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Abstract

We study nonparametric estimation of density functions for undirected dyadic random

variables (i.e., random variables defined for all n
def≡
(

N
2

)

unordered pairs of agents/nodes
in a weighted network of order N). These random variables satisfy a local dependence
property: any random variables in the network that share one or two indices may be
dependent, while those sharing no indices in common are independent. In this setting,
we show that density functions may be estimated by an application of the kernel estima-
tion method of Rosenblatt (1956) and Parzen (1962). We suggest an estimate of their
asymptotic variances inspired by a combination of (i) Newey’s (1994) method of variance
estimation for kernel estimators in the “monadic” setting and (ii) a variance estimator
for the (estimated) density of a simple network first suggested by Holland & Leinhardt
(1976). More unusual are the rates of convergence and asymptotic (normal) distributions
of our dyadic density estimates. Specifically, we show that they converge at the same
rate as the (unconditional) dyadic sample mean: the square root of the number, N , of
nodes. This differs from the results for nonparametric estimation of densities and regres-
sion functions for monadic data, which generally have a slower rate of convergence than
their corresponding sample mean.

JEL Classification: C24, C14, C13.

Keywords: Networks, Dyads, Kernel Density Estimation



1 Introduction

Many important social and economic variables are naturally defined for pairs of agents

(or dyads). Examples include trade between pairs of countries (e.g., Tinbergen, 1962),

input purchases and sales between pairs of firms (e.g., Atalay et al., 2011), research and

development (R&D) partnerships across firms (e.g., König et al., 2019) and friendships

between individuals (e.g., Christakis et al., 2010). Dyadic data arises frequently in the

analysis of social and economic networks. In economics such analyses are predominant

in, for example, the analysis of international trade flows. See Graham (TBD) for many

other examples and references.

While the statistical analysis of network data began almost a century ago, rigor-

ously justified methods of inference for network statistics are only now emerging (cf.,

Goldenberg et al., 2009). In this paper we study nonparametric estimation of the density

function of a (continuously-valued) dyadic random variable. Examples included the den-

sity of migration across states, trade across nations, liabilities across banks, or minutes of

telephone conversation among individuals. While nonparametric density estimation using

independent and identically distributed random samples, henceforth “monadic” data, is

well-understood, its dyadic counterpart has, to our knowledge, not yet been studied.

Holland & Leinhardt (1976) derived the sampling variance of the link frequency in

a simple network (and of other low order subgraph counts). A general asymptotic dis-

tribution theory for subgraph counts, exploiting recent ideas from the probability litera-

ture on dense graph limits (e.g., Diaconis & Janson, 2008; Lovász, 2012), was presented

in Bickel et al. (2011).2 Menzel (2017) presents bootstrap procedures for inference on

the mean of a dyadic random variable. Our focus on nonparametric density estimation

appears to be novel. Density estimation is, of course, a topic of intrinsic interest to

econometricians and statisticians, but it also provides a relatively simple and canonical

starting point for understanding nonparametric estimation more generally. In the conclu-

sion of this paper we discuss ongoing work on other non- and semi-parametric estimation

problems using dyadic data.

We show that an (obvious) adaptation of the Rosenblatt (1956) and Parzen (1962)

kernel density estimator is applicable to dyadic data. While our dyadic density estimator

is straightforward to define, its rate-of-convergence and asymptotic sampling properties,

depart significantly from its monadic counterpart. Let N be the number of sampled

agents and n =
(

N
2

)

the corresponding number of dyads. Estimation is based upon the

n dyadic outcomes. Due to dependence across dyads sharing an agent in common, the

rate of convergence of our density estimate is (generally) much slower than it would be

with n i.i.d. outcomes. This rate-of-convergence is also invariant across a wide range

of bandwidth sequences. This property is familiar from the econometric literature on

2See Nowicki (1991) for a summary of earlier research in this area.
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semiparametric estimation (e.g., Powell, 1994). Indeed, from a certain perspective, our

nonparametric dyadic density estimate can be viewed as a semiparametric estimator

(in the sense that it can be thought of as an average of nonparametrically estimated

densities). We also explore the impact of “degeneracy” – which arises when dependence

across dyads vanishes – on our sampling theory; such degeneracy features prominently

in Menzel’s (2017) innovative analysis of inference on dyadic means. We expect that

many of our findings generalize to other non- and semi-parametric network estimation

problems.

In the next section we present our maintained data/network generating process and

proposed kernel density estimator. Section 3 explores the mean square error properties of

this estimator, while Section 4 outlines asymptotic distribution theory. Section 5 presents

a consistent variance estimator, which can be used to construct Wald statistics and Wald-

based confidence intervals. We summarize the results of a small simulation study in

Section 6. In Section 7 we discuss various extensions and ongoing work. Calculations not

presented in the main text are collected in Appendix A.

It what follows we interchangeably use unit, node, vertex, agent and individual all to

refer to the i = 1, . . . , N vertices of the sampled network or graph. We denote random

variables by capital Roman letters, specific realizations by lower case Roman letters and

their support by blackboard bold Roman letters. That is Y , y and Y respectively denote

a generic random draw of, a specific value of, and the support of, Y . For Wij a dyadic

outcome, or weighted edge, associated with agents i and j, we use the notationW = [Wij ]

to denote the N ×N adjacency matrix of all such outcomes/edges. Additional notation

is defined in the sections which follow.

2 Model and estimator

Model

Let i = 1, . . . , N index a simple random sample of N agents from some large (infinite)

network of interest. A pair of agents constitutes a dyad. For each of the n =
(

N
2

)

sampled

dyads, that is for i = 1, ..., N − 1 and j = i + 1, . . . , N , we observe the (scalar) random

variable Wij, generated according to

Wij = W (Ai, Aj, Vij) = W (Aj , Ai, Vij), (1)

where Ai is a node-specific random vector of attributes (of arbitrary dimension, not nec-

essarily observable), and Vij = Vji is an unobservable scalar random variable which is

continuously distributed on R with density function fV (v).
3 Observe that the function

3In words we observe the weighted subgraph induced by the randomly sampled agents.
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W (a1, a2, v12) is symmetric in its first two arguments, ensuring that Wij = Wji is undi-

rected.

In what follows we directly maintain (1), however, it also a consequence of assuming

that the infinite graph sampled from is jointly exchangeable (Aldous, 1981; Hoover, 1979).

Joint exchangeability of the sampled graph W = [Wij ] implies that

[Wij ]
D
=
[

Wπ(i)π(j)

]

(2)

for every π ∈ Π where π : {1, . . . , N} → {1, . . . , N} is a permutation of the node indices.

Put differently, when node labels have no meaning we have that the “likelihood” of any

simultaneous row and column permutation of W is the same as that of W itself.4 See

Menzel (2017) for a related discussion.

Our target object of estimation is the marginal density function fW (w) of Wij , defined

as the derivative of the cumulative distribution function (c.d.f.) of Wij,

Pr{Wij ≤ w} def≡ FW (w) =

∫ w

−∞

fW (u)du.

To ensure this density function is well-defined on the support of Wij , we assume that the

unknown function W (a1, a2, v) is strictly increasing and continuously differentiable in its

third argument v, and we also assume that Ai and Aj are statistically independent of the

“error term” Vij for all i and j. Under these assumptions, by the usual change-of-variables

formula, the conditional density of Wij given Ai = a1 and Aj = a2 takes the form

fY |AA(w|a1, a2) = fV (W
−1(a1, a2, w)) ·

∣

∣

∣

∣

∂W (a1, a2,W
−1(a1, a2, w))

∂v

∣

∣

∣

∣

−1

.

In the derivations below we will assume this density function is bounded and twice con-

tinuously differentiable at w with bounded second derivative for all a1 and a2; this will

follow from the similar smoothness conditions imposed on the primitives W−1(·, ·, w) and
fV (v).

To derive the marginal density of Wij note that, by random sampling, the {Ai}
sequence is independently and identically distributed (i.i.d.), as is the {Vij} sequence.

Under these conditions, we can define the conditional densities of Wij given Ai = a or

Aj = a alone as

fW |A(w|a) ≡ E[fW |AA(w|a, Aj)] = E[fW |AA(w|Ai, a)],

4For W = [Wij ] the N ×N weighted adjacency matrix and P any conformable permutation matrix

Pr (W ≤ w) = Pr (PWP ≤ w)

for all w ∈ W = R

(

N

2

)

.
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and, averaging, the marginal density of interest as

fW (w)
def≡ E[fW |AA(w|Ai, Aj)] = E[fW |A(w|Ai)].

Let i, j, k and l index distinct agents. The assumption that {Ai} and {Vij} are i.i.d.

implies that while Wij varies independently of Wkl (since the {i, j} and {k, l} dyads

share no agents in common), Wij will not vary independently of Wik as both vary with Ai

(since the {i, j} and {i, k} dyads both include agent i). This type of dependence structure

is sometimes referred to as “dyadic clustering” in empirical social science research (cf.,

Fafchamps & Gubert, 2007; Cameron & Miller, 2014; Aronow et al., 2017). The implica-

tions of this dependence structure for density estimation and – especially – inference is a

key area of focus in what follows.

Estimator

Given this construction of the marginal density fW (w) of Wij , it can be estimated using

an immediate extension of the kernel density estimator for monadic data first proposed

by Rosenblatt (1956) and Parzen (1962):

f̂W (w) =
(

N
2

)−1
N−1
∑

i=1

N
∑

j=1+1

1

h
K

(

w −Wij

h

)

def≡ 1

n

∑

i<j

Kij,

where

Kij

def≡ 1

h
K

(

w −Wij

h

)

.

Here K(·) is a kernel function assumed to be (i) bounded (K(u) ≤ K̄ for all u), (ii)

symmetric (K(u) = K(−u)), (ii) , and zero outside a bounded interval (K(u) = 0 if

|u| > ū); we also require that it (iv) integrates to one (
∫

K(u)du = 1). The bandwidth

h = hN is assumed to be a positive, deterministic sequence (indexed by the number of

nodes N) that tends to zero as N → ∞, and will satisfy other conditions imposed below.

A discussion of the motivation for the kernel estimator f̂W (w) and its statistical properties

under random sampling (of monadic variables) can be found in Silverman (1986, Chapers

2 & 3).

3 Rate of convergence analysis

To formulate conditions for consistency of f̂W (w), we will evaluate its expectation and

variance, which will yield conditions on the bandwidth sequence hN for its mean squared
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error to converge to zero.

A standard calculation yields a bias of f̂W (w) equal to (see Appendix A)

E
[

f̂W (w)
]

− fW (w) = h2B(w) + o(h2) (3)

= O(h2
N),

with

B (w)
def≡ 1

2

∂2fW (w)

∂w2

∫

u2K (u) du.

Equation (3) coincides with the bias of the kernel density estimate based upon a random

(“monadic”) sample.

The expression for the variance of f̂W (w), in contrast to that for bias, does differ from

the monadic (i.i.d.) case due to the (possibly) nonzero covariance between Kij and Kik

for j 6= k:

V

(

f̂W (w)
)

= V

(

1

n

∑

i<j

Kij

)

=

(

1

n

)2
∑

i<j

∑

k<l

C(Kij , Kkl)

=

(

1

n

)2

[n · C(K12, K12) + 2n(N − 2) · C(K12, K13)]

=
1

n
[V(K12) + 2(N − 2) · C(K12, K13)] .

The third line of this expression uses the fact that, in the summation in the second

line, there are n = 1
2
N (N − 1) terms with (i, j) = (k, l) and N(N − 1)(N − 2) =

2n(N −2) terms with one subscript in common; as noted earlier, when Wij and Wkl have

no subscripts in common they are independent (and thus uncorrelated).

To calculate the dependence of this variance on the number of nodes N, we analyze

V(K12) and C(K12, K13). Beginning with the former,

V(K12) = E
[

(K12)
2
]

−
(

E[f̂W (w)]
)2

=
1

h2

∫ [

K

(

w − s

h

)]2

fW (s)ds+O(1)

=
1

h

∫

[K (u)]2fW (w − hu)du+O(1)

=
fW (w)

h
·
∫

[K (u)]2du+O(1)

def≡ 1

hN

Ω2(w) +O(1),
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where

Ω2(w)
def≡ fW (w) ·

∫

[K (u)]2du.

Like the expected value, this own variance term is of the same order of magnitude as in

the monadic case,

V(K12) = O

(

1

h

)

.

However, the covariance term C(Kij, Kil), which would be absent for i.i.d. monadic data,

is generally nonzero. Since

E[Kij ·Kik] = E

[
∫ ∫

1

h2

[

K

(

w − s1
h

)]

·
[

K

(

w − s2
h

)]

· fW |AA(s1|A1, A2)fW |AA(s2|A1, A3)ds1ds2
]

= E

[
∫

[K (u1)] fW |A(w − hu1|A1)du1

·
∫

[K (u2)] fW |A(w − hu2|A1)du2

]

,

= E
[

fW |A(w|A1)
2
]

+ o(1),

(where the second line uses the change of variables s1 = w − hu1 and s2 = w − hu2 and

mutual independence of A1, A2, and A3). It follows that

C(Kij, Kik) = E[Kij ·Kik]−
(

E[f̂W (w)]
)2

=
[

E
[

fW |A(w|A1)
2
]

− fW (w)2
]

+O(h2)

= V(fW |A(w|A1)) + o(1)

def≡ Ω1(w) + o (1) ,

with

Ω1(w)
def≡ V(fW |A(w|A1)).

Therefore,

V

(

f̂W (w)
)

=
1

n
[2(N − 2) · C(K12, K13) + V(K12)]

=
4

N
Ω1(w) +

(

1

nh
Ω2(w)−

2

n
Ω1(w)

)

+ o

(

1

N

)

(4)

= O

(

4Ω1(w)

N

)

+O

(

Ω2(w)

nh

)

.
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and the mean-squared error of f̂W (w) is, using (3) and (4),

MSE
(

f̂W (w)
)

=
(

E[f̂W (w)]− fW (w)
)2

+ V

(

f̂W (w)
)

=h4B(w)2 +
4

N
Ω1(w) +

(

1

nh
Ω2(w)−

2

n
Ω1(w)

)

(5)

+ o(h4) + o

(

1

N

)

=O
(

h4
)

+O

(

4Ω1(w)

N

)

+O

(

Ω2(w)

nh

)

Provided that Ω1(w) 6= 0 and the bandwidth sequence hN is chosen such that

Nh → ∞, Nh4 → 0 (6)

as N → ∞, we get that

MSE
(

f̂W (w)
)

= o

(

1

N

)

+O

(

1

N

)

+ o

(

1

N

)

= O

(

1

N

)

,

and hence that √
N(f̂W (w)− fW (w)) = Op(1).

In fact, the rate of convergence of f̂W (w) to fW (w) will be
√
N as long as Nh4 ≤ C ≤ Nh

for some C > 0 as N → ∞, although the mean-squared error will include an additional

bias or variance term of O(N−1) if either Nh or (Nh4)−1 does not diverge to infinity.

To derive the MSE-optimal bandwidth sequence we minimize (5) with respect to its

first and third terms, this yields an optimal bandwidth sequence of

h∗
N (w) =

[

1

4

Ω2 (w)

B (w)2
1

n

] 1

5

(7)

= O
(

N− 2

5

)

.

This sequence satisfies condition (6) above.

Interestingly, the rate of convergence of f̂W (w) to fW (w) under condition (6) is the

same as the rate of convergence of the sample mean

W̄
def≡ 1

n

∑

i<j

Wij (8)

to its expectation µW

def≡ E[Wij ] when E[W 2
ij ] < ∞. Similar variance calculations to those

7



for f̂w(w) yield (see also Holland & Leinhardt (1976) and Menzel (2017))

V(W̄ ) = O

(

V(Wij)

n

)

+O

(

4V(E[Wij |Ai])

N

)

= O

(

1

N

)

,

provided E[Wij |Ai] is non-degenerate, yielding

√
N(W̄ − µ) = Op(1).

Thus, in contrast to the case of i.i.d monadic data, there is no convergence-rate “cost”

associated with nonparametric estimation of fW (w). The presence of dyadic dependence,

due to its impact on estimation variance, does slow down the feasible rate of convergence

substantially. With iid data the relevant rate for density estimation would be n2/5 when

the MSE-optimal bandwidth sequence is used. Recalling that n = O (N2), the
√
N rate

we find here corresponds to an n1/4 rate. The slowdown from n2/5 to n1/4 captures the

rate of convergence costs of dyadic dependence on the variance of our density estimate.

The lack of dependence of the convergence rate of f̂W (w) to fW (w) on the precise

bandwidth sequence chosen is analogous to that for semiparametric estimators defined as

averages over nonparametrically-estimated components (e.g., Newey, 1994; Powell, 1994).

Defining Kji

def≡ Kij , the estimator f̂W (w) can be expressed as

f̂W (w) =
1

N

N
∑

i=1

f̂W |A(w|Ai),

where

f̂W |A(w|Ai)
def≡ 1

N − 1

N
∑

j 6=i,j=1

Kij.

Holding i fixed, the estimator f̂W |A(W |Ai) can be shown to converge to fW |A(w|Ai) at

the nonparametric rate
√
Nh, but the average of this nonparametric estimator over Ai

converges at the faster (“parametric”) rate
√
N. In comparison, while

W̄ =
1

N

N
∑

i=1

Ê [Wij |Ai] ,

for

Ê [Wij |Ai]
def≡ 1

N − 1

N
∑

j 6=i,j=1

Wij,

the latter converges at the parametric rate
√
N, and the additional averaging to obtain

W̄ does not improve upon that rate.
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4 Asymptotic distribution theory

To derive conditions under which f̂W (w) is approximately normally distributed it is help-

ful to decompose the difference between f̂W (w) and fW (w) into four terms:

f̂W (w)− fW (w) =
1

n

∑

i<j

(Kij − E[Kij |Ai, Aj ]) (9)

+
1

n

∑

i<j

E[Kij |Ai, Aj] (10)

−
(

E[Kij ] +
2

N

N
∑

i=1

(E[Kij |Ai]− E[Kij ])

)

+
2

N

N
∑

i=1

(E[Kij |Ai]− E[Kij ]) (11)

+ E[Kij ]− fW (w) (12)

≡ T1 + T2 + T3 + T4.

To understand this decomposition observe that the projection of f̂W (w) = 1
n

∑

i<j Kij

onto {Ai}Ni=1 equals, by the independence assumptions imposed on {Ai} and {Vij}, the
U-statistic

(

N
2

)−1∑

i<j E[Kij |Ai, Aj ]. This U-Statistic is defined in terms of the latent

i.i.d. random variables {Ai}Ni=1.

The first term in this expression, line (9), is f̂W (w) minus the projection/U-Statistic

described above. Each term in this summation has conditional expectation zero given

the remaining terms (i.e., the terms form a martingale difference sequence).

The second term in the decomposition, line (10), is the difference between the second-

order U-statistic 1
n

∑

i<j E[Kij |Ai, Aj] and its Hájek projection (e.g., van der Vaart, 2000)5,

the third term, line (11), is a centered version of that Hájek projection, and the final

term, line (12), is the bias of f̂W (w). A similar “double projection” argument was used

by Graham (2017) to analyze the large sample properties of the Tetrad Logit estimator.

If the bandwidth sequence h = hN satisfies the conditions Nh → ∞ and Nh4 → 0,

the calculations in the previous section can be used to show that the first, second, and

fourth terms of this decomposition (i.e., T1, T2, and T4) will all converge to zero when

normalized by
√
N . In this case, T3, which is an average of i.i.d. random variables, will

be the leading term asymptotically such that

√
N(f̂W (w)− fW (w))

D→ N (0, 4Ω1(w)),

assuming Ω1(w) = V(fW |A(w|Ai)) > 0.

5That is the projection of 1

n

∑

i<j E[Kij |Ai, Aj ] onto the linear subspace consisting of all functions of

the form
∑N

i=1
gi (Ai).
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If, however, the bandwidth sequence h has Nh → C < ∞ (a “knife-edge” under-

smoothing condition similar to one considered by Cattaneo et al. (2014) in a different

context), then both T1 and T3 will be asymptotically normal when normalized by
√
N.

To accommodate both of these cases in a single result, we will show that a standardized

version of the sum T1 + T3 will have a standard normal limit distribution, although the

first, T1, term may be degenerate in the limit.

In Appendix A we show that both T2 and T4 will be asymptotically negligible when

normalized by the convergence rate of T1 + T3, such that the asymptotic distribution of

f̂W (w) will only depend on the T1 and T3 terms.

We start by rewriting the sum of terms T1 and T3 as

T1 + T3 =
1

n

∑

i<j

(Kij − E[Kij |Ai, Aj ]) +
2

N

N
∑

i=1

(E[Kij |Ai]− E[Kij ])

def≡
T (N)
∑

t=1

XNt,

where

T (N) ≡ N + n

and the triangular array XNt is defined as

XN1 =
2

N
(E[K12|A1]− E[K12]) ,

XN2 =
2

N
(E[K23|A2]− E[K23]) ,

...

XNN =
2

N
(E[KN,1|AN ]− E[KN,1]),

XN,N+1 =
1

n
(K12 − E[K12|A1, A2]),

XN,N+2 =
1

n
(K13 − E[K13|A1, A3])

...

XN,N+N−1 =
1

n
(K1N − E[K1N |A1, AN ]),

...

XN,N+n =
1

n
(KN−1,N − E[KN−1,N |AN−1, AN ]).

That is, {XNt} is the collection of terms of the form

2

N
(E[Kij |Ai]− E[Kij ])

10



for i = 1, ..., N (with j 6= i) and

1

n
(Kij − E[Kij |Ai, Aj])

for i = 1, ..., N − 1 and j = i+ 1, ..., N. Using the independence assumptions on {Ai}Ni=1

and {Vij}i<j , as well as iterated expectations, it is tedious but straightforward to verify

that

E[XNt|{XNs, s 6= t}] = 0,

that is, XNT is a martingale difference sequence (MDS).

Defining the variance of this MDS as

σ2
N

def≡ E





T (N)
∑

t=1

XNt





2

=

T (N)
∑

t=1

V(XNt),

we can demonstrate asymptotic normality of its standardized sum – 1
σN

∑T (N)
t=1 XNt –

by a central limit theorem for martingale difference triangular arrays (see, for example,

Hall & Heyde (1980), Theorem 3.2 and Corollary 3.1 and White (2001), Theorem 5.24

and Corollary 5.26). Specifically, if the Lyapunov condition

T (N)
∑

t=1

E

(

XNt

σN

)r

→ 0 (13)

holds for some r > 2, and also the stability condition

T (N)
∑

t=1

(

XNt

σN

)2
p→ 1, (14)

holds then

T (N)
∑

t=1

XNt

σN
=

1

σN
(T1 + T3)

D→ N (0, 1). (15)

11



From the calculations used in the MSE analysis of Section 3 we have that

σ2
N = V(T1) + V(T3)

=
E[K2

ij ]

n
+

4V(E[Kij|Ai])

N
+O

(

1

n

)

=
Ω2(w)

nh
+

4Ω1(w)

N
+O

(

1

n

)

+O

(

h2

N

)

,

so, taking r = 3,
1

σ2
N

= O(N)

assuming Ω1(w) > 0 and Nh ≥ C > 0. In the degenerate case, where V(E[Kij |Ai]) =

Ω1(w) = 0, we will still have (σN )
−2 = O(nh) = O(N) as long as the “knife-edge”

h ∝ N−1 undersmoothing bandwidth sequence is chosen.

To verify the Lyapunov condition (13), note that

E

(

1

n
(Kij − E[Kij |Ai, Aj ])

)3

≤ 8E

(

Kij

n

)3

=
8

n3

1

h3

∫
[

K

(

w − s

h

)]3

fW (s)ds

=
8

n3h2

∫

[K (u)]3fW (w − hu)du

= O

(

1

n3h2

)

(16)

and

E

(

2

N
(E[Kij |Ai]− E[Kij ])

)3

≤ 82

N3
E (E[Kij |Ai])

3

=
82

N3
E

(
∫

K (u) fW |A(w − hu|Ai)du

)3

= O

(

1

N3

)

. (17)
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Putting things together we get that

T (N)
∑

t=1

E (XNt)
3 =nE

(

1

n
(Kij − E[Kij |Ai, Aj ])

)3

+NE

(

2

N
(E[Kij |Ai]− E[Kij ])

)3

=O

(

1

(nh)2

)

+O

(

1

N2

)

=O

(

1

N2

)

when Nh ≥ C > 0 for all N. Therefore the Lyapunov condition (13) is satisfied for r = 3,

since

T (N)
∑

t=1

E

(

XNt

σN

)3

= O(N3/2) · O
(

1

N2

)

= O

(

1√
N

)

= o(1).

To verify the stability condition (14), we first rewrite that condition as

0 = lim
N→∞





1

σ2
N

T (N)
∑

t=1

(

X2
Nt − E

[

X2
Nt

])



 (18)

= lim
N→∞





1

Nσ2
N

T (N)
∑

t=1

(R1 +R2)





where

R1 ≡N

N
∑

i=1

[

(

2

N
(E[Kij |Ai]− E[Kij ])

)2

− E

(

2

N
(E[Kij |Ai]− E[Kij ])

)2
]

+N
∑

i<j

[

(

1

n
(Kij − E[Kij |Ai, Aj])

)2

− E

[

(

1

n
(Kij − E[Kij |Ai, Aj])

)2
∣

∣

∣

∣

∣

Ai, Aj

]]

and

R2 ≡ N
∑

i<j

[

E

[

(

1

n
(Kij − E[Kij |Ai, Aj])

)2
∣

∣

∣

∣

∣

Ai, Aj

]

− E

[

(

1

n
(Kij − E[Kij |Ai, Aj])

)2
]]

.

Since 1/Nσ2
N = O(1), the stability condition (18) will hold if R1 and R2 both converge

to zero in probability.

13



By the independence restrictions on {Uij} and {Ai}, the (mean zero) summands in

R1 are mutually uncorrelated, so

E
[

R2
1

]

≡ N2
N
∑

i=1

E





(

(

2

N
(E[Kij |Ai]− E[Kij ])

)2

− E

(

2

N
(E[Kij |Ai]− E[Kij ])

)2
)2




+N2
∑

i<j

E





(

(

1

n
(Kij − E[Kij |Ai, Aj])

)2

− E

[

(

1

n
(Kij − E[Kij |Ai, Aj])

)2
∣

∣

∣

∣

∣

Ai, Aj

])2




= O

(

E (E[Kij |Ai])
4

N

)

+O

(

N2E (Kij)
4

n3

)

.

But, using analogous arguments to (16) and ((17),

E
[

E[Kij |Ai]
4
]

= O (1)

and

E
[

K4
ij

]

= O

(

1

h3

)

,

so

E
[

R2
1

]

= O

(

1

N

)

+O

(

N2

(nh)3

)

= O

(

1

N

)

= o(1),

under the bandwidth condition that 1/nh = O(1/N). So R1 converges in probability to

zero. Moreover, R2 is proportional to a (mean zero) second-order U-statistic,

R2 =
1

n

∑

i<j

N

n

[

E
[

(Kij − E[Kij |Ai, Aj ])
2
∣

∣Ai, Aj

]

− E
[

(Kij − E[Kij |Ai, Aj])
2
]]

≡ 1

n

∑

i<j

pN(Ai, Aj),

with kernel having second moment

E
[

pN(Ai, Aj)
2
]

= O

(

N2

n2
E
(

E[K2
ij |Ai, Aj ]

)2
)

= O

(

N2

n2
· 1
h2

)

= O(1)

= o(N),

14



again imposing the bandwidth restriction 1/nh = O(1/N). Thus by Lemma 3.1 of

Powell et al. (1989), R2 converges in probability to its (zero) expected value.

Since conditions (13) and (14) both hold, a central limit theorem for martingale

difference triangular arrays implies

1

σN
(T1 + T3)

D→ N (0, 1).

A final step is to used this result to obtain the asymptotic distribution of f̂W (w). Because

1

σN
= O

(√
N
)

,

we have that T2 and T4 are asymptotically negligible after standardization with σ−1
N (see

Appendix A),

T2

σN
= Op

(
√

N

n

)

= op(1)

and
T4

σN

= O
(√

Nh2
)

= o(1),

so that

1

σN

(

f̂W (w)− fW (w)
)

=
1

σN

(T1 + T2 + T3 + T4)

D→ N (0, 1).

When Nh4 → 0 and Nh → ∞,

Nσ2
N → 4Ω1(w)

and √
N
(

f̂W (w)− fW (w)
)

D→ N (0, 4Ω1(w))

as long as V(E[Kij |Ai]) > 0.

Under “knife-edge” bandwidth sequences, such that Nh → C > 0, we have instead

that

Nσ2
N → 4Ω1(w) + C−1Ω2(w)

and √
N(f̂W (w)− fW (w))

D→ N (0, 4Ω1(w) + C−1Ω2(w)).

Degeneracy

Degeneracy arises when V(E[Kij |Ai]) = Ω1 (w) = 0. In terms of the underlying network

generating process (NGP), degeneracy arises when the conditional density of Wij at w

15



given Ai = a is constant in a (i.e., when V
(

fW |A (w|Ai)
)

= 0).

As a simple example of such an NGP, let Ai equal −1 with probability π and 1

otherwise; next set

Wij = AiAj + Vij

with Vij standard normal. In this case the conditional density fW |A (w|Ai) is the mixture

fW |A (w|Ai) = πφ (w + Ai) + (1− π)φ (w − Ai)

with φ (·) the standard normal density function. Unconditionally the density is

fW (w) =
[

π2 + (1− π)2
]

φ (w − 1) + 2π (1− π)φ (w + 1) .

Observe that, if π = 1/2, then fW |A (w|Ai = 1) = fW |A (w|Ai = −1) = fW (w) and

hence that V
(

fW |A (w|Ai)
)

= 0.6 Degeneracy arises in this case, even though there

is non-trivial dependence across dyads sharing an agent in common. If π 6= 1/2, then

V
(

fW |A (w|Ai)
)

> 0, but one still might worry about “near degeneracy” when π is close

to 1/2.

Menzel (2017) shows that under degeneracy, the limit distribution of the sample mean,

W̄ , equation (8) on on page 7 above, may be non-Gaussian. This occurs because (i) the

T1 and T2 terms in a double projection decomposition of W̄ analogous to the one used

here for f̂W (w) will be of equal order and T2, the Hájek Projection error, may be non-

Gaussian (as is familiar from the theory of U-Statistics, e.g., Chapter 12 of van der Vaart

(2000)).

The situation is both more complicated and simpler here. In the case of the estimated

density f̂W (w), if the bandwidth sequence h = hN satisfies the conditions Nh → ∞ and

Nh4 → 0, then T2 will be of smaller order than T1 and hence not contribute to the limit

distribution irrespective of whether the NGP is degenerate or not. In particular, under

degeneracy the Liaponuv condition (13) continues to hold for r = 3 since

T (N)
∑

t=1

E

(

XNt

σN

)3

= O

(

1√
nh

)

and it follows straightforwardly that 1
σN

(

f̂W (w)− fW (w)
)

continues to be normal in

the limit.

The “knife-edge” undersmoothing bandwidth sequence is primarily of interest because

it results in a sequence where both T1 and T3 contribute to the limit distribution. In

practice this does not mean that the researcher should set h = hN ∝ N−1. Based on

the theoretical analysis sketched above, we recommend choosing a sequence that tends

6Degeneracy also arises when w = 1.
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to zero slightly faster than mean squared error optimal sequence where h = hN ∝ n−1/5.7

Under such a sequence we will have

√
N(f̂W (w)− fW (w))

D→ N (0, 4Ω1(w))

under non-degeneracy and

√
nh(f̂W (w)− fW (w))

D→ N (0,Ω2(w))

under degeneracy. Although the rate of convergence of f̂W (w) to fW (w) is faster in the

case of degeneracy this will not affect inference in practice as long as an appropriate

estimate of σN is used; that is working directly with (f̂W (w)− fW (w))/σN ensures rate-

adaptivity. Note also that, in the absence of degeneracy, the MSE optimal bandwidth

sequence could be used. By slightly undersmoothing relative to this sequence, we ensure

that the limit distribution remains unbiased in case of degeneracy.

5 Asymptotic variance estimation

To construct Wald-based confidence intervals for f̂W (w), a consistent estimator of its

asymptotic variance is needed. When Nh → C < ∞, the asymptotic variance depends

on both

Ω2(w)
def≡ fW (w) ·

∫

[K (u)]2du

and

Ω1(w)
def≡ V

(

fW |A(w|Ai)
)

.

In this section we present consistent estimators for both of these terms.

A simple estimator of Ω2(w) is

Ω̃2(w) =
h

n

∑

i<j

K2
ij , (19)

the consistency of which we demonstrate in Appendix A:

Ω̃2(w)
p→ Ω2(w). (20)

The estimator Ω̃2(w) uses the second moment of Kij instead of its sample variance to

estimate Ω2(w); in practice we recommend, similar to Newey (1994) in the context of

7In practice “plug-in” bandwidths that would be appropriate in the absence of any dyadic dependence
across the {Wij}i<j

might work well; although this remains an unexplored conjecture.
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monadic kernel-based estimation, the less conservative alternative:

Ω̂2(w) ≡ h

((

1

n

∑

i<j

K2
ij

)

−
(

f̂W (w)
)2
)

= h

(

1

n

∑

i<j

(

Kij − f̂W (w)
)2
)

= Ω̃1(w) + op(1)

= Ω1(w) + op(1).

We next turn to estimation of

Ω1(w) = V
(

fW |A(w|A1)
)

= lim
N→∞

C(Kij , Kij)

where i 6= k. A natural sample analog estimator, following a suggestion by Graham

(TBD) in the context of parametric dyadic regression, involves an average over the three

indices i, j, and k:

Ω̂1(w) ≡
1

N(N − 1)(N − 2)

∑

i 6=j 6=k

(Kij − f̂W (w))(Kik − f̂W (w))

≡
(

N

3

)−1
∑

i<j<k

Sijk − f̂W (w)2,

for Sijk =
1
3
(KijKik +KijKjk +KikKjk) .

8 In Appendix A we show that

Ω̂1(w)
p→ Ω1(w). (21)

Inserting these estimators, Ω̂1(w) and Ω̂2(w), into the formula for the variance of

f̂W (w) yields a variance estimate of

σ̂2
N =

1

nh
Ω̂2(w) +

2(N − 2)

n
Ω̂1(w). (22)

8See also the variance estimator for density presented in Holland & Leinhardt (1976).
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We end this section by observing that the following equality holds

σ̂2
N =

1

n2

∑

i<j

(

Kij − f̂W (w)
)2

+
2(N − 2)

n

(

1

N(N − 1)(N − 2)

∑

i 6=j 6=k

(Kij − f̂W (w))(Kik − f̂W (w))

)

=
1

n2

(

∑

i<j

∑

k<l

dijkl(Kij − f̂W (w))(Kkl − f̂W (w))

)

,

where

dijkl = 1{i = j, k = l, i = l, or j = k}.

As Graham (TBD) notes, this coincides with the estimator for

V(W̄ ) = V

(

1

n

∑

i<j

Wij

)

proposed by Fafchamps & Gubert (2007), replacing “Wij−W̄” with “Kij−K̄”, with K̄
def≡

f̂W (w) (see also Holland & Leinhardt (1976), Cameron & Miller (2014) and Aronow et al.

(2017)). Our variance estimator can also be viewed as a dyadic generalization of the

variance estimate proposed by Newey (1994) for “monadic” kernel estimates.

6 Simulation study

Our simulations design is based upon the example used to discuss degeneracy in Section

4. As there we let Ai equal −1 with probability π and 1 otherwise. We generate Wij

Wij = AiAj + Vij

with Vij ∼ N (0, 1). We set π = 1/3 and estimate the density fW (w) at w = 1.645.

We present results for three sample sizes: N = 100, 400 and 1, 600. These sample

sizes are such that, for a “sufficiently non-degenerate” NGP, the standard error of f̂W (w)

would be expected to decline by a factor of 1/2 for each increase in sample size (if the

bandwidth is large enough to ensure that the Ω2(w)
nh

variance term is negligible relative

to the 2Ω1(w)(N−2)
n

≈ 4Ω1(w)
N

one). We set the bandwidth equal to the MSE-optimal

one presented in equation (7) above. This is an ‘oracle’ bandwidth choice. Developing

feasible data-based methods of bandwidth selection would be an interesting topic for

future research.

Table 1 presents the main elements of each simulation design. Panel B of the table

lists “pencil and paper” bias and asymptotic standard error calculations based upon the
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Table 1: Monte Carlo Designs
N 100 400 1,600

Panel A: Design & Bandwidth

π 1
3

1
3

1
3

w 1.645 1.645 1.645
h∗
N (w) 0.2496 0.1431 0.0822

Panel B: Theoretical Sampling Properties

h2B(w) -0.0033 -0.0011 -0.0004

ase
(

f̂W (w)
)

=
√

2Ω1(w)(N−2)
n

+ Ω2(w)
nh

0.0117 0.0053 0.0025

ase (T3) =
√

2Ω1(w)(N−2)
n

0.0098 0.0049 0.0025

ase (T1) =
√

Ω2(w)
nh

0.0065 0.0021 0.0007

Notes: Rows 1 through 3 list the basic Monte Carlo design and bandwidth parameter
choices. The bandwidths coincide with the MSE optimal one given in equation (7). Panel
B gives pencil and paper calculations for the bias of f̂W (w), as well as its asymptotic
standard error (ase), based upon, respectively, equations (3) and (4) in Section 3. The
asymptotic standard errors of T1 and T3, as defined in Section 4, are also separately given.

expressions presented in Section 3 above. Panel B also presents analytic estimates of the

standard deviations of the T1 and T3 terms in the decomposition of f̂W (w) used to derive

its limit distribution. In the given designs both terms of are similar magnitude despite

the fact that the contribution of the T1 term is asymptotically negligible in theory.

Table 2 summarizes the results of 1,000 Monte Carlo simulations. The median bias

and standard deviation of our density estimates across the Monte Carlo replications

closely track our theoretical predictions (compare rows 1 and 2 of Table 2 with Rows 1

and 2 of Panel B of Table 1. Row 3 of the table reports the median “Fafchamps and

Gubert” asymptotic standard error estimate. This standard error estimate is generally

larger than its asymptotic counterpart. Consequently the coverage of confidence intervals

based upon it is conservative (Row 5). The degree of conservatism is declining in sample

size, suggesting that – as expected – the “Fafchamps and Gubert” asymptotic standard

error estimate is closer to its theoretical counterpart as N grows. Row 4 of the table

reports the coverage of confidence intervals based upon standard errors which ignore the

presence of dyadic dependence; these intervals – as expected – fail to cover the true

density frequently enough.

The simulations suggest, for the designs considered, that the asymptotic theory pre-

sented in Sections 3 and 4 provides an accurate approximation of finite sample behavior.

Our variance estimate is a bit conservative for the designs considered; whether this is pe-

culiar to the specific design considered or a generic feature of the estimate is unknown.9

As with bandwidth selection, further exploration of methods of variance estimation in

9We observe that our variance estimate implicitly includes an estimate of the variance of T2, which
is negligible in the limit.
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Table 2: Monte Carlo Results
N 100 400 1, 600

median bias -0.0028 -0.0010 -0.0006
standard deviation 0.0112 0.0051 0.0025

median âse
(

f̂W (w)
)

0.0173 0.0068 0.0028

coverage (iid) 0.678 0.551 0.390
coverage (FG) 0.995 0.987 0.967

Notes: A robust measure of the standard deviation of f̂W (w) is reported in row 2. It
equals the difference between the 0.95 and 0.05 quantiles of the Monte Carlo distribution
of f̂W (w) divided by 2 × 1.645. Row 4 reports the coverage of a nominal 95 percent
Wald-based confidence interval that ignores the presence of dyadic dependence. Row 5
reports the coverage properties of a nominal 95 percent Wald-based confidence interval
that uses the Fafchamps & Gubert (2007) variance estimate discussed in Section 4.

the presence of dyadic dependence is warranted.

7 Extensions

There are a number of avenues for extension or modification of the simple results for scalar

density estimation presented above. One variant of these results would apply when the

dyadic variable Wij lacks the idiosyncratic component Vij, i.e., when

Wij = W (Ai, Aj),

for {Ai} an i.i.d. sequence. This case arises when Wij is a measure of “distance” between

the attributes of nodes i and j, for example,

Wij =

√

(Ai − Aj)
2,

for Ai a scalar measure of “location” for agent i. The asymptotic distribution of f̂W (w)

derived above should be applicable to this case as long as the conditional density function

fW |A(w|a) ofWij given Ai is well-defined, which would be implied if Ai has a continuously-

distributed component given its remaining component (if any) and the function W (·) is
continuously differentiable in that component. In the decomposition of f̂W (w)− fW (w)

for this case, the term corresponding to T1 would be identically zero (as would Ω2(w)),

but the T2 term could still be shown to be asymptotically negligible using Lemma 3.1 of

Powell et al. (1989) as long as Nh → ∞.

Another straightforward extension of this analysis would be to directed dyadic data,

where Wij is observed for all pairs of indices with i 6= j and Wij 6= Wji with positive
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probability. The natural generalization of the data generation process would be

Wij = W (Ai, Bj , Vij),

with {Ai}, {Bj}, and {Vij} mutually independent and i.i.d. with Vij 6= Vji in general.

Here the conditional densities

fW |A(w|a) = E[fW |AB(w|Ai = a, Bj)]

and

fW |B(w|b) = E[fW |AB(w|Ai, Bj = b)]

will differ, and the asymptotic variance of f̂W (w) will depend upon

Ω1(w) = V

(

1

2

(

fW |A(w|Ai) + fW |B(w|Bi)
)

)

in a way analogous to how Ω1(w), defined earlier, does in the undirected case analyzed

in this paper.

Yet another generalization of the results would allowWij to be a p-dimensional jointly-

continuous Wij random vector. The estimator

f̂W (w) =
1

n

N−1
∑

i=1

N
∑

j=1+1

1

hp
K

(

w −Wij

h

)

of the p-dimensional density function fW (w) will continue to have the same form as

derived in the scalar case, provided Nhp → ∞ (or Nhp → C > 0) as long as the relevant

bias term T4 is negligible. If the density is sufficiently smooth and K(·) is a ”higher-order

kernel” with

∫

K(u)du = 1,

∫

uj1
1 u

j2
2 ...u

jp
p K(u)du = 0 for ji ∈ {0, ..., q} with

p
∑

i=1

ji < q,

then the bias term T4 will satisfy

T4 ≡ E

[

f̂W (w)
]

− fW (w)

= O(hq).

As long as q can be chosen large enough so that Nh2q → 0 while Nhp ≥ C > 0, the bias

term T4 will be asymptotically negligible and the density estimator f̂W (w) should still be
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asymptotically normal with asymptotic distribution of the same form derived above.

Finally, a particularly useful extension of the kernel estimation approach for dyadic

data would be to estimation of the conditional expectation of one dyadic variable Yij

conditional on the value w of another dyadic variable Wij , i.e., estimation of

g(w) ≡ E[Yij |Wij = w]

when the vector Wij has p jointly-continuously distributed components conditional upon

any remaining components. Here the Nadaraya-Watson kernel regression estimator (Nadaraya,

1964; Watson, 1964) would be defined as

ĝ(w) ≡
∑

i 6=j K
(

w−Wij

h

)

Yij

∑

i 6=j K
(

w−Wij

h

) ,

and the model for the dependent variable Yij would be analogous to that for Wij , with

Yij = Y (Ai, Bj, Uij)

Wij = W (Ai, Bj, Vij)

in the directed case (and Bj ≡ Aj for undirected data), with {Ai}, {Bj}, and {(Ui, Vij)}
assumed mutually independent and i.i.d. The large-sample theory would treat the nu-

merator of ĝ(w) similarly to that for the denominator (which is proportional to the ker-

nel density estimator f̂W (w)); our initial calculations for undirected data with a scalar,

continuously-distributed regressor Wij yield

√
N (ĝ(w)− g(w))

D→ N (0, 4Γ1(w)),

when Nhp → ∞ and Nh4 → 0, where

Γ1(w) ≡ V

(

E[Yij |Ai,Wij = w] · fW |A(w|Ai)

fW (w)

)

.

If this calculation is correct, then, like the density estimator f̂W (w) the rate of convergence

for the estimator ĝ(w) of the conditional mean g(w) would be the same as the rate for the

estimator µ̂Y = Ȳ of the unconditional expectation µy = E[Yij ] = E[g(Wij)], in contrast

to the estimation using i.i.d. (monadic) data. We intend to verify these calculations and

derive the other extensions in future work.
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A Proofs

Derivation of bias expression, equation (3) of the main text

Under the conditions imposed in the main text, the expected value of f̂W (w) is

E

[

f̂W (w)
]

= E

[

1

h
K

(

w −W12

h

)]

= E

[∫

1

h
K

(

w − s

h

)

fW (s)ds

]

=

∫

K (u) fW (w − hu)du

= fW (w) +
h2

2

∂2fW (w)

∂w2

∫

u2K (u) du+ o(h2)

≡ fW (w) + h2B(w) + o(h2).

The first line in this calculation follows from the fact that Wij is identically distributed

for all i, j, the third line uses the change-of-variables s = w − hu, and the fourth line

follows from a second-order Taylor’s expansion of fW (w− hu) around h = 0 and the fact

that
∫

u ·K(u)du = 0

because K(u) = K(−u).

Demonstration of asymptotic negligibility of T2 and T4

Equation (10), which defines T2, involves averages of the random variables

E[Kij |Ai, Aj ] =

∫

1

h
K

(

w − s

h

)

fW |AA(s|Ai, Aj)ds

=

∫

K (u) fW |AA(w − hu|Ai, Aj)du

and

E[Kij |Ai] =

∫

1

h
K

(

w − s

h

)

fW |A(s|Ai)ds

=

∫

K (u) fW |A(w − hu|Ai)du

which are both assumed bounded, so T2 can be written, after some re-arrangement, as

the degenerate second-order U-statistic,

T2 =
1

n

∑

i<j

(E[Kij |Ai, Aj ]− E[Kij |Ai]− E[Kij |Aj] + E[Kij ]))
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with all summands uncorrelated. This implies, squaring and taking expectations, that

E[T 2
2 ] =

1

n2

∑

i<j

E[(E[Kij |Ai, Aj]− E[Kij |Ai]− E[Kij |Aj] + E[Kij ])
2]

≤ 5

n
E[(E[Kij |Ai, Aj])

2

= O

(

1

n

)

,

so

T2 = Op

(

1√
n

)

= Op

(

1

N

)

.

Turning to the fourth term, defined in equation (12), we demonstrated in Section 3 that

T4 = h2B(w) + o(h2) = O(h2).

Demonstration of consistency of Ω̂2 (w), equation (20) of the main text.

To show result (20) of the main text, we start by showing asymptotic unbiasedness of

Ω̃2(w) for Ω2(w). The expected value of the summands in (19) equal

E
[

(K12)
2
]

=
1

h

∫

[K (u)]2fW (w − hu)du

=
fW (w)

h
·
∫

[K (u)]2du+O(1)

≡ 1

h
Ω2(w) + O(1)

= O

(

1

h

)

,

from which asymptotic unbiasedness follows, since:

E

[

Ω̃2(w)
]

= h

[

1

h
Ω2(w) +O(1)

]

= Ω2(w) + o(1).
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Following the same logic used to calculate the variance of f̂W (w), we calculate the variance

of Ω̃2(w) as

V

(

Ω̃2(w)
)

= V

(

h

n

∑

i<j

K2
ij

)

=

(

h

n

)2
∑

i<j

∑

k<l

C(K2
ij , K

2
kl)

=
h2

n

[

V(K2
12) + 2(N − 2) · C(K2

12, K
2
13)
]

.

The first term in this expression depends upon

V(K2
12) = E

[

K4
12

]

− E
[

K2
12

]2

=
fW (w)

h3
·
∫

[K (u)]4du+O

(

1

h2

)

− E
[

K2
12

]2

= O

(

1

h3

)

,

while the second involves

C(K2
12, K

2
13) = E[K2

12K
2
13]− E

[

K2
12

]2

=
1

h2
E

[
∫

[K (u1)]
2 fW |A(w − hu1|A1)du1

·
∫

[K (u2)]
2 fW |A(w − hu2|A1)du2

]

− E
[

K2
12

]2

= O

(

1

h2

)

.

Putting things together we have that

V

(

Ω̃(w)
)

=
h2

n

[

V(K2
12) + 2(N − 2) ·C(K2

12, K
2
13)
]

=
h2

n

[

O

(

1

h3

)

+ 2(N − 2) · O
(

1

h2

)]

= O

(

1

nh

)

+O

(

1

N

)

= o(1),

which, with convergence of the bias of Ω̃2(w) to zero, establishes (20) of the main text.
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Demonstration of consistency of Ω̂1(w), equation (21) of the main text.

Since f̂W (w) is consistent if Nh4 → 0 and Nh ≥ C > 0, consistency of Ω̂1(w) depends

on the consistency of

Ê[K12K13] ≡
(

N

3

)−1
∑

i<j<k

Sijk

for limN→∞ E[K12K13]. By the fact that Kij = Kji, the expected value of Ê[K12K13] is

E[Sijk] = E

[

1

3
(KijKik +KijKjk +KikKjk)

]

= E [K12K13]

= E

[∫

[K (u1)] fW |A(w − hu1|A1)du1

·
∫

[K (u2)] fW |A(w − hu2|A1)du2

]

= E
[

fW |A(w|A1)
2
]

+ o(1)

from the calculations in Section 3 above. To bound the variance of Ê[K12K13], we note

that, although Ê[K12K13] is not a U-statistic, it can be approximated by the third-order

U-statistic

UN ≡
(

N

3

)−1
∑

i<j<k

pN(Ai, Aj, Ak),

where the kernel pN(·) is

pN(Ai, Aj, Ak) = E[Sijk|Ai, Aj , Ak]

=
1

3
(κijk + κjik + κkij) ,

for

κijk ≡ E[KijKik|Ai, Aj, Ak]

=

∫ ∫

1

h2

[

K

(

w − s1
h

)]

·
[

K

(

w − s2
h

)]

· fW |AA(s1|Ai, Aj)fW |AA(s2|Ai, Ak)ds1ds2

=

∫

[K (u1)] fW |AA(w − hu1|Ai, Aj)du1

·
∫

[K (u2)] fW |AA(w − hu2|Ai, Ak)du2.
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The difference between Ê[K12K13] and UN is

Ê[K12K13]− UN ≡
(

N

3

)−1
∑

i<j<k

(Sijk − E [Sijk|Ai, Aj, Ak]) ,

and the independence of {Vij} and {Ai} across all i and j implies that all terms in this

summation have expectation zero and are mutually uncorrelated with common second

moment, so that

E

[

(

Ê[K12K13]− UN

)2
]

≡
(

N

3

)−1

E[(S123 − E [S123|A1, A2, A3])
2]

≤
(

N

3

)−1

E[S2
123].

But

E[(S123)
2] = E

[

1

3
(K12K13 +K12K23 +K13K23)

]2

=
1

9

(

3E
[

(K12K13)
2]+ 6E[K2

12K13K23]
)

,

where

E
[

(K12K13)
2] = O

(

1

h2

)

,

from previous calculations demonstrating consistency of Ω2 (w), and

E[K2
12K13K23] = E

[

∫ ∫ ∫

1

h4

[

K

(

w − s1
h

)]2

·
[

K

(

w − s2
h

)]

·
[

K

(

w − s2
h

)]

· fW |AA(s1|A1, A2)fW |AA(s2|A1, A3)fW |AA(s2|A1, A3)ds1ds2ds3
]

=
1

h
E

[
∫

[K (u1)]
2 fW |AA(w − hu1|A1, A2)du1

·
∫

K (u2) fW |AA(w − hu2|A1, A3)du2

]

·
∫

K (u2) fW |AA(w − hu2|A1, A3)du2

]

= O

(

1

h

)

.
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These results generate the inequality

E

[

(

Ê[K12K13]− UN

)2
]

≤
(

N

3

)−1

E[(S123)
2]

=

(

N

3

)−1
(

O

(

1

h2

)

+O

(

1

h

))

= O

(

1

N(Nh)2

)

= o(1).

Finally, we note that UN is a third-order “smoothed” U-statistic with kernel

pN(Ai, Aj , Ak) =
1

3
(κijk + κjik + κkij)

satisfying

E
[

(pN (Ai, Aj, Ak))
2] = O(1)

by the assumed boundedness ofK(u) and the conditional density fW |AA(w|Ai, Aj). There-

fore, by Lemma A.3 of Ahn & Powell (1993),

Un − E[UN ] = UN − E[Sijl]

= UN − E
[

fW |A(w|A1)
]2

+ o(1)

= op(1).

Finally, combining all the previous calculations, we get

Ω̂1(w) = Ê[K12K13]−
(

f̂W (w)
)2

=
(

Ê[K12K13]− UN

)

+ (UN − E
[

fW |A(w|A1)
]2
) + E

[

fW |A(w|A1)
]2

−
(

(

f̂W (w)
)2

− (fW (w))2
)

− (fW (w))2

= E
[

fW |A(w|A1)
]2 − (fW (w))2 + op(1)

≡ Ω1(w) + op(1),

as claimed.

References

Ahn, H. & Powell, J. L. (1993). Semiparametric estimation of censored selection models

with a nonparametric selection mechanism. Journal of Econometrics, 58(1-2), 3 – 29.

29



A

Aldous, D. J. (1981). Representations for partially exchangeable arrays of random vari-

ables. Journal of Multivariate Analysis, 11(4), 581 – 598. 2

Aronow, P. M., Samii, C., & Assenova, V. A. (2017). Cluster-robust variance estimation

for dyadic data. Political Analysis, 23(4), 564 – 577. 2, 5
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