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1 Introduction

Since its introduction in the landmark article Efron (1979), the bootstrap has become a standard tool

for empirical research in statistics. This paper proposes and investigates the properties of a novel

bootstrap method, the kernel block bootstrap, appropriate for stationary and weakly dependent data

which, importantly, admits an optimal bootstrap method.

The kernel block bootstrap applies the standard non-parametric bootstrap for randomly sampled

observations to a kernel function-based weighted transformation of the original data. It generalises

the tapered block bootstrap of Paparoditis and Politis (2001) relaxing their requirements on the taper

function, in particular, that of bounded support. Critically, therefore, a bootstrap variance estimator

asymptotically close to one based on the optimal quadratic spectral (Andrews, 1991, p.821) or Bartlett-

Priestley-Epanechnikov kernel (Priestley 1962, 1981, pp. 567-571, Epanechnikov, 1969, and Sacks and

Yvisacker, 1981) is possible. The kernel block bootstrap variance estimator also possesses a favourable

higher order bias property similar to that for the tapered block bootstrap, a property noted elsewhere

for consistent variance estimators using tapered data (Brillinger, 1981, p.151).

Additionally, the paper links some of the extant results on bootstrap variance estimation. Politis

and Romano (1994) show that the moving blocks bootstrap variance estimator (K\”{u}nch, 1989, and

Liu and Singh, 1992) is approximately equivalent to the Bartlett kernel variance estimator in large

samples. Similarly, Paparoditis and Politis (2001) show the tapered block bootstrap variance estimator is

asymptotically close to a Parzen (1957) variance estimator constructed using a particular kernel function

which is the self-convolution of a unimodal, non-negative taper function with bounded support. Because

the kernel function whose self-convolution is the quadratic spectral kernel is admissible, a kernel block

bootstrap variance estimator that closely approximates the optimal Parzen (1957) estimator is possible;

see, for example, Andrews (1991).

After outlining some preliminaries Section 2 introduces the kernel block bootstrap. Section 3 details

the theoretical results, describing the assumptions, the large sample validity of the kernel block bootstrap

estimator of the distribution of the sample mean and the higher order asymptotic bias and variance of

the kernel block bootstrap variance estimator. Optimality issues relating to the choice of kernel function

and bandwidth parameter are also examined. Section 4 contrasts and compares the kernel and tapered

block bootstraps and briefly discusses connections with the literature on consistent variance matrix

estimation. A simulation study reported in Section 5 compares the kernel and tapered block bootstraps

using designs employed in Paparoditis and Politis (2001) and indicates that the kernel block bootstrap

may be efficacious in practice. Proofs of the results in the text are provided in the Supplementary

Material.
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2 Kernel Block Bootstrap

2.1 Some Preliminaries

The set-up closely follows that of Paparoditis and Politis (2001) in which a sample of T observations,

X1, ..., XT , is available on the scalar strictly stationary real valued sequence {Xt, t ∈ Z} having unknown

mean µ = E(Xt) and autocovariance sequence R(s) = E((Xt − µ)(Xt+s − µ)). The principal objective

of the paper is the provision of an efficacious interval estimate for µ.

The approach here uses a kernel block bootstrap approximation to the distribution of the sample

mean X̄ = T−1
∑T
t=1Xt. Recall that the asymptotic distribution of the centred and scaled statis-

tic T 1/2
(
X̄ − µ

)
is normal with mean 0 and variance σ2∞ = limT→∞ var(T 1/2X̄) =

∑∞

s=−∞
R(s) if

E(|Xt|2+δ) < ∞ and
∑∞
k=1 α

δ/(2+δ)
X (k) < ∞ for some δ > 0, (Ibragimov and Linnik, 1971, Theorem

18.5.3, pp. 346, 347). Hence, estimation of σ2∞ is of critical importance. The strong mixing coefficients

αX (k) = supA,B |pr (A ∩B) −pr (A) pr (B) | with /A and B events in the σ-algebras F0−∞ and F∞k are

the σ-algebras generated by {Xt, t ≤ 0} and {Xt, t ≥ k} respectively; see Rosenblatt (1985, pp. 62, 73).

The kernel block bootstrap samples the kernel-weighted centred observations

XtT =
1

(k̂2ST )1/2

t−1∑
r=t−T

k(
r

ST
)(Xt−r − X̄), t = 1, ..., T, (2.1)

where ST is a bandwidth parameter, T = 1, 2, ..., k(x) a kernel function and k̂2 =
∑T−1
s=1−T k(s/ST )2/ST ;

see also Paparoditis and Politis (2001, Step 2, p.1107).

Remark 2.1. The definition of XtT (2.1) rescales that in Kitamura and Stutzer (1997) and Smith

(1997, 2011) by S
1/2
T with k2 replaced without loss by k̂2, see Corollary K.2 in the Supplementary Ma-

terial, where kj =
∫∞
−∞ k(x)jdx, j = 1, 2. The scale normalisation k1 = 1 is imposed throughout.

The sample mean of XtT , t = 1, ..., T , is denoted X̄T = T−1
∑T
t=1XtT . Under assumptions stated in

Section 3, X̄T is weakly consistent for 0 and (T/ST )1/2X̄T /σ∞ converges in distribution to a standard

normal variate; see, for example, Smith (2011, Lemmas A.1 and A.2, pp.1217-19). Moreover, the kernel

block bootstrap variance estimator, defined in standard random sampling outer product form,

σ̂2kbb = T−1
T∑
t=1

(XtT − X̄T )2 (2.2)

is weakly consistent for σ2∞ (Smith, 2011, Lemma A.3, p.1219) and is automatically non-negative.

2.2 Kernel Block Bootstrap

The kernel block bootstrap applies the standard “m out of n” non-parametric bootstrap method to the

index set TT = {1, ..., T}; see Bickel and Freedman (1981). That is, the indices t∗s, s = 1, ...,mT , are a
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random sample of size mT drawn from TT , where mT = [T/ST ], the integer part of T/ST .

The kernel block bootstrap sample mean is

X̄∗mT
=

1

mT

mT∑
s=1

Xt∗sT

=
1

mT

mT∑
s=1

1

(k̂2ST )1/2

t∗s−1∑
r=t∗s−T

k(
r

ST
)(Xt∗s−r − X̄). (2.3)

Remark 2.2. The reformulation (2.3) emphasises the block-wise nature of the kernel block boot-

strap since X̄∗mT
is the sample mean from a random sample of size mT taken from the blocks Bt =

{k{(t− r)/ST }(Xr − X̄)/(k̂2ST )1/2}Tr=1, t = 1, ..., T . Note that the blocks {Bt}Tt=1 are overlapping and,

if k(x) has unbounded support, the block length is T .

The probability measure conditional on XtT , t = 1, ..., T , or, equivalently, the data X1, ..., XT , is

denoted by pr∗ with E∗ and var∗ the corresponding conditional expectation and variance respectively.

Therefore, since the bootstrap sample Xt∗sT , s = 1, ...,mT , is a random sample of size mT drawn from

the sample space {XtT }Tt=1 with each sample point XtT , t = 1, ..., T , having equal probability 1/T , it is

immediate that E∗(X̄∗mT
) = X̄T and mT var

∗(X̄∗mT
) = σ̂2kbb.

3 Theoretical Results

3.1 Assumptions

Assumptions 3.1-3.3 below are adaptations of Smith (2011, Assumptions 2.1, 2.2 and 2.3(d)(e), pp.1199-

1200) and are sufficient for the uniform convergence of the kernel block bootstrap distribution to its

asymptotic counterpart.

Assumption 3.1. The process {Xt, t ∈ Z} is a scalar stationary and strong mixing process with

mixing coefficients satisfying
∑∞
k=1 k

2αX(k)δ/(δ+4) <∞ for some δ > 0.

Assumption 3.1 is weaker than that in Paparoditis and Politis (2001, Theorem 2, p.1108). Noting

αX(k) ∈ [0, 1/4] (Doukhan, 1994, Remark 1, p. 4), the condition
∑∞
k=1 k

2αX(k)δ/(δ+1) < ∞ holds and

is sufficient for the asymptotic validity of the kernel block bootstrap given in Theorem 3.1 below. The

stricter Assumption 3.1 is required for the higher order results of Theorem 3.2.

Let I(A) be the indicator function, that is, I(A) = 1 if A true and 0 otherwise.

Assumption 3.2. (a) ST → ∞ and ST = O(T
1
2−η) with 0 < η < 1

2 ; (b) k : R 7−→[−kmax, kmax],

kmax < ∞, k(0) 6= 0, k2 6= 0, and is continuous at 0 and almost everywhere; (c)
∫∞
−∞ k̄(x)dx < ∞
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where k̄(x) = I(x ≥ 0) supy≥x |k(y)| + I(x < 0) supy≤x |k(y)|; (d) K(λ) 6= 0 for all λ ∈ R where

K(λ) = (2π)−1
∫∞
−∞ k(x) exp(−ixλ)dx.

Assumption 3.3. (a) E(|Xt|α) < ∆ <∞ for some α > max(4 (δ + 1) , 1/η); (b) σ2∞ is positive and

finite.

Assumptions 3.2(b)(c) ensure that k2 > 0 and, moreover, guarantee that the induced self-convolution

kernel k∗(y) =
∫∞
−∞ k(x − y)k(x)dx/k2 is a member of the positive semi-definite class K2 of sym-

metric kernels (Andrews, 1991, p.822) used for consistent covariance matrix estimation (Smith, 2011,

Lemma C.3, p.1234), that is,
∑T−1

s=1−T
k∗(s/ST )R̂T (s) where the sample autocovariance R̂T (s) =∑min[T,T−s]

r=max[1,1−s](Xr+s − X̄)(Xr − X̄)/T . Assumption 3.2(c) ensures that certain normalised sums de-

fined in terms of the kernel k(x) converge appropriately to their integral representation counterparts; see

Jansson (2002). Assumption 3.1 together with Assumption 3.3(a) ensures {Xt − µ, t ∈ Z} satisfies the

hypotheses of Andrews (1991, Lemma 1, p.824). Assumptions 3.1 and 3.3 also guarantee that a central

limit theorem of Ibragimov and Linnik (1971) holds.

Let k(j)(x) = djk(x)/dxj , j = 1, 2. The following assumption on k(x) is needed for results on the

higher order bias and variance of σ̂2kbb (2.2).

Assumption 3.4. (a) k(x) is twice continuously differentiable; (b) k(j)(x) ∈ L1(R) and supx
∣∣k(j)(x)

∣∣ <
∞, j = 1, 2; (c) lim|x|→∞ k(j)(x) = 0, j = 1, 2; (d) |k(x)| ≤ Ck |x|−b for some b > 1 and some Ck <∞.

Remark 3.1. To allow the kernel functions to have unbounded support, Assumption 3.4(d) imposes

a rate of decay on the tails of k(x) implying, in particular, that lim|x|→∞ k(x) = 0. This extension is

important because, as described in Section 3.4, a kernel function with unbounded support is optimal in

a particular sense.

3.2 Large Sample Validity

Theorem 3.1 details the uniform convergence of the bootstrap distribution of the scaled and centred

kernel block bootstrap sample mean m
1/2
T (X̄∗mT

− X̄T ) to the limiting distribution of T 1/2
(
X̄ − µ

)
.

Theorem 3.1. Let Assumptions 3.1-3.3 hold. Then, in probability,

sup
x∈R

∣∣∣pr∗{m1/2
T (X̄∗mT

− X̄T ) ≤ x} − pr{T 1/2(X̄ − µ) ≤ x}
∣∣∣→ 0. (3.1)

Theorem 3.1 mirrors Paparoditis and Politis (2001, Theorem 3, (4), p.1108) for the tapered block boot-

strap. Alternatively, (Paparoditis and Politis, 2001, (5), p.1108), supx∈R |pr∗{m1/2
T X̄∗mT

≤ x}−pr{T 1/2(X̄−
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µ) ≤ x}| → 0 in probability but, being only approximately zero in mean, is likely to be less accurate

than (3.1); see Paparoditis and Politis (2001, p.1108).

3.3 Asymptotic Bias and Variance

Define k∗(q) = limy→0 {1− k∗(y)} / |y|q and let MSE(T/ST , σ̂
2
kbb) = (T/ST )E((σ̂2kbb − JT )2), where

JT =
∑T−1

s=1−T
(1 − |s| /T )R(s). The following theorem provides the higher order bias, variance and

mean-squared error of the kernel block bootstrap variance estimator σ̂2kbb (2.2).

Theorem 3.2. Let Assumptions 3.1-3.4 hold and k∗(2) ∈ [0,∞),
∑∞

s=−∞
|s|2R(s) ∈ [0,∞). Then (a)

E[σ̂2kbb] = JT +S−2T (Γk∗ + o(1)) +UT , Γk∗ = −k∗(2)
∑∞

s=−∞
|s|2R(s), UT = O((ST /T )b−1/2) + o(S−2T ) +

O(Sb−2T T−b) + O(ST /T ) + O(S2T /T
2); (b) if S5T /T → γ ∈ (0,∞], then (T/ST )var[σ̂2kbb] = ∆k∗ + o(1),

where ∆k∗ = 2σ4∞
∫∞
−∞ k∗(y)2dy; (c) if S5T /T → γ ∈ (0,∞), then MSE(T/ST , σ̂

2
kbb) = ∆k∗ + Γ2k∗/γ +

o(1).

Theorem 3.2(a)(b) are results similar to Parzen (1957, Theorems 5A and 5B, pp.339-340) and An-

drews (1991, Proposition 1, p.825), when the Parzen exponent q equals 2; see also Paparoditis and Politis

(2001, Theorems 1 and 2, pp.1107, 1108). The bandwidth parameter ST corresponds to the block length

B for the moving and tapered block bootstraps; see Section 4.1 below. Hence, the bias of the kernel

block bootstrap estimator is of order O(1/S2T ), a rate identical to that of the tapered block bootstrap

but faster than O(1/ST ) for the moving block bootstrap. The variance of the kernel block bootstrap

variance estimator is O(T/ST ) coinciding with that for both methods.

3.4 Optimality

To indicate explicitly its dependence on the bandwidth parameter ST , the kernel block bootstrap variance

estimator σ̂2kbb is now written as σ̂2kbb(ST ). Theorem 3.2(c) shows that the expressionMSE(T/ST , σ̂
2
kbb(ST ))

is identical to that for the mean squared error of the Parzen (1957) estimator based on the induced self-

convolution kernel k∗(y) =
∫∞
−∞ k(x− y)k(x)dx/k2; see also Andrews (1991, Proposition 1, p.825). The

optimality results presented here are an immediate consequence of Theorem 3.2(c) and the theoretical

results of Andrews (1991) for the Parzen (1957) estimator. The first result concerns the choice of optimal

kernel, while the second discusses the optimal bandwidth parameter.

The quadratic spectral or Bartlett-Priestley-Epanechnikov kernel is

k∗QS(y) =
3

(ay)2

(
sin ay

ay
− cos ay

)
(3.2)

where a = 6π/5. The kernel (3.2) is well-known to possess optimality properties for the estimation of

spectral densities (Priestley, 1962; 1981, pp. 567-571) and probability densities (Epanechnikov, 1969,
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Sacks and Yvisacker, 1981). The induced self-convolution kernel k∗(y) = k∗QS(y) if

k(x) = (
5π

8
)1/2

1

x
J1(

6πx

5
) if x 6= 0 and (

5π

8
)1/2

3π

5
if x = 0, (3.3)

(Smith, 2011, Example 2.3, p.1204), where Jv(z) =
∑∞
k=0(−1)k (z/2)

2k+v
/ {Γ(k + 1)Γ(k + 2)}, a Bessel

function of the first kind (Gradshteyn and Ryzhik, 1980, 8.402, p.951) with Γ(·) the gamma function.

Let σ̃2kbb(ST ) denote the kernel block bootstrap variance estimator computed with the kernel function

(3.3). Lemma K.5 in the Supplementary Material verifies that (3.3) satisfies Assumptions 3.2 and 3.4.

Since kernel functions are not subject to any normalisation, in any comparison dissimilar results

will be obtained for identical kernel functions with arguments scaled differently. Hence, to provide a

valid comparison of estimators of σ2∞, bandwidth parameters are chosen to ensure that the respective

asymptotic variances scaled by T/ST of Theorem 3.2(b) coincide; see Andrews (1991, p.829). Hence,

for k∗(y), the requisite bandwidth parameter is STk∗ = ST /
∫∞
−∞ k∗(y)2dy; see Andrews (1991, (4.1),

p.829). Note that
∫∞
−∞ k∗QS(y)2dy = 1.

Corollary 3.1 follows from Theorem 3.2(c) and Andrews (1991, Theorem 2, p.829).

Corollary 3.1. Let Assumptions 3.1-3.4, k∗(2) ∈ [0,∞) and
∑∞

s=−∞
|s|2R(s) ∈ (0,∞) hold. Then,

for any sequence of bandwidth parameters {ST } such that ST → ∞ and S5T /T → γ ∈ (0,∞), the ker-

nel (3.3) is preferred to any other kernel function satisfying Assumptions 3.2 and 3.4 in the sense that

limT→∞ MSE(T/ST , σ̂
2
kbb(STk∗)) − MSE(T/ST , σ̃

2
kbb(ST )) ≥ 0. The inequality is strict if k∗(y) 6=

k∗QS(y) with positive Lebesgue measure.

Let S∗T = (4Γ2k∗/∆k∗)1/5T 1/5. Corollary 3.2 is an immediate consequence of Theorem 3.2(c) and

Andrews (1991, Corollary 1, p.830); see also Paparoditis and Politis (2001, Section 3.1, p.1110).

Corollary 3.2. If Assumptions 3.1-3.4 are satisfied, k∗(2) ∈ (0,∞),
∑∞

s=−∞
|s|2R(s) < ∞ and

∆k∗ ∈ (0,∞), then, for any sequence of bandwidth parameters {ST } such that ST → ∞ and S5T /T →

γ ∈ (0,∞), the sequence {S∗T } is preferred to {ST } in the sense that limT→∞MSE(T 4/5, σ̂2kbb(ST )) −

MSE(T 4/5, σ̂2kbb(S
∗
T )) ≥ 0. The inequality is strict unless ST = S∗T + o(1/T 1/5).

4 Comparisons

4.1 Tapered Block Bootstrap

It is helpful to re-call the kernel block bootstrap sample mean (2.3)

X̄∗mT
=

1

mT

mT∑
s=1

1

(k̂2ST )1/2

t∗s−1∑
r=t∗s−T

k(
r

ST
)(Xt∗s−r − X̄). (4.1)
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The tapered block bootstrap employs a non-negative taper w(x) with unit interval support and

range which is strictly positive in a neighbourhood of and symmetric about 1/2 and is non-decreasing

on the interval [0, 1/2] (Paparoditis and Politis, 2001, Assumptions 1 and 2, p.1107). Hence, w(x) is

centred and unimodal at 1/2. Given a positive integer bandwidth parameter ST , the tapered variates

are Y trT = wST (r)(Xt+r−1 − X̄)S
1/2
T / ‖wST ‖2, r = 1, ..., ST , where wST (r) = w{(r − 1/2)/ST } and

‖wST ‖2 = (
∑ST
r=1 wST (r)2)1/2; see Paparoditis and Politis (2001, (3), p.1106, and Step 2, p.1107). Each

block Bt then has equal length ST , that is, Bt = {Y trT }
ST
r=1, t = 1, ..., T−ST +1. Thus, with the bootstrap

sample Bt∗s , s = 1, ...,mT , the tapered block bootstrap sample mean (Paparoditis and Politis (2001, Step

3, p.1107) is

X̄∗mT
=

1

STmT

mT∑
s=1

ST∑
r=1

S
1/2
T wST (r)

S
1/2
T

‖wST ‖2
(Xt∗s+r−1 − X̄)

=
1

mT

mT∑
s=1

1

(‖wST ‖2 /S
1/2
T )S

1/2
T

ST∑
r=1

wST (r)(Xt∗s+r−1 − X̄), (4.2)

after scaling by S
1/2
T to ensure comparability with the kernel block bootstrap sample mean (4.1); see

Paparoditis and Politis (2001, Theorem 3, p.1108) and Theorem 3.1. Hence, comparing (4.1) with (4.2),

the implicit transformed variates (2.1) are

Xtbb
tT =

1

(‖wST ‖2 /S
1/2
T )S

1/2
T

ST∑
r=1

wST (r)(Xt+r−1 − X̄), t = 1, ..., T − ST + 1,

=
1

(‖wST ‖2 /S
1/2
T )S

1/2
T

ST−[ST /2]−1∑
r=−[ST /2]

wST (r + [ST /2] + 1)(Xt+r − X̄), (4.3)

t = [ST /2] + 1, ..., T − ST + [ST /2], with, when expressed in terms of a kernel function, the taper

w(x) = k(x − 1/2), x ∈ [0, 1], and the divisor ‖wST ‖2 /S
1/2
T in (4.3) replaced by k̂

1/2
2 in (4.1), where

‖wST ‖2 = {
∑ST
r=1 k((r − 1/2− ST /2)/ST )2}1/2.

Important differences between the tapered and kernel block bootstraps, apart from those noted

above, are immediately apparent. First, and most crucially, kernel block bootstrap variates (4.1) may be

defined using kernel functions with unbounded support, in particular, the optimal kernel function (3.3).

Secondly, the tapered block bootstrap, by employing the same block length ST , omits blocks of length

less than ST formed from the data points XtT =
∑min[t−1,ST−[ST /2]−1]

max[t−T,−[ST /2]] wST (r + [ST /2] + 1)(Xt+r −

X̄)/(‖wST ‖2 /S
1/2
T )S

1/2
T , t = 1, ..., [ST /2] and t = T − ST + [ST /2] + 1, ..., T , at the beginning and end

of the kernel block bootstrap sample space with kernel k(x) = w(x+ 1/2).

As a consequence, tapered block bootstrap variance estimators are deficient relative to the kernel

block bootstrap variance estimator using the optimal kernel (3.3). To see this, first, Corollary 3.1 implies

that the limits of MSE(T/ST , σ̂
2
kbb(STk∗)) and MSE(T/ST , σ̂

2
k∗(STk∗)) are identical where σ̂2k∗ (ST ) =∑T−1

s=1−T k
∗(s/ST )R̂T (s). In particular, the limits of MSE(T/ST , σ̃

2
kbb(ST )) and MSE(T/ST , σ̂

2
k∗QS

(ST ))

[7]



coincide. Secondly, let σ̂2tbb(ST ) = (T − ST )−1
∑T−ST+[ST /2]
t=[ST /2]+1

(Xtbb
tT − X̄tbb

T )2 denote the tapered block

bootstrap variance estimator, where X̄tbb
T =

∑T−ST+[ST /2]
t=[ST /2]+1

Xtbb
tT /(T − ST ). Theorems 1, p.1107, and

2, p.1108, of Paparoditis and Politis (2001) establish that, under their Assumptions 1, 2 and 3, p.1107,

MSE(T/ST , σ̂
2
tbb (STk∗)) and MSE(T/ST , σ̂

2
k∗ (STk∗)) have the same limit for k∗(y) =

∫ 1/2
−1/2 w(x− y+

1/2)w(x + 1/2)dx/w2 where w2 =
∫ 1/2
−1/2 w(x + 1/2)2dx. Hence, the resultant induced kernel k∗tbb(y)

differs from the quadratic spectral kernel k∗qs(y) with positive Lebesgue measure and, therefore, the limit

of MSE(T/ST , σ̂
2
tbb (STk∗)) is strictly greater than that of MSE(T/ST , σ̃

2
kbb (ST )). Since the limit of

MSE(T/ST , σ̂
2
kbb(STk∗)) is an increasing function of k∗(2)(

∫
k∗(x)dx)2, see Section S.4.3, pp.S.5-S.6, of

the Supplementary Material, to gauge the deficiency of the optimal tapered block bootstrap variance

estimator (Paparoditis and Politis, 2001, p.1111) k∗(2)tbb(
∫
k∗tbb(x)2dx)2 = 1. 6456, noting

∫
k∗tbb(x)2dx =

0.5495, k∗(2)tbb = 5. 45, whereas k∗(2)qs(
∫
k∗qs(x)2dx)2 = 1.4212 as

∫
k∗qs(x)2dx = 1.

4.2 Consistent Variance Estimation

Politis and Romano (1994) note that the block and stationary bootstrap variance estimators are approx-

imately equivalent to the Bartlett kernel variance estimator; see, e.g., Newey and West (1987). Smith

(2005, Section 2, pp.161-165) demonstrates a more general result under Assumptions 3.1-3.3 for kernel-

based variance estimators (2.2); see also Smith (2011, Sections 2.4 and 2.5, pp.1199-1202, and Proof of

Lemma A.3, pp.1219-1221). In particular, Smith (2011, Example 2.3, p.1204) shows that, in probability,

the difference between the variance estimator (2.2) with kernel (3.3) and the optimal quadratic spectral

or Bartlett-Priestley-Epanechnikov estimator with kernel (3.2) is negligible asymptotically; see Andrews

(1991, (2.7), p.821) and Priestley (1981, (6.2.86), p.444). Theorem 3.2 establishes that, in addition,

higher order properties of these variance estimators coincide.

5 Finite Sample Performance

This section investigates the finite sample performance of the kernel block bootstrap based on the optimal

kernel (3.3). To provide a basis for comparison with the optimal tapered block bootstrap method using

the trapezoidal taper (Paparoditis and Politis, 2001, Sections 3.1 and 3.2, pp. 1110-1112), identical

simulation designs are employed.

The first set of simulation experiments investigates the sensitivity of the methods to the choice of

the bandwidth while the second set evaluates their performance when the estimated optimal block size/

bandwidth is used.

5.1 Design I

Model 1. Nonlinear autorgressive model.

Xt = 0.6 sin(Xt−1) + Zt. t ∈ Z.

[8]



Model 2. Exponential autoregressive model.

Xt = {0.8− 1.1 exp(−50X2
t−1)}Xt−1 + 0.1Zt. t ∈ Z.

Samples t = 1, ..., T are generated from both models with the initialisation X−50 = 0 and {Zt}

independent and identically distributed N(0, 1).

All simulations for the kernel block bootstrap use k̂2 in (2.1) rather than k2; see Remark 1. This

approximation, since it also depends on the bandwidth, appears to compensate for situations in which

the values of the bandwidth are too large or too low relative to the optimal bandwidth S∗T .

The mean µ and variance σ2∞ for each process are approximated as follows: 5000 independent sample

means X̄(i) =
∑10000
t=1 Xt(i)/10000, i = 1, ..., 5000, are computed, each based on a sample Xt(i), t =

1, ..., 10000. The population mean µ is then approximated by X̄5000 =
∑5000
i=1 X̄(i)/5000 and σ2∞ by

10000
∑5000
i=1

(
X̄(i)− X̄5000

)2
/5000. The simulation samples are drawn independently of these samples.

Samples {Xt}Tt=1 are generated for the sample sizes T = 200 and T = 1000 with 5000 replications.

Within each replication, both kernel and tapered block bootstraps were used to compute 95% equal

tailed bootstrap confidence intervals for the population mean µ and the empirical mean squared error

of the bootstrap estimators of the long run variance σ2∞. The bootstraps were computed with fixed

bandwidth/block sizes ST in the range from 2 to 40. The number of bootstrap replications in all cases

was 1000.

Figures 1 and 2 about here

Empirical coverage rates are presented in Figure 1, while the results concerning empirical mean

squared errors are displayed in Figure 2. Both Figures 1 and 2 indicate that the performance of the

kernel block bootstrap method is sensitive to the choice of the bandwidth/block size parameter ST .

Although it is superior to the tapered block bootstrap for low values of ST , relative empirical coverage

deteriorates quite sharply as ST increases for Model 1 in Figure 1(a) for the smaller sample size T = 200

at moderate and large block sizes. This facet of the kernel block bootstrap is less evident for Model

2 in Figure 1(c) for T = 200. For the larger sample size T = 1000 given in Figures 1(b) and 1(d) for

Models 1 and 2 respectively, the superiority of the kernel block bootstrap occurs over a larger range for

ST with the performance of both bootstraps then broadly similar for moderate and large block sizes.

The tapered block bootstrap method tends to be more robust to the choice of block size with empirical

coverage initially increasing and then becoming relatively stable over a large range of ST particularly

for the smaller sample size T = 200. Similar conclusions may also be drawn from Figure 2 where again,

in terms of empirical mean squared error of the respective estimators of σ2∞, the kernel block bootstrap

is superior initially for small values of ST with a deterioration in relative performance for moderate and

large block sizes for T = 200 for Model 1 but this finding is somewhat less pronounced for Model 2.

[9]



Similarly to the results on empirical coverage, the negative aspects of these findings are ameliorated for

the larger sample size T = 1000.

5.2 Design II

Given the sensitivity of the performance of the kernel block bootstrap to bandwidth/block size ST , and

because ST is not fixed but depends on the sample size T , the behaviours of both bootstrap methods are

further investigated when implemented using the estimated optimal bandwidth/block size as described

in Paparoditis and Politis (2001, section 3.2, pp. 1111-1112) and Politis and White (2004, ftn. c, p. 59).

See also Politis and Romano (1995).

The simulation experiments were based on samples t = 1, ..., 200 from the MA(2) model Xt =

Zt + θ1Zt−1 + θ2Zt−2 with {Zt} N(0, 1) distributed as above and the initialisations Z−50 = Z−49 = 0

(Paparoditis and Politis 2001, pp. 1113-1114). The MA parameters θ1 and θ2 take values in the set

{−1.0,−0.6,−0.3, 0.1, 0.4, 0.7, 1.0}.

Table 1 about here

The empirical mean squared errors of the kernel block bootstrap variance estimator σ̂2kbb divided by

σ4∞ are displayed in Table 1. These results are similar to those given in Paparoditis and Politis (2001,

Table 1, p.1115) for the tapered block bootstrap. Both methods behave relatively poorly in the presence

of negative dependence with similar problematic cases. See, for example, θ1 = −0.6 θ2 = −0.3, θ1 = 0.1

θ2 = −1.0, θ1 = −0.6 θ2 = 0.1 and θ1 = −0.3 θ2 = 0.1.

Table 2 about here

The ratio of the empirical mean squared error for the kernel block bootstrap variance estimator

σ̂2kbb divided by that of the tapered block bootstrap is reported in Table 2. These results confirm the

conclusion from Table 1 that the kernel block bootstrap estimates of σ2∞ are generally better in the

lower right triangular part of the table, that is, for positive θ1 and θ2, with the opposite result in the

upper left triangular portion of the table. Nevertheless, overall, the kernel block bootstrap provides an

improvement in 57% of the cases considered. Although not reported here, this proportion increases to

76% if the infeasible optimal bandwidth S∗T is used. Hence, although the kernel block bootstrap offers

theoretical advantages over the tapered block bootstrap, given the increased sensitivity to the choice of

the bandwidth, these advantages are somewhat diluted in practice.

Table 3 about here

To examine the location of the estimator of the optimal bandwidth/block size S∗T for the quadratic

spectral kernel block bootstrap, Table 3 displays the empirical mean of the estimated optimal band-

width/block size together with its standard deviation and the true S∗T . Again, similar to the results

[10]



for the tapered block bootstrap reported in Paparoditis and Politis (2001, Table 3, p. 1116), there

are substantial deviations between the empirical mean and true S∗T for the problematic cases. Further

investigation of these cases indicated substantial outliers and highly positively skewed distributions of

the estimators for S∗T . Apart from these designs, there is a relatively close correspondence between the

empirical mean and true S∗T .
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Figure 1: Empirical coverage, as a function of the block size ST , of 95% equal-tailed confidence intervals obtained with block bootstraps
for Models 1 and 2.
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(a) Model 1: T = 200
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(b) Model 1: T = 1000
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(c) Model 2: T = 200
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(d) Model 2: T = 1000

Note: KBB-QS: optimal kernel block bootstrap; TBB-PP: optimal tapered block bootstrap; KBB-PP: kernel block bootstrap with optimal tapered
block bootstrap kernel; MBB: moving blocks bootstrap.



Figure 2: Empirical mean squared error, as a function of the block size ST , of block bootstrap estimators for σ2
∞ for Models 1 and 2.
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(a) Model 1: T = 200
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(b) Model 1: T = 1000
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(c) Model 2: T = 200
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(d) Model 2: T = 1000

Note: KBB-QS: optimal kernel block bootstrap; TBB-PP: optimal tapered block bootstrap; KBB-PP: kernel block bootstrap with optimal tapered
block bootstrap kernel; MBB: moving blocks bootstrap.



Table 1. Ratio of empirical mean squared error for the kernel block bootstrap
variance estimator σ̂2kbb divided by σ4∞ with estimated block size, for different cases of

MA(2) models and T = 200.

θ1 θ2 = −1.0 θ2 = −0.6 θ2 = −0.3 θ2 = 0.1 θ2 = 0.4 θ2 = 0.7 θ2 = 1.0
−1.0 0.221 1.368 5.232 16.686 0.882 0.112 0.097
−0.6 0.266 7.825 276.073 0.145 0.096 0.080 0.079
−0.3 0.893 14.064 1.656 0.047 0.069 0.077 0.074
0.1 34.325 0.242 0.179 0.061 0.066 0.071 0.075
0.4 0.396 0.146 0.077 0.053 0.072 0.077 0.076
0.7 0.226 0.114 0.056 0.056 0.074 0.083 0.082
1.0 0.211 0.097 0.045 0.056 0.078 0.079 0.079

Table 2. Ratio of empirical mean squared error for the kernel block bootstrap
divided by the corresponding empirical mean squared error for tapered block bootstrap

with estimated block size, for different cases of MA(2) models and T = 200.

θ1 θ2 = −1.0 θ2 = −0.6 θ2 = −0.3 θ2 = 0.1 θ2 = 0.4 θ2 = 0.7 θ2 = 1.0
−1.0 1.091 1.504 1.525 1.082 5.216 1.090 0.969
−0.6 1.075 1.567 1.540 0.955 0.951 0.910 0.897
−0.3 1.388 1.680 1.502 0.840 0.935 0.929 0.919
0.1 1.644 1.042 1.132 1.121 0.922 0.910 0.936
0.4 1.136 1.043 0.961 0.989 0.937 0.913 0.906
0.7 1.038 1.023 0.950 0.954 0.928 0.900 0.940
1.0 1.091 0.995 0.934 0.931 0.910 0.942 0.916



Table 3. The empirical mean of the optimal bandwdith estimator for the kernel block
bootstrap, with its standard deviation in parentheses and the true value of S∗T in square

brackets, for different cases of MA(2) models and T = 200.

θ1 θ2 = −1.0 θ2 = −0.6 θ2 = −0.3 θ2 = 0.1 θ2 = 0.4 θ2 = 0.7 θ2 = 1.0
−1.0 9.51 12.22 8.72 12.82 7.64 6.95 6.93

[8.76] (4.66) [11.43] (11.18) [17.05] (10.08) [27.54] (8.94) [5.50] (5.10) [6.96] (3.02) [6.64] (2.49)
−0.6 16.62 21.85 13.29 13.20 8.08 6.15 6.05

[13.19] (15.86) [26.90] (17.61) [38.52] (17.36) [5.11] (10.11) [5.39] (9.10) [5.87] (2.15) [5.81] (2.16)
−0.3 21.92 22.85 12.73 4.61 5.01 5.65 5.59

[22.96] (19.05) [45.97] (17.48) [12.02] (10.73) [2.08] (1.37) [4.98] (1.56) [5.36] (2.96) [5.37] (2.05)
0.1 23.31 15.42 6.08 1.98 4.52 5.11 5.26

[55.30] (17.13) [12.36] (13.84) [6.32] (2.93) [3.32] (1.34) [4.54] (1.73) [4.86] (2.47) [4.94] (3.07)
0.4 21.37 9.19 4.57 2.96 4.66 5.05 5.11

[18.24] (19.71) [8.31] (4.66) [4.51] (2.46) [3.39] (1.85) [4.28] (8.89) [4.58] (3.43) [4.68] (3.41)
0.7 14.08 6.58 3.78 3.28 4.35 4.99 5.19

[11.66] (10.66) [6.30] (2.50) [3.35] (1.99) [3.35] (2.11) [4.06] (3.44) [4.35] (4.13) [4.46] (4.69)
1.0 9.53 5.08 3.32 3.42 4.14 4.80 5.10

[8.76] (4.53) [5.07] (2.47) [2.50] (1.86) [3.27] (2.53) [3.88] (3.23) [4.15] (4.23) [4.28] (4.91)
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S.1 Introduction

This Supplement to the paper Kernel Block Bootstrap details the proofs of Theorems 1 and 2 together

with a number of subsidiary results used in establishing Theorems 1 and 2.

S.2 Preliminaries

Throughout the Supplement, C denotes a generic positive constants that may be different in different

uses with CS, M, and T the Cauchy-Schwarz, Markov and triangle inequalities respectively.

To simplify the analysis, the Supplement considers the transformed centred observations

XtT =
1

(k2ST )1/2

t−T∑
s=t−1

k(
s

ST
)(Xt−s − X̄)

with k2 substituting for k̂2 =
∑T−1
t=1−T k(t/ST )2/ST in the main text. Corollary K.2 establishes that the

results given below also apply for XtT as defined in the main text.

Without loss of generality, since

XtT =
1

(k2ST )1/2

t−T∑
s=t−1

k(
s

ST
)((Xt−s − µ)− (X̄ − µ))

and

X̄T =
1

T

T∑
t=1

1

(k2ST )1/2

t−T∑
s=t−1

k(
s

ST
)((Xt−s − µ)− (X̄ − µ)),

the transformed and original samples are regarded below as having been drawn from a zero mean process,

i.e., µ = 0.

[S.1]



For simplicity, where required, T/ST is assumed to be integer.

Recall

mT var
∗(X̄∗mT ) =

T∑
t=1

(XtT − X̄T )2/T.

S.3 Some Notation

For ease of reference some notation used in the following is collected here.

Let

ktT (
s

ST
) =

1

k2ST
k(
t− s
ST

)k(
t

ST
), kT (

s

ST
) =

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)

and

ka(x) =
1

k2
k(x+ a)k(x),

with k(j)(x) = djk(x)/dxj and k
(j)
a (x) = djka(x)/dxj , j = 1, 2.

Also define

R̂tT (s) =
1

T

min[T−1,T−s,T−t]∑
r=max[1,1−s,1−t]

Xr+sXr, R̂T (s) =
1

T

min[T−1,T−s]∑
r=max[1,1−s]

Xr+sXr.

Recall

JT =

T−1∑
s=1−T

(1− |s|
T

)R(s);

k∗q = lim
y→0

1− k∗(y)

|y|q ;

Γk∗ = − 1

S2T
k∗q

∞∑
s=−∞

|s|2R(s),∆k∗ = 2σ4∞

∫ ∞
−∞

k∗(x)2dx.

S.4 Proofs of Results

S.4.1 Large Sample Validity

Proof of Theorem 1. The result is proven in Steps 1-5 below; cf. Politis and Romano (1992, Proof

of Theorem 2, pp. 1993-5). For simplicity, let mT = T/ST be integer.

Step 1: X̄ → 0 in probability. Follows by White (1984, Theorem 3.47, p.46).

Step 2: pr{T 1/2X̄/σ∞ ≤ x} → Φ(x), where Φ(·) is the standard normal distribution function.

Follows by White (1984, Theorem 5.19, p.124).

Step 3: supx
∣∣pr{T 1/2X̄/σ∞ ≤ x} − Φ(x)

∣∣→ 0. Follows by Pólya’s Theorem (Serfling, 1980, Theo-

rem 1.5.3, p.18) from Step 2 and the continuity of Φ(·).

[S.2]



Step 4: var∗((T/ST )1/2X̄∗mT )→ σ2∞ in probability. Note E∗(X̄∗mT ) = X̄T . Thus,

var∗((T/ST )1/2X̄∗mT ) = var∗(Xt∗T )

=
1

T

T∑
t=1

(XtT − X̄T )2

=
1

T

T∑
t=1

X2
tT − X̄2

T .

The result follows since X̄2
T = Op(ST /T ) (Smith, 2011, Lemma A.2, p.1219), ST /T = o(1), Assumption

2(a), and
∑T
t=1X

2
tT /T

p→ σ2∞ (Smith, 2011, Lemma A.3, p.1219).

Step 5:

lim
T→∞

pr

{
sup
x

∣∣∣∣pr∗{
X̄∗mT − E

∗(X̄∗mT )

var∗(X̄∗mT )1/2
≤ x} − Φ(x)

∣∣∣∣ ≥ ε} = 0.

Applying the Berry-Esséen inequality, Serfling (1980, Theorem 1.9.5, p.33), noting the bootstrap sample

observations {Xt∗sT }
mT
s=1 are independent and identically distributed,

sup
x

∣∣∣∣∣pr∗{
(T/ST )1/2(X̄∗mT − X̄T )

var∗((T/ST )1/2X̄∗mT )1/2
≤ x} − Φ(x)

∣∣∣∣∣ ≤ C

m
1/2
T

var∗(Xt∗T )−3/2E∗(
∣∣Xt∗T − X̄T

∣∣3).
Now var∗(Xt∗T )

p→ σ2∞ > 0; see the Proof of Step 4 above. Furthermore, E∗(
∣∣Xt∗T − X̄T

∣∣3) =

T−1
∑T
t=1

∣∣XtT − X̄T

∣∣3 and

1

T

T∑
t=1

∣∣XtT − X̄T

∣∣3 ≤ max
t

∣∣XtT − X̄T

∣∣ 1

T

T∑
t=1

(XtT − X̄T )2

= Op(S
1/2
T T 1/α).

The equality follows since maxt
∣∣XtT − X̄T

∣∣ ≤ maxt |XtT | +
∣∣X̄T

∣∣ = Op(S
1/2
T T 1/α) + Op((ST /T )1/2) =

Op(S
1/2
T T 1/α) by M, Assumption 3(a), (Newey and Smith, 2004, Proof of Lemma A1, p.239), and∑T

t=1(XtT − X̄T )2/T = Op(1), see the Proof of Step 4 above. Therefore

sup
x

∣∣∣∣∣pr∗{
(T/ST )1/2(X̄∗mT − X̄T )

var∗((T/ST )1/2X̄∗mT )1/2
≤ x} − Φ(x)

∣∣∣∣∣ ≤ 1

m
1/2
T

Op(1)Op(S
1/2
T T 1/α)

=
S
1/2
T

m
1/2
T

Op(T
1/α) = op(1),

by Assumption 2(a), yielding the required conclusion.�

S.4.2 Asymptotic Bias, Variance and Mean Squared Error

Proof of Theorem 2. (a)

E(σ̂2kbb) =
1

T

T∑
t=1

E((XtT − X̄T )2)

=
1

T

T∑
t=1

E(X2
tT )− E(X̄2

T ).

[S.3]



Now

1

T

T∑
t=1

X2
tT =

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−s]

ktT (
s

ST
)R̂tT (s)

=

T−1∑
s=1−T

kT (
s

ST
)R̂T (s)

+

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)(R̂tT (s)− R̂T (s)).

From Lemma B.1,

T−1∑
s=1−T

(k∗(
s

ST
)− kT (

s

ST
))E(R̂T (s)) = (O((

ST
T

)b−1/2) + o(
1

S2T
))JT +O(

Sb−2T

T b
),

and, from Lemma B.2,

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)E(R̂tT (s)− R̂T (s)) = o(

ST
T

).

Therefore,

ST
T

T∑
t=1

E(X2
tT ) = JT −

1

S2T
(Γk∗ + o(1))

+(O((
ST
T

)b−1/2) + o(
1

S2T
))JT +O(

Sb−2T

T b
) + o(

ST
T

).

since, see Parzen (1957) and Andrews (1991, Proposition 1(b), p.825),

T−1∑
s=1−T

k∗(
s

ST
)E(R̂T (s)) = JT −

1

S2T
(k∗(2)

∞∑
s=−∞

|s|2R(s) + o(1)).

By Lemma B.3,

E(X̄2
T ) ≤ O(

ST
T

)JT +O((
ST
T

)2).

Therefore, collecting terms,

E(σ̂2kbb) = JT +
1

S2T
(Γk∗ + o(1))

+(O((
ST
T

)b−1/2) + o(
1

S2T
))JT +O(

Sb−2T

T b
) + o(

ST
T

)

+O(
ST
T

)JT +O((
ST
T

)2)

= JT +
1

S2T
(Γk∗ + o(1)) +O((

ST
T

)b−1/2) + o(
1

S2T
) +O(

Sb−2T

T b
) +O(

ST
T

) +O((
ST
T

)2).�

(b) From Theorems V.1-V.3

T

ST
var(σ̂2kbb) = 2σ4∞

∫ ∞
−∞

k∗(y)2dy + o(1) +O(
ST
T

) +O(
1

T 2
)

= 2σ4∞

∫ ∞
−∞

k∗(y)2dy + o(1).�
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(c) Let

UT = O((
ST
T

)b−1/2) + o(
1

S2T
) +O(

Sb−2T

T b
) +O(

ST
T

) +O((
ST
T

)2).

From (a) and (b)

MSE(T/ST , σ̂
2
kbb) =

T

ST
E((σ̂2kbb − JT )2)

=
T

ST
var(σ̂2kbb) +

T

ST
(E(σ̂2kbb)− JT )2

=
T

ST
var(σ̂2kbb) +

T

ST
(

1

S2T
(Γk∗ + o(1)) + UT )2.

Now
T

ST
(

1

S2T
(Γk∗ + o(1)) + UT )2 = ((

T

S5T
)1/2(Γk∗ + o(1)) + (

T

ST
)1/2UT )2.

and, in particular,

(
T

ST
)1/2UT = O((

ST
T

)b−1) + o((
T

S5T
)1/2) +O(

1

S2T
(
ST
T

)b−1/2) +O((
ST
T

)1/2) +O((
ST
T

)3/2)

All the terms are o(1) by Assumptions 2(a) and 4(d) and by hypothesis S5T /T → γ ∈ (0,∞). The result

is then immediate.�

S.4.3 Optimality

Let the induced kernel function k∗(y) =
∫∞
−∞ k(x − y)k(x)dx/k2 satisfy Assumptions 1, 2(a)(b)(c)

and |K∗(λ)| > 0 for all λ ∈ R where K∗(λ) = (2π)−1
∫∞
−∞ k∗(y) exp(−iyλ)dy. Also let σ̂2k∗(ST ) =∑T−1

s=1−T k
∗(s/ST )R̂T (s) and STk∗ = ST /

∫
k∗(y)2dy.

Then, if S5T /T → γ for some γ ∈ (0,∞) and
∑∞

s=−∞
|s|2R(s) ∈ (0,∞), limT→∞(MSE(T/ST , σ̂

2
k∗(STk∗)−

MSE(T/ST , σ̂
2
k∗qs

(ST ))) ≥ 0 with strict inequality if k∗(y) and k∗qs(y) differ by positive Lebesgue measure.

To show this, a proof almost identical to Andrews (1991, Proof of Theorem 2, pp.853-854) for

kernel k∗(y), bandwidth sequence STk∗ and q = 2 suffices except that Andrews (1991, Theorem 1(c),

p.827) is replaced by Andrews (1991, Proposition 1(c), p.825). Since S5Tk∗/T → γ/(
∫
k∗(y)2dy)5 and

T/ST = (1/
∫
k∗(y)2dy)T/STk∗ ,

lim
T→∞

MSE(T/ST , σ̂
2
k∗(STk∗)) =

1

γ
(

∫
k∗(y)2dy)4Γ2k∗ + 2(

∑∞

s=−∞
R(s))2,

where Γk∗ = −k∗(2)
∑∞

s=−∞
|s|2R(s), provided k∗(2) <∞. If k2 =∞, limT→∞MSE(T/ST , σ̂

2
k(STk∗)) =

∞ since the bias term is unbounded; see Andrews (1991, Proof of Theorem 2, pp.853-854). In conclusion,

k∗(2)(
∫
k∗(y)2dy)2 ≥ k∗(2)qs with strict inequality if k∗(y) and k∗qs(y) differ by positive Lebesgue measure;

see Andrews (1991, eq. (A.20), p.854).
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S.5 Preliminary Results

S.5.1 Asymptotic Bias

S.5.1.1 Preliminaries

Note

E(R̂T (s)) = (1− |s|
T

)R(s), s = 0,±1, ....

S.5.1.2 Results

Lemma B.1. Let Assumptions 1, 2, 3(a) and 4(a)(b)(d) hold. If, in addition, Assumption 4(c) holds,

that is,
∫∞
−∞ k

(2)
a (x)dx = 0, and

∑∞
s=−∞ |s|

2
R(s) <∞, then

T−1∑
s=1−T

(k∗(
s

ST
)− kT (

s

ST
))E(R̂T (s)) = (O((

ST
T

)b−1/2) + o(
1

S2T
))JT +O(

Sb−2T

T b
).

Proof. From Lemmas K.2 and K.3,

k∗(
s

ST
)− kT (

s

ST
) = O((

ST
T

)b−1/2) + o(
1

S2T
)

uniformly s. Hence

T−1∑
s=1−T

(k∗(
s

ST
)− kT (

s

ST
))E(R̂T (s)) = (O((

ST
T

)b−1/2) + o(
1

S2T
))JT .

The result is then immediate since by hypothesis
∑∞
s=−∞ |s|

2
R(s) = O(1).�

Lemma B.2. Under Assumptions 1, 2, 3(a) and 4,

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)E(R̂tT (s)− R̂T (s)) = o(

ST
T

).

Proof. Consider the difference

min[T−1,T−s,T−t]∑
r=max[1,1−s,1−t]

E(Xr+sXr)−
min[T−1,T−s]∑
r=max[1,1−s]

E(Xr+sXr).

Suppose t > s. Then

min[T−1,T−s,T−t]∑
r=max[1,1−s,1−t]

E(Xr+sXr)−
min[T−1,T−s]∑
r=max[1,1−s]

E(Xr+sXr) =

min[T−1,T−t]∑
r=max[1,1−s]

E(Xr+sXr)−
min[T−1,T−s]∑
r=max[1,1−s]

E(Xr+sXr)

= −
min[T−1,T−s]∑
r=min[T,T−t]+1

E[Xr+sXr].

Using Doukhan (1994, Theorem 3.(1), p.9),

[S.6]



|E(Xr+sXr)| ≤ 8αX(s)δ/(δ+1)E(|Xr|2(δ+1))1/2(δ+1)E(|Xr+s|2(δ+1))1/2(δ+1)

≤ CαX(s)δ/(δ+1)

where the last inequality follows from Assumption 3(a). By T∣∣∣∣∣∣
min[T−1,T−s]∑
r=min[T,T−t]+1

E(Xr+sXr)

∣∣∣∣∣∣ ≤
min[T−1,T−s]∑
r=min[T,T−t]+1

|E(Xr+sXr)|

≤ CαX(s)δ/(δ+1) max[(min[T, T − s]−min[T, T − t]), 0]

= CαX(s)δ/(δ+1)(t− s) if s > 0 or CαX(s)(v−1)/v max[t, 0] if s ≤ 0

≤ CαX(s)δ/(δ+1) max[t, 0].

For t ≤ s

min[T−1,T−s,T−t]∑
r=max[1,1−s,1−t]

E(Xr+sXr)−
min[T−1,T−s]∑
r=max[1,1−s]

E(Xr+sXr) =

max[1,1−t]−1∑
r=max[1,1−s]

E(Xr+sXr).

Similarly by T∣∣∣∣∣∣
max[1,1−t]−1∑
r=max[1,1−s]

E(Xr+sXr)

∣∣∣∣∣∣ ≤ CαX(s)δ/(δ+1) max[(max[1, 1− t]−max[1, 1− s]), 0]

= CαX(s)δ/(δ+1) max[−t, 0] if s > 0 or CαX(s)δ/(δ+1)(s− t) if s < 0

≤ CαX(s)δ/(δ+1) max[−t, 0].

Consequently∣∣∣∣∣∣
min[T−1,T−s,T−t]∑
r=max[1,1−s,1−t]

E(Xr+sXr)−
min[T−1,T−s]∑
r=max[1,1−s]

E(Xr+sXr)

∣∣∣∣∣∣ ≤ CαX(s)δ/(δ+1) |t| .

Hence, also by T,∣∣∣∣∣∣
T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (s)E(ĈtT (t)− ĈT (s))

∣∣∣∣∣∣ ≤ C

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

|ktT (s)|

×αX(s)δ/(δ+1)
|t|
T

≤ C

k2

1

ST

T−1∑
t=1−T

|t|
T

∣∣∣∣k(
t

ST
)

∣∣∣∣
×

T−1∑
s=1−T

∣∣∣∣k(
t− s
ST

)

∣∣∣∣αX(s)δ/(δ+1).

By the mean value theorem

k(
t− s
ST

) = k(
t

ST
)− 1

ST
k(1)(

ctT (s)

ST
)s

[S.7]



where cT (s) ∈ (t − s, t). By T |k((t− s)/ST )| ≤ |k(t/ST )| + |(s/ST )| supx
∣∣k(1)(x)

∣∣ and, thus, by

Assumption 1

T−1∑
s=1−T

∣∣∣∣k(
t− s
ST

)

∣∣∣∣α(s)δ/(δ+1) ≤
∣∣∣∣k(

t

ST
)

∣∣∣∣ T−1∑
s=1−T

αX(s)δ/(δ+1)

+
1

ST
sup
x

∣∣∣k(1)(x)
∣∣∣ T−1∑
s=1−T

|s|αX(s)δ/(δ+1)

=

∣∣∣∣k(
t

ST
)

∣∣∣∣ o(1) + o(
1

ST
)

uniformly t. From Lemma K.4,

1

ST

T−1∑
t=1−T

|t|
T

∣∣∣∣k(
t

ST
)

∣∣∣∣ o( 1

ST
) ≤ o( 1

ST
)O(

ST
T

) = o(
1

T
),

and, similarly

1

ST

T−1∑
t=1−T

|t|
T

∣∣∣∣k(
t

ST
)

∣∣∣∣2 o(1) ≤ o(1) sup
x
|k(x)|O(

ST
T

) = o(
ST
T

).

Therefore ∣∣∣∣∣∣
T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)E(R̂tT (s)− R̂T (s))

∣∣∣∣∣∣ ≤ o(STT ).�

Lemma B.3. Under Assumptions 1, 2. 3(a) and 4,

E(X̄2
T ) ≤ O(

ST
T

)JT +O((
ST
T

)2).

Proof. Write

X̄T =
1

T

1

(k2ST )1/2

T∑
t=1

t−T∑
s=t−1

k(
s

ST
)Xt−s

=
1

(k2ST )1/2

T−1∑
s=1−T

k(
s

ST
)

1

T

min[T,T−s]∑
t=max[1,1−s]

Xt

= X̄
1

(k2ST )1/2

T−1∑
s=1−T

k(
s

ST
)

+
1

(k2ST )1/2

T−1∑
s=1−T

k(
s

ST
)(

1

T

min[T,T−s]∑
t=max[1,1−s]

Xt − X̄)

= AT + BT .

Using the cr inequality, White (1984, Proposition 3.8, p.33),

E((AT + BT )2) ≤ 2(E(A2T ) + E(B2T )).

First,

E(A2T ) =
1

T

T−1∑
s=1−T

(1− |s|
T

)R(s){ 1

(k2ST )1/2

T−1∑
s=1−T

k(
s

ST
)}2

= O(
ST
T

)JT .
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Secondly, by CS,

E(B2T ) ≤ (
1

(k2ST )1/2

T−1∑
s=1−T

∣∣∣∣k(
s

ST
)

∣∣∣∣){ 1

(k2ST )1/2

T−1∑
s=1−T

∣∣∣∣k(
s

ST
)

∣∣∣∣E((
1

T

∑min[T,T−s]

t=max[1,1−s]
Xt − X̄)2)}

≤ (
1

(k2ST )1/2

T−1∑
s=1−T

∣∣∣∣k(
s

ST
)

∣∣∣∣)( 1

(k2ST )1/2

T−1∑
s=1−T

|s|
∣∣∣∣k(

s

ST
)

∣∣∣∣)O(
1

T 2
)

= O(
S2T
T 2

);

the second inequality follows from a Doukhan (1994) moment bound, see, for example, Politis et al.

(1997, Lemma A.1, eq. (A.4), p.304), noting the O(T−2) term is independent of s with the third

equality obtained from Lemma K.4.�

S.5.2 Asymptotic Variance

S.5.2.1 Preliminaries

Nordman (2009, Theorem 2, p.365) is used below and is stated here for ease of reference. Let

TT =

T−1∑
s=0

as,T R̂T (s).

Also let

AT =

T−1∑
s=1

a2s,T (1− s

T
)2 > 0,

BT =
1

T
+

log(T )

T 2
(

T−1∑
s=0

|as,T |)2 +
1

T 2

T−1∑
s=0

|as,T | s(1−
s

T
)

and

CT =

T−1∑
s=2

|as,T − as−1,T | .

Define the smoothing window HT (ω) =
∑T−1
s=0 a

2
s,T (1 − T−1s) exp(isω) and the non-negative kernel

κT (ω) = HT (ω)HT (−ω)/(2πAT ), ω ∈ R. Assumptions A.1 and A.2, p.362, of Nordman (2009) are now

restated.

Assumption N.1.
∑∞
s=−∞ |s| |R(s)| <∞.

Assumption N.2.
∑∞
t1,t2,t3=−∞ |κ(X0, Xt1 , Xt2 , Xt3)| <∞.

Theorem N. (Nordman (2009) Theorem 2, p.365.) Suppose that Assumptions N.1 and N.2 hold.

Then, if in addition supT max0≤s≤T−1 |as,T | <∞, then (a)

var(TT ) = (2π)2
AT
T

∫ π

−π
κT (ω)f2(ω)dω +O((ATBT /T )1/2 + BT );
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(b)

lim
T→∞

∫ π

−π
κT (ω)f2(ω)dω = f2(0)

if limT→∞AT =∞ and supT CT <∞ also hold.

Note

1

T 2
var(

T∑
t=1

(XtT − X̄T )2) =
1

T 2
var(

T∑
t=1

X2
tT − TX̄2

T )

and the components of

1

k2T

T∑
t=1

X2
tT =

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)R̂tT (s)

=

T−1∑
s=1−T

kT (
s

ST
)R̂T (s)

+

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−s]

ktT (
s

ST
)(R̂tT (s)− R̂T (s))

which together with X̄2
T are examined below.

S.5.2.2 Results

Define

as,T = 2kT (
s

ST
)

= 2k∗(
s

ST
) +O(uT ), s = ±1, ...,

and a0,T = k̃T (0) = k∗(0) +O(uT ) where, by Lemmas K.2 and K.3, if b > 1 and
∫∞
−∞ k

(2)
a (x)dx = 0,

O(uT ) = O((
ST
T

)b−1/2) + o(
1

S2T
)

uniformly s. Thus

AT =

T−1∑
s=1

(2kT (
s

ST
))2(1− s

T
)2,

BT =
1

T
+ 4(

T−1∑
s=1

∣∣∣∣kT (
s

ST
)

∣∣∣∣)2 log(T )

T 2
+

1

T 2
2

T−1∑
s=1

∣∣∣∣kT (
s

ST
)

∣∣∣∣ s(1− s

T
),

CT = 2

T−1∑
s=2

∣∣∣∣kT (
s

ST
)− kT (

s− 1

ST
)

∣∣∣∣ .
Lemma V.1. If Assumption 2 is satisfied then supT max0≤s≤T−1 |as,T | <∞.
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Proof. Using Jansson (2002, Lemma 1, p.1451),

sup
T

max
0≤s≤T−1

|as,T | = 2 sup
T

max
0≤s≤T−1

∣∣∣∣kT (
s

ST
)

∣∣∣∣
=

2

k2
sup
T

max
0≤s≤T−1

∣∣∣∣∣∣ 1

ST

min[T−1,T−1+s]∑
t=max[1−T,1−s]

k(
t− s
ST

)k(
t

ST
)

∣∣∣∣∣∣
≤ 2

k2
kmax sup

T

∣∣∣∣ 1

ST

∑T−1

s=1−T
k(

t

ST
)

∣∣∣∣ <∞.�

Lemma V.2. Let Assumptions 2 and 4 hold. Then,

AT
ST

=
2

ST

T−1∑
s=1−T

k∗(
s

ST
)2 +O(uT ) +O(

T

ST
u2T ) +O(

1

ST
).

Proof. Now

AT ≤ 4

T−1∑
s=1

kT (
s

ST
)2.

By symmetry

2

T−1∑
s=1

kT (
s

ST
)2 =

T−1∑
s=1−T

kT (
s

ST
)2 − kT (0)2.

Then, by Lemmas K.2 and K.3,

1

ST

T−1∑
s=1−T

kT (
s

ST
)2 =

1

ST

T−1∑
s=1−T

(k∗(
s

ST
)2 + k∗(

s

ST
)O(uT ) +O(u2T ))

=
1

ST

T−1∑
s=1−T

k∗(
s

ST
)2 +O(uT ) +O(

T

ST
u2T ).

Finally
1

ST
kT (0)2 =

1

ST
k∗(0)2 +O(

uT
ST

) = O(
1

ST
).�

Lemma V.3. If Assumptions 2 and 4 are satisfied, then

BT =
1

T
+O(

log(T )

T 2
S2T ) +O((

ST
T

)2).

Proof. By symmetry and Smith (2005, eq. (A.5), p.169),

2

ST

T−1∑
s=1

∣∣∣∣kT (
s

ST
)

∣∣∣∣ =
1

ST

T−1∑
s=1−T

∣∣∣∣kT (
s

ST
)

∣∣∣∣− 1

ST
kT (0)

= O(1) +O(
1

ST
).

[S.11]



Thus

(

T−1∑
s=1

∣∣∣∣2kT (
s

ST
)

∣∣∣∣)2 log(T )

T 2
= O(

log(T )

T 2
S2T ).

Next consider

1

T 2

∑T−1

s=1

∣∣∣∣2kT (
s

ST
)

∣∣∣∣ s(1− s

T
) ≤ 1

T 2

T−1∑
s=1−T

∣∣∣∣kT (
s

ST
)

∣∣∣∣ |s| .
By T and Lemma K.4,

1

T 2

T−1∑
s=1−T

∣∣∣∣kT (
s

ST
)

∣∣∣∣ |s| ≤ 1

k2T 2

T−1∑
t=1−T

∣∣∣∣k(
t

ST
)

∣∣∣∣ 1

ST

T−1∑
s=1−T

|s|
∣∣∣∣k(

t− s
ST

)

∣∣∣∣
≤ O(

1

T 2
)

T−1∑
t=1−T

∣∣∣∣k(
t

ST
)

∣∣∣∣O(ST )

≤ O((
ST
T

)2)(

∫ ∞
−∞

k̄(x)dx) = O((
ST
T

)2)

by Assumption 2(c).�

Lemma V.4. Suppose Assumptions 2(b)(c) and 4(a)(b) are satisfied. Then

CT <∞.

Proof. Note that, for s ≥ 2,

kT (
s

ST
)− kT (

s− 1

ST
) =

1

k2ST

T−1∑
t=1−T+s

k(
t

ST
)(k(

t− s
ST

)− k(
t− (s− 1)

ST
))

− 1

k2ST
k(
s− T
ST

)k(
1− T
ST

).

Hence, by T

CT = 2

T−1∑
s=2

∣∣∣∣kT (
s

ST
)− kT (

s− 1

ST
)

∣∣∣∣
≤ 2

k2ST

T−1∑
s=2

T−1∑
t=1−T+s

∣∣∣∣k(
t

ST
)

∣∣∣∣ ∣∣∣∣k(
t− s
ST

)− k(
t− (s− 1)

ST
)

∣∣∣∣
+

2

k2ST

∣∣∣∣k(
1− T
ST

)

∣∣∣∣ T−1∑
s=2

∣∣∣∣k(
s− T
ST

)

∣∣∣∣
≤ 2

k2ST

T−1∑
t=1−T

∣∣∣∣k(
t

ST
)

∣∣∣∣ T−1∑
s=2

∣∣∣∣∣
∫ t−s

ST

t−(s−1)
ST

k(1)(x)dx

∣∣∣∣∣+ c

≤ 2

k2ST

T−1∑
t=1−T

∣∣∣∣k(
t

ST
)

∣∣∣∣ ∫ t−1
ST

t−(T−1)
ST

∣∣∣k(1)(x)
∣∣∣ dx+ c

≤ 2

k2ST

T−1∑
t=1−T

∣∣∣∣k(
t

ST
)

∣∣∣∣C + c <∞

[S.12]



where c and C are positive constants. The second inequality follows from Assumptions 2(c) and 4(a) and

Lemma K.4, the fourth inequality from Assumption 4(b) since
∫ t−1
ST
t−(T−1)
ST

∣∣k(1)(x)
∣∣ dx ≤ ∫∞−∞ ∣∣k(1)(x)

∣∣ dx ≤
C and the final inequality since

∑T−1
t=1−T

∣∣∣k( t
ST

)
∣∣∣ /ST = O(1) by Assumption 2(c) and Lemma K.4. �

Theorem N is applied to

TT =

T−1∑
s=1−T

kT (
s

ST
)R̂T (s).

Theorem V.1. Let Assumptions 1-4 hold. If
∑∞
s=−∞ |s|

2R(s) <∞ and ST ≥ O(T 1/5) then

T

ST
var(TT ) = 2σ4∞

∫ ∞
−∞

k∗(y)2dy + o(1).

Proof. Lemma V.1 establishes supT max0≤s≤T−1 |as,T | <∞. Assumption N.1 follows by hypothesis

and Assumption N.2 holds under Assumption 1 by Andrews (1991, Lemma 1, p.824). The additional

conditions required for Theorem N(b) are verified by noting limT→∞AT = ∞ from Lemma V.2 and

supT CT <∞ from Lemma V.4.

Therefore, by Theorem N, since f(0) = σ2∞/2π,

T

ST
var(TT ) =

AT
ST

(σ4∞ + o(1)) +
T

ST
O((
ATBT
T

)1/2 + BT ).

From Lemma V.2

AT
ST

=
2

ST

T−1∑
s=1−T

k∗(
s

ST
)2 +O(uT ) +O(

T

ST
u2T ) +O(

1

ST
).

Now, O(uT ) = o(1),

O((
T

ST
)1/2uT ) = O((

ST
T

)b−1) + o((
T

S5T
)1/2) = o(1)

if ST ≥ O(T 1/5). Thus
AT
ST

= 2

∫ ∞
−∞

k∗(y)2dy + o(1)

since

1

ST

T−1∑
s=1−T

k∗(
s

ST
)2 =

∫ ∞
−∞

k∗(y)2dy + o(1).

Finally, since BT = o(1), to establish the order of the remainder, consider (T/ST )2ATBT /T =

(AT /ST )(TBT /ST ). From Lemma V.3,

T

ST
BT =

1

ST
+O(

log(T )

T
ST ) +O(

ST
T

).

Hence the result follows.�
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Set

RT =

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)(R̂tT (s)− R̂T (s)).

Theorem V.2. If Assumption 1-4 hold, then

T

ST
var(RT ) = O(

S2T
T

).

Proof. Let

ξst =

min[T−1,T−s,T−t]∑
r=max[1,1−s,1−t]

Xr+sXr −
min[T−1,T−s]∑
r=max[1,1−s]

Xr+sXr

= −
min[T−1,T−s]∑
r=min[T,T−t]+1

Xr+sXr if t > s

=

max[1,1−t]−1∑
r=max[1,1−s]

Xr+sXr if t ≤ s.

Thus

var(RT ) ≤ 1

T 2
E[(

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)ξst)

2].

By T and using the Minkowski inequality (White, 1984, Ex. 3.53(i), p.46),

E((

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)ξst)

2) ≤ E((

T−1∑
s=1−T

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

∣∣∣∣ktT (
s

ST
)ξst

∣∣∣∣)2)
≤ (

T−1∑
s=1−T

E((

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

∣∣∣∣ktT (
s

ST
)ξst

∣∣∣∣)2)1/2)2.
A further application of the Minkowski inequality

E((

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

∣∣∣∣ktT (
s

ST
)ξst

∣∣∣∣)2) ≤ (

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

E(

∣∣∣∣ktT (
s

ST
)

∣∣∣∣2 ξ2st)1/2)2
= (

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

∣∣∣∣ktT (
s

ST
)

∣∣∣∣E(ξ2st)
1/2)2.

By a Doukhan (1994) moment bound, see, for example, Politis et al. (1997, Lemma A.1, eq. (A.4),

p.304), and noting that ξst consists of no more than |t| terms,

E(|ξst|2) ≤ |t|O(1)

uniformly s and t. Thus, uniformly s,

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

∣∣∣∣ktT (
s

ST
)

∣∣∣∣E(ξ2st)
1/2 ≤ O(1)

1

k2ST

T−1∑
t=1−T

|t|1/2
∣∣∣∣k(

t− s
ST

)

∣∣∣∣ ∣∣∣∣k(
t

ST
)

∣∣∣∣ .
[S.14]



Therefore, combining the above results,

var(RT ) ≤ O(
1

T 2
)(

1

k2ST

T−1∑
t=1−T

|t|1/2
∣∣∣∣k(

t

ST
)

∣∣∣∣ T−1∑
s=1−T

∣∣∣∣k(
t− s
ST

)

∣∣∣∣)2
= O(

1

T 2
)(O(S

1/2
T )O(ST ))2 = O(

S3T
T 2

)

noting
∑T−1
s=1−T |k{(t− s)/ST }| = O(ST ) with the inequality following from Lemma K.4.�

Theorem V.3. If Assumptions 1-4 hold,

var(X̄2
T ) ≤ O(

S2T
T 2

).

Proof. Recall from the Proof of Lemma B.3

X̄T =
1

T

T∑
t=1

ktTXt

where

ktT =
1

(k2ST )1/2

t−T∑
s=t−1

k(
s

ST
), t = 1, ..., T.

Since var(X̄2
T ) ≤ E(X̄4

T )

var(X̄2
T ) ≤ O(

S2T
T 4

)E((

T∑
t=1

Xt)
4)

noting ktT /S
1/2
T = O(1) uniformly t.

By a Doukhan (1994) moment bound, see, for example, Politis et al. (1997, Lemma A.1, eq. (A.4),

p.304),

E(

∣∣∣∣∣
T∑
t=1

Xt

∣∣∣∣∣
4

) ≤ 3024 max[1, C2(4, δ)]D(4, δ, T )

for each T where

C(4, δ) =

∞∑
j=0

(j + 1)2αX(j)δ/(4+δ),

D(4, δ, T ) = max[L (4, δ, T ) , [L (2, δ, T )]
2
],

L (4, δ, T ) =

T∑
t=1

E(|Xt|4+δ)
4

4+δ ≤ CT,

L (2, δ, T ) =

T∑
t=1

E(|Xt|2+δ)
2

2+δ ≤ CT

from Assumption 3(a).

Now C(4, δ) is bounded by Assumption 1. Therefore

E(X̄4
T ) ≤ O(

S2T
T 4

)3024 max[1, C2(4, δ)]D(4, δ, T )]

≤ O(
S2T
T 2

).�

[S.15]



S.5.3 Kernel Functions

S.5.3.1 Notation

Recall

ktT (
s

ST
) =

1

k2ST
k(
t− s
ST

)k(
t

ST
), kT (

s

ST
) =

min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

ktT (
s

ST
)

ka(x) =
1

k2
k(x+ a)k(x),

with k(j)(x) = djk(x)/dxj and k
(j)
a (x) = djka(x)/dxj , j = 1, 2.

Let

ZcTT (a) =
1

k2ST

cT−1∑
t=1−cT

k(
t− a
ST

)k(
t

ST
)

+
1

2k2ST
k(
−cT − a
ST

)k(
−cT
ST

)

+
1

2k2ST
k(
cT − a
ST

)k(
cT
ST

).

S.5.3.2 Useful Lemmata

Lemma K.1. Let k(·) ∈ C 2([−c, c]) and suppose k(·) satisfies Assumptions 4(a) and (b). Then

ZcTT (a) =
1

k2

∫ c

−c
ka(x)dx+

1

12k2S2T

∫ c

−c
k(2)a (x)dx+ o(

1

S2T
)

uniformly a.

Proof. The proof is an adaptation of Cruz-Uribe and Neugebauer (2002, Proof of Theorem 1.23,

pp.20-21).

Consider the interval [−cT /ST , cT /ST ] and define the subintervals Ji = [xi−1, xi] of equal length

1/ST , i.e., xi = (i− cT )/ST , i = 1, ..., 2cT , with x0 = −cT /ST . Then

ZcTT (a) =
1

2k2ST

2cT∑
i=1

(ka(xi−1) + ka(xi)).

Define mi as the mid-point of interval Ji, (i = 1, ..., 2ST ). Hence, using integration by parts,∫ xi

xi−1

(x−mi)k
(1)
a (x)dx = [(x−mi)ka(x)]xixi−1 −

∫ xi

xi−1

ka(x)dx

=
1

2ST
(ka(xi−1) + ka(xi))−

∫ xi

xi−1

ka(x)dx.

Also, again applying integration by parts,

1

2

∫ xi

xi−1

(
1

4S2T
− (x−mi)

2)k(2)a (x)dx = [
1

2
(

1

4S2T
− (x−mi)

2)k(1)a (x)]xixi−1 +
1

2

∫ xi

xi−1

2(x−mi)k
(1)
a (x)dx

=

∫ xi

xi−1

(x−mi)k
(1)
a (x)dx.

[S.16]



Now

1

2

∫ xi

xi−1

(
1

4S2T
− (x−mi)

2)dx =
1

2
[
x

4S2T
− (x−mi)

3

3

]xixi−1

=
1

2
[

1

4S3T
− 2

24S3T
] =

1

12S3T
.

Therefore
1

12S3T
inf
x∈Ji

k(2)a (x) ≤
∫ xi

xi−1

(x−mi)k
(1)
a (x)dx ≤ 1

12S3T
sup
x∈Ji

k(2)a (x).

Multiplying by S2T and summing over i = 1, ..., 2cT ,

1

12k2ST

2cT∑
i=1

inf
x∈Ji

k(2)a (x) ≤ S2T [ZcTT (a)−
∫ cT /ST

−cT /ST
ka(x)dx] ≤ 1

12k2ST

2cT∑
i=1

sup
x∈Ji

k(2)a (x).

Now, by hypothesis k
(2)
a (·) is continuous from Assumption 4(a) and cT = c+o( 1

ST
). Therefore the conclu-

sion holds since both LHS and RHS of the above inequalities converge to limST→∞
∫ cT /ST
−cT /ST k

(2)
a (x)dx/12k2,

that is,
∫ c
−c k

(2)
a (x)dx/12k2, uniformly a if

lim
T→∞

sup
a∈R

∣∣∣∣∣ 1

12k2ST

2cT∑
i=1

sup
x∈Ji

k(2)a (x)− 1

12k2ST

2cT∑
i=1

inf
x∈Ji

k(2)a (x)

∣∣∣∣∣ = 0.

The case cT /ST → ∞ and k(x) with unbounded support is considered here; k(x) with bounded

support follows straightforwardly. Define lT = −MST + cT + 1 and uT = MST + cT and let

DT (a) =
1

12k2ST

2cT∑
i=1

( sup
x∈Ji
− inf
x∈Ji

)k(2)a (x)

=
1

12k2ST
(

lT−1∑
i=1

+

uT∑
i=lT

+

2cT∑
i=uT+1

)( sup
x∈Ji
− inf
x∈Ji

)k(2)a (x).

To simplify the notation write si,T (a) = supx∈Ji k
(2)
a (x)−infx∈Ji k

(2)
a (x) and ST (a) = 1

12k2ST

∑2cT
i=1 si,T (a)

and k(0)(x) = k(x).

For all M > 0, there exists a T ∗ such that, for all T > T ∗, cT /ST > M since cT /ST → ∞. Now,

as Ji is compact, there exist xsi [a] ∈ Ji and xii[a] ∈ Ji such that supx∈Ji k
(2)
a (x) = k

(2)
a (xsi [a]) and

infx∈Ji k
(2)
a (x) = k

(2)
a (xii[a]), i = 1, ..., 2cT . For T large enough, there exists a constant M > 0 such that∣∣k(j)(x)

∣∣ < ε, j = 0, 1, 2, for all |x| ≥ M as lim|x|→∞ k(j)(x) = 0, j = 0, 1, 2, from Assumption 4(c).

Hence, noting k
(2)
a (x) = k(2)(x + a)k(x) + 2k(1)(x)k(1)(x + a) + k(2)(x)k(x + a),

∣∣∣k(2)a (x)
∣∣∣ ≤ εga(x) for

|x| ≥M where ga(x) =
∣∣k(2)(x+ a)

∣∣+ 2
∣∣k(1)(x+ a)

∣∣+ |k(x+ a)|. Now note that for T large enough we

have ∣∣∣∣∣ 1

12k2ST

lT−1∑
i=1

( sup
x∈Ji
− inf
x∈Ji

)k(2)a (x)

∣∣∣∣∣ ≤ 1

12k2ST
ε

lT−1∑
i=1

[ga(xsi [a]) + ga(xii[a])],∣∣∣∣∣ 1

12k2ST

2cT∑
i=uT+1

( sup
x∈Ji
− inf
x∈Ji

)k(2)a (x)

∣∣∣∣∣ ≤ 1

12k2ST
ε

2cT∑
i=uT+1

[ga(xsi [a]) + ga(xii[a])].
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Both sums are o(1) as ε > 0 is arbitrary and, since both sums have cT −MST terms, from Assumption

4(b),
∑lT−1
i=1 [ga(xsi [a]) + ga(xii[a])]/ST = O(1) and

∑2cT
i=uT+1

[ga(xsi [a]) + ga(xii[a])]/ST = O(1).

Now |xsi [a]| , |xii[a]| ≤M , i = lT , ..., uT .

For |a| > 2M , ga(xsi [a]), ga(xii[a]) < ε. Consequently,∣∣∣∣∣ 1

12k2ST

uT∑
i=lT

( sup
x∈Ji
− inf
x∈Ji

)k(2)a (x)

∣∣∣∣∣ ≤ 1

12k2ST
ε

uT∑
i=lT

[g0(x
s
i [a]) + g0(x

i
i[a])] = o(1),

since, as above, ε is arbitrary and
∑uT
i=lT

[g0(x
s
i [a]) + g0(x

i
i[a])]/ST = O(1).

For |a| ≤ 2M , because the set a ∈ [−2M, 2M ] is compact, only equicontinuity of
∑uT
i=lT

(supx∈Ji − infx∈Ji)

k
(2)
a (x)/12k2ST need be demonstrated as pointwise convergence is uniform on compact sets; see Rudin

(1976, Exercise 16, p.168). That is, for every ε > 0, there exists a δ > 0 such that∣∣∣∣∣ 1

12k2ST

uT∑
i=lT

( sup
x∈Ji
− inf
x∈Ji

)[k(2)a1 (x)− k(2)a2 (x)]

∣∣∣∣∣ < ε

for all |a1 − a2| < δ. By T∣∣∣∣∣ 1

12k2ST

uT∑
i=lT

( sup
x∈Ji
− inf
x∈Ji

)[k(2)a1 (x)− k(2)a2 (x)]

∣∣∣∣∣ ≤ 1

12k2ST

uT∑
i=lT

∣∣∣∣( sup
x∈Ji
− inf
x∈Ji

)[k(2)a1 (x)− k(2)a2 (x)]

∣∣∣∣ .
For every ε > 0, for T large enough. there exists a δ > 0 such that∣∣∣∣( sup

x∈Ji
− inf
x∈Ji

)[k(2)a1 (x)− k(2)a2 (x)]

∣∣∣∣ < 6k2ε

M

because k
(2)
a (x) is continuous in x and a, from the continuity of k(j)(x), j = 0, 1, 2, by Assumption 4(a),

and, thus, uniformly continuous in x and a as (x, a) ∈ [−M,M ] × [−2M, 2M ] by the compactness of

[−2M, 2M ].�

Let cT = T − 1 and s = aST .

Corollary K.1. Suppose k(·) satisfies Assumptions 4(a) and 4(b) respectively. Then

ZcTT (a) =
1

k2

∫ cT /sT

−cT /sT
ka(x)dx+

1

12k2S2T

∫ ∞
−∞

k(2)a (x)dx+ o(
1

S2T
)

uniformly a.

Proof. The proof follows that of Lemma K.1 above. Given the interval [−cT /ST , cT /ST ], again

define the subintervals Ji = [xi−1, xi] of equal length 1/ST , i.e., xi = (i− cT )/ST , (i = 1, ..., 2cT ), with

x0 = −cT /ST . Then, as before,

ZcTT (a) =
1

2k2ST

2cT∑
i=1

(ka(xi−1) + ka(xi))

[S.18]



and
1

12k2ST

2cT∑
i=1

inf
x∈Ji

k(2)a (x) ≤ S2T [ZcTT (a)−
∫ cT /ST

−cT /ST
ka(x)dx] ≤ 1

12k2ST

2cT∑
i=1

sup
x∈Ji

k(2)a (x).

The conclusion holds since both LHS and RHS of the above inequalities converge to limST→∞
∫ cT /ST
−cT /ST k

(2)
a (x)dx/12,

i.e.,
∫∞
−∞ k

(2)
a (x)dx/12.�

Let

k̃T (
s

ST
) =

T−1∑
t=1−T

ktT (
s

ST
).

Lemma K.2. Suppose Assumptions 2 and 4 hold. Then,

k̃T (
s

ST
) = kT (

s

ST
) + |s|O(

1

T bST
)

= kT (
s

ST
) +O((

ST
T

)b−1/2)

uniformly s.

Proof. Consider the difference

k̃T (
s

ST
)− kT (

s

ST
) =

1

k2ST

 T−1∑
t=1−T

−
min[T−1,T−1+s]∑
t=max[1−T,1−T+s]

 k

(
t− s
ST

)
k

(
t

ST

)

=
1

k2ST

 T−1∑
t=min[T,T+s]

+

max[−T,−T+s]∑
t=1−T

 k

(
t− s
ST

)
k

(
t

ST

)
.

Firstly, if s ≥ 0, min[T, T + s] = T and max[−T,−T + s] = −T + s. Then, by CS, using Assumption

2(b),

1

ST

∣∣∣∣∣
−T+s∑
t=1−T

k

(
t− s
ST

)
k

(
t

ST

)∣∣∣∣∣ ≤ 1

ST

−T+s∑
t=1−T

∣∣∣∣k( t− sST

)
k

(
t

ST

)∣∣∣∣
≤ 1

S
1/2
T

(

−T∑
t=1−T−s

∣∣∣∣k( t

ST

)∣∣∣∣2)1/2( 1

ST

−T+s∑
t=1−T

∣∣∣∣k( t

ST

)∣∣∣∣2)1/2
≤ 1

S
1/2
T

(

−T∑
t=−∞

∣∣∣∣k( t

ST

)∣∣∣∣2)1/2(k1/22 + o(1))

≤ Ck
1

S
1/2−b
T

(

∞∑
t=T

|t|−2b)1/2O(1)

≤ O(S
b−1/2
T )(

∫ ∞
T

|t|−2b dt)1/2

= O(S
b−1/2
T )(T 1−2b)1/2 = O((

ST
T

)b−1/2)
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or

1

ST

∣∣∣∣∣
−T+s∑
t=1−T

k

(
t− s
ST

)
k

(
t

ST

)∣∣∣∣∣ ≤ 1

ST

−T+s∑
t=1−T

∣∣∣∣k( t− sST

)
k

(
t

ST

)∣∣∣∣
≤ kmax

1

ST

−T∑
t=1−T−s

∣∣∣∣k( t

ST

)∣∣∣∣
≤ kmax

|s|
T bST

= |s|O(
1

T bST
).

uniformly s. Secondly, if s ≤ 0, min[T, T + s] = T + s and max[−T,−T + s] = −T . Then, similarly,

uniformly s,

1

ST

∣∣∣∣∣
T−1∑
t=T+s

k

(
t− s
ST

)
k

(
t

ST

)∣∣∣∣∣ ≤ 1

S
1/2
T

(

T−1−s∑
t=T

∣∣∣∣k( t

ST

)∣∣∣∣2)1/2( 1

ST

T−1∑
t=T+s

∣∣∣∣k( t

ST

)∣∣∣∣2)1/2
≤ Ck

1

S
1/2−b
T

(

∞∑
t=T

t−2b)1/2O(1) = O((
ST
T

)b−1/2)

or

1

ST

∣∣∣∣∣
T−1∑
t=T+s

k

(
t− s
ST

)
k

(
t

ST

)∣∣∣∣∣ ≤ kmax
1

ST

T−1−s∑
t=T

∣∣∣∣k( t

ST

)∣∣∣∣
≤ kmax

|s|
T bST

= |s|O(
1

T bST
).

Therefore,

k̃T (
s

ST
)− kT (

s

ST
) = O((

ST
T

)b−1/2)

uniformly s.�

Again let a = s/ST .

Lemma K.3. Suppose ST → ∞, ST /T → 0 and Assumptions 2(b)(c) and 4(a)-(b) hold. Then, if

Assumption 4(d) is satisfied,

k∗(
s

ST
) = k̃T (

s

ST
) +

1

12k2S2T

∫ ∞
−∞

k(2)a (x)dx+O((
ST
T

)b−1/2) + o(
1

S2T
)

uniformly s. If
∫∞
−∞ k

(2)
a (x)dx = 0 the remainder is

O((
ST
T

)b−1/2) + o(
1

S2T
).

Proof. Set cT = T − 1 and consider

cT∑
t=−cT

ktT (
s

ST
) = ZcTT (a) +O(

Sb−1T

T b
)

[S.20]



uniformly s, where ZcTT (a) is defined above and a = s/ST . To see this, by Assumption 4(e),∣∣∣∣kcTT (
s

ST
)

∣∣∣∣ ≤ kmax
1

k2ST

∣∣∣∣k(
cT
ST

)

∣∣∣∣
≤ Ckkmax

1

k2ST

∣∣∣∣ cTST
∣∣∣∣−b

≤ O(
Sb−1T

T b
)

uniformly s. Similarly, uniformly s, ∣∣∣∣k−cTT (
s

ST
)

∣∣∣∣ ≤ O(
Sb−1T

T b
).

By Corollary K.1,

ZcTT (a)− 1

k2

∫ cT /ST

−cT /ST
ka(x)dx =

1

12k2S2T

∫ ∞
−∞

k(2)a (x)dx+ o(
1

S2T
)

uniformly a. Now by CS, also using Assumption 4(d),∣∣∣∣∣
∫ ∞
cT /ST

ka(x)dx

∣∣∣∣∣ ≤
∫ cT /ST

∞
|k(x+ a)k(x)| dx

≤ (

∫ cT /ST

∞
k(x+ a)2dx)1/2(

∫ cT /ST

∞
k(x)2dx)1/2

≤ Ck(

∫ ∞
−∞

k(x)2dx)1/2(

∫ cT /ST

∞
|x|−2b dx)1/2

= Ckk
1/2
2 [|x|1−2b]cT /ST∞

= O((
ST
T

)b−1/2)

uniformly a. Similarly, uniformly a,∣∣∣∣∣
∫ −cT /ST
−∞

ka(x)dx

∣∣∣∣∣ ≤ O((
ST
T

)b−1/2).�

Corollary K.2. Suppose ST →∞, ST /T → 0 and Assumptions 2(b)(c) and 4(a)-(c) hold. Then,

if Assumption 4(d) is satisfied,

k2 =
1

ST

T−1∑
s=1−T

k(
s

ST
)2 +O((

ST
T

)b−1/2) + o(
1

S2T
).

Proof. Set s = 0 in Lemma K.3.�
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The proof of the following Lemma is based on Smith (2011, Proof of Lemma C.1, p.1231-1232).

Lemma K.4. If ST →∞, ST /T → 0 and kT (·)→ k(·) a.e., then, for r > 0, if
∫∞
−∞ |x|

r
k̄(x)dx <∞,

1

ST

T−1∑
s=1−T

|s|r
∣∣∣∣k(

s

ST
)

∣∣∣∣ = O(SrT )

uniformly s.

Proof. Note that

1

ST

T−1∑
s=1−T

|s|r
∣∣∣∣k(

s

ST
)

∣∣∣∣ = SrT

∫ (T−1)/ST

(1−T )/ST
|x|r |kT,s(x))| dx

writing kT,s(x) = k((s − 1)/ST ), (s − 1)/ST ≤ x < s/ST , if s ≤ 0, k(s/ST ), (s − 1)/ST < x ≤ s/ST , if

s > 0. Since
∣∣∣∫ (T−1)/ST(1−T )/ST |x|

r |k(x)| dx
∣∣∣ ≤ ∫∞−∞ |x|r k̄(x)dx, the result follows from the dominated conver-

gence theorem noting kT,s(·)→ k(·) almost everywhere and |k(·)| ≤ k̄(·).�

Lemma K.5. The optimal kernel function

k(x) = (
5π

8
)1/2

1

x
J1(

6πx

5
)

satisfies the hypotheses of Assumptions 2 and 4.

Proof. To simplify the exposition k(x) may be re-expressed as ckf(y), where f(y) = J1(y)/y,

y = c0x, c0 = 6π/5 and ck = (6π/5)(5π/8)1/2. The result of Lemma K.5 for k(x) may be equivalently

proved for f(y). To see this k(1)(x) = ckf
(1)(y)(dy/dx), k(2)(x) = ckf

(2)(y)(dy/dx)2 and |k(x)| ≤

C |x|−3/2 if |f(y)| ≤ C |y|−3/2, where f (j)(y) = djf(y)/dyj . The function k̄(x) satisfies Assumption 2(c)∫∞
−∞ k̄(x)dx <∞ if

∫∞
−∞ f̄(x)dx <∞, where f̄(y) = supz≥y |f(z)| if y ≥ 0 or supz≤y |f(z)| if y < 0, since

k̄(x) = ckf̄(c0x).

A result used extensively is supz≥0 |
√
zJv(z)| ≤ C, v > 0; see Olenko (2006, Theorem 2.1, p.456).

Hence, for z > 0, |Jv(z)| ≤ C/
√
z and, thus, for y > 0,

−C/y3/2 ≤ f(y) ≤ C/y3/2.

Assumption 2(b). By direct inspection f(y) achieves its maximum when y → 0, i.e., |f(y)| ≤

limy→0 |f(y)| = 1/2.

Assumption 2(c). By T and |f(y)| ≤ C,
∣∣f̄(y)

∣∣ ≤ C. Thus, given symmetry about 0, for some
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positive constants c and C∫ ∞
−∞

f̄(y)dy = 2

∫ ∞
0

f̄(y)dy = 2(

∫ c

0

+

∫ ∞
c

)f̄(y)dy

≤ 2C + 2

∫ ∞
c

f̄(y)dy

≤ 2C + 2

∫ ∞
c

sup
z≥y
|J1(z)/z| dy

≤ 2C + 2

∫ ∞
c

1

y3/2
sup
z≥y

∣∣√zJ1(z)∣∣ dy
≤ 2C + 2C

∫ ∞
c

1

y3/2
dy < C

since supz≥0 |
√
zJv(z)| ≤ C, v > 0.

Assumption 4(a). Since f (1)(y) = −J2(y)/y and f (2)(y) = −J2(y)/y2+J3(y)/y noting d(Jv(y)/yv)/dy =

−Jv+1(y)/yv (Watson, 1966, section 3.56, p.66), f(y), f (1)(y) and f (2)(y) are continuous on R.

Assumption 4(b). Given symmetry about 0, for some positive constants c and C∫ ∞
−∞

∣∣∣f (1)(y)
∣∣∣ dy = 2

∫ ∞
0

1

y
|J2(y)| dy = 2(

∫ c

0

+

∫ ∞
c

)
1

y
|J2(y)| dy

≤ 2C + 2

∫ ∞
c

1

y
|J2(y)| dy ≤ 2C + 2C

∫ ∞
c

1

y3/2
dy) < C.

Similarly ∫ ∞
−∞

∣∣∣f (2)(y)
∣∣∣ dy = 2(

∫ c

0

+

∫ ∞
c

)
∣∣∣f (2)(y)

∣∣∣ dy + 2

∫ ∞
c

∣∣∣f (2)(y)
∣∣∣ dy

≤ C + 2

∫ ∞
c

∣∣∣∣− 1

y2
J2(y) +

1

y
J3(y)

∣∣∣∣ dy
≤ C +

∫ ∞
c

1

y2
|J2(y)| dy +

∫ ∞
c

1

y
|J3(y)| dy

≤ C +

∫ ∞
c

1

y5/2
dy +

∫ ∞
c

1

y3/2
dy ≤ C.

The first derivative f (1)(y) achieves its maximum at y∗ = 2.29991036426349 and y∗∗ = −y∗, that is,∣∣f (1)(y)
∣∣ ≤ ∣∣f (1)(y∗)∣∣ =

∣∣f (1)(y∗∗)∣∣ = 0.179962865. The second derivative
∣∣f (2)(y)

∣∣ achieves its maximum

when y → 0, that is,
∣∣f (2)(y)

∣∣ ≤ limy→0
∣∣−J2(y)/y2 + J3(y)/y

∣∣ = 1/8.

Assumption 4(c). f(y) is a symmetric function and, thus, limy→∞ f(y) = limy→−∞ f(y). From

above, for y > 0, −C/y3/2 ≤ f(y) ≤ C/y3/2, lim|y|→∞ f(y) = 0. Now f (1)(−y) = −f (1)(y). Hence

limy→−∞ f (1)(y) = − limy→∞ f (1)(y). Similarly, for y > 0, since f (1)(y) = −J2(y)/y, −C/y3/2 ≤

f (1)(y) ≤ C/y3/2. Hence lim|y|→∞ f (1)(y) = 0. A similar argument shows lim|y|→∞ f (2)(y) = 0.

Assumption 4(d). |J1(y)/y| ≤ C |y|−3/2 as |J1(y)| ≤ C/√y. Hence b = 3/2.�
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