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TESTING FOR HOMOGENEITY IN MIXTURE MODELS

JIAYING GU, ROGER KOENKER, AND STANISLAV VOLGUSHEV

Abstract. Statistical models of unobserved heterogeneity are typically formalized as mix-
tures of simple parametric models and interest naturally focuses on testing for homogeneity
versus general mixture alternatives. Many tests of this type can be interpreted as C(α)
tests, as in Neyman (1959), and shown to be locally, asymptotically optimal. These C(α)
tests will be contrasted with a new approach to likelihood ratio testing for general mix-
ture models. The latter tests are based on estimation of general nonparametric mixing
distribution with the Kiefer and Wolfowitz (1956) maximum likelihood estimator. Recent
developments in convex optimization have dramatically improved upon earlier EM meth-
ods for computation of these estimators, and recent results on the large sample behavior of
likelihood ratios involving such estimators yield a tractable form of asymptotic inference.
Improvement in computation efficiency also facilitates the use of a bootstrap method to
determine critical values that are shown to work better than the asymptotic critical values
in finite samples. Consistency of the bootstrap procedure is also formally established. We
compare performance of the two approaches identifying circumstances in which each is
preferred.

1. Introduction

Given a simple parametric density model, p(x|µ), for iid observations, X1, · · · , Xn, there
is a natural temptation to complicate the model by allowing the parameter, µ, to vary with
the observation index. In the absence of other, e.g. observable covariate, information that
would distinguish the observations from one another it may be justifiable to view the µ’s as
drawn at random. Inference for such mixture models is complicated by the enormous class of
potential alternatives. Two dominant approaches to testing for homogeneity in such models
exist: Neyman’s C(α) tests and likelihood ratio tests. C(α) tests are particularly attractive
for testing homogeneity since like their kindred score tests they do not require estimation
of the model under the alternative of heterogeneity of the parameter µ. As described in
Gu (2016), C(α) tests have a somewhat irregular, but still relatively simple asymptotic
theory, and are generally easy to compute. Likelihood ratio tests, in contrast, are known
to have a considerably more complicated limiting behavior, and are generally regarded as
much more difficult to compute. Our primary objective here is to try to rehabilitate the
reputation of the likelihood ratio test (hereafter LRT) for testing homogeneity in mixture
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2 Inference for Mixture Models

models by demonstrating that it is both computationally tractable and – at least under
some conditions – that it has attractive power and size control properties when compared
to other tests.

We will argue that recent developments in convex optimization have dramatically reduced
the computational burden of the LRT approach for general, nonparametric alternatives. Fol-
lowing Laird (1978), prior efforts to compute the Kiefer-Wolfowitz nonparametric MLE for
general nonparametric mixture models have relied upon some variant of the EM algorithm.
However, Koenker and Mizera (2014) have recently shown that interior point methods for
general convex optimization provide a much more efficient, and more accurate computa-
tional approach. A second impediment to the use of LRT methods for general mixture
problems has been the lack of a tractable limiting distribution theory. Extending recent
work of Gassiat (2002), Liu and Shao (2003) and Azäıs, Gassiat, and Mercadier (2009)
we propose an easily simulated method of computing limiting critical values for the LRT
statistic for testing homogeneity for Gaussian mixture models. However, we find in simula-
tions that these limiting critical values do not serve as a good approximation in moderate
samples. Instead we propose a parametric bootstrap method to determine critical values,
and formally prove its consistency. Size and power performance of the bootstrap method is
investigated through simulations.

There is a large and rapidly growing literature on inference for finite mixture models us-
ing penalized likelihood ratio methods, which can be considered an intermediate approach
between C(α) tests and our general LRT approach based on the Kiefer-Wolfowitz nonpara-
metric MLE. Ironically, once one restricts mixtures to discrete distributions with a finite
number of support points, convexity of the log likelihood is lost, making LRT methods con-
siderably more challenging from a computational point of view. Moreover, finite mixture
models fail to satisfy certain regularity conditions that are typically required for parametric
likelihood ratio tests, making their asymptotic theory challenging, see for example Cho and
White (2007) and Chen, Ponomareva, and Tamer (2014). Motivated by these challenges,
Chen, Chen, and Kalbfleisch (2001) have proposed penalizing the log likelihood with a log
barrier penalty on the mixing weights. The penalty removes the singularity in the log likeli-
hood that arises when mixing weights tend to zero, and leads to a relatively simple mixture
of χ2 limiting theory for the restricted LRT statistic. More recently, Chen and Li (2009),
Li, Chen, and Marriott (2009) and Li and Chen (2010) have extended this approach and
developed an attractive inference apparatus for restricted mixture models based on these
penalized likelihood ratio methods. Kasahara and Shimotsu (2014) further extend the EM
test methods to normal mixture regression models. We will incorporate these EM tests into
our performance comparisons in the simulation section of the paper.

The next section provides a detailed discussion of our general approach to likelihood
ratio testing based on the Kiefer-Wolfowitz nonparametric MLE (NPMLE). The following
two sections briefly describe the C(α) and EM testing approaches. Simulation evidence on
the performance of the various methods and an empirical example is reported in Section 5
and 6.
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2. Likelihood Ratio Tests for Homogeneity in Mixture Models

A prerequisite for any likelihood ratio test for general mixture models must be a reliable
maximum likelihood estimator for these models under the alternative of parameter hetero-
geneity. Lindsay (1995) offers a comprehensive overview of the vast literature on mixture
models, and traces the idea of maximum likelihood estimation of a nonparametric mixing
measure η, given random samples from the mixture density,

(1) g(x) =

∫
p(x|µ)dη(µ),

to an Annals abstract of Robbins (1950). Somewhat later Kiefer and Wolfowitz (1956)
provided a detailed analysis of such a NPMLE and established its consistency. Yet only
with Laird (1978) did a viable computational strategy emerge for a discretized version.
The EM method proposed by Laird has been employed extensively in subsequent work,
notably by Heckman and Singer (1984) and Jiang and Zhang (2009), even though it has
been widely criticized for its slow convergence. Recently, Koenker and Mizera (2014) have
shown that the discretized version of the Kiefer-Wolfowitz estimator can be formulated
as a convex optimization problem and accurately solved very efficiently by interior point
methods. Recent work by Gassiat (2002) and Azäıs, Gassiat, and Mercadier (2009) has
also clarified the limiting behavior of the LRT for general classes of alternatives, and taken
together these developments offer a fresh opportunity to explore the viability of the LRT
for inference on mixtures.

It seems ironic that many of the difficulties inherent in maximum likelihood estimation
of finite parameter mixture models vanish when we consider nonparametric mixtures. The
notorious multimodality of parametric likelihood surfaces is replaced by a much simpler,
strictly convex optimization problem possessing a unique solution. It is of obvious concern
that consideration of such a wide class of alternatives may depress the power of associated
tests; we will see that while there is some loss of power when compared to more restricted
parametric LRTs, the loss is typically modest, a small price to pay for power gained against
a broader class of alternatives. We will also see that by comparison with C(α) tests that
are also designed to detect general alternatives the LRT can be competitive.

2.1. Maximum Likelihood Estimation of General Mixtures. Suppose that we have
iid observations, X1, · · · , Xn from the mixture density (1), the Kiefer-Wolfowitz NPMLE
requires us to solve,

min
η∈Ḡ

{
−

n∑
i=1

log g(xi)
∣∣∣g(xi) =

∫
p(xi|µ)dη(µ)

}
,

where Ḡ is the (convex) set of all mixing distributions. The problem is one of minimizing
the sum of strictly convex functions subject to linear equality and inequality constraints.
The dual to this (primal) convex program proves to be somewhat more tractable from a
computational viewpoint, and takes the form,

max
ν∈Rn

{ n∑
i=1

log νi

∣∣∣ n∑
i=1

νip(xi|µ) ≤ n, for all µ
}



4 Inference for Mixture Models

See Lindsay (1983) and Koenker and Mizera (2014) for further details. This variational
form of the problem may still seem rather abstract since it appears – even in the dual –
that we need to check an infinite number of values of µ, for each choice of the vector, ν.
However, it suffices in applications to consider a fine grid of values {µ1, · · · , µm} and write
the primal problem as

min
f∈Rm,g∈Rn

{
−

n∑
i=1

log(gi)
∣∣∣ Af = g, f ∈ S

}
where A is an n by m matrix with elements p(xi|µj) and S = {s ∈ Rm|1>ms = 1, s ≥ 0}
is the unit simplex. Thus, f̂j denotes the estimated mixing density evaluated at the grid
point, µj and ĝi denotes the estimated mixture density evaluated at xi. The dual problem
in this discrete formulation becomes,

max
ν∈Rn

{ n∑
i=1

log νi

∣∣∣ A>ν ≤ n1m, ν ≥ 0
}
.

Primal and dual solutions are immediately recoverable from the solution to either problem.
Interior point methods such as those provided by PDCO of Saunders (2003) and Mosek of
Andersen (2010), are capable of solving dual formulations of typical problems with n = 200
and m = 300 in less than one second. The empirical Bayes package REBayes, Koenker
(2013), is available for download from the R repository CRAN. It is based on the RMosek

package of Friberg (2012), and was used for all of the computations reported below. We have
compared this approach with other proposals including those of Lesperance and Kalbfleisch
(1992) and Groeneboom, Jongbloed, and Wellner (2008), but thus far have found nothing
competitive in terms of speed and accuracy.

Solutions to the NPMLE problem of Kiefer and Wolfowitz produce estimates of the
mixing measure, η, that are discrete and possess only a few mass points. A theoretical
upper bound on the number of these atoms of η was established already by Lindsay (1983),
but in practice the number is typically observed to be far fewer. It may seem surprising,
perhaps even disturbing, that even when the true mixing distribution has a smooth density,
the NPMLE of that density is discrete with only a few atoms. However, this may appear
less worrying if we consider a more explicit example. Suppose that we have a location
mixture of Gaussians,

g(x) =

∫
φ(x− µ)dη(µ),

so we are firmly in the deconvolution business, a harsh environment notorious for its poor
convergence rates. One interpretation of this is that good approximations of the mixture
density g can be achieved by relatively simple discrete mixtures with only a few atoms.
For many applications estimation of g is known to be sufficient: this is quite explicit for
example for empirical Bayes compound decision problems where the Bayes rules are known
to depend entirely on the estimated ĝ. See e.g. Efron (2011). Of course given our discrete
formulation of the Kiefer-Wolfowitz problem, we can only identify the location of atoms
up to the scale of the grid spacing, but we believe that the m ≈ 300 grid points we have
been using in the simulations reported below are probably adequate for most applications.
For testing this assertion is reinforced by the fact that finer grids, when employed, exert a



Gu, Koenker and Volgushev 5

negligible impact on the LRT statistic. Recently, Dicker and Zhao (2014) have shown that
with m =

√
n, the Hellinger distance between ĝ and g is bounded by Op(log n/

√
n).

Given a reliable maximum likelihood estimator for the general nonparametric mixture
model it is of obvious interest to know whether an effective likelihood ratio testing strategy
can be developed. This question has received considerable prior attention, again Lindsay
(1995) provides an authoritative overview of this literature. However, more recently work
by Gassiat (2002) and Azäıs, Gassiat, and Mercadier (2009) has revealed new features of the
asymptotic behavior of the likelihood ratio for mixture settings that enable one to derive
asymptotic critical values for the LRT.

2.2. Asymptotic Theory of Likelihood Ratios for General Mixtures. Consider a
parametric family of distributions that have density p(·|µ) with respect to some sigma-
finite measure λ and parameters from the parameter set Θ ⊂ Rd. Typically, λ is the
Lebesgue measure if the data follow a continuous distribution and the counting measure if
their distribution is discrete. Our aim is to test whether the i.i.d. sample X1, ..., Xn was
generated from a p(·|µ0) for some µ0 ∈ Θ against the general alternative that X1, ..., Xn

is generated from a mixture of the form pη(·) :=
∫

Θ p(·|µ)dη(µ) for some non-degenerate
distribution η on Θ (non-degenerate in the sense that η is not a one-point distribution).
In order for this testing problem to make sense, we need the following mild identifiability
assumption

(A0) For any probability measure η on Θ, for any µ0 ∈ Θ we have η 6= δ(µ0) (denoting
by δ(µ) the Dirac measure at the point µ) implies E[(pη(X1)− p(X1|µ0))2] > 0.

Consider the following sets of distributions on Θ

Ḡ := {η|η distribution on Θ, }, G := Ḡ\δ(µ0).

Define the log-likelihood function corresponding to the measure η as

`n(η) :=
n∑
i=1

log pη(Xi).

The likelihood ratio test statistic is given by

Ln := sup
η∈Ḡ

`n(η)− sup
µ∈Θ

`n(δ(µ)).

To derive the asymptotic distribution of the likelihood ratio under the null, assume that
the data are generated from a measure with density p(·|µ0) for some µ0 ∈ Θ. Consider the
decomposition

Ln = sup
η∈Ḡ

`n(η)− `n(δ(µ0)) + `n(δ(µ0))− sup
µ∈Θ

`n(δ(µ)).

The second term in this decomposition can be handled by classical parametric theory.
Under suitable regularity conditions we obtain [see, for instance, the proof of Theorem 16.7
in van der Vaart (1998)]

(2) sup
µ∈Θ

`n(δ(µ))− `n(δ(µ0)) =
1

2

∥∥∥ 1√
n

n∑
i=1

I(µ0)−1/2`′(Xi|µ0)
∥∥∥2

+ oP (1)
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with `′(Xi|µ) := ∇µ log pδ(µ)(Xi), and I(µ0) = E[`′(Xi|µ0)`′(Xi|µ0)>] being the Fisher
information. Handling the first part in the decomposition is more challenging. Expan-
sions for this term were derived in (Gassiat 2002, Liu and Shao 2003, Azäıs, Gassiat, and
Mercadier 2009) under various sets of conditions. For the sake of a simple presentation we
will follow Gassiat (2002). For η ∈ Ḡ, µ ∈ Θ, η 6= δ(µ) let

(3) sη,µ(x) :=
( pη(x)

pδ(µ)(x)
− 1
)/∥∥∥ pη

pδ(µ)
− 1
∥∥∥

2,δ(µ)

where we defined ‖f‖2,η := (
∫ ∫

f2(x)p(x|µ)dη(µ)dλ(x))1/2. For η ∈ G define

Gn(η) := n−1/2
n∑
i=1

sη,µ0(Xi)

and note that by construction E[sη,µ0(Xi)] = 0,E[s2
η,µ0(Xi)] = 1. Now a slight modification

of the proof of Theorem 3.1 in Gassiat (2002) leads to the following result for the asymptotic
behavior of the LRT - for the sake of completeness a sketch of the proof is provided in the
Appendix.

Theorem 2.1. Assume X1, ..., Xn are generated from p(·|µ0), that (A0) holds and that
Gn  G in `∞(G) for a centered Gaussian process G. Then

(4) 2

(
sup
η∈Ḡ

`n(η)− `n(δ(µ0))

)
= sup

η∈G

(
max

{
Gn(η), 0

})2
+ oP (1).

If additionally (2) holds and `′(X1|µ0) is square integrable,

2Ln  sup
η∈G

(
max

{
G(η), 0

})2
− ‖Y ‖2.

Here, Y ∼ N (0, Id) and (G, Y ) is jointly centered normal with covariance taking the form

E[G(η)Y ] = E[sη,µ0(X1)I(µ0)−1/2`′(X1|µ0)],Cov(G(ζ),G(η)) = E[sζ,µ0(X1)sη,µ0(X1)]. Here,
by jointly normal we mean that for any collection η1, ..., ηk ∈ G the vector (G(η1), ...,G(ηk), Y )
follows a centered multivariate normal distribution with the covariance described above.

Remark 2.2. We now provide a more detailed discussion of the assumption Gn  
G in `∞(G) made in Theorem 2.1 and the corresponding limiting Gaussian process G.
In general, since X1, ..., Xn are iid, the multivariate central limit theorem implies that(
Gn(η1), ...,Gn(ηk)

)
converges in distribution to a centered multivariate normal with covari-

ance structure Σi,j = E[sηi,µ0(X1)sηj ,µ0(X1)]. In this sense, using score functions provides
the most canonical way to describe the limiting process G.

Without some additional information it seems difficult to provide a representation for Σi,j

which does not make use of score functions. However, in special cases a series expansion
for Cov(G(ηi),G(ηj)) can be derived. The key is to find an alternative representation for
the score function sη,µ.

For illustration purposes, consider the location mixture of normal distributions with fixed
variance σ2 = 1. Assume that Θ = [L,U ] for some −∞ < L < 0 < U < +∞ and that

the densities p take the form p(x|µ) = (2π)−1/2 exp(−(x− µ)2/2) with respect to Lebesgue
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measure. Without loss of generality we will assume that µ0 = 0. In this case, following
the discussion in Section 3.2 of Azäıs, Gassiat, and Mercadier (2009), the likelihood ratio
pη(x)
pδ(0)(x) admits the following representation

pη(x)

pδ(0)(x)
− 1 =

∫
exp(−(x− µ)2/2)

exp(−x2/2)
dη(µ)− 1 =

∫ ∞∑
k=1

µk

k!
Hk(x)dη(µ)

where

Hk(x) := (−1)k exp(x2/2)
dk exp(−x2/2)

dxk

denote the Hermite polynomials and the series
∑∞

k=1
µk

k! Hk(x) converges absolutely for any
fixed x, µ. Now the key insight is that {Hk}k≥1 are orthogonal polynomials with respect
to p(x|0) with norm given by E[H2

k(X1)] = k! for k ≥ 1. Using dominated convergence, it
is not difficult to show that integration and summation can be interchanged (recall that η
has compact support), and thus

(5)
pη(x)

pδ(0)(x)
− 1 =

∞∑
k=1

∫
µkdη(µ)

k!
Hk(x)

In other words, we have represented the likelihood ratio
pη(x)
pδ(0)(x) through a series expansion

in terms of {Hk}k≥1 where the coefficients in the expansion now depend on moments of
the measure η but the function Hk(x) doesn’t depend on η. With this representation,
computing the L2 norm with respect to pδ(0) is straightforward and we obtain

sη,0(x) =

∑∞
k=1

∫
µkdη(µ)
k! Hk(x)(∑∞

k=1
[
∫
µkdη(µ)]2

k!

)1/2 =:
∞∑
k=1

wk(η)Hk(x).

which is again a weighted series in {Hk}k≥1 with coefficients depending on η. This repre-
sentation has several advantages. Most importantly, using general results from empirical
process theory on Donsker properties of function classes given by series expansions as out-
lined in Chapter 2.13 of van der Vaart and Wellner (1996), one can obtain an explicit
condition on the collection of weights {wk(η) : η ∈ G} which ensures that Gn  G as
required by Theorem 2.1. This also gives a simple representation for the limiting process G
through

(6) G(η) =

∞∑
k=1

wk(η)
(∫

Hk(x)2p(x|0)dx
)1/2

Yk

where {Yk}k≥1 are iid N (0, 1). This representation is useful for computing asymptotic
critical values and will be utilized in Section 2.3

Moreover, the orthogonality of {Hk}k≥1 with respect to p(x|0) allows for an alternative
representation for the covariance structure of G since

E[sη,0(X)sζ,0(X)] =
∞∑
k=1

wk(η)wk(ζ)

∫
H2
k(x)p(x|0)dx =

∞∑
k=1

k!wk(η)wk(ζ).
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In the Gaussian example this can be used to show that for two measure η1, η2

E[G(η1)G(η2)] =
E[exp(Z1Z2)]− 1

(E[exp(Z1Z̃1)]− 1)1/2(E[exp(Z2Z̃2)]− 1)1/2

where Z1, Z̃1 ∼ η1, Z2, Z̃2 ∼ η2 and Z1, Z2, Z̃1, Z̃2 are independent.
More generally, the discussion above applies to any setting where likelihood ratios can

be expanded in the form

pη(x)

pδ(µ0)(x)
− 1 =

∞∑
k=1

vk(η, µ0)gk(x, µ0)

where the functions {gk(·, µ0)}k≥1 are orthogonal with respect to p(x|µ0) and the series
converges in a suitable sense. For instance, for Poisson mixtures such an expansion is given
in Section 3.3 of Azäıs, Gassiat, and Mercadier (2009). It takes the form

pη(x)

pδ(µ0)(x)
− 1 =

∞∑
k=1

∫
(µ− µ0)kdη(µ)

(k!µk0)1/2
Ck(x|µ0),

where the functions x 7→ Ck(x|µ0) are orthonormal polynomials with respect to the Poisson
measure with parameter µ0, i.e. for X1 ∼ Poisson(µ0)

E[Ck(X1|µ0)] = 0, E[Ck(X1|µ0)C`(X1|µ0)] = I{k = `},

see also Section B of the Appendix for additional technical details. Another example of
mixtures with such properties are given by Binomial distributions where the expansion is
in fact a finite sum (see Azäıs, Gassiat, and Mercadier (2009) Section, 3.4).

2.3. Asymptotic Critical Values. In order to apply the above limiting result in prac-
tice, we need to know how to obtain critical values from the asymptotic distribution. For
illustrative purposes, we consider the following normal mixture example.

Example 2.3. Consider mixtures ofN (µ, 1) distributions and assume that Θ = [L,U ] with
0 ∈ Θ. Computations in Azäıs, Gassiat, and Mercadier (2009) show that the asymptotic
distribution of the LRT statistic Ln under the null of Xi ∼ N (0, 1) i.i.d. is given by

D =
(

sup
η∈G

(Vη)+

)2
− Y 2

1

where (Vη)η∈G is the Gaussian process given by

Vη :=
( ∞∑
k=1

Ykκk(η)

(k!)1/2

)/( ∞∑
k=1

κ2
k(η)

k!

)1/2

with Y1, Y2, ... denoting i.i.d. N (0, 1) distributed random variables, κk(η) :=
∫

Θ µ
kdη(µ)

and x+ denoting the positive part of x.
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There exists a simpler expression for the distribution of D. More precisely, we will
demonstrate that

(7) D
D
= sup

η∈G

((( ∞∑
k=2

Ykκk(η)

(k!)1/2

)
+

)2/ ∞∑
k=2

κ2
k(η)

k!

)
.

The detailed derivation is provided in the Appendix. Approximating the distribution func-
tion of the measure η on Θ by a discrete distribution function with masses p1, ..., pN on a
fine grid m1, ...,mN leads to the approximation

D ≈ sup
p1,...,pN

((( N∑
j=1

pj

∞∑
k=2

Ykm
k
j

(k!)1/2

)
+

)2/ N∑
i,j=1

pipj

∞∑
k=2

(mjmi)
k

k!

)
.

In particular, maximizing the right-hand side with respect to p1, ..., pN under the constraints
pi ≥ 0,

∑
pi = 1 for fixed grid m1, ...,mN can be formulated as a quadratic optimization

problem of the form

min
p
p>Ap under pi ≥ 0, p>b = 1

where p = (p1, ..., pN ), Aij =
∑∞

k=2
(mjmi)

k

k! , bi =
∑∞

k=2
Ykm

k
i

(k!)1/2
, if max

i
bi > 0. If max

i
bi ≤ 0,

we can set D = 0. This suggests a practical way of simulating critical values after replacing
the infinite sum by a finite approximation and avoiding the grid point 0. Table 1 below
contains simulated critical values in some particular settings. All results are based on 10, 000
simulation runs with the sums for A and b cut off at k = 25 and grids with 200 points equally
spaced points excluding the point 0 on the interval that is specified in the first column of
Table 1.

Θ 90% 95% 99%
[-1,1] 2.75 3.95 6.93
[-2,2] 3.90 5.37 8.71
[-3,3] 5.34 6.87 10.46
[-4,4] 6.38 8.32 11.91

Table 1. Simulated asymptotic critical values for the asymptotic null dis-
tribution for various choices of the set Θ.

To explore the finite sample performance of the above method we begin with an exper-
iment to compare the critical values of the LRT of homogeneity in the Gaussian location
model with the simulated asymptotic critical values in Table 1. We consider sample sizes,
n ∈ {100, 500, 1000, 5000, 10000} and four choices of the domain of the MLE of the mixture
are considered: {[−j, j] : j = 1, · · · , 4}. We maintain a grid spacing of 0.01 for the mixing
distribution on these domains for each of these cases for the Kiefer-Wolfowitz NPMLE.
Results are reported in Table 2. For the three largest sample sizes we bin the observations
into 300 and 500 equally spaced bins respectively. It will be noted that the empirical critical
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n cval(.90) cval(.95) cval(.99)
[-1,1] [-2,2] [-3,3] [-4,4] [-1,1] [-2,2] [-3,3] [-4,4] [-1,1] [-2,2] [-3,3] [-4,4]

100 2.09 2.69 2.80 2.80 3.07 3.70 3.97 4.06 6.43 7.58 8.31 8.55
500 2.22 2.80 2.96 2.98 3.06 3.87 4.41 4.41 5.69 7.07 7.45 7.52

1,000 2.67 3.46 3.72 3.76 3.73 4.95 5.44 5.56 7.26 8.55 9.51 9.76
5,000 2.68 3.56 3.91 3.96 3.79 4.54 4.83 5.09 6.52 8.15 8.32 8.38

10,000 2.41 3.11 3.29 3.46 3.61 4.45 4.72 4.97 6.23 7.51 7.96 8.32
∞ 2.75 3.90 5.34 6.38 3.95 5.37 6.87 8.32 6.93 8.71 10.46 11.91

Table 2. Critical Values for LRT of Gaussian Parameter Homogeneity:
The first five rows of the table report empirical critical values based on
1000 replications of the LRT based on the Kiefer-Wolfowitz estimate of the
nonparametric Gaussian location mixture distribution. Results for sample
sizes 5,000 and 10,000 were computed by binning the observations into 300,
500 equally spaced bins respectively. Restriction of the domain of the mixing
distribution is indicated by the column labels. The last row reproduces the
simulated asymptotic critical values reported in Table 1.

values are consistently smaller than those simulated from the asymptotic theory. There ap-
pears to be a tendency for the empirical critical values to increase with n, but this tendency
is rather weak. This finding is perhaps not entirely surprising in view of the slow rates of
convergence established elsewhere in the literature, see e.g. Bickel and Chernoff (1993) and
Hall and Stewart (2005). These findings imply that our simulated asymptotic critical values
are not likely to work well for size control, which motivates us to consider an alternative
bootstrap based method in determining critical values in the next section.

2.4. A Parametric Bootstrap Method for Critical Values. The parametric bootstrap
method for testing parameter homogeneity we are about to introduce is a very natural idea.
In finite mixture models, similar approaches have been proposed by McLachlan (1987) and
Chen and Chen (2001). However, to the best of our knowledge, this is the first time that
such a bootstrap method has been formally shown to produce consistent critical values for
likelihood ratio tests in mixture models.

The parametric bootstrap approach to determine critical values for the distribution of
Ln is defined as follows.

(1) Compute the maximum likelihood estimator µ̂ := argmaxµ∈Θ`n(δ(µ)).

(2) For b = 1, ..., B generate data X
(b)
1,n, ..., X

(b)
n,n ∼ p(·|µ̂) i.i.d.

(3) For b = 1, ..., B denote by Ln,b the statistic Ln computed from the sampleX
(b)
1,n, ..., X

(b)
n,n.

Compute the α-quantile qn,α of Ln,1, ..., Ln,B.

The null of parameter homogeneity is rejected if Ln > qn,1−α. To prove that this bootstrap
procedure leads to a valid (asymptotic) test, we need to show that P (Ln > qn,1−α) → α
if X1, ..., Xn are generated under the null. To establish this result, we need two main
ingredients. First, we need to analyze the limiting properties of the LRT for data that
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are generated under triangular arrays. This is done in Theorem 2.10. Second, we need
to establish continuity of the limiting distribution of FR around its α−quantile. This is
done in Theorem 2.11. Together, Theorem 2.10 and 2.11 imply consistency of the proposed
bootstrap procedure.

We now require some additional notation. Fix an arbitrary sequence of points µn in
Θ ⊂ Rd with µn → µ0 ∈ Θ as n→∞. For ε > 0, define Θε as the ε-enlargement of Θ with
respect to Euclidean distance. Let

Ḡε := {η|η distribution on Θε}, Gε := Ḡε\δ(µ0).

To each measure η ∈ G define the measure ηn through ηn(A) = η(A − µn + µ0) for all
Borel sets A ⊂ Θ where A + x := {a + x|a ∈ A} for a set A ⊂ R and x ∈ R. From now
on, assume that X1,n, ..., Xn,n are i.i.d. ∼ p(·|µn) and consider the following sequence of
processes indexed by Gε

G∗n(η) := n−1/2
n∑
i=1

sηn,µn(Xi,n)

where the scores sηn,µn are defined in (3). Write `∗n(η) :=
∑n

i=1 log pη(Xi,n). To analyze the
asymptotic behavior of L∗n := supη∈Ḡ `

∗
n(η)− supµ∈Θ `

∗
n(δ(µ)), consider the decomposition

L∗n = sup
η∈Ḡ

`∗n(η)− `∗n(δ(µn)) + `∗n(δ(µn))− sup
µ∈Θ

`∗n(δ(µ)).

Classical results suggest that under suitable regularity conditions the second part in the
above decomposition should take the form

(8) sup
µ∈Θ

`∗n(δ(µ))− `∗n(δ(µn)) =
1

2

∥∥∥ 1√
n

n∑
i=1

I(µn)−1/2`′(Xi,n|µn)
∥∥∥2

+ oP (1)

provided that µn → µ0. Various conditions ensuring the above representation exist. In the
Appendix, we demonstrate that µ0 being in the interior of the parameter space together
with suitable regularity conditions on the function µ 7→ `(x|µ) are sufficient to obtain this
kind of expansion. Since this is not our main focus, we leave all details to the Appendix
and do not go into additional details here. The main challenge is to derive an expansion for
the first part of L∗n. Such an expansion is established in Theorem 2.10 under the following
set of assumptions:

(A1) Assume that (
G∗n,

1√
n

n∑
i=1

I(µn)−1/2`′(Xi,n|µn)
)
 (G∗, Y )

in `∞(Gε) × Rd where (G∗, Y ) are jointly centered normal with Y ∼ N (0, Id) and
covariance structure of the form,

E[G∗(η1)G∗(η2)] =

∫
R
sη1,µ0(x)sη2,µ0(x)pδ(µ0)(x)dλ(x),

E[G∗(η)Y ] =

∫
R
sη,µ0(x)I(µ0)−1/2`′(x|µ)pδ(µ0)(x)dλ(x).
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Additionally, assume that for ε ↓ 0 we have

(9) sup
η∈Gε

inf
η̃∈G
|G∗(η)−G∗(η̃)| = oP (1).

(A2) Letting sη,µ,− := min{0,−sη,µ} we have that

sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

(s2
ηn,µn(Xi,n)− 1)

∣∣∣+
∣∣∣ 1
n

n∑
i=1

(s2
ηn,µn,−(Xi,n)− ‖sη,µ0,−‖22,δ(µ0))

∣∣∣ = oP (1).

(A3) For every n ∈ N, assume that the class of functions

Fn :=
{
x 7→ sη,µn(x)

∣∣∣η ∈ G}
admits an envelope function Fn such that maxi=1,...,n Fn(Xi,n) = oP (n1/2).

Remark 2.4. As pointed out by a referee, conditions (A1)-(A3) do not explicitly include
the assumptions that the set Θ is compact. Yet, in specific examples this compactness
is known to be crucial since otherwise the nonparametric LRT may not have a sensible
limiting distribution – as seen for instance in Hartigan (1985). This apparent contradiction
is resolved by the fact that compactness of Θ is often needed when verifying (A1)-(A3), as
is the case in our Example 2.7 and Example 2.9.

Remark 2.5. Note that the process G∗n is indexed by measures η, and not by the score
functions sηn,µn where the latter would correspond to ’classical’ empirical process theory.
The reason for this indexing is that the score functions sηn,µn depend on n. Thus indexing
by score functions sηn,µn we would obtain an index set which depends on n, which would
lead to various technical problems. On the other hand, using sηn,µn instead of sη,µn in the
definition of G∗n is crucial since sη,µn can be quite different for the same values of η but
different µn. As an example of the latter, let µn = µ0 + 1/n, µ̃n = µ0 + 3/n, η = δ(µ0 +α).
Then, for α small, under suitable differentiability conditions we have sη,δ(µn)(x) ≈ sgn(α−
1/n)`′(x|µn)/‖`′(x|µn)‖2,δ(µn) and sη,δ(µ̃n)(x) ≈ sgn(α− 3/n)`′(x|µ̃n)/‖`′(x|µ̃n)‖2,δ(µ̃n). For
α ∈ (1/n, 3/n) the sign of α− 1/n and α− 3/n will differ, and this leads to different score
functions. This problem does not arise if we use sηn,µn instead. �

For location-shift mixtures, that is mixtures of densities of the form p(·|µ) = p(· − µ),
assumptions (A1)-(A3) can be considerably simplified.

Proposition 2.6. Assume that p(·|µ) = p(· − µ), the conditions of Theorem 2.1 hold with
Gε instead of G, that (8) holds, and that additionally for γ ↓ 0 we have, for G denoting the
weak limit of Gn in Theorem 2.1,

(10) sup
η∈Gγ

inf
η̃∈G
|G(η)−G(η̃)| = oP (1).

Then conditions (A1)-(A3) hold.

The proof of Proposition 2.6 repeatedly makes use of the fact that the assumptions of
Theorem 2.1 hold for Gε instead of G. In general, this can not be avoided. Intuitively, this is
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due to the fact that for measures η with support in Θ the support of ηn will not necessarily
be contained in Θ.

Next, we show that assumptions (A1)-(A3) are realistic and can be verified for some
standard models.

Example 2.7. (Location Mixture of Gaussians) Assume that Θ = [a, b] for some a < 0 < b

and that the densities p take the form f(x|µ) = (2π)−1/2 exp((x − µ)2/2) with respect to
Lebesgue measure. Without loss of generality we will assume that µ0 = 0. In this setting,
the densities have the location-scale structure described in Proposition 2.6, and thus it
suffices to verify the conditions of Theorem 2.1 hold with Gε instead of G, that (8) holds,
and that (10) is satisfied. Note that (8) can be established by standard arguments, the
details are omitted for the sake of brevity.

The arguments from the proof of Theorem 3 in (Azäıs, Gassiat, and Mercadier 2009)
yield Gn  G in `∞(Gε) where the limiting process G is Gaussian and has a covariance
structure of the form

E[G(η1)G(η2)] =
E[exp(Z1Z2)]− 1

(E[exp(Z1Z̃1)]− 1)1/2(E[exp(Z2Z̃2)]− 1)1/2

where Z1, Z̃1 ∼ η1, Z2, Z̃2 ∼ η2 and Z1, Z2, Z̃1, Z̃2 are independent. Joint asymptotic nor-
mality with Y1 follows by standard arguments. To prove (10), consider the following con-
struction. To each random variable Z on [a− ε, b+ ε] define a transformed random variable
W through

W := ZI{Z ∈ [a, b]}+
M

M + ε
ZI{Z /∈ [a, b]}.

where M := min(|a|, b). By construction, the support of W is contained in [a, b]. Denoting
the distribution of W by ξη,ε, straightforward but tedious calculations show that

sup
η∈Gε

E[(G(η)−G(ξη,ε))
2] = o(1)

as ε ↓ 0. By the uniform continuity of the process G with respect to the metric d(η, ξ) :=

(E[(G(η)−G(ξ))2])1/2 induced by its covariance [see Example 1.5.10 in (van der Vaart and
Wellner 1996)], this shows that (10) also holds. �

Remark 2.8. As pointed out by a referee, location-scale mixtures on Gaussians, i.e.
mixtures of the form p(x|η) =

∫∫
p(x|µ, σ)dη(µ, σ) with p(·|µ, σ) denoting the density of an

N (µ, σ2) random variable, are also of practical interest. In such models, even identification
of parameters is a very subtle issue. To illustrate this point, consider a location mixture
of normals with unknown variance parameter. If the support of the location parameter is
unrestricted, assumption (A0) will fail if we allow for general classes of mixtures. To see
that, denote by η(τ) the product of an N (0, σ2− τ2) measure for location and a point mass
at τ2 for variance where 0 ≤ τ2 ≤ σ2. Then pη(τ) ≡ pη(τ ′) for any τ, τ ′ ∈ [0, σ], and setting

τ2 = σ2 corresponds to homogeneity. Thus (A0) does not hold. Assuming that the support
for µ is restricted to a compact set, the unknown variance σ2 and the mixing distribution
can be jointly identified. We are not aware of results on identification if both, location
and scale are being mixed, even if the support for both parameters is confined to compact
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sets. Gaining a better understanding of identification and, provided identification holds,
the behaviour of LRT in this case is a very interesting and important question. We leave
this question to future research. �

Example 2.9. (Mixture of Poisson distributions) Assume that Θ = [a, b] for some 0 < a <
b and that the densities p take the form p(k|µ) = µke−µ/k! with respect to the counting
measure on N. Note that this model does not have the location-scale structure discussed in
Proposition 2.6. Assumptions (A1)-(A3) can still be verified, and the technical details are
provided in Section B of the Appendix. �

We now state our main result.

Theorem 2.10. Under assumptions (A0)-(A3) we have

(11) 2 sup
η∈Ḡ

(
`∗n(η)− `∗n(δ(µn))

)
= sup

η∈G

(
max

{
G∗n(η), 0

})2
+ oP (1).

If additionally (8) holds we have

2
(

sup
η∈Ḡ

`∗n(η)− sup
µ∈Θ

`∗n(δ(µ))
)
 R := sup

η∈G

(
max(G∗(η), 0)

)2
− ‖Y ‖2.

Intuitively, Theorem 2.10 suggests that critical values based on the parametric bootstrap
should lead to an asymptotic level α test of homogeneity. However, a formal proof of
this statement requires that the distribution of R, say FR, is continuous at F−1

R (α). The
following theorem completes this last step.

Theorem 2.11. Let the assumptions of Theorem 2.1 hold. Then the distribution of
R is continuous on (0,∞) and P (R < 0) = 0. Provided that B = Bn → ∞ we have
lim supn→∞ P (Ln > qn,1−α) = α for any α satisfying P (R > 0) > α. Moreover, if d = 1
and if there exists η ∈ G such that E[G(η)Y ] 6= ±1 we have P (R > 0) ≥ 1/4.

Remark 2.12. How to choose support to solve for the NPMLE is a very important
practical question. For location shift models, it is easy to show that the NPMLE η̂ will
not have any mass points outside of the sample support. This type of result has been
generalized in Lindsay (1981) to other univariate base densities that have a unique mode.
In particular, suppose that for each sample point xi, the function µ 7→ p(xi | µ) has a unique
mode at µ∗i . Then the support of the NPMLE η̂ must be contained in [µ∗m, µ

∗
M ] where µ∗m

and µ∗M are the minimum and maximum of (µ∗1, . . . , µ
∗
n), respectively. This is true for many

base distributions in the exponential family. For example, for mixtures of exponential
distributions with mean exp(−φ), the mode for the base density exp(φ) exp(−xi exp(−φ))
is located at φ∗i = − ln(xi). Hence the support for the mixing distribution must be contained
in [min(ln(1/xi)),max(ln(1/xi))]. To ensure compactness, we recommend taking the 5-th
and 95-th quantile of µ∗1, ..., µ

∗
n.
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Remark 2.13. For mixture models with densities of the form p(·|µ) = p(· −µ) there is an
alternative way of simulating quantiles of the LRT statistic. The key observation is that,
assuming that we allow for an arbitrary support of the mixing distribution, the distribution
of the LRT under the null does not depend on the location of the true parameter. More
precisely, assume that X1, ..., Xn generated from p(·|µX) and Y1, ..., Yn are generated from
p(·|µY ). Then Xi has the same distribution as Yi − µY + µX , and for any measure η
the log-likelihood

∑n
i=1 log pη(Xi) has the same distribution as

∑n
i=1 log pη(Yi − µY + µX),

which equals the distribution of
∑n

i=1 log pη̃(Yi) with the measure η̃ defined through η̃(A) =
η(A−µY +µX). This implies that the LRT statistic computed from X1, ..., Xn and the one
computed Y1, ..., Yn will have the same distribution.

Thus the following procedure provides a way to conduct an exact test for parameter
homogeneity when the support of the mixing distribution is unrestricted.

(1) Repeatedly generate data Y1, . . . , Yn ∼ p(·|0) i.i.d. for B times. For each bootstrap
sample, compute the LRT statistic Ln,b for b = 1, . . . , B.

(2) Compute the 1− α-quantile qLn,1−α of the bootstrap sample Ln,b, b = 1, . . . , B.

The null of parameter homogeneity is rejected if Ln > qLn,1−α.

Table 3 tabulates the bootstrap critical values for the null distribution of the LRT statistic
for testing homogeneity of the Gaussian location parameter. B bootstrap samples of size n
is generated from standard normal distribution and the critical values are found based on
the empirical distribution of the corresponding LRT statistic.

90% 95% 99%
n=100 3.14 4.60 8.12
n=200 3.15 4.48 7.21
n=500 3.44 4.69 7.84

Table 3. Bootstrap Critical Values for LRT of Homogeneity of Gaussian
Location Parameter: For various sample sizes, the bootstrap critical values
are found following the procedure described in Remark 2.13 with B = 2, 000.

It is important to keep in mind that this invariance property will hold only if we consider
an unrestricted support. In the case of Gaussian location mixtures, it is well known that
the LRT statistic with mixing distributions of unbounded support diverges to infinity (see
Hartigan (1985)). A more detailed analysis of this issue for some special cases of likelihood
ratio tests in mixture models can be found in Azäıs, Gassiat, and Mercadier (2006) and
Hall and Stewart (2005). That analysis indicates that LRT with unrestricted support can
only detect local alternatives at slower rates than moment-based tests. However, the corre-
sponding difference in rates is quite small and we compare via simulations the differences
in power for using the parametric bootstrap critical values and the exact critical values for
the location parameters in the Gaussian models. Results are summarized in Table 4, the
power loss for reasonable sample sizes is quite modest.

To evaluate size performance of using these bootstrap critical values, we apply the LRT
on a random sample X1, . . . , Xn ∼ N (1, 1) for homogeneity versus general mixture on the
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90% 95% 99%

h = 0.1
LRT-PBS[-1,1] 0.2095 0.1180 0.0380
LRT-PBS[-2,2] 0.2070 0.1135 0.0355
LRT-EXT 0.1765 0.1070 0.0375

h = 0.2
LRT-PBS[-1,1] 0.6520 0.5120 0.2960
LRT-PBS[-2,2] 0.6255 0.4945 0.2550
LRT-EXT 0.5690 0.4505 0.2400

h = 0.3
LRT-PBS[-1,1] 0.9775 0.9615 0.8805
LRT-PBS[-2,2] 0.9730 0.9485 0.8550
LRT-EXT 0.9660 0.9305 0.8430

Table 4. Power comparison between parametric bootstrap method (de-
noted as LRT-PBS with stated support used for estimating the general mix-
ture model) on restricted support and the Gaussian LRT with unrestricted
support and exact critical value (denoted as LRT-EXT) as tabulated in Ta-
ble 3. Simulation data is generated as X1, . . . , Xn ∼ N (µ, 1) with n = 200
and Fµ = 2

3δ1.5h + 1
3δ−3h for h taking values from {0.1, 0.2, 0.3}. Results are

based on 2,000 repetitions and the parametric bootstrap method is based on
500 bootstrap repetitions on the stated support.

location parameter. The third row of Table 5 reports the size performance of the LRT
with these tabulated bootstrap critical values. In the same table, we also report the size
performance of the LRT using critical values generated from the parametric bootstrap
method, the C(α) test and the EM test that will be discussed in the next section. �

3. Neyman C(α) Tests for Mixture Models

Neyman’s C(α) tests can be viewed as an expanded class of Rao (score) tests that ac-
commodate general methods of estimation for nuisance parameters. In regular likelihood
settings C(α) tests are constructed from the usual score components which consist of the
first order logarithmic derivative of the likelihood. The C(α) tests can be shown to be
asymptotically locally optimal and the associated regularity conditions for these results
were originally given by Neyman (1959) and extended by Bühler and Puri (1966) employ-
ing variants of the classical Cramér conditions. In applying the C(α) approach to test for
homogeneity in mixture models, the test statistics typically still take a simple form although
their theory requires some substantial amendment due to the singularity of the score func-
tion. Gu (2016) shows that the locally asymptotic normal (LAN) apparatus of LeCam can
be brought to bear to establish the large sample behavior and asymptotic optimality of
the C(α) test for homogeneity. The LeCam approach has two salient advantages: it avoids
making superfluous further differentiability assumptions on the density, and it removes any
need for the symmetry assumption on the distribution of the heterogeneity that frequently
appears in earlier examples of such tests. See e.g. Moran (1973) and Chesher (1984).
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n = 100 n = 200 n = 500
90% 95% 99% 90% 95% 99% 90% 95% 99%

EM 0.088 0.044 0.010 0.094 0.050 0.012 0.094 0.048 0.010
C(α) 0.103 0.050 0.018 0.104 0.058 0.014 0.099 0.052 0.011
LRT-EXT 0.072 0.038 0.008 0.094 0.052 0.012 0.104 0.060 0.012
LRT-PBS[-1,1] 0.086 0.040 0.008 0.097 0.057 0.011 0.070 0.040 0.008
LRT-PBS[-2,2] 0.098 0.048 0.012 0.102 0.046 0.008 0.106 0.056 0.013

Table 5. Size Performance for Various Tests for Homogeneity of the Gauss-
ian Location Parameter: Independent samples of different sizes are generated
from N (1, 1). We consider test for homogeneity versus general alternative.
The EM test is as proposed in Chen and Li (2009) using the R code pro-
vided on the second author’s webpage http://sas.uwaterloo.ca/~p4li/

software/index.html of the EM test for Gaussian mixture with known
variance. The C(α) test uses critical values from 1

2χ
2
0 + 1

2χ
2
1 null distribu-

tion. LRT-EXT uses bootstrap critical values tabulated in Table 3. Results
are based on 6,000 repetitions. LRT-PBS (with stated support used for esti-
mating the general mixture model) uses parametric bootstrap critical values
with 500 bootstrap repetitions on the pre-specified support for the location
parameter.

The following two examples illustrate the construction of the C(α) test for parameter
homogeneity in the Gaussian mixture model and the Poisson mixture model. Both tests
lead to an over-dispersion test. In the Gaussian case, the test compares the sample variance
with the variance under the null hypothesis. In the Poisson case, we reject the null of
homogeneity if there exists over-dispersion in the sample variance in comparison to the
sample mean.

Example 3.1. Consider testing for homogeneity in the Gaussian location mixture model
with independent observations Xi ∼ N (µi, 1), i = 1, · · · , n. Assume that µi = µ0 + τξUi,
for known τ , and iid Ui ∼ F with EU = 0 and Var(U) = 1. The heterogeneity in µi is
introduced via the random variable U . We would like to test homogeneity of µi, H0 : ξ = 0,
with the location parameter µ0 treated as a nuisance parameter. As mentioned earlier, the
first-order logarithmic derivative for ξ is degenerately zero, however we can construct the
test statistics using its second-order derivative, which is found to be, ∇2

ξ log p(x|µ0, ξ = 0) =

τ2((x−µ0)2−1). The first-order score for the nuisance parameter µ0 is, ∇µ0 log p(x|µ0, ξ =
0) = (x−µ0). Note that under the null, cov(∇2

ξ log p(X|0, µ0),∇µ0 log p(X|0, µ0)) = 0, thus

the C(α) test statistics require no modification of the test statistics to reflect the fact that
we need to estimate the nuisance parameter µ0 and thus, we have the locally asymptotically
optimal C(α) test as

Zn =
1√
2n

n∑
i=1

((Xi − µ0)2 − 1)
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The obvious estimate for the nuisance parameter is the sample mean, and we reject the null
hypothesis when (0 ∨ Zn)2 > cα where cα is the (1 − α) quantile of 1

2χ
2
0 + 1

2χ
2
1. The test

statistic Zn depends on the sample variance of X. Under the general alternative model,
we have Var(X) = Eµ[Var(X|µ)] + Varµ[E(X|µ)] = 1 + Var(µ). Under the alternative, the
magnitude of Zn solely depends on

√
nVar(µ).

Example 3.2. Consider now testing for homogeneity of the mean parameter in the Poisson

model with independent observations Xi ∼ p(·|λi), i = 1, · · · , n with p(x|λ) = λx exp(−λ)
x! .

Assume that λi = λ0 exp(τξUi), for known τ , and iid Ui ∼ F with EU = 0 and Var(U) = 1.
We would like to test H0 : ξ = 0 with the mean parameter λ0 treated as a nuisance
parameter. The second-order score for ξ is found to be, ∇2

ξ log p(x|λ0, ξ = 0) = τ2((x −
λ0)2−λ0) and the first-order score for λ0 is, ∇λ0 log p(x|λ0, ξ = 0) = (x−λ0)/λ0. Note that
under the null, cov(∇2

ξ log p(X|λ0, 0),∇λ0 log p(X|λ0, 0)) = λ0. Thus, we have the locally

asymptotically optimal C(α) test as

Zn =
1√
2n

n∑
i=1

((Xi − λ0)2 − λ0 − (Xi − λ0))

λ0

The obvious estimate for the nuisance parameter λ0 is the sample mean X̄, which further

reduces Zn = 1√
2n

∑n
i=1

((Xi−X̄)2−X̄)
X̄

and we reject the null hypothesis when (0∨Zn)2 > cα.

The test statistic Zn depends on the ratio of the sample variance and sample mean of
X. Under the alternative model, we have Var(X) = E(λ) + Var(λ) and E(X) = E(λ).
The magnitude of the test statistics Zn under the alternative is determined by the ratio√
nVar(λ)/E(λ).

4. The EM Test of Homogeneity for Finite Mixture Models

The C(α) test described above is very attractive because its test statistic is easy to
construct under the null model and its asymptotic theory is also relatively simple. The
recently proposed EM test of Chen and Li (2009), Li, Chen, and Marriott (2009) and Li
and Chen (2010) shares these nice features. The EM test employs a penalized log likelihood
ratio statistic, and instead of optimizing over a general class of heterogeneous alternatives
optimization is restricted to a smaller finite dimensional class. Given the mixture model (1),
we consider finite mixing distributions η =

∑m
h=1 αhδ(µh) with m distinct support points

at locations {µ1, . . . , µm}. We are interested in testing H0 : m = 1 versus HA : m > 1.
Rather than consider the full panoply of alternatives, attention is restricted to mixing
distributions with only two points of support,

Ω2(β) = {βδ(µ1) + (1− β)δ(µ2) : µ1, µ2 ∈ I}
the relative mass of the two support points, β ∈ (0, 0.5], is bounded away from zero by the
penalized log likelihood,

pln(Ψ) =

n∑
i=1

log pΨ(Xi) + P (β)

where Ψ ∈ Ω2(β), and P (u) = C log(1−|1−2u|). The set I over which the µ’s are optimized
is taken to be the support of the observations in the Gaussian location mixture setting.
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Optimization is carried out via the EM algorithm over the three parameters, {β, µ1, µ2},
and the test statistic is,

Mn = 2{pln(Ψ̂)−
∑
i

log pΨ̃(Xi)},

where Ψ̂ and Ψ̃ denote estimates for the model under the alternative and null, respectively.
Selection of tuning parameters including initial values and stopping criteria for the EM
procedure may, of course, influence performance. Penalization has the desirable effect of
avoiding the singularity that would otherwise occur as β → 0. Mn has been shown to
have a 1

2χ
2
0 + 1

2χ
2
1 limiting distribution. Testing for additional mixture components yields

more complicated mixtures of χ2’s. In the next section we compare the size and power
performance of our general LRT with the EM test and the C(α) test for different mixture
models in simulations.

5. Some Simulation Evidence

To compare power of the C(α), the EM test and LRT to detect heterogeneity in the
Gaussian location model we conducted five distinct experiments. Two were based on vari-
ants of the Chen (1995) example with the discrete mixing distribution η = (1 − λ)δ(a +
h/(1 − λ)) + λδ(a − h/λ). In the first experiment we set λ = 1/3, as in the original Chen
example, in the second experiment we set λ = 1/20 and in both experiments, a is set to be
zero. The sample size is fixed at n = 200. We consider five tests

(i) the C(α) as described in Example 3.1. Under H0 : h = 0, the nuisance parameter a
can be estimated by the sample mean.

(ii) a parametric version of the LRT in which only the values of a and h are assumed to
be unknown and the relative probabilities associated with the two mass points are
known; this enables us to relatively easily find the MLE: profiling out a first, ĥ can
be estimated by separately optimizing the likelihood on the positive and negative
half-line and taking the best of the two solutions; and then we can find the best pair
of (â, ĥ) that maximizes the likelihood.

(iii) the Kiefer-Wolfowitz LRT (KW-LRT) computed with equally spaced binning of 300
grid points on the support of the sample

(iv) the classical Kolmogorov-Smirnov test of normality
(v) the EM test for one component versus two components.

All of the power comparisons are based on 10,000 simulation replications. We consider 21
distinct values of h for each of the experiments equally spaced on the respective plotting
regions.

In the left panel of Figure 1 we illustrate the results for the first experiment with λ = 1/3:
With the location invariance property of the Gaussian mixture model, we use the bootstrap
critical values in Table 3 for the nonparametric LRT. The EM test, C(α) and the parametric
LRT are essentially indistinguishable in this experiment, and each has slightly better per-
formance than the nonparametric LRT. All four of these tests perform substantially better
than the Kolmogorov-Smirnov test. In the right panel of Figure 1 we have results of another
version of the Chen example, except that now λ = 1/20, so the mixing distribution is much
more skewed. Still C(α) does well for small values of h, but for h ≥ 0.07 the two LRT
procedures, which are now essentially indistinguishable, dominate. The performance of the
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EM test lies in between the C(α) test and the nonparametric LRT test. Again, the KS test
performance is poor compared to the other tests explicitly designed for the mixture setting.

In Figure 2 we illustrate the results of two additional experiments, both of which are
based on smooth mixing distributions with densities with respect to Lebesgue measure and
a sample size of n = 200. On the left we consider the uniform distribution on the interval
[−h, h]. Here we can reduce the parametric LRT to optimizing over the positive half-line to

compute the MLE, ĥ. This would seem to give the parametric LRT a substantial advantage
over the Kiefer-Wolfowitz nonparametric MLE, however as is clear from the figure there is
little difference in their performance. Again, the C(α) test and the EM test are somewhat
better than either of the LRTs, but the difference is modest. In the right panel of Figure
2 we have a similar setup, except that now the mixing distribution is Gaussian with scale
parameter h, and again the ordering is very similar to the uniform mixing case. In all of
these experiments, since the asymptotic behavior of the parametric LRT is unknown, we
use its empirical critical values under the null.

In the last simulation experiment on testing for homogeneity in a normal model we
consider data that are generated from a two-component mixture of the form

(1− α)N(θ1, 1) + αN(θ2, 1)

with a very small value of α. This is the second local alternative model considered by Chen,
Li, and Liu (2016). Notably, this also fits the discussion of the local alternative model on
page 94 in Lindsay (1995). In the simulation, we fix α = 0.005, θ1 = θ0 = 0 and θ2 = b
and conduct two sets of experiments. The first fixes θ2 = −4.5 and allows the sample size
n to change and the second varies values of θ2 for fixed sample size n = 400. Results are
reported in Table 6. We find that in all settings, the LRT outperforms both C(α) and the
EM test by a considerable margin, with the EM test having advantages compared to C(α).
This suggests that for detecting small mass points away from the main bulk of the data
the LRT is the method of choice. This kind of behavior is also observed in the empirical
example in Section 6, where only the LRT is able to detect deviations from homogeneity.

A theoretical explanation for the findings in this experiment can be obtained by consider-
ing the likelihood expansion corresponding to a specific type of local alternative. Adopting
the notation in Chen, Li, and Liu (2016) let α := η/

√
n, θ1n := θ0 − n−1/2τ( η

1−n−1/2η
)1/2

and θ2n := θ0 + τ(1−n−1/2η
η )1/2 → θ0 + τ/

√
η ≡ θ2. As shown in Chen, Li, and Liu (2016)

the likelihood ratio expansion in this case takes the form

η√
n

∑
i

Wi −
1

2

η2

n

∑
i

W 2
i + oP (1)

with

Wi =
f(xi, θ2)− f(xi, θ0)

f(xi, θ0)
− τ
√
η

f ′(xi, θ0)

f(xi, θ0)

provided Wi is square integrable. Note that Wi ≈ τ2

2ηf
′′(Xi, θ0)/f(Xi, θ0) only if θ2 is very

close to θ0. This already suggests that the asymptotic optimality of the C(α) for detecting
local alternatives will only continue to hold for τ ≈ 0. This helps to explain the clear
advantages we observe for LRT and EM tests when compared to the performance of C(α)
in these extreme cases.
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Figure 1. Power Comparison of Several Tests of Parameter Homogeneity:
The left panel illustrates empirical power curves for four tests of parameter
homogeneity for the Chen (1995) mixture with λ = 1/3, in the right panel
we illustrate the power curves for the same four tests for the Chen mixture
with λ = 1/20. Note that in the more extreme (right) setting, the LRTs
outperform the C(α) test.

We also consider the power performance of the the above mentioned tests for Poisson
mixture models except for the Kolmogorov-Smirnov test. Similarly to the Gaussian case,
the Poisson mean parameter has the discrete mixing distribution η = (1−λ)δ(a exp(h/(1−
λ))) + λδ(a exp((−h/λ)). We consider λ = 1/3 and λ = 1/20 case and set a = 2 in both
cases. The C(α) test is constructed as described in Example 3.2 with H0 : h = 0 and a as the
nuisance parameter. Since the Poisson distribution does not take a location shift form, we
resort to the parametric bootstrap method described in Section 2.4 to determine the critical
value with a bounded support on (0, 4) for the mean parameter with 5,000 repetitions. To
speed up the simulation, we also adopt the warp bootstrap method in Giacomini, Politis,
and White (2013). Figure 3 shows the power for the C(α) test, the EM test and the KW-
LRT for different values of h. Again, we observe similar pattern of the power curves as
in the Gaussian case. For more extreme mixing distribution, the KW-LRT dominates the
other two tests by quite a substantial margin.

In Figure 4 we illustrate the results for Poisson mixtures with continuous mixing dis-
tribution. In both experiments, the mean parameter is set to be 2 exp(k) where k has a
continuous distribution. On the left, we consider k following a uniform distribution on [0, h]
with h taking 20 distinct equally spaced values on [0, 0.95]. On the right, we have k follow-
ing a Gamma distribution with shape parameter h and scale parameter 1/2 and h taking
20 distinct equally spaced values on [0, 0.19]. The KW-LRT performs slightly worse than
C(α) and the EM tests for the uniform case, but dominates the other two for the Gamma
case.
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Figure 2. Power Comparison of Several Tests of Parameter Homogeneity:
The left panel illustrates empirical power curves for four tests of parameter
homogeneity for uniform mixtures of Gaussians with ϑ on [−h, h], on the
right panel the same four power curves are depicted for Gaussian mixtures
of Gaussians with standard deviation h.

n = 200 n = 400 n = 800 b = -6 b= -4 b = -2 b = -1
LRT 0.536 0.770 0.935 0.866 0.680 0.128 0.061
EM 0.354 0.508 0.715 0.703 0.412 0.090 0.054
C(α) 0.296 0.412 0.578 0.635 0.329 0.093 0.060

Table 6. Power Comparison of Several Tests of Parameter Homogene-
ity for Two-component Normal Mixture Models: Results in column two
to four are proportion of rejection of homogeneity using data generated
from 0.995N (0, 1) + 0.005N (−4.5, 1) with various sample size n stated
as the column names. Results in column five to eight are proportion
of rejection of homogeneity using a sample of size 400 generated from
0.995N (0, 1) + 0.005N (b, 1) with b taking different values stated as the col-
umn names. The empirical power is based on 10,000 repetitions and LRT
uses tabulated critical values of 5% nominal size.

6. Empirical Example

We briefly revisit an application considered in Böhning, Schlattmann, and Lindsay (1992)
and Chen, Li, and Liu (2016) on modeling a nutritional indicator in order to detect sub-
clinical malnourishment. To evaluate nutritional status of children in developing countries,
a standardized height score (HE/AGE) is often used. It is defined as height of the child re-
centered by the median and normalized by the standard deviation of heights for a reference
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Figure 3. Power Comparison of Several Tests of Parameter Homogeneity
for Poisson Mixture Models: The figure illustrates empirical power curves
for three tests of parameter homogeneity for a discrete mixtures of Poisson.
The discrete mixing distribution is specified as F (µ) = (1−λ)δ(2 exp(h/(1−
λ))) + λδ(2 exp(−h/λ)) with λ = 1/3 in the left panel and λ = 1/20 in the
right panel for h taking 21 different values. The critical values for LRT are
based on the bootstrap method. The empirical power curve is based on 5,000
repetitions.

population of the same age and sex. Under the hypothesis of no malnutrition, we expect
the data to follow a normal distribution with unit variance. Deviation from homogeneous
normal distribution provides evidence for malnutrition of the group of children. We conduct
nonparametric LRT, EM test and the C(α) test for homogeneity of the location parameter.
Both the EM and the C(α) test find insufficient evidence against homogeneity, with EM
test reporting a p-value close to 1 and the C(α) test statistic taking a value 0. In contrast,
the nonparametric LRT finds strong evidence against homogeneity. Adopting the paramet-
ric bootstrap method and restricting the support to between the 5-th and 95-th percentile
of the data, the nonparametric LRT statistic equals 12.77, while the parametric bootstrap
critical value at 5% level equals 4.68. The nonparametric LRT using an unrestricted support
and tabulated critical values leads to the same conclusion. Figure 5 shows the histogram of
the data and the nonparametric MLE for the mixing distribution of the location parameter
based on the estimation method described in Section 2.1. The vast majority of the mass
(0.993) is allocated to the point -1.64 but we find two additional mass points at -6.19 and
6.87 with associated mass 0.005 and 0.002. Clearly, the largest data point has a mass of its
own, while the mass point at -6.19 captures the very small proportion of observations at the
left tail of the histogram. Although both mass points are small, they provide overwhelming
evidence against homogeneity which is surprisingly not picked up by either the EM or the
C(α) test. This sheds new light into the nature of our competing tests and illustrates that
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Figure 4. Power Comparison of Several Tests of Parameter Homogeneity
for Poisson Mixture Models: The left panel illustrates empirical power curves
for three tests of parameter homogeneity for uniform mixtures of Poissons
with λ = 2 exp(k) and k follows uniform distribution on [0, h], on the right
panel the same three power curves are depicted for Gamma mixtures of
Poissons with λ = 2 exp(k) and k follows Gamma distribution with shape
parameter h and scale parameter 1/2. Results are based on n = 1, 000 and
5,000 simulation repetitions.

the LRT is particularly well suited to detecting deviations from the null which correspond
to small mass points at extreme locations lending further support to our simulation results.

7. Conclusion

We have seen that the Neyman C(α) test provides a simple, powerful, albeit somewhat
irregular, strategy for constructing tests of parameter homogeneity. In contrast, the de-
velopment of likelihood ratio testing for mixture models has been somewhat inhibited by
their apparent computational difficulty, as well as the complexity of their asymptotic theory.
Recent developments in convex optimization have dramatically reduced the computational
effort of earlier EM methods, and new theoretical developments have led to practical simula-
tion methods for large sample critical values for the Kiefer-Wolfowitz nonparametric version
of the LRT. Local asymptotic optimality of the C(α) test assures that it is highly competi-
tive in many circumstances, but we have illustrated a class of examples where the LRT has
a slight edge. The EM tests of Li and Chen (2010) provide an intermediate approach rely-
ing on a more restricted formulation of the likelihood. The approaches are complementary;
clearly there is little point in testing for heterogeneity if there is no mechanism for estimat-
ing models under the alternative. Our LRT approach obviously provides a direct pathway
to estimation of the mixture model under general alternatives. Since parametric mixture
models are notoriously tricky to estimate, it is a remarkable fact that the nonparametric
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Figure 5. Thai Preschool Children Nutritional Status: The left panel plots
the histogram of the HE/AGE data of size 708. The right panel depicts
the Kiefer-Wolfowitz nonparametric maximum likelihood estimator of the
mixing distribution for the location parameter of the normal mixture model
with 1,500 grid points. The cube root of the mass associated with the support
points are plotted in an effort to render the small masses more visible.

formulation of the MLE problem à la Kiefer-Wolfowitz can be solved quite efficiently – even
for large sample sizes by binning – and effectively used as an alternative testing procedure.
We hope that these new developments will encourage others to explore these methods.
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Appendix A. Technical details

Sufficient conditions for the expansion in (8) Introduce the notation `(x|µ) :=
log pδ(µ)(x). The following conditions are sufficient to ensure that the expansion in (8)
holds

(1) The true parameter µ0 is in the interior of Θ and the following expansion holds for
any µ in a neighbourhood of µ0

E[`(X1,n|µ)] = E[`(X1,n|µn)]− 1

2
(µ− µn)T I(µn)(µ− µn) + rn(µ, µn)‖µ− µn‖2

where rn(θn, µn)→ 0 if θn − µn → 0.
(2) There exists a measurable function M such that for arbitrary µ1, µ2 in a neighbour-

hood of µ0

|`(x|µ1)− `(x|µ2)| ≤M(x)‖µ1 − µ2‖ a.s.

and we have lim supn→∞ E[M2(X1,n)] <∞ and E[M2(X1,n)I{|M(X1,n)| > ε
√
n}]→

0 for every ε > 0.
(3) The function µ 7→ log pδ(µ)(x) is continuously differentiable in a neighbourhood of

µ0 for all x outside of a set M0 with P (X1,n ∈ M0) = 0 for all n. The derivative
`′(x|µ) satisfies E‖`′(X1,n|µ̃n)− `′(X1,n|µ0)‖2 → 0 for any µ̃n → µ0.

(4) The maximum likelihood estimators µ̂n := argmaxµ`
∗
n(δ(µ)) satisfy µ̂n = µn+oP (1).

Assumptions (1)-(4) can be viewed as uniform generalizations of the conditions of Theo-
rem 5.23 in van der Vaart (1998). Assumption (1)-(3) can be verified by imposing smooth-
ness assumptions on µ 7→ `(x|µ). Details are omitted for the sake of brevity. Assumption
(4) requires consistency of the maximum likelihood estimator µ̂n. Note that Theorem 5.23
and other results in the aforementioned book are not directly applicable in our case since
the Xi,n are generated from a triangular array while most results in van der Vaart (1998)
assume i.i.d. data or data generated under local alternatives. The proof of expansion (8) is
based on very similar ideas as the proof of Theorem 5.23, and we will only outline some of
the key adjustments that need to be made. First, observe that by following the arguments
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of the proof of Corollary 5.53 and Theorem 5.52 in van der Vaart (1998) we obtain

µ̂n − µ0 = OP (n−1/2).(12)

The arguments in the corresponding proofs continue to hold for triangular arrays if we
make use of the assumption lim supn→∞ E[M2(Xi,n)] <∞. Next, consider the processes

Gk,n(h) :=
1√
n

n∑
i=1

fk,n(Xi,n;h)− E[fk,n(Xi,n;h)] k = 1, 2

where f1,n(x;h) :=
√
n(`(x|µn+n−1/2h)−`(x|µn)), f2,n(x;h) := hT `′(x|µn). We shall prove

that sup‖h‖≤1 |G1,n(h) − G2,n(h)| = oP (1). To do so, we prove that the finite-dimensional

distributions (from now on fidis) of G1,n − G2,n converge to zero and that the process is
asymptotically tight. To prove convergence of the fidis, note that for any h with ‖h‖ ≤ 1

√
n(`(x|µn + n−1/2h)− `(x|µn))− hT `′(x|µn) = hT (`′(x|µ̃n)− `′(x|µn))

almost surely where ‖µ̃n − µn‖ ≤ n−1/2. Now µn → µ0, thus also µ̃n → µ0 and it follows
that

E‖`′(X1,n|µ̃n)− `′(X1,n|µn)‖2

≤ 2E‖`′(X1,n|µ̃n)− `′(X1,n|µ0)‖2 + 2E‖`′(X1,n|µn)− `′(X1,n|µ0)‖2 → 0.

This implies convergence of the fidis of G1,n −G2,n to zero.
Next, we note that tightness of G2,n is trivial to prove, so that it remains to establish

tightness of G1,n. To this end, note that sup‖h‖≤1 |f1,n(x;h)| ≤ M(x). By Example 19.7

in van der Vaart (1998) the bracketing numbers of the class of functions Fn := {f1,n(·;h) :
‖h‖ ≤ 1} satisfy

N[ ](ε,Fn, L2(Pµn)) ≤ K‖M‖dL2(Pµn )ε
−d

for some constants K, d which do not depend on n where the measure Pµn has density
p(·|µn) relative to λ and ‖ · ‖L2(Pµn ) denotes the corresponding L2-norm. Combining this

with the assumption E[M2(Xi,n)I{|M(Xi,n)| > ε
√
n}] → 0 and the proof of Theorem

19.28 in van der Vaart (1998) establishes asymptotic tightness of G1,n. Combined with the
arguments in the proof of Lemma 19.31 in van der Vaart (1998) this proves that for any

stochastically bounded sequence h̃n we have

1√
n

n∑
i=1

gn(Xi,n; h̃n) = oP (1)

where

gn(x;h) :=
√
n(`(x|µn + n−1/2h)− `(x|µn))− hT `′(x|µn)

− E[
√
n(`(X1,n|µn + n−1/2h)− `(X1,n|µn))− hT `′(Xi,n|µn)].

This corresponds to the first equation in the proof of Theorem 5.23 in (van der Vaart 1998)
if mθ there is identified with `(·|µ) here and ṁθ corresponds to `′(·|µ). Together with (12)
this establishes the results corresponding to the first two paragraphs in the proof of Theorem
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5.23 in (van der Vaart 1998). The rest of the proof can be done completely analogously and
we obtain the following two results

`∗n(δ(µ̂n))− `∗n(δ(µn)) = −n
2

(µ̂n − µn)T I(µn)(µ̂n − µn) + (µ̂n − µn)T
n∑
i=1

`′(Xi,n|µn) + oP (1),

√
n(µ̂n − µn) = I(µn)−1 1√

n

n∑
i=1

`′(Xi,n|µn) + oP (1).

Combining those two results yields the representation in (8).
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Proof of (7) Given a measure η ∈ G, η 6= δ(0) define V (η) :=
∑∞

k=2
κ2k(η)
k! . Also, define

for n ∈ N and α ∈ R the probability measure η̃n := pnδcn + (1−pn)η with pn := 1−V (η)/n

and cn := 1−pn
pn

(α − κ1(η)) [the dependence of pn, cn on η is suppressed in the notation].

Note that for any N > 0 there exists n0 ∈ N such that for n ≥ n0 we have η̃n ∈ G for all
α ∈ [−N,N ]. Moreover, by construction κ1(η̃n) = α(1− pn) and

κk(η̃n) = κk(η)(1− pn) + (1− pn)
(1− pn

pn

)k−1
(α− κ1(η))k

for n ∈ N. This implies for n ≥ n0 with some n0 independent of η we have a.s.∣∣∣αY1 +

∞∑
k=2

Ykκk(η)

(k!)1/2
− 1

1− pn

∞∑
k=1

Ykκk(η̃n)

(k!)1/2

∣∣∣ ≤1− pn
pn

∞∑
k=2

|Yk|C̃k√
k!

(1− pn
pn

)k−2

≤2C̃2V (η)

n

∞∑
k=2

|Yk|√
k!

and ∣∣∣α2 +
∞∑
k=2

κ2
k(η)

k!
− 1

(1− pn)2

∞∑
k=1

κ2
k(η̃n)

k!

∣∣∣ ≤ CV (η)

n

for finite constants C, C̃ depending only on N but not on α and η [note that η ∈ G has
support contained in [L,U ]]. Thus for every N < ∞, ε > 0 there exists n0 independent of
η such that for all n ≥ n0 we have with probability at least 1− ε

sup
η∈G

∑∞
k=1

Ykκk(η)

(k!)1/2(∑∞
k=1

κ2k(η)

k!

)1/2
≥ sup

α∈[−N,N ]
sup
η∈G

αY1 +
∑∞

k=2
Ykκk(η)

(k!)1/2(
α2 +

∑∞
k=2

κ2k(η)

k!

)1/2
− ε.

Next, observe that for all ε > 0 there exists N ∈ R such that with probability at least 1− ε

sup
α∈R\[−N,N ]

sup
η∈G

αY1 +
∑∞

k=2
Ykκk(η)

(k!)1/2(
α2 +

∑∞
k=2

κ2k(η)

k!

)1/2
≤ |Y1|+ ε.

Finally, note that

sup
η∈G

∑∞
k=1

Ykκk(η)

(k!)1/2(∑∞
k=1

κ2k(η)

k!

)1/2
≥ |Y1| a.s.

[consider the sequence of measures ηn = δsign(Y1)/n ∈ G].
Summarizing the findings above, we have shown that for any ε > 0 we have with proba-

bility at least 1− 2ε

sup
η∈G

∑∞
k=1

Ykκk(η)

(k!)1/2(∑∞
k=1

κ2k(η)

k!

)1/2
≥ sup

α∈R
sup
η∈G

αY1 +
∑∞

k=2
Ykκk(η)

(k!)1/2(
α2 +

∑∞
k=2

κ2k(η)

k!

)1/2
− ε.
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By letting ε → 0 the above can be turned in an almost sure inequality with no ε on the
right-hand side. Finally, setting α = κ1(η) we see that the converse inequality also holds
almost surely. Thus we have shown that

sup
η∈G

∑∞
k=1

Ykκk(η)

(k!)1/2(∑∞
k=1

κ2k(η)

k!

)1/2
= sup

α∈R
sup
η∈G

αY1 +
∑∞

k=2
Ykκk(η)

(k!)1/2(
α2 +

∑∞
k=2

κ2k(η)

k!

)1/2
a.s.

Define βk := κk(η)

(k!)1/2
and

gY,η(α) :=
αY1 +

∑∞
k=2

Ykκk(η)

(k!)1/2(
α2 +

∑∞
k=2

κ2k(η)

k!

)1/2
.

Fix a realization of Y1, Y2, ... and an η ∈ G. Computing the derivative of gY,η with respect

to α shows that the function g has a maximum at α∗ = Y1

∑∞
k=2 β

2
k∑∞

k=2 Ykβk
, if
∑∞

k=2 Ykβk > 0 and

that the supremum of gY,η over α ∈ R equals Y 2
1 if

∑∞
k=2 Ykβk ≤ 0. Some simple algebra

shows that for
∑∞

k=2 Ykβk > 0 we have

gY,η(α
∗) =

(
Y 2

1 +

(∑∞
k=2 Ykβk

)2∑∞
k=2 β

2
k

)1/2
.

Thus we obtain

(
sup
η∈G

( ∑∞
k=1

Ykκk(η)

(k!)1/2(∑∞
k=1

κ2k(η)

k!

)1/2

)
+

)2
= Y 2

1 + sup
η∈G

((∑∞
k=2

Ykκk(η)

(k!)1/2

)
+

)2

∑∞
k=2

κ2k(η)

k!

and this directly implies (7) 2

Proof of Theorem 2.1 The proof of the expansion in (4) is very similar to the proof of
(11) in Theorem 2.8, but much simpler since the data are i.i.d. and do not form a triangular
array. For this reason we will only sketch the main arguments. First, observe that the class
of functions F := {sη,µ0 |η ∈ G} is p(·|µ0)-Donsker, and thus F2 is p(·|µ0)-Glivenko-Cantelli
[see Lemma 2.10.4 in van der Vaart and Wellner (1996)]. Moreover, since F is p(·|µ0)-
Donsker so is F− := {sη,µ0,−|η ∈ Gε} [apply Theorem 2.10.6 in van der Vaart and Wellner
(1996)], and thus F2

− is also p(·|µ0)-Glivenko-Cantelli. Hence we obtain

sup
η∈G

∣∣∣ 1
n

n∑
i=1

(s2
η,µ0(Xi)− 1)

∣∣∣+
∣∣∣ 1
n

n∑
i=1

(s2
η,µ0,−(Xi)− ‖sη,µ0,−‖22,δ(µ0))

∣∣∣ = oP (1).

Thus

lim
n→∞

inf
η∈G\δ(µ0)

1

n

n∑
i=1

s2
η,µ0,−(Xi) ≥ inf

η∈G
‖sη,µ0,−‖22,δ(µ0) > 0

where the last inequality follows by the same arguments as (5) in Gassiat (2002). Apply
Inequality 1.1 from Gassiat (2002), the lower bound above, and weak convergence of Gn to
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obtain

(13) sup
η∈G,`n(η)−`n(δ(µ0))>0

∥∥∥ pη
pδ(µ0)

− 1
∥∥∥

2,δ(µ0)
= OP (n−1/2).

Next, note that

(14) n−1 sup
η∈G\δ(µ0)

( n∑
i=1

sη,µ0(Xi)
)2

= sup
η∈G

Gn(η)2 = OP (1).

The fact that F is Donsker and that E[sη,µ0(Xi)] = 0 implies that there must exist an

envelope function F of F with maxi=1,..,n F (Xi) = oP (n1/2), this follows from Corollary
2.3.13 and Problem 2.3.4(iii) of van der Vaart and Wellner (1996). Thus there exists αn →∞
such that supi=1,...,n F (Xi) = oP (α−1

n n1/2). For such a sequence αn define the sets

Mn1 := {η ∈ G : `n(η)−`n(δ(µ0)) > 0}, Mn2 :=
{
η ∈ G : 0 <

∥∥∥ pη
pδ(µ0)

−1
∥∥∥

2,δ(µ0)
≤ n−1/2α1/2

n

}
.

Note that

(15) sup
η∈Mn2

∣∣∣ 1
n

n∑
i=1

(s2
η,µ0(Xi)− 1)

∣∣∣ ≤ sup
η∈G

∣∣∣ 1
n

n∑
i=1

(s2
η,µ0(Xi)− 1)

∣∣∣ = oP (1).

Now follow the arguments in the proof of Theorem 2.10 which are used to obtain (21) by
replacing all instances of µn by µ0, all instances of Xi,n by Xi,, all instances of `∗n by `n and
using equations (13), (14) and (15) instead of (18), (17) and (19) to arrive at the conclusion

(16) sup
η∈Ḡ

`n(η)− `n(δ(µ0)) =
1

2
sup

η∈G\δ(µ0)

(
max

{
n−1/2

n∑
i=1

sη,µ0(Xi), 0
})2

+ oP (1).

This proves (4), and the rest of the proof follows by a standard application of the multivariate
CLT. 2

Proof of Theorem 2.10 The proof uses arguments from the proof of Theorem 3.1 in
Gassiat (2002). Let γn := ‖µn − µ0‖. Observe to each η ∈ G there exists η̃ ∈ Gγn such that
η̃n = η. Thus under (A1) we have
(17)

n−1 sup
η∈G\δ(µn)

( n∑
i=1

sη,µn(Xi,n)
)2
≤ n−1 sup

η∈Gγn

( n∑
i=1

sηn,µn(Xi,n)
)2
≤ sup

η∈Gε
G∗n(η)2 = OP (1)

where the first inequality holds for n sufficiently large. Moreover

lim
n→∞

inf
η∈G\δ(µn)

1

n

n∑
i=1

s2
η,µn,−(Xi,n) ≥ lim

n→∞
inf

η∈Gγn
1

n

n∑
i=1

s2
ηn,µn,−(Xi,n) ≥ inf

η∈Gε
‖sη,µ0,−‖22,δ(µ0) > 0

where the second inequality follows by (A2) and the third inequality follows by the same
arguments as (5) in Gassiat (2002). Apply Inequality 1.1 from Gassiat (2002) to obtain

(18) sup
η∈G,`∗n(η)−`∗n(δ(µn))>0

∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)
= OP (n−1/2).
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By assumption (A3) there exist functions Fn such that supη∈G |sη,µn(x)| ≤ Fn(x) and

supi=1,...,n Fn(Xi,n) = oP (n−1/2). Thus there exists αn →∞ such that supi=1,...,n Fn(Xi,n) =

oP (α−1
n n1/2). For such a sequence αn define the sets

Mn1 := {η ∈ G : `∗n(η)−`∗n(δ(µn)) > 0}, Mn2 :=
{
η ∈ G : 0 <

∥∥∥ pη
pδ(µn)

−1
∥∥∥

2,δ(µn)
≤ n−1/2α1/2

n

}
.

From (18) we obtain that Mn1 ⊂Mn2 with probability tending to one. On the other hand
a Taylor expansion of x 7→ log(1 + x) shows that

sup
η∈Mn2

`∗n(η)− `∗n(δ(µn))

= sup
η∈Mn2

(∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)

n∑
i=1

sη,µn(Xi,n)− 1

2

∥∥∥ pη
pδ(µn)

− 1
∥∥∥2

2,δ(µn)

n∑
i=1

s2
η,µn(Xi,n)

+
∥∥∥ pη
pδ(µn)

− 1
∥∥∥2

2,δ(µn)

n∑
i=1

s2
η,µn(Xi,n)R

(∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)
sη,µn(Xi,n)

))
where the remainder function R satisfies R(u)→ 0 for u→ 0. Now by the definition of αn
we have

sup
η∈Mn2

n∑
i=1

s2
η,µn(Xi,n)R

(∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)
sη,µn(Xi,n)

)
≤ sup

η∈Mn2

n∑
i=1

s2
η,µn(Xi,n)R

(
n−1/2α1/2

n oP (α−1
n n1/2)

)
= oP (1) sup

η∈Mn2

n∑
i=1

s2
η,µn(Xi,n).

Additionally, (A2) implies that

(19) sup
η∈Mn2

∣∣∣ 1
n

n∑
i=1

(s2
η,µn(Xi,n)− 1)

∣∣∣ ≤ sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

(s2
ηn,µn(Xi,n)− 1)

∣∣∣ = oP (1).

Thus we see that

sup
η∈Mn2

`∗n(η)−`∗n(δ(µn)) = sup
η∈Mn2

(∥∥∥ pη
pδ(µn)

−1
∥∥∥

2,δ(µn)

n∑
i=1

sη,µn(Xi,n)−n
2

∥∥∥ pη
pδ(µn)

−1
∥∥∥2

2,δ(µn)
(1+rn)

)
where rn does not depend on η and rn = oP (1). Since Mn1 ⊂Mn2 with probability tending
to one, and since

sup
η∈Ḡ

`∗n(η)− `∗n(δ(µn)) = sup
η∈Mn1

`∗n(η)− `∗n(δ(µn)),
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it follows that

(20) sup
η∈Ḡ

`∗n(η)− `∗n(δ(µn)) =

sup
η∈Mn2

(∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)

n∑
i=1

sη,µn(Xi,n)− n

2

∥∥∥ pη
pδ(µn)

− 1
∥∥∥2

2,δ(µn)
(1 + rn)

)
+ oP (1).

Next observe that under (A0), for any η ∈ G\δ(µn) we also have ηt := tη+ (1− t)δ(µn) ∈ G
for any t ∈ (0, 1) provided that µn ∈ Θ. Additionally, we have∥∥∥ pηt

pδ(µn)
− 1
∥∥∥

2,δ(µn)
= t
∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)

and by construction sηt,µn ≡ sη,µn . Thus

sup
η∈Mn2

(∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)

n∑
i=1

sη,µn(Xi,n)− n

2

∥∥∥ pη
pδ(µn)

− 1
∥∥∥2

2,δ(µn)
(1 + rn)

)
= sup

η∈G\δ(µn)
sup

0<t≤cn(η)

(
t
∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)

n∑
i=1

sη,µn(Xi,n)− nt2

2

∥∥∥ pη
pδ(µn)

− 1
∥∥∥2

2,δ(µn)
(1 + rn)

)

where cn(η) := n−1/2α
1/2
n

∥∥∥ pη
pδ(µn)

− 1
∥∥∥−1

2,δ(µn)
. As soon as rn > −1, which happens with

probability tending to one, the supremum of the inner term over t > 0 is attained in the
limit t→ 0 if

∑n
i=1 sη,µn(Xi,n) ≤ 0 and at

tn(η) :=
n−1

∑n
i=1 sη,µn(Xi,n)

(1 + rn)
∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)

if
∑n

i=1 sη,µn(Xi,n) > 0. Because of (17) it follows that tn(η) ≤ cn(η) with probability
tending to one, so that taken together we have

sup
η∈Mn2

(∥∥∥ pη
pδ(µn)

− 1
∥∥∥

2,δ(µn)

n∑
i=1

sη,µn(Xi,n)− n

2

∥∥∥ pη
pδ(µn)

− 1
∥∥∥2

2,δ(µn)
(1 + rn)

)
=

1

2(1 + rn)
sup

η∈G\δ(µn)

(
max

{
n−1/2

n∑
i=1

sη,µn(Xi,n), 0
})2

+ oP (1)

=
1

2
sup

η∈G\δ(µn)

(
max

{
n−1/2

n∑
i=1

sη,µn(Xi,n), 0
})2

+ oP (1).

Combining this with (20) yields

(21) sup
η∈Ḡ

`∗n(η)− `∗n(δ(µn)) =
1

2
sup

η∈G\δ(µn)

(
max

{
n−1/2

n∑
i=1

sη,µn(Xi,n), 0
})2

+ oP (1).
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Recall that for each η ∈ G there exists η̃ ∈ Gγn such that η = η̃n. Thus∣∣∣ sup
η∈G\δ(µn)

(
max

{
n−1/2

n∑
i=1

sη,µn(Xi,n), 0
})2
− sup

η∈G

(
max

{
n−1/2

n∑
i=1

sηn,µn(Xi,n), 0
})2∣∣∣

≤ sup
ν∈G\δ(µn)

inf
η∈G

∣∣∣(n−1/2
n∑
i=1

sν,µn(Xi,n)
)2
−
(
n−1/2

n∑
i=1

sηn,µn(Xi,n)
)2∣∣∣

≤ sup
ν∈Gγn

inf
η∈G

∣∣∣(n−1/2
n∑
i=1

sνn,µn(Xi,n)
)2
−
(
n−1/2

n∑
i=1

sηn,µn(Xi,n)
)2∣∣∣

= sup
ν∈Gγn

inf
η∈G

∣∣∣(G∗n)2(ν)− (G∗n)2(η)
∣∣∣

≤ 2
(

sup
ν∈Gγn

|G∗n(ν)|
)(

sup
ν∈Gγn

inf
η∈G

∣∣∣G∗n(ν)−G∗n(η)
∣∣∣) = oP (1)

(22)

The oP (1) in last line above follows from assumption (A1). More precisely, note that by
the Continuous Mapping Theorem applied to the map f 7→ supη∈Gε inf η̃∈G |f(η)− f(η̃)| we
have for any fixed ε > 0

sup
η∈Gε

inf
η̃∈G
|G∗n(η)−G∗n(η̃)|  sup

η∈Gε
inf
η̃∈G
|G∗(η)−G∗(η̃)|.

Thus for arbitrary ε > 0, t > 0 we have

lim sup
n→∞

P
(

sup
η∈Gγn

inf
η̃∈G
|G∗n(η)−G∗n(η̃)| ≤ t

)
≤ P

(
sup
η∈Gε

inf
η̃∈G
|G∗(η)−G∗(η̃)| ≤ t

)
,

and the right-hand side can be made arbitrarily small by letting ε ↓ 0. This shows that

sup
ν∈Gγn

inf
η∈G

∣∣∣G∗n(ν)−G∗n(η)
∣∣∣ = oP (1).

Now equations (21), (22) yield

2 sup
η∈Ḡ

(`∗n(η)− `∗n(δ(µn))) = sup
η∈G

(
max

{
G∗n(η), 0

})2
+ oP (1),

and the first assertion of the theorem follows. The second assertion follows by an application
of the continuous mapping theorem. 2

Proof of Theorem 2.11 First we observe that G is the limit of Gn under weak con-
vergence in `∞(G \ δ(µ0)) and thus tight. Next, note that ‖Y ‖2 > 0 almost surely. On the
other hand, Ln ≥ 0 almost surely for each n. Since R is the weak limit of 2Ln, it follows
that R ≥ 0 almost surely. Thus supη(max{G(η), 0})2 > 0 almost surely, and it follows
max(0, supη G(η)) = supη G(η) almost surely.

The proof of the first assertion [properties of FR] consists of three steps. First, we show
that the distribution of R is continuous on (0,∞) (Claim 2). Second, we provide a lower
bound for P (R > 0). Define

Fy(t) := P
(

sup
η

G(η) ≤ t
∣∣∣Y = y

)
.
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We begin by proving a preliminary result.

Claim 1: For any y ∈ Rd, Fy(·) is continuous on (‖y‖,∞).

Observe that by the joint normality of (G(η))η∈G , Y the conditional distribution of (G(η))η∈G
given Y = y is that of a tight Gaussian random element with mean E[G(η)Y >]y and a co-

variance function κ that does not depend on y. Let G̃ denote a centered Gaussian process
with covariance function κ. Then the conditional distribution of G given Y = y and the
distribution of (G̃(η) + E[G(η)Y >]y)η∈G coincide.

Since G̃ is a centered, tight Gaussian process, it follows by the arguments given on page
60-61 of Ledoux and Talagrand (1991) that supη |G̃(η)| has a continuous distribution on

R with left support point at 0, so that P (supη |G̃(η)| < ε) > 0 for all ε > 0. Since

P (supη G̃(η) < ε) ≥ P (supη |G̃(η)| < ε) it follows that also P (supη G̃(η) < ε) > 0 for all
ε > 0.

According to Tsirel’son (1976), the distribution of supη(E[G(η)Y >]y+G̃(η)) can only have
a jump at the left endpoint of it’s support and has a density to the right of that point. On
the other hand, |E[G(η)Y >]y| ≤ ‖E[G(η)Y ]‖‖y‖ ≤ ‖y‖. Here, the second inequality follows

since G(η), Y are jointly Gaussian so that there exist aη, bη with (G(η), Y )
D
= (a>η Y +bηZ, Y )

for Z ∼ N (0, 1) independent of Y . As Y ∼ N (0, Id) we have 1 = V ar(G(η)) = ‖aη‖2 +b2η ≥
‖aη‖2 and moreover ‖E[G(η)Y ]‖ = ‖aη‖.

Thus for ε > 0, y ∈ Rd

P
(

sup
η
{E[G(η)Y >]y + G̃(η)} − ‖y‖ ≤ ε

)
= P

(
sup
η
{E[G(η)Y >]y − ‖y‖+ G̃(η)} ≤ ε

)
≥ P

(
sup
η

G̃(η) ≤ ε
)
> 0.

Thus for all y ∈ Rd the distribution of supη(E[G(η)Y >]y+ G̃(η)) has a density on (‖y‖,∞)
and Claim 1 follows.

Claim 2: The distribution of (supη G(η))2 − ‖Y ‖2 is continuous on (0,∞).

Let 0 < a < b. Then by continuity of Fy on (‖y‖,∞)

P
(

(sup
η

G(η))2 − ‖Y ‖2 ∈ [a, b]
)

=

∫
R
P
(

(sup
η

G(η))2 − ‖Y ‖2 ∈ [a, b]
∣∣∣Y = y

)
φd(y)dy

=

∫
R

(
Fy((‖y‖2 + b)1/2)− Fy((‖y‖2 + a)1/2)

)
φd(y)dy.

Now for a ↑ b > 0 we have for every y ∈ Rd that Fy((‖y‖2 + b)1/2)− Fy((‖y‖2 + a)1/2)→ 0

since (‖y‖2 + b)1/2 > ‖y‖2 is a continuity point of Fy. Thus the integral converges to zero
by dominated convergence. Since b > 0 was arbitrary the assertion follows.

Claim 3: For d = 1 P ((supη G(η))2 − Y 2 > 0) ≥ 1/4.
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By assumption there exists η0 ∈ G such that |E[G(η0)Y ]| 6= 1. Moreover,

P ((sup
η

G(η))2 − Y 2 > 0) ≥ P (|G(η0)| > |Y |) = 1/4.

Here, the last inequality follows since (G(η0), Y ) is a two-dimensional, centered Gaussian
vector with E[(G(η0))2] = E[(Y )2] and correlation in (−1, 1).

The continuity of FR on (0,+∞) and the bound FR(0) ≤ 3/4 in the case d = 1 follow by
combining Claim 2 and Claim 3.

It remains to establish the convergence P (Ln > qn,1−α)→ α in cases where P (R > 0) >
α. Under the assumptions of the theorem, the maximum likelihood estimator µ̂ converges
to µ0 in probability. Arguing along subsequences, we can without loss of generality assume
that the convergence takes place almost surely.

In what follows, denote by F̂n,B the empirical distribution function of Ln,1, ..., Ln,B and
by Fn the true distribution function of Ln,1 conditionally on µ̂ = µn. Note that condi-
tionally on µ̂ = µn the quantities Ln,1, ..., Ln,B constitute an i.i.d. sample from Fn. By
the uniform version of the Glivenko-Cantelli Theorem [see Theorem 2.8.1 in van der Vaart

and Wellner (1996)] it follows that supt∈R |F̂n,B(t) − Fn(t)| → 0 in probability, uncondi-
tionally. Additionally, the almost sure convergence µ̂ → µ0 together with Theorem 2.10
yields weak convergence of Ln,1 to R, so that Fn converges to FR at all continuity points

of FR almost surely. Thus we obtain that F̂n,B converges to FR at all continuity points

of FR in probability, and since F̂n,B, FR are increasing and FR is continuous on (0,∞),

supx∈K |F̂n,B(x) − FR(x)| converges to zero in probability for compact K ⊂ (0,∞). By
arguments similar to the ones given in Lemma 21.2 in van der Vaart (1998) we obtain that

q̂n,u = F̂−1
n,B(u) → F−1

R (u) in probability for all u where F−1
R is continuous. Note that F−1

R

is increasing, and thus the set of its continuity points is dense in [FR(0), 1]. Moreover,
1 − α ∈ (FR(0), 1). Thus for every ε > 0 there exist 1 − α1 ≤ 1 − α ≤ 1 − α2 such that
F−1
R is continuous at 1 − α1, 1 − α2 and |αi − α| ≤ ε. By Slutzky’s Lemma we obtain

Ln − F̂−1
n,B(1 − αi)  R − F−1

R (1 − αi), and by continuity of FR in a neighborhood of

F−1
R (1− α) and monotonicity of F̂−1

n,B it follows that

1− α1 = P (R− F−1
R (1− α1) ≤ 0) ≤ lim inf

n→∞
P (Ln ≤ q̂n,1−α) ≤ lim sup

n→∞
P (Ln ≤ q̂n,1−α)

≤ P (R− F−1
R (1− α2) ≤ 0) = 1− α2.

Since αi above can be chosen to be arbitrarily close to α the claim follows. 2

Proof of Proposition 2.6 Note that the special structure of p(·|µ) implies that X1,n
D
=

X1 − µ0 + µn [recall that X1,n ∼ p(·|µn), X1 ∼ p(·|µ0)]. On the other hand

pηn(x) =

∫
p(x− µ)dηn(µ) =

∫
p(x− µ+ µ0 − µn)dη(µ) = pη(x+ µ0 − µn).

Thus also sηn,µn(x) = sη,µ(x+µ0−µn) and in particular sηn,δ(µn)(X1,n)
D
= sη,δ(µ0)(X1). This

in turn implies that for any measure η ∈ Gε we have by definition G∗n(η)
D
= G(η). Assuming
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that µ0 is an interior point of Θ, similar computations show that `′(Xi,n|µn)
D
= `′(Xi|µ0)

and ‖`′(·|µn)‖2,δ(µn) = ‖`′(·|µ0)‖2,δ(µ0). Thus, the first part of (A1) follows.
To verify assumption (A2), observe that Gn can be identified with the empirical process

based on the observations X1, ..., Xn and indexed by the class of functions F := {sη,µ0 |η ∈
Gε}. Weak convergence of Gn implies that the class F is p(·|µ0)-Donsker, and thus F2 is
p(·|µ0)-Glivenko-Cantelli [see Lemma 2.10.4 in (van der Vaart and Wellner 1996)]. Moreover,
since F is p(·|µ0)-Donsker so is F− := {sη,µ0,−|η ∈ Gε} [apply Theorem 2.10.6 in (van der
Vaart and Wellner 1996)], and thus F2

− is also p(·|µ0)-Glivenko-Cantelli. This shows that
(A2) holds.

For assumption (A3), note that for every η ∈ G there exists η̃ ∈ Gε with η̃n = η provided
that ‖µn − µ0‖ ≤ ε. Thus sηn,µn(x) = sη,µ0(x+ µ0 − µn) implies that for any x ∈ R

sup
f∈Fn

|f(x)| ≤ sup
η∈Gε
|sηn,µn(x)| = sup

η∈Gε
|sη,µ0(x+ µ0 − µn)|.

Thus if F is an envelope for Fε := {sη,µ0 |η ∈ Gε} then Fn(·) := F (·+µ0−µn) is an envelope
for Fn. On the other hand, the fact that Fε is Donsker and that E[sη,µ0(Xi)] = 0 implies

that there must exist an envelope function F of Fε with maxi=1,..,n F (Xi) = oP (n1/2), this
follows from Corollary 2.3.13 and Problem 2.3.4(iii) of van der Vaart and Wellner (1996).

Moreover, Fn(Xi,n)
D
= F (Xi) and thus (A3) follows. 2

Appendix B. Verification of Assumptions (A1) - (A3) for Poisson Mixtures

Assume that Θ = [a, b] for some 0 < a < b and that the densities p take the form
p(x|µ) = µxe−µ/x! with respect to the counting measure on N. As stated in Section 3.3 of
Azäıs, Gassiat, and Mercadier (2009), the likelihood ratios have the following representation

(23)
pηn(x)

pδ(µn)(x)
− 1 =

∞∑
k=1

kE[(Z − µn)k]

(k!µkn)1/2

Ck(x|µn)

k
=:

∞∑
k=1

ak(ηn, µn)
Ck(x|µn)

k

where Z ∼ ηn. Here, the functions x 7→ Ck(x|µn) are polynomials of order k which are
given by

Ck(x|µn) :=
µ
k/2
n

(k!)1/2

[ dk
dzk

( z
µn

)x
exp(−z + µn)

]
z=µn

.

The functions (x 7→ Ck(x|µn))k∈N are centered and orthonormal with respect to Pδ(µn), i.e.
for k, ` ∈ N

(24) E[Ck(X1,n|µn)] = 0, E[Ck(X1,n|µn)C`(X1,n|µn)] = I{k = `}.
In particular, we have that

1 = E[C2
k(X1,n|µn)] =

∑
u≥0

C2
k(u|µn)e−µnµun/u! ≥ C2

k(x|µn)e−µnµxn/x! ∀ x ∈ N0

so that the series in (23) converges pointwise. The score functions sηn,µn can be represented
as

(25) sηn,µn(x) =

∞∑
k=1

ak(ηn, µn)Ck(x|µn)

kw(ηn, µn)
, w(ηn, µn) :=

( ∞∑
`=1

`−2a2
` (ηn, µn)

)1/2
.
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For L ≥ 2, define the approximating function

s(L)
ηn,µn(x) =

L∑
k=1

ak(ηn, µn)Ck(x|µn)

kw(L)(ηn, µn)
, w(L)(ηn, µn) :=

( L∑
`=1

`−2a2
` (ηn, µn)

)1/2
.

Obviously, the function x 7→ s
(L)
ηn,µn(x) is a polynomial of degree L. Later, we will prove

the following identities holding for L ≥ 2, some finite n0 and a constant C independent of
n, ηn, µn, µ0

sup
η∈Gε

sup
n≥n0

∣∣∣w(L)(ηn, µn)

w(ηn, µn)
− 1
∣∣∣ ≤ CL−1, sup

η∈Gε

∣∣∣w(L)(η, µ0)

w(η, µ0)
− 1
∣∣∣ ≤ CL−1,(26) ∑

k≥2

a2
k(ηn, µn) ≤ Ca2

2(ηn, µn).(27)

Additionally, for any fixed k one obtains by straightforward calculations

(28) sup
η∈Gε
|ak(ηn, µn)− ak(η, µ0)| → 0, n→∞,

and for any fixed L ≥ 2 [this will be proved later]

(29) sup
η∈Gε

∣∣∣w(L)(ηn, µn)

w(L)(η, µ0)
− 1
∣∣∣→ 0, n→∞.

Assumption (A3) can be verified by a straightforward extension of the arguments in the
proof of Theorem 4 of Azäıs, Gassiat, and Mercadier (2009). Details are omitted for the
sake of brevity. In the proofs that follow, we will repeatedly use (A3).

Verification of Assumption (A1). To establish assertion (A1), it suffices to prove as-
ymptotic tightness of the process G∗n in `∞(Gε) and that weak convergence(

G∗n(η1), ...,G∗n(ηk),
1√
n

n∑
i=1

‖`′(·|µ0)‖−1
2,δ(µ0)`

′(Xi,n|µn)
)
 (G(η1), ...,G(ηk), Y1)

holds for any fixed collection of measures η1, ....ηk. The weak convergence above follows by
straightforward arguments, and we will only provide the details for establishing tightness.
To prove asymptotic tightness of G∗n, we will prove that G∗n  G. For L ≥ 2 define

G(L)(η) :=
L∑
k=1

ak(η, µ0)Zk
kw(L)(η, µ0)

, G(η) :=
∞∑
k=1

ak(η, µ0)Zk
kw(η, µ0)

where Z1, Z2, ... i.i.d. ∼ N (0, 1). In what follows, define for an arbitrary function f : R→ R
with E|f(X1,n)| <∞

Fnf :=
1

n1/2

n∑
i=1

(f(Xi,n)− E[f(Xi,n)]).

Note that by construction G∗n(η) = Fnsηn,µn . By an application of Lemma B.1 from Bücher,
Dette, and Volgushev (2011), weak convergence of G∗n to G follows from the following three
claims:

(i) For every L ≥ 2 we have (Fns
(L)
ηn,µn)η∈Gε  (G(L))η∈Gε as n→∞.
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(ii) G(L)  G as L→∞.
(iii) For every δ > 0 we have [with P ∗ denoting outer probability]

lim
L→∞

lim sup
n→∞

P ∗
(

sup
η∈Gε
|Fns(L)

ηn,µn − Fnsηn,µn | > δ
)

= 0.

For a proof of (iii) note that

Fnsηn,µn − Fns(L)
ηn,µn =

(
1− w(ηn, µn)

w(L)(ηn, µn)

) ∞∑
k=1

ak(ηn, µn)

kw(ηn, µn)
FnCk(·|µn)

+
w(ηn, µn)

w(L)(ηn, µn)

∞∑
k=L+1

ak(ηn, µn)

kw(ηn, µn)
FnCk(·|µn)

=:A(L)
n (ηn, µn) +B(L)

n (ηn, µn).

The first term in the above decomposition can be bounded as follows

sup
η∈Gε
|A(L)

n (ηn, µn)| = sup
η∈Gε

∣∣∣(1− w(ηn, µn)

w(L)(ηn, µn)

) ∞∑
k=1

ak(ηn, µn)

kw(ηn, µn)
FnCk(·|µn)

∣∣∣
≤CL−1

( ∞∑
k=1

(FnCk(·|µn))2

k2

)1/2
sup
η∈Gε

( ∞∑
k=1

a2
k(ηn, µn)

w2(ηn, µn)

)1/2

≤CL−1
( ∞∑
k=1

(FnCk(·|µn))2

k2

)1/2
sup
η∈Gε

( a2
1(ηn, µn) + Ca2

2(ηn, µn)

a2
1(ηn, µn) + a2

2(ηn, µn)/4

)1/2

≤C̃L−1
( ∞∑
k=1

(FnCk(·|µn))2

k2

)1/2
,

where the first inequality follows from (26) and the second inequality from (27). Since
E[(FnCk(·|µn))2] = 1 for all k ∈ N by the orthonormality of the (Ck(·|µn))k∈N, we obtain

lim
L→∞

lim sup
n→∞

E
∣∣∣ sup
η∈Gε

A(L)
n (ηn, µn)

∣∣∣2 = 0.

By similar arguments as above we also obtain the bound

sup
η∈Gε
|B(L)

n (ηn, µn)| ≤ C1

( ∞∑
k=L+1

(FnCk(·|µn))2

k2

)1/2
sup
η∈Gε

( w(ηn, µn)

w(L)(ηn, µn)

)
≤ C2

( ∞∑
k=L+1

(FnCk(·|µn))2

k2

)1/2

where the last inequality holds for n sufficiently large. Thus

lim
L→∞

lim sup
n→∞

E
∣∣∣ sup
η∈Gε

B(L)
n (ηn, µn)

∣∣∣2 ≤ lim
L→∞

C2

∞∑
k=L+1

1

k2
= 0.

and assertion (iii) follows. Assertion (ii) can be proved by similar arguments with Zk
replacing FnCk(·|µn) and the arguments are omitted for brevity. For the proof of assertion
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(i), note that for any fixed L it is easy to verify that

(FnC1(·|µn), ...,FnCL(·|µn))  (Z1, ..., ZL).

To see this, recall that the Ck(·|µn) are polynomials and that for µn → µ0 the coefficients of

Ck(·|µn) converge to those of Ck(·|µ0). Weak convergence of (Fns
(L)
ηn,µn)η∈Gε follows by the

extended continuous mapping theorem [see Theorem 1.11.1 in van der Vaart and Wellner
(1996)] applied to the maps [to verify the conditions of the continuous mapping theorem,
make use (28)-(29)]

gn : (x1, ..., xL) 7→
( L∑
k=1

ak(ηn, µn)xk
kw(L)(ηn, µn)

)
η∈Gε

, g : (x1, ..., xL) 7→
( L∑
k=1

ak(η, µ0)xk
kw(L)(η, µ0)

)
η∈Gε

.

Thus (i)-(iii) are established and we see that weak convergence of Gn holds and the lim-
iting Gaussian process G has the following covariance structure (this follows after some
calculations)

E[G(η1)G(η2)] =
E[exp((Z1 − µ)(Z2 − µ)/µ)]− 1

(E[exp((Z1 − µ)(Z̃1 − µ)/µ)]− 1)1/2(E[exp((Z2 − µ)(Z̃2 − µ)/µ)]− 1)1/2

where Z1, Z̃1 ∼ η1, Z2, Z̃2 ∼ η2 and Z1, Z2, Z̃1, Z̃2 are independent. Equation (9) can be
proved by arguments similar to those in Example 2.7. Thus we have established (A1).

Verification of condition (A2). Consider the following decomposition

E sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

s2
ηn,µn(Xi,n)− (s(L)

ηn,µn)2(Xi,n)
∣∣∣

=E sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

[sηn,µn(Xi,n)− s(L)
ηn,µn(Xi,n)][sηn,µn(Xi,n) + s(L)

ηn,µn(Xi,n)]
∣∣∣

≤E
[(

sup
η∈Gε

1

n

n∑
i=1

[sηn,µn(Xi,n)− s(L)
ηn,µn(Xi,n)]2

)1/2

×
(

sup
η∈Gε

1

n

n∑
i=1

[sηn,µn(Xi,n) + s(L)
ηn,µn(Xi,n)]2

)1/2]

≤E
[

sup
η∈Gε

1

n

n∑
i=1

[sηn,µn(Xi,n)− s(L)
ηn,µn(Xi,n)]2

]
E
[

sup
η∈Gε

1

n

n∑
i=1

[sηn,µn(Xi,n) + s(L)
ηn,µn(Xi,n)]2

]
.

(30)
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Moreover, for n sufficiently large and some constants C2, C̃ we obtain by arguments similar
to the ones in the proof of

sup
η∈Gε
|sηn,µn(Xi,n)− s(L)

ηn,µn(Xi,n)|

≤ sup
η∈Gε

∣∣∣1− w(ηn, µn)

w(L)(ηn, µn)

∣∣∣∣∣∣ ∞∑
k=1

ak(ηn, µn)

kw(ηn, µn)
Ck(Xi,n|µn)

∣∣∣
+ sup
η∈Gε

∣∣∣ w(ηn, µn)

w(L)(ηn, µn)

∣∣∣∣∣∣ ∞∑
k=L+1

ak(ηn, µn)

kw(ηn, µn)
Ck(Xi,n|µn)

∣∣∣
≤ sup
η∈Gε

∣∣∣1− w(ηn, µn)

w(L)(ηn, µn)

∣∣∣∣∣∣ ∞∑
k=1

a2
k(ηn, µn)

w2(ηn, µn)

∣∣∣1/2∣∣∣ ∞∑
k=1

C2
k(Xi,n|µn)

k2

∣∣∣1/2
+ sup
η∈Gε

∣∣∣ w(ηn, µn)

w(L)(ηn, µn)

∣∣∣∣∣∣ ∞∑
k=L+1

a2
k(ηn, µn)

w2(ηn, µn)

∣∣∣1/2∣∣∣ ∞∑
k=L+1

C2
k(Xi,n|µn)

k2

∣∣∣1/2
≤C̃L−1

∣∣∣ ∞∑
k=1

C2
k(Xi,n|µn)

k2

∣∣∣1/2 + C2

∣∣∣ ∞∑
k=L+1

C2
k(Xi,n|µn)

k2

∣∣∣1/2
where the last inequality follows from (26) and (27). The last identity shows that for some
constant C3 and n sufficiently large

(31) E sup
η∈Gε
|sηn,µn(Xi,n)− s(L)

ηn,µn(Xi,n)|2 ≤ C3

(
L−2 +

∞∑
k=L+1

1

k2

)
.

Combining (A3) with (30) and (31) shows that

(32) lim sup
n→∞

E sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

s2
ηn,µn(Xi,n)− (s(L)

ηn,µn)2(Xi,n)
∣∣∣ ≤ C4

(
L−2 +

∞∑
k=L+1

1

k2

)
.

Next, observe that by construction we have E[(s
(L)
ηn,µn)2(Xi,n)] = 1 for all n ∈ N, L ≥ 2, η ∈

Gε. Moreover simple arguments show that for every fixed k, l ∈ N

1

n

n∑
i=1

Ck(Xi,n|µn)Cl(Xi,n|µn)
P→ I{k = l}.

By the extended continuous mapping theorem [see Theorem 1.11.1 in van der Vaart and
Wellner (1996)] applied to the maps

gn : (xkl)k,l=1,...,L 7→
( L∑
k,l=1

ak(ηn, µn)al(ηn, µn)xkl
kl(w(L)(ηn, µn))2

)
η∈Gε

g : (xkl)k,l=1,...,L 7→
( L∑
k,l=1

ak(η, µ0)al(η, µ0)xkl
kl(w(L)(η, µ0))2

)
η∈Gε
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it follows that for every L ≥ 2

sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

((s(L)
ηn,µn)2(Xi)− 1)

∣∣∣ = oP (1).

Combining this with (32) proves the first part of assertion (A2). To establish the second
part of (A2), note that for x, y ∈ R we have |x− − y−| ≤ |x− y|. Thus

sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

s2
ηn,µn,−(Xi,n)− (s

(L)
ηn,µn,−)2(Xi,n)

∣∣∣
≤ sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

(sηn,µn,−(Xi,n)− s(L)
ηn,µn,−(Xi,n))2

∣∣∣1/2∣∣∣ 1
n

n∑
i=1

(sηn,µn,−(Xi,n) + s
(L)
ηn,µn,−(Xi,n))2

∣∣∣1/2
≤ sup
η∈Gε

{∣∣∣ 1
n

n∑
i=1

(sηn,µn(Xi,n)− s(L)
ηn,µn(Xi,n))2

∣∣∣1/2
×
∣∣∣ 4
n

n∑
i=1

4(sηn,µn(Xi,n))2 + (sηn,µn(Xi,n)− s(L)
ηn,µn(Xi,n))2

∣∣∣1/2}.
This combined with (31) and (A3) yields

(33) lim sup
n→∞

E sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

s2
ηn,µn,−(Xi,n)− (s

(L)
ηn,µn,−)2(Xi,n)

∣∣∣ ≤ C4

(
L−2 +

∞∑
k=L+1

1

k2

)
.

Thus it suffices to show that for each fixed L

(34) sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

(s
(L)
ηn,µn,−)2(Xi,n)− ‖s(L)

ηn,µn,−‖
2
2,δ(µn)

∣∣∣ = oP (1)

and that

(35) lim
L→∞

lim sup
n→∞

sup
η∈Gε

∣∣∣‖s(L)
ηn,µn,−‖

2
2,δ(µn) − ‖sη,µ0,−‖

2
2,δ(µ0)

∣∣∣ = 0.

To prove (34), define y(L)(x) := (1, ..., xL) and observe that there exists a constant C [note

that s
(L)
ηn,µn(x) is a polynomial in x of degree L] such that

sup
η∈Gε

∣∣∣ 1
n

n∑
i=1

(s
(L)
ηn,µn,−)2(Xi,n)− ‖s(L)

ηn,µn,−‖
2
2,δ(µn)

∣∣∣
≤ sup

b∈RL+1,‖b‖≤C

∣∣∣ 1
n

n∑
i=1

(bTY (L)(Xi,n))2I{bTY (L)(Xi,n) ≤ 0}

− E[(bTY (L)(Xi,n))2I{bTY (L)(Xi,n) ≤ 0}]
∣∣∣.

Weak convergence to zero of the right-hand side can be proved after observing that the
class of functions {y 7→ (bT y)2I{bT y ≤ 0} : ‖b‖ ≤ C} is VC and has an envelope G function

which satisfies supn≥n0
EG2(Y (L)(Xi,n)) < ∞ for some n0 < ∞. Thus convergence of the

right-hand side above to zero follows from Theorem 2.8.1 in van der Vaart and Wellner
(1996).
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Next, let us prove (35). We begin by proving

(36) lim sup
n→∞

sup
η∈Gε

∣∣∣‖s(L)
ηn,µn,−‖

2
2,δ(µn)−‖s

(L)
η,µ0,−‖

2
2,δ(µn)

∣∣∣+∣∣∣‖s(L)
η,µ0,−‖

2
2,δ(µn)−‖s

(L)
η,µ0,−‖

2
2,δ(µ0)

∣∣∣ = 0

for every fixed L ≥ 2. Convergence to zero of supη∈Gε
∣∣∣‖s(L)

ηn,µn,−‖
2
2,δ(µn) − ‖s

(L)
η,µ0,−‖

2
2,δ(µn)

∣∣∣
follows from the fact that, for Vn ∼ Pois(µn), we have for some sequence αn = o(1)

sup
η∈Gε

∣∣∣‖s(L)
ηn,µn,−‖

2
2,δ(µn) − ‖s

(L)
η,µ0,−‖

2
2,δ(µn)

∣∣∣
≤ sup
‖a−b‖≤αn,‖a‖≤C,‖b‖≤C

E
∣∣∣(bTY (L)(Vn))2I{bTY (L)(Vn) ≤ 0}

− (aTY (L)(Vn))2I{aTY (L)(Vn) ≤ 0}
∣∣∣

≤ 2CαnE[‖Y (L)(Vn)‖4] = o(1)(37)

where the last inequality follows from |x2
− − y2

−| ≤ (|x| + |y|)(|x| − |y|). Similarly, letting
V0 ∼ Pois(µ0), the second term can be bounded by

sup
η∈Gε

∣∣∣‖s(L)
η,µ0,−‖

2
2,δ(µn) − ‖s

(L)
η,µ0,−‖

2
2,δ(µ0)

∣∣∣
≤ sup

b∈RL+1,‖b‖≤C

∣∣∣E[(bTY (L)(Vn))2I{bTY (L)(Vn) ≤ 0}]− E[(bTY (L)(V0))2I{bTY (L)(V0) ≤ 0}]
∣∣∣.

Covering B := {b ∈ RL+1 : ‖b‖ ≤ C} with a finite number of balls of radius ε one can
reduce the above problem to showing that

E[(bTY (L)(Vn))2I{bTY (L)(Vn) ≤ 0}]→ E[(bTY (L)(V0))2I{bTY (L)(V0) ≤ 0}]
for any fixed b ∈ B. Observe that Vn converges weakly to V . The continuous mapping
theorem implies that (bTY (L)(Vn))2I{bTY (L)(Vn) ≤ 0}  (bTY (L)(V0))2I{bTY (L)(V0) ≤
0}, and by uniform integrability of the sequence (bTY (L)(Vn))2I{bTY (L)(Vn) ≤ 0} this
implies convergence of the first moment. Together with (37) this establishes (36). Finally,
the convergence

lim
L→∞

sup
η∈Gε

∣∣∣‖s(L)
η,µ0,−‖

2
2,δ(µ0) − ‖sη,µ0,−‖

2
2,δ(µ0)

∣∣∣ = 0

can be proved by similar arguments as (33) with n−1
∑

i replaced by the expectation, the
details are omitted for the sake of brevity. This completes the proof of Assumption (A2).

Verification of (26)-(29) We begin by noting that for Z ∼ ηn with ηn having support
contained in [m,M ] it follows that |Z − µn|k ≤Mk−2(Z − µn)2 for k ≥ 3. Thus, as soon as
µn ∈ [m,M ], which is the case for n sufficiently large, we have∑
k≥2

a2
k(ηn, µn) =

∑
k≥2

k2(E[(Z − µn)k])2

k!µkn
≤ (E[(Z−µn)2])2

∑
k≥2

k2M2k−4

k!mk
≤ C(E[(Z−µn)2])2.

This shows (27). Next, observe that( w(ηn, µn)

w(L)(ηn, µn)

)2
=

∑∞
`=1 `

−2a2
` (ηn, µn)∑L

`=1 `
−2a2

` (ηn, µn)
= 1 +

∑∞
`=L+1 `

−2a2
` (ηn, µn)∑L

`=1 `
−2a2

` (ηn, µn)
.
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Now for Z ∼ ηn with ηn having support contained in [m,M ] we have as soon as µn ∈ [m,M ]

0 ≤
∑∞

`=L+1 `
−2a2

` (ηn, µn)∑L
`=1 `

−2a2
` (ηn, µn)

≤

∑∞
k=L+1

(E[(Z−µn)k])2

k!µkn
(E[(Z−µn)2])2

2µ2n

≤ 2M2
∑

k≥L+1

M2k−4

k!mk
≤ CL−1.

The first part of (26) follows, and the second part of (26) can be established by exactly the

same arguments. Finally, for Z̃ ∼ η(w(L)(ηn, µn)

w(L)(η, µ0)

)2
=

∑L
k=1

(E[(Z−µn)k])2

k!µkn∑L
k=1

(E[(Z̃−µ0)k])2

k!µk0

and by construction E[(Z − µn)k] = E[(Z̃ − µ0)k] for all k ∈ N. Now (29) follows since
maxk=1,..,L |(µn/µ0)k − 1| → 0 as n→∞. This completes all proofs for the Poisson case. 2
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