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Abstract

We propose a new simulation-based estimation method, adversarial esti-
mation, for structural models. The estimator is formulated as the solution
to a minimax problem between a generator (which generates synthetic obser-
vations using the structural model) and a discriminator (which classifies if an
observation is synthetic). The discriminator maximizes the accuracy of its clas-
sification while the generator minimizes it. We show that, with a sufficiently
rich discriminator, the adversarial estimator attains parametric efficiency under
correct specification and the parametric rate under misspecification. We advo-
cate the use of a neural network as a discriminator that can exploit adaptivity
properties and attain fast rates of convergence. We apply our method to the
elderly’s saving decision model and show that including gender and health pro-
files in the discriminator uncovers the bequest motive as an important source
of saving across the wealth distribution, not only for the rich.
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1 INTRODUCTION

Structural estimation is a useful tool to quantify economic mechanisms and learn
about the effects of policies that are yet to be implemented. Structural models are
naturally articulated as parametric models and, as such, may in principle be esti-
mated using maximum likelihood (MLE). However, likelihood functions arising from
economic models are sometimes too complex to evaluate or may not exist in closed
form. Meanwhile, generating data from structural models is often feasible, even if it
can be computationally intensive. This observation has spurred large literature on
simulation-based estimation methods.

A prominent example of such methods is the simulated method of moments
(SMM). If we have particular features of the data we want to reproduce, SMM is
an attractive tool to naturally incorporate them. At the same time, a naive strategy
to stack a large number of moments is known to yield poor finite sample properties
(Altonji and Segal, 1996). This tradeoff is especially pronounced in models with rich
heterogeneity, where the number of moments may grow exponentially with the num-
ber of covariates, leading to the curse of dimensionality. While it may be resolved if
we can reduce the moments to a handful of informative ones, it is often the case that
such a choice is not obvious.

This paper proposes a new simulation-based estimation method, adversarial esti-
mation, that can be used regardless of whether we know which features to match. It is
inspired by the generative adversarial networks (GAN), a machine learning algorithm
developed by Goodfellow et al. (2014) to generate realistic images. We adopt its
adversarial framework to estimate the structural parameters that generate realistic
economic data. While maintaining the flexibility of SMM, our method is demon-
strated to work well under rich heterogeneity.

The generative adversarial estimation framework is a minimax game between two
components—a discriminator and a generator—over classification accuracy:

min
{generator}

max
{discriminator}

classification accuracy.

The generator is an algorithm to simulate synthetic data; its objective is to find
a data-generating algorithm that confuses the discriminator. The discriminator is a
classification algorithm that distinguishes observed data from simulated data; it takes
a data point as input and classifies if it comes from observed data or simulated data;
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its objective is to maximize the accuracy of its classification.
In original GAN, both the discriminator and generator are given as neural net-

works (hence the name). In this paper, we take the generator to be (derived from) the
structural model that we intend to estimate, and the discriminator to be an arbitrary
classification algorithm (while our primary choice is still a neural network). For clas-
sification accuracy, we use the cross-entropy loss, following Goodfellow et al. (2014).1

From a standpoint of econometrics, it can be seen that the generator is minimizing
the distance between observed data and simulated data defined by the choice of the
discriminator and inputs thereto.

Our method leverages not only GAN but also the growing literature on why neural
networks excel. In the context of nonparametric regression, Bauer and Kohler (2019)
show that a multilayer neural network circumvents the curse of dimensionality when
the target function has a low-dimensional structure. Building on their approximation
result, we show that the same holds true for the discriminator when the likelihood
ratio has a low-dimensional structure.2 Moreover, we propose a heuristic way to check
low-dimensionality using autoencoder, another seminal machine learning algorithm.

Interestingly, our framework can be viewed as a bridge cast between SMM and
MLE. When we use logistic regression as the discriminator, the resulting estimator
is asymptotically equivalent to optimally weighted SMM (Example 2). When we
use the oracle discriminator given by a likelihood ratio, the resulting estimator is
equivalent to MLE (Example 3). What is interesting is the middle case, in which
the oracle discriminator is not available but a sufficiently rich discriminator capable
of approximating it is used (Example 4). We show that, under some conditions, the
resulting estimator enjoys the best of both ends: (1) flexibility to choose moments if
desired, (2) closed-form likelihood not required, (3) asymptotic efficiency as MLE.

Our theoretical development proceeds as follows. First, we establish the rate of
convergence of a general discriminator (Theorem 1). Then, we apply this to the
discriminator given by a neural network (Proposition 3). Next, we develop the para-
metric rate of convergence of the generator under possible global misspecification
(Theorem 6). Finally, we deduce parametric efficiency of the generator under correct
specification (Corollary 7). To the best of our knowledge, this is the first work to

1There are other losses considered in the literature (Nowozin et al., 2016; Arjovsky et al., 2017),
which we do not cover.

2Low-dimensionality is a feature of some structural models, where a small number of factors
drives variation of multiple outcomes (e.g., Cunha et al., 2010).
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thoroughly characterize the statistical properties of a GAN-based algorithm. The
generality of our theory allows unbounded random variables and discrete parametric
models, unlike many neural network papers assuming bounded variables and simula-
tion-based econometrics papers working with smooth models.

Many challenges in theory stem from the “log 0” problem. On the one hand, log-
arithm is the benefactor that brings efficiency through the connection to the Jensen-
Shannon divergence; on the other hand, it is the malefactor that causes troubles for
its infamous divergence toward zero. We overcome this by sometimes borrowing in-
sights from the nonparametric maximum likelihood literature while at other times
establishing our own new results. A notable new result is Lemma 5, which bounds
the Bernstein “norm” of an arbitrary log likelihood ratio by a possibly non-diverging
multiple of a Hellinger distance, which substantially improves a previously known
result (Ghosal et al., 2000, Lemma 8.7). This may be of independent interest in other
areas such as nonparametric maximum likelihood or Bayes.

Along with our similitude with nonparametric maximum likelihood, we choose
to measure the size of the discriminator by the bracketing entropy. To that end,
we establish in Lemma 2 a bound on the bracketing number of a multilayer neural
network with bounded weights and Lipschitz activation functions with respect to an
arbitrary premetric, which is new in the literature and may be of independent interest
to those who work on the statistics of neural networks.

Also, despite being a bit problem-specific, the proof of the lemma on convergence
of the sample Jensen-Shannon divergence (Lemma 4) involves an algebraic decompo-
sition that was not obvious to the authors in the beginning; it may be of interest to
those who consider the problem of misspecification in similar divergence measures.

Using the adversarial estimation framework, we revisit investigation of the el-
derly’s saving motive in the complex setting of De Nardi et al. (2010). Understanding
different channels of saving motive is vital in the evaluation of social insurance such
as Medicaid. Thus, we aim to disentangle three reasons to save: survival risk, medi-
cal expense risk, and bequest motive. The structural model is a dynamic one where
agents face heterogeneous risk by gender, age, health status, and permanent income,
and optimize their spending to maximize utility from consumption and bequeathing.
We carry out adversarial estimation in two specifications: (1) the inputs represent-
ing similar identifying variation as De Nardi et al. (2010), (2) the inputs augmented
with gender and health. We provide suggestive evidence in our data that unexpected
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changes in the health status provide valuable variation to identify the bequest mo-
tive. We find that our method uncovers the bequest motive as an important source
of saving for the elderly at all levels of the wealth distribution, not only for the rich.

This paper speaks to a wide range of topics in the literature. The first strand
is the intersection of machine learning and economics. The use of neural networks
in econometrics has a long history (Kuan and White, 1994; Chen and Shen, 1998;
Chen and White, 1999; Chen, 2007). The advent of deep learning has triggered even
further research on neural networks as nonparametric regression (Hartford et al.,
2017; Farrell et al., 2019; Bauer and Kohler, 2019; Schmidt-Hieber, 2020). There
is also growing literature on machine learning for causal inference (Chernozhukov
et al., 2018; Mackey et al., 2018). Lewis and Syrgkanis (2018) and Bennett et al.
(2019) use a non-generative adversarial framework to estimate conditional moment
models. Athey et al. (2020) use GAN to create a generator of the Lalonde data. A
connection between machine learning and indirect inference is explored in Forneron
and Ng (2018).

This paper also relates to the literature on simulation-based estimation. SMM
and indirect inference have been widely used in structural estimation (Gouriéroux
and Monfort, 1997). There is also a strand of the literature on efficient simulation-
based estimation. Fermanian and Salanié (2004) and Kristensen and Shin (2012)
propose maximization of the likelihood that is nonparametrically estimated with a
kernel. In a similar spirit, Nickl and Pötscher (2010) propose minimization of the
Hellinger distance between the densities of actual and simulated data, estimated with
a spline, when the data is one-dimensional. One of the major differences of this
paper is that it bypasses estimation of the density; our nuisance parameter is the
likelihood ratio, which suffers much less from issues related to the tail or the support.
Gallant and Tauchen (1996) propose the generalized method of moments (GMM)
using the score of an auxiliary model whose likelihood is available and show that it
is efficient when the auxiliary model nests the structural model. This paper differs in
not requiring a tractable auxiliary model that approximates the structural model.

Finally, this paper contributes to statistics. As much as statistical character-
ization of machine learning algorithms is an active area of research, it is also an
important problem to characterize the statistical properties when the model is mis-
specified (Kleijn and van der Vaart, 2006, 2012; Jankowski, 2014). This paper adds
to the list of such work by deriving the asymptotic distribution of the adversarial
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estimator under global misspecification. As stated earlier, some intermediate results
in the paper may be useful in various fields.

The rest is organized as follows. Section 2 defines the adversarial framework.
Section 3 develops the asymptotic properties of the adversarial estimator. Section 4
discusses implementation of estimation and inference. Section 5 revisits investigation
of the elderly’s saving motive by De Nardi et al. (2010). The appendix contains
the proofs. The online appendix contains a Monte Carlo exercise on a simplified
Roy Model, an addendum on equivalence with SMM, and details on the empirical
application.

2 ADVERSARIAL ESTIMATION FRAMEWORK

This section defines the adversarial estimation framework. It accommodates struc-
tural models with a finite number of parameters, possibly with covariates.

The estimation problem we consider is one for which likelihood evaluation is not
feasible but simulation is. Hence, there are two sets of observations: the actual
observations and the synthetic observations. We let {Xi}ni=1 represent the actual
observations of size n drawn i.i.d. from a measure space (X ,A, P0) and {Xθ

i }mi=1 the
synthetic observations of size m generated i.i.d. from (X ,A, Pθ) where {Pθ : θ ∈ Θ} is
a parametric model over (X ,A). If there is θ0 ∈ Θ such that Pθ0 = P0, the structural
model is said to be correctly specified, while we allow for the possibility that this is not
the case. Furthermore, we are concerned with the case where {Xθ

i }mi=1 are generated
through a set of common latent variables that do not depend on θ, that is, there
exists a measure space (X̃ , Ã, P̃0) and i.i.d. observations therefrom {X̃i}mi=1 such that
Xθ
i = Tθ(X̃i) almost surely for a deterministic measurable function Tθ : X̃ → X .3

This implies that Pθ is a pushforward measure of P̃0 under Tθ, that is, Pθ = P̃0 ◦T−1
θ .

This setup arises naturally in complex structural models with dynamic optimiza-
tion, learning, or latent types that renders analytic characterization of the likelihood
infeasible. We note that our framework does not cover structural models with a
semiparametric component; such extension is left for future work.

Example 1 (Structural model). Let {yi, xi}ni=1 be i.i.d. with yi ∈ Rdy and xi ∈ Rdx .
Consider a structural parametric conditional model where individual outcomes are
functions of exogenous variables xi, an error εi ∈ Rdε with a known distribution

3The latent variables are called common random numbers (Gouriéroux et al., 2010).
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independent of xi, and a finite-dimensional parameter θ ∈ Θ ⊂ RK ; that is, yθi =
f(xi, εi; θ) for some function f . The object of interest is typically a function of the
structural parameter θ such as the effect of a counterfactual policy.

It is often the case that the associated likelihood of a complex structural model is
not available in closed form but simulation is feasible; in particular, we have access to
an i.i.d. sample {(εi, xi)}mi=1 of size m, where in conditional models {xi}mi=1 is typically
sampled from the empirical distribution of {xi}ni=1, and for any value of θ we can map
it into {(yθi , xi)}mi=1.

Let Xi = G(yi, xi) ∈ Rd be a set of d functions of (yi, xi) representing the features
of the data the researcher chooses to use in estimation. Some examples of Xi are a
subvector of (yi, xi), transformations (like logarithms, growth rates, or interactions),
or simply the full vector (yi, xi). The simulated counterpart, Xθ

i = G(yθi , xi), is the
same transformation now as a function of yθi and xi. �

If we choose θ such that Pθ is very different from P0, it would be easy to distinguish
Xθ
i from Xi. Conversely, if Pθ is close to P0, distinction would be harder. The

idea behind our method is to pick a classification algorithm, possibly state-of-the-art
machine learning, and search for the value of θ for which the algorithm can classify
the least.

Classification is defined formally as a function D : X → [0, 1] such that for given
X, D(X) represents the likeliness of X being an actual observation in the scale of a
unity; D(X) = 1 means that X is classified as “actual” with certainty; D(X) = 0 that
X is classified as “synthetic”. Let D be the class of classification functions realizable
in the algorithm, e.g., the class of appropriate neural networks.

The adversarial estimator is defined by the following minimax problem:

θ̂ = arg min
θ∈Θ

max
D∈D

1
n

n∑
i=1

logD(Xi) + 1
m

m∑
i=1

log(1−D(Xθ
i )). (1)

Since D is a function between 0 and 1, both logD and log(1−D) are nonpositive. If
Xi and Xθ

i are very different from each other (which is the case when Pθ is far from
P0), the discriminator may be able to find D that assigns 1 on the support of Xi and 0
on the support of Xθ

i , in which case the inner maximization attains the value of zero.
Meanwhile, however close Xθ

i is to Xi, the discriminator can at least pick D ≡ 1/2,4

in which case the maximized value is at least 2 log(1/2). In general, therefore, the
4This is of course provided that a constant function 1/2 is in D, which is usually the case.
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inner maximization will give a number between 2 log(1/2) and 0, and the closer it is
to 2 log(1/2), the less able the discriminator is to classify the observations.

Note that the population counterpart of the problem is

min
θ∈Θ

max
D∈D

EXi∼P0 [logD(Xi)] + EXθ
i ∼Pθ

[log(1−D(Xθ
i ))].

If we do not have a restriction on D (so that any function D : X → [0, 1] is allowed),
the optimum classification function for the inner maximization is known to be

Dθ(X) := p0(X)
p0(X) + pθ(X) ,

where p0 and pθ are the densities of P0 and Pθ with respect to some common domi-
nating measure (Goodfellow et al., 2014, Proposition 1). Note here that the objective
function with this choice of D is equal to the Jensen-Shannon divergence between P0

and Pθ. If the model is correctly specified, then θ0 is the unique solution to the outer
minimization (Goodfellow et al., 2014, Theorem 1). In turn, when the model is not
correctly specified, we set our target parameter—denoted as well by θ0—to be the
pseudo-parameter that minimizes the Jensen-Shannon divergence.5

We now look at three examples of D.

Example 2 (Logistic discriminator). Let Λ(t) = (1 + e−t)−1 and D be the class
of logistic discriminators D(X) = Λ(λ′X) for λ ∈ Rd. The objective function can
be interpreted as the log-likelihood of a logistic regression model where the actual
observation is associated with outcome 1 and the synthetic with 0. Here, we give a
rough intution that the adversarial estimator matches moment E[Xi].

The first-order condition (FOC) of the inner maximization is

1
n

n∑
i=1

(1− Λ(λ′Xi))Xi −
1
m

m∑
i=1

Λ(λ′Xθ
i )Xθ

i = 0.

Thus, the discriminator searches for λ that matches the weighted averages of Xi and
Xθ
i . If there exists θ0 for which E[Xi] = E[Xθ0

i ], then λ0(θ0) = 0 would a solution,
since then E[(1 − Λ(0))Xi] = E[Xi]/2 = E[Xθ0

i ]/2 = E[Λ(0)Xθ0
i ]. As a matter of

fact, by concavity of the objective function with respect to λ, it is the only solution.
Recalling then that the unique outer minimum is attained when the inner maximizer

5This is analogous to MLE estimating a pseudo-parameter that minimizes the Kullback-Leibler
divergence under misspecification (Huber, 1967; White, 1982; Patilea, 2001).
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is D ≡ 1/2 (i.e., λ = 0), we find that θ̂ solves 1
n

∑n
i=1Xi = 1

m

∑m
i=1X

θ̂
i +op(1). Thus, θ̂

matches the means of Xi and X θ̂
i . In Appendix S.3, we prove asymptotic equivalence

of this θ̂ and the optimally weighted SMM with moment E[Xi]. �

Example 3 (Oracle discriminator). Let D be the oracle discriminator Dθ. Then, the
estimator boils down to the minimizer of the sample Jensen-Shannon divergence

θ̂ = arg min
θ∈Θ

1
n

n∑
i=1

log p0(Xi)
p0(Xi) + pθ(Xi)

+ 1
m

m∑
i=1

log pθ(Xθ
i )

p0(Xθ
i ) + pθ(Xθ

i ) .

Taking the FOC reveals that the minimizer matches the scores of the actual and syn-
thetic observations. In particular, the associated estimator is efficient under correct
specification as n/m→ 0.6 �

Example 4 (Nonparametric discriminator and neural network). In general, we do
not know the oracle Dθ in closed form, but we may consider a sieve Dn of classes of
functions that expands as the sample size increases (Chen, 2007). If we choose a sieve
of neural networks, D can be written in the following form. Denote the hidden-layer
activation function by σ : R → R and the output activation function by Λ : R → R.
Let L be the number of hidden and output layers. Let w`ij be the weight for the ith
node in the (`+ 1)th layer on the jth node in the `th layer; for example, the input to
the second node in the first layer is w021x1 + · · ·+w02UxU , where X = (x1, . . . , xU) is
the input to the network. Let w`i = (w`i1, . . . , w`iU)′ be the column vector of weights
for the ith node in the (` + 1)th layer. Let w` = (w`1, . . . , w`U) be the matrix with
columns w`i; note that for ` = L, wL is just a column vector as there is only one
output. Let w be the vector of all parameters. Then, the discriminator is given by7

D(X;w) = Λ(w′Lσ(w′L−1σ(· · ·w′1σ(w′0X)))),

where σ(v) for a vector v is elementwise application. There is enormous literature on
why (deep) neural networks do well (Yarotsky, 2017; Bach, 2017; Mhaskar and Poggio,
2020). Among them, we exploit Bauer and Kohler (2019) in Proposition 3. �

6Moreover, estimation based on matching scores can have better properties than estimation based
on equating the score to 0. In the dynamic fixed effect panel model, Gouriéroux et al. (2010) show
that the resulting estimator is unbiased, while MLE suffers from the incidental parameter problem.

7If we include a constant input and a constant node (also known as the “bias” term), it is assumed
to be already incorporated in X and w.
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3 STATISTICAL PROPERTIES

To help simplify exposition, we denote the empirical measure corresponding to Xi by
Pn, to Xθ

i by Pθm, and to X̃i by P̃m; note that we also have Pθm = P̃m ◦T−1
θ . Let µ be a

measure that dominates P0 and {Pθ} and denote their densities by p0 and {pθ}. We
usually omit dµ, for example,

∫
fp0 =

∫
fp0dµ =

∫
fdP0. We employ the operator

notation for expectation, e.g., P0 logD = EXi∼P0 [logD(Xi)] and Pθm log(1 − D) =
1
m

∑m
i=1 log(1−D(Xθ

i )) = P̃m log(1−D)◦Tθ. As a shorthand, we denote the population
and sample objective functions by

Mθ(D) := P0 logD + Pθ log(1−D), Mθ
n,m(D) := Pn logD + Pθm log(1−D).

The sample inner maximizer given θ is denoted by D̂θ
n,m and the outer minimizer by

θ̂n,m. The distance of discriminators is measured by a Hellinger-type distance

dθ(D1, D2) :=
√
hθ(D1, D2)2 + hθ(1−D1, 1−D2)2

where hθ(D1, D2) :=
√

(P0 + Pθ)(
√
D1 −

√
D2)2. The distance of θ is measured by

the Hellinger distance on probability distributions, h(p, q) :=
√∫

(√p−√q)2. We use
the shorthand h(θ1, θ2) for h(pθ1 , pθ2). We also occasionally use the distance8

h̃(θ1, θ2) :=
[
P̃0

(√
p0

pθ1

◦ Tθ1 −
√
p0

pθ2

◦ Tθ2

)2]1/2

.

The size of the sieve is measured by the bracketing entropy.

Definition (Bracketing number and bracketing entropy integral). The ε-bracketing
number N[](ε,F , d) of a set F with respect to a premetric d is the minimal number
of ε-brackets in d needed to cover F .9 The δ-bracketing entropy integral of F with
respect to d is J[](δ,F , d) :=

∫ δ
0

√
1 + logN[](ε,F , d)dε.

8Note that h(θ1, θ2) is roughly equal to [P0(
√
pθ1/p0 −

√
pθ2/p0)2]1/2. Therefore, h and h̃ are

the Hellinger distances measured by X ∼ P0 and X̃ ∼ P̃0, respectively, so to speak. A similar
Hellinger-like distance is considered in Patilea (2001).

9A premetric on F is a function d : F ×F → R that satisfies d(f, f) = 0 and d(f, g) = d(g, f) ≥ 0
for every f, g ∈ F . It is also called “pseudosemimetric”.
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3.1 Assumptions

On the Sieve

Let Dθn,δ := {D ∈ Dn : dθ(D,Dθ) ≤ δ}. The following requires that the sieve does
not grow too fast.

Assumption 1 (Entropy of sieve). There exists α < 2 such that J[](δ,Dθn,δ, dθ)/δα

is decreasing in δ uniformly in θ ∈ Θ. There exists δn = o(n−1/4) such that J[](δn,
Dθn,δn , dθ) . δ2

n

√
n uniformly in θ ∈ Θ.

Next is a refinement of the “bounded likelihood ratio” condition used in nonpara-
metric maximum likelihood.10 It is often trivial if we assume a compact support for
Xi, which is standard in the neural network literature.

Assumption 2 (Support compatibility). Let P (X|A) be P (X1{A})/P (A) if P (A) >
0 and 0 otherwise. There exist δn = o(n−1/4) and M such that uniformly in θ ∈ Θ,

sup
D∈Dθ

n,δn

P0

(
Dθ

D

∣∣∣∣∣ Dθ

D
≥ 25

16

)
< M, sup

D∈Dθ
n,δn

Pθ

(
1−Dθ

1−D

∣∣∣∣∣ 1−Dθ

1−D ≥
25
16

)
< M.

Also, the brackets {` ≤ D ≤ u} in Assumption 1 can be taken so that (P0 +
Pθ)(Dθ` (

√
u−
√
`)2) and (P0 + Pθ)(1−Dθ

1−u (
√

1− `−
√

1− u)2) are O(dθ(u, `)2).

The following is a sufficient condition for a particular family of neural network
discriminators to satisfy Assumption 1 when d∗ < 2p. It also accommodates the
low-dimensional structure of Bauer and Kohler (2019).11

Assumption 3 (Neural network). Let P0 and Pθ have subexponential tails and finite
first moments uniformly in θ ∈ Θ.12 Let log(p0/pθ) satisfy the assumptions for m in
Bauer and Kohler (2019, Theorem 3) uniformly in θ ∈ Θ; in particular, log(p0/pθ)
satisfies a (p, C)-smooth generalized hierarchical interaction model of order d∗ and
finite level l with K components for p = q + s, q ∈ N0, and s ∈ (0, 1]; all partial
derivatives of order q or less of functions gk, fj,k of log(p0/pθ) are bounded; all gk are
Lipschitz with a positive constant. Let Dn := {Λ(f) : f ∈ H(l)}, Λ(x) := 1/(1 + e−x),
be a sieve of neural network discriminators that satisfy the assumption of Lemma 2.

10E.g., van der Vaart and Wellner (1996, Theorem 3.4.4) and Ghosal et al. (2000, Lemma 8.7).
11The low-dimensional structure in Bauer and Kohler (2019) is related to the the target function

satisfying a generalized hierarchical interaction representation. See Appendix S.2.4 for the definition.
12We say that P on Rd has subexponential tails if logP (‖X‖∞ > a) . −a for large a.
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Finally, let H(l) satisfy the assumptions for the neural network in Bauer and Kohler
(2019, Theorem 3); in particular, H(l) is defined as Bauer and Kohler (2019, (6)) with
K, d, d∗ as in the structure of log(p0/pθ); the activation function is q-admissible;

M∗ =
(
d∗ + q

d∗

)
(q+1)

([
(log δn)2(2q+3)

δn

] 1
p

+1
)d∗

, α =
[

(log δn)2(2q+3)

δn

] d∗+p(2q+3)+1
p log n

δ2
n

for δn = [(log n)
p+2d∗(2q+3)

p /n]
p

2p+d∗ .

On the Estimation Procedure

The following allows us to establish results at rates in terms of n.

Assumption 4 (Growing synthetic sample size). n/m converges.

The following makes sure that the trained discriminator converges to the true
discriminator at a rate fast enough to yield a meaningful estimator for θ0.

Assumption 5 (Approximately maximizing discriminator). The trained discrimina-
tor D̂θ

n,m ∈ Dn satisfies Mθ
n,m(D̂θ

n,m) ≥Mθ
n,m(Dθ)− oP (n−1/4) uniformly over θ ∈ Θ.

The following ensures that the derivative of the sample objective function con-
verges to that of the population. This is a standard assumption inM -estimation that
involves nuisance parameters (Klein and Spady, 1993; Gouriéroux and Monfort, 1997;
Fermanian and Salanié, 2004; Nickl and Pötscher, 2010) to obtain a regular estimator
for θ0 (Newey, 1994). For this, it is important in practice to fix the structural shocks
that generate synthetic data as well as random seeds in any stochastic optimization
algorithm involved.

Assumption 6 (Approximately minimizing generator and orthogonality). There ex-
ists open G ⊂ Θ that contains θ0 such that the estimator θ̂n,m satisfies

Mθ̂n,m
n,m (D̂θ̂n,m

n,m ) ≤ inf
θ∈G

Mθ
n,m(D̂θ

n,m) + oP (n−1),

inf
θ∈G

[
Mθ̂n,m

n,m (D̂θ̂n,m
n,m )−Mθ

n,m(D̂θ
n,m)

]
−
[
Mθ̂n,m

n,m (Dθ̂n,m
)−Mθ

n,m(Dθ)
]
≥ oP (n−1).

On the Structural Model

Assumption 7 (Identification). For every open G ⊂ Θ that contains θ0, we have
infθ/∈G h(θ, θ0) > 0 and infθ/∈GMθ(Dθ) > Mθ0(Dθ0).
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The following assumes that the entropy of the structural model is low enough to
admit a

√
n-estimator of θ0.

Assumption 8 (Hellinger bracketing of generative model). Let Pδ := {pθ : θ ∈ Θ,
h(θ0, θ) ≤ δ} and P̃δ := {(p0/pθ) ◦ Tθ : θ ∈ Θ, h̃(θ0, θ) ≤ δ}. There exists r < ∞
such that N[](ε,Pδ, h) . (δ/ε)r and N[](ε, P̃δ, h̃) . (δ/ε)r for 0 < ε ≤ δ. h̃(θ0, θ) =
O(h(θ0, θ)) as θ → θ0.

The following assumes a type of twice differentiability that is weaker than the
pointwise. Notably, it can be satisfied by densities with jumps and kinks, which
appear in censored models, auctions, search models, and corporate finance (Cher-
nozhukov and Hong, 2004; Strebulaev and Whited, 2011). It builds on Le Cam’s
differentiability in quadratic mean (Pollard, 1997; van der Vaart, 1998, Chapter 7)
and adds local uniformity and twice differentiability. Local uniformity is required as
our method involves measuring the distance with both actual and synthetic samples.
Twice differentiability is needed to accommodate misspecification. The map ˙̀

θ0 is the
score function for θ0, and the matrix Iθ0 the Fisher information matrix for θ0.

Assumption 9 (Uniform and twice differentiability in quadratic mean). The param-
eter space Θ is (a subset of) a Euclidean space Rk. The structural model {Pθ : θ ∈ Θ}
is (locally) uniformly differentiable in quadratic mean at θ0, that is, there exists a k×1
vector of measurable functions ˙̀

θ0 : X → Rk such that for h, g ∈ Rk and g → 0,
∫
X

[√
pθ0+h −

√
pθ0+g −

1
2(h− g)′ ˙̀θ0

√
pθ0+g

]2
= o(‖h− g‖2).

It is also twice differentiable in quadratic mean at θ0, that is, there exists a k × k

matrix of measurable functions ῭
θ0 : X → Rk×k such that for h ∈ Rk and h→ 0,

∫
X

[
√
pθ0+h −

√
pθ0 −

1
2h
′ ˙̀
θ0

√
pθ0 −

1
4h
′ ῭
θ0h
√
pθ0 −

1
8h
′ ˙̀
θ0

˙̀′
θ0h
√
pθ0

]2

= o(‖h‖4)

and Iθ0 := Pθ0
˙̀
θ0

˙̀′
θ0 = −Pθ0

῭
θ0 . The matrix Ĩθ0 := 2Pθ0(Dθ0

˙̀
θ0

˙̀′
θ0 +(῭

θ0 + ˙̀
θ0

˙̀′
θ0) log(1−

Dθ0)) is positive definite.

Remark. The matrix Ĩθ0 is the curvature of the outer minimization.

Remark. Under correct specification, the annoying term (Pθm − Pθ0
m) log(1 − Dθ0) in

Lemma 4 goes away, making twice differentiability unnecessary.
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We impose very mild smoothness on the simulated data transformation compared
to, e.g., Nickl and Pötscher (2010, Assumptions P1–2, R) or Gouriéroux and Monfort
(1997, Chapter 2). Importantly, we do not exclude cases where Tθ is discontinuous.
Such situations arise frequently in economics (Frazier et al., 2019) while many existing
econometric theories rule them out.13

Assumption 10 (Smooth synthetic data generation). For every compact K ⊂ Θ,√
n

m
sup
h∈K

∥∥∥√m(P̃m − P̃0)Dθ0( ˙̀
θ0 ◦ Tθ0+h/

√
n − ˙̀

θ0 ◦ Tθ0)
∥∥∥ = o∗P (1).

For the rate of convergence, we need that P0 is “close enough” to Pθ0 in the sense
that the Hellinger convergence of Pθ to Pθ0 takes place on the support of P0.

Assumption 11 (Smooth synthetic model and overlapping support with P0). There
exists open G ⊂ Θ containing θ0 in which Mθ(Dθ)−Mθ0(Dθ0) & h(θ, θ0)2. For every
compact K ⊂ Θ,
√
n

m
sup
h∈K

∣∣∣∣∣√m(Pθ0+h/
√
n

m − Pθ0
m)− (Pθ0+h/

√
n − Pθ0)

1/
√
n

log(1−Dθ0)
∣∣∣∣∣ = o∗P

(
1 + n

m

)
.

Also, h(θ, θ0)2 = O(
∫
Dθ0(√pθ0 −

√
pθ)2) as θ → θ0.

Remark. The first condition of Assumption 11 is implied by positive definiteness of
Ĩθ0 in Assumption 9.

The following assumption is required for efficiency.

Assumption 12 (Correct specification). The synthetic model {Pθ : θ ∈ Θ} is cor-
rectly specified, that is, Pθ0 = P0 and Dθ0 ≡ 1/2.

Remark. Assumption 12 implies Assumption 11.

3.2 Theorems

Theorem 1 (Rate of convergence of discriminator). Under Assumptions 1, 4, and 5,
dθ(D̂θ

n,m, Dθ) = o∗P (n−1/4) uniformly in θ ∈ Θ.

Theorem 2 (Rate of convergence of objective function). Under Assumptions 1, 2,
4, and 5, Mθ

n,m(D̂θ
n,m)−Mθ

n,m(Dθ) = oP (n−1/2) uniformly in θ ∈ Θ.
13For example, limited dependent variable models satisfiy Assumption 10 under Assumption 4.
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The following provides the rate of convergence for a particular neural network.
The structure of the network and the rate of convergence depend on smoothness and
the underlying dimension of the likelihood ratio, not on the dimension of Xi.

Proposition 3 (Rate of convergence of neural network discriminator). Under As-
sumptions 3 to 5, dθ(D̂θ

n,m, Dθ) = O∗P (δn).

Consistency can be proved with different, conceptually weaker assumptions.

Theorem 4 (Consistency of generator). Suppose that for every open G ⊂ Θ that
contains θ0, infθ/∈GMθ(Dθ) > Mθ0(Dθ0), that M1 := {logDθ : θ ∈ Θ} and M2 :=
{log(1−Dθ) ◦Tθ : θ ∈ Θ} are P0- and P̃0-Glivenko-Cantelli respectively, and that the
estimator θ̂n,m satisfies Mθ̂n,m

n,m (D̂θ̂n,m
n,m ) ≤ infθ∈Θ Mθ

n,m(D̂θ
n,m) + o∗P (1). Then, under the

conclusion of Theorem 2' with δn → 0, h(θ̂n,m, θ0)→ 0 in outer probability.

Theorem 5 (Rate of convergence of generator). Under Assumptions 4, 6 to 8, and 11,
h(θ̂n,m, θ0) = O∗P (n−1/2).

Theorem 6 (Asymptotic distribution of generator). Under the conclusion of Theo-
rem 5 and Assumptions 4, 6, 7, and 9 to 11,

√
n(θ̂n,m − θ0) = 2Ĩ−1

θ0

√
n
[
Pn(1−Dθ0) ˙̀

θ0 − Pθ0
mDθ0

˙̀
θ0

]
+ o∗P (1)

 N
(

0, Ĩ−1
θ0

[(
Pθ0 + lim

n→∞

n

m
P0

)
4Dθ0(1−Dθ0) ˙̀

θ0
˙̀′
θ0

]
Ĩ−1
θ0

)
.

Corollary 7 (Efficiency of generator). Under the conclusion of Theorem 6 and As-
sumption 12,

√
n(θ̂n,m − θ0) N

(
0,
[
1 + lim

n→∞

n

m

]
I−1
θ0

)
.

Remark. If n/m→ 0, θ̂n,m attains parametric efficiency.

3.3 What If D Is Not Rich Enough?

Our theory assumes that D is a sieve that eventually is capable of representing Dθ. In
finite samples, however, we do not know how well D approximates Dθ. Therefore, it is
interesting to know what happens when D is not a sieve but a fixed class of functions.
Although the complete treatment of this case is beyond our scope, we examine what
happens to the population problem as we enrich D, e.g., by gradually adding nodes
and layers to the neural network.
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For simplicity, we maintain Assumptions 2 and 12 and assume that D contains a
constant function 1/2. Let D̃θ be the population maximizer of Mθ(D) in D. Since
Mθ(D) −Mθ(Dθ) = −2dθ(D,Dθ)2 + o(dθ(D,Dθ)2) by Theorem 2', D̃θ is equivalent
to a minimizer of dθ(D,Dθ)2 in D up to o(dθ(D,Dθ)2). Under Assumption 12, D̃θ0 =
Dθ0 ≡ 1/2 and Mθ0(1/2) = Mθ(1/2). By Theorem 2',

Mθ0(D̃θ0)−Mθ(D̃θ) = Mθ(Dθ0)−Mθ(Dθ) +Mθ(Dθ)−Mθ(D̃θ)
= −2dθ(Dθ0 , Dθ)2 + 2dθ(D̃θ, Dθ)2 + o(dθ(Dθ0 , Dθ)2) + o(dθ(D̃θ, Dθ)2).

Note that by Lemma 7,

dθ(Dθ0 , Dθ)2 =
∫ (√

p0+pθ
2 −√p0

)2
+
∫ (√

p0+pθ
2 −√pθ

)2

= 1
2

∫
p0

p0+p0
(√p0 −

√
pθ)2 + 1

2

∫
pθ

pθ+pθ
(√p0 −

√
pθ)2 + o(h(p0, pθ)2)

= 1
2h(p0, pθ)2 + o(h(p0, pθ)2).

Thus, we obtain

Mθ0(D̃θ0)−Mθ(D̃θ) = −h(p0, pθ)2 + 2dθ(D̃θ, Dθ)2 + o(h(p0, pθ)2).

If D contains Dθ, then the second term is zero and the Hellinger curvature allows us to
estimate θ efficiently; if D is a singleton set that contains only 1/2, the first and second
terms cancel and the objective function becomes completely flat, rendering estimation
of θ impossible. Therefore, the second term represents the loss in efficiency due to
the limited capacity of D. For the regular logit case, we know that D is already
rich enough that the curvature admits

√
n-estimation. Then, as we enrich D, it

becomes more and more capable of minimizing dθ(D̃θ, Dθ)2, getting closer and closer
to efficiency. Of course, such enrichment should not be too fast to avoid overfitting,
the conditions of which are characterized above.

4 PRACTICAL ASPECTS

4.1 Choice of Inputs and Discriminators

The method requires the choice of inputs Xi and the choice of the discriminator D.
A natural choice of Xi is the entire set of observables, Xi = (yi, xi). While our
method is intended so that we need not worry about selecting or creating moments,
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in the event that we want to emphasize specific aspects of the data, we may still
do so by dropping a part of the observables or by transforming them. For example,
although our theory allows for discontinuous Tθ, we may still want to adopt the fix
of Bruins et al. (2018) to accomodate gradient-based optimization methods. At any
rate, the choice of inputs must ensure that the parameters of the structural model
are identified.

The choice of the discriminator is more nuanced in that there is no natural, obvious
choice.14 However, if a generative model is not computationally demanding, we may
test several discriminators on their abilities to recover the generative parameters. In
particular, pick an arbitrary θ as the “true” value and generate data; treat them as
the observed data and run adversarial estimation with several choices of D; then, pick
one that performs the best. (Indeed, this can also be used to try out different choices
of inputs.) If we are also worried about severe misspecification, we may also test
using the actual data; split the data into two and make sure that the discriminator
cannot separate them too well.

In applications where generating synthetic data is very costly (as in our empirical
application), we suggest choosing the discriminator based on cross validation as fol-
lows. Fix θ at some value; split the actual data into two, say samples 1 and 2; use
sample 1 and synthetic data to estimate D for different choices of D; use sample 2
and new synthetic data to evaluate the classification accuracy of each D; pick the one
with the highest accuracy. For the value of θ, we may use estimates from a previous
study if available, or try a few different values to check for robustness. See Section 5.4
for more on what we did in our empirical application.

We note that the analysis of the estimator taking into account the selection of
inputs and the discriminator is left for future work.

4.2 Autoencoder to Explore the Underlying Dimension

It is helpful to fit an autoencoder on X to get a sense of its underlying dimensionality.
Proposition 3 shows that the convergence rate of the neural network discriminator
depends on the underlying dimension d∗ —rather than the dimension—of X. The
bottleneck of the autoencoder (the middle layer with the smallest number of nodes) is
indicative of the underlying dimension. See Appendix S.2.4 for intuition and evidence
of reduced dimensionality of X2.

14The network structure in Assumption 3 depends on unknown constants such as d∗ and α.
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4.3 Estimation Procedure

We consider an iterative algorithm that solves the optimization problem in (1).

Algorithm (Estimation).

i. Initialize θ = θ(0). Fix a set of random shocks {X̃i}mi=1 and any random seed if
stochastic optimization is used.

ii. For given θ = θ(s), generate {Xθ(s)
i }mi=1 using {X̃i}mi=1.

iii. Reset the random seed and train D̂θ(s)
n,m with {Xi}ni=1 and {Xθ(s)

i }mi=1.

iv. Compute the gradient ∆(θ(s)) of the objective function with respect to θ.

v. Set θ(s+1) = θ(s) − ξ∆(θ(s)) where ξ > 0 is a learning rate.

vi. Repeat (ii)–(v) until ∆(θ) ≈ 0.

To train the neural network discriminator, we make use of off-the-shelf routines
in the R Keras package. They come with implementations of various techniques such
as back-propagation, automated differentiation, and stochastic gradient descent.

The algorithm may get stuck in a local minimum. It is advised to use several
different initial values to explore a wide space. If it is computationally intensive, we
can also start at the value of alternative estimators or previously known estimates.
See Appendix S.2.1 for further discussion on the estimation algorithm and details on
implementation.

4.4 Inference

The asymptotic variance formula given in Theorem 6 is challenging to estimate since
we do not have the closed-form likelihood.15 We advocate the use of bootstrap as
the crux of the theory is that the estimation error of D̂θ

n,m can be ignored in the
asymptotics of θ̂. When standard bootstrap is computationally burdensome, we can
use the bootstrap proposed by Honoré and Hu (2017), as we do so in Section 5.

Algorithm (Bootstrap).
15There is a relation between Dθ and the score and Hessian, ˙̀

θ = 1
Dθ

∂ log(1−Dθ)
∂θ = − 1

1−Dθ

∂ logDθ

∂θ

and ῭
θ+ ˙̀

θ
˙̀′
θ = 1

1−Dθ
[∂ logDθ

∂θ
∂ logDθ

∂θ′ − ∂2 logDθ

∂θ∂θ′ ], so it is possible to construct the sample counterpart
of the variance in Theorem 6, though we do not pursue the proof of its convergence in this paper.
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i. Let {X∗i }ni=1 and {X̃θ∗
i }mi=1 be the bootstrap samples of actual and synthetic

observations of sizes n and m, drawn randomly with replacement.

ii. Solve (1) with {X∗i }ni=1 and {X̃θ∗
i }mi=1 to obtain a bootstrap estimator θ̂∗(1)

n,m.

iii. Repeat (i)–(ii) for S times to obtain S bootstrap estimators {θ̂∗(1)
n,m, . . . , θ̂

∗(S)
n,m }.

iv. Use the distribution of {θ̂∗(s)n,m}Ss=1 to approximate the distribution of θ̂n,m.

5 EMPIRICAL APPLICATION: “WHY DO THE ELDERLY SAVE?”

Using the adversarial framework, we examine the elderly’s saving, following De Nardi
et al. (2010) (henceforth DFJ). The elderly save for various reasons—uncertainty
on survival, bequest motive, or ever-rising medical expenses as they age. Different
motives for saving yield different implications on policy evaluation such as Medicaid
and Medicare. Hence, it is an important and active area of research.

The risk the elderly face is highly heterogeneous, depending on their gender, age,
health status, and permanent income. This implies potentially large heterogeneity in
the saving motive across individuals; not accounting for this can bias the estimates
of utility. For example, the rich live several years more than the poor on average.
Failure to reflect this difference can make the rich look thriftier than they are. On the
other hand, existing estimation methods such as SMM may suffer from severe lack
of precision when various heterogeneity is introduced. This motivates adversarial
estimation with a flexible discriminator that parses information in an adaptive and
parsimonious way. Indeed, our adversarial estimates, using the same model and the
same data as in DFJ, will see considerable gains in precision.

5.1 Agent’s Problem

We focus on the behavior of single, retired individuals of age 70 and older. In each
period, a surviving single retired agent receives utility u(c) from consumption c and,
if they die in that period, additional utility φ(e) from leaving estate e, where

u(c) := c1−ν

1− ν , φ(e) := ϑ
(e+ k)1−ν

1− ν ,

and ν is the relative risk aversion and ϑ and k are the intensity and curvature of the
bequest motive. Each individual is associated with gender g and permanent income
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I, and carries six state variables: age t, asset at, nonasset income yt, health status
ht, medical expense shock ζt, and survival st. Health and survival are binary, where
ht = 1 means they are healthy at age t, and st = 1 they survive to the next period.

They face three channels of uncertainty: health, survival, and medical expenses.
Heath and survival evolve as Markov chains. We denote

πH(g, ht, I, t) := Pr(ht+1 = 1 | g, ht, I, t), πS(g, ht, I, t) := Pr(st+1 = 1 | g, ht, I, t).

The medical expenses they incur are given by

logmt = m(g, ht, I, t) + σ(g, ht, I, t)× ψt,

where m and σ are deterministic functions, ψt = ζt+ξt, ξt ∼ N(0, σ2
ξ ), ζt = ρζt−1 + εt,

and εt ∼ N(0, σ2
ε ). The nonasset income evolves deterministically as yt = y(g, I, t).

The asset evolves as

at+1 = at + yn(rat + yt, τ) + bt −mt − ct,

where bt ≥ 0 is the government transfer, r the risk-free pretax rate of return, yn(·, τ)
the posttax income, and τ the tax structure. The agent faces a borrowing constraint
at ≥ 0 while social insurance guarantees minimum consumption ct ≥ c; government
transfer bt is positive only when both constraints cannot be satisfied without it.

The timing in each period is given as follows. Heath ht and medical expenses mt

realize; then the individual chooses consumption ct; then survival st realizes; if st = 0,
they leave the remaining assets as bequest; if st = 1, move on to the next period.

Denoting the cash-on-hand by xt := ct + at+1, the agent’s Bellman equation is

Vt(x, g, h, I, ζ) = max
c,x′

u(c, h) + β[sEtVt+1(x′, g, h′, I, ζ ′) + (1− s)φ(e)]

subject to x′ = (x−c)+yn(r(x−c)+y′, τ)+b′−m′, e = (x−c)−max{0, τ̃(x−c−x̃)}, and
x ≥ c ≥ c. The first constraint is the budget constraint; the second the bequest (taxed
at rate τ̃ with deduction x̃); the last the borrowing and consumption constraints.

We also look at two transformations: the marginal propensity to consume at the
moment of death MPC := (1 + r)/(1 + r + [βϑ(1 + r)]1/ν) and the implied asset floor
a := k/[βϑ(1 + r)]1/ν above which individuals get utility from bequeathing.16

16The marginal propensity to bequeath (MPB) is defined by 1−MPC.
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5.2 Data

We use the same data as DFJ, taken from Assets and Health Dynamics Among the
Oldest Old (AHEAD). The sample consists of non-institutionalized individuals of age
70 and older in 1994. It contains 8,222 individuals in 6,047 households (3,872 singles
and 2,175 couples). The survey took place biyearly from 1994 to 2006. We focus on
3,259 single retired individuals, 592 of which are men and 2,667 women.17 Of those,
884 were alive in 2006. We drop the first survey in 1994 for reliability, following DFJ.

The survey collects information on age t, financial wealth at, nonasset income yt,
medical expenses mt, and health status ht. Financial wealth includes real estate,
autos, several other liquid assets, retirement accounts, etc. Nonasset income includes
social security benefits, veteran’s benefits, and other benefits. Medical expenses are
total out-of-pocket spending; the average yearly expenses are $3,700 with standard
deviation $13,400. The permanent income is not observed, but we use as a proxy the
ranking of individual average income over time. The health status is a binary variable
indicating whether the individual perceives themself as healthy.

5.3 Identifying Role of Health Status

The health status is a variable that was not used in the moments of DFJ; we argue
that this gives additional variation to identify the bequest motive (Kopczuk, 2007).

Disentangling the bequest motive from medical expenditure risk is a challenging
task. As the bequest is a luxury good, we expect that its identifying power comes from
wealthy individuals. Meanwhile, wealthy individuals are also ones with the longest
life expectancy, being motivated to save for medical expenses.

Indeed, DFJ document that the medical expenditure for the rich skyrockets after
age 95, reaching $15,000 by age 100. However, if the health condition diminishes their
life expectancy, those with shorter horizons would face much less incentive to save for
the coming medical expenses while as much incentive to save for bequests.

We find some evidence of this in our dataset. Figures 1a and 1b are the proportions
of individuals who survive for the next five years at ages 85 and 90, conditional on
gender and health. We see that the health status, along with gender, is a strong
predictor of life expectancy in years when the medical expenditure soars.

Heterogeneity in the survival materializes as a difference in the savings. Figures 1c
17Single individuals are those who were neither married nor cohabiting at any point in the analysis.

21



33%
17%17% 7%

0%

30%

60%

85 90

5-
Ye

ar
 S

u
rv

iv
al

Age

Healthy Unhealthy

(a) Men’s five-year survival rates.
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(b) Women’s five-year survival rates.
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(c) Men’s asset.
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(d) Women’s asset.
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(e) Men’s medical expenses.

1996 1998 2000 2002 2004 2006

0

4

8

84 86 88 90 92 94

M
ed

ia
n

 M
ed

ic
al

 
E

xp
en

se
s 

[k
$]

Median Age

 Never get sick
 Get sick by 2002

(f) Women’s medical expenses.
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(g) Men’s permanent income.
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(h) Women’s permanent income.

Figure 1: Profiles by gender and health. Figures 1c to 1h are for 4–5th PIqs in Cohort
3. Solid lines are for those who stay healthy for the duration of their observation;
dashed lines for those who are healthy in 1996 and become unhealthy by 2002.

and 1d give the trajectories of the median assets for the 4th and 5th PI quintiles in
Cohort 3. The solid lines are those who were healthy throughout the survey periods
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and the dashed lines are those who were healthy in 1996 but reported unhealthy in
1998, 2000, or 2002. We see that men who were exposed to the health shock (hence
the survival shock) dig into their savings much more than healthy men. With higher
survival rates, women exhibit the trend to a much lesser degree.

Such difference in the asset profiles seems to be driven neither by the difference
in medical expenses nor by survival selection among the rich. Figures 1e and 1f show
the median medical expenses during the same periods; we observe similar trajectories
across gender and health. Figures 1g and 1h show the median PI quantiles of the
survivors; if there is attrition of rich or poor individuals that affects the median assets,
we expect to see a change in the median PI quantiles. However, they do not differ
much by at least age 90 while bifurcation of the asset profiles begins at age 90.

These findings are suggestive that the difference in the asset profiles is attributable
to the change in the saving behaviors. The health status changes the exposure to the
medical expenditure risk through the survival probability, which then induces changes
in the saving behavior by shifting the balance between the bequest motive and medical
expenditure risk.

5.4 Estimation

Following DFJ, we carry out estimation in two steps: (1) estimate πH , πS, m, σ, ρm,
σξ, σε (in fact, we borrow numbers from DFJ), (2) estimate ν, MPC, and k using our
adversarial approach. The parameters r, τ , τ̃ , and x̃ are fixed as in the original paper,
and β = 0.971. For c, we fix it at $4,500 to reflect annual social security payments.18

After the second step, we can also recover ϑ and a.
We consider two different sets of inputs to the discriminator. The first set consists

of the log age of an individual in 1996, permanent income (the aforementioned proxy),
the profile (full history) of asset holdings, and the profile of survival indicators,19

X1 := (1, log t1996, I, at1996 , . . . , at2006 , st1998 , . . . , st2006) ∈ R14.

This is intended to capture similar identifying variation as DFJ. The second set is
18In their preferred specification DFJ estimate β and cfloor, in addition to ν,MPC and k. Instead,

we fix β and cfloor to a reasonable value according to the literature. Sensitivity analysis shows that
changing c mostly affects the risk aversion parameter.

19All individuals are alive in 1996, so we drop st1996 .
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augmented with gender and the profile of health status,

X2 := (X1, g, ht1996 , . . . , ht2006) ∈ R21,

aiming to capture more variation for the bequest motive as explained in Section 5.3.
The results on the autoencoders for X2 are presented in Appendix S.2.4.

We use cross validation to choose the discriminator (Section 4.1). We focus on
feed-forward neural networks with sigmoid activation functions with at most two
hidden layers. We fix θ at a preliminary estimate; split the actual data into sample 1
(80%) and sample 2 (20%); estimate D with sample 1, varying the numbers of nodes
and layers; evaluate their classification accuracy with sample 2;20 pick the network
configuration with the highest accuracy. The selected neural network discriminator
consists of two hidden layers, the first with 20 nodes and the second 10 nodes.

We compare our estimates with SMM in DFJ. They use 150 moments consisting
of median assets of groups divided by the cohort and permanent income quintile in
each calendar year. The cohort is defined on a four-year window; Cohort 1 are those
who were 72–6 years old in 1996; Cohort 2 were 77–81; Cohort 3 were 82–6; Cohort 4
were 87–91; Cohort 5 were 92 and older. Details are in DFJ. We note that accounting
for health and gender is infeasible in SMM since it yields too many moments, while
it is effortless in our framework.

5.5 Results

Table 1 gives the parameter estimates from DFJ and our adversarial method with
specifications X1 and X2. Parenthesized numbers are the standard errors; we use
Honoré and Hu (2017) to compute them for the adversarial estimates. The first row
is the SMM estimates in DFJ. The second and third rows come from the adversarial
estimation; the second uses X1 (14 variables) and the third X2 (21 variables).

A major difference between our estimates and DFJ’s is the curvature of the utility
of bequests k. Our estimate is an order of magnitude smaller, which has an impor-
tant implication: while DFJ conclude only the super rich would obtain utility from
bequeathing, our estimate suggests bequeathing matters across the entire permanent
income distribution. A related number is the implied asset floor a. We obtain es-
timates of $1,320 and $4,243, which are on the lower side of the estimates known

20We use the classification accuracy provided by Keras’s ADAM, which is based on thresholding.
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Table 1: Estimates of the structural parameters. The choice of inputs to the dis-
criminator X1 is intended to capture similar identifying variation as DFJ. The inputs
X2 contain additional variation in gender and health, which is our preferred spec-
ification. Standard errors for the adversarial estimates are obtained by the poor
(wo)man’s bootstrap.

β c [$] ν ϑ k [k$] MPC a [$] Loss
DFJ, Table 3 0.97 2,665 3.84 2,360 273 0.12 36,215 −0.67

(0.05) (353) (0.55) (8,122) (446)
Adversarial X1 0.97 4,500 6.14 4,865 16.89 0.20 4,243 −0.67

(.009) (9.002) (.030) (.017) (19.73)
Adversarial X2 0.97 4,500 5.99 192,676 10.02 0.12 1,320 −0.78

(.005) (8,112) (.015) (.014) (3.66)

in the literature. However, they correspond to the 22nd and 24th percentiles of the
distribution of assets one period before deaths (see Section 5.6) in our sample, re-
spectively. We interpret these numbers as our method providing a sensible fit of the
data. In contrast, DFJ’s implied asset floor is $36,215, which corresponds to the 40th
percentile.

Overall, the intensity of the bequest motive is minor in DFJ and X1 but non-
negligible in X2. While k is low for both X1 and X2, MPC is almost twice as large
in X1 compared to X2. Consequently, individuals care about bequests less than their
own consumption according to X1.

DFJ and adversarial also differ in risk aversion ν. A large value of risk aversion
rationalizes the observed saving patterns when the consumption floor c is fixed at
$4,500, a reasonable value in the literature.21

In line with our theory, adversarial estimation provides substantial gains in pre-
cision relative to DFJ. The decrease in standard errors reflects that the data is suffi-
ciently powerful to conclude the importance of the bequest motive, especially when
exploiting additional variation in gender and health.

The last column reports the cross-entropy loss of each set of parameter estimates.
To make a fair comparison, we take each set of estimates and solve the inner maxi-
mization of (1) using X2 as the input. The loss does not improve with X1 relative to
DFJ but does so substantially with X2, which is consistent with our observation that
gender and health provide useful variation for identifying the bequest motive. This

21DFJ’s risk aversion estimate increases from 3.84 to 6.04 in an alternative specification where c
is fixed at $5,000. However, according to their criterion, the fit of the model decreases substantially.
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makes X2 our preferred specification.

5.6 Fit and Counterfactual Simulations

Similarly as DFJ, we look at the assets one period before deaths to compare the
fit and counterfactuals. Individuals who passed away during the survey periods are
divided into five groups of permanent income quintiles (PIqs). We take the assets in
the last survey when they were alive and sum these across individuals in each group.

Table 2 shows the assets one period before deaths for the actual data and sim-
ulation. Adversarial X2 baseline and DFJ baseline rows are the simulations of the
models with parameters equal to the estimates of our preferred specification and of
DFJ. Our estimates fit the assets for low PIqs well but overestimates high PIqs, while
DFJ show the opposite pattern.22 In Appendix S.2.5, we provide additional evidence
of the good fit of the data.

Next, we perform two counterfactual simulations to measure the elderly’s saving
motive in terms of (i) bequest and (ii) medical expenditure risk. We simulate the
model with the same parameters except that we kill either the bequest incentive,
φ ≡ 0, or the medical expenditure risk, σ ≡ 0. The “(% difference)” rows give the
difference of the baseline and counterfactual relative to the baseline.

The contribution of the bequest motive to the savings differs substantially between
our estimates and DFJ. In our estimates, the lack of the bequest motive decreases
the savings by 13.7% to 19.2%, while DFJ estimates suggest at most 2.1% decrease.
This is largely due to the difference in the estimates of the curvature k. According to
our estimates, the bequest motive is an important and substantial source of savings
for both the poor and the rich. This finding is consistent with Lockwood (2018) who
uses additional data on annuity takeup to identify the bequest motive.

The contribution of the medical expenditure risk looks much more in line for the
two models. The amount of savings to prepare for uncertain medical expenses is
substantial in both predictions. This is because rich individuals live long and hence
are at high risk of large medical expenses. Poor individuals do not survive long enough
to face it and are more likely to be covered by social insurance programs.

22Trimming the observations above the top 1% of mean assets decreases the discrepancy between
X2 and the actual data significantly. Results are available upon request. In addition, the gap in the
fit between the poor and the rich might be attributed to the rich doing inter vivos transfers more
often than the poor, biasing the assets of the rich downwards toward the end of their lives (McGarry,
1999).
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Table 2: Fit of the savings and counterfactual simulations without bequest motive
and medical expense risk. “No bequest” rows are the simulations of the model with
ϑ = 0 (so φ ≡ 0). “No medical risk” rows are the simulations of the model with σ ≡ 0
(so logmt = m). Each number is a cross-sectional sum of assets of individuals one
period before their death given in the units of k$, a proxy for their intended bequest.
Percentages are relative to the corresponding baselines.

Permanent income quintile
1st 2nd 3rd 4th 5th

Actual data 18,191 25,266 42,006 50,495 85,814
Adversarial X2 baseline 20,441 26,366 51,339 62,662 110,385
No bequest 17,644 21,587 42,586 50,631 95,212
(% difference) (13.7%) (18.1%) (17.1%) (19.2%) (13.7%)
No medical risk 18,890 23,252 43,789 49,385 90,204
(% difference) ( 7.6%) (11.8%) (14.7%) (21.2%) (18.3%)

DFJ baseline 16,527 19,672 38,157 42,737 83,814
No bequest 16,342 19,605 37,387 42,425 83,563
(% difference) ( 1.1%) ( 0.3%) ( 2.1%) ( 0.7%) ( 0.5%)
No medical risk 16,440 19,242 36,157 38,053 76,080
(% difference) ( 0.5%) ( 2.2%) ( 5.4%) (11.0%) ( 9.4%)

To summarize, our adversarial estimates reveal with precision that the bequest
motive contributes in similar magnitudes to the slow decrease in the elderly’s savings
across PIqs. The uncertainty in medical expenses contribute less for poor individuals.

APPENDIX

A PROOFS

Let mp
q := log p+q

2q . To derive asymptotic properties of the discriminator, it is helpful
to think in terms of the pseudo-objective functions23

M̃θ(D) := P0m
D
Dθ

+ Pθm
1−D
1−Dθ , M̃θ

n,m(D) := PnmD
Dθ

+ P̃mm1−D
1−Dθ ◦ Tθ,

since concavity of the logarithm implies

M̃θ
n,m(D̂θ

n,m)− M̃θ
n,m(Dθ) ≥

1
2[Mθ

n,m(D̂θ
n,m)−Mθ

n,m(Dθ)] ≥ −oP (n−1/2).

23See, e.g., van der Vaart and Wellner (1996, Section 3.4.1) and van der Vaart (1998, Section 5.5).
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Occasionally, we use the Bernstein “norm” ‖f‖P,B :=
√

2P (e|f | − 1− |f |) that induces
a premetric without the triangle inequality (van der Vaart and Wellner, 1996, p. 324).

A.1 Discriminators

LetMθ,1
n,δ := {mD

Dθ
: D ∈ Dθn,δ} andM

θ,2
n,δ := {m1−D

1−Dθ : D ∈ Dθn,δ}.

Lemma 1 (Maximal inequality for pseudo-cross-entropy discriminator). For every
D ∈ D, M̃θ(D)− M̃θ(Dθ) ≤ −dθ(D,Dθ)2/(1 +

√
2)2. For every δ > 0,

E∗ sup
D∈Dθ

n,δ

√
n
∣∣∣(M̃θ

n,m − M̃θ)(D)− (M̃θ
n,m − M̃θ)(Dθ)

∣∣∣
. J[](δ,Dθn,δ, dθ)

[
1 +

√
n

m
+
(

1 + n

m

)J[](δ,Dθn,δ, dθ)
δ2√n

]
.

Proof. Since log x ≤ 2(
√
x− 1) for every x > 0,

P0 log D
Dθ
≤ 2P0

(√
D
Dθ
− 1

)
=
[
2P0

√
D(p0+pθ)
√
p0

−
∫
D(p0 + pθ)−

∫
p0

]
+ (P0 + Pθ)(D −Dθ) = −hθ(D,Dθ)2 + (P0 + Pθ)(D −Dθ).

Similarly, Pθ log 1−D
1−Dθ

≤ −hθ(1−D, 1−Dθ)2 − (P0 + Pθ)(D−Dθ). Replacing D and
1−D with (D +Dθ)/2 and (1−D + 1−Dθ)/2 and summing them up yield

P0m
D
Dθ

+ Pθm
1−D
1−Dθ ≤ −hθ

(
D+Dθ

2 , Dθ

)2
− hθ

(
1−D+1−Dθ

2 , 1−Dθ

)2
.

Since
√

2hθ(p+q2 , q) ≤ hθ(p, q) ≤ (1 +
√

2)hθ(p+q2 , q) (van der Vaart and Wellner, 1996,
Problem 3.4.4), we obtain the first inequality. For the second inequality, observe that
√
n
[
(M̃θ

n,m− M̃θ)(D)− (M̃θ
n,m− M̃θ)(Dθ)

]
=
√
n(Pn−P0)mD

Dθ
+
√
n(Pθm−Pθ)m1−D

1−Dθ .

Therefore, it suffices to separately bound

E∗ sup
D∈Dθ

n,δ

∣∣∣√n(Pn − P0)mD
Dθ

∣∣∣ and
√

n
m
E∗ sup

D∈Dθ
n,δ

∣∣∣√m(Pθm − Pθ)m1−D
1−Dθ

∣∣∣.
Since mD

Dθ
,m1−D

1−Dθ ≥ log(1/2) and e|x| − 1− |x| ≤ 4(ex/2 − 1)2 for every x ≥ log(1/2),
∥∥∥mD

Dθ

∥∥∥2

P0,B
≤ 8P0

(
e
mDDθ

/2 − 1
)2
≤ 8hθ

(
D+Dθ

2 , Dθ

)2
≤ 4hθ(D,Dθ)2,∥∥∥m1−D

1−Dθ

∥∥∥2

Pθ,B
≤ 4hθ(1−D, 1−Dθ)2.
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By van der Vaart and Wellner (1996, Lemma 3.4.3), the first supremum is bounded
by J[](2δ,Mθ,1

n,δ, ‖ ·‖P0,B)[1+J[](2δ,Mθ,1
n,δ, ‖ ·‖P0,B)/(4δ2√n)]. Let [`, u] be an ε-bracket

in D with respect to dθ. Since u− ` ≥ 0 and e|x| − 1− |x| ≤ 2(ex/2 − 1)2 for x ≥ 0,
∥∥∥mu

Dθ
−m`

Dθ

∥∥∥2

P0,B
≤ 4

∫ (√
u+Dθ
`+Dθ

− 1
)2
p0 ≤ 4

∫ (√
u+Dθ −

√
`+Dθ

)2
(p0 + pθ)

≤ 4hθ(u, `)2 ≤ 4ε2.

Thus, [m`
Dθ
,mu

Dθ
] makes a 2ε-bracket inMθ,1 with respect to ‖·‖P0,B, so J[](2δ,Mθ,1

n,δ, ‖·
‖P0,B) ≤ 2J[](δ,Dθn,δ, dθ). Analogous argument for the second supremum yields the
second inequality. �

Now, Theorems 1 and 2 follow immediately from the following general versions.

Theorem 1' (Rate of convergence of discriminator). Suppose Assumption 4 holds
and Mθ

n,m(D̂θ
n,m) ≥ Mθ

n,m(Dθ) − OP (δ2
n) for a nonnegative sequence δn. If we have

J[](δn,Dθn,δn , dθ) . δ2
n

√
n and there exists α < 2 such that J[](δ,Dθn,δ, dθ)/δα is decreas-

ing in δ, then dθ(D̂θ
n,m, Dθ) = O∗P (δn).

Proof. As noted at the beginning of the section, the condition of the theorem implies
M̃θ

n,m(D̂θ
n,m) ≥ M̃θ

n,m(Dθ) − OP (δ2
n). Then, the theorem follows from van der Vaart

and Wellner (1996, Theorem 3.4.1) applied with Lemma 1. �

Theorem 2' (Rate of convergence of objective function). Under Assumption 2,
Mθ(D)−Mθ(Dθ) = −2dθ(D,Dθ)2 + o(dθ(D,Dθ)2). Under the assumptions of Theo-
rem 1' and Assumption 2, Mθ

n,m(D̂θ
n,m)−Mθ

n,m(Dθ) = O∗P (δ2
n).

Proof. Note that for every D ∈ D,

Mθ
n,m(D)−Mθ

n,m(Dθ) = Mθ(D)−Mθ(Dθ) + (Pn − P0) log D
Dθ

+ (Pθm − Pθ) log 1−D
1−Dθ

.

Let W1 :=
√

D
Dθ
− 1, W2 :=

√
1−D
1−Dθ

− 1, and δ := dθ(D,Dθ). By Taylor’s theorem,
log(1 + x) = x− 1

2x
2 + 1

2x
2R(x) where R(x) = O(x) as x→ 0. Therefore,

Mθ(D)−Mθ(Dθ) = P0 log D
Dθ

+ Pθ log 1−D
1−Dθ

= 2P0 log(1 +W1) + 2Pθ log(1 +W2)

= 2P0W1 − P0W
2
1 + P0W

2
1R(W1) + 2PθW2 − PθW 2

2 + PθW
2
2R(W2).

Note that P0W
2
1 = P0(

√
D/Dθ − 1)2 = hθ(D,Dθ)2 and PθW 2

2 = hθ(1 −D, 1 −Dθ)2.
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SinceW 2
j ≥ 0, this implies thatW1(Xi)2 = OP (δ2) andW2(Xθ

i )2 = OP (δ2). Moreover,

2P0W1 =
[
2P0

√
D(p0+pθ)
√
p0

−
∫
D(p0 + pθ)−

∫
p0

]
+ (P0 + Pθ)(D −Dθ)

= −hθ(D,Dθ)2 + (P0 + Pθ)(D −Dθ),
2PθW2 = −hθ(1−D, 1−Dθ)2 − (P0 + Pθ)(D −Dθ).

Thus, 2P0W1 + 2PθW2 = −dθ(D,Dθ)2 and W1(Xi) and W2(Xθ
i ) are oP (1) since |D−

Dθ| ≤ 2|
√
D −

√
Dθ|. Also, R(W1(Xi)) and R(W2(Xθ

i )) are oP (1). For 1/5 ≤ c < 1,

|P0W
2
1R(W1)| ≤ P0W

2
1 |R(W1)|1{W1 ≤ −c}+ P0W

2
1 |R(W1)|1{W1 > −c}

≤ P0(−R(W1)1{W1 ≤ −c}) + P0W
2
1 |R(−c) ∨R(W1)|.

Since R(x) < 1, the second term is o(δ2) for every c by the dominated convergence
theorem. By the diagonal argument, there exists a sequence c→ 1 for given D → Dθ

such that the second term remains o(δ2). Since 0 < −R(x) < −2 log(1 + x) for
x ≤ −1

5 ,

P0(−R(W1)1{W1 ≤ −c}) ≤ P0(log Dθ
D
1{W1 ≤ −c}) = P0( D

Dθ
log Dθ

D
· Dθ
D
1{W1 ≤ −c})

≤ sup
x≥(1−c)−2

| 1
x

log x| · P0(Dθ
D
1{W1 ≤ −c}).

The first term is o(1) as c → 1. The second term is bounded by P0(Dθ
D
1{W1 ≤

−1
5}) = P0(W1 ≤ −1

5)P0(Dθ
D
| Dθ

D
≥ 25

16) ≤ P0(W1 ≤ −1
5)M by Assumption 2.

By Markov’s inequality, P0(W1 ≤ −1
5) ≤ 25P0W

2
1 = O(δ2). Thus, we have shown

|P0W
2
1R(W1)| = o(δ2). Similarly, |PθW 2

2R(W2)| = o(δ2). Then, the first claim follows.
Now, we bound the suprema of the two random terms

E∗ sup
D∈Dθ

n,δn

∣∣∣√n(Pn − P0) log D
Dθ

∣∣∣ and E∗ sup
D∈Dθ

n,δn

∣∣∣√m(Pθm − Pθ) log 1−D
1−Dθ

∣∣∣.
Under Assumption 2, it follows from (the remark after) Lemma 5 that for D ∈ Dθn,δn ,∥∥∥1

2 log D
Dθ

∥∥∥2

P0,B
≤ 2(1 +M)hθ(D,Dθ)2,

∥∥∥1
2 log 1−D

1−Dθ

∥∥∥2

Pθ,B
≤ 2(1 +M)hθ(1−D, 1−Dθ)2.

Assumption 2 also implies that an ε-bracket inMθ,1 induces∥∥∥log u
Dθ
− log `

Dθ

∥∥∥2

P0,B
≤ 4P0

(√
u
`
− 1

)2
= 4(P0 + Pθ)Dθ` (

√
u−
√
`)2 ≤ Cdθ(u, `)2,

30



∥∥∥log 1−`
1−Dθ

− log 1−u
1−Dθ

∥∥∥2

Pθ,B
≤ 4(P0 + Pθ)1−Dθ

1−u (
√

1− `−
√

1− u)2 ≤ Cdθ(u, `)2,

for some C > 0. By similar arguments as in the proof of Theorem 1', the two suprema
are of orders

√
nδ2

n and
√
mδ2

n. 24 With Assumption 4 follows the theorem. �

A.2 Neural Network Discriminators

We establish a bound on the bracketing number of a (possibly sparse) neural network
with bounded weights and Lipschitz activation functions.

Lemma 2 (Bracketing number of neural network with bounded weights). Let F
be a class of neural networks defined in Example 4. Denote the total number of
nonzero weights by S and the maximum number of nonzero weights in each node
(except for the first layer taking inputs) by Ũ .25 Assume that σ and Λ are Lipschitz
with constant 1 and ‖w‖∞ ≤ C for some C. Assume innocuously that ŨC ≥ 2 and
let σ0 := |σ(0)|. Define F : Rd → R by F (x) := σ0 + ‖x‖∞. Then, for any premetric
dF and ‖f‖dF := supg∈F dF(g − f/2, g + f/2),

N[](‖εF‖dF ,F , dF) ≤
⌈

2(L+ 1)(ŨC)L+1d

ε

⌉S
.

For a fully connected network, Ũ = U and S = (LU + 1)U + (d − U)U . For a
hierarchical network in Bauer and Kohler (2019), S = O(Ũ (L+4)/3d).

Proof. Recall from Example 4 that f(x;w) = Λ(w′Lσ(w′L−1σ(· · ·w′1σ(w′0x)))). We can
bound the outputs of the `th layer by

‖σ(w′`−1σ(· · · ))‖∞ ≤ σ0 + ‖w′`−1σ(· · · )‖∞ ≤ σ0 + ŨC‖σ(· · · )‖∞
≤ [1 + ŨC + · · ·+ (ŨC)`−1]σ0 + Ũ `−1C`d‖x‖∞
≤ Ũ `−1C`(Ũσ0 + d‖x‖∞) ≤ (ŨC)`d(σ0 + ‖x‖∞),

where the fourth inequality holds for ŨC ≥ 2. For two sets of weights, w and w̃,

|f(x;w)− f(x; w̃)| ≤ Ũ‖wL − w̃L‖∞(‖σ(w′L−1σ(· · · ))‖∞ ∨ ‖σ(w̃′L−1σ(· · · ))‖∞)
+ ŨC‖σ(w′L−1σ(· · · ))− σ(w̃′L−1σ(· · · ))‖∞

24We can write ‖ 1
2 log D

Dθ
‖2
P0,B

≤ [2(1 + M) ∨ C]hθ(D,Dθ)2 and ‖ log u
Dθ
− log `

Dθ
‖2
P0,B

≤ [2(1 +
M) ∨ C]dθ(u, `)2 to apply the same argument as in Theorem 1'.

25The number of nonzero elements in each row of each matrix w`, ` ≥ 1, is bounded by Ũ .
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≤ ŨL+1CLd‖wL − w̃L‖∞(σ0 + ‖x‖∞) + · · ·
+ ŨL+1CLd‖w1 − w̃1‖∞(σ0 + ‖x‖∞) + ŨLCLd‖w0 − w̃0‖∞‖x‖∞
≤ (L+ 1)ŨL+1CLd‖w − w̃‖∞(σ0 + ‖x‖∞).

Let A := (L + 1)ŨL+1CLd. Partitioning the weight space [−C,C]S into cubes of
length 2ε/A creates dCA/εeS cubes. Hence, N(ε, [−C,C]S, ‖ · ‖∞) ≤ dCA/εeS. The
bound follows by van der Vaart and Wellner (1996, Theorem 2.7.11), observing that
the proof thereof works for a premetric with modification of 2ε‖F‖ to ‖2εF‖dF .

For a fully connected network, the number of all weights is dU (weights for the
first layer) plus (L−1)U2 (weights for the remaining hidden layers) plus U (weights in
the output layer), summing to (LU + 1)U + (d−U)U .26 For a network H(0) in Bauer
and Kohler (2019) (in their notation), the number of all weights is A(0) := d(4d∗M∗)+
4d∗M∗+M∗ = 4(1+d)d∗M∗+M∗. ForH(1), A(1) := A(0)K+K(4d∗M∗)+4d∗M∗+M∗ =
A(0)K + 4(1 + K)d∗M∗ + M∗. For H(l), A(l) := A(l−1)K + 4(1 + K)d∗M∗ + M∗ =
A(0)K l+∑l−1

j=0K
j[4(1+K)d∗M∗+M∗] = 4d∗M∗[(1+d)K l+ 1−Kl

1−K (1+K)]+M∗ 1−Kl+1

1−K =
O(dd∗M∗K l). Then use L = 2 + 3l and Ũ = M∗ ∨ (4d∗) ∨K. �

Remark. Lemma 2 assumes a Lipschitz property for the activation and output func-
tions, which accommodates ReLU, softplus, and sigmoid.

Remark. If a premetric d satisfies the property that ` ≤ f ≤ u implies d(`, f) ≤
d(`, u), then the ε-covering number of F with respect to d is bounded by N[](ε,F , d).
Another popular way to bound the covering number is by the dimension of F (van der
Vaart and Wellner, 1996, Chapter 2.6; Anthony and Bartlett, 1999, Chapter 12).
However, dimension bounds for neural networks often come with strong functional-
form assumptions on the activation function (Bartlett and Maass, 2003; Bartlett et al.,
2019). Our approach does not require that at the cost of bounded weights.

Proof of Proposition 3. We use Lemma 2 to bound the bracketing number in Theo-
rem 1'. Since D is nonnegative, we can extend dθ to accommodate arbitrary functions
f1 and f2 by dθ(f1, f2) := dθ(0 ∨ f1, 0 ∨ f2). In the notation of Lemma 2,

‖ε2F‖2
dθ

= sup
D∈D

dθ(D − ε2F/2, D + ε2F/2)2 ≤ hθ(0, ε2F )2 + hθ(0, ε2F )2

= 2ε2(P0 + Pθ)F = 2ε2[2σ0 + (P0 + Pθ)‖X‖∞] =: Bε2.

26If the network has a bias term, the actual variable weights are slightly fewer, but it does not
change the order.
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Since P0 and Pθ have uniformly bounded first moments, B <∞. Therefore,

logN[](ε,Dn, dθ) ≤ logN[]
(∥∥∥ ε2

B
F
∥∥∥
dθ
,Dn, dθ

)
≤ S log

⌈
2B(L+1)(ŨC)L+1d

ε2

⌉
.

The same bound holds for logN[](ε, 1−Dn, hθ). Observe that for 0 < δ ≤ ea,
∫ δ

0

√
a− log ε dε =

√
π

2 e
a erfc

(√
a− log δ

)
+ δ

√
a− log δ . δ

√
a− log δ.

Therefore,

J[](δ,Dn, hθ) .
∫ δ

0

√
1 + S[log(2B(L+ 1)(ŨC)L+1d)− 2 log ε] dε

. δ
√

1 + S[log(2B(L+ 1)(ŨC)L+1d)− 2 log δ] . δ
√
SL log(ŨC)− S log δ.

Again, J[](δ, 1−Dn, hθ) is likewise bounded. By Theorem 1' and Assumption 4, this
gives rise to the rate

δn = O
(√

SL log(ŨC)+S logn
n

)
. (2)

To attain this, the sieve must be rich enough so that infD∈Dn dθ(D,Dθ) . δn.
Since Dn = Λ(H(l)), we use Bauer and Kohler (2019, Theorem 3) to derive the

network configuration that attains this rate. For that, we need to choose “N , ηn, an,
Mn” in their notation. First, we set N = q and ηn = δ2

n. By subexponentiality, we
have logP0(‖X‖∞ > a) + logPθ(‖X‖∞ > a) . −a for large a. Therefore, we want
an � −2 log δn so that (P0 + Pθ)(‖X‖∞ > an) . δ2

n.27 We can do this by setting
an = (− log δn)2. Finally, we want to choose Mn so that aN+q+3

n M−p
n ∼ δn; set Mn =

(log δn)2(N+q+3)/p/δ1/p
n . Let A ⊂ [−an, an]d be the set for which (P0 +Pθ)(A) ≤ cηn in

Bauer and Kohler (2019, Theorem 3). Then,

hθ(D,Dθ)2 ≤
(∫
‖x‖∞>an

+
∫
A

+
∫
{‖x‖∞≤an}\A

)
(
√
D −

√
Dθ)2(p0 + pθ)

≤ (P0 + Pθ)(‖X‖∞ > an) + (P0 + Pθ)(A) +
∫
{‖x‖∞≤an}\A

(
√
D −

√
Dθ)2(p0 + pθ).

The first two terms are bounded by δ2
n + cδ2

n. For D = Λ(f),
∫
{‖x‖∞≤an}\A

(
√
D−
√
Dθ)2(p0+pθ) =

∫
{‖x‖∞≤an}\A

(√
Λ(f)−

√
Λ(Λ−1 ◦Dθ)

)2
(p0+pθ)

27If we set an ∼ −2 log δn, then we can only say (P0 + Pθ)(‖X‖∞ > an) . δcn for some c.
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≤ 2
27

∥∥∥f − Λ−1 ◦Dθ

∥∥∥2

∞,{‖x‖∞≤an}\A
= 2

27

∥∥∥f − log p0
pθ

∥∥∥2

∞,{‖x‖∞≤an}\A
,

since
√

Λ(·) is Lipschitz with constant 1/(3
√

3). We may likewise bound hθ(1−D, 1−
Dθ)2. By Bauer and Kohler (2019, Theorem 3), inff∈H(l) ‖f − log p0

pθ
‖∞,{‖x‖∞≤an}\A .

δn. Thus, we obtain infD∈Dn dθ(D,Dθ) . δn.
Meanwhile, substituting S = O(dd∗M∗K l) ∼ M∗, Ũ = M∗ ∨ (4d∗) ∨ K ∼ M∗,

C = α, and L = 2 + 3l = O(1) into (2) yields δ2
n ∼M∗

log(M∗α)+logn
n

. Here,

M∗ =
(
d∗ +N

d∗

)
(N + 1)(Mn + 1)d∗ ∼Md∗

n = (log δn)2d∗(N+q+3)/p

δ
d∗/p
n

,

α = Md∗+p(2N+3)+1
n

ηn
log n = (log δn)2(N+q+3)[d∗+p(2N+3)+1]/p

δ
2+[d∗+p(2N+3)+1]/p
n

log n.

Thus, δn ∼ [(log n)
p+2d∗(N+q+3)

p /n]
p

2p+d∗ . The result follows by substituting N = q. �

A.3 Generators

Proof of Theorem 4. For simplicity, we omit the subscripts n,m. Note that

Mθ̂(Dθ̂)− inf
θ∈Θ

Mθ(Dθ) ≤
[
Mθ̂(D̂θ̂)− inf

θ∈Θ
Mθ(D̂θ)

]
+
[
Mθ̂(Dθ̂)−Mθ̂(D̂θ̂)

]
+ sup

θ∈Θ

[
Mθ(D̂θ)−Mθ(Dθ)

]
.

The first difference is less than o∗P (1) by assumption; the other two are o∗P (1) by
Theorem 2'. Therefore, Mθ̂(Dθ̂) ≤ infθ∈Θ Mθ(Dθ) + o∗P (1).

By the assumption of Glivenko-Cantelli, ‖Pn−P0‖M1 → 0 and ‖P̃m− P̃0‖M2 → 0
in outer probability as n,m → ∞. By van der Vaart and Wellner (1996, Corollary
3.2.3 (i)), it follows that θ̂n,m → θ0 in outer probability. �

The next theorem is a generalization of Theorem 5 on the rate of convergence of
θ̂n,m. The parametric rate can be achieved if Pθ0 is “close enough” to P0.

Theorem 5' (Rate of convergence of generator). Suppose

Mθ̂n,m
n,m (D̂θ̂n,m

n,m ) ≤Mθ0
n,m(D̂θ0

n,m) +O∗P (κ2
n),[

Mθ̂n,m
n,m (D̂θ̂n,m

n,m )−Mθ0
n,m(D̂θ0

n,m)
]
−
[
Mθ̂n,m

n,m (Dθ̂n,m
)−Mθ0

n,m(Dθ0)
]

= O∗P (κ2
n)
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for a nonnegative sequence κn. Then, under Assumptions 4, 7, 8, and 11, h(θ̂n,m, θ0)∨
h̃(θ̂n,m, θ0) = O∗P (κn ∨ n−1/2).

Proof. The displayed condition implies Mθ̂(Dθ̂) ≤ Mθ0(Dθ0) + O∗P (κ2
n), so we apply

van der Vaart and Wellner (1996, Theorem 3.2.5) to Mθ(Dθ). By Assumptions 7
and 11, Mθ(Dθ)−Mθ0(Dθ0) & h(θ, θ0)2 ∧ c for some c > 0 globally in θ ∈ Θ.

Next, we show the convergence of the sample objective function. Note that

(Mθ0 −Mθ0)(Dθ0)− (Mθ −Mθ)(Dθ) = (Pn − P0) log Dθ0
Dθ

+ (P̃m − P̃0) log (1−Dθ0 )◦Tθ0
(1−Dθ)◦Tθ

.

By Lemma 6, ‖ log Dθ0
Dθ
‖2
P0,B ≤ 4h(θ, θ0)2 and ‖ log (1−Dθ0 )◦Tθ0

(1−Dθ)◦Tθ
‖2
P̃0,B
≤ 4h̃(θ, θ0)2. For

δ > 0, define M1
δ := {log Dθ0

Dθ
: h(θ, θ0) ≤ δ} and M2

δ := {log (1−Dθ0 )◦Tθ0
(1−Dθ)◦Tθ

: h̃(θ, θ0) ≤
δ}. By van der Vaart and Wellner (1996, Lemma 3.4.3),

E∗ sup
h(θ,θ0)<δ

∣∣∣√n(Pn − P0) log Dθ0
Dθ

∣∣∣ . J[](2δ,M1
δ , ‖ · ‖P0,B)

[
1 + J[](2δ,M1

δ ,‖·‖P0,B)
4δ2√n

]
.

Let [`, u] be an ε-bracket in {pθ} with respect to h. Since u−` ≥ 0 and e|x|−1−|x| ≤
2(ex/2 − 1)2 for every x ≥ 0,∥∥∥log p0+u

p0+pθ0
− log p0+`

p0+pθ0

∥∥∥2

P0,B
≤ 4

∫ (√
p0+u
p0+` − 1

)2
p0

≤ 4
∫

(
√
p0 + u−

√
p0 + `)2 ≤ 4h(u, `)2 ≤ 4ε2.

Thus, [log p0+`
p0+pθ0

, log p0+u
p0+pθ0

] makes a 2ε-bracket inM1. Hence, N[](2ε,M1
δ , ‖·‖P0,B) ≤

N[](ε,Pδ, h) . (δ/ε)r by Assumption 8. This induces J[](2δ,M1
δ , ‖·‖P0,B) . δ. There-

fore,
E∗ sup

h(θ,θ0)<δ

∣∣∣√n(Pn − P0) log Dθ0
Dθ

∣∣∣ . δ + 1√
n
.

Similarly, E∗ suph̃(θ,θ0)<δ |
√
m(P̃m − P̃0) log 1−Dθ0

1−Dθ
| . δ + 1√

m
. Then, the result follows

by van der Vaart and Wellner (1996, Theorem 3.2.5). �

Lemma 3. Under Assumption 9, for every h ∈ Rk and h→ 0,

∫ [√pθ0 + pθ0+h

2 −√pθ0 −
1
4h
′ ˙̀
θ0

√
pθ0

]2

= o(‖h‖2),

∫ [√pθ0 + pθ0+h

2 −√pθ0+h + 1
4h
′ ˙̀
θ0

√
pθ0+h

]2

= o(‖h‖2).
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Proof. Denote p := pθ0 and ph := pθ0+h. For the first statement, it suffices to show∫ [(√
p+ph

2 −√p
)
−
(√

ph
2 −

√
p

2

)]2
=
∫ (√

p+ph
2 −

√
ph+√p

2

)2
= o(‖h‖2).

For every ε > 0, there exists M > 1 such that28

∫ (√
p+ph

2 −
√
ph+√p

2

)2
≤ ε+

∫
ph/p≤M

(√
p+ph

2 −
√
ph+√p

2

)2
.

By Taylor’s theorem and concavity of the square root,

0 ≤
√

p+ph
2 −

√
ph+√p

2 ≤ √p+ ph−p
4√p −

√
ph+√p

2 = 1
4(√ph −

√
p)
(√

ph
p
− 1

)
.

Thus, one obtains∫
ph/p≤M

(√
p+ph

2 −
√
ph+√p

2

)2
≤ 1

16

∫
ph/p≤M

(√ph −
√
p)2
(√

ph
p
− 1

)2
.

For ph/p ≤M , (
√
ph/p−1)2 is bounded byM , so the RHS is bounded by 1

16h
′IθhM =

O(‖h‖2M). Moreover, (
√
ph/p− 1)2 converges to zero almost everywhere as ph con-

verges to p in DQM; therefore, by the dominated convergence theorem, the RHS is
o(‖h‖2M). By the diagonal argument, the original integral is o(‖h‖2).

For the second statement, we have shown
∫

[(
√

p+ph
2 −
√
ph)−(

√
p

2 −
√
ph
2 )]2 = o(‖h‖2),

which, with Assumption 9, implies
∫

[
√

p+ph
2 −

√
ph− 1

4(−h)′ ˙̀θ0

√
ph]2 = o(‖h‖2). This

completes the proof. �

The following lemma states local convergence of the objective function.

Lemma 4 (Asymptotic distribution of objective function). Under Assumptions 4
and 9, for every compact K ⊂ Θ, uniformly in h ∈ K,

n
[
Mθ0+h/

√
n

n,m (Dθ0+h/
√
n)−Mθ0

n,m(Dθ0)
]

= −
√
nPnh′ ˙̀θ0 +

√
n(Pn + Pθ0+h/

√
n

m )Dθ0+h/
√
nh
′ ˙̀
θ0

+
√
n

(Pθ0+h/
√
n

m − Pθ0+h/
√
n)− (Pθ0

m − Pθ0)
1/
√
n

log(1−Dθ0) + h′Ĩθ0h

4 + oP (1).

With Assumptions 10 and 11, this reduces to

−
√
nPnh′ ˙̀θ0 +

√
n(Pn + Pθ0

m)Dθ0h
′ ˙̀
θ0 + h′Ĩθ0h

4 + oP (1).
28This M applies uniformly over every small h.
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Proof. Let θ := θ0 + h/
√
n, W :=

√
Dθ/Dθ0 − 1, W̃ :=

√
pθ0/pθ − 1. Observe that

n[Mθ(Dθ)−Mθ0(Dθ0)] = n(Pn +Pθm) log Dθ
Dθ0
−nPθm log pθ0

pθ
+n(Pθm−Pθ0

m) log(1−Dθ0).

We examine each term separately. By Assumption 9,

n(Pθ − Pθ0) log(1−Dθ0) = n
∫

(√pθ +√pθ0)(√pθ −
√
pθ0) log(1−Dθ0)

=
∫ (√

nh′ ˙̀θ0 + h′ ῭θ0h

2 + h′ ˙̀θ0
˙̀′
θ0
h

2

)
pθ0 log(1−Dθ0) + o(1).

The first term is zero since Mθ(Dθ) − Mθ0(Dθ0) ≥ 0 and Mθ(Dθ) − Mθ0(Dθ0) =
2
∫
Dθ0(√pθ −

√
pθ0)2 + o(h(θ, θ0)2) + (Pθ − Pθ0) log(1 − Dθ0).29 Therefore, n(Pθ −

Pθ0) log(1 − Dθ0) = 1
2Pθ0(h′ ῭θ0h + h′ ˙̀θ0

˙̀′
θ0h) log(1 − Dθ0) + o(1). If Assumption 11

holds, then n[(Pθm − Pθ0
m)− (Pθ − Pθ0)] log(1−Dθ0) = oP (1 + n/m).

Using log x = 2(
√
x− 1)− (

√
x− 1)2 + (

√
x− 1)2R(

√
x− 1) for R(x) = O(x),

n(Pn + Pθm) log Dθ
Dθ0

= 2n(Pn + Pθm)W − n(Pn + Pθm)W 2 + n(Pn + Pθm)W 2R(Wn).

Let Ĭθ0 := 2Pθ0Dθ0
˙̀
θ0

˙̀′
θ0 . Observe that

(P0 +Pθ)
(√

nW + h′ ˙̀θ0
2 (1−Dθ)

)2
= n

∫ [√
p0 + pθ0 −

√
p0 + pθ + h′ ˙̀θ0

2
√
n

√
(1−Dθ)pθ

]2
,

which is o(‖h‖2/n) by Lemma 7 and Assumption 9. Thus, the RHS converges to
zero uniformly over every compact K ⊂ Θ. We draw two observations: (i) the
mean and variance of (

√
nW + (1 − Dθ)h′ ˙̀θ0/2)(Xi), Xi ∼ (P0 + Pθn)/2, converge

to zero and so does the variance of
√
n(Pn + Pθm)(

√
nW + (1 − Dθ)h′ ˙̀θ0/2) under

Assumption 4;30 (ii) (P0 + Pθ)|nW 2 − (1−Dθ)2(h′ ˙̀θ0/2)2| → 0, so n(Pn + Pθm)W 2 =
(Pn + Pθm)(1−Dθ)2(h′ ˙̀θ0/2)2 + oP (1)→ h′Iθ0h/4− h′Ĭθ0h/8. Next,

n(P0 + Pθ)W = −n
2h(p0 + pθ0 , p0 + pθ)2 −→ −h′Iθ0h

8 + h′Ĭθ0h

16 ,
√
n(P0 + Pθ)(1−Dθ)

h′ ˙̀θ0
2 =

√
nPθ

h′ ˙̀θ0
2 =

√
n(Pθ − Pθ0)h

′ ˙̀
θ0

2 → h′Iθ0h

2 .

This implies that the mean of
√
n(Pn + Pθm)(

√
nW + (1 − Dθ)h′ ˙̀θ0/2) converges to

29The term Pθ0h
′ ˙̀
θ0 log(1−Dθ0) is the only term that is linear in h = h(θ, θ0), so if it is not zero,

then Mθ(Dθ)−Mθ0(Dθ0) ≥ 0 is violated.
30This does not imply that the mean of

√
n(Pn +Pθm)(

√
nW + (1−Dθ)h′ ˙̀θ0/2) converges to zero.
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3h′Iθ0h/8 + h′Ĭθ0h/16. Combining with (i), we find

n(Pn + Pθm)W = −
√
n(Pn + Pθm)(1−Dθ)

h′ ˙̀θ0
2 + 3h′Iθ0h

8 + h′Ĭθ0h

16 + oP (1).

The remainer term n(Pn+Pθm)W 2R(Wn) vanishes by the same logic as van der Vaart
(1998, Theorem 7.2).

Next, observe that nPθm log pθ0
pθ

= 2nPθmW̃ − nPθmW̃ 2 + nPθmW̃ 2R(W̃ ) and

Pθ

(√
nW̃ + h′ ˙̀θ0

2

)2
= n

∫ [√
pθ0 −

√
pθ + h′ ˙̀θ

2
√
n

√
pθ

]2
= o

(
‖h‖2

n

)
.

Again, (i) the mean and variance of (
√
nW̃ + h′ ˙̀θ0/2)(Xi), Xi ∼ Pθ, converge to

zero and so does the variance of
√
nPθm(

√
nW̃ + h′ ˙̀θ0/2) under Assumption 4; (ii)

Pθ|nW̃ 2 − (h′ ˙̀θ0/2)2| → 0, so nPθmW̃ 2 → Pθ(h′ ˙̀θ0/2)2 → h′Iθ0h/4. Next, nPθW̃ =
−nh(θ, θ0)2/2→−h′Iθ0h/8 and

√
nPθh

′ ˙̀
θ0/2→h′Iθ0h/2. This implies that the mean

of
√
nPθm(

√
nW̃ + h′ ˙̀θ0/2) converges to 3h′Iθ0h/8. Thus, we find

nPθmW̃ = −
√
nPθm

h′ ˙̀θ0
2 + 3h′Iθ0h

8 + oP (1).

Again, we may ignore the remainer term nPθmW̃ 2R(W̃ ). Altogether,

n[Mθ(Dθ)−Mθ0(Dθ0)] = −
√
nPnh′ ˙̀θ0 +

√
n(Pn + Pθm)Dθh

′ ˙̀
θ0 + h′Ĩθ0h

4

+ n[(Pθm − Pθ0
m)− (Pθ − Pθ0)] log(1−Dθ0) + oP (1).

For the second claim, it remains to show that with Assumption 10,
√
n(Pn + Pθm)Dθh

′ ˙̀
θ0 −
√
n(Pn + Pθ0

m)Dθ0h
′ ˙̀
θ0 = oP (1).

Note that (P0 + Pθ)Dθh
′ ˙̀
θ0 − (P0 + Pθ0)Dθ0h

′ ˙̀
θ0 = 0. Write

√
n(Pn + Pθm)(Dθ −Dθ0)h′ ˙̀θ0 +

√
n(Pθm − Pθ0

m)Dθ0h
′ ˙̀
θ0 .

Since p/(p + x) is convex in x ≥ 0 for p > 0, Dθ0
pθ0−pθ
p0+pθ0

≤ Dθ − Dθ0 ≤ Dθ
pθ0−pθ
p0+pθ

by
Taylor’s theorem. Therefore, by Assumption 9,

−(Pn + Pθm)Dθ0(1−Dθ0)(h′ ˙̀θ0)2 + oP (1) ≤
√
n(Pn + Pθm)(Dθ −Dθ0)h′ ˙̀θ0

≤ −(Pn + Pθm)Dθ(1−Dθ)(h′ ˙̀θ0)2 + oP (1).

Thus,
√
n(Pn + Pθm)(Dθ − Dθ0)h′ ˙̀θ0 converges to −Pθ0Dθ0(h′ ˙̀θ0)2 = −h′Ĭθ0h/2 in
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probability. The second term converges to h′Ĭθ0h/2 under Assumption 10. �

Proof of Theorem 6. By Theorem 5 and Assumption 7, θ̂ is consistent and
√
n(θ̂ −

θ0) is uniformly tight. Assumption 6 implies Mθ̂(Dθ̂) ≤ infθ∈OMθ(Dθ) + o∗P (n−1).
Let Gn :=

√
n(Pn − P0), Gθ0

m :=
√
m(Pθ0

m − Pθ0), and Gθ0
n,mf := Gn(1 − Dθ0)f −√

n/mGθ0
mDθ0f . With Assumptions 4 and 9 to 11, Lemma 4 implies that uniformly

in h ∈ K compact,

n
[
Mθ0+h/

√
n(Dθ0+h/

√
n)−Mθ0(Dθ0)

]
= −h′Gθ0

n,m
˙̀
θ0 + h′Ĩθ0h

4 + oP
(
1 + n

m

)
.

In particular, this holds for both ĥ :=
√
n(θ̂ − θ0) and h̆ := 2Ĩ−1

θ0 Gθ0
n,m

˙̀
θ0 , so

n
[
Mθ0+ĥ/

√
n(Dθ0+ĥ/

√
n)−Mθ0(Dθ0)

]
= −ĥ′Gθ0

n,m
˙̀
θ0 + 1

4 ĥ
′Ĩθ0ĥ+ o∗P

(
1 + n

m

)
,

n
[
Mθ0+h̆/

√
n(Dθ0+h̆/

√
n)−Mθ0(Dθ0)

]
= −Gθ0

n,m
˙̀′
θ0 Ĩ
−1
θ0 Gn,m

˙̀
θ0 + oP

(
1 + n

m

)
.

Since ĥ minimizes Mθ(Dθ) up to o∗P (1/n), the LHS of the first equation is larger than
that of the second up to o∗P (1). Subtracting the two,

1
4

(
ĥ− 2Ĩ−1

θ0 Gθ0
n,m

˙̀
θ0

)′
Ĩθ0

(
ĥ− 2Ĩ−1

θ0 Gθ0
n,m

˙̀
θ0

)
+ o∗P

(
1 + n

m

)
≤ 0.

Since Ĩθ0 is assumed positive definite, ĥ− 2Ĩ−1
θ0 Gθ0

n,m
˙̀
θ0 = o∗P (

√
1 + n/m), proving the

first expression. Since Pn and Pθ0
m are independent, the asymptotic variance is

Ĩ−1
θ0 4

[
P0(1−Dθ0)2 ˙̀

θ0
˙̀′
θ0 +

(
lim
n→∞

n
m

)
Pθ0D

2
θ0

˙̀
θ0

˙̀′
θ0

]
Ĩ−1
θ0

= Ĩ−1
θ0 4

[
Pθ0Dθ0(1−Dθ0) ˙̀

θ0
˙̀′
θ0 +

(
lim
n→∞

n
m

)
P0Dθ0(1−Dθ0) ˙̀

θ0
˙̀′
θ0

]
Ĩ−1
θ0 .

�

A.4 Supporting Lemmas

The next lemma allows us to bound the Bernstein “norm” of an arbitrary log likeli-
hood ratio by the Hellinger distance without having to assume a bounded likelihood
ratio. This is a major improvement from Ghosal et al. (2000, Lemma 8.7) in that the
multiple of the Hellinger need not diverge as h(p, p0)→ 0.

Lemma 5 (Bernstein “norm” of log likelihood ratio). For any pair of probability
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measures P and P0 such that P0(p0/p) <∞,∥∥∥∥1
2 log p

p0

∥∥∥∥2

P0,B
≤ h(p, p0)2

[
2 + inf

c≥1
cP0

(
p0

p

∣∣∣∣ p0

p
≥
[
1 + 1

2c

]2)]
≤ 2h(p, p0)2

[
1 + P0

(
p0

p

∣∣∣∣ p0

p
≥ 25

16

)]
,

where P0(p0/p | p0/p ≥ a) = 0 if P0(p0/p ≥ a) = 0.

Proof. Using e|x|−1−|x| ≤ (ex−1)2 for x ≥ −1
2 and e|x|−1−|x| < ex− 3

2 for x > 1
2 ,∥∥∥log

√
p
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)2
1

{
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≥ 1

e

}
+ 2P0

(√
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2

)
1

{
p0
p
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}
.

The first term is bounded by 2h(p, p0)2. For every c ≥ 1,
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(√
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p
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2

)
1

{
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p0
p
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]
.

Using x− 1
2c ≤

c
2x

2 for every x,
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(√

p0
p
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∣∣∣ √p0
p
≥ 1 + 1
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)
− 1

2c ≤
c
2

[
P0
(√

p0
p
− 1

∣∣∣ √p0
p
≥ 1 + 1

2c

)]2
≤ c

2P0
(
p0
p

∣∣∣ √p0
p
≥ 1 + 1

2c

)
P0
([

1−
√

p
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)
by the Cauchy-Schwarz inequality. Then the first inequality follows. For the second,
let c = 2. �

Remark. Since the Bernstein “norm” dominates L2-norm, we have P0(1
2 log p0

p
)2 ≤

‖1
2 log p0

p
‖2
P0,B, which may be better than Ghosal et al. (2000, Lemma 8.6).

Remark. Similarly, we have∥∥∥∥∥1
2 log D

Dθ
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2

P0,B

≤ 2hθ(D,Dθ)2
[
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Lemma 6 (Bernstein “norm” of log discriminator ratio). For every θ1, θ2 ∈ Θ,∥∥∥∥∥log Dθ1

Dθ2

∥∥∥∥∥
2

P0,B

≤ 8h(θ1, θ2)2,

∥∥∥∥∥log (1−Dθ1) ◦ Tθ1

(1−Dθ2) ◦ Tθ2

∥∥∥∥∥
2

P̃0,B

≤ 8h̃(θ1, θ2)2.

40



Proof. Since e|x| − 1− |x| ≤ 2(ex/2 − 1)2 for x ≥ 0,
∥∥∥log Dθ1
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Lemma 7 (Hellinger distance of sums of densities). For arbitrary densities p, p0, p1,

h(p+ p0, p+ p1)2 =
∫ p0

p+ p0
(√p0 −

√
p1)2 + o(h(p0, p1)2),

where p0/(p+ p0) = 1 if p = p0 = 0.
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By the dominated convergence theorem follows the claim. �
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S.1 MONTE CARLO EXERCISE OF A ROY MODEL

We conduct simulation of a Roy model with two sectors and two periods. The Roy
model encompasses two essential features of economic environments: comparative
advantage and selection. It is often estimated with indirect inference as the likelihood
is hard to characterize.

S.1.1 Design

We implement a simplified version of the Roy model with no covariates. There are
two sectors in which individuals work for wages. The wage in period 1 is determined
by

logwi1 = µd(i1) + εid(i1)1,

where d(i1) ∈ {1, 2} is the sector chosen by individual i in period t = 1, µ1 and µ2

are sector-specific mean wage, and εid(i1)1 is an individual and sector-specific shock
distributed normally. The wage in period 2 is determined by

logwi2 = µd(i2) + γd(i2)1{di1 = d(i2)}+ εid(i2)2,

where di2 is the sector chosen by i at t = 2, γd(i2) is the returns to experience if i
chooses the same sector, and εi12 and εi22 are the shock, possibly correlated with the
previous shock.

In this model individuals make different choices because they have different com-
parative advantages in one sector versus the other. There are four different sources of
heterogeneity: two idiosyncratic shocks in period 1 for two sectors and two idiosyn-
cratic shocks in period 2 for two sectors.

1



Individuals choose location di1 to maximize the present value of current and future
wages. In period 1, an individual works in sector 1 if the following inequality holds

wi11 + βE[wi2 | di1 = 1] > wi2 + βE[wi21 | di1 = 2],

where β is a discount factor and wi2 = max{wi12, wi22}, and wi1d is the potential wage
in period 1 and location d. Expectations are taken with respect to the idiosyncratic
shock (εi12, εi22). Since εi11 and εi21 are normally distributed, the expectations have
closed forms.

In period 2, an individual, conditional on their choice of sector in period 1, observes
εi12 and εi22 and choose the sector based on the maximum wage.

Thus, the sector choice and wage for each period can be written as a function of the
structural parameters θ = (µ1, µ2, γ1, γ2, σ1, σ2, ρt, ρs, β), where ρt is the correlation
between period 1 and period 2 in both locations, and ρs is the correlation between
locations.

As actual observations, we generate data for n = 1,000 individuals with the true
parameter θ0 = (1.8, 2, 0.5, 0, 1, 1, 0.9, 0.9, 0).

S.1.2 Estimation

We consider adversarial estimation using 1-hidden layer neural networks of increas-
ing number of neurons (from 2 to 100). We follow the two-step iterative algorithm
described in Section 4.3. More specifically: we initialize θ at some value and generate
a fixed set of shocks. We pick m = n. After training the neural network, we hold fix
the estimated weights and calculate the gradient of (1) for small changes of θ. Then,
we update θ in the direction of the gradient and generate corresponding synthetic
data using the same shocks.1

The NN have been specified using a sigmoid link function of in all its layers. In
addition, we incorporate dropout of 10% of the nodes during training, and allow
for early stopping. The NN are trained with the R keras package. In particular,
using stochastic gradient descent and backpropagation. We fix the randomness of the
stochastic gradient descent across iterations of the estimation algorithm.

We set Xi = (wi1, di1, wi2, di2), i.e. the vector of all outcomes. For each replication
1While gradient-based methods are not justified in this context, given the discrete nature of some

of the outcomes, we did not encounter numerical problems following this strategy.
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we use 5 different initial conditions. We define the estimate as the one that minimizes
the loss across the 5 minimizations.

S.1.3 Results

Figure 2 contains 8 panels with the mean estimation of each parameter, across 1,000
Monte Carlo simulations. The x axis represents the number of nodes of the hidden
layer, and in parenthesis the total number of parameters in the NN, from 2 to 100.
The green line denotes the true value of the parameter. The different shades of grey
indicate different quantiles of the Monte Carlo distribution.

For all sizes of the NN the estimator is essentially unbiased. However, for smaller
NN the variability around the mean can be large. The variability decreases as the
size of the NN grows, up until the point where the size of the NN is around 10. This
exercise provides evidence that, in line with our theory, a more flexible discriminator
delivers estimators with smaller variance. We attribute this finding to the ability
of the NN to better approximate the infeasible discriminator, Dθ, which attains the
Cramer Rao bound.

Worth noting is also the fact that for larger NN there seems to be limited increase
in variance. This is likely due to the ability of the training algorithms to incorporate
regularization through different strategies.

S.2 ADDITIONAL NOTES ON THE EMPIRICAL APPLICATION

S.2.1 Details on Estimation Algorithm

Estimation of GAN in its original formulation (i.e. for training a generative model
of images) is notoriously challenging (e.g., see Arjovsky and Bottou, 2017). Two
main issues have been raised in the literature: (i) “mode-seeking behavior” of the
discriminator due to imbalances between synthetic and actual sample sizes, and (ii)
“flat or vanishing gradient” of the objective function in terms of the parameters of
the generative model when synthetic and actual samples are easily distinguishable by
the discriminator.

Imbalances in the sample size of synthetic versus actual data arise naturally in our
context. Indeed, in order to reduce inflation of the variance of structural parameter
estimates it is useful to choose m >> n. When this is the case, there is a risk that a
good discriminator is one where it always predicts “synthetic”, regardless of the input.
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(a) µ1 (b) µ2

(c) γ1 (d) γ2

(e) σ1 (f) σ2

(g) ρw (h) ρt

Figure 2: Results different NN
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However, this is not a useful discriminator in our endeavor. We follow the literature
recommendation in Machine Learning and mitigate this problem by performing data
augmentation on the actual samples. In particular, we use a naive bootstrap strategy
to resample with replacement histories of assets of individuals until both samples are
even.

As per the flat gradient, we argue that this problem is not nearly as pervasive
when the generative model is a typical structural economic model (provided the dis-
criminator is parsimonious enough and is not overfitting). Indeed, Arjovsky and
Bottou (2017) show that the problem of flat gradients is closely related to problems
of overlapping support in typical generative models of images (see Lemma 1 and
Theorem 2.1. in their paper), where the set of realizable images are measure zero
in the space of all possible images. Typical economic models are very different from
image generative models: (i) they tend to be embedded in low-dimensional spaces
(the space of the endogenous outcomes), and (ii) they tend to be parametrized by
low-dimensional vectors, where searching for configurations that provide overlapping
support might be computationally feasible. Nonetheless, we could still encounter this
problem, especially when outcomes are discrete.

In the context of our empirical application, outcomes are continuous and overlap-
ping support is not a first order problem. Nonetheless, gradients of the structural
parameters tend to be close to 0 when the conditional distribution of the outcomes
generated by the model and the actual data are far apart, hence making naive gra-
dient descent a very slow strategy. We implement two speeding strategies that have
recently become popular in the context of training neural networks: NAG (Nesterov
Acceleredated Gradient), an accelerated gradient descent method featuring momen-
tum (Nesterov, 1983), and RPROP, an adaptive learning rate algorithm (Riedmiller
and Braun, 1993).

Finally, we now give details on our choice of tuning parameters of the algorithm for
training the discriminator. Recall we choose D the set of feedforward neural network
with 2-hidden layers with 20 and 10 neurons, respectively, with sigmoid activation
functions in both layers. We rely on state of the art estimation algorithms in the
R Keras package for training the discriminator. In particular, we use the default
ADAM optimization algorithm, which incorporates stochastic gradient descent, and
backpropagation for fast computation of gradients. For implementation of stochastic
gradient descent, we select a small batch size of 120 samples per gradient calculation,
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and a large number of epochs (2000). As opposed to other implementations of GAN,
we train the discriminator “to completion”, and we fix the seed of the stochastic
gradient to preserve non-randomness of the criterion as a function of structural pa-
rameters. We find this strategy to be the one that delivers the most reliable estimates,
albeit at the cost of being computationally intensive. In order to avoid overfitting in
the discriminator we make use of callback options that track the evolution of out of
sample accuracy measures over epochs.

In S.2.3 below, we provide evidence that our estimation algorithm can success-
fully recover the true parameters in a Monte Carlo exercise tailored to the empirical
application.

S.2.2 Details on Implementation of Poor (Wo)man’s Bootstrap

We implement a “fast” bootstrap alternative proposed in Honoré and Hu (2017). Our
estimates are based on 50 replications. For each replication we conduct 9 different
univariate optimization problems.

S.2.3 Monte Carlo Excercise

In order to provide confidence on the results of the empirical application we conduct
a simulation exercise in a design that mimics the DFJ model.

We simulate asset profiles conditional on the real distribution of health, PI, gender,
etc. for N = 2,688 individuals according to the DFJ model and the following values
of the structural parameters: β = 0.971, ν = 5.5, c = 4,750, MPC = 0.23, and
k = 13,797. We then implement the adversarial estimation procedure as if this data
is real against 250 independent sets of synthetic data.

For each set of shocks, we use 5 different starting values chosen randomly in a
large neighborhood around the true values. For each set of initial values, we have 250
estimates with 250 synthetic data to calculate the mean and standard deviation of
the estimator. The results can be found in Table 3.

The results reveal that the estimator is able to recover the true parameters with
substantial precision. In particular, the lower quantile of the estimates for MPC at
death is well separated from 0. This exercise gives us confidence on the ability of the
method, as well as the optimization algorithm, to recover the true parameters of the
model.
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Table 3: MC tailored to the empirical application

truth mean sd [95% CI]
ν 5.50 5.46 0.37 4.76 6.20
MPC 0.23 0.25 0.06 0.16 0.39
k [k$] 13.80 13.32 4.40 6.26 22.95

Notes: Mean and standard deviations computed over 250 Monte Carlo replications. ν is the
parameter of risk aversion, MPC is the marginal propensity to consume at the moment of death,

and k is the curvature of the bequest motive part of the utility function.

S.2.4 Autoencoder on X2

The use of particular multilayer neural networks as sieve estimators forDθ can achieve
faster rates of convergence than other nonparametric methods. A necessary condition,
as stated in Proposition 3 in the main text, is that log(p0/pθ) admits the following
hierarchical representation introduced in Bauer and Kohler (2019):

Definition (Generalized hierarchical interaction model). Let d ∈ N0, with d∗ ∈
{1, ..., d} and m : Rd → R. We say that m admits a generalized hierarchical interac-
tion model of order d∗ and level 0, if there exist a1, . . . , ad∗ ∈ Rd and f : Rd∗ → R

such that
m(x) = f(a′1x, . . . , a′d∗x).

for all x ∈ Rd. We say that m satisfies a generalized hierarchical interaction model of
order d∗ and level l+1, if there existK ∈ N0, gk : Rd∗ → R and f1k, . . . , fd∗k : Rd → R

(k = 1, . . . , K) such that f1k, . . . , fd∗k (k = 1, . . . , K) satisfy a generalized hierarchical
model of order l and

m(x) =
K∑
k=1

gk(f1k(x), . . . , fd∗k(x))

for all x ∈ Rd.

As an example, log(p0/pθ) satisfies a generalized hierarchical interaction model of
order d∗ = 1 and level 0 when pθ corresponds to a conditional binary choice model,
such as probit or logit, irrespectively of the dimension of the conditioning covariates.

We now provide an intuition on why fitting autoencoders on the inputs, Xi, can
be informative of the hierarchical interaction order, d∗. We start by giving some
background on autoencoders.

Autoencoders are used as dimension reduction statistical models, and have been
referred to as the non-linear version of PCA (e.g. see Bishop (2006)). Autoencoders
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are special neural networks that attempt to approximate the inputs, and they have
three differentiated parts: encoder, bottleneck, and decoder. The encoder is typically
a multilayer feedforward neural network with decreasing number of nodes in each
layer. It forges a compressed representation of the inputs into the bottleneck, the
hidden layer with the smallest number of nodes. The decoder takes the neurons from
the bottleneck and maps it back to the output layer, increasing the number of nodes
in each layer. The output layer has exactly as many nodes as the dimension of the
input. Fitting an autoencoder involves minimizing the difference between the output
layer and the inputs.

Let X ∈ Rd be a vector that can be perfectly fit into an autoencoder with d∗ <
d neurons in the bottleneck. Let X∗ ∈ R

d∗ be the output of the neurons in the
bottleneck. Hence, we have:

X∗ = (en1(λ′1X), . . . , end∗(λ′d∗X))

where enk : Rd → R, with k ∈ {1, . . . , d∗} are d univariate functions that map the
inputs X through the encoder into the d∗ neurons of the bottleneck. At the same
time,

X = (de1(X∗), . . . , ded(X∗))

where dek : Rd∗ → R, with k ∈ {1, . . . , d∗}, are d∗ univariate functions that map
the output of the bottleneck, X∗, into the d neurons in the output layer (which
coincides with X) through the decoder. As a result, any function of X, m(X), can
be represented as a function g of d∗ functions of X. Indeed,

m(X) = m(de1(X∗), . . . , ded(X∗)) = g(X∗1 , . . . , X∗d∗) = g(en1(λ′1X), . . . , end∗(λ′d∗X)).

Hence, m admits a representation as a generalized hierarchical interaction model
of some level l (which depends on the exact shape on the autoencoder) and order d∗.

We fit autoencoders of increasing bottleneck dimension in a subset of 12 of the
21 variables in X2 (excluding the constant) to investigate its underlying dimension,
d∗. In particular, we select all binary variables: the gender indicator (1), the health
status indicators over the 6 periods of observations (6), and alive/deceased indicators
over the last 5 periods of observation (5).

The solid blue line in Figure 3 represents MSE(d∗) = ‖X − X̃(d∗)‖2, where
X̃(d∗) is the output layer of an autoencoder with bottleneck size d∗. The remaining
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Figure 3: Fitting X2 through autoencoders with increasing d∗. The blue solid line is
the MSE as a function of d∗. The dashed lines represent the autocorrelation of each
Xk

2 with its prediction from the autoencoder. The left axis corresponds to MSE, the
right axis corresponds to autocorrelation, and the x-axis corresponds to d∗.

12 dashed lines correspond to the correlation between the original variable Xk with
the prediction from the autoencoder. When d∗ = 4, MSE has significantly reduced,
and the average autocorrelation among all variables is 94.5%.

S.2.5 Fit of the Model

Figure 4 shows the fit of the model in terms of mean asset profiles conditional on
cohort and permanent income quintiles, excluding observations above 1% of the mean
asset distribution of the actual data.2 The fit of both DFJ and Adversarial are good,
albeit they tend to do best in different parts of the distribution. Adversarial performs
remarkably well for all cohorts for the bottom 3 permanent income quintiles. However,
for the upper two permanent income quintiles, adversarial can overshoot, especially
for the younger indivdiuals in the sample.

We also report the fit of the model separately for men and women in Cohort 2 in
Figure 5. Matching the distribution conditional on gender is required in adversarial
X2, but not in DFJ. We can see that adversarial X2 delivers a good fit for men even

2Mean assets are sensitive to small changes in the right hand side tail of the distribution. The
trimming strategy for simulated observations under the adversarial estimates accounts for less than
1.75% of the observations, while it is less than 1.5% of observations for DFJ.
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Figure 4: Fit in terms of mean assets by cohort (rows) and PIq (columns) over years.
Red is DFJ, green is Adversarial X2, and blue is actual data.

at the top of the distribution, while DFJ tens to underestimate men’s assets often.
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Figure 5: Fit in terms of mean assets in cohort 2 separately for men and women by
PIq (columns) over years. Red is DFJ, green is Adversarial X2, and blue is actual
data. Other cohorts exhibit similar patterns.

S.3 EQUIVALENCE TO SMM WHEN D IS LOGISTIC

We start by discussing the statistical properties of the adversarial estimator when
D is a logistic regression under high-level conditions, for any choice of Xi = (1, X̃i),
where X̃i is the choice of the researcher.

The goal on this section is two-fold: first, to develop intuition on the properties
of the estimator in a case where we can derive expressions analytically. Second, state
the asymptotic equivalence result with a SMM estimator when moments are sample
means of X̃i and optimally weighted. Hence, in this section we abstract from the
conditions that ensure that the logistic regression is a regular M -estimator. In the
next section, we will spell out all the formal conditions under which we analyze the
adversarial framework.

Recall the FOC given in Example 2. Consistency of θ̂ can be established under
standard regularity conditions on M -estimation.3 For simplicity we assume Xθ

i is
differentiable with respect to θ.

For any θ, let us define the following limiting discriminator parameter value

λ0(θ) = arg max
λ

E[log(Λ(λ′Xi))] + E[log(1− Λ(λ′Xθ
i ))].

We assume the following three high-level assumptions:

1. λ0(θ) = 0 if and only if θ = θ0.
3For instance, Newey and McFadden (1994, Theorem 2.1).
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2. supθ ‖λ̂(θ)− λ0(θ)‖ = op(1).

3.
√
n(λ̂(θ0)− λ0(θ0)) N(0, limm,n→∞[1 + n

m
]Ωλ).

where Ωλ = E[XiX
′
i]−1 Var(Xi)E[XiX

′
i]−1.

The first condition can be interpreted as an identification assumption. The second
condition is uniform consistency of the logit parameters over the space of θ. The third
condition states that λ̂ behaves asymptotically as a regular M -estimator.

Proposition S.1 (Asymptotic equivalence with SMM). Under Assumptions 1, 2,
and 3, as n,m→∞

√
n(θ̂ − θ0) N

(
0, lim

m,n→∞

[
1 + n

m

]
V
)

where
V =

(
E
[
∂Xθ0

i

∂θ

]
E[X ′iXi]−1E

[
∂Xθ0

i

∂θ

]′)−1

.

In addition,

θ̃ = arg min
θ

(
1
n

n∑
i=1

X̃i −
1
m

m∑
i=1

X̃θ
i

)′
ΩW

(
1
n

n∑
i=1

X̃i −
1
m

m∑
i=1

X̃θ
i

)
,

where ΩW is the optimal weighting matrix defined in Gouriéroux et al. (1993, Propo-
sition 5) satisfies

√
n(θ̃ − θ0) N

(
0, lim

m,n→∞

[
1 + n

m

]
V
)
.

Proof. Using the properties of the sigmoid function, we have the following expansion

θ̂ − θ0 = M(θ∗)−1
(
λ̂(θ0)′ · 1

m

m∑
i=1

Λ(λ̂(θ0)′Xθ0
i ) · ∂X

θ0
i

∂θ

)

where θ∗ lies between θ̂ and θ0, and

M(θ) = ∂λ̂(θ)
∂θ

1
m

m∑
i=1

Λ(λ̂(θ)′Xθ
i )∂X

θ
i

∂θ
+ λ̂(θ)′

(
1
m

m∑
i=1

Λ(λ̂(θ)′Xθ
i )∂

2Xθ
i

∂θ2

)

+ λ̂(θ)′ 1
m

m∑
i=1

Λ′(λ̂(θ)′Xθ
i )
[
∂λ̂(θ)
∂θ

Xθ
i + λ̂(θ)∂X

θ
i

∂θ

]
∂Xθ

i

∂θ
.

By consistency of θ̂ and conditions 1 and 2 above, we have λ̂(θ∗) = op(1). In addition,
substituting in the expression of ∂λ̂

∂θ
obtained using the total derivative of the FOC of
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the logit maximization (omitted here), we have

M(θ∗) = A(θ∗)R(θ∗)−1A(θ∗) + op(1),

where

A(θ) =
(

1
m

m∑
i=1

Λ(λ̂(θ)′Xθ
i )∂X

θ
i

∂θ

)
,

R(θ) =
(

1
n

n∑
i=1

Λ′(λ̂(θ)′Xi)Xi ·X ′i + 1
m

m∑
i=1

Λ′(λ̂(θ)′Xθ
i )Xθ

i ·Xθ
i
′
)
.

Using the block matrix inversion formula and ∂Xθ
i

∂θ
= (0, ∂X̃

θ
i

∂θ

′
)′, we see that, as

n/m→ 0
A(θ0)′ΩλA(θ0) = 1

2M(θ0),

and hence
√
n(θ̂ − θ0) = M(θ∗)−1√n(λ̂(θ0)− 0)A(θ0) N

(
0, lim

m,n→∞

[
1 + n

m

]
V
)
.

We now move to show the second part of the proposition. Using the notation in
Gouriéroux et al. (1993), we define

Q(θ; τ) = −1
2n

n∑
i=1

(X̃θ
i − τ)2

where τ is the auxiliary parameter. We have

τ̂(θ) = 1
n

n∑
i=1

X̃θ
i .

Using the expression of the asymptotic distribution with the optimal weighting matrix
in Gouriéroux et al. (1993, Propositions 4 and 5), we obtain the result. �

Remark. When n/m→ C, there is inflation of the variance proportional to 1 + C.
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