pθq (values of c that bracket the root ĉnpθq);

(iii) Set c´1 “ cL and c´2 “ rs to be undefined for now (proposed values of c from 1 and 2 iterations prior). Also

set c0 “ cL and c1 “ cU .

(iv) Compute ϕjpξ̂n,jpθqq j “ 1, ¨ ¨ ¨ , J ;

(v) Compute D̂P,npθq;

(vi) Compute Gbn,j for b “ 1, ¨ ¨ ¨ , B, j “ 1, ¨ ¨ ¨ , J ;

(vii) Compute ψbpcLq and ψbpcU q for b “ 1, ¨ ¨ ¨ , B;

(viii) Compute hαpcLq and hαpcU q.

Step 1 (Method Selection)

Use the BDM rule to select the updated value of c, say c2. The value is updated using one of three methods:

Inverse Quadratic Interpolation, Secant, or Bisection. The selection rule is based on the values of ci, i “

´2,´1, 0, 1 and the corresponding function values.

Step 2 (Update Value Function)

Update the value of hαpc2q. We can exploit previous computation and monotonicity function ψbpc2q to reduce

computational time:

1. If ψbpcLq “ ψbpcU q “ 0, then ψbpc2q “ 0;

2. If ψbpcLq “ ψbpcU q “ 1, then ψbpc2q “ 1.

Step 3 (Update)

(i) If hαpc2q ě 0, then set cU “ c2. Otherwise set cL “ c2.

(ii) Set c´2 “ c´1, c´1 “ c0, c0 “ cL, and c1 “ cU .

(iii) Update corresponding function values hαp¨q.

Step 4 (Convergence)

(i) If hαpcU q ď Tol or if |cU ´ cL| ď Tol , then output ĉnpθq “ cU and exit. Note: hαpcU q ě 0, so this criterion

ensures that we have at least 1´ α coverage.

(ii) Otherwise, return to Step 1.
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The computationally difficult part of the algorithm is computing ψbp¨q in Step 2. This is simplified for two reasons.

First, evaluation of ψbpcq entails determining whether a constraint set comprised of J ` 2d´ 2 linear inequalities in

d ´ 1 variables is feasible. This can be accomplished efficiently employing commonly used software.45 Second, we

exploit monotonicity in ψbp¨q, reducing the number of linear programs needed to be solved.

Appendix C Verification of Assumptions for the Canonical Moment

(In)equalities Examples

In this section we verify: (i) Assumption B.1 which is the crucial condition in Theorem B.1, and (ii) Assumption

4.3-(II), for the canonical examples in the moment (in)equalities literature:

1. Mean with interval data (of which missing data is a special case). Here we assume that W0,W1 are

two observable random variables such that P pW0 ďW1q “ 1. The identified set is defined as

ΘIpP q “ tθ P Θ Ă R : EP pW0q ´ θ ď 0, θ ´ EP pW1q ď 0u. (C.1)

2. Linear regression with interval outcome data and discrete regressors. Here the modeling assumption

is that W “ Z 1θ ` u, where Z “ rZ1; . . . ;Zds is a d ˆ 1 random vector with Z1 “ 1. We assume that Z

has k points of support denoted z1, . . . , zk P Rd with maxr“1,...,k }z
r} ă M ă 8. The researcher observes

tW0,W1, Zu with P pW0 ďW ďW1|Z “ zrq “ 1, r “ 1, . . . , k. The identified set is

ΘIpP q “ tθ P Θ Ă Rd : EP pW0|Z “ zrq ´ zr1θ ď 0, zr1θ ´ EP pW1|Z “ zrq ď 0, r “ 1, . . . , ku. (C.2)

3. Best linear prediction with interval outcome data and discrete regressors. Here the variables are

defined as for the linear regression case. Beresteanu and Molinari (2008) show that the identified set for the

parameters of a best linear predictor of W conditional on Z is given by the set ΘIpP q “ EP pZZ
1q´1EP pZWq,

where W “ rW0,W1s is a random closed set and, with some abuse of notation, EP pZWq denotes the Aumann

expectation of ZW.

Here we go beyond the results in Beresteanu and Molinari (2008) and derive a moment inequality representa-

tion for ΘIpP q when Z has a discrete distribution. We denote by ur the vector ur “ er1pM 1
PMP q

´1M 1
PEP pZZ

1q,

r “ 1, . . . , k, where er is the r-th basis vector in Rk and MP is a dˆK matrix with r-th column equal to P pZ “

zrqzr; we let qr “ urEP pZZ
1q´1. Observe that for any selection W̃ P W a.s. one has urEP pZZ

1q´1EP pZW̃ q “

er1rEP pW̃ |Z “ z1q; . . . ;EP pW̃ |Z “ zkqs, so that the support function in direction ur is maximized/minimized

by setting EP pW̃ |Z “ zrq equal to EP pW1|Z “ zrq and EP pW0|Z “ zrq, respectively. Hence, the identified

set can be written in terms of moment inequalities as

ΘIpP q “ tθ P Θ Ă Rd : qrrEP pZpZ
1θ ´W0 ´ 1pqrZ ą 0qpW1 ´W0qqqs ď 0

´ qrrEP pZpZ
1θ ´W0 ´ 1pqrZ ă 0qpW1 ´W0qqqs ď 0, r “ 1, . . . , ku. (C.3)

The set is expressed through evaluation of its support function, given in Bontemps, Magnac, and Maurin

(2012, Proposition 2), at directions ˘ur; these are the directions orthogonal to the flat faces of ΘIpP q.

4. Complete information entry games with pure strategy Nash equilibrium as solution concept.

45Examples of high-speed solves for linear programs include CVXGEN, availiable from http://www.cvxgen.com and
Gurobi, available from http://www.gurobi.com.
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Here again we assume that the vector Z has k points of support with bounded norm, and the identified set is

ΘIpP q “ tθ P Θ Ă Rd : equations (5.1), (5.2), (5.3), (5.4) hold for all Z “ zr, r “ 1, . . . , ku. (C.4)

In the first three examples we let X ” pW0,W1, Zq
1. In the last example we let X ” pY1, Y2, Zq

1. Throughout, we

propose to estimate EP pW`|Z “ zrq and EP pY1 “ s, Y2 “ t|Z “ zrq, ` “ 0, 1, ps, tq P t0, 1uˆt0, 1u and r “ 1, . . . , k,

using

ÊnpW`|Z “ zrq “

řn
i“1W`,i1pZi “ zrq
řn
i“1 1pZi “ zrq

, (C.5)

ÊnpY1 “ s, Y2 “ t|Z “ zrq “

řn
i“1 1pY1,i “ s, Y2,i “ t, Zi “ zrq

řn
i“1 1pZi “ zrq

, (C.6)

as it is done in, e.g., Ciliberto and Tamer (2009). We assume that for each of the four canonical examples under

consideration, Assumption 4.1 as well as one of the assumptions below hold.

Assumption C.1: The model P for P satisfies min`“0,1 minr“1,...,k V arP pW`|Z “ zrq ą σ ą 0 and

minr“1,...,k P pZ “ zrq ą $ ą 0.

Assumption C.2: The model P for P satisfies: (1) eigpM 1
PMP q ą ς; (2) eigpEP pZZ

1qq ą ς;

(3) eigpCorrP prvechpZZ
1q;W0sqq ą ς and eigpCorrP prvechpZZ

1q;W1sqq ą ς; for some ς ą 0, where vechpAq denotes

the half-vectorization of the matrix A.

Assumption C.3: The model P for P satisfies minr“1,...,k,ps,tqPt0,1uˆt0,1u P pY1 “ s, Y2 “ t, Z “ zrq ą $ ą 0.

These are simple to verify low level conditions. We note that Imbens and Manski (2004) and Stoye (2009)

directly assume the unconditional version of C.1, while Beresteanu and Molinari (2008) assume C.1 itself.

C.1 Verification of Assumption B.1 in Theorem B.1

We show that in each of the four examples
mjpx,θq
σP,jpθq

, j “ 1, . . . , J is Lipschitz continuous in θ P Θ for all x P X and

that DP can be estimated at rate n´1{2.

1. Mean with interval data. Here σP,`pθq “ σP,`, and under Assumption C.1 it is uniformly bounded from

below. Then
ˇ

ˇ

ˇ

ˇ

mjpx, θq

σP,j
´
mjpx, θ

1q

σP,j

ˇ

ˇ

ˇ

ˇ

“
}pθ1 ´ θq}

σP,jpθq
, ` “ 0, 1,

DP,`pθq “
p´1qp1´`q

σP,`
, ` “ 0, 1.

Assumption C.1 then guarantees that Assumption B.1 is satisfied.

2. Linear regression with interval outcome data and discrete regressors. Here again σP,`rpθq “ σP,`r,

and under Assumptions C.1-C.2 it is uniformly bounded from below. We first consider the rescaled function
p´1qjpW`1pZ“z

r
q{P pZ“zrq´zr1θq

σP,`r
:

ˇ

ˇ

ˇ

ˇ

p´1qjpW`1pZ “ zrq{P pZ “ zrq ´ zr1θq

σP,`r
´
p´1qjpW`1pZ “ zrq{P pZ “ zrq ´ zr1θ1q

σP,`r

ˇ

ˇ

ˇ

ˇ

“ }zr}
}pθ1 ´ θq}

σP,`rpθq
, ` “ 0, 1,
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so that Assumption B.1 is satisfied for these rescaled functions by Assumptions C.1-C.2. Next, we observe

that

DP,j “
p´1qp1´jqzr1

σP,`r
, ` “ 0, 1, r “ 1, . . . , k,

and it can be estimated at rate n´1{2 by Lemma E.12. Theorem B.1 then holds observing that |P pZ “

zrq{
řn
i“1 1pZi “ zrq ´ 1| “ OPpn

´1{2q and treating this random element similarly to how we treat ηn,jp¨q in

the proof of Theorem B.1.

3. Best linear prediction with interval outcome data and discrete regressors. Here

mrpXi, θq “ qrrZipZ
1
iθ ´ pW0,i ` 1pqrZi ą 0qpW1,i ´W0,iqqqs (C.7)

hence is Lipschitz in θ with constant ZiZ
1
i. Under Assumptions C.1-C.2, V arP pmrpXi, θqq is uniformly

bounded from below, and Lipschitz in θ with a constant that depends on Z4
i . Hence mrpXi,θq

σP,rpθq
is Lipschitz in θ

with a constant that depends on powers of Z. Because Z has bounded support, Assumption B.1 is satisfied.

A simple argument yields that DP can be estimated at rate n´1{2.

4. Complete information entry games with pure strategy Nash equilibrium as solution concept.

Here again σP,strpθq “ σP,str, and under Assumptions 4.1 and C.3 it is uniformly bounded from below. The

result then follows from a similar argument as the one used in Example 2 (Linear regression with interval

outcome data and discrete regressors), observing that the rescaled function of interest is now

1pY1 “ s, Y2 “ t|Z “ zrq{P pZ “ zrq ´ gstrpθq

σP,str
, ps, tq P t0, 1u ˆ t0, 1u, r “ 1, . . . , k,

and the gradient is

1

σP,str
∇θgstrpθq, ps, tq P t0, 1u ˆ t0, 1u, r “ 1, . . . , k,

where gstrpθq are model-implied entry probabilities, and hence taking their values in r0, 1s. The entry models

typically posited assume that payoff shocks have smooth distributions (e.g., multivariate normal), yielding

that ∇θgstrpθq is well defined and bounded.

C.2 Verification of Assumption 4.3-(II)

Here we verify Assumption 4.3-(II) for the canonical examples in the moment (in)equalities literature:

1. Mean with interval data. In the generalization of this example in Imbens and Manski (2004) and Stoye

(2009), equations (4.1)-(4.2) are satisfied by construction, equation (4.3) is directly assumed.

2. Linear regression with interval outcome data and discrete regressors. Equation (4.1) is satisfied by

construction. Given the estimator that we use for the population moment conditions, we verify equation (4.3)

for the variances of the limit distribution of the vector r
?
npÊnpW`|Z “ zrq´EP pW`|Z “ zrqqs`Pt0,1u,r“1,...,k.

We then have that equation (4.3) follows from Assumption C.1. Concerning equation (4.3), this needs to be

verified for the correlation matrix of the limit distribution of a rˆ 1 random vector that for each r “ 1, . . . , k

equals any choice in t
?
npÊnpW0|Z “ zrq´EP pW0|Z “ zrqq,

?
npÊnpW1|Z “ zrq´EP pW1|Z “ zrqqu, which

suffices for our results to hold. We then have that (4.2) holds because the correlation matrix is diagonal.
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3. Best linear prediction with interval outcome data and discrete regressors. Equation (4.1) is again

satisfied by construction. Equation (4.2) holds under Assumptions C.1-C.2. Equation (4.3) is verified to hold

under Assumption C.1 in Beresteanu and Molinari (2008, p. 808).

4. Complete information entry games with pure strategy Nash equilibrium as solution concept.

In this case equations (5.3) and (5.4) are paired, but the corresponding moment functions differ by the model

implied probability of the region of multiplicity, hence equation (4.1) is satisfied by construction. Given

the estimator that we use for the population moment conditions, we verify equations (4.2) and (4.3) for the

variances and for the correlation matrix of the limit distribution of the vector
?
npÊnpY1 “ s, Y2 “ t|Z “

zrq ´ EP pY1 “ s, Y2 “ t|Z “ zrqps,tqPt0,1uˆt0,1u,r“1,...,kq, which suffices for our results to hold. Equation

(4.2) holds provided that |CorrpYi1p1 ´ Yi2q, Yi1Yi2q| ă 1 ´ ε for some ε ą 0 and Assumption C.3 holds.46

To see that equation (4.3) also holds, note that Assumption C.3 yields that P pYi1 “ 1, Yi2 “ 0, Zi “ zrq is

uniformly bounded away from 0 and 1, thereby implying that for each ps, tq P t0, 1u ˆ t0, 1u, r “ 1, . . . , k,

pP pY1 “ s, Y2 “ t|Z “ zrqp1´P pY1 “ s, Y2 “ t|Z “ zrqqq{pP pZ “ zrqp1´P pZ “ zrqqq is uniformly bounded

away from zero.

46In more general instances with more than two players, it follows if the multinomial distribution of outcomes of the game
(reduced by one element) has a correlation matrix with eigenvalues uniformly bounded away from zero.
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Appendix D Proof of Theorems 4.1, 4.2, 4.3 and 4.4

D.1 Notation and Structure of the Proof of Theorem 4.1

For any sequence of random variables tXnu and a positive sequence an, we write Xn “ oPpanq if for any ε, η ą 0,

there is N P N such that supPPP P p|Xn{an| ą εq ă η,@n ě N . We write Xn “ OPpanq if for any η ą 0, there is a

M P R` and N P N such that supPPP P p|Xn{an| ąMq ă η,@n ě N .

Table D.0: Important notation. Here pPn, θnq P tpP, θq : P P P, θ P ΘIpP qu is a subsequence as defined in (D.3)-(D.4) below,

θ1n P pθn ` ρ{
?
nBdq XΘ, Bd “ tx P Rd : |xi| ď 1, i “ 1, . . . , du, Bdn,ρ ”

?
n
ρ pΘ´ θnq XB

d, Bd
ρ “ limnÑ8B

d
n,ρ, and λ P Rd.

Gn,jp¨q “

?
npm̄n,jp¨q´EP pmjpXi,¨qqq

σP,jp¨q
, j “ 1, . . . , J Sample empirical process.

Gb
n,jp¨q “

?
npm̄bn,jp¨q´m̄n,jp¨qq

σ̂n,jp¨q
, j “ 1, . . . , J Bootstrap empirical process.

ηn,jp¨q “
σP,jp¨q
σ̂n,jp¨q

´ 1, j “ 1, . . . , J Estimation error in sample moments’ asymptotic standard deviation.

DP,jp¨q “ ∇θ
´

EP pmjpXi,¨qq
σP,jp¨q

¯

, j “ 1, . . . , J Gradient of population moments w.r.t. θ, with estimator D̂n,jp¨q.

γ1,Pn,jp¨q “
EPn pmjpXi,¨qq

σPn,jp¨q
, j “ 1, . . . , J Studentized population moments.

π1,j “ limnÑ8 κ
´1
n

?
nγ1,Pn,jpθ

1
nq Limit of rescaled population moments, constant @θ1n P pθn ` ρ{

?
nBdq XΘ

by Lemma E.5.

π˚1,j “

#

0, if π1,j “ 0,

´8, if π1,j ă 0.
“Oracle” GMS.

ξ̂n,jp¨q “

#

κ´1
n

?
nm̄n,jp¨q{σ̂n,jp¨q, j “ 1, . . . , J1

0, j “ J1 ` 1, . . . , J
Rescaled studentized sample moments, set to 0 for equalities.

ϕ˚j pξq “

$

’

’

’

&

’

’

’

%

ϕjpξq π1,j “ 0

´8 π1,j ă 0

0 j “ J1 ` 1, ¨ ¨ ¨ , J.

Infeasible GMS that is less conservative than ϕj .

un,j,θnpλq “ tGn,jpθn `
λρ
?
n
q ` ρDPn,jpθ̄nqλ` π

˚
1,jup1` ηn,jpθn `

λρ
?
n
qq Mean value expansion of nonlinear constraints with sample empirical process

and “oracle” GMS, with θ̄n componentwise between θn and θn `
λρ
?
n

.

Unpθn, cq “
 

λ P Bd
n,ρ : p1λ “ 0X un,j,θnpλq ď c, @j “ 1, . . . , J

(

Feasible set for nonlinear sample problem intersected with p1λ “ 0.

wjpλq “ Zj ` ρDjλ` π
˚
1,j Linearized constraints with a Gaussian shift and “oracle” GMS.

Wpcq “
 

λ P Bd
ρ : p1λ “ 0Xwjpλq ď c, @j “ 1, . . . , J

(

Feasible set for linearized limit problem intersected with p1λ “ 0.

cπ˚ “ inftc P R` : PrpWpcq ‰ Hq ě 1´ αu. Limit problem critical level.

vbn,j,θ1npλq “ Gb
n,jpθ

1
nq ` ρD̂n,jpθ

1
nqλ` ϕjpξ̂n,jpθ

1
nqq Linearized constraints with bootstrap empirical process and sample GMS.

V b
n pθ

1
n, cq “

 

λ P Bd
n,ρ : p1λ “ 0X vbn,j,θ1npλq ď c, @j “ 1, . . . , J

(

Feasible set for linearized bootstrap problem with sample GMS and p1λ “ 0.

vIn,j,θ1npλq “ Gb
n,jpθ

1
nq ` ρD̂n,jpθ

1
nqλ` ϕ

˚
j pξ̂n,jpθ

1
nqq Linearized constraints with bootstrap empirical process and infeasible sample GMS.

V I
n pθ

1
n, cq “

 

λ P Bd
n,ρ : p1λ “ 0X vIn,j,θ1npλq ď c, @j “ 1, . . . , J

(

Feasible set for linearized bootstrap problem with infeasible sample GMS and p1λ “ 0.

ĉnpθq “ inftc P R` : P ˚pV b
n pθ, cq ‰ Hq ě 1´ αu Bootstrap critical level.

ĉn,ρpθq “ infλPBdn,ρ ĉnpθ `
λρ
?
n
q Smallest value of the bootstrap critical level in a Bd

n,ρ neighborhood of θ.

σ̂Mn,jpθq “ µ̂n,jpθqσ̂n,jpθq ` p1´ µ̂n,jpθqqσ̂n,j`R1pθq Weighted sum of the estimators of the standard deviations of paired inequalities
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Figure D.1: Structure of Lemmas used in the proof of Theorem 4.1.

Theorem 4.1

Lemma E.1

Lemma E.3Lemma E.2

Lemma E.4 Lemma E.5

Lemma E.6

Lemma E.9Lemma E.8Lemma E.7

Lemma E.10

Table D.1: Heuristics for the role of each Lemma in the proof of Theorem 4.1. Notes: (i) Uniformity in Theorem 4.1 is enforced
arguing along subsequences; (ii) When needed, random variables are realized on the same probability space as shown in Lemma
E.1 and Lemma E.17 (see Appendix E.3 for details); (iii) Here pPn, θnq P tpP, θq : P P P, θ P ΘIpP qu is a subsequence as defined in
(D.3)-(D.4) below; (iv) All results hold for any θ1n P pθn ` ρ{

?
nBdq XΘ.

Theorem 4.1 Pnpp
1θn P CIq ě Pn pUnpθn, ĉn,ρpθnqq ‰ Hq .

Coverage is conservatively estimated by the probability that Un is nonempty.

Lemma E.1 lim inf Pn pUnpθn, ĉn,ρpθnqq ‰ Hq ě 1´ α.

Lemma E.2 PnpUpθn, c
I
npθnqq ‰ H,Wpcπ˚q “ Hq ` PnpUpθn, c

I
npθnqq “ H,Wpcπ˚q ‰ Hq “ oPp1q.

Argued by comparing Un and its limit W (after coupling).

Lemma E.3 P ˚n pV
I
n pθ

1
n, cq ‰ Hq ´ PrpWpcq ‰ Hq Ñ 0 and cInpθ

1
nq

Pn
Ñ cπ˚ if cπ˚ ą 0.

The bootstrap critical value that uses the less conservative GMS yileds a convergent critical value.

Lemma E.4 supλPBd |maxjpun,j,θnpλq ´ c
I
npθnqq ´maxjpwjpλq ´ cπ˚q| “ oPp1q, and similarly for wj and vIn,j,θ1n .

The criterion functions entering Un and W converge to each other.

Lemma E.5 Local-to-binding constraints are selected by GMS uniformly over the ρ-box (intuition: ρn´1{2 “ oPpκ
´1
n q),

and }ξ̂npθ
1
nq ´ κ

´1
n

?
nσ´1

Pn,j
pθ1nqEPnrmjpXi, θ

1
nqs} “ oPp1q.

Lemma E.6 @η ą 0 Dδ ą 0, : PrptWpcq ‰ Hu X tW´δpcq “ Huq ă η, and similarly for V I
n .

It is unlikely that these sets are nonempty but become empty upon slightly tightening stochastic constraints.

Lemma E.7 Intersections of constraints whose gradients are almost linearly dependent are unlikely to realize inside W.

Hence, we can ignore irregularities that occur as linear dependence is approached.

Lemma E.8 If there are weakly more equality constraints than parameters, then c is uniformly bounded away from zero.

This simplifies some arguments.

Lemma E.9 If two paired inequalities are local to binding, then they are also asymptotically identical up to sign.

This justifies “merging” them.

Lemma E.10 ηn,jp¨q converges to zero uniformly in P and θ.
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D.2 Proof of Theorems 4.1 and 4.2

D.2.1 Main Proofs

Proof of Theorem 4.1

Following Andrews and Guggenberger (2009), we index distributions by a vector of nuisance parameters relevant

for the asymptotic size. For this, let γP ” pγ1,P , γ2,P , γ3,P q, where γ1,P “ pγ1,P,1, ¨ ¨ ¨ , γ1,P,Jq with

γ1,P,jpθq “ σ´1
P,jpθqEP rmjpXi, θqs, j “ 1, ¨ ¨ ¨ , J, (D.1)

γ2,P “ pspp,ΘIpP qq, vechpΩP pθqq, vecpDP pθqqq, and γ3,P “ P . We proceed in steps.

Step 1. Let tPn, θnu P tpP, θq : P P P, θ P ΘIpP qu be a sequence such that

lim inf
nÑ8

inf
PPP

inf
θPΘIpP q

P pp1θ P CInq “ lim inf
nÑ8

Pnpp
1θn P CInq, (D.2)

with CIn “ r´sp´p, Cnpĉnqq, spp, Cnpĉnqqs. We then let tlnu be a subsequence of tnu such that

lim inf
nÑ8

Pnpp
1θn P CInq “ lim

nÑ8
Plnpp

1θln P CIlnq. (D.3)

Then there is a further subsequence tanu of tlnu such that

lim
anÑ8

κ´1
an

?
anσ

´1
Pan ,j

pθanqEPan rmjpXi, θanqs “ π1,j P Rr´8s, j “ 1, . . . , J. (D.4)

To avoid multiple subscripts, with some abuse of notation we write pPn, θnq to refer to pPan , θanq throughout this

Appendix. We let

π˚1,j “

#

0 if π1,j “ 0,

´8 if π1,j ă 0.
(D.5)

The projection of θn is covered when

´ sp´p, Cnpĉnqq ď p1θn ď spp, Cnpĉnqq

ô

#

inf p1ϑ

s.t. ϑ P Θ,
?
nm̄n,jpϑq
σ̂n,jpϑq

ď ĉnpϑq,@j

+

ď p1θn ď

#

sup p1ϑ

s.t. ϑ P Θ,
?
nm̄n,jpϑq
σ̂n,jpϑq

ď ĉnpϑq,@j

+

ô

$

&

%

infλ p
1λ

s.t.λ P
?
n
ρ pΘ´ θnq,

?
nm̄n,jpθn`

λρ
?
n
q

σ̂n,jpθn`
λρ
?
n
q
ď ĉnpθn `

λρ
?
n
q,@j

,

.

-

ď 0

ď

$

&

%

supλ p
1λ

s.t.λ P
?
n
ρ pΘ´ θnq,

?
nm̄n,jpθn`

λρ
?
n
q

σ̂n,jpθn`
λρ
?
n
q
ď ĉnpθn `

λρ
?
n
q,@j

,

.

-

(D.6)

ô

$

’

&

’

%

infλ p
1λ

s.t.λ P
?
n
ρ pΘ´ θnq,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ`

?
nγ1,Pn,jpθn `

λρ
?
n
qup1` ηn,jpθn `

λρ
?
n
qq ď ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

ď 0

ď

$

’

&

’

%

supλ p
1λ

s.t.λ P
?
n
ρ pΘ´ θnq,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn `

λρ
?
n
qq ď ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

, (D.7)

with ηn,jp¨q ” σP,jp¨q{σ̂n,jp¨q ´ 1 and where we localized ϑ in a
?
n{ρ-neighborhood of Θ´ θn and we took a mean
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value expansion yielding @j

?
nm̄n,jpθn `

λρ
?
n
q

σ̂n,jpθn `
λρ
?
n
q

“ tGn,jpθn `
λρ
?
n
q ` ρDPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn `

λρ
?
n
qq. (D.8)

Denote Bdn,ρ ”
?
n
ρ pΘ´ θnq XB

d, with Bd “ tx P Rd : |xi| ď 1, i “ 1, . . . , du. The event in (D.7) is implied by

ð

$

’

&

’

%

infλ p
1λ

s.t.λ P Bdn,ρ,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn `

λρ
?
n
qq ď ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

ď 0

ď

$

’

&

’

%

supλ p
1λ

s.t.λ P Bdn,ρ,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn `

λρ
?
n
qq ď ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

,

(D.9)

Step 2. This step is used only when Assumption 4.3-(II) is invoked. When this assumption is invoked, recall that

in equation (2.5) we use the estimator specified in Lemma E.10 equation (E.188) for σP,j , j “ 1, . . . , 2R1 (with

R1 ď J1{2 defined in the statement of the assumption). In equation (3.1) we use the sample analog estimators of

σP,j for all j “ 1, . . . , J . To keep notation manageable, we explicitly denote the estimator used in (2.5) by σ̂Mj only

in this step but in almost all other parts of this Appendix we use the generic notation σ̂j .

For each j “ 1, . . . , R1 such that

π˚1,j “ π˚1,j`R1
“ 0, (D.10)

where π˚1 is defined in (D.5), let

µ̃j “

$

&

%

1 if γ1,Pn,jpθnq “ 0 “ γ1,Pn,j`R1
pθnq,

γ1,Pn,j`R1
pθnqp1`ηn,j`R1

pθn`
λρ
?
n
qq

γ1,Pn,j`R1
pθnqp1`ηn,j`R1

pθn`
λρ
?
n
qq`γ1,Pn,jpθnqp1`ηn,jpθn`

λρ
?
n
qq

otherwise,
(D.11)

µ̃j`R1
“

$

&

%

0 if γ1,Pn,jpθnq “ 0 “ γ1,Pn,j`R1
pθnq,

γ1,Pn,jpθnqp1`ηn,jpθn`
λρ
?
n
qq

γ1,Pn,j`R1
pθnqp1`ηn,j`R1

pθn`
λρ
?
n
qq`γ1,Pn,jpθnqp1`ηn,jpθn`

λρ
?
n
qq

otherwise,
(D.12)

For each j “ 1, . . . , R1, replace the constraint indexed by j, that is

?
nm̄n,jpθn `

λρ
?
n
q

σ̂Mn,jpθn `
λρ
?
n
q

ď ĉnpθn `
λρ
?
n
q, (D.13)

with the following weighted sum of the paired inequalities

µ̃j

?
nm̄n,jpθn `

λρ
?
n
q

σ̂Mn,jpθn `
λρ
?
n
q

´ µ̃j`R1

?
nm̄j`R1,npθn `

λρ
?
n
q

σ̂Mn,j`R1
pθn `

λρ
?
n
q

ď ĉnpθn `
λρ
?
n
q, (D.14)

and for each j “ 1, . . . , R1, replace the constraint indexed by j `R1, that is

?
nm̄j`R1,npθn `

λρ
?
n
q

σ̂Mn,j`R1
pθn `

λρ
?
n
q

ď ĉnpθn `
λρ
?
n
q, (D.15)
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with

´µ̃j

?
nm̄n,jpθn `

λρ
?
n
q

σ̂Mn,jpθn `
λρ
?
n
q

` µ̃j`R1

?
nm̄j`R1,npθn `

λρ
?
n
q

σ̂Mn,j`R1
pθn `

λρ
?
n
q

ď ĉnpθn `
λρ
?
n
q, (D.16)

It then follows from Assumption 4.3-(II) that these replacements are conservative because

m̄j`R1,npθn `
λρ
?
n
q

σ̂Mn,j`R1
pθn `

λρ
?
n
q
ď ´

m̄n,jpθn `
λρ
?
n
q

σ̂Mn,jpθn `
λρ
?
n
q
,

and therefore (D.14) implies (D.13) and (D.16) implies (D.15).

Step 3. Next, we make the following comparisons:

π˚1,j “ 0 ñ π˚1,j ě
?
nγ1,Pn,jpθnq, (D.17)

π˚1,j “ ´8 ñ
?
nγ1,Pn,jpθnq Ñ ´8. (D.18)

For any constraint j for which π˚1,j “ 0, (D.17) yields that replacing
?
nγ1,Pn,jpθnq in (D.9) with π˚1,j introduces a

conservative distortion. Under Assumption 4.3-(II), for any j such that (D.10) holds, the substitutions in (D.14)

and (D.16) yield µ̃j
?
nγ1,Pn,jpθnqp1 ` ηn,jpθn `

λρ
?
n
qq ´ µ̃j`R1

?
nγ1,Pn,j`R1pθnqp1 ` ηn,j`R1pθn `

λρ
?
n
qq “ 0, and

therefore replacing this term with π˚1,j “ 0 “ π˚1,j`R1
is inconsequential.

For any j for which π˚1,j “ ´8, (D.18) yields that for n large enough,
?
nγ1,Pn,jpθnq can be replaced with π˚1,j .

To see this, note that by the Cauchy-Schwarz inequality, Assumption 4.4 (i)-(ii), and λ P Bdn,ρ, it follows that

ρDPn,jpθ̄nqλ ď ρ
?
dp}DPn,jpθ̄nq ´DPn,jpθnq} ` }DPn,jpθnq}q ď ρ

?
dpρM{

?
n` M̄q, (D.19)

where M̄ and M are as defined in Assumption 4.4-(i) and (ii) respectively, and we used that θ̄n lies component-wise

between θn and θn `
λρ
?
n

. Using that Gn,j is asymptotically tight by Assumption 4.5, we have that for any τ ą 0,

there exists a T ą 0 and N1 P N such that for all n ě N1,

Pn

˜

max
j:π˚1,j“´8

tGn,jpθn `
λρ
?
n
q ` ρDPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn `

λρ
?
n
qq ď 0, @λ P Bdn,ρ

¸

ą 1´ τ{2.

(D.20)

To see this, note that π˚ij “ ´8 if and only if limnÑ8

?
n

κn
γ1Pnjpθnq “ π1j P r´8, 0q. Suppose first that π1j ą ´8.

Then for all ε ą 0 there exists N2 P N such that
ˇ

ˇ

ˇ

?
n

κn
γ1Pnjpθnq ´ π1j

ˇ

ˇ

ˇ
ď ε, for all n ě N2. Choose ε ą 0 such that
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π1j ` ε ă 0. Let N “ maxtN1, N2u. Then we have

Pn

˜

max
j:π˚1,j“´8

tGn,jpθn `
λρ
?
n
q ` ρDPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn `

λρ
?
n
qq ď 0, @λ P Bdn,ρ

¸

ě Pn

˜

max
j:π˚1,j“´8

tT ` ρpM̄ ` ρM{
?
nq `

?
nγ1,Pn,jpθnqup1` ηn,jpθn `

λρ
?
n
qq ď 0X max

j:π˚1,j“´8
Gn,jpθn `

λρ
?
n
q ď T

¸

ě Pn

˜

max
j:π˚1,j“´8

tT ` ρpM̄ ` ρM{
?
nq ` κnpπ1j ` εqup1` ηn,jpθn `

λρ
?
n
qq ď 0X max

j:π˚1,j“´8
Gn,jpθn `

λρ
?
n
q ď T

¸

“ Pn

˜

max
j:π˚1,j“´8

"

T

κn
`

ρ

κn
pM̄ ` ρM{

?
nq ` pπ1j ` εq

*

p1` ηn,jpθn `
λρ
?
n
qq ď 0X max

j:π˚1,j“´8
Gn,jpθn `

λρ
?
n
q ď T

¸

“Pn

˜

max
j:π˚1,j“´8

Gn,jpθn `
λρ
?
n
q ď T

¸

ą 1´ τ{2, @n ě N.

If π1j “ ´8 the same argument applies a fortiori. We therefore have that for n ě N ,

Pn

˜

$

’

&

’

%

infλ p
1λ

s.t.λ P Bdn,ρ,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn `

λρ
?
n
qq ď ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

ď 0

ď

$

’

&

’

%

supλ p
1λ

s.t.λ P Bdn,ρ,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn `

λρ
?
n
qq ď ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

¸

(D.21)

ěPn

˜

$

’

&

’

%

infλ p
1λ

s.t.λ P Bdn,ρ,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ` π

˚
1,jup1` ηn,jpθn `

λρ
?
n
qq ď ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

ď 0

ď

$

’

&

’

%

supλ p
1λ

s.t.λ P Bdn,ρ,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ` π

˚
1,jup1` ηn,jpθn `

λρ
?
n
qq ď ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

¸

´ τ{2. (D.22)

Since the choice of τ is arbitrary, the limit of the term in (D.21) is not smaller than the limit of the first term in

(D.22). Hence, we continue arguing for the event whose probability is evaluated in (D.22).

Finally, by definition ĉnp¨q ě 0 and therefore infλPBdn,ρ ĉnpθn`
λρ
?
n
q exists. Therefore, the event whose probability

is evaluated in (D.22) is implied by the event

$

’

&

’

%

infλ p
1λ

s.t.λ P Bdn,ρ,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ` π

˚
1,jup1` ηn,jpθn `

λρ
?
n
qq ď infλPBdn,ρ ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

ď 0

ď

$

’

&

’

%

supλ p
1λ

s.t.λ P Bdn,ρ,

tGn,jpθn ` λρ
?
n
q ` ρDPn,jpθ̄nqλ` π

˚
1,jup1` ηn,jpθn `

λρ
?
n
qq ď infλPBdn,ρ ĉnpθn `

λρ
?
n
q,@j

,

/

.

/

-

(D.23)
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For each λ P Rd, define

un,j,θnpλq ” tGn,jpθn `
λρ
?
n
q ` ρDPn,jpθ̄nqλ` π

˚
1,jup1` ηn,jpθn `

λρ
?
n
qq, (D.24)

where under Assumption 4.3-(II) when π˚1,j “ 0 and π˚1,j`R1
“ 0 the substitutions of equation (D.13) with equation

(D.14) and of equation (D.15) with equation (D.16) have been performed. Let

Unpθn, cq ”
 

λ P Bdn,ρ : p1λ “ 0X un,j,θnpλq ď c, @j “ 1, . . . , J
(

, (D.25)

and define

ĉn,ρ ” inf
λPBdn,ρ

ĉnpθ `
λρ
?
n
q. (D.26)

Then by (D.23) and the definition of Un, we obtain

Pnpp
1θn P CInq ě Pn pUnpθn, ĉn,ρq ‰ Hq . (D.27)

By passing to a further subsequence, we may assume that

DPnpθnq Ñ D, (D.28)

for some Jˆd matrix D such that }D} ďM and ΩPn
u
Ñ Ω for some correlation matrix Ω. By Lemma 2 in Andrews

and Guggenberger (2009) and Assumption 4.5 (i), uniformly in λ P Bd, Gnpθn ` λρ
?
n
q
d
Ñ Z for a normal random

vector with the correlation matrix Ω. By Lemma E.1,

lim inf
nÑ8

Pn pUnpθn, ĉn,ρq ‰ Hq ě 1´ α. (D.29)

The conclusion of the theorem then follows from (D.2), (D.3), (D.27), and (D.29).

Proof of Theorem 4.2

The argument of proof is the same as for Theorem 4.1, with the following modification. Take pPn, θnq as defined

following equation (D.4). Then fpθnq is covered when
#

inf fpϑq

s.t. ϑ P Θ,
?
nm̄n,jpϑq
σ̂n,jpϑq

ď ĉfnpϑq,@j

+

ď fpθnq ď

#

sup fpϑq

s.t. ϑ P Θ,
?
nm̄n,jpϑq
σ̂n,jpϑq

ď ĉfnpϑq,@j

+

ô

$

&

%

infλ∇fpθ̃nqλ

s.t.λ P
?
n
ρ pΘ´ θnq,

?
nm̄n,jpθn`

λρ
?
n
q

σ̂n,jpθn`
λρ
?
n
q
ď ĉfnpθn `

λρ
?
n
q,@j

,

.

-

ď 0

ď

$

&

%

supλ∇fpθ̃nqλ

s.t.λ P
?
n
ρ pΘ´ θnq,

?
nm̄n,jpθn`

λρ
?
n
q

σ̂n,jpθn`
λρ
?
n
q
ď ĉfnpθn `

λρ
?
n
q,@j

,

.

-

,

where we took a mean value expansion yielding

fpθn `
λρ
?
n
q “ fpθnq `

ρ
?
n
∇fpθ̃nqλ, (D.30)

for θ̃n a mean value that lies componentwise between θn and θn `
λρ
?
n

, and we used that the sign of the last term

in (D.30) is the same as the sign of ∇fpθ̃nqλ. With the objective function in (D.30) so redefined, all expression in

the proof of Theorem 4.1 up to (D.24) continue to be valid. We can then redefine the set Unpθn, cq in (D.25) as
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Unpθn, cq ”
 

λ P Bdn,ρ : }∇fpθ̃nq}´1∇fpθ̃nqλ “ 0X un,j,θnpλq ď c, @j “ 1, . . . , J
(

.

Replace p1 with }∇fpθ̃nq}´1∇fpθ̃nq in all expressions involving the set Unpθn, ĉ
f
n,ρpθnqq, and replace p1 with }∇fpθnq1}´1∇fpθ1nq

in all expressions for the sets V In pθ
1
n, ĉ

f
npθ

1
nqq, and in all the almost sure representation counterparts of these sets.

Observe that we can select a convergent subsequence from t}∇fpθnq1}´1∇fpθ1nqu that converges to some p in the

unit sphere, so that the form of Wpcπ˚q in (E.17) is unchanged. This yields the result, noting that by the assumption

}∇fpθ̃nq ´∇fpθ1nq} “ OPpρ{
?
nq

D.2.2 A High Level Condition Replacing Assumption 4.3 and the ρ-Box Constraints

Next, we consider an assumption which is composed of two parts. The first part aims at informally mimicking

Assumption A.2 in Bugni, Canay, and Shi (2017) and replaces Assumption 4.3. The second part replaces the use

of the ρ-box constraints. Below, for a given set A Ă Rd, let }A}H “ supaPA }a} denote its Hausdorff norm.

Assumption D.1: Consider any sequence tPn, θnu P tpP, θq : P P P, θ P ΘIpP qu such that

κ´1
n

?
nγ1,Pn,jpθnq Ñ π1j P Rr´8s, j “ 1, . . . , J,

ΩPn
u
Ñ Ω,

DPnpθnq Ñ D.

Let π˚1j “ 0 if π1j “ 0 and π˚1j “ ´8 if π1j ă 0. Let Z be a Gaussian process with covariance kernel Ω. Let

wjpλq ” Zj ` ρDjλ` π
˚
1,j . (D.31)

(I) Let

Wpcq ”
 

λ P Bd
ρ : p1λ “ 0Xwjpλq ď c, @j “ 1, . . . , J

(

, (D.32)

cπ˚ ” inftc P R` : PrpWpcq ‰ Hq ě 1´ αu. (D.33)

Then:

(a) If cπ˚ ą 0, Pr pWpcq ‰ Hq is continuous and strictly increasing at c “ cπ˚ .

(b) If cπ˚ “ 0, lim infnÑ8 PnpUnpθn, 0q ‰ Hq ě 1´ α, where Unpθn, cq, c ě 0 is as in (D.25).

(II) Let

W̄pcq ”
 

λ P Rd : p1λ “ 0Xwjpλq ď c, @j “ 1, . . . , J
(

,

which differs from (D.32) by not constraining λ to Bd
ρ, and let c̄ ” Φ´1p1 ´ α{Jq denote the asymptotic

Bonferroni critical value. Then for every η ą 0 there exists Mη ă 8 s.t. Prp}W̄pc̄q}H ąMηq ď η.

D.2.3 Proof of Theorem 4.1 with High Level Assumption D.1-(I) Replacing Assumption

4.3, and Dropping the ρ-Box Constraints Under Assumption D.1-(II)

Lemma D.1: Suppose that Assumption 4.1, 4.2, 4.4 and 4.5 hold.
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(I) Let also Assumption D.1-(I) hold. Let 0 ă α ă 1{2. Then,

lim inf
nÑ8

inf
PPP

inf
θPΘIpP q

P pp1θ P CInq ě 1´ α.

(II) Let also Assumption D.1-(II) and either Assumption 4.3 or D.1-(I) hold. Let ĉn “ inftc P R` : P˚ptΛbnpθ,`8, cqX

tp1λ “ 0uu ‰ Hq ě 1 ´ αu, where Λbn is defined in equation (3.1) and CIn ” r´sp´p, Cnpĉnqq, spp, Cnpĉnqqs
with spq, Cnpĉnqq, q P tp,´pu defined in equation (2.5). Then

lim inf
nÑ8

inf
PPP

inf
θPΘIpP q

P pp1θ P CInq ě 1´ α.

Proof. We establish each part of the Lemma separately.

Part (I). This part of the lemma replaces Assumptions 4.3 with Assumption D.1-(I). Hence we establish the

result by showing that all claims that were made under Assumption 4.3 remain valid under Assumption D.1-(I).

We proceed in steps.

Step 1. Revisiting the proof of Lemma E.6, equation (E.133).

Let J ˚ be as defined in (E.29). If J ˚ “ H we immediately have that Lemma E.6 continues to hold. Hence we

assume that J ˚ ‰ H. To keep the notation simple, below we argue as if all j “ 1, . . . , J belong to J ˚.

Consider the case that cπ˚ ą 0. For some cπ˚ ą δ ą 0, let

Wpc´ δq ”
 

λ P Bd
ρ : p1λ “ 0Xwjpλq ď c´ δ, @j “ 1, . . . , J

(

, (D.34)

where we emphasize that the set Wpc´ δq is obtained by a δ-contraction of all constraints, including those indexed

by j “ J1 ` 1, . . . , J . By Assumption D.1-(I), for any η ą 0 there exists a δ such that

η ě |Pr pWpcπ˚q ‰ Hq ´ Pr pWpcπ˚ ´ δq ‰ Hq| “ Pr ptWpcπ˚q ‰ Hu X tWpcπ˚ ´ δq “ Huq ,

η ě |Pr pWpcπ˚ ` δq ‰ Hq ´ Pr pWpcπ˚q ‰ Hq| “ Pr ptWpcπ˚ ` δq ‰ Hu X tWpcπ˚q “ Huq .

The result follows.

Step 2. Revisiting the proof of Lemma E.2.

Case 1 of Lemma E.2 is unaltered. Case 2 of Lemma E.2 follows from the same argument as used in Case 1 of

Lemma E.2, because under Assumption D.1-(I) as shown in step 1 of this proof all inequalities are tightened. In

Case 3 of Lemma E.2 the result in (D.29) holds automatically by Assumption D.1-(I)-(ii). (As a remark, Lemmas

E.7-E.8 are no longer needed to establish Lemma E.2.)

Step 3. Revisiting the proof of Lemma E.3. Under Assumption D.1 we do not need to merge paired inequalities.

Hence, part (iii) of Lemma E.3 holds automatically because ϕ˚j pξq ď ϕjpξq for any j and ξ. We are left to establish

parts (i) and (ii) of Lemma E.3. These follow immediately, because Lemma E.6 remains valid as shown in step 1

and by Assumption D.1-(I), PrpWpcq ‰ Hq is strictly increasing at c “ cπ˚ if cπ˚ ą 0. (As a remark, Lemma E.9

is no longer needed to establish Lemma E.3.)

In summary, the desired result follows by applying Lemma E.1 in the proof of Theorem 4.1 as Lemmas E.2, E.3

and E.6 remain valid, Lemmas E.4, E.5, E.10 and the Lemmas in Appendix E.3 are unaffected, and Lemmas E.7,

E.8, E.9 are no longer needed.

Part (II). This is established by adapting the proof of Theorem 4.1 as follows:

In the main proof, we pass to an a.s. representation early on, so that W realizes jointly with other random

variables (we denote almost sure representations adding a superscript “˚” on the original variable). At the same
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time, we entirely drop ρ. This means that algebraic expressions, e.g. in the main proof, simplify as if ρ “ 1, but it

also removes any constraints along the lines of λ P Bdn,ρ in equation (D.9). Indeed, (D.9) is replaced by:

¨ ¨ ¨ ð

$

’

&

’

%

infλ p
1λ

s.t.λ P W̄˚pc̄q,

tG˚n,jpθn ` λ{
?
nq `DPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn ` λ{

?
nqq ď ĉnpθn ` λ{

?
nq,@j

,

/

.

/

-

ď 0

ď

$

’

&

’

%

supλ p
1λ

s.t.λ P W̄˚pc̄q,

tG˚n,jpθn ` λ{
?
nq `DPn,jpθ̄nqλ`

?
nγ1,Pn,jpθnqup1` ηn,jpθn ` λ{

?
nqq ď ĉnpθn ` λ{

?
nq,@j

,

/

.

/

-

,

yielding a new definition of the set U˚n as

U˚n pθn, cq ”
 

λ P W̄˚pc̄q : p1λ “ 0X u˚n,j,θnpλq ď c, @j “ 1, . . . , J
(

.

Subsequent uses of ρ in the main proof use that }λ} ď
?
dρ “ OPp1q. For example, consider the argument following

equation (E.30) or the argument just preceding equation (D.29), and so on. All these continue to go through because

W̄˚pc̄q “ Op1q by assumption.

Similar uses occur in Lemma E.1. The next major adaptation is that in (E.27) and (E.28): we again drop ρ

but nominally introduce the constraint that λ P W̄˚pc̄q. However, for c ď c̄, this condition cannot constrain W˚pcq,

and so we can as well drop it: The modified W˚pcq equals W̄˚pcq.

Next we argue that Lemma E.7 continues to hold, now claimed for W̄˚. To verify that this is the case, replace

Bd with W̄pc̄q throughout in Lemma E.7. This requires straightforward adaptation of algebra as W̄pc̄q is only

stochastically and not deterministically bounded.

Finally, in Lemma E.3 we remove the ρ-constraint from V bn and V In without replacement, and note that the

lemma is now claimed for θ1n P θ ` }W̄pc̄q}H{
?
nBd. Recall that in the lemma the a.s. representation of a set A is

denoted by Ã, and with some abuse of notation let the a.s. representation of W̄ be denoted ĂW̄. Now we compare

Ṽ bn and Ṽ In with ĂW̄. To ensure that λ is uniformly stochastically bounded in expressions like (E.95), we verify that

the modified Ṽ bn and Ṽ In inherit the property in Assumption D.1-(II). To see this, fix any unit vector t K p and

notice that any t “ λ{}λ} for λ P ĂW̄pcq or for λ P Ṽ bn pθ
1
n, cq or for λ P Ṽ In pθ

1
n, cq, 0 ă c ď c̄, satisfies this condition.

By Assumption D.1-(II) and the Cauchy-Schwarz inequality, max
λPĂW̄pcq

t1λ “ Op1q for any c ď c̄. Since the value

of this program is necessarily attained by a basic solution whose associated gradients span t, it must be the case

that such solution is itself Op1q. Formally, let C be the index set characterizing the solution, ZCi be the vector

of realizations Zji corresponding to j P C, and KCpθ1nq the matrix that stacks the corresponding gradients; then

pKCpθ1nqq
´1pc̄1 ´ ZCi q “ Op1q. By Lemma E.7 and the fact that D̂npθ

1
nq

P
Ñ D by Assumption 4.4, we then also

have that pK̂Cpθ1nqq
´1pc̄1´Gbn,jq “ OPp1q, and so for c ď c̄, V b is bounded in this same direction. It follows that,

by similar reasoning to the preceding paragraph, the comparison between V In pθ
1
n, cq and W̄pcq in Lemma E.3 goes

through.
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D.3 Proof of Theorems 4.3 and 4.4

D.3.1 Assumptions in Pakes, Porter, Ho, and Ishii (2011), Chernozhukov, Hong, and

Tamer (2007), and Bugni, Canay, and Shi (2017) That Allow for Simplifications

of the Method

We analyze calibrated projection under assumptions that are more stringent than for Theorem 4.1. The reward

is considerable computational simplification and, in some cases, removal of a tuning parameter. The additional

assumptions have been used in the related literature. Their logical relation to each other and to explicit constraint

qualifications is further analyzed in Kaido, Molinari, and Stoye (2017). For our purposes in this paper, we just state

without proof that, given Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5, all assumptions below, including the minorant

assumptions attributed to other papers, are implied by assumptions in Pakes, Porter, Ho, and Ishii (2011); hence,

all results reported below apply under the Pakes, Porter, Ho, and Ishii (2011) assumptions.47

For θ P BΘIpP q, denote by J pP, θq the set of inequalities j s.t. EP pmjpXi, θqq “ 0. Denote by N pP, θq the

positive span of pDP,jqjPJ pP,θq and by T pP, θq “ tt : D1P,jt ď 0, j P J pP, θqu the corresponding dual cone. (These

are the normal and tangent cones of ΘIpP q at θ.) For a given p P Rd : }p} “ 1, let spp,ΘIpP qq “ maxθPΘIpP q p
1θ

and Hpp,ΘIpP qq ” arg maxθPΘIpP q p
1θ.

Assumption D.2 (A weakening of Assumption 4(a) in Pakes, Porter, Ho, and Ishii (2011)): There is a class

of DGPs Q Ă P such that any P P Q satisfies the following conditions:

1. There exists a (universal) εD ą 0 s.t.

min
θPHpp,ΘIpP qq

min
}t}“1

max
jPt1,...,Ju:

EP pmjpXi,θq{σjpθqqą´εD

t1DP,jpθq ă ´εD.

2. There exists a (universal) εD ą 0 s.t.

max
θPHpp,ΘIpP qq

min
}t}“1

max
jPt1,...,Ju:

EP pmjpXi,θq{σjpθqqą´εD

t1DP,jpθq ă ´εD.

There are two layers to these assumptions. First, they say that from some support point (part (1)) or all support

points (part (2)), there are directions that point uniformly inside ΘIpP q in the sense of all moment inequalities

decreasing in value. The obvious counterexample would be an extremely pointy corner (a “spike”).

In addition, the assumptions apply to “tightened” tangent cones that use all inequalities which are almost

binding, where “almost” is operationalized with the small but positive constant εD. Together with smoothness of

moment conditions, this implies that, by moving a small (but boundedly nonzero) distance in the direction of steepest

descent from the support point, one can find a point θ at which maxj EP pmjpXi, θq{σjpθqq is boundedly negative.

This implies that the sample analog of ΘIpP q is nonempty with probability approaching 1 (the proof in Appendix

D.3.2 includes a formal version of this argument). In particular, it implies that a vestige of the “degeneracy”

assumption in Chernozhukov, Hong, and Tamer (2007) is imposed. Some invocations of the assumption strictly

speaking only use one of the two features (again, see Kaido, Molinari, and Stoye (2017) for details), but we do not

disentangle them here. Note, however, that the second implication renders the assumption implausible whenever

the sample analog of ΘIpP q is empty, an empirically frequent occurrence.

47Our own assumptions meaningfully exceed those of Pakes, Porter, Ho, and Ishii (2011) only through Assumption 4.3.
The absence of such an assumption in Pakes, Porter, Ho, and Ishii (2011) is actually an oversight, and ours or a similar
assumption must be added for their Theorem 2 to hold.
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Next, consider:

Assumption D.3 (Linear Minorant – Chernozhukov, Hong, and Tamer (2007) display (4.5)): There exist

universal constants C, δ ą 0 and a class of DGPs Q Ă P such that for each P P Q,

max
j“1,...,J

EP pmjpXi, θq{σjpθqq ě C min tδ, d pθ,ΘIpP qqu .

Assumption D.4 (Linear Minorant Along Support Plane – Bugni, Canay, and Shi (2017) Assumption A3(a)):

There exist universal constants C, δ ą 0 and a class of DGPs Q Ă P such that for each P P Q and for each

q P tp,´pu,

max
j“1,...,J

EP pmjpXi, θq{σjpθqq ě C min tδ, d pθ,Hpq,ΘIpP qqqu

for all θ with q1θ “ spq,ΘIpP qq.

These assumptions are lifted from the cited papers. In the original papers, they are polynomial minorant

conditions: The minima are raised to some power χ. However, for our setting and criterion function, the special

case χ “ 1 applies. Note also that Assumption D.4 is closely analogous to Assumption D.3 but imposes the

minorant condition on the “null restricted model” in which the parameter space is restricted to the true supporting

hyperplane of ΘIpP q. It is easy to see that the assumptions are logically independent.

A further strengthening of assumptions is:

Assumption D.5 (A Weakening of Assumption 3 in Pakes, Porter, Ho, and Ishii (2011)): There exists a

universal constant δ ą 0 and a class of DGPs Q Ă P such that for any P P Q and for each q P tp,´pu and any

θ P Hpq,ΘIpP qq, T pθq Ď tt : q1t{ }t} ď ´δu.

Note the implication that T pP, θq is uniformly pointy. The assumption is weaker than in Pakes, Porter, Ho,

and Ishii (2011) because they also assume ΘIpP q Ď T pθq and separately (although it is also an implication) that

Hpp,ΘIpP qq is a singleton.

Our final assumption gives a further strengthening by requiring the support set in direction of projection to be

a singleton:

Assumption D.6 (Assumption 1 in Pakes, Porter, Ho, and Ishii (2011)): There is a class of DGPs Q Ă P such

that for any P P Q and q P tp,´pu, Hpq,ΘIpP qq is a singleton. (Its sole element will be denoted θ˚q below.)

D.3.2 Proof of Theorem 4.3: Simplifications for Calibrated Projection

Part I

Let θ˚p attain the outer minimum in Assumption D.2-1, let t˚ attain the inner minimum given θ˚p , and consider

any η ď εD{2M , where εD is from Assumption D.2-1 and M is from Assumption 4.4(ii). Then a Mean Value

Theorem yields

EP pmjpXi, θ
˚
p ` ηt

˚qq

σP,jpθ˚p ` ηt
˚q

“
EP pmjpXi, θ

˚
p qq

σP,jpθ˚p q
` ηDPj pθ̄qt

˚

ď 0` ηpηM ´ εDq

ùñ max
j

EP pmjpXi, θ
˚
p ` ηt

˚qq

σP,jpθ˚p ` ηt
˚q

ď ´ηεD{2. (D.35)
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This will be used later but also implies

max
j

EP pmjpXi, θ
˚
p ` t

˚εD{2Mqq

σP,jpθ˚p ` t
˚εD{2Mq

ď ´ε2
D{4M ă 0 (D.36)

ùñ P

ˆ

max
j

m̄jpXi, θ
˚
p ` t

˚εD{2Mq

σ̂jpθ˚p ` t
˚εD{2Mqq

ă 0

˙

Ñ 1

ùñ P pθ˚p ` t
˚εD{2M P CInq Ñ 1

uniformly in Q. Hence, noncoverage risk for any γ P
“

´sp´p,ΘIpP qq, p
1pθ˚p ` t

˚εD{2Mq
‰

is entirely driven by the

possibility that CIn is too high, and conversely for γ P
“

p1pθ˚p ` t
˚εD{2M, spp,ΘIpP qqq

‰

. As these noncoverage risks

are monotonic in γ, the simplification is justified.

Part II

Note first that, as an immediate implication of D.36, the event that minθPΘ maxj |m̄n,jpθq{σ̂n,jpθq|` “ 0, hence

this value is attained on Θ̂I , occurs w.p.a. 1 uniformly in Q.

Next, we show that
?
npspp, Θ̂Iq ´ spp,ΘIpP qqq “ OQp1q. Define

Cp´εq “
"

θ P Θ : max
j“1,...,J

EP pmjpXi, θq{σP,jpθqq ď ´ε

*

.

Note that in this notation, ΘIpP q “ Cp0q. By (D.36) and because Cp´εq is closed by assumptions on mj , we have

that Hpp, Cp´εqq is nonempty for ε P r0, ε2
D{4M s. Next, consider any η ď εD{2M , then p1pθ˚p ` ηt˚q ě p1θ˚p ´ η,

which together with (D.35) implies

spp, Cp´ηεD{2qq ´ spp,ΘIq ě ´η.

Set ε “ ηεD{2, then equivalently we find that for ε ď ε2
D{4M , spp, Cp´εq´ spp,ΘIqq ě ´2ε{εD. Next, we have that

uniformly over θ P YεPr0,ε2D{4MsHpp, Cp´εqq,

?
nmax

j
|m̄n,jpθq{σ̂n,jpθq|` “ max

j

!

p1´ ηn,jpθqq
ˇ

ˇGn,jpθq `
?
nEP pmjpXi, θq{σP,jpθqq

ˇ

ˇ

`

)

ď
ÿ

j

p1´ ηn,jpθqq
ˇ

ˇGn,jpθq `
?
nEP pmjpXi, θq{σP,jpθqq

ˇ

ˇ

`

ď Jp1` oQp1qq
ˇ

ˇOQp1q ´
?
nε

ˇ

ˇ

`
,

so in analogy to CHT (Theorem 4.2, step 1 of proof) we find
?
n|spp, Θ̂Iq´spp,ΘIq|´ “ OQp1q. On the other hand,

from Assumption D.3 we have that uniformly over θ P Θ,

?
nmax

j
|m̄n,jpθq{σ̂n,jpθq|` “ max

j

!

p1´ ηn,jpθqq
ˇ

ˇGn,jpθq `
?
nEP pmjpXi, θq{σP,jpθqq

ˇ

ˇ

`

)

ě
1

J

J
ÿ

j“1

p1´ ηn,jpθqq
ˇ

ˇGn,jpθq `
?
nEP pmjpXi, θq{σP,jpθqq

ˇ

ˇ

`

ě
1

J

J
ÿ

j“1

p1` oQp1qq
ˇ

ˇOQp1q `
?
nC min tδ, dpθ,ΘIpP qqu

ˇ

ˇ

`
,

hence
?
n|spp, Θ̂Iq ´ spp,ΘIpP qq|` “ OQp1q.

We next argue that dpθ̂p, Hpp,ΘIpP qqq “ OQpn
´1{2q (the proof for dpθ̂´p, Hp´p,ΘIpP qqq is identical). To do

so, let k̂ ” spp,ΘIpP qq ´ spp, Θ̂Iq and define θ̃ “ θ̂p ` k̂p, noting that p1θ̃ “ spp,ΘIpP qq by construction and so
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Assumption D.4 applies to θ̃. Let θ̄ P Hpp,ΘIpP qq be such that dpθ̃, Hpp,ΘIpP qqq “ }θ̄ ´ θ̃}, then

d
´

θ̂p, Hpp,ΘIpP qq
¯

ď d
´

θ̂p, θ̃
¯

` d
´

θ̃, Hpp,ΘIpP qq
¯

ď

›

›

›
θ̂p ´ θ̃

›

›

›
`

›

›

›
θ̃ ´ θ̄

›

›

›
“

›

›

›
θ̃ ´ θ̄

›

›

›
` k̂.

We already have
?
nk̂ “ OQp1q, so it suffices to show

?
n|θ̃ ´ θ̄| “ OQp1q. Using Assumption D.4, we have

C min
!

δ, }θ̃ ´ θ̄}
)

ď max
j“1,...,J

#

EP pmjpXi, θ̃qq

σP,jpθ̃q

+

“ max
j“1,...,J

#

EP pmjpXi, θ̂pqq

σP,jpθ̂pq
` k̂DPj pθ̌jqp

+

ď max
j“1,...,J

#

EP pmjpXi, θ̂pqq

σP,jpθ̂pq

+

` max
j“1,...,J

!

k̂DPj pθ̌jqp
)

.

Here, the equality step uses that θ̃ “ θ̂p ` k̂p and introduces θ̌j , which lies componentwise between θ̃ and θ̂p. In

the last line, the first term equals 0 w.p.a. 1 because θ̂p P Θ̂I , and the second term is bounded by k̂M̄ , hence the

result. To justify Simplification 2, combine the above algebra with the following observations:

(i) For a sequence Pn P Q, coverage of p1θ for some θ P Hpp,ΘIpPnqq implies coverage of spp,ΘIpPnqq. In

the proof of Theorem 4.1, starting with display D.7, it therefore suffices to show the claim for some, possibly

data dependent, sequence θn P Hpp,ΘIpPnqq, and then again (in case of two-sided testing) for a sequence θn P

Hp´p,ΘIpPnqq.

(ii) All proofs go through if coverage is evaluated at θn but DP,j and Gn,j are estimated at some θ̂n,p “

θn `OQpn
´1{2q. To give one example, Assumption 4.4 implies that }D̂n,jpθ̂n,pq ´DPn,jpθnq} “ oQp1q.

Part III

This is established by showing that Assumption D.1-(II) is implied. Thus, let W be as in (D.32). Because the

marginals of Z are standard normal, for any η ą 0 we have the Bonferroni bounds

Pr pWpc̄q Ď Lηq ě 1´ η,

where

Lη “

"

λ P Rd : p1λ “ 0Xmax
j

 

Φ´1pη{Jq `DPjλ
(

ď c̄

*

“

"

λ P Rd : p1λ “ 0Xmax
j
DPjλ ď c̄` Φ´1p1´ η{Jq

*

.

It remains to bound }Lη}H “ max t}λ} : λ P Lηu. To do so, we show below that

p1λ “ 0 ñ max
j

 

DPjλ{ }λ}
(

ě

a

1` δ̄2 ´ 1
a

1` δ̄2 ` 1
loooooomoooooon

“:a

εD, (D.37)

where δ̄ is from Assumption D.5 and εD is from Assumption D.2. Solving (D.37) for }λ} and inspecting the definition

of Lη yields

max t}λ} : λ P Lηu ď
c̄` Φ´1p1´ η{Jq

aεD

and therefore an Op1q upper bound on }Wpc̄q}. It remains to show (D.37). Suppose by contradiction that

maxj tDjλ{ }λ}u ă aεD. Let the unit vector t˚ achieve the minimum from Assumption D.2-2, then maxj tDjpλ{ }λ} ` dt
˚qu ă
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0 and therefore t ” λ{ }λ} ` dt˚ P T . We compute

λ1t

}λ} }t}
“

λ1
´

λ
}λ} ` at

˚

¯

}λ}
›

›

›

λ
}λ} ` at

˚

›

›

›

“
1` aλ

1t˚

}λ}
›

›

›

λ
}λ} ` at

˚

›

›

›

ą
1´ a

1` a
“ 1{

a

1` δ̄2,

where the inequality is strict because λ ‰ t˚. We conclude that maxtPT
λ1t
}λ}}t} ą 1{

a

1` δ̄2. In particular, if λ̂ is

the projection of λ onto T , then λ1λ̂
}λ}}λ̂}

ą 1{
a

1` δ̄2.48

However, we also have p1λ̂{}λ̂} ď ´δ̄ by Assumption D.5. It follows that p1pλ ´ λ̂q{}λ̂} ě δ̄, hence }λ ´ λ̂}2 ě

δ̄2}λ̂}2 by Cauchy-Schwarz (recall p is a unit vector). But also }λ´ λ̂}2 ` }λ̂}2 “ }λ}2. Simple algebra then yields

}λ̂}{}λ} ď 1{
a

1` δ̄2. But }λ̂}{}λ} is also the cosine of the angle formed by λ and λ̂. Thus, λ1λ̂
}λ}}λ̂}

ď 1{
a

1` δ̄2, a

contradiction.49

D.3.3 Proof of Theorem 4.4: Asymptotic Equivalence with BCS-Profiling in Well-Behaved

Cases

Recall that under this Theorem’s assumptions, Hpp,ΘIq is a singleton tθ˚p u whose element is
?
n-consistently

estimated by a sample analog θ̂p. We restrict attention to s ě p1pθ˚p ` t
˚εD{2Mq, where terms are as in the proof of

Theorem 4.3-(I). The proof for s ă p1pθ˚p ` t
˚εD{2Mq is analogous. Similarly to earlier proofs, consider a sequence

pPn, snq that asymptotically minimizes the probability from the Theorem. If
?
npsn ´ spp,ΘIpPnqqq Ñ 8, then

minp1θ“sn Tnpθq Ñ 8 by arguments in the proof of Theorem 4.3-(II), and the conclusion obtains because both

indicator functions vanish. Similarly, if
?
npsn ´ spp,ΘIpPnqqq Ñ ´8, then both indicator functions equal 1 with

probability approaching 1 (indeed, recall the sample support function is
?
n-consistent). It remains to analyze the

case where
?
npsn ´ spp,ΘIpPnqqq “ OQp1q.

Recalling that no ρ-box is used, ĉnpθ̂pq is the p1´ αq quantile of

T bn “ min
p1λ“0

max
j

!

Gbn,jpθ̂pq ` κ´1
n

?
n
ˇ

ˇm̄n,jpθ̂pq{σ̂n,jpθ̂pq
ˇ

ˇ

´
` D̂n,jpθ̂pqλ

)

p1q
“ min

p1λ“0
max
j

!

Gbn,jpθ̂pq ` κ´1
n

?
nEP

ˇ

ˇmjpXi, θ̂pq{σP,jpθ̂pq
ˇ

ˇ

´
` D̂n,jpθ̂pqλ

)

` oQp1q

p2q
“ min

p1λ“0
max
j

!

Gbn,jpθ˚p q ` κ´1
n

?
nEP

ˇ

ˇmjpXi, θ
˚
p q{σP,jpθ

˚
p q
ˇ

ˇ

´
`Dn,jpθ

˚
p qλ

)

` oQp1q,

Here, (1) uses Lemma E.5-(iii). Step (2) uses that by Theorem 4.3-(III), the values of λ solving the optimization

problems are OQp1q; by 4.3-(II),
?
npθ̂p ´ θ

˚
p q “ OQp1q; and smoothness conditions as well as consistent estimation

of gradients. These jointly imply that |D̂n,jpθ̂pqλ´Dn,jpθ
˚
p qλ| “ oQp1q uniformly over the relevant range of λ.

To compare BCS-profiling, let θ̂p,sn be the selection from arg minp1θ“sn |m̄n,jpθq{σ̂n,jpθq|` that solves the prob-

lem in the definition of TDRn psnq below. Arguments very similar to Theorem 4.3-(II) imply that
?
npθ̂p,sn ´ θ

˚
p q “

48Verbally, if λ is near tangential to all constraints, it is near tangential to T . The counterexample to this would be a
“spike,” which is excluded by Assumption D.2-2.

49Verbally, if p1λ “ 0, then λ cannot be near tangential to T because of the “pointy cone” assumption D.5, yielding a
contradiction.
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OQp1q. We can use this, again Lemma E.5-(iii), and smoothness conditions to write

TDRn psnq “ min
θ

max
j

 

Gbn,jpθq ` κ´1
n

?
n |m̄n,jpθq{σ̂n,jpθq|´

(

s.t. θ P arg min
p1θ“sn

max
j
|m̄n,jpθq{σ̂n,jpθq|`

“ max
j

!

Gbn,jpθ̂p,snq ` κ´1
n

?
n
ˇ

ˇm̄n,jpθ̂p,snq{σ̂n,jpθ̂p,snq
ˇ

ˇ

´

)

“ max
j

!

Gbn,jpθ̂p,snq ` κ´1
n

?
nEP

ˇ

ˇmjpXi, θ̂p,snq{σP,jpθ̂p,snq
ˇ

ˇ

´

)

` oQp1q

“ max
j

!

Gbn,jpθ˚p q ` κ´1
n

?
nEP

ˇ

ˇmjpXi, θ
˚
p q{σP,jpθ

˚
p q
ˇ

ˇ

´

)

` oQp1q.

Next,

TPRn psnq “ min
θPΘ:p1θ“sn

max
j

 

Gbn,jpθq ` κ´1
n

?
nm̄n,jpθq{σ̂n,jpθq

(

p1q
“ min

θPΘ:p1θ“sn
max
j

 

Gbn,jpθq ` κ´1
n

?
nEP pmjpXi, θq{σP,jpθqq

˘

u ` oQp1q

p2q
“ min

θPΘ:p1θ“spp,ΘIq
max
j

 

Gbn,jpθq ` κ´1
n

?
nEP pmjpXi, θq{σP,jpθqq

˘

u ` oQp1q

p3q
“ min

p1λ“0
max
j

!

Gbn,jpθ˚p ` λκnn´1{2q ` κ´1
n

?
nEP

`

mjpXi, θ
˚
p ` λκnn

´1{2q{σP,jpθ
˚
p ` λκnn

´1{2q
˘

)

` oQp1q

p4q
“ min

p1λ“0
max
j

 

Gbn,jpθ˚p q ` κ´1
n

?
nEP

`

mjpXi, θ
˚
p q{σP,jpθ

˚
p q
˘

`DP,jpθ
˚
p qλ

(

` oQp1q

p5q
“ min

p1λ“0
max
j

!

Gbn,jpθ˚p q ` κ´1
n

?
nEP

ˇ

ˇmjpXi, θ
˚
p q{σP,jpθ

˚
p q
ˇ

ˇ

´
`DP,jpθ

˚
p qλ

)

` oQp1q

Here, (1) uses Lemma E.5-(iii). The first crucial step is (2), which uses that the distance between the hyperplanes

tp1θ “ snu and tp1θ “ spΘI , pqu is of order OQpn
´1{2q, together with smoothness conditions. Step (3) reparam-

eterizes θ “ θ˚p ` λκnn
´1{2. Crucially, BCS prove that the λ solving the problem is OQp1q. This means the

problem can be uniformly linearized, justifying step (4). Step (4) also observes cancellation of factors multiplying

DP,jpθ
˚
p qλ. Step (5) uses that θ˚p P ΘI . Finally, Assumption 4.3 ensures that the true distribution of Tn, as well as

the above approximations, are of order OQp1q. We conclude that TPRn psnq asymptotically agrees with, and TDRn psnq

asymptotically dominates, T bn.

Appendix E Auxiliary Lemmas

E.1 Lemmas Used to Prove Theorems 4.1 and 4.2

Throughout this Appendix, we let pPn, θnq P tpP, θq : P P P, θ P ΘIpP qu be a subsequence as defined in the proof

of Theorem 4.1. That is, along pPn, θnq, one has

κ´1
n

?
nγ1,Pn,jpθnq Ñ π1j P Rr´8s, j “ 1, . . . , J, (E.1)

ΩPn
u
Ñ Ω, (E.2)

DPnpθnq Ñ D. (E.3)

Fix c ě 0. For each λ P Rd and θ P pθn ` ρ{
?
nBdq XΘ, let

wjpλq ” Zj ` ρDjλ` π
˚
1,j , (E.4)
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where π˚1,j is defined in (D.5) and we used Lemma E.5. Under Assumption 4.3-(II) if

π˚1,j “ 0 “ π˚1,j`R1
, (E.5)

we replace the constraints

Zj ` ρDjλ ď c, (E.6)

Zj`R1
` ρDj`R1

λ ď c, (E.7)

with

µjpθqtZj ` ρDjλu ´ µj`R1
pθqtZj`R1

` ρDj`R1
λu ď c, (E.8)

´µjpθqtZj ` ρDjλu ` µj`R1pθqtZj`R1 ` ρDj`R1λu ď c, (E.9)

where

µjpθq “

#

1 if γ1,Pn,jpθq “ 0 “ γ1,Pn,j`R1
pθq,

γ1,Pn,j`R1
pθq

γ1,Pn,j`R1
pθq`γ1,Pn,jpθq

otherwise,
(E.10)

µj`R1
pθq “

#

0 if γ1,Pn,jpθq “ 0 “ γ1,Pn,j`R1
pθq,

γ1,Pn,jpθq
γ1,Pn,j`R1

pθq`γ1,Pn,jpθq
otherwise,

(E.11)

When Assumption 4.3-(II) is invoked with hard-threshold GMS, replace constraints j and j`R1 in the definition

of Λbnpθ
1
n, ρ, cq, θ

1
n P pθn` ρ{

?
nBdq XΘ in equation (3.1) as described on p.14 of the paper; when it is invoked with

a GMS function ϕ that is smooth in its argument, replace them, respectively, with

µ̂n,jpθ
1
nqtGbn,jpθ1nq ` D̂n,jpθ

1
nqλu ´ µ̂n,j`R1pθ

1
nqtGbn,j`R1

pθ1nq ` D̂n,j`R1pθ
1
nqλu ` ϕjpξ̂n,jpθ

1
nqq ď c, (E.12)

´µ̂n,jpθ
1
nqtGbn,jpθ1nq ` D̂n,jpθ

1
nqλu ` µ̂n,j`R1

pθ1nqtGbn,j`R1
pθ1nq ` D̂n,j`R1

pθ1nqλu ` ϕj`R1
pξ̂n,j`R1

pθ1nqq ď c, (E.13)

where

µ̂n,j`R1pθ
1
nq “ min

$

&

%

max

¨

˝0,

m̄n,jpθ
1
nq

σ̂n,jpθ1nq

m̄n,j`R1
pθ1nq

σ̂n,j`R1
pθ1nq

`
m̄n,jpθ1nq
σ̂n,jpθ1nq

˛

‚, 1

,

.

-

, (E.14)

µ̂n,jpθ
1
nq “ 1´ µ̂n,j`R1pθ

1
nq. (E.15)

Let Bd
ρ “ limnÑ8B

d
n,ρ. Let the intersection of tλ P Bd

ρ : p1λ “ 0u with the level set associated with the so

defined function wjpλq be

Wpcq ”
 

λ P Bd
ρ : p1λ “ 0Xwjpλq ď c, @j “ 1, . . . , J

(

. (E.16)

Due to the substitutions in equations (E.6)-(E.9), the paired inequalities (i.e., inequalities for which (E.5) holds

under Assumption 4.3-(II)) are now genuine equalities relaxed by c. With some abuse of notation, we index them

among the j “ J1 ` 1, . . . , J . With that convention, for given δ P R, define

Wδpcq ”
 

λ P Bd
ρ : p1λ “ 0Xwjpλq ď c` δ, @j “ 1, . . . , J1,

Xwjpλq ď c, @j “ J1 ` 1, . . . , J
(

. (E.17)
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Define the pJ ` 2d` 2q ˆ d matrix

KP pθ, ρq ”

»

—

—

—

—

—

—

—

—

–

rρDP,jpθqs
J1`J2
j“1

r´ρDP,j´J2
pθqsJj“J1`J2`1

Id

´Id

p1

´p1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (E.18)

Given a square matrix A, we let eigpAq denote its smallest eigenvalue. In all Lemmas below, we assume α ă 1{2.

Lemma E.1: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let tPn, θnu be a sequence such that Pn P P and

θn P ΘIpPnq for all n and κ´1
n

?
nγ1,Pn,jpθnq Ñ π1j P Rr´8s, j “ 1, . . . , J, ΩPn

u
Ñ Ω, and DPnpθnq Ñ D. Then,

lim inf
nÑ8

Pn pUnpθn, ĉn,ρq ‰ Hq ě 1´ α. (E.19)

Proof. We consider a subsequence along which lim infnÑ8 PnpUnpθn, ĉn,ρ ‰ Hq is achieved as a limit. For notational

simplicity, we use tnu for this subsequence below.

Below, we construct a sequence of critical values such that

ĉnpθ
1
nq ě cInpθ

1
nq ` oPnp1q, (E.20)

and cInpθ
1
nq

Pn
Ñ cπ˚ for any θ1n P pθn`ρ{

?
nBdqXΘ. The construction is as follows. When cπ˚ “ 0, let cInpθ

1
nq “ 0 for

all θ1n P pθn ` ρ{
?
nBdq XΘ, and hence cInpθ

1
nq

Pn
Ñ cπ˚ . If cπ˚ ą 0, let cInpθnq ” inftc P R` : P˚n pV

I
n pθn, cqq ě 1´αu,

where V In is defined as in Lemma E.3. By Lemma E.3 (iii), this critical value sequence satisfies (E.20) with

probability approaching 1. Further, by Lemma E.3 (ii), cInpθ
1
nq

Pn
Ñ cπ˚ for any θ1n P pθn ` ρ{

?
nBdq XΘ.

For each θ P Θ, let

cIn,ρpθq ” inf
λPBdn,ρ

cInpθ `
λρ
?
n
q. (E.21)

Since the oPnp1q term in (E.20) does not affect the argument below, we redefine cIn,ρpθnq as cIn,ρpθnq ` oPnp1q. By

(E.20) and simple addition and subtraction,

Pn

´

Unpθn, ĉn,ρpθnqq ‰ H
¯

ě Pn

´

Unpθn, c
I
n,ρpθnqq ‰ H

¯

“ PrpWpcπ˚q ‰ Hq `
”

Pn

´

Unpθn, c
I
n,ρpθnqq ‰ H

¯

´ Pr
´

Wpcπ˚q ‰ H
¯ı

. (E.22)

As previously argued, Gnpθn ` λρ
?
n
q
d
Ñ Z. Moreover, by Lemma E.10, supθPΘ }ηnpθq}

p
Ñ 0 uniformly in P, and by

Lemma E.3, cIn,ρpθnq
p
Ñ cπ˚ . Therefore, uniformly in λ P Bd, the sequence tpGnpθn ` λρ

?
n
q, ηnpθn `

λρ
?
n
q, cIn,ρpθnqqu

satisfies

pGnpθn `
λρ
?
n
q, ηnpθn `

λρ
?
n
q, cIn,ρpθnqq

d
Ñ pZ, 0, cπ˚q. (E.23)

In what follows, using Lemma 1.10.4 in van der Vaart and Wellner (2000) we take pG˚npθn `
λρ
?
n
q, η˚n, c

˚
nq to be the

almost sure representation of pGnpθn` λρ
?
n
q, ηnpθn`

λρ
?
n
q, cIn,ρpθnqq defined on some probability space pΩ,F ,Pq such

that pG˚npθn `
λρ
?
n
q, η˚n, c

˚
nq

a.s.
Ñ pZ˚, 0, cπ˚q, where Z˚ d

“ Z.
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For each λ P Rd, we define analogs to the quantities in (D.24) and (E.4) as

u˚n,j,θnpλq ” tG
˚
n,jpθn `

λρ
?
n
q ` ρDPn,jpθ̄nqλ` π

˚
1,jup1` η

˚
n,jq, (E.24)

w˚j pλq ” Z˚j ` ρDjλ` π
˚
1,j . (E.25)

where we used that by Lemma E.5, κ´1
n

?
nγ1,P,jpθnq´κ

´1
n

?
nγ1,P,jpθ

1
nq “ op1q uniformly over θ1n P pθn`ρ{

?
nBdqXΘ

and therefore π˚1,j is constant over this neighborhood, and we applied a similar replacement as described in equations

(E.6)-(E.9) for the case that π˚1,j “ 0 “ π˚1,j`R1
. Similarly, we define analogs to the sets in (D.25) and (E.16) as

U˚n pθn, c
˚
nq ”

 

λ P Bdn,ρ : p1λ “ 0X u˚n,j,θnpλq ď c˚n, @j “ 1, . . . , J
(

, (E.26)

W˚pcπ˚q ”
 

λ P Bd
ρ : p1λ “ 0Xw˚j pλq ď cπ˚ , @j “ 1, . . . , J

(

. (E.27)

It then follows that equation (E.22) can be rewritten as

Pn

´

Unpθn, ĉn,ρpθnqq ‰ H
¯

ě PpW˚pcπ˚q ‰ Hq `
”

P
´

U˚n pθn, c
˚
nq ‰ H

¯

´P
´

W˚pcπ˚q ‰ H
¯ı

. (E.28)

By the definition of cπ˚ , we have PpW˚pcπ˚q ‰ Hq ě 1 ´ α. Therefore, we are left to show that the second term

on the right hand side of (E.28) tends to 0 as nÑ8.

Define

J ˚ ” tj “ 1, ¨ ¨ ¨ , J : π˚1,j “ 0u. (E.29)

Case 1. Suppose first that J ˚ “ H, which implies J2 “ 0 and π˚1,j “ ´8 for all j. Then we have

U˚n pθn, c
˚
nq “ tλ P B

d
n,ρ : p1λ “ 0u, W˚pcπ˚q “ tλ P B

d
ρ : p1λ “ 0u, (E.30)

with probability 1, and hence

P
´

tU˚n pθn, c
˚
nq ‰ Hu X tW

˚pcπ˚q ‰ Hu
¯

“ 1. (E.31)

This in turn implies that
ˇ

ˇ

ˇ
P
´

U˚n pθn, c
˚
nq ‰ Hu

¯

´P
´

W˚pcπ˚q ‰ Hu
¯
ˇ

ˇ

ˇ
“ 0, (E.32)

where we used |PpAq ´PpBq| ď PpA∆Bq ď 1´PpAXBq for any pair of events A and B. Hence, the term in the

square brackets in (E.28) is 0.

Case 2. Now consider the case that J ˚ ‰ H. We show that the term in the square brackets in (E.28) converges

to 0. To that end, note that for any events A,B,
ˇ

ˇ

ˇ
PpA ‰ Hq ´PpB ‰ Hq

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
PptA “ Hu X tB ‰ Huq `PptA ‰ Hu X tB “ Huq

ˇ

ˇ

ˇ
(E.33)

Hence, we aim to establish that for A “ U˚n pθn, c
˚
nq, B “W˚pcπ˚q, the right hand side of equation (E.33) converges

to zero. But this is guaranteed by Lemma E.2. Therefore, the conclusion of the lemma follows.

Lemma E.2: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let pPn, θnq have the almost sure representations

given in Lemma E.1, and let J ˚ be defined as in (E.29). Assume that J ˚ ‰ H. Then for any η ą 0, there exists

N P N such that

P
´

tU˚n pθn, c
˚
nq ‰ Hu X tW

˚pcπ˚q “ Hu
¯

ď η{2, (E.34)

P
´

tU˚n pθn, c
˚
nq “ Hu X tW

˚pcπ˚q ‰ Hu
¯

ď η{2, (E.35)
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for all n ě N , where the sets in the above expressions are defined in equations (E.26) and (E.27).

Proof. We begin by observing that for j R J ˚, π˚1,j “ ´8, and therefore the corresponding inequalities

ˆ

G˚n,jpθn `
λρ
?
n
q ` ρDPn,jpθ̄nqλ` π

˚
1,j

˙

p1` η˚n,jq ď c˚n,

Z˚j ` ρDjλ` π
˚
1,j ď cπ˚

are satisfied with probability approaching one by similar arguments as in (D.20). Hence, we can redefine the sets

of interest as

U˚n pθn, c
˚
nq ”

 

λ P Bdn,ρ : p1λ “ 0X u˚n,j,θnpλq ď c˚n, @j P J ˚
(

, (E.36)

W˚pcπ˚q ”
 

λ P Bd
ρ : p1λ “ 0Xw˚j pλq ď cπ˚ , @j P J ˚

(

. (E.37)

We first show (E.34). For this, we start by defining the events

An ”

"

sup
λPBd

max
jPJ˚

ˇ

ˇpu˚n,j,θnpλq ´ c
˚
nq ´ pw

˚
j pλq ´ cπ˚q

ˇ

ˇ ě δ

*

. (E.38)

By Lemma E.4, using the assumption that J ˚ ‰ H, for any η ą 0 there exists N P N such that

PpAnq ă η{2, @n ě N. (E.39)

Define the sets of λs, U˚,`δn and W˚,`δ by relaxing the constraints shaping U˚n and W˚ by δ:

U˚,`δn pθn, cq ” tλ P B
d
n,ρ : p1λ “ 0X u˚n,j,θnpλq ď c` δ, j P J ˚u, (E.40)

W˚,`δpcq ” tλ P Bd
ρ : p1λ “ 0Xw˚j pλq ď c` δ, j P J ˚u. (E.41)

Compared to the set in equation (E.17), here we replace u˚n,j,θnpλq for un,j,θnpλq and w˚j pλq for wjpλq, we retain

only constraints in J ˚, and we relax all such constraints by δ ą 0 instead of relaxing only those in t1, . . . , J1u.

Next, define the event Ln ” tU
˚
n pθn, c

˚
nq ĂW˚,`δpcπ˚qu and note that Acn Ď Ln.

We may then bound the left hand side of (E.34) as

P
´

tU˚n pθn, c
˚
nq ‰ Hu X tW

˚pcπ˚q “ Hu
¯

ď P
´

tU˚n pθn, c
˚
nq ‰ Hu X tW

˚,`δpcπ˚q “ Hu
¯

`P
´

tW˚,`δpcπ˚q ‰ Hu X tW
˚pcπ˚q “ Hu

¯

, (E.42)

where we used P pA X Bq ď P pA X Cq ` P pB X Ccq for any events A,B, and C. The first term on the right hand

side of (E.42) can further be bounded as

P
´

tU˚n pθn, c
˚
nq ‰ Hu X tW

˚,`δpcπ˚q “ Hu
¯

ď P
´

tU˚n pθn, c
˚
nq ĘW˚,`δpcπ˚qu

¯

“ PpLcnq ď PpAnq ă η{2, @n ě N , (E.43)

where the penultimate inequality follows from Acn Ď Ln as argued above, and the last inequality follows from (E.39).

For the second term on the left hand side of (E.42), by Lemma E.6, there exists N 1 P N such that

P
´

tW˚,`δpcπ˚q ‰ Hu X tW
˚pcπ˚q “ Hu

¯

ď η{2, @n ě N 1. (E.44)

Hence, (E.34) follows from (E.42), (E.43), and (E.44).

To establish (E.35), we distinguish three cases.
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Case 1. Suppose first that J2 “ 0 (recalling that under Assumption 4.3-(II) this means that there is no j “ 1, . . . , R1

such that π˚1,j “ 0 “ π˚1,j`R1
), and hence one has only moment inequalities. In this case, by (E.36) and (E.37), one

may write

U˚n pθn, cq ”
 

λ P Bdn,ρ : p1λ “ 0X u˚n,j,θnpλq ď c, j P J ˚
(

, (E.45)

W˚,´δpcq ”
 

λ P Bd
ρ : p1λ “ 0Xw˚j pλq ď c´ δ, j P J ˚

(

, (E.46)

where W˚,´δ, δ ą 0, is obtained by tightening the inequality constraints shaping W˚. Define the event

R2n ” tW
˚,´δpcπ˚q Ă U˚n pθn, c

˚
nqu, (E.47)

and note that Acn Ď R2n. The result in equation (E.35) then follows by Lemma E.6 using again similar steps to

(E.42)-(E.44).

Case 2. Next suppose that J2 ě d. In this case, we define W˚,´δ to be the set obtained by tightening by δ the

inequality constraints as well as each of the two opposing inequalities obtained from the equality constraints. That

is,

W˚,´δpcπ˚q ” tλ P B
d
ρ : p1λ “ 0Xw˚j pλq ď c´ δ, j P J ˚u, (E.48)

that is, the same set as in (E.133) with w˚j pλq replacing wjpλq and defining the set using only inequalities in J ˚.

Note that, by Lemma E.8, there exists N P N such that for all n ě N cInpθq is bounded from below by some c ą 0

with probability approaching one uniformly in P P P and θ P ΘIpP q. This ensures cπ˚ is bounded from below

by c ą 0. This in turn allows us to construct a non-empty tightened constraint set with probability approaching

1. Namely, for δ ă c, W˚,´δpcπ˚q is nonempty with probability approaching 1 by Lemma E.6, and hence its

superset W˚pcπ˚q is also non-empty with probability approaching 1. However, note that Acn Ď R2n, where R2n is

in (E.47) now defined using the tightened constraint set W˚,´δpcπ˚q being defined as in (E.48), and therefore the

same argument as in the previous case applies.

Case 3. Finally, suppose that 1 ď J2 ă d. Recall that, with probability 1 (under P),

cπ˚ “ lim
nÑ8

c˚n, (E.49)

and note that by construction cπ˚ ě 0. Consider first the case that cπ˚ ą 0. Then, by taking δ ă cπ˚ , the argument

in Case 2 applies.

Next consider the case that cπ˚ “ 0. Observe that

P
´

tU˚n pθn, c
˚
nq “ Hu X tW

˚pcπ˚q ‰ Hu
¯

ď P
´

tU˚n pθn, c
˚
nq “ Hu X tW

˚,´δp0q ‰ Hu
¯

`P
´

tW˚,´δp0q “ Hu X tW˚p0q ‰ Hu
¯

, (E.50)

with W˚,´δp0q defined as in (E.17) with c “ 0 and with w˚j pλq replacing wjpλq. By Lemma E.6, for any η ą 0 there

exists δ ą 0 and N P N such that

P
´

tW˚,´δp0q “ Hu X tW˚p0q ‰ Hu
¯

ă η{3 @n ě N. (E.51)

Therefore, the second term on the right hand side of (E.50) can be made arbitrarily small.
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We now consider the first term on the right hand side of (E.50). Let g be a J ` 2d` 2 vector with

gj “

$

’

’

’

&

’

’

’

%

´Zj , j P J ˚,
0, j P t1, ¨ ¨ ¨ , JuzJ ˚,
1, j “ J ` 1, . . . , J ` 2d,

0, j “ J ` 2d` 1, J ` 2d` 2,

(E.52)

where we used that π˚1,j “ 0 for j P J ˚ and where the last assignment is without loss of generality because of the

considerations leading to the sets in (E.36)-(E.37).

For a given set C Ă t1, . . . , J ` 2d ` 2u, let the vector gC collect the entries of gC corresponding to indices in

C. Let

K ”

»

—

—

—

—

—

—

—

—

–

rρDjs
J1`J2
j“1

r´ρDj´J2s
J
j“J1`J2`1

Id

´Id

p1

´p1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (E.53)

Let the matrix KC collect the rows of K corresponding to indices in C.

Let rC collect all size d subsets C of t1, ..., J ` 2d` 2u ordered lexicographically by their smallest, then second

smallest, etc. elements. Let the random variable C equal the first element of rC s.t. detKC ‰ 0 and λC “

pKCq´1gC PW˚,´δp0q if such an element exists; else, let C “ tJ ` 1, ..., J ` du and λC “ 1d, where 1d denotes a d

vector with each entry equal to 1. Recall that W˚,´δp0q is a (possibly empty) measurable random polyhedron in

a compact subset of Rd, see, e.g., Molchanov (2005, Definition 1.1.1). Thus, if W˚,´δp0q ‰ H, then W˚,´δp0q has

extreme points, each of which is characterized as the intersection of d (not necessarily unique) linearly independent

constraints interpreted as equalities. Therefore, W˚,´δp0q ‰ H implies that λC PW˚,´δp0q and therefore also that

C Ă J ˚YtJ ` 1, . . . , J ` 2d` 2u. Note that the associated random vector λC is a measurable selection of a random

closed set that equals W˚,´δp0q if W˚,´δp0q ‰ H and equals Bd
ρ otherwise, see, e.g., Molchanov (2005, Definition

1.2.2).

Lemma E.7 establishes that for any η ą 0, there exist εη ą 0 and N s.t. n ě N implies

P
`

W˚,´δp0q ‰ H,
ˇ

ˇdetKC ˇ
ˇ ď εη

˘

ď η, (E.54)

which in turn, given our definition of C, yields that there is M ą 0 and N such that

P
´

ˇ

ˇdet
`

KC˘´1 ˇ
ˇ ďM

¯

ě 1´ η, @n ě N. (E.55)

Let gn be a J ` 2d` 2 vector with

gn,jpθ ` λ{
?
nq ”

$

’

’

’

’

&

’

’

’

’

%

c˚n{p1` η
˚
n,jq ´G˚n,jpθ `

λρ
?
n
q if j P J ˚,

0, if j P t1, ¨ ¨ ¨ , JuzJ ˚,
1, if j “ J ` 1, . . . , J ` 2d,

0, if j “ J ` 2d` 1, J ` 2d` 2,

(E.56)
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using again that π˚1,j “ 0 for j P J ˚. For each P P P, let

KP pθ, ρq ”

»

—

—

—

—

—

—

—

—

–

rρDP,jpθqs
J1`J2
j“1

r´ρDP,j´J2
pθqsJj“J1`J2`1

Id

´Id

p1

´p1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (E.57)

For each n and λ P Bd, define the mapping φn : Bd Ñ Rd
r˘8s

by

φnpλq ”
`

KC
Pnpθ̄pθn, λq, ρq

˘´1
gCnpθn `

λρ
?
n
q, (E.58)

where the notation θ̄pθn, λq emphasizes that θ̄ depends on θn and λ because it lies component-wise between θn and

θn `
λρ
?
n

. We show that φn is a contraction mapping and hence has a fixed point.

For any λ, λ1 P Bd write

}φnpλq ´ φnpλ
1q} “

›

›

›

`

KC
Pnpθ̄pθn, λq, ρq

˘´1
gCnpθn `

λρ
?
n
q ´

`

KC
Pnpθ̄pθn, λ

1q, ρq
˘´1

gCnpθn `
λ1ρ
?
n
q

›

›

›

ď

›

›

›

`

KC
Pnpθ̄pθn, λq, ρq

˘´1
›

›

›

2

›

›

›
gCnpθn `

λρ
?
n
q ´ gCnpθn `

λ1ρ
?
n
q

›

›

›

`

›

›

›

`

KC
Pnpθ̄pθn, λq, ρq

˘´1
´
`

KC
Pnpθ̄pθn, λ

1q, ρq
˘´1

›

›

›

2

›

›

›
gCnpθn `

λ1ρ
?
n
q

›

›

›
, (E.59)

where } ¨ }2 denotes the spectral norm (induced by the Euclidean norm).

By Assumption 4.5 (ii), for any η ą 0, k ą 0, there is N P N such that

P

ˆ
›

›

›

›

gCnpθn `
λρ
?
n
q ´ gCnpθn `

λ1ρ
?
n
q

›

›

›

›

ď k}λ´ λ1}

˙

“ P
`

}G˚,Cn pθn `
λρ
?
n
q ´G˚,Cn pθn `

λ1ρ
?
n
q} ď k}λ´ λ1}

˘

ě 1´ η, @n ě N. (E.60)

Moreover, by arguing as in equation (D.20), for any η there exist 0 ă L ă 8 and N P N such that @n ě N

P

ˆ

sup
λ1PBd

›

›

›

›

gCnpθn `
λ1ρ
?
n
q

›

›

›

›

ď L

˙

ě 1´ η. (E.61)

For any invertible matrix K, }K´1}2 “ pmint
?
α : α is an eigenvalue of KK 1uq

´1
. Hence, by the proof of Lemma

E.7 and the definition of C, for any η ą 0, there exist 0 ă L ă 8 and N P N such that

P
`
›

›

`

KC˘´1›
›

2
ď L

˘

ě 1´ η, @n ě N, (E.62)

By Horn and Johnson (1985, ch. 5.8), for any invertible matrices K, K̃ such that }K̃´1pK ´ K̃q}2 ă 1,

}K´1 ´ K̃´1}2 ď
}K̃´1pK ´ K̃q}2

1´ }K̃´1pK ´ K̃q}2
}K̃´1}2. (E.63)

By the assumption that DPnpθnq Ñ D and Assumption 4.4, for any η ą 0, there exists N P N such that

sup
λPBd

}KC
Pnpθ̄pθn, λq, ρq ´K

C}2 ď η, @n ě N. (E.64)
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By (E.63), the definition of the spectral norm, and the triangle inequality, for any η ą 0, there exist 0 ă L1, L2 ă 8

and N P N such that

P
`

sup
λPBd

›

›

`

KC
Pnpθ̄pθn, λq, ρq

˘´1›
›

2
ď 2L1

˘

ě P
`
›

›

`

KC˘´1›
›

2
` sup
λPBd

}KC
Pnpθ̄pθn, λq, ρq

´1 ´ pKCq´1}2 ď 2L1

˘

ě P

˜

›

›

`

KC˘´1›
›

2
ď L1,

}
`

KC˘´1
}22

1´ }
`

KC
˘´1
pKC

Pn
pθ̄pθn, λq, ρq ´KCq}2

ď L2, sup
λPBd

}KC
Pnpθ̄pθn, λq, ρq ´K

C}2 ď
L1

L2

¸

ě 1´ 2η, @n ě N, (E.65)

Again by applying (E.63), for any k ą 0, there exists N P N such that

P
`
›

›

`

KC
Pnpθ̄pθn, λqq

˘´1
´
`

KC
Pnpθ̄pθn, λ

1qq
˘´1›

›

2
ď k}λ´ λ1}

˘

ě P
´

sup
λPBd

›

›

`

KC
Pnpθ̄pθn, λqq

˘´1›
›

2

2
Mρ}θ̄pθn, λq ´ θ̄pθn, λ

1q} ď k}λ´ λ1}
¯

ě 1´ η, @n ě N, (E.66)

where the first inequality follows from }KC
Pn
pθ̄pθn, λqq´K

C
Pn
pθ̄pθn, λ

1qq}2 ďMρ}θ̄pθn, λq´ θ̄pθn, λ
1q} ďMρ2{

?
n}λ´

λ1} by Assumption 4.4 (ii), and the last inequality follows from (E.65).

By (E.59)-(E.61) and (E.65)-(E.66), it then follows that there exists β P r0, 1q such that for any η ą 0, there

exists N P N such that

P
`

|φnpλq ´ φnpλ
1q| ď β}λ´ λ1}, @λ, λ1 P Bd

˘

ě 1´ η, @n ě N. (E.67)

This implies that with probability approaching 1, each φnp¨q is a contraction, and therefore by the Contraction

Mapping Theorem it has a fixed point (e.g., Pata (2014, Theorem 1.3)). This in turn implies that for any η ą 0

there exists a N P N such that

P
`

Dλfn : λfn “ φnpλ
f
nq
˘

ě 1´ η, @n ě N. (E.68)

Next, define the mapping

ψnpλq ”
`

KC˘´1
gC . (E.69)

This map is constant in λ and hence is uniformly continuous and a contraction with Lipschitz constant equal to

zero. It therefore has λCn as its fixed point. Moreover, by (E.58) and (E.69) arguing as in (E.59), it follows that for

any λ P Bd,

}ψnpλq ´ φnpλq} ď
›

›

›

`

KC
Pnpθ̄pθn, λq, ρq

˘´1
›

›

›

2

›

›

›
gC ´ gCnpθn `

λρ
?
n
q

›

›

›

`

›

›

›

`

KC˘´1
´
`

KC
Pnpθ̄pθn, λq, ρq

˘´1
›

›

›

2

›

›gC
›

›. (E.70)

By (E.52) and (E.56)

›

›

›
gC ´ gCnpθn `

λρ
?
n
q

›

›

›
ď max
jPJ˚

| ´ Z˚j ´ c˚n{p1` η˚n,jq `G˚n,jpθn `
λρ
?
n
q|

ď max
jPJ˚

|Z˚j ´G˚n,jpθn `
λρ
?
n
q| ` max

jPJ˚
|c˚n{p1` η

˚
n,jq|. (E.71)

We note that when Assumption 4.3-(II) is used, for each j “ 1, . . . , R1 such that π˚1,j “ 0 “ π˚1,j`R1
we have that

|µ̃j ´µj | “ oPp1q because supθPΘ |ηjpθq| “ oPp1q, where µ̃j and µj were defined in (D.11)-(D.12) and (E.10)-(E.11)
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respectively. Moreover, G˚n,jpθn `
λρ
?
n
q
a.s.
Ñ Z˚ and (E.49) implies c˚n Ñ 0 so that we have

sup
λPBd

}gC ´ gCnpθn `
λρ
?
n
q}

a.s.
Ñ 0. (E.72)

Further, by (E.63), DPn Ñ D and, Assumption 4.4-(ii), for any η ą 0, there exists N P N such that

sup
λPBd

›

›

›

`

KC˘´1
´
`

KC
Pnpθ̄pθn, λq, ρq

˘´1
›

›

›

2
ď η, @n ě N. (E.73)

In sum, by (E.61), (E.65), and (E.71)-(E.73), for any η, ν ą 0, there exists N ě N such that

P

ˆ

sup
λPBd

}ψnpλq ´ φnpλq} ă ν

˙

ě 1´ η, @n ě N. (E.74)

Hence, for a specific choice of ν “ κp1´ βq, where β is defined in equation (E.67), we have that supλPBd }ψnpλq ´

φnpλq} ă κp1´ βq implies

}λCn ´ λ
f
n} “ }ψnpλ

C
nq ´ φnpλ

f
nq}

ď }ψnpλ
C
nq ´ φnpλ

C
nq} ` }φnpλ

C
nq ´ φnpλ

f
nq}

ď κp1´ βq ` β}λCn ´ λ
f
n} (E.75)

Rearranging terms, we obtain }λCn ´ λfn} ď κ. Note that by Assumptions 4.4 (i) and 4.5 (i), for any δ ą 0, there

exists κδ ą 0 and N P N such that

P
´

sup
}λ´λ1}ďκδ

|u˚n,j,θnpλq ´ u
˚
n,j,θn

pλ1q| ă δ
¯

ě 1´ η, @n ě N. (E.76)

For λCn PW
˚,´δp0q, one has

w˚j pλ
C
nq ` δ ď 0, j P t1, ¨ ¨ ¨ , J1u X J ˚. (E.77)

Hence, by (E.39), (E.49), and (E.76)-(E.77), }λCn ´ λ
f
n} ď κδ{4, for each j P t1, ¨ ¨ ¨ , J1u X J ˚ we have

u˚n,j,θnpλ
f
nq ´ c

˚
npθnq ď u˚n,j,θnpλ

C
nq ´ c

˚
npθnq ` δ{4 ď w˚j pλ

C
nq ` δ{2 ď 0. (E.78)

For j P tJ1 ` 1, ¨ ¨ ¨ , 2J2u X J ˚, the inequalities hold by construction given the definition of C.
In sum, for any η ą 0 there exists δ ą 0 and N P N such that for all n ě N we have

P
´

tU˚n pθn, c
˚
nq “ Hu X tW

˚,´δp0q ‰ Hu
¯

ď P
´

Eλfn P U
˚
n pθn, c

˚
nq, Dλ

C
n PW

˚,´δp0q
¯

ď P

ˆ"

sup
λPBd

}ψnpλq ´ φnpλq} ă κδp1´ βq XAn

*c˙

ď η{3, (E.79)

where Ac denotes the complement of the set A, and the last inequality follows from (E.39) and (E.74).

Lemma E.3: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let tPn, θnu P tpP, θq : P P P, θ P ΘIpP qu

be a sequence satisfying (E.1)-(E.3). For each j, let

vIn,j,θnpλq ” Gbn,jpθnq ` ρD̂n,jpθnqλ` ϕ
˚
j pξ̂n,jpθnqq, (E.80)

wjpλq ” Zj ` ρDjλ` π
˚
1,j , (E.81)
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where

ϕ˚j pξq “

$

’

’

&

’

’

%

ϕjpξq π1,j “ 0

´8 π1,j ă 0

0 j “ J1 ` 1, ¨ ¨ ¨ , J.

(E.82)

For each c ě 0, define

V In pθn, cq ” tλ P B
d
n,ρ : p1λ “ 0X vIn,j,θnpλq ď c, j “ 1, ¨ ¨ ¨ , Ju, (E.83)

Wpcq ”
 

λ P Bd
ρ : p1λ “ 0Xwjpλq ď c, @j “ 1, . . . , J

(

. (E.84)

We then let cInpθnq ” inftc P R` : P˚n pV
I
n pθn, cq ‰ Hq ě 1´ αu and cπ˚ ” inftc P R` : PrpWpcq ‰ Hq ě 1´ αu.

Then, (i) for any c ą 0 and tθ1nu Ă Θ such that θ1n P pθn ` ρ{
?
nBdq XΘ for all n,

P˚n pV
I
n pθ

1
n, cq ‰ Hq ´ PrpWpcq ‰ Hq Ñ 0, (E.85)

with probability approaching 1;

(ii) If cπ˚ ą 0, cInpθ
1
nq

Pn
Ñ cπ˚ ;

(iii) For any tθ1nu Ă Θ such that θ1n P pθn ` ρ{
?
nBdq XΘ for all n,

ĉnpθ
1
nq ě cInpθ

1
nq ` oPnp1q. (E.86)

Proof. Throughout, let c ą 0 and let tθ1nu Ă Θ be a sequence such that θ1n P pθn ` ρ{
?
nBdq X Θ for all n. By

Lemma E.15, in l8pΘq uniformly in P conditional on tXiu
8
i“1, and by Assumption 4.4 }D̂npθ

1
nq ´DPnpθnq}

p
Ñ 0.

Further, by Lemma E.5, ξ̂n,jpθ
1
nq

Pn
Ñ π1,j . Therefore,

pGbnpθ1nq, D̂npθ
1
nq, ξ̂npθ

1
nqq|tXiu

8
i“1

d
Ñ pZ, D, π1q. (E.87)

for almost all sample paths tXiu
8
i“1. By Lemma E.17, conditional on the sample path, there exists an almost sure

representation pG̃bnpθ1nq, D̃n, ξ̃nq of pGbnpθ1nq, D̂npθ
1
nq, ξ̂npθ

1
nqq defined on another probability space pΩ̃, F̃ , P̃q such

that pG̃bnpθ1nq, D̃n, ξ̃nq
d
“ pGbnpθ1nq, D̂npθ

1
nq, ξ̂npθ

1
nqq conditional on the sample path. In particular, conditional on the

sample, pD̂npθ
1
nq, ξ̂npθ

1
nqq are non-stochastic. Therefore, we set pD̃n, ξ̃nq “ pD̂npθ

1
nq, ξ̂npθ

1
nqq, P̃ ´ a.s. The almost

sure representation satisfies pG̃bnpθ1nq, D̃n, ξ̃n,jq
a.s.
Ñ pZ̃, D, π1q for almost all sample paths, where Z̃ d

“ Z. The almost

sure representation pG̃bn, D̃n, ξ̃nq is defined for each sample path x8 “ txiu
8
i“1, but we suppress its dependence on

x8 for notational simplicity (see Appendix E.3 for details). Using this representation, define

ṽIn,j,θ1npλq ” G̃bn,jpθ1nq ` ρD̃nλ` ϕ
˚
j pξ̃n,jq, (E.88)

and

w̃jpλq ” Z̃j ` ρDjλ` π
˚
1,j , (E.89)

where Z̃ d
“ Z, and G̃bnpθ1nq Ñ Z̃, P̃´ a.s. conditional on tXiu

8
i“1. With this construction, one may write

|P˚n pV
I
n pθ

1
n, cq ‰ Hq ´ PrpWpcq ‰ Hq| “ |P̃pṼ In pθ

1
n, cq ‰ Hq ´ P̃pW̃pcq ‰ Hq|

ď |P̃pṼ In pθ
1
n, cq “ HX W̃pcq ‰ Hq ` P̃pṼ In pθ

1
n, cq ‰ HX W̃pcq “ Hq|, (E.90)
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where the inequality is due to (E.33). First, we bound the first term on the right hand side of (E.90). Note that

P̃pṼ In pθ
1
n, cq “ HX W̃pcq ‰ Hq ď P̃pṼ I,`δn pθ1n, cq “ HX W̃pcq ‰ Hq ` P̃pṼ I,`δn pθ1n, cq ‰ HX Ṽ In pθ

1
n, cq “ Hq,

(E.91)

where Ṽ I,`δn is defined as

Ṽ I,`δn ”

!

λ P Bdn,ρ : p1λ “ 0X ṽIn,j,θ1npλq ď c` δ, j P J ˚
)

. (E.92)

Let

An ”
!

ω̃ P Ω̃ : sup
λPBd

max
jPJ˚

|ṽIn,j,θ1npλq ´ w̃jpλq| ě δ
)

. (E.93)

Let

E ” ttxiu
8
i“1 : }D̂npθ

1
nq ´D} ă η, max

jPJ˚
|ϕ˚j pξ̂n,jpθ

1
nqq ´ π

˚
1,j | ă ηu. (E.94)

Note that, PnpEq ě 1´ η for all n sufficiently large by Assumption 4.4 and Lemma E.5. On E, we therefore have

}D̃n ´D} ă η and maxjPJ˚ |ξ̃n,j ´ π
˚
1,j | ă η, P̃´ a.s. Below, we condition on tXiu

8
i“1 P E. For any j P J ˚,

|ṽIn,j,θ1npλq ´ w̃jpλq| ď |G̃bn,jpθ1nq ´ Z̃j | ` ρ}D̃j,n ´Dj}}λ} ` |ϕ
˚
j pξ̃n,jq ´ π

˚
1,j | ď p2` ρqη, (E.95)

uniformly in λ P Bd, where we used G̃bn Ñ Z̃, P̃´ a.s. Since η can be chosen arbitrarily small, this in turn implies

P̃
`

An
˘

ă η{2,

for all n sufficiently large. Note also that supλPBd maxjPJ˚ |ṽ
I
n,j,θ1n

pλq ´ w̃jpλq| ă δ implies W̃pcq Ď Ṽ I,`δn pθ1n, cq,

and hence Acn is a subset of

Ln ”
!

ω̃ P Ω̃ : W̃pcq Ď Ṽ I,`δn pθ1n, cq
)

. (E.96)

Using this,

P̃pṼ I,`δn pθ1n, cq “ HX W̃pcq ‰ Hq ď P̃pW̃pcq Ę Ṽ I,`δn pθ1n, cqq “ P̃pLcnq ď P̃pAnq ă η{2, (E.97)

for all n sufficiently large. Also, by Lemma E.6,

P̃pṼ I,`δn pθ1n, cq ‰ HX Ṽ In pθ
1
n, cq “ Hq ă η{2, (E.98)

for all n sufficiently large.

Combining (E.91), (E.93), (E.97), (E.98), and using PnpEq ě 1´ η for all n, we have
ż

E

P̃pṼ In pθ
1
n, cq “ HX W̃pcq ‰ HqdPn `

ż

Ec
P̃pṼ In pθ

1
n, cq “ HX W̃pcq ‰ HqdPn ď ηp1´ ηq ` η ď 2η. (E.99)

The second term of the right hand side of (E.90) can be bounded similarly. Therefore, |P˚pV In pθ
1
n, cq ‰ Hq ´

PrpWpcq ‰ Hq| Ñ 0 with probability (under Pn) approaching 1. This establishes the first claim.

(ii) By Part (i), for c ą 0, we have

P˚n pV
I
n pθ

1
n, cq ‰ Hq ´ PrpWpcq ‰ Hq Ñ 0. (E.100)
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Fix c ą 0, and set

gj “

$

’

&

’

%

c´ Zj , j “ 1, . . . , J,

1, j “ J ` 1, . . . , J ` 2d,

0, j “ J ` 2d` 1, J ` 2d` 2.

(E.101)

Mimic the argument following (E.137). Then, this yields

|Pr pWpcq ‰ Hq ´ Pr pWpc´ δq ‰ Hq| “ Pr ptWpcq ‰ Hu X tWpc´ δq “ Huq ď η, (E.102)

|Pr pWpc` δq ‰ Hq ´ Pr pWpcq ‰ Hq| “ Pr ptWpc` δq ‰ Hu X tWpcq “ Huq ď η, (E.103)

which therefore ensures that c ÞÑ PrpWpcq ‰ Hq is continuous at c ą 0.

Next, we show c ÞÑ Pr pWpcq ‰ Hq is strictly increasing at any c ą 0. For this, consider c ą 0 and c´ δ ą 0 for

δ ą 0. Define the J vector e to have elements ej “ c ´ Zj , j “ 1, . . . , J . Suppose for simplicity that J ˚ contains

the first J˚ inequality constraints. Let er1:J˚s denote the subvector of e that only contains elements corresponding

to j P J ˚, define Dr1:J˚,:s correspondingly, and write

K “

»

—

—

—

—

—

—

–

Dr1:J˚,:s

Id

´Id

p1

´p1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, g “

»

—

—

—

—

—

—

–

er1:J˚s

ρ ¨ 1d

ρ ¨ 1d

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, τ “

»

—

—

—

—

—

—

–

1J˚

0d

0d

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (E.104)

By Farkas’ lemma (Rockafellar, 1970, Theorem 22.1) and arguing as in (E.142),

Pr ptWpcq ‰ Hu X tWpc´ δq “ Huq “ Pr
`

tµ1g ě 0,@µ PMu X tµ1pg ´ δτq ă 0, Dµ PMu
˘

, (E.105)

whereM “ tµ P RJ
˚
`2d`2

` : µ1K “ 0u. By Minkowski-Weyl’s theorem (Rockafellar and Wets, 2005, Theorem 3.52),

there exists tνt PM, t “ 1, ¨ ¨ ¨ , T u, for which one may write

M “ tµ : µ “ b
T
ÿ

t“1

atν
t, b ą 0, at ě 0,

T
ÿ

t“1

at “ 1u. (E.106)

This implies

µ1g ě 0, @µ PM ô νt1g ě 0, @t P t1, ¨ ¨ ¨ , T u (E.107)

µ1pg ´ δτq ă 0, Dµ PM ô νt1g ă δνt1τ, Dt P t1, ¨ ¨ ¨ , T u. (E.108)

Hence,

Pr
`

tµ1g ě 0,@µ PMu X tµ1pg ´ δτq ă 0, Dµ PMu
˘

“ Pr
`

0 ď νs1g, 0 ď νt1g ă δνt1τ, @s, Dt
˘

(E.109)

Note that by (E.104), for each s P t1, ¨ ¨ ¨ , T u,

νs1g “ νs,r1:J˚s1pc1J˚ ´ ZJ˚q ` ρ
J˚`2d
ÿ

j“J˚`1

νs,rjs, (E.110)

νs1τ “
J˚
ÿ

j“1

νs,rjs. (E.111)
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For each s P t1, ¨ ¨ ¨ , T u, let

hUs ” c
J˚
ÿ

j“1

νs,rjs ` ρ
J˚`2d
ÿ

j“J˚`1

νs,rjs (E.112)

hLs ” pc´ δq
J˚
ÿ

j“1

νs,rjs, (E.113)

where 0 ď hLs ă hUs for all s P t1, ¨ ¨ ¨ , T u due to 0 ă c´ δ ă c and νs P RJ
˚
`2d`2

` . One may therefore rewrite the

probability on the right hand side of (E.109) as

Pr
`

0 ď νs1g, 0 ď νt1g ă δνt1τ, @s, Dt
˘

“ Pr
´

νs,r1:J˚s1ZJ˚ ď hUs , h
L
t ă νt,r1:J˚s1ZJ˚ ď hUt @s, Dt

¯

ą 0, (E.114)

where the last inequality follows because ZJ˚ ’s correlation matrix Ω has an eigenvalue bounded away from 0 by

Assumption 4.3. By (E.105), (E.109), and (E.114), c ÞÑ Pr pWpcq ‰ Hq is strictly increasing at any c ą 0.

Suppose that cπ˚ ą 0, then arguing as in Lemma 5.(i) of Andrews and Guggenberger (2010), we obtain

cInpθ
1
nq

Pn
Ñ cπ˚ .

(iii) Begin with observing that one can equivalently express ĉn (originally defined in (3.5)) as ĉnpθq “ inftc P

R` : P˚n pV
b
n pθ, cq ‰ Hq ě 1´ αu.

Suppose first that Assumption 4.3-(I) holds. In this case, there are no paired inequalities, and V In differs from

V bn only in terms of the function ϕ˚j in (E.82) used in place of the GMS function ϕj . In particular, ϕ˚j pξq ď ϕjpξq

for any j and ξ, and therefore ĉnpθnq ě cInpθnq by construction.

Next, suppose Assumption 4.3-(II) holds and V In pθ
1
n, cq is defined with hard threshold GMS as in equation (3.3),

i.e. with GMS function ϕ1 in AS. The only case that might create concern is one in which

π1,j P r´1, 0q and π1,j`R1
“ 0. (E.115)

In this case, only the j`R1-th inequality binds in the limit, but with probability approaching 1, GMS selects both

of the pair. Therefore, we have

π˚1,j “ ´8, and π˚1,j`R1
“ 0, (E.116)

ϕjpξ̂n,jpθ
1
nqq “ 0, and ϕj`R1pξ̂n,j`R1pθ

1
nqq “ 0, (E.117)

so that in V In pθ
1
n, cq, inequality j `R1, which is

Gbn,j`R1
pθ1nq ` ρD̂n,j`R1

pθ1nqλ ď c, (E.118)

is replaced with inequality

´Gbn,jpθ1nq ´ ρD̂n,jpθ
1
nqλ ď c, (E.119)

as explained in Section 4.1. In this case, ĉnpθnq ě cInpθnq is not guaranteed in finite sample. However, let vIPn be as

in (E.80) but replacing j `R1-th component Gbn,j`R1
pθnq ` D̂n,j`R1

pθnqλ` ϕ
˚
j`R1

pξ̂n,j`R1
pθnqq with ´Gbn,jpθnq ´

D̂n,jpθnqλ ´ ϕ˚j pξ̂n,jpθnqq. Define V IPn as in (E.83) but replacing vIn with vIPn . Define cIPn pθnq ” inftc P R` :

P˚pV IPn pθn, cqq ě 1´αu. By construction, ĉnpθ
1
nq ě cIPn pθ

1
nq for any θ1n P pθn` ρ{

?
nBdqXΘ. Therefore, it suffices

to show that cIPn pθ
1
nq ´ c

I
npθ

1
nq

Pn
Ñ 0. For this, note that Lemma E.9-(3) establishes

sup
λPBdn,ρ

}Gbn,j`R1
pθ1nq ` ρD̂n,j`R1

pθ1nqλ`Gbn,jpθ1nq ` ρD̂n,jpθ
1
nqλ} “ oP˚p1q, (E.120)
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for almost all sample paths tXiu
8
i“1. Therefore, replacing the j `R1-th inequality with the j-th inequality in V IPn

is asymptotically negligible. Mimicking the arguments in Parts (i) and (ii) then yields

cIPn pθ
1
nq

Pn
Ñ cπ˚ . (E.121)

This therefore ensures cIPn pθ
1
nq ´ c

I
npθ

1
nq

Pn
Ñ 0.

If the set V In pθ
1
n, cq is defined with a GMS function satisfying Assumption 4.2 and continuous in its argument,

we can mimic the above argument using the replacements in (E.12)-(E.13) with µ̂n,j`R1 as defined in (E.14) and

µ̂n,jpθ
1
nq as in (E.15). Then when both πj P p´8, 0s and πj`R1

P p´8, 0s we have:

∆pµ, µ̂q ”
›

›

›
µ̂n,jpθ

1
nqtGbn,jpθ1nq ` ρD̂n,jpθ

1
nqλu ´ µ̂n,j`R1

pθ1nqtGbn,j`R1
pθ1nq ` ρD̂n,j`R1

pθ1nqλu

´µjpθ
1
nqtGbn,jpθ1nq ` ρD̂n,jpθ

1
nqλu ` µj`R1

pθ1nqtGbn,j`R1
pθ1nq ` ρD̂n,j`R1

pθ1nqλu
›

›

›
“ oPp1q,

where µj , µj`R1 are defined in equations (E.10)-(E.11) for θ P θn`pθn`ρ{
?
nBdqXΘ. Replacing µ̂n,j “ 1´µ̂n,j`R1

and µj “ 1´ µj`R1
in the definition of ∆pµ, µ̂q, we have

∆pµ, µ̂q ď
ˇ

ˇµ̂n,j`R1pθ
1
nq ´ µj`R1pθ

1
nq
ˇ

ˇ

›

›tGbn,j`R1
pθ1nq ` ρD̂n,j`R1pθ

1
nqλu ` tGbn,jpθ1nq ` ρD̂n,jpθ

1
nqλu

›

›. (E.122)

If both πj P p´8, 0s, πj`R1 P p´8, 0s, the result follows by the fact that λ P Bdn,ρ and µ̂n,j , µ̂n,j`R1 , µj , µj`R1 are

bounded in r0, 1s, by Lemma E.9-(3)-(4), and by Assumption 4.4-(i). The rest of the argument follows similarly as

for the case of hard-threshold GMS.

Lemma E.4: Let Assumptions 4.1, 4.2, 4.4, and 4.5 hold. Let pPn, θnq be the sequence satisfying (E.1)-(E.3),

let J ˚ be defined as in (E.29), and assume that J ˚ ‰ H. Then, for any ε, η ą 0 and θ1n P pθn ` ρ{
?
nBdq X Θ,

there exists N 1 P N and N
2

P N such that for all n ě maxtN 1, N
2

u,

P

˜

sup
λPBd

ˇ

ˇ

ˇ

ˇ

max
j“1,¨¨¨ ,J

pu˚n,j,θnpλq ´ c
˚
nq ´ max

j“1,¨¨¨ ,J
pw˚j pλq ´ cπ˚q

ˇ

ˇ

ˇ

ˇ

ě ε

¸

ă η, (E.123)

P̃

˜

sup
λPBd

ˇ

ˇ

ˇ

ˇ

max
j“1,¨¨¨ ,J

w̃jpλq ´ max
j“1,¨¨¨ ,J

ṽIn,j,θ1npλq

ˇ

ˇ

ˇ

ˇ

ě ε

¸

ă η, w.p.1, (E.124)

where the functions u˚n,w
˚, ṽn, w̃ are defined in equations (E.24),(E.25), (E.88), and (E.89).

Proof. We first establish (E.123). By definition, π˚1,j “ ´8 for all j R J ˚ and therefore

P
´

sup
λPBd

| max
j“1,¨¨¨ ,J

pu˚n,j,θnpλq ´ c
˚
nq ´ max

j“1,¨¨¨ ,J
pw˚j pλq ´ cπ˚q| ě ε

¯

“ P
´

sup
λPBd

|max
jPJ˚

pu˚n,j,θnpλq ´ c
˚
nq ´ max

jPJ˚
pw˚j pλq ´ cπ˚q| ě ε

¯

. (E.125)

Hence, for the conclusion of the lemma, it suffices to show, for any ε ą 0,

lim
nÑ8

P
´

sup
λPBd

|max
jPJ˚

pu˚n,j,θnpλq ´ c
˚
nq ´ max

jPJ˚
pw˚j pλq ´ cπ˚q| ě ε

¯

“ 0.

For each λ P Rd, define rn,j,θnpλq ” pu
˚
n,j,θn

pλq ´ c˚nq ´ pw
˚
j pλq ´ cnq. Using the fact that π˚1,j “ 0 for j P J ˚,

[42]



and the triangle and Cauchy-Schwarz inequalities, for any λ P Bd X
?
n
ρ pΘ´ θnq and j P J ˚, we have

|rn,j,θnpλq| ď |G˚n,jpθn `
λρ
?
n
q ´ Z˚j | ` ρ}DPn,jpθ̄nq ´Dj}}λ}

` |G˚n,jpθn `
λρ
?
n
q ` ρDPn,jpθ̄nqλ|η

˚
n,j ` |c

˚
n ´ cπ˚ |

“ |G˚n,jpθn `
λρ
?
n
q ´ Z˚j | ` op1q ` tOPp1q `Op1quqη

˚
n,j ` oPp1q

“ oPp1q (E.126)

where the first equality follows from }λ} ď
?
d, DPnpθ̄nq Ñ D due to DPnpθnq Ñ D, Assumption 4.4-(ii), and

θ̄n being a mean value between θn and θn ` λρ{
?
n. We also note that }Gn,jpθ ` λ{

?
nq} “ OPp1q, }DP,jpθq}

being uniformly bounded for θ P ΘIpP q (Assumption 4.4-(i)), and c˚n
a.s.
Ñ cπ˚ . The last equality follows from

G˚n,jpθn `
λρ
?
n
q ´ Z˚j

a.s.
Ñ 0 and supθPΘ |ηn,jpθq| “ oPp1q by Lemma E.10.

We note that when paired inequalities are merged, for each j “ 1, . . . , R1 such that π˚1,j “ 0 “ π˚1,j`R1
we

have that |µ̃j ´ µj | “ oPp1q because supθPΘ |ηjpθq| “ oPp1q, where µ̃j and µj were defined in (D.11)-(D.12) and

(E.10)-(E.11) respectively.

By (E.126) and the fact that j P J ˚, we have

sup
λPBd

|max
jPJ˚

pu˚n,j,θnpλq ´ c
˚
nq ´ max

jPJ˚
pw˚j pλq ´ cπ˚q| ď sup

λPBd
max
jPJ˚

|rn,j,θnpλq| “ oPp1q. (E.127)

The conclusion of the lemma then follows from (E.125) and (E.127).

The result in (E.124) follows from similar arguments.

Lemma E.5: Let Assumptions 4.1, 4.2, 4.4, and 4.5 hold. Given a sequence tQn, ϑnu P tpP, θq : P P P, θ P
ΘIpP qu such that limnÑ8 κ

´1
n

?
nγ1,Qn,jpϑnq exists for each j “ 1, . . . , J , let χjptQn, ϑnuq be a function of the

sequence tQn, ϑnu defined as

χjptQn, ϑnuq ”

#

0, if limnÑ8 κ
´1
n

?
nγ1,Qn,jpϑnq “ 0,

´8, if limnÑ8 κ
´1
n

?
nγ1,Qn,jpϑnq ă 0.

(E.128)

Then for any θ1n P θn`
ρ
?
n
Bd for all n, one has: (i) κ´1

n

?
nγ1,Pn,jpθnq´κ

´1
n

?
nγ1,Pn,jpθ

1
nq “ op1q; (ii) χptPn, θnuq “

χptPn, θ
1
nuq “ π˚1,j; and (iii) κ´1

n

?
nm̄n,jpθ

1
nq

σ̂n,jpθ1nq
´ κ´1

n

?
nEPn rmjpXi,θ

1
nqs

σPn,jpθ
1
nq

“ oPp1q.

Proof. For (i), the mean value theorem yields

sup
PPP

sup
θPΘIpP q,θ1Pθ`ρ{

?
nBd

ˇ

ˇ

ˇ

ˇ

ˇ

?
nEP pmjpX, θqq

κnσP,jpθq
´

?
nEP pmjpX, θ

1qq

κnσP,jpθ1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď sup
PPP

sup
θPΘIpP q,θ1Pθ`ρ{

?
nBd

?
n}DP,jpθ̃q}}θ

1 ´ θ}

κn
“ op1q, (E.129)

where θ̃ represents a mean value that lies componentwise between θ and θ1 and where we used the fact that DP,jpθq

is Lipschitz continuous and supPPP supθPΘIpP q }DP,jpθq} ď M̄ . Result (ii) then follows immediately from (E.128).
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For (iii), note that

sup
θ1nPθn`ρ{

?
nBd

ˇ

ˇ

ˇ
κ´1
n

?
nm̄n,jpθ

1
nq

σ̂n,jpθ1nq
´ κ´1

n

?
nEPnrmjpXi, θ

1
nqs

σPn,jpθ
1
nq

ˇ

ˇ

ˇ

ď sup
θ1nPθn`ρ{

?
nBd

ˇ

ˇ

ˇ
κ´1
n

?
npm̄n,jpθ

1
nq ´ EPnrmjpXi, θ

1
nqsq

σn,jpθ1nq
p1` ηn,jpθ

1
nqq ` κ

´1
n

?
nEPnrmjpXi, θ

1
nqs

σPn,jpθ
1
nq

ηn,jpθ
1
nq

ˇ

ˇ

ˇ

ď sup
θ1nPθn`ρ{

?
nBd

|κ´1
n Gnpθ1nqp1` ηn,jpθ1nqq| `

ˇ

ˇ

ˇ

?
nEPnrmjpXi, θ

1
nqs

κnσPn,jpθ
1
nq

ηn,jpθ
1
nq

ˇ

ˇ

ˇ
“ oPp1q, (E.130)

where the last equality follows from supθPΘ |Gnpθq| “ OPp1q due to asymptotic tightness of tGnu (uniformly in P )

by Lemma D.1 in Bugni, Canay, and Shi (2015), Theorem 3.6.1 and Lemma 1.3.8 in van der Vaart and Wellner

(2000), and supθPΘ |ηn,jpθq| “ oPp1q by Lemma E.10-(i).

Lemma E.6: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. For any θ1n P pθn ` ρ{
?
nBdq XΘ,

(i) For any η ą 0, there exist δ ą 0 such that

sup
cě0

PrptWpcq ‰ Hu X tW´δpcq “ Huq ă η. (E.131)

Moreover, for any η ą 0, there exist δ ą 0 and N P N such that

sup
cě0

P˚n ptV
I
n pθ

1
n, cq ‰ Hu X tV

I,´δ
n pθ1n, cq “ Huq ă η, @n ě N. (E.132)

(ii) Fix c ą 0 and redefine

W´δpcq ”
 

λ P Bd
ρ : p1λ “ 0Xwjpλq ď c´ δ, @j “ 1, . . . , J

(

, (E.133)

and

V I,´δn pθ1n, cq ”
 

λ P Bdn,ρ : p1λ “ 0X vIn,j,θ1npλq ď c´ δ, @j “ 1, . . . , J
(

. (E.134)

Then for any η ą 0, there exists δ ą 0 such that

sup
cěc

PrptWpcq ‰ Hu X tW´δpcq “ Huq ă η. (E.135)

with W´δpcq defined in (E.133). Moreover, for any η ą 0, there exist δ ą 0 and N P N such that

sup
cěc

P˚n ptV
I
n pθ

1
n, cq ‰ Hu X tV

I,´δ
n pθ1n, cq “ Huq ă η, @n ě N, (E.136)

with V ´δn pθ1n, cq defined in (E.134).

Proof. We first show (E.131). If J ˚ “ H, with J ˚ as defined in (E.29), then the result is immediate. Assume then

that J ˚ ‰ H. Any inequality indexed by j R J ˚ is satisfied with probability approaching one by similar arguments

as in (D.20) (both with c and with c ´ δ). Hence, one could argue for sets Wpcq,W´δpcq defined as in equations

(E.16) and (E.17) but with j P J ˚. To keep the notation simple, below we argue as if all j “ 1, . . . , J belong to
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J ˚. Let c ě 0 be given. Let g be a J ` 2d` 2 vector with entries

gj “

$

’

&

’

%

c´ Zj , j “ 1, . . . , J,

1, j “ J ` 1, . . . , J ` 2d,

0, j “ J ` 2d` 1, J ` 2d` 2,

(E.137)

recalling that π˚1,j “ 0 for j “ J1 ` 1, ¨ ¨ ¨ , J . Let τ be a pJ ` 2d` 2q vector with entries

τj “

#

1, j “ 1, . . . , J1,

0, j “ J1 ` 1, . . . , J ` 2d` 2.
(E.138)

Then we can express the sets of interest as

Wpcq “ tλ : Kλ ď gu, (E.139)

W´δpcq “ tλ : Kλ ď g ´ δτu. (E.140)

By Farkas’ Lemma, e.g. Rockafellar (1970, Theorem 22.1), a solution to the system of linear inequalities in (E.139)

exists if and only if for all µ P RJ`2d`2
` such that µ1K “ 0, one has µ1g ě 0. Similarly, a solution to the system of

linear inequalities in (E.140) exists if and only if for all µ P RJ`2d`2 such that µ1K “ 0, one has µ1pg ´ δτq ě 0.

Define

M ” tµ P RJ`2d`2
` : µ1K “ 0u. (E.141)

Then, one may write

PrptWpcq ‰ Hu X tW´δpθ1n, cq “ Huq

“Prptµ1g ě 0,@µ PMu X tµ1pg ´ δτq ă 0, Dµ PMuq

“Prptµ1g ě 0,@µ PMu X tµ1g ă δµ1τ, Dµ PMuq. (E.142)

Note that the set M is a non-stochastic polyhedral cone which may change with n. By Minkowski-Weyl’s theorem

(see, e.g. Rockafellar and Wets (2005, Theorem 3.52)), for each n there exist tνt PM, t “ 1, ¨ ¨ ¨ , T u, with T ă 8

a constant that depends only on J and d, such that any µ PM can be represented as

µ “ b
T
ÿ

t“1

atν
t, (E.143)

where b ą 0 and at ě 0, t “ 1, . . . , T,
řT
t“1 at “ 1. Hence, if µ PM satisfies µ1g ă δµ1τ , denoting νt1 the transpose

of vector νt, we have

T
ÿ

t“1

atν
t1g ă δ

T
ÿ

t“1

atν
t1τ. (E.144)

However, due to at ě 0,@t and νt PM, this means νt1g ă δνt1τ for some t P t1, . . . , T u. Furthermore, since νt PM,
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we have 0 ď νt1g. Therefore,

Pr
`

tµ1g ě 0,@µ PMu X tµ1g ă δµ1τ, Dµ PMu
˘

ď Pr
`

0 ď νt1g ă δνt1τ, Dt P t1, ¨ ¨ ¨ , T u
˘

ď

T
ÿ

t“1

Pr
`

0 ď νt1g ă δνt1τ
˘

. (E.145)

Case 1. Consider first any t “ 1, . . . , T such that νt assigns positive weight only to constraints in tJ ` 1, . . . , J `

2d` 2u. Then

νt1g “
J`2d
ÿ

j“J`1

νtj ,

δνt1τ “ δ
J`2d`2
ÿ

j“J`1

νtjτj “ 0,

where the last equality follows by (E.138). Therefore Pr p0 ď νt1g ă δνt1τq “ 0.

Case 2. Consider now any t “ 1, . . . , T such that νt assigns positive weight also to constraints in t1, . . . , Ju. Recall

that indices j “ J1 ` 1, . . . , J1 ` 2J2 correspond to moment equalities, each of which is written as two moment

inequalities, therefore yielding a total of 2J2 inequalities with Dj`J2 “ ´Dj for j “ J1 ` 1, . . . , J1 ` J2, and:

g “

#

c´ Zj j “ J1 ` 1, . . . , J1 ` J2,

c` Zj´J2 j “ J1 ` J2 ` 1, . . . , J.
(E.146)

For each νt, (E.146) implies

J1`2J2
ÿ

j“J1`1

νtjgj “ c
J1`2J2
ÿ

j“J1`1

νtj `
J1`J2
ÿ

j“J1`1

pνtj ´ ν
t
j`J2

qZj . (E.147)

For each j “ 1, ¨ ¨ ¨ , J1 ` J2, define

ν̃tj ”

$

&

%

νtj j “ 1, ¨ ¨ ¨ , J1

νtj ´ ν
t
j`J2

j “ J1 ` 1, ¨ ¨ ¨ , J1 ` J2.
. (E.148)

We then let ν̃t ” pν̃tn,1, ¨ ¨ ¨ , ν̃
t
n,J1`J2

q1 and have

νt1g “
J1`J2
ÿ

j“1

ν̃tjZj ` c
J
ÿ

j“1

νtj `
J`2d
ÿ

j“J`1

νtj . (E.149)

Case 2-a. Suppose ν̃t ‰ 0. Then, by (E.149), νt1g
νt1τ is a normal random variable with variance pν̃t1τq´2ν̃1tΩν̃t. By

Assumption 4.3, there exists a constant ω ą 0 such that the smallest eigenvalue of Ω is bounded from below by ω

for all θ1n. Hence, letting } ¨ }p denote the p-norm in RJ`2d`2, we have

ν̃1tΩν̃t

pν̃t1τq2
ě

ω}ν̃t}22
pJ ` 2d` 2q2}ν̃t}22

ě
ω

pJ ` 2d` 2q2
. (E.150)

Therefore, the variance of the normal random variable in (E.145) is uniformly bounded away from 0, which in turn

allows one to find δ ą 0 such that Prp0 ď νt1g
νt1τ ă δq ď η{T .

Case 2-b. Next, consider the case ν̃t “ 0. Because we are in the case that νt assigns positive weight also to

constraints in t1, . . . , Ju, this must be because νtj “ 0 for all j “ 1, ¨ ¨ ¨ , J1 and νtj “ νtj`J2
for all j “ J1 `
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1, ¨ ¨ ¨ , J1 ` J2, while νtj ‰ 0 for some j “ J1 ` 1, ¨ ¨ ¨ , J1 ` J2. Then we have
řJ
j“1 ν

t
jg ě 0, and

řJ
j“1 ν

t
jτj “ 0

because τj “ 0 for each j “ J1 ` 1, . . . , J . Hence, the argument for the case that νt assigns positive weight only to

constraints in tJ`1, . . . , J`2d`2u applies and again Pr p0 ď νt1g ă δνt1τq “ 0. This establishes equation (E.131).

To see why equation (E.132) holds, observe that the bootstrap distribution is conditional on X1, . . . , Xn. There-

fore, the matrix K̂n, defined as the matrix in equation (E.57) but with D̂n replacing DP , can be treated as non-

stochastic. This implies that the set M̂n, defined as the set in equation (E.141) but with K̂n replacing K, can be

treated as nonstochastic as well.

By an application of Lemma D.2.8 in Bugni, Canay, and Shi (2015) together with Lemma E.17 (through an

argument similar to that following equation (E.87)), Gbn
d
Ñ GP in l8pΘq uniformly in P conditional on tX1, ¨ ¨ ¨ , Xnu,

and by Assumption 4.4 D̂npθ
1
nq

Pn
Ñ D, for almost all sample paths. Set

gPn,jpθ
1
nq “

$

’

&

’

%

c´ ϕ˚j pξn,jpθ
1
nqq ´Gbn,jpθ1nq, j “ 1, . . . , J,

1, j “ J ` 1, . . . , J ` 2d,

0, j “ J ` 2d` 1, J ` 2d` 2,

(E.151)

and note that |ϕ˚j pξn,jpθ
1
nqq| ă η for all j P J ˚, and Gbn,jpθ1nq|tXiu

8
i“1

d
Ñ Np0,Ωq. Then one can mimic the argument

following (E.137) to conclude (E.132).

The results in (E.135)-(E.136) follow by similar arguments, with proper redefinition of τ in equation (E.138).

Lemma E.7: Let Assumptions 4.3 and 4.5 hold. Let pPn, θnq have the almost sure representations given in

Lemma E.1, let J ˚ be defined as in (E.29), and assume that J ˚ ‰ H. Let rC collect all size d subsets C of

t1, ..., J ` 2d ` 2u ordered lexicographically by their smallest, then second smallest, etc. elements. Let the random

variable C equal the first element of rC s.t. detKC ‰ 0 and λC “ pKCq´1gC PW˚,´δp0q if such an element exists;

else, let C “ tJ ` 1, ..., J ` du and λC “ 1d, where 1d denotes a d vector with each entry equal to 1, and K, g and

W˚,´δ are as defined in Lemma E.2. Then, for any η ą 0, there exist 0 ă εη ă 8 and N P N s.t. n ě N implies

P
`

W˚,´δp0q ‰ H,
ˇ

ˇdetKC ˇ
ˇ ď εη

˘

ď η. (E.152)

Proof. We bound the probability in (E.152) as follows:

P
`

W˚,´δp0q ‰ H,
ˇ

ˇdetKC ˇ
ˇ ď εη

˘

ď P
´

DC P rC : λC P Bd,
ˇ

ˇdetKC
ˇ

ˇ ď εη

¯

(E.153)

ď
ÿ

CP rC:|detKC |ďεη

P
`

λC P Bd
˘

(E.154)

ď
ÿ

CP rC:|αC |ďε2{dη

P
`

λC P Bd
˘

, (E.155)

where αC denote the smallest eigenvalue of KCKC1. Here, the first inequality holds because W˚,´δ Ď Bd and so

the event in the first probability implies the event in the next one; the second inequality is Boolean algebra; the

last inequality follows because |detKC | ě |αC |d{2. Noting that rC has
`

J`2d`2
d

˘

elements, it suffices to show that

ˇ

ˇαC
ˇ

ˇ ď ε2{d
η ùñ P

`

λC P Bd
˘

ď η ”
η

`

J`2d`2
d

˘ .

Thus, fix C P rC. Let qC denote the eigenvector associated with αC and recall that because KCKC1 is symmetric,
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›

›qC
›

› “ 1. Thus the claim is equivalent to:

|qC1KCKC1qC | ď ε2{d
η ùñ PppKCq´1gC P Bd

ρq ď η. (E.156)

Now, if |qC1KCKC1qC | ď ε
2{d
η and pKCq´1gC P Bd

ρ, then the Cauchy-Schwarz inequality yields

ˇ

ˇqC1gCPn
ˇ

ˇ “

ˇ

ˇ

ˇ
qC1KC

`

KC
˘´1

gC
ˇ

ˇ

ˇ
ă
?
dε1{d
η , (E.157)

hence

PppKCq´1gC P Bd
ρq ď P

´

|qC1gC | ă
?
dε1{d
η

¯

. (E.158)

If qC assigns non-zero weight only to non-stochastic constraints, the result follows immediately. If qC assigns

non-zero weight also to stochastic constraints, Assumptions 4.3 and 4.5 (iii) yield

eigpΩ̃q ě ω

ùñ V arPpq
C1gCq ě ω

ùñ P
´

|qC1gC | ă
?
dε1{d
η

¯

“ P
´

´
?
dε1{d
η ă qC1gC ă

?
dε1{d
η

¯

ă
2
?
dε

1{d
η

?
2ωπ

, (E.159)

where the result in (E.159) uses that the density of a normal r.v. is maximized at the expected value. The result

follows by choosing

εη “

ˆ

η
?

2ωπ

2
?
d

˙d

.

Lemma E.8: Let Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. If J2 ě d, then Dc ą 0 s.t.

lim inf
nÑ8

inf
PPP

inf
θPΘIpP q

P pcInpθq ě cq “ 1.

Proof. Fix any c ě 0 and restrict attention to constraints tJ1 ` 1, ..., J1 ` d, J1 ` J2 ` 1, ..., J1 ` J2 ` du, i.e.

the inequalities that jointly correspond to the first d equalities. We separately analyze the case when (i) the

corresponding estimated gradients tD̂n,jpθq : j “ J1 ` 1, ..., J1 ` du are linearly independent and (ii) they are

not. If tD̂n,jpθq : j “ J1 ` 1, ..., J1 ` du converge to linearly independent limits, then only the former case occurs

infinitely often; else, both may occur infinitely often, and we conduct the argument along two separate subsequences

if necessary.

For the remainder of this proof, because the sequence tθnu is fixed and plays no direct role in the proof, we

suppress dependence of D̂n,jpθq and Gbn,jpθq on θ. Also, if C is an index set picking certain constraints, then D̂C
n is

the matrix collecting the corresponding estimated gradients, and similarly for Gb,Cn .

Suppose now case (i), then there exists an index set C̄ Ă tJ1` 1, ..., J1` d, J1` J2` 1, . . . , J1` J2` du picking

one direction of each constraint s.t. p is a positive linear combination of the rows of D̂C̄
P . (This choice ensures

that a Karush-Kuhn-Tucker condition holds, justifying the step from (E.160) to (E.161) below.) Then the coverage
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probability P˚pV In pθ, cq ‰ Hq is asymptotically bounded above by

P˚
´

sup
λPρBdn,ρ

!

p1λ : D̂n,jλ ď c´Gbn,j , j P J ˚
)

ě 0
¯

ďP˚
´

sup
λPRd

!

p1λ : D̂n,jλ ď c´Gbn,j , j P C̄
)

ě 0
¯

(E.160)

“P˚
´

p1pD̂C̄
n q
´1pc1d ´Gb,C̄n q ě 0

¯

(E.161)

“P˚
ˆ

p1pD̂C̄
n q
´1pc1d ´Gb,C̄n q

b

p1pD̂C̄
n q
´1ΩCP pD̂

C̄
n q
´1p

ě 0

˙

(E.162)

“P˚
ˆ

p1adjpD̂C̄
n qpc1d ´Gb,C̄n q

b

p1padjpD̂C̄
n qΩ

C
P adjpD̂

C̄
n qp

ě 0

˙

(E.163)

“Φ

ˆ

p1adjpD̂C̄
n qc1d

b

p1padjpD̂C̄
n qΩ

C
P adjpD̂

C̄
n qp

˙

` oPp1q (E.164)

ďΦpdω´1{2cq ` oPp1q. (E.165)

Here, (E.160) removes constraints and hence enlarges the feasible set; (E.161) solves in closed form; (E.162) divides

through by a positive scalar; (E.163) eliminates the determinant of D̂C̄
n , using that rows of D̂C̄

n can always be

rearranged so that the determinant is positive; (E.164) follows by Assumption 4.5, using that the term multiplying

Gb,C̄n is OPp1q; and (E.165) uses that by Assumption 4.3, there exists a constant ω ą 0 that does not depend

on θ such that the smallest eigenvalue of ΩP is bounded from below by ω. The result follows for any choice of

c P p0,Φ´1p1´ αq ˆ ω1{2{dq.

In case (ii), there exists an index set C̄ Ă tJ1 ` 2, ..., J1 ` d, J1 ` J2 ` 2, ..., J1 ` J2 ` du collecting d ´ 1 or

fewer linearly independent constraints s.t. D̂n,J1`1 is a positive linear combination of the rows of D̂C̄
P . (Note that

C̄ cannot contain J1 ` 1 or J1 ` J2 ` 1.) One can then write

P˚
´

sup
λPρBdn,ρ

!

p1λ : D̂n,jλ ď c´Gbn,j , j P C̄ Y tJ1 ` J2 ` 1u
)

ě 0
¯

(E.166)

ď P˚
´

Dλ : D̂n,jλ ď c´Gbn,j , j P C̄ Y tJ1 ` J2 ` 1u
¯

(E.167)

ď P˚
´

sup
λPρBdn,ρ

!

D̂n,J1`1λ : D̂n,jλ ď c´Gbn,j , j P C̄
)

ě inf
λPρBdn,ρ

!

D̂n,J1`1λ : D̂n,J1`J2`1λ ď c´Gbn,J1`J2`1

)¯

(E.168)

“ P˚
´

D̂n,J1`1D̂
C̄1
n pD̂

C̄
n D̂

C̄1
n q

´1pc1d̄ ´Gb,C̄n q ě ´c`Gbn,J1`J2`1

¯

. (E.169)

Here, the reasoning from (E.166) to (E.168) holds because we evaluate the probability of increasingly larger events;

in particular, if the event in (E.168) fails, then the constraint sets corresponding to the sup and inf can be separated

by a hyperplane with gradient D̂n,J1`1 and so cannot intersect. The last step solves the optimization problems

in closed form, using (for the sup) that a Karush-Kuhn-Tucker condition again holds by construction and (for the

inf) that D̂n,J1`J2`1 “ ´D̂n,J1`1. Expression (E.169) resembles (E.162), and the argument can be concluded in

analogy to (E.163)-(E.165).

Lemma E.9: Let Assumptions 4.1, 4.2, 4.3-(II), 4.4, and 4.5 hold. Suppose that both π1,j and π1,j`R1 are

finite, with π1,j , j “ 1, . . . , J , defined in (D.4). Let pPn, θnq be the sequence satisfying the conditions of Lemma

E.3. Then for any θ1n P pθn ` ρ{
?
nBdq XΘ,

(1) σ2
Pn,j

pθ1nq{σ
2
Pn,j`R1

pθ1nq Ñ 1 for j “ 1, ¨ ¨ ¨ , R1.
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(2) CorrPnpmjpXi, θ
1
nq,mj`R1

pXi, θ
1
nqq Ñ ´1 for j “ 1, ¨ ¨ ¨ , R1.

(3) |Gn,jpθ1nq `Gn,j`R1
pθ1nq|

Pn
Ñ 0, and |Gbn,jpθ1nq `Gbn,j`R1

pθ1nq|
P˚n
Ñ 0 for almost all tXiu

8
i“1.

(4) ρ}DPn,j`R1
pθ1nq `DPn,jpθ

1
nq} Ñ 0.

Proof. By Lemma E.5, for each j, limnÑ8 κ
´1
n

?
nEPn rmjpXi,θ

1
nqs

σPn,jpθ
1
nq

“ π1,j , and hence the condition that π1,j , π1,j`R1

are finite is inherited by the limit of the corresponding sequences κ´1
n

?
nEPn rmjpXi,θ

1
nqs

σPn,jpθ
1
nq

and κ´1
n

?
nEPn rmj`J11pXi,θ

1
nqs

σPn,j`J11pθ1nq
.

We first establish Claims 1 and 2. We consider two cases.

Case 1.

lim
nÑ8

κn
?
n
σPn,jpθ

1
nq ą 0, (E.170)

which implies that σPn,jpθ
1
nq Ñ 8 at rate

?
n{κn or faster. Claim 1 then holds because

σ2
Pn,j`R1

pθ1nq

σ2
Pn,j

pθ1nq
“
σ2
Pn,j

pθ1nq ` V arPnptjpXi, θ
1
nqq ` 2CovPnpmjpXi, θ

1
nq, tjpXi, θ

1
nqq

σ2
Pn,j

pθ1nq
Ñ 1, (E.171)

where the convergence follows because V arPnptjpXi, θ
1
nqq is bounded due to Assumption 4.3-(II),

|CovPnpmjpXi, θ
1
nq, tjpXi, θ

1
nqq{σ

2
Pn,jpθ

1
nq| ď pV arPnptjpXi, θ

1
nqqq

1{2{σPn,jpθ
1
nq,

and the fact that σPn,jpθ
1
nq Ñ 8. A similar argument yields Claim 2.

Case 2.

lim
nÑ8

κn
?
n
σPn,jpθ

1
nq “ 0. (E.172)

In this case, π1,j being finite implies that EPnmjpXi, θ
1
nq Ñ 0. Again using the upper bound on tjpXi, θ

1
nq similarly

to (E.171), it also follows that

lim
nÑ8

κn
?
n
σPn,j`R1

pθ1nq “ 0, (E.173)

and hence that EPnptjpXi, θ
1
nqq Ñ 0. We then have, using Assumption 4.3-(II) again,

V arPnptjpXi, θ
1
nqq “

ż

tjpx, θ
1
nq

2dPnpxq ´ EPnrtjpXi, θ
1
nqs

2

ďM

ż

tjpx, θ
1
nqdPnpxq ´ EPnrtjpXi, θ

1
nqs

2 Ñ 0. (E.174)

Hence,

σ2
Pn,j`R1

pθ1nq

σ2
Pn,j

pθ1nq
“
σ2
Pn,j

pθ1nq ` V arPnptjpXi, θ
1
nqq ` 2CovPnpmjpXi, θ

1
nq, tjpXi, θ

1
nqq

σ2
Pn,j

pθ1nq

ď
σ2
Pn,j

pθ1nq ` V arPnptjpXi, θ
1
nqq

σ2
Pn,j

pθ1nq
`

2pV arPnptjpXi, θ
1
nqqq

1{2

σPn,jpθ
1
nq

Ñ 1, (E.175)

and the first claim follows.
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To obtain claim 2, note that

CorrPnpmjpXi, θ
1
nq,mj`R1

pXi, θ
1
nqq “

´σ2
Pn,j

pθ1nq ´ CovPnpmjpXi, θ
1
nq, tjpXi, θ

1
nqq

σPn,jpθ
1
nqσPn,j`R1pθ

1
nq

Ñ ´1, (E.176)

where the result follows from (E.174) and (E.175).

To establish Claim 3, consider Gn below. Note that, for j “ 1, ¨ ¨ ¨ , R1,

«

Gn,jpθ1nq
Gn,j`R1

pθ1nq

ff

“

»

–

1?
n

řn
i“1pmjpXi,θ

1
nq´EPn rmjpXi,θ

1
nqsq

σPn,jpθ
1
nq

´ 1?
n

řn
i“1pmjpXi,θ

1
nq´EPn rmjpXi,θ

1
nqsq`

1?
n

řn
i“1ptjpXi,θ

1
nq´EPn rtjpXi,θ

1
nqsq

σPn,j`R1
pθ1nq

fi

fl . (E.177)

Under the conditions of Case 1 above, we immediately obtain

|Gn,jpθ1nq `Gn,j`R1pθ
1
nq|

Pn
Ñ 0. (E.178)

Under the conditions in Case 2 above, 1?
n

řn
i“1ptjpXi, θ

1
nq ´ EPnrtjpXi, θ

1
nqs “ oPp1q due to the variance of this

term being equal to V arPnptjpXi, θ
1
nqq Ñ 0 and Chebyshev’s inequality. Therefore, (E.178) obtains again. These

results imply that Zj`Zj`R1 “ 0, a.s. By Lemma E.15, tGbnu converges in law to the same limit as tGnu for almost

all sample paths tXiu
8
i“1. This and (E.178) then imply the second half of Claim 3.

To establish Claim 4, finiteness of π1,j and π1,j`R1 implies that

EPn

ˆ

mjpX, θ
1
nq

σPn,jpθ
1
nq
`
mj`R1pX, θ

1
nq

σPn,j`R1
pθ1nq

˙

“ OP

ˆ

κn
?
n

˙

. (E.179)

Define the 1ˆ d vector

qn ” DPn,j`R1
pθ1nq `DPn,jpθ

1
nq. (E.180)

Suppose by contradiction that

ρqn Ñ ς ‰ 0,

where }ς} might be infinite. Write

r̃n “
q1n
}qn}

. (E.181)

Let

rn “ r̃nρκ
2
n{
?
n. (E.182)

Using a mean value expansion (where θ̄n and θ̃n in the expressions below are two potentially different vectors that

lie component-wise between θ1n and θ1n ` rn) we obtain

EPn

ˆ

mjpX, θ
1
n ` rnq

σPn,jpθ
1
n ` rnq

`
mj`R1

pX, θ1n ` rnq

σPn,j`R1
pθ1n ` rnq

˙

“ EPn

ˆ

mjpX, θ
1
nq

σPn,jpθ
1
nq
`
mj`R1

pX, θ1nq

σPn,j`R1
pθ1nq

˙

`

´

DPn,jpθ̄nq `DPn,j`R1
pθ̃nq

¯

rn

“OPp
κn
?
n
q `

`

DPn,jpθ
1
nq `DPn,j`R1

pθ1nq
˘

rn `
`

DPn,jpθ̄nq ´DPn,jpθ
1
nq
˘

rn `
´

DPn,j`R1
pθ̃nq ´DPn,j`R1

pθ1nq
¯

rn

“OPp
κn
?
n
q `

ρκ2
n?
n
`OPp

ρ2κ4
n

n
q. (E.183)

It then follows that there exists N P N such that for all n ě N , the right hand side in (E.183) is strictly greater
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than zero.

Next, observe that

EPn

ˆ

mjpX, θ
1
n ` rnq

σPn,jpθ
1
n ` rnq

`
mj`R1pX, θ

1
n ` rnq

σPn,j`R1
pθ1n ` rnq

˙

“EPn

ˆ

mjpX, θ
1
n ` rnq

σPn,jpθ
1
n ` rnq

`
mj`R1

pX, θ1n ` rnq

σPn,jpθ
1
n ` rnq

˙

´

ˆ

σPn,j`R1
pθ1n ` rnq

σPn,jpθ
1
n ` rnq

´ 1

˙

EPnpmj`R1
pX, θ1n ` rnqq

σPn,j`R1pθ
1
n ` rnq

“EPn

ˆ

mjpX, θ
1
n ` rnq

σPn,jpθ
1
n ` rnq

`
mj`R1pX, θ

1
n ` rnq

σPn,jpθ
1
n ` rnq

˙

´ oPp
ρκ2

n?
n
q. (E.184)

Here, the last step is established as follows. First, using that σPn,jpθ
1
n ` rnq is bounded away from zero for n large

enough by the continuity of σp¨q and Assumption 4.3-(II), we have

σPn,j`R1pθ
1
n ` rnq

σPn,jpθ
1
n ` rnq

´ 1 “
σPn,j`R1pθ

1
nq

σPn,jpθ
1
nq

´ 1` oPp1q “ oPp1q, (E.185)

where we used Claim 1. Second, using Assumption 4.4, we have that

EPnpmj`R1pX, θ
1
n ` rnqq

σPn,j`R1
pθ1n ` rnq

“
EPnpmj`R1pX, θ

1
nqq

σPn,j`R1
pθ1nq

`DPn,j`R1pθ̃nqrn “ OPp
κn
?
n
q `OPp

ρκ2
n?
n
q. (E.186)

The product of (E.185) and (E.186) is therefore oPp
ρκ2
n?
n
q and (E.184) follows.

To conclude the argument, note that for n large enough, mj`R1
pX, θ1n ` rnq ď ´mjpX, θ

1
n ` rnq a.s. because

for any θn P ΘIpPnq and θ1n P pθn` ρ{
?
nBdqXΘ for n large enough, θ1n` rn P Θε and Assumption 4.3-(II) applies.

Therefore, there exists N P N such that for all n ě N , the left hand side in (E.183) is strictly less than the right

hand side, yielding a contradiction.

Below, we let R1 “ t1, ¨ ¨ ¨ , R1u and R2 “ tR1 ` 1, ¨ ¨ ¨ , 2R1u.

Lemma E.10: Suppose Assumptions 4.1, 4.2, and 4.5 hold. For each θ P Θ, let ηn,jpθq “ σP,jpθq{σ̂n,jpθq ´ 1.

Then, (i) for each j “ 1, . . . , J1 ` J2

inf
PPP

P
´

sup
θPΘ

|ηn,jpθq| Ñ 0
¯

“ 1. (E.187)

(ii) For any j “ 1, . . . , R1 let

σ̂Mn,jpθq “ σ̂Mn,j`R1
pθq ” µ̂n,jpθqσ̂n,jpθq ` p1´ µ̂n,jpθqqσ̂n,j`R1

pθq. (E.188)

Let pPn, θnq be a sequence such that Pn P P, θn P Θ for all n, and κ´1
n

?
nγ1,Pn,jpθnq Ñ π1j P Rr´8s. Let J ˚ be

defined as in (E.29). Then, for any η ą 0, there exists N P N such that

Pn

´

max
jPpR1YR2qXJ˚

ˇ

ˇ

ˇ

σPn,jpθnq

σ̂Mn,jpθnq
´ 1

ˇ

ˇ

ˇ
ą η

¯

ă η (E.189)

for all n ě N .

Proof. We first show that, for any ε ą 0 and for any j “ 1, . . . , J1 ` J2,

inf
PPP

P
´

sup
měn

sup
θPΘ

ˇ

ˇ

ˇ

σ̂n,jpθq

σP,jpθq
´ 1

ˇ

ˇ

ˇ
ď ε

¯

Ñ 1. (E.190)
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For this, define the following sets:

Mj ” tmjp¨, θq{σP,jpθq : θ P Θ, P P Pu (E.191)

Sj ” tpmjp¨, θq{σP,jpθqq
2 : θ P Θ, P P Pu. (E.192)

By Assumptions 4.1-(a), 4.1 (iv), 4.5 (i), (iii), and arguing as in the proof of Lemma D.2.2 (and D.2.1) in Bugni,

Canay, and Shi (2015), it follows that Sj and Mj are Glivenko-Cantelli (GC) classes uniformly in P P P (in the

sense of van der Vaart and Wellner, 2000, page 167).

Therefore, for any ε ą 0,

inf
PPP

P
´

sup
měn

sup
θPΘ

ˇ

ˇ

ˇ

n´1
řn
i“1mjpXi, θq

2

σ2
P,jpθq

´
EP rmjpX, θq

2s

σ2
P,jpθq

ˇ

ˇ

ˇ
ď ε

¯

Ñ 1 (E.193)

inf
PPP

P
´

sup
měn

sup
θPΘ

ˇ

ˇ

ˇ

m̄n,jpθq ´ EP rmjpX, θqs

σP,jpθq

ˇ

ˇ

ˇ
ď ε

¯

Ñ 1. (E.194)

Note that, by Assumption 4.1 (iv), |EP rmjpX, θqs{σP,jpθq| ďM for some constant M ą 0 that does not depend on

P and px2 ´ y2q ď |x` y||x´ y| ď 2M |x´ y| for all x, y P r´M,M s. By (E.194), for any ε ą 0, it follows that

inf
PPP

P
´

sup
měn

sup
θPΘ

ˇ

ˇ

ˇ

m̄n,jpθq
2 ´ EP rmjpX, θqs

2

σ2
P,jpθq

ˇ

ˇ

ˇ
ď ε

¯

Ñ 1. (E.195)

By the uniform continuity of x ÞÑ
?
x on R`, for any ε ą 0, there is a constant η ą 0 such that

ˇ

ˇ

ˇ

σ̂2
n,jpθq

σ2
P,jpθq

´ 1
ˇ

ˇ

ˇ
ď η ñ

ˇ

ˇ

ˇ

σ̂n,jpθq

σP,jpθq
´ 1

ˇ

ˇ

ˇ
ď ε. (E.196)

By the definition of σ2
P,jpθq and the triangle inequality,

ˇ

ˇ

ˇ

σ̂2
n,jpθq

σ2
P,jpθq

´ 1
ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ

n´1
řn
i“1mpXi, θq

2 ´ ErmjpXi, θq
2s

σ2
P,jpθq

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ

m̄n,jpθq
2 ´ ErmjpXi, θqs

2

σ2
P,jpθq

ˇ

ˇ

ˇ
. (E.197)

By (E.196)-(E.197), bounding each of the terms on the right hand side of (E.197) by η{2 implies |σ̂n,jpθq{σP,jpθq ´

1| ď ε. This, together with (E.193) and (E.195), ensures that, for any ε ą 0, (E.190) holds.

Note that |σ̂n,jpθq{σP,jpθq ´ 1| ď ε implies σ̂n,jpθq ą 0, and argue as in the proof of Lemma D.2.4 in Bugni,

Canay, and Shi (2015) to conclude that

inf
PPP

P
´

sup
měn

sup
θPΘ

ˇ

ˇ

ˇ

σP,jpθq

σ̂n,jpθq
´ 1

ˇ

ˇ

ˇ
ď ε

¯

Ñ 1. (E.198)

Finally, recall that ηn,jpθq “ σP,jpθq{σ̂n,jpθq ´ 1 and note that for any ε ą 0,

1 “ lim
nÑ8

inf
PPP

P
´

sup
měn

sup
θPΘ

|ηn,jpθq| ď ε
¯

ď inf
PPP

lim
nÑ8

P
´

č

měn

 

sup
θPΘ

|ηn,jpθq| ď ε
(

¯

“ inf
PPP

P
´

lim
nÑ8

č

měn

tsup
θPΘ

|ηn,jpθq| ď ε
(

¯

“ inf
PPP

P
´

sup
θPΘ

|ηn,jpθq| ď ε, for almost all n
¯

, (E.199)

where the second equality is due to the continuity of probability with respect to monotone sequences. Therefore,

the first conclusion of the lemma follows.
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(ii) We first give the limit of µ̂n,jpθnq. Recall the definitions of µ̂n,j`R1
and µ̂n,jpθnq in (E.14)-(E.15).

Note that

sup
θ1nPθn`ρ{

?
nBd

ˇ

ˇ

ˇ
κ´1
n

?
nm̄n,jpθ

1
nq

σ̂n,jpθ1nq
´ κ´1

n

?
nEPnrmjpXi, θ

1
nqs

σPn,jpθ
1
nq

ˇ

ˇ

ˇ

ď sup
θ1nPθn`ρ{

?
nBd

ˇ

ˇ

ˇ
κ´1
n

?
npm̄n,jpθ

1
nq ´ EPnrmjpXi, θ

1
nqsq

σn,jpθ1nq
p1` ηn,jpθ

1
nqq ` κ

´1
n

?
nEPnrmjpXi, θ

1
nqs

σPn,jpθ
1
nq

ηn,jpθ
1
nq

ˇ

ˇ

ˇ

ď sup
θ1nPθn`ρ{

?
nBd

|κ´1
n Gnpθ1nqp1` ηn,jpθ1nqq| `

ˇ

ˇ

ˇ

?
nEPnrmjpXi, θ

1
nqs

κnσPn,jpθ
1
nq

ηn,jpθ
1
nq

ˇ

ˇ

ˇ
“ oPp1q, (E.200)

where the last equality follows from supθPΘ |Gnpθq| “ OPp1q due to asymptotic tightness of tGnu (uniformly in P )

by Lemma D.1 in Bugni, Canay, and Shi (2015), Theorem 3.6.1 and Lemma 1.3.8 in van der Vaart and Wellner

(2000), and supθPΘ |ηn,jpθq| “ oPp1q by part (i) of this Lemma. Hence,

µ̂n,jpθnq
Pn
Ñ 1´min

!

maxp0,
π1,j

π1,j`R1
` π1,j

q, 1
)

, (E.201)

unless π1,j`R1
` π1,j “ 0 (this case is considered later). This implies that if π1,j P p´8, 0s and π1,j`R1

“ ´8, one

has

µ̂n,jpθnq
Pn
Ñ 1. (E.202)

Similarly, if π1,j “ ´8 and π1,j`R1
P p´8, 0s, one has

µ̂n,j`R1pθnq
Pn
Ñ 1. (E.203)

Now, one may write

σPn,jpθnq

σ̂Mn,jpθnq
´ 1 “

σPn,jpθnq

σ̂n,jpθnq

´ σ̂n,jpθnq

σ̂Mn,jpθnq
´ 1

¯

`

´σPn,jpθnq

σ̂n,jpθnq
´ 1

¯

“ OPnp1q
´ σ̂n,jpθnq

σ̂Mn,jpθnq
´ 1

¯

` oPnp1q, (E.204)

where the second equality follows from the first conclusion of the lemma. Hence, for the second conclusion of the

lemma, it suffices to show σ̂n,jpθnq{σ̂
M
n,jpθnq ´ 1 “ oPp1q. For this, we consider three cases.

Suppose first j P R1 X J ˚ and j `R1 R J ˚. Then, π˚1,j “ 0 and π˚1,j`R1
“ ´8. Then,

σ̂Mn,jpθnq “ µ̂n,jpθnqσ̂n,jpθnq ` p1´ µ̂n,jpθnqqσ̂n,j`R1
pθnq (E.205)

“ p1` oPnp1qqσ̂n,jpθnq ` p1´ µ̂n,jpθnqqOPnpσ̂n,jpθnqq, (E.206)

where the second equality follows from (E.202) and the fact that

σ̂n,j`R1
pθnq “

´

σ̂2
n,jpθnq ` 2yCovnpmjpXi, θq, tjpXi, θqq ` yV arnptjpXi, θqq

¯1{2

“

´

σ̂2
n,jpθnq `OPnpσ̂n,jpθnqq `OPnp1q

¯1{2

“ OPnpσ̂n,jpθnqq, (E.207)

where the second equality follows from, V arPnptjpXi, θqq being bounded by Assumption 4.3-(II) and

yV arnptjpXi, θqq “ V arPnptjpXi, θqq ` oPnp1q (E.208)

yCovnpmjpXi, θq, tjpXi, θqq ď σ̂n,jpθnqyV arnptjpXi, θqq
1{2, (E.209)

where the last inequality is due to the Cauchy-Schwarz inequality.
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Therefore,

σ̂n,jpθnq

σ̂Mn,jpθnq
´ 1 “

σ̂n,jpθnq ´ σ̂
M
n,jpθnq

σ̂Mn,jpθnq
“

p1´ µ̂n,jpθnqqOPnpσ̂n,jpθnqq

p1` oPnp1qqσ̂n,jpθnq ` p1´ µ̂n,jpθnqqOPnpσ̂n,jpθnqq
“ oPnp1q, (E.210)

where we used σ̂´1
n,jpθnq “ OPnp1q by equation (4.3) and part (i) of the lemma. By (E.204) and (E.210), σPn,jpθnq{σ̂

M
n,jpθnq´

1 “ oPnp1q. Using a similar argument, the same conclusion follows when j P R1, j R J ˚, but j `R1 P R2 X J ˚.
Now consider the case j P R1 X J ˚ and j ` R1 P R2 X J ˚. Then, π˚1,j “ 0 and π˚1,j`R1

“ 0. In this case,

µ̂n,jpθnq P r0, 1s for all n and by Lemma E.9 (1),

ˇ

ˇ

ˇ

σPn,jpθnq

σPn,j`R1pθnq
´ 1

ˇ

ˇ

ˇ
“ oPnp1q, for j “ 1, ¨ ¨ ¨ , R1, (E.211)

and therefore,

σPn,jpθnq

σ̂Mn,jpθnq
´ 1 “

σPn,jpθnq ´ σ̂
M
n,jpθnq

σ̂Mn,jpθnq

“
rµ̂n,jpθnq ` p1´ µ̂n,jpθnqqsσPn,jpθnq ´ rµ̂n,jpθnqσ̂n,jpθnq ` p1´ µ̂n,jpθnqqσ̂n,j`R1

pθnqs

σ̂Mn,jpθnq

“
µ̂n,jpθnqrσPn,jpθnq ´ σ̂n,jpθnqs

σ̂Mn,jpθnq
`
p1´ µ̂n,jpθnqqrσPn,j`R1

pθnq ´ σ̂n,j`R1
pθnq ` oPnp1qs

σ̂Mn,jpθnq
, (E.212)

where the second equality follows from the definition of σ̂Mn,jpθnq, and the third equality follows from (E.211) and

σPn,j`R1
bounded away from 0 due to (4.3). Note that

µ̂n,jpθnqrσPn,jpθnq ´ σ̂n,jpθnqs

σ̂Mn,jpθnq
“ µ̂n,jpθnq

σ̂n,jpθnq

σ̂Mn,jpθnq

´σPn,jpθnq

σ̂n,jpθnq
´ 1

¯

“ oPnp1q, (E.213)

where the second equality follows from the first conclusion of the lemma. Similarly,

p1´ µ̂n,jpθnqqrσPn,j`R1pθnq ´ σ̂n,j`R1pθnq ` oPnp1qs

σ̂Mn,jpθnq

“ p1´ µ̂n,jpθnqq
σ̂n,j`R1pθnq

σ̂Mn,jpθnq

´σPn,j`R1pθnq

σ̂n,j`R1
pθnq

´ 1` oPnp1q
¯

“ oPnp1q. (E.214)

By (E.212)-(E.214), it follows that σPn,jpθnq{σ̂
M
n,jpθnq ´ 1 “ oPnp1q. Therefore, the second conclusion holds for all

subcases.

E.2 Lemmas Used to Prove Theorem B.1

Let tXb
i u
n
i“1 denote a bootstrap sample drawn randomly from the empirical distribution. Define

Gbn,jpθq ”
1
?
n

n
ÿ

i“1

`

mjpX
b
i , θq ´ m̄npθq

˘

{σP,jpθq

“
1
?
n

n
ÿ

i“1

pMn,i ´ 1qmjpXi, θq{σP,jpθq, (E.215)

where tMn,iu
n
i“1 denotes the multinomial weights on the original sample, and we let P˚n denote the conditional

distribution of tMn,iu
n
i“1 given the sample path tXiu

8
i“1 (see Appendix E.3 for details on the construction of the

bootstrapped empirical process).
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Lemma E.11: (i) Let MP ” tf : X Ñ R : fp¨q “ σP,jpθq
´1mjp¨, θq, θ P Θ, j “ 1, ¨ ¨ ¨ , Ju and let F be its

envelope. Suppose that (i) there exist constants K, v ą 0 that do not depend on P such that

sup
Q
Npε}F }L2

Q
,MP , L

2
Qq ď Kε´v, 0 ă ε ă 1, (E.216)

where the supremum is taken over all discrete distributions; (ii) There exists a positive constant γ ą 0 such that

}pθ1, θ̃1q ´ pθ2, θ̃2q} ď δ ñ sup
PPP

}QP pθ1, θ̃1q ´QP pθ2, θ̃2q} ďMδγ . (E.217)

Let δn be a positive sequence tending to 0 and let εn be a positive sequence such that εn{|δ
γ
n ln δn| Ñ 8 as n Ñ 8.

Then,

sup
PPP

P

˜

sup
}θ´θ1}ďδn

}Gnpθq ´Gnpθ1qq} ą εn

¸

“ op1q. (E.218)

Further,

lim
nÑ8

P˚n

˜

sup
}θ´θ1}ďδn

}Gbnpθq ´Gbnpθ
1qq} ą εn|tXiu

8
i“1

¸

“ 0. (E.219)

for almost all sample paths tXiu
8
i“1 uniformly in P P P.

Proof. For the first conclusion of the lemma, it suffices to show that there is a sequence tεnu such that, uniformly

in P :

P

˜

sup
}θ´θ1}ďδn

max
j“1,¨¨¨ ,J

|Gn,jpθq ´Gn,jpθ1q| ą εn

¸

“ op1q. (E.220)

For this purpose, we mostly mimic the argument required to show the stochastic equicontinuity of empirical processes

(see e.g. van der Vaart and Wellner, 2000, Ch.2.5). Before doing so, note that, arguing as in the proof of Lemma

D.1 (Part 1) in Bugni, Canay, and Shi (2015), one has

}θ ´ θ1} ď δn ñ %P pθ, θ
1q ď δ̃n, (E.221)

where δ̃n “ Opδγnq by assumption. Define

MP,δ̃n
“ tσP,jpθq

´1mjp¨, θq ´ σP,jpθ
1q´1mjp¨, θ

1q|θ, θ1 P Θ, %P pθ, θ̃q ă δ̃n, j “ 1, ¨ ¨ ¨ , Ju. (E.222)

Define Znpδ̃nq ” supfPMδ̃n
|
?
npPn ´ P qf |. Then, by (E.221), one has

P

˜

sup
}θ´θ1}ďδn

max
j“1,¨¨¨ ,J

|Gn,jpθq ´Gn,jpθ1qq| ą εnq ď P pZnpδ̃nq ą εn

¸

. (E.223)

From here, we deal with the supremum of empirical processes though symmetrization and an application of a

maximal inequality. By Markov’s inequality and Lemma 2.3.1 (symmetrization lemma) in van der Vaart and

Wellner (2000), one has

P pZnpδ̃nq ą εnq ď
2

εn
EPˆPW

«

sup
fPMP,δ̃n

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

i“1

WifpXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

, (E.224)

where tWiu
n
i“1 are i.i.d. Rademacher random variables independent of tXiu

8
i“1 whose law is denoted by PW . Now,
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fix the sample path tXiu
n
i“1, and let P̂n be the empirical distribution. By Hoeffding’s inequality, the stochastic

process f ÞÑ tn´1{2
řn
i“1WifpXiqu is sub-Gaussian for the L2

P̂n
seminorm }f}L2

P̂n

“ pn´1
řn
i“1 fpXiq

2q1{2. By the

maximal inequality (Corollary 2.2.8) and arguing as in the proof of Theorem 2.5.2 in in van der Vaart and Wellner

(2000), one then has

EPW

«

sup
fPMδ̃n

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

i“1

WifpXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď K

ż δ̃n

0

b

lnNpε,MP,δ̃n
, L2

P̂n
qdε

ď K

ż δ̃n{}F }L2
Q

0

sup
Q

b

lnNpε}F }L2
Q
,MP , L2

Qqdε

ď K 1
ż δ̃n{}F }L2

Q

0

?
´v ln εdε, (E.225)

for some K 1 ą 0, where the last inequality follows from (E.216). Note that
?
´ ln ε ď ´ ln ε for ε ď δ̃n{}F }L2

Q
with

n sufficiently large. Hence,

EPW

«

sup
fPMδ̃n

ˇ

ˇ

ˇ

ˇ

ˇ

1
?
n

n
ÿ

i“1

WifpXiq

ˇ

ˇ

ˇ

ˇ

ˇ

ff

ď K 1v1{2

ż δ̃n{}F }L2
Q

0

p´ ln εqdε “ K 1v1{2pδ̃n ´ δ̃n lnpδ̃nqq. (E.226)

By (E.224) and taking expectations with respect to P in (E.226), it follows that

P pZnpδ̃nq ą εnq ď 2K 1v1{2pδ̃n ´ δ̃n lnpδ̃nqq{εn “ Opδγn{εnq `Op|δ
γ
n lnpδnq|{εnq “ op1q, (E.227)

where the last equality follows from the rate condition on εn. By (E.223) and (E.227), conclude that the first claim

of the lemma holds.

For the second claim, define Z˚npδ̃nq ” supfPMδ̃n
|
?
npP̂˚n ´ P̂nqf |, where P̂˚n is the empirical distribution of

tXb
i u
n
i“1. Then, by (E.221), one has

P˚n

˜

sup
}θ´θ1}ďδn

max
j“1,¨¨¨ ,J

|Gbn,jpθq ´Gbn,jpθ
1q| ą εn

ˇ

ˇ

ˇ
tXiu

8
i“1

¸

ď P˚n
`

Z˚npδ̃nq ą εn
ˇ

ˇtXiu
8
i“1

˘

. (E.228)

By Markov’s inequality and Lemma 2.3.1 (symmetrization lemma) in van der Vaart and Wellner (2000), one has

P˚n
`

Z˚npδ̃nq ą εn
ˇ

ˇtXiu
8
i“1

˘

ď
2

εn
EP˚n ˆPW

«

sup
fPMP,δ̃n

ˇ

ˇ

ˇ

1
?
n

n
ÿ

i“1

WifpX
b
i q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

tXiu
8
i“1

ff

(E.229)

“
2

εn
EP˚n

«

EPW

«

sup
fPMP,δ̃n

ˇ

ˇ

ˇ

1
?
n

n
ÿ

i“1

WifpX
b
i q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

tXb
i u, tXiu

8
i“1

ff
ˇ

ˇ

ˇ

ˇ

ˇ

tXiu
8
i“1

ff

, (E.230)

where tWiu
n
i“1 are i.i.d. Rademacher random variables independent of tXiu

8
i“1 and tMn,iu

n
i“1. Argue as in (E.224)-

(E.227). Then, it follows that

P˚n pZ
˚
npδ̃nq ą εn|tXiu

8
i“1q “ Opδγn{εnq `Op´δ

γ
n lnpδnq{εnq “ op1q,

for almost all sample paths. Hence, the second claim of the lemma follows.

Lemma E.12: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Let SP ” tf : X Ñ R : fp¨q “ σP,jpθq
´2m2

j p¨, θq, θ P

Θ, j “ 1, ¨ ¨ ¨ , Ju and let F be its envelope. (i) If SP is Donsker and pre-Gaussian uniformly in P P P, then

sup
θPΘ

|ηn,jpθq|
˚ “ OPp1{

?
nq; (E.231)
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(ii) If |σP,jpθq
´1mjpx, θq ´ σP,jpθ

1q´1mjpx, θ
1q| ď M̄pxq}θ ´ θ1} with EP rM̄pXq

2s ă M for all θ, θ1 P Θ, x P X ,

j “ 1, ¨ ¨ ¨ , J , and P P P, then, for any η ą 0, there exists a constant C ą 0 such that

lim sup
nÑ8

sup
PPP

P
´

max
j“1,¨¨¨ ,J

sup
}θ´θ1}ăδ

|ηn,jpθq ´ ηn,jpθ
1q| ą Cδ

¯

ă η. (E.232)

Proof. We show the claim by first showing that, for any δ ą 0, there exist M ą 0 and N P N such that

inf
PPP

P8
´

sup
θPΘ

ˇ

ˇ

ˇ

σ̂n,jpθq

σP,jpθq
´ 1

ˇ

ˇ

ˇ
ďM{

?
n
¯

ě 1´ δ, @n ě N. (E.233)

By Assumptions 4.1 (iv), 4.5 and Theorem 2.8.2 in van der Vaart and Wellner (2000), MP is a Donsker class

uniformly in P P P. By hypothesis, SP is a Donsker class uniformly in P P P.

Therefore, by the continuous mapping theorem, for any ε ą 0,

ˇ

ˇ

ˇ
P
´?

n sup
θPΘ

ˇ

ˇ

ˇ

n´1
řn
i“1mjpXi, θq

2

σ2
P,jpθq

´
EP rmjpX, θq

2s

σ2
P,jpθq

ˇ

ˇ

ˇ
ď C1

¯

´ Prpsup
θPΘ

|HP,jpθq| ď C1q

ˇ

ˇ

ˇ
ď ε (E.234)

ˇ

ˇ

ˇ
P
´?

n sup
θPΘ

ˇ

ˇ

ˇ

m̄n,jpθq ´ EP rmjpX, θqs

σP,jpθq

ˇ

ˇ

ˇ
ď C2

¯

´ Prpsup
θPΘ

|GP,jpθq| ď C2q

ˇ

ˇ

ˇ
ď ε. (E.235)

for n sufficiently large uniformly in P P P, where HP,j and GP,j are tight Gaussian processes, and C1 and C2

are the continuity points of the distributions of supθPΘ |HP,jpθq| and supθPΘ |GP,jpθq| respectively. As in the proof

of Lemma E.10 (i), bounding each term of the right hand side of (E.197) by C1{
?
n and C2{

?
n implies that

supθPΘ

ˇ

ˇ

ˇ

σ̂2
n,jpθq

σ2
P,jpθq

´ 1
ˇ

ˇ

ˇ
ď C{

?
n for some constant C ą 0. Now choose C1 ą 0 and C2 ą 0 so that

Prpsup
θPΘ

|HP,jpθq| ď C1q ą 1´ δ{3, and Prpsup
θPΘ

|GP,jpθq| ď C2q ą 1´ δ{3, (E.236)

and set ε ą 0 sufficiently small so that 1´ 2δ{3´ 2ε ě 1´ δ. The existence of such continuity points C1, C2 ą 0 is

due to Theorem 11.1 in Davydov, Lifshitz, and Smorodina (1995) applied to supθPΘ |HP,jpθq| and supθPΘ |GP,jpθq|
respectively. Then, for sufficiently large n,

1´ δ ď P
´?

n sup
θPΘ

ˇ

ˇ

ˇ

n´1
řn
i“1mjpXi, θq

2

σ2
P,jpθq

´
EP rmjpX, θq

2s

σ2
P,jpθq

ˇ

ˇ

ˇ
ď C1,

?
n sup
θPΘ

ˇ

ˇ

ˇ

m̄n,jpθq ´ EP rmjpX, θqs

σP,jpθq

ˇ

ˇ

ˇ
ď C2

¯

ď P
´

sup
θPΘ

ˇ

ˇ

ˇ

σ̂2
n,jpθq

σ2
P,jpθq

´ 1
ˇ

ˇ

ˇ
ď C{

?
n
¯

, (E.237)

uniformly in P P P.
Next, note that, for x ą 0 and 0 ă η ă 1, |x2´1| ď η implies |x´1| ď 1´p1´ηq1{2 ď η, and hence by (E.237),

for sufficiently large n,

1´ δ ď P
´

sup
θPΘ

ˇ

ˇ

ˇ

σ̂n,jpθq

σP,jpθq
´ 1

ˇ

ˇ

ˇ
ď C{

?
n
¯

, (E.238)

uniformly in P P P. Finally, note again that |σ̂n,jpθq{σP,jpθq ´ 1| ď ε implies σ̂n,jpθq ą 0, and by the local Lipshitz

continuity of x ÞÑ 1{x on a neighborhood around 1, there is a constant C 1 such that

P
´

sup
θPΘ

|ηn,jpθq| ď C 1{
?
n
¯

ě 1´ δ, (E.239)

uniformly in P P P for all n sufficiently large. This establishes the first claim of the lemma.
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(ii) First, consider

σ̂2
n,jpθq

σ2
P,jpθq

“ n´1
n
ÿ

i“1

ˆ

mpXi, θq

σP,jpθq

˙2

´

˜

n´1
n
ÿ

i“1

mpXi, θq

σP,jpθq

¸2

. (E.240)

We claim that this function is Lipschitz with probability approaching 1. To see this, note that, for any θ, θ1 P Θ,

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

˜

mpXi, θq

σP,jpθq

¸2

´ n´1
n
ÿ

i“1

˜

mpXi, θ
1q

σP,jpθ1q

¸2ˇ
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

˜

mpXi, θq

σP,jpθq
`
mpXi, θ

1q

σP,jpθ1q

¸˜

mpXi, θq

σP,jpθq
´
mpXi, θ

1q

σP,jpθ1q

¸
ˇ

ˇ

ˇ

ˇ

ˇ

ď n´1
n
ÿ

i“1

2 sup
θPΘ

ˇ

ˇ

ˇ

mpXi, θq

σP,jpθq

ˇ

ˇ

ˇ
M̄pXiq}θ ´ θ

1}. (E.241)

Define Bn ” n´1
řn
i“1 2 supθPΘ

ˇ

ˇ

ˇ

mpXi,θq
σP,jpθq

ˇ

ˇ

ˇ
M̄pXiq. By Markov and Cauchy-Schwarz inequalities,

P pBn ą Cq ď
ErBns

C
ď

2EP

„

supθPΘ

ˇ

ˇ

ˇ

mpXi,θq
σP,jpθq

ˇ

ˇ

ˇ

2
1{2

EP

”

M̄pXiq
2
ı1{2

C
ď

2M

C
, (E.242)

where the third inequality is due to Assumptions 4.1 (iv) and the assumption on M̄ . Hence, for any η ą 0, one may

find C ą 0 such that supPPP P pBn ą Cq ă η for all n.

Similarly, for any θ, θ1 P Θ,

ˇ

ˇ

ˇ

ˇ

ˇ

˜

n´1
n
ÿ

i“1

mpXi, θq

σP,jpθq

¸2

´

˜

n´1
n
ÿ

i“1

mpXi, θ
1q

σP,jpθ1q

¸2ˇ
ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

mpXi, θq

σP,jpθq
` n´1

n
ÿ

i“1

mpXi, θ
1q

σP,jpθ1q

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

mpXi, θq

σP,jpθq
´ n´1

n
ÿ

i“1

mpXi, θ
1q

σP,jpθ1q

ˇ

ˇ

ˇ

ˇ

ˇ

ď n´1
n
ÿ

i“1

2 sup
θPΘ

ˇ

ˇ

ˇ

ˇ

ˇ

mpXi, θq

σP,jpθq

ˇ

ˇ

ˇ

ˇ

ˇ

n´1
n
ÿ

i“1

M̄pXiq}θ ´ θ
1}. (E.243)

Define B̃n ” n´1
řn
i“1 2 supθPΘ

ˇ

ˇ

ˇ

mpXi,θq
σP,jpθq

ˇ

ˇ

ˇ
n´1

řn
i“1 M̄pXiq. By Markov, Cauchy-Schwarz, and Jensen’s inequalities,

P pB̃n ą Cq ď
ErB̃ns

C
ď

2EP

”´

n´1
ř

supθPΘ

ˇ

ˇ

ˇ

mpXi,θq
σP,jpθq

ˇ

ˇ

ˇ

¯2ı1{2

EP

”´

n´1
ř

M̄pXiq

¯2ı1{2

C

ď

2EP

”

supθPΘ
ˇ

ˇ

mpXi,θq
σP,jpθq

ˇ

ˇ

2
ı1{2

EP rM̄pXiq
2s1{2

C
ď

2M

C
, (E.244)

where the last inequality is due to Assumptions 4.1 (iv) and the assumption on M̄ . Hence, for any η ą 0, one may

find C ą 0 such that supPPP P pB̃n ą Cq ă η for all n.

Finally, let gpyq ” y´1{2 ´ 1 and note that |gpyq ´ gpy1q| ď 1
2 supȳPp1´ε,1`εq |ȳ|

´3{2|y ´ y1| on p1 ´ ε, 1 ` εq. As

shown in (E.238), σ̂2
n,jpθq{σ

2
P,jpθq converges to 1 in probability, and g is locally Lipschitz on a neighborhood of 1.

Combining this with (E.240)-(E.244) yields the desired result.

Lemma E.13: Suppose Assumption 4.1 holds. Suppose further that |σP,jpθq
´1mjpx, θq ´ σP,jpθ

1q´1mjpx, θ
1q| ď

[59]



M̄pxq}θ ´ θ1} with EP rM̄pXq
2s ăM for all θ, θ1 P Θ, x P X , j “ 1, ¨ ¨ ¨ , J , and P P P.

Then,

sup
PPP

}QP pθ1, θ̃1q ´QP pθ2, θ̃2q} ďM}pθ1, θ̃1q ´ pθ2, θ̃2q}, (E.245)

for some M ą 0 and for all θ1, θ̃1, θ2, θ̃2 P Θ.

Proof. Recall that

rQP pθ1, θ̃1qsj,k “ EP

”mjpXi, θ1q

σP,jpθ1q

mkpXi, θ̃1q

σP,kpθ̃1q

ı

´ EP

”mjpXi, θ1q

σP,jpθ1q

ı

EP

”mkpXi, θ̃1q

σP,kpθ̃1q

ı

. (E.246)

For any θ1, θ̃1, θ2, θ̃2 P Θ,

ˇ

ˇ

ˇ
EP

”mjpXi, θ1q

σP,jpθ1q

mkpXi, θ̃1q

σP,kpθ̃1q

ı

´ EP

”mjpXi, θ2q

σP,jpθ2q

mkpXi, θ̃2q

σP,kpθ̃2q

ı
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
EP

”´mjpXi, θ1q

σP,jpθ1q
´
mjpXi, θ2q

σP,jpθ2q

¯mkpXi, θ̃2q

σP,kpθ̃2q

ı
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
EP

”mjpXi, θ1q

σP,jpθ1q

´mkpXi, θ̃1q

σP,kpθ̃1q
´
mkpXi, θ̃2q

σP,kpθ̃2q

¯ı
ˇ

ˇ

ˇ

ď EP

”

sup
θPΘ

ˇ

ˇ

ˇ

mkpXi, θq

σP,kpθq

ˇ

ˇ

ˇ
M̄pXiq

ı

}θ1 ´ θ2} ` EP

”

sup
θPΘ

ˇ

ˇ

ˇ

mjpXi, θq

σP,jpθq

ˇ

ˇ

ˇ
M̄pXiq

ı

}θ̃1 ´ θ̃2}

ďMp}θ1 ´ θ2} ` }θ̃1 ´ θ̃2}q, (E.247)

where the last inequality is due to the Cauchy-Schwarz inequality, Assumption 4.1 (iv), and the assumption on M̄ .

Similarly, for any θ1, θ̃1, θ2, θ̃2 P Θ,

ˇ

ˇ

ˇ
EP

”mjpXi, θ1q

σP,jpθ1q

ı

EP

”mkpXi, θ̃1q

σP,kpθ̃1q

ı

´ EP

”mjpXi, θ2q

σP,jpθ2q

ı

EP

”mkpXi, θ̃2q

σP,kpθ̃2q

ı
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ
EP

”mjpXi, θ1q

σP,jpθ1q
´
mjpXi, θ2q

σP,jpθ2q

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ
EP

”mkpXi, θ̃2q

σP,kpθ̃2q

ı
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
EP

”mjpXi, θ1q

σP,jpθ1q

ıˇ

ˇ

ˇ

ˇ

ˇ

ˇ
EP

”mkpXi, θ̃1q

σP,kpθ̃1q
´
mkpXi, θ̃2q

σP,kpθ̃2q

ı
ˇ

ˇ

ˇ

ď EP

”

sup
θPΘ

ˇ

ˇ

ˇ

mkpXi, θq

σP,kpθq

ˇ

ˇ

ˇ

ı

EP rM̄pXiqs}θ1 ´ θ2} ` EP

”

sup
θPΘ

ˇ

ˇ

ˇ

mjpXi, θq

σP,jpθq

ˇ

ˇ

ˇ

ı

EP rM̄pXiqs}θ̃1 ´ θ̃2}

ďMp}θ1 ´ θ2} ` }θ̃1 ´ θ̃2}q, (E.248)

where the last inequality is due to the Cauchy-Schwarz inequality, Assumption 4.1 (iv), and the assumption on M̄ .

The conclusion of the lemma then follows from (E.246)-(E.248).

E.3 Almost Sure Representation Lemma and Related Results

In this appendix, we provide details on the almost sure representation used in Lemmas E.3, E.4, E.6, and E.9. We

start with stating a uniform version of the bootstrap consistency in van der Vaart and Wellner (2000). For this, we

define the original sample X8 “ pX1, X2, ¨ ¨ ¨ q and a n-dimensional multinomial vector Mn on a common probability

space pX8,A8, P8q ˆ pZ, C, Qq. We then view X8 as the coordinate projection on the first 8 coordinates of the

probability space above. Similarly, we view Mn as the coordinate projection on Z. Here, Mn follows a multinomial

distribution with parameter pn; 1{n, ¨ ¨ ¨ , 1{nq and is independent of X8. We then let EM r¨|X
8 “ x8s denote the

conditional expectation of Mn given X8 “ x8. Throughout, we let `8pΘ,RJq denote uniformly bounded RJ -valued

functions on Θ. We simply write `8pΘq when J “ 1.

[60]



Using the multinomial weight, we rewrite the empirical bootstrap process as

Gbn,jp¨q “ gjpX
8,Mnq ”

1
?
n

n
ÿ

i“1

pMn,i ´ 1qmjpXi, ¨q{σ̂n,jp¨q, j “ 1, ¨ ¨ ¨ , J, (E.249)

where gj : X8ˆZ Ñ `8pΘq is a function that maps the sample path and the multinomial weight pX8,Mnq to the

empirical bootstrap process Gbn,j . We then let g : X8 ˆ Z Ñ `8pΘ,RJq be defined by g “ pg1, ¨ ¨ ¨ , gJq
1. For any

function f : `8pΘ,RJq Ñ R, the conditional expectation of fpGbnq given the sample path X8 is

EM rfpGbnq|X8 “ x8s “

ż

f ˝ gpx8,mnqdQpmnq, (E.250)

where, with a slight abuse of notation, we use Q for the induced law of Mn.

Let F be the function space tfp¨q “ pm1p¨, θq{σP,1pθq, ¨ ¨ ¨ ,mJp¨, θq{σP,Jpθqq, θ P Θ, P P Pu. For each j, define

a bootstrapped empirical process standardized by σP,j as follows:

Gbn,jpθq ”
1
?
n

n
ÿ

i“1

`

mjpX
b
i , θq ´ m̄npθq

˘

{σP,jpθq

“
1
?
n

n
ÿ

i“1

pMn,i ´ 1qmjpXi, θq{σP,jpθq. (E.251)

The following result was shown in the proof of Lemma D.2.8 in Bugni, Canay, and Shi (2015), which is a uniform

version of (a part of) Theorem 3.6.2 in van der Vaart and Wellner (2000). For the definition of a uniform version

of Donskerness and pre-Gaussianity, we refer to van der Vaart and Wellner (2000) pages 168-169. Below, we let

P˚ denote the outer probability of P and let T˚ denote the minimal measurable majorant of any (not necessarily

measurable) random element T .

Lemma E.14: Let F be a class of measurable functions with finite envelope function. Suppose F is such that

(i) F is Donsker and pre-Gaussian uniformly in P P P; and (ii) supPPP P
˚}f ´ Pf}2F ă 8. Then,

sup
hPBL1

|EM rhpG
b
nq|X

8s ´ ErhpGP qs|
as˚
Ñ 0, (E.252)

uniformly in P P P.

The result above gives uniform consistency of the standardized bootstrap process Gbn. We now extend this to

the studentized bootstrap process Gbn.

Lemma E.15: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Then,

sup
hPBL1

|EM rhpGbnq|X8s ´ ErhpGP qs|
as˚
Ñ 0, (E.253)

uniformly in P P P.

Proof. By Assumptions 4.1 (iv) and 4.5, Assumptions A.1-A.4 in Bugni, Canay, and Shi (2015) hold, which in turn

implies that, by their Lemma D.1.2, F is Donsker and pre-Gaussian uniformly in P P P. Further, by Assumption

4.1 (iv) again, supPPP P
˚}f ´ Pf}F ă 8. Hence, by Lemma E.14,

inf
PPP

P8
´

sup
hPBL1

|EM rhpG
b
nq|X

8s ´ ErhpGP qs|˚ Ñ 0
¯

“ 1. (E.254)
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For later use, we define the following set of sample paths, which has probability 1 uniformly in P P P.

A ”
!

x8 P X8 : sup
hPBL1

|EM rhpG
b
nq|X

8 “ x8s ´ ErhpGP qs|˚ Ñ 0
)

. (E.255)

Note that Gbn,j and Gbn,j are related to each other by the following relationship:

Gbn,jpθq ´Gbn,jpθq “ Gbn,jpθq

ˆ

σP,jpθq

σ̂n,jpθq
´ 1

˙

“ Gbn,jpθqηn,jpθq, θ P Θ. (E.256)

By Assumptions 4.1, 4.2, and 4.5, Lemma E.10 applies. Hence,

inf
PPP

P8
´

sup
θPΘ

|ηn,jpθq|
˚ Ñ 0

¯

“ 1. (E.257)

Define the following set of sample paths:

B ”
!

x8 P X8 : sup
θPΘ

|ηn,jpθq|
˚ Ñ 0,@j “ 1, ¨ ¨ ¨ , J

)

. (E.258)

For any x8 P AXB, it then follows that

sup
hPBL1

ˇ

ˇEM rhpGbnq|X8 “ x8s ´ ErhpGP qs
ˇ

ˇ

˚
Ñ 0, (E.259)

due to (E.254) and (E.256), h being Lipschitz, Gbn,j being bounded (given x8), and supθPΘ |ηn,jpθq|
˚ Ñ 0 for all

j. Finally, note that infPPP P
8pA X Bq “ 1 due to (E.254), (E.257), and De Morgan’s law. This establishes the

conclusion of the lemma.

The following lemma shows that, for almost all sample path x8, one can find an almost sure representation of

the bootstrapped empirical process that is convergent.

Lemma E.16: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Then, for each x8 P X8, there exists a sequence

tG̃n,x8 P `pΘ,RJq, n ě 1u and a random element G̃P,x8 P `pΘ,RJq defined on some probability space pΩ̃, Ã, P̃q such

that
ż

h ˝ gpx8,mnqdQpmnq “

ż

hpG̃n,x8pω̃qqdP̃
˚pω̃q, @h P BL1 (E.260)

ż

hpGP pωqqdP pωq “
ż

hpG̃P,x8pω̃qqdP̃
˚pω̃q, @h P BL1, (E.261)

for all x8 P C for some set C Ă X8 such that infPPP P
8pCq “ 1 and

inf
PPP

P8
´

 

x8 P X8 : G̃n,x8
P̃´as˚
Ñ G̃P,x8

(

¯

“ 1. (E.262)

Proof. Define the following set of sample paths:

C ”
!

x8 P X8 : sup
hPBL1

|EM rhpGbn,jq|X8 “ x8s ´ ErhpGP qs|˚ Ñ 0
)

. (E.263)

By Lemma E.15, infPPP P
8pCq “ 1.

For each fixed sample path x8 P C, consider the bootstrap empirical process gpx8,Mnq in (E.249). This is a

random element in `8pΘ,RJq with a law governed by Q. For each x8 P C, by Lemma E.15,

sup
hPBL1

ˇ

ˇ

ˇ

ˇ

ż

h ˝ gpx8,mnqdQpmnq ´ ErhpGP qs
ˇ

ˇ

ˇ

ˇ

˚

Ñ 0. (E.264)
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Hence, by Theorem 1.10.4 in van der Vaart and Wellner (2000), for each x8 P C, one may find an almost sure

representation G̃n,x8 of gpx8,Mnq on some probability space pΩ̃, Ã, P̃q such that
ż

h ˝ gpx8,mnqdQpmnq “

ż

hpG̃n,x8pω̃qqdP̃
˚pω̃q, @h P BL1. (E.265)

In particular, the proof of Theorem 1.10.4 in van der Vaart and Wellner (2000) (see also Addendum 1.10.5) allows

us to take G̃n,x8 to be defined for each ω̃ P Ω̃ as

G̃n,x8pω̃q “ gpx8,Mnpφnpω̃qqq, (E.266)

for some perfect map φn : Ω̃ Ñ Z (see the construction of φα in the middle of page 61 in VW). One may define

G̃n,x8 arbitrarily for any x8 R C. The almost sure representation G̃P,x8 of GP,j is defined similarly.

By Theorem 1.10.4 in van der Vaart and Wellner (2000), Eq. (E.259), and infPPP P pCq “ 1, it follows that

inf
PPP

P8
´

 

x8 P X8 : G̃n,x8
P̃´as˚
Ñ G̃P,x8

(

¯

“ 1. (E.267)

This establishes the claim of the lemma.

Lemma E.17: Suppose Assumptions 4.1, 4.2, and 4.5 hold. Let Wn ” pGbn, Ynq be a sequence inW ” `pΘ,RJqˆ
RdY such that Yn “ g̃pX8,Mnq for some map g̃ : X8 ˆ Z Ñ RdY and

inf
PPP

P8
`

sup
hPBL1

|EM rhpWnq|X
8 “ x8s ´ ErhpW qs|˚ Ñ 0

˘

“ 1, (E.268)

where W “ pG, Y q is a Borel measurable random element in W.

Then, for each x8 P X8, there exists a sequence tW˚
n,x8 PW, n ě 1u and a random element W˚

x8 PW defined

on some probability space pΩ̃, Ã, P̃q such that

EM rhpWnq|X
8 “ x8s “

ż

hpW˚
n,x8pω̃qqdP̃

˚pω̃q, @h P BL1 (E.269)

ErhpW qs “

ż

hpW˚
x8pω̃qqdP̃

˚pω̃q, @h P BL1, (E.270)

for all x8 P C for some set C Ă X8 such that infPPP P
8pCq “ 1, and

inf
PPP

P8
´

 

x8 P X8 : W˚
n,x8

P̃´as˚
Ñ W̃˚

x8
(

¯

“ 1. (E.271)

Proof. Let C ” tx8 : suphPBL1
|EM rhpWnq|X

8 “ x8s ´ErhpW qs|˚ Ñ 0u. The rest of the proof is the same as the

one for Lemma E.16 and is therefore omitted.

Remark E.1: When called by the Lemmas in Appendix E, Lemma E.17 is applied, for example, with Yn “

pvecpD̂npθ
1
nqq, ξ̂npθ

1
nqq and Y “ pvecpDq, π1q.

Appendix F Further Comparison of Calibrated Projection and BCS-

Profiling

We next show that finite sample power can be higher with calibrated projection than with BCS-profiling, and

that, due to the slow rate at which κn diverges, this effect can be large in samples of considerable size. Thus, the

approaches are not nested in terms of power in empirically relevant examples. We then provide an example where
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all of calibrated projection, BCS-profiling and the method of Pakes, Porter, Ho, and Ishii (2011) fail in a specific

instance where Assumption 4.3 is not satisfied.

F.1 Finite Sample Comparison in a Specific Example

We next analyze a stylized example of one-sided testing when the support set in direction p is a singleton identified

as the intersection of d moment inequalities with regular geometry. In this example, calibrated projection has more

power (less false coverage) than BCS-profiling, and the numerical difference can be large. The example resembles

empirically important cases, namely polyhedral identified sets with large interior, e.g. linear regression with interval

outcome data; recall that by Theorem 4.3, the two-sided testing problem reduces to two one-sided ones in these

cases. At the same time, we emphasize that other examples will go the other way, especially as the present example

utilizes the simplifications from Theorem 4.3 and therefore has no ρ-box.

Let θ be partially identified by moment conditions

EP pz
j1θ ´Xjq ď 0, j “ 1, . . . , d.

Note that to simplify the analysis, we assume exactly d conditions. Assume that tz1, . . . , zdu are linearly independent

and also that p is in their positive span, so that ΘI is bounded in direction p but not ´p. The confidence intervals

will be accordingly one-sided. Since gradients are known, all simplifications from Theorem 4.3 apply. We borrow

from algebra in the proof of Theorem 4.4 to observe that, with the simplifications in place, CIn and CIprofn invert

tests that use the same test statistic but different bootstrap approximations to its distribution as follows:

TDRn “ max
j

 

Gbn,j
(

TPRn psnq “ min
p1λ“0

max
j

$

’

’

&

’

’

%

Gbn,j `
?
n

κn

zj1θ̂˚p,sn ´ X̄j

σ̂n,j
loooooooooomoooooooooon

ą0

`
zj1λ

σ̂n,j

,

/

/

.

/

/

-

T bn “ min
p1λ“0

max
j

$

’

’

&

’

’

%

Gbn,j `
?
n

κn

zj1θ̂˚p ´ X̄j

σ̂n,j
loooooooomoooooooon

“0

`
zj1λ

σ̂n,j

,

/

/

.

/

/

-

ď mintTDRn , TPRn psnqu,

where (as in Theorem 4.3) sn is the value of p1θ being tested and θ̂p,sn minimizes the sample criterion subject to

p1θ “ sn. The last inequality is strict unless the problem defining T bn is solved by λ “ 0. The assessments of

intercept terms in TPRn psnq and T bn use that by construction of the example, all sample constraints bind at θ̂˚p and

are violated at θ̂˚p,sn (else, the test statistic would be 0 and the critical value not computed). Equality thus requires

knife-edge realizations of Gbn,j , so its probability vanishes as Gbn,j approaches multivariate normality and is in fact

0 for typical empirical samples. We conclude that the calibrated projection CIn is deterministically a weak (and

essentially always a strict) subset of the BCS-profiling CIprofn in this example.

We next provide a numerical comparison in a further stripped-down version of the example. Thus, consider

one-sided testing with moment conditions

´θ1 ` θ2 ´ EP pX1q ď 0

θ1 ` θ2 ´ EP pX2q ď 0

where the data are pX1, X2q „ NppEP pX1q, EP pX2qq, I2q and EP pX1q “ EP pX2q “ 0. All of these facts other than
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EP pX1q “ EP pX2q “ 0, but including the gradients and variance matrix, are known. This enables closed form

arguments. Also, for a researcher knowing this, the natural bootstrap implementation is a parametric bootstrap:

`

Xb
1, X

b
2

˘

„ NppX̄1, X̄2q, I2q

ùñ
?
npX̄b

1 ´ X̄1, X̄
b
2 ´ X̄1q “ pZ1, Z2q „ Np0, I2q

which we will use, i.e. pZ1, Z2q will take the role of pGbn,1,Gbn,2q. Numerical computations refer to α “ 5%.

Let p “ p0, 1q. We construct one-sided confidence intervals for spp,ΘIpP qq. All intervals contain p´8, spp, Θ̂Iqs,

and simple algebra shows spp, Θ̂Iq “
X̄1`X̄2

2 . Also noting that in this example spp,ΘIpP qq “ 0 and, for sn ą spp, Θ̂Iq,

Hpp, Θ̂Iq “

"ˆ

´X̄1 ` X̄2

2
,
X̄1 ` X̄2

2

˙*

Θ̂Ipsnq ”

"

θ P Θ : p1θ “ sn, Qnpθq ď inf
θPΘ:p1θ“sn

Qnpθq

*

“

"ˆ

´X̄1 ` X̄2

2
, sn

˙*

Tnpsnq “
?
nmax

"

sn ´
X̄1 ` X̄2

2
, 0

*

,

where Qnpθq “ maxj“1,...,J1
p
?
nm̄n,jpθq{σ̂n,jpθqq`, we compute

TDRn “ min
θPΘ̂Ipsnq

max
 ?

n
`

X̄b
1 ´ X̄1

˘

,
?
n
`

X̄b
2 ´ X̄2

˘

, 0
(

“ max
 ?

n
`

X̄b
1 ´ X̄1

˘

,
?
n
`

X̄b
2 ´ X̄2

˘

, 0
(

„ maxtZ1, Z2, 0u

TPRn psnq “ min
θ1PR

max
 ?

n
`

X̄b
1 ´ X̄1

˘

` κ´1
n

?
n
`

´θ1 ` sn ´ X̄1

˘

,
?
n
`

X̄b
2 ´ X̄2

˘

` κ´1
n

?
n
`

θ1 ` sn ´ X̄2

˘

, 0
(

.

Unless its value is 0, the minimization problem defining TPRn psnq is solved by setting two terms equal:

θ1 “

?
n
`

X̄b
1 ´ µ̂1

˘

´
?
n
`

X̄b
2 ´ X̄2

˘

` κ´1
n

?
n
`

X̄2 ´ X̄1

˘

2κ´1
n
?
n

,

leading to

TPRn psnq “ max

#?
n
`

X̄b
1 ´ X̄1

˘

`
?
n
`

X̄b
2 ´ X̄2

˘

2
` κ´1

n

?
n

ˆ

sn ´
X̄1 ` X̄2

2

˙

, 0

+

“ max

"

Z1 ` Z2

2
` κ´1

n

?
n

ˆ

sn ´
X̄1 ` X̄2

2

˙

, 0

*

“ max

"

Z1 ` Z2

2
` κ´1

n Tnpsnq, 0

*

.

Finally, very similar reasoning to the above gives

T bn “ min
λPR

max

"

?
n
`

X̄b
1 ´ X̄1

˘

` κ´1
n

?
nmin

ˆ

X̄1 ´ X̄2

2
`
X̄1 ` X̄2

2
´ X̄1, 0

˙

´ λ,

?
n
`

X̄b
2 ´ X̄2

˘

` κ´1
n

?
nmin

ˆ

´X̄1 ` X̄2

2
`
X̄1 ` X̄2

2
´ X̄2, 0

˙

` λ, 0

*

“ min
λPR

max
 ?

n
`

X̄b
1 ´ X̄1

˘

´ λ,
?
n
`

X̄b
2 ´ X̄2

˘

` λ, 0
(

“ max

#?
n
`

X̄b
1 ´ X̄1

˘

`
?
n
`

X̄b
2 ´ X̄2

˘

2
, 0

+

“ max

"

Z1 ` Z2

2
, 0

*

.

Thus calibrated projection yields a critical value of ĉn “ Φ´1p1´αq{
?

2 « 1.16, whereas simple projection uses
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Table F.1: Finite sample noncoverage rates in a specific example.

Type of cv n Value Power at γn´1{2, γ “““ ...

0 1 2 3 4

ĉprojn any 1.95 .003 .089 .523 .930 .998

c̃profn 103 1.63 .011 .188 .701 .974 1.000

c̃profn 105 1.52 .016 .231 .751 .982 1.000

c̃profn 107 1.47 .019 .254 .774 .985 1.000

c̃profn 109 1.43 .022 .271 .790 .987 1.000

c̃profn 1011 1.40 .024 .284 .800 .988 1.000

c̃profn 1013 1.38 .025 .292 .807 .989 1.000

c̃profn 1015 1.37 .026 .299 .813 .989 1.000

c̃profn 1017 1.36 .027 .307 .819 .990 1.000

c̃profn 1019 1.35 .028 .313 .823 .990 1.000

c̃profn 1050 1.28 .036 .348 .847 .993 1.000

c̃profn 10100 1.24 .039 .366 .858 .994 1.000

ĉn any 1.16 .050 .409 .882 .995 1.000

ĉprojn “ Φ´1p
?

1´ αq « 1.95; both are independent of sn as well as n. BCS-profiling uses a critical value ĉprofn psnq

that increases in the test statistic (hence, conditional on the data, in sn) because the statistic itself enters TPRn . To

facilitate a comparison, one can compute the fixed point at which Tnpsnq “ ĉprofn psnq. BCS-profiling is equivalent to

comparing Tnpsnq to that fixed point at all sn, and we will therefore equate it with use of this critical value, labeled

c̃profn below. This critical value converges to ĉn at a rate of κ´1
n , illustrating asymptotic equivalence of inference

methods off the null in this case. However, for the popular choice of κn “
?

log n, convergence is so slow that it

should not be taken to describe behavior at realistic sample sizes. Table F.1 displays the numerical value of c̃profn

and the implied noncoverage probability (or power) at γ{
?
n for γ P t0, 1, 2, 3, 4u; note that γ “ 0 corresponds to the

true support function. By construction, c̃profn interpolates between ĉprojn and ĉn in this example, but convergence

to ĉn requires extreme sample sizes. For example, on the boundary edge of the true projection CIprof.95 has finite

sample coverage of .975, which is effectively halfway between projection and calibrated projection, for n “ 1013.

F.2 Example of Methods Failure When Assumption 4.3 Fails

Consider one-sided testing with two inequality constraints in R2. The constraints are

θ1 ` θ2 ď EP pX1q

θ1 ´ θ2 ď EP pX2q.
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The projection of ΘIpP q in direction p “ p1, 0q is p´8, pEP pX1q ` EP pX2qq{2s, the support set is Hpp,ΘIq “

tppEP pX1q`EP pX2qq{2, pEP pX1q´EP pX2qq{2qu, and the support function takes value θ˚1 “ pEP pX1q`EP pX2qq{2.

The random variables pX1, X2q
1 have a mixture distribution as follows:

«

X1

X2

ff

„

$

’

&

’

%

N

˜

0,

«

1 ´1

´1 1

ff¸

with probability 1´ 1{n,

δp1,1q (degenerate) otherwise,

hence EP pX1q “ EP pX2q “ θ˚1 “ 1{n. Note in particular the implication that

X1 `X2

2
“

#

0 with probability 1´ 1{n,

1 otherwise.

The natural estimator of θ˚1 is θ̂˚1 “ pX̄1` X̄2q{2. It is distributed as Z{n, where Z is Binomial with parameters

p1{n, nq. For large n, the distribution of Z is well approximated as Poisson with parameter 1. In particular, with

probability approximately e´1 « 37%, every sample realization of pX1`X2q{2 equals zero. In this case, the following

happens: (i) The projection of the sample analog of the identified set is p´8, 0s, so that a strictly positive critical

value or level would be needed to cover the true projection. (ii) Because the empirical distribution of pX1 `X2q{2

is degenerate at zero, the distribution of pX̄b
1 ` X̄

b
2q{2 is as well. Hence, all of Pakes, Porter, Ho, and Ishii (2011),

Bugni, Canay, and Shi (2017), and calibrated projection (each with either parametric or nonparametric bootstrap)

compute critical values or relaxation levels of 0.

This bounds from above the true coverage of all of these methods at e´1 « 63%. Note that pm ă nq-subsampling

will encounter the same problem. Next we provide some discussion of the example.

Violation of Assumptions. The example violates our Assumption 4.3 because CovpX1, X2q Ñ 1. It also violates

Assumption 2 in Bugni, Canay, and Shi (2017): Their Assumption A2-(b) should apply, but the profiled test statistic

on the true null concentrates at 1{n. The example satisfies the assumptions explicitly stated in Pakes, Porter, Ho,

and Ishii (2011), illustrating an oversight in their Theorem 2. (We here refer to the inference part of their 2011

working paper. We identified corresponding oversights in the proof of their Proposition 6.)

The example satisfies the assumptions of Andrews and Soares (2010) and Andrews and Guggenberger (2009),

and both methods work here. The reason is that both focus on the distribution of the criterion function at a fixed

θ and are not affected by the irregularity of θ̂˚1 .

Relation to Mammen (1992). In this example, all of Bugni, Canay, and Shi (2017), Pakes, Porter, Ho, and Ishii

(2011), and our calibrated projection method reduce to one-sided nonparametric percentile bootstrap confidence

intervals for pEP pX1q`EP pX2qq{2 estimated by pX̄1`X̄2q{2. By Mammen (1992, Theorem 1), asymptotic normality

of an appropriately standardized estimator, i.e.

Dtanu : an
`

pX̄1 ` X̄2q ´ pEP pX1q ` EP pX2qq
˘ d
Ñ Np0, 1q,

is necessary and sufficient for this interval to be valid. This fails (the true limit is recentered Poisson at rate an “ n),

so that validity of any of the aforementioned methods would contradict the Theorem.
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Appendix G Comparison with Projection of AS

In this Appendix we establish that for each n P N, CIn is a subset of a confidence interval obtained by projecting an

AS confidence set and denoted CIprojn .50 Moreover, we derive simple conditions under which our confidence interval

is a proper subset of the projection of AS’s confidence set. Below we let ĉprojn denote the critical value obtained apply-

ing AS with criterion functionQnpθq “ max tmaxj“1,...,J1
p
?
nm̄n,jpθq{σ̂n,jpθqq`,maxj“J1`1,¨¨¨ ,J1`J2

|
?
nm̄n,jpθq{σ̂n,jpθq|u

and with the same choice as for ĉn of GMS function ϕ and tuning parameter κn.

Theorem G.1: Suppose Assumptions 4.1, 4.2, 4.3, 4.4, and 4.5 hold. Let 0 ă α ă 1{2. Then for each n P N

CIn Ď r´sp´p, Cnpĉprojn qq, spp, Cnpĉprojn qqs, (G.1)

where for given function c, Cnpcq is defined in (1.1)

Proof. For given θ, the event

max
j“1,...,J

!

Gbn,jpθq ` ϕjpξ̂n,jpθqq
)

ď c (G.2)

implies the event

max
λPΛbnpθ,ρ,cq

p1λ ě 0 ě min
λPΛbnpθ,ρ,cq

p1λ, (G.3)

with Λbn defined in (3.1). This is so because if maxj“1,...,J

!

Gbn,jpθq ` ϕjpξ̂n,jpθqq
)

ď c, λ “ 0 is feasible in both

optimization problems in (G.3), hence the event in (G.3) is implied. In turn this yields that for each n P N and

θ P Θ,

cprojn pθq ě ĉnpθq, (G.4)

and therefore the result follows.

The result in Theorem G.1 is due to the following fact. Recall that AS’s confidence region calibrates its critical

value so that, at each θ, the following event occurs with probability at least 1´ α:

max
j“1,...,J

!

Gbn,jpθq ` ϕjpξ̂n,jpθqq
)

ď c. (G.5)

A natural question is, then, whether there are conditions under which CIn is strictly shorter than the projection

of AS’s confidence region. Heuristically, this is the case with probability approaching 1 when ĉnpθq is strictly less

than ĉprojn pθq at each θ that is relevant for projection. For this, restrict ϕp¨q to satisfy ϕjpxq ď 0 for all x, fix θ and

consider the pointwise limit of (G.5):

GP,jpθq ` ζP,jpθq ď c, j “ 1, ¨ ¨ ¨ , J, (G.6)

where tGP,jpθq, j “ 1, ¨ ¨ ¨ , Ju follows a multivariate normal distribution, and ζP,jpθq ” p´8q1p
?
nγ1,P,jpθq ă 0q is

the pointwise limit of ϕjpξ̂n,jpθqq (with the convention that p´8q0 “ 0). Under mild regularity conditions, ĉprojn pθq

then converges in probability to a critical value c “ cprojpθq such that (G.6) holds with probability 1´α. Similarly,

the limiting event that corresponds to our problem (3.4) is

Λpθ, ρ, cq X tp1λ “ 0u ‰ H, (G.7)

50Of course, AS designed their confidence set to uniformly cover each vector in ΘI with prespecified asymptotic probability,
a different inferential problem than the one considered here.
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where the limiting feasibility set Λpθ, ρ, cq is given by

Λpθ, ρ, cq “ tλ P ρBdn,ρ : GP,jpθq `DP,jpθqλ` ζP,jpθq ď c, j “ 1, ¨ ¨ ¨ , Ju. (G.8)

Note that if the gradient DP,jpθq is a scalar multiple of p, i.e. DP,jpθq{}DP,jpθq} P tp,´pu, for all j such that

ζP,jpθq “ 0, the two problems are equivalent because (G.6) implies (G.7) (by arguing that λ “ 0 is in Λpθ, ρ, cq),

and for the converse implication, whenever (G.7) holds, there is λ such that GP,jpθq `DP,jpθqλ` ζP,jpθq ď c and

p1λ “ 0. Since DP,jpθqλ “ 0 for all j such that ζP,jpθq “ 0, one has GP,jpθq ` ζP,jpθq ď c for all j.51 In this special

case, the limits of the two critical values coincide asymptotically, but any other case is characterized by projection

conservatism. Lemma G.1 below formalizes this insight. Specifically, for fixed θ, the limit of ĉnpθq is strictly less

than the limit of ĉprojn pθq if and only if there is a constraint that binds or is violated at θ and has a gradient that

is not a scalar multiple of p.52

The parameter values that are relevant for the lengths of the confidence intervals are the ones whose projections

are in a neighborhood of the projection of the identified set. Therefore, a leading case in which our confidence

interval is strictly shorter than the projection of AS asymptotically is that in which at any θ (in that neighborhood

of the projection of the identified set) at least one local-to-binding or violated constraint has a gradient that is not

parallel to p. We illustrate this case with an example based on Manski and Tamer (2002).

Example G.1 (Linear regression with an interval valued outcome): Consider a linear regression model:

ErY |Zs “ Z 1θ, (G.9)

where Y is an unobserved outcome variable, which takes values in the interval rYL, YU s with probability one, and

YL, YU are observed. The vector Z collects regressors taking values in a finite set SZ ” tz1, ¨ ¨ ¨ , zKu,K P N. We

then obtain the following conditional moment inequalities:

EP rYL|Z “ zjs ď z1jθ ď EP rYU |Z “ zjs, j “ 1, ¨ ¨ ¨ ,K, (G.10)

which can be converted into unconditional moment inequalities with J1 “ 2K and

mjpX, θq “

$

&

%

YL1tZ “ zju{gpzjq ´ z
1
jθ, j “ 1, ¨ ¨ ¨ ,K

z1j´Kθ ´ YU1tZ “ zj´Ku{gpzj´Kq j “ K ` 1, ¨ ¨ ¨ , 2K,
(G.11)

where g denotes the marginal distribution of Z, which is assumed known for simplicity. Consider making inference

for the value of the regression function evaluated at a counterfactual value z̃ R SZ . Then, the projection of interest

is z̃1θ. Note that the identified set is a polyhedron whose gradients are given by DP,jpθq “ ´zj{σP,j , j “ 1, ¨ ¨ ¨ ,K

and DP,jpθq “ zj´K{σj´K , j “ K ` 1, ¨ ¨ ¨ , 2K. This and z̃ R SZ imply that for any θ not in the interior of the

identified set, there exists a binding or violated constraint whose gradient is not a scalar multiple of p. Hence, for

all such θ, our critical value is strictly smaller than cprojn pθq asymptotically. In this case, our confidence interval

becomes strictly shorter than that of AS asymptotically. We also note that the same argument applies even if the

marginal distribution of Z is unknown. In such a setting, one needs to work with a sample constraint of the form

n´1
řn
i“1 YL,i1tZi “ zju{n

´1
řn
i“1 1tZi “ zju ´ zjθ (and similarly for the upper bound). This change only alters

51The gradients of the non-binding moment inequalities do not matter here because GP,jpθq ` ζP,jpθq ď c holds due to
ζP,jpθq “ ´8 for such constraints.

52The condition that all binding moment inequalities have gradient collinear with p is not as exotic as one might think. An
important case where it obtains is the “smooth maximum,” i.e. the support set is a point of differentiability of the boundary
of ΘI .
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Table G.1: Conservatism from projection in a one-sided testing problem as a function of d

d 1 2 3 4 5 6 7 8 9 10 100 8

ĉn 1.64 1.16 0.95 0.82 0.74 0.67 0.62 0.58 0.55 0.52 0.16 0

ĉprojn 1.64 1.95 2.12 2.23 2.32 2.39 2.44 2.49 2.53 2.57 3.28 8

1´ α˚ .95 .77 .57 .40 .27 .18 .11 .07 .04 .03 10´25 0

the (co)variance of the Gaussian process in our limiting approximation but does not affect any other term.

We now provide a numerical illustration for a further simplified example. Assume that p “ pd´1{2, ..., d´1{2q P Rd

and that there are d binding moment inequalities whose gradients are known and correspond to rows of the identity

matrix. Assume furthermore that G is known to be exactly d-dimensional multivariate standard Normal. (Thus,

ΘI is the negative quadrant. Its unboundedness from below is strictly for simplicity.) Also, by Theorem 4.3, one

can set ρ “ `8 in this example.

Under these simplifying assumptions (which can, of course, be thought of as asymptotic approximations), it is

easy to calculate in closed form that

ĉn “ d´1{2Φ´1p1´ αq,

ĉprojn “ Φ´1
´

p1´ αq1{d
¯

.

Furthermore, for any α ă 1{2, one can compute α˚ s.t. applying ĉn with target coverage p1 ´ αq yields the same

confidence interval as using ĉprojn with target coverage p1´α˚q.53 Some numerical values are provided in Table G.1

(with α “ 0.05).

To cover p1θ in R10 with probability 95%, it suffices to project an AS-confidence region of size 3%. The example

is designed to make a point; our Monte Carlo analyses in Section 5 showcase less extreme cases. However, the core

defining feature of the example – namely, the identified set has a thick interior, and the support set is the intersection

of d moment inequalities – frequently occurs in practice, and all such examples will qualitatively resemble this one

as d grows large.

G.1 Necessary and Sufficient Condition for ĉnpθq ă ĉprojn pθq

The following lemma establishes the effect of ρ on ĉnpθq. In doing so it establishes a necessary and sufficient

condition for ĉnpθq ă ĉprojn pθq, because the latter can be seen as the former calibrated with ρ set equal to zero. The

lemma requires ϕjpxq ď 0 for all x.54

Lemma G.1: Fix θ P Θ, P P P and a value ρ P R`. Suppose Assumptions 4.1, 4.2, 4.3, 4.4 and 4.5 hold and

also that ϕjpxq ď 0 for all x and j. Let 0 ă δ ă ρ. For n ě N , let ĉnpθq be calibrated using ρ in place of ρ, which

53Equivalently, p1´α˚q is the probability that Cnpĉprojn q contains t0u, the true support set in direction p which furthermore,
in this example, minimizes coverage within ΘIpP q. The closed-form expression is 1´ α˚ “ Φpd´1{2Φ´1

p1´ αqqd. AS prove
validity of their method only for α ă 1{2, but this is not important for the point made here.

54To keep the treatment general, we have not imposed this restriction throughout the paper. However, we only recommend
functions ϕj with this feature anyway: for any ϕj that can take strictly positive values, substituting mintϕjpxq, 0u attains
the same asymptotic size but generates CIs that are weakly shorter for all and strictly shorter for some sample realizations.
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necessarily yields a larger value for ĉnpθq. With a modification of notation, explicitly highlight ĉnpθq’s dependence

on ρ through the notation ĉnpθ, ρq. Then

|ĉnpθ, ρq ´ ĉnpθ, ρ´ δq|
p
Ñ 0 (G.12)

if and only if DP,jpθq{}DP,jpθq} P tp,´pu for all j P J ˚pθq ” tj : EP rmjpXi, θqs ě 0u.

Remark G.1: For θ such that J ˚pθq “ H, we have ĉnpθ, ρq
p
Ñ 0 but also ĉprojn pθq

p
Ñ 0. This is consistent with

Lemma G.1 because the condition on gradients vacuously holds in this case.

Proof. Recall that θ and P are fixed, i.e. we assume a pointwise perspective. Then

ĉnpθ, ρq
p
Ñ inftc ě 0 : P ptλ P ρBdn,ρ : GP,jpθq `DP,jpθqλ ď c, j P J ˚pθqu X tp1λ “ 0u ‰ Hq ě 1´ αu. (G.13)

Here, we used convergence of Gbjpθq to GP,jpθq and of D̂jpθq to DP,jpθq, boundedness of gradients, and the fact that

ϕjpκ
´1
n

?
nm̄jpXi, θq{σP,jpθqq

p
Ñ

$

&

%

0 if j P J ˚pθq

´8 otherwise,
(G.14)

where the first of those cases uses nonpositivity of ϕj . It therefore suffices to show that the right hand side of G.13

strictly decreases in ρ if and only if the conditions of the Lemma hold.

To simplify notation, henceforth omit dependence of GP,jpθq, DP pθq, and J ˚pθq on P and θ. Define the J

vector e to have elements ej “ c´Gj , j “ 1, . . . , J . Suppose for simplicity that J ˚ contains the first J˚ inequality

constraints. Let er1:J˚s denote the subvector of e that only contains elements corresponding to j P J ˚, define

Dr1:J˚,:s correspondingly, and write

K “

»

—

—

—

—

—

—

–

Dr1:J˚,:s

Id

´Id

p1

´p1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, g “

»

—

—

—

—

—

—

–

er1:J˚s

ρ ¨ 1d

ρ ¨ 1d

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, τ “

»

—

—

—

—

—

—

–

0 ¨ 1J˚

1d

1d

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

where Id denotes the dˆd identity matrix. By Farkas’ Lemma (Rockafellar, 1970, Theorem 22.1), the linear system

Kλ ď g has a solution if and only if for all µ P RJ
˚
`2d`2

` ,

µ1K “ 0 ñ µ1g ě 0. (G.15)

To further simplify expressions, fix p “ r1 0 . . . 0s. Let M “ tµ P RJ
˚
`2d`2

` : µ1K “ 0u.

Step 1. This step shows that

P ptλ P ρBdn,ρ : GP,j `DP,jλ ď c, j P J ˚u X tp1λ “ 0u ‰ Hq

ą P ptλ P pρ´ δqρBdn,ρ : GP,j `DP,jλ ď c, j P J ˚u X tp1λ “ 0u ‰ Hq (G.16)

if and only if the condition on gradients holds. This is done by showing that

P ptµ1g ě 0 @µ PMu X tµ1g ´ δτ ă 0 Dµ PMuq ą 0. (G.17)
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under that same condition. The event tµ1g ě 0 @µ PMu obtains if and only if

min
µPRJ˚`2d`2

`

 

µ1g : µ1K “ 0
(

ě 0 (G.18)

and analogously for µ1 pg ´ δτq ě 0. The values of these programs are not affected by adding a constraint as follows:

min
µPRJ˚`2d`2

`

#

µ1g : µ1K “ 0, µ P arg min
µ̃PRJ˚`2d`2

`

pµ̃1g : µ̃r1:J˚s “ µr1:J˚s, µ̃1K “ 0q

+

, (G.19)

That is, we can restrict attention to a concentrated out subset of vectors µ, where the last p2d` 2q components of

any µ minimize the objective function among all vectors that agree with µ in the first J˚ components. The inner

minimization problem in equation (G.19) can be written as

min
µ̃rJ˚`1:J˚`2d`2sPR2d`2

`

ρ
J˚`2d
ÿ

j“J˚`1

µ̃j s.t.

»

—

—

—

—

–

µ̃J˚`1 ´ µ̃J˚`d`1 ` µ̃J˚`2d`1 ´ µ̃J˚`2d`2

µ̃J˚`2 ´ µ̃J˚`d`2

...

µ̃J˚`d ´ µ̃J˚`2d

fi

ffi

ffi

ffi

ffi

fl

“ ´µr1:J˚s1Dr1:J˚,:s.

(G.20)

Thus, the solution of the problem is uniquely pinned down as

µrJ
˚
`1:J˚`2d`2s “

»

—

—

—

—

—

—

—

—

—

—

–

0

´

”

Dr1:J˚,2:ds1µr1:J˚s ^ 0 ¨ 1d´1

ı

0

Dr1:J˚,2:ds1µr1:J˚s _ 0 ¨ 1d´1

´

”

Dr1:J˚,1s1µr1:J˚s ^ 0
ı

Dr1:J˚,1s1µr1:J˚s _ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (G.21)

where Dr1:J˚,2:ds1µr1:J˚s _ 0 ¨ 1d´1 indicates a component-wise comparison. Now we consider the following case

distinction:

Case (i). If Dj{}Dj} P tp,´pu for all j P J ˚, then µr1:J˚s1D “ pµr1:J˚s1Dr1:J˚,1s, 0, ..., 0q1 and therefore all

but the last two entries of µrJ
˚
`1:J˚`2d`2s equal zero. One can, therefore, restrict attention to vectors µ with

µrJ
˚
`1:J˚`2ds “ 0. But for these vectors, µ1τ “ 0 and so the programs we compare necessarily have the same value.

The probability in equation (G.17) is therefore zero.

Case (ii). Suppose that at least one row of D, say its first row (though it can be one direction of an equality

constraint), is not collinear with p, so that }Dr1,2:ds} ‰ 0.

Let

$ “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

0 ¨ 1J˚´1

0

´
“

pDr1,2:ds1q ^ 0 ¨ 1d´1

‰

0

pDr1,2:ds1q _ 0 ¨ 1d´1

´
“

pDr1,1sq ^ 0
‰

pDr1,1sq _ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(G.22)
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and note that $rJ
˚
`1:J˚`2ds ‰ 0, hence $1τ ą 0.

As in the proof of Lemma E.6, the set M can be expressed as positive span of a finite, nonstochastic set of

affinely independent vectors νt P RJ
˚
`2d`2

` that are determined only up to multiplication by a positive scalar.

All of these vectors have the “concentrated out structure” in equation (G.21). But then $ must be one of them

because it is the unique concentrated out vector with $r1:J˚s “ p1, 0, ..., 0q1, and p1, 0, ..., 0q1 cannot be spanned by

nonnegative J˚-vectors other than positive multiples of itself.

We now establish positive probability of the event

νt1g ě 0, all νt

νt1 pg ´ δτq ă 0, some νt

by observing that if we define

ιk “

»

—

—

—

—

—

—

—

—

–

´ρ ¨
řd
i“2

ˇ

ˇDr1,is
ˇ

ˇ

k ¨ 1J˚´1

ρ ¨ 1d

ρ ¨ 1d

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (G.23)

then we have

0 “ $1ιk “ min
t
νt1ιk.

Any other spanning vector νt will not have $r2:J˚s “ 0 and so for any such vector, νt1ιk strictly increases in k. As

there are finitely many spanning vectors, all of them have strictly positive inner product with ιk if k is chosen large

enough.

A realization of g “ ιk would, therefore, yield

νt1g ě 0 @νt PM, and $t1 pg ´ δτq ă ´ε, (G.24)

for some ε ą 0. Let

Γk “ tι : ι “ ιk ` ε{2b, }b} ď 1 and $1b ą 0u. (G.25)

Then

νt1ι ě 0 @νt PM, and $t1 pι´ δτq ă ´ε{2, @ι P Γk. (G.26)

The probability in equation (G.17) is therefore strictly positive.

Step 2. Next, we argue that

P ptλ P ρBdn,ρ : Gj `Djλ ď c, j P J ˚u X tp1λ “ 0u ‰ Hq (G.27)

strictly continuously increases in c. The rigorous argument is very similar to the use of Farkas’ Lemma in step 1

and in Lemma E.6. We leave it at an intuition: As c increases, the set of vectors g fulfilling the right hand side of

(G.15) strictly increases, hence the set of realizations of Gj that render the program feasible strictly increases, and

Gj has full support.
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Step 3. Steps 1 and 2 imply that

inf
cě0
tP ptλ P ρBdn,ρ : Gj `Djλ ď c, j P J ˚u X tp1λ “ 0u ‰ Hq ě 1´ αu

ą inf
cě0
tP ptλ P pρ´ δqρBdn,ρ : Gj `Djλ ď c, j P J ˚u X tp1λ “ 0u ‰ Hq ě 1´ αu (G.28)

and hence the result.
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