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This paper characterizes and proposes a method to correct for errors-in-variables biases in the

estimation of rank correlation coefficients (Spearman’s ρ and Kendall’s τ). We first investigate

a set of sufficient conditions under which measurement errors bias the sample rank correlations

toward zero. We then provide a feasible nonparametric bias-corrected estimator based on the

technique of small error variance approximation. We assess its performance in simulations and

an empirical application, using rich Swedish data to estimate intergenerational rank correlations

in income. The method performs well in both cases, lowering the mean squared error by 50-85

percent already in moderately sized samples (n = 1, 000).
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1 Introduction

Spearman’s rank correlation coefficient ρ (Spearman, 1904) and Kendall’s τ (Kendall, 1938) are

two widely used measures of dependence of two random variables. They are invariant to monotonic

transformations of the variables and provide unit-free measurements of their statistical association.

While not as pervasive as in other disciplines, rank correlations are used in an increasing variety of

empirical literatures in economics, including research on intergenerational mobility (Chetty et al.,

2014a), labor market sorting (Hagedorn, Law, and Manovskii 2017), in experimental economics

(Dohmen and Falk, 2011), and health economics (Abellan-Perpiñan, Bleichrodt, and Pinto-Prades,

2009).1

However, errors-in-variables are ubiquitous in these as in other empirical applications. One

common source is error in a reported variable itself. For instance, self-reported data of household

expenditure, consumption or income are often contaminated by reporting errors. Measurement error

may also arise if a latent variable of interest has to be approximated using observed quantities. For

example, when one’s lifetime or permanent income is not observed, the measurement of income

at a particular age only acts as an imprecise approximation. If a variable refers to an intangible

conceptual object, such as cognitive or non-cognitive ability, observable measures can only serve as

proxies.

Although rank correlations are frequently estimated using imprecisely measured variables, little

is known about how measurement errors influence these estimates, or how to correct for the resulting

bias. This gap is notable, as the presence of measurement error is a major and often the prime

motivation for the use of rank correlations. As Spearman argues (Spearman 1904, p. 81), “The chief

[advantage of the rank method] is the large reduction of the ’accidental error’“, as the conversion

into ranks restricts the influence of outliers.2 Rank correlations have therefore become popular in

settings in which errors-in-variables are prevalent, such as the intergenerational mobility literature

(e.g. Dahl and DeLeire, 2008; Bhattacharya and Mazumder, 2011; Chetty et al., 2014a; Chetty

et al., 2014b; Corak, Lindquist, and Mazumder, 2014; Gregg, Macmillan, and Vittori, 2017; Nybom

and Stuhler, 2017; Bratberg et al., 2017; Chen, Ostrovsky, and Piraino, 2017; Pekkarinen, Salvanes,

and Sarvimäki, 2017).

This paper analyzes the effects of measurement error on the estimation of Spearman’s ρ and

Kendall’s τ , and makes the following contributions. First, we provide analytical characterizations

1According to a keyword search in the database Scopus, the share of economics articles that report rank correlations

has doubled in the 2010s compared to previous decades, and increased also in comparison to linear regression or

correlation coefficients.
2Spearman favored the use of rank correlation coefficients (see Part I of Spearman 1904), but developed a method

to correct for measurement error for the Pearson correlation instead (Part II of Spearman 1904). Due to their

nonlinear nature, it is more difficult to characterize the effect of measurement error on rank correlations. Spearman’s

correction for attenuation is not applicable, as it builds on the assumption that the errors are uncorrelated to true

values, while they are always negatively correlated in ranks.
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of the errors-in-variables biases, allowing us to investigate whether and when the sample rank

correlations identify the signs of the rank correlations of the true measurements. Second, we propose

bias-corrected estimation methods for both Spearman’s and Kendall’s rank correlations that can

be applied under classical and certain types of non-classical measurement error. We assess their

performances in both simulations and a real empirical example in the context of intergenerational

mobility research.

Our bias-correction proposal builds on the idea of small variance approximation introduced by

Chesher (1991). The method yields an approximation of the measurement error bias by exploiting

a series expansion of the estimand with respect to the measurement error variances. The expansion

leads to an accurate approximation when these variances are close to zero. The first-order terms

in the expansion, which are functionals of the distribution of the underlying true measurements

multiplied by the measurement error variances, can capture the first-order influence of the measure-

ment errors on the parameter estimate of interest. Following the general construction of a feasible

bias-corrected estimator in Chesher (1991), we then construct bias-corrected estimators for Spear-

man’s ρ and Kendall’s τ by estimating the first-order bias terms nonparametrically and subtracting

them from the sample estimates. We assess their performance by means of Monte Carlo studies.

Depending on sample size and variance of the measurement error, the bias-corrected estimators

reduce the bias by between 50 and 80 percent relative to estimators that ignore the measurement

errors. The mean squared error (MSE) improves in samples as small as n = 100, and the MSE

reductions become substantial at larger error variances or larger sample sizes (up to 85 percent at

n = 1000).

Applications of the small error variance approximation appear in various contexts in econo-

metrics and applied economics.3 In the context of measurement error, all existing work invokes a

classical errors-in-variables model, i.e. assuming that the errors are independent of the underlying

true measurements. One notable feature of the approach when applied to rank correlations is that it

can accommodate non-classical measurement errors if their dependence on the true measurements

is constrained in some form. Specifically, our bias-correction formulas remain valid in the following

two scenarios. First, if the error depends on the true measurement only through its conditional

mean and the conditional mean does not alter the population ranking of the true measurements.

Second, if the dependence between the errors and the true measurements arises because the mea-

surements are strictly increasing and nonlinear transformations of the object defined as the true

measurement plus an additive error. These capabilities of accommodating non-classical errors stem

from the invariance property of the rank correlation coefficients to monotonic transformations, and

enhance the applicability of the correction method in empirically relevant problems.

3They include measurement errors in inequality and social welfare measurements (Chesher and Schluter, 2002),

random coefficients in discrete choice (Chesher and Silva, 2002), errors in covariates in program evaluation (Battistin

and Chesher, 2014), quantile regressions with mismeasured regressors (Chesher, 2017), and violation of instrument

monotonicity in the local average (marginal) treatment effect model (Klein, 2010), to list a few.
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Our empirical application concerns the estimation of Spearman’s ρ and Kendall’s τ of father’s

and son’s lifetime incomes using rich administrative data on life-cycle incomes and parent-child

links for Sweden. Since the data set contains annual incomes that span most of the lifecycle of

both fathers and their sons we can construct approximate measurements of lifetime income. We

then compare our bias-corrected estimates based on snapshots of income at a certain age with

estimates of Spearman’s ρ and Kendall’s τ based on our measures of lifetime income. We find

that for sufficiently large samples (for n = 1000), the bias-corrected estimator reduces the MSE by

between 50 and 60 percent compared to the estimator with no bias correction, while the reduction

is less substantial in smaller samples.4 This finding suggests that our correction method is a useful

tool for the estimation of intergenerational income correlations in settings in which incomes are

observed only over limited periods, as is typically the case. To our knowledge, previous work has

not examined the actual bias-correction performance of small variance approximations in real data,

since precise measurements and a bias-free parameter estimate are usually unavailable. In contrast,

we can keep the distributions of true measurements and measurement errors at those obtained from

the rich data, and compare the MSE performances of our bias-corrected methods to the “oracle”

procedure that we would run were the true measurements not available.

Despite the long history of Spearman’s ρ and Kendall’s τ in statistics, surprisingly little work

exists on their relationship with measurement error. Bartolucci, Devicienti, and Monzón (2015)

show that measurement error causes an attenuation bias for Kendall’s τ in a setup where the

unobserved true measurements are functions of a scalar unobserved random variable. Our analysis

allows for a more general setting where the unobserved true measurements have a non-degenerate

bivariate distribution. Nybom and Stuhler (2017) study how various summary measures of the

dependence between parent and child income compare in annual and lifetime incomes, and propose

a correction method for Spearman’s ρ under the assumption that the measurement error in ranks

can be well described by a linear projection. While this property is shown to hold approximately

in their data, it is not generally known what assumptions on the underlying distributions that can

guarantee it. Our analysis here does not rely on assumptions on the error in ranks, but on the actual

values underlying those ranks. An, Wang, and Xiao (2017) analyze identification and estimation

of an intergenerational mobility function in a setting in which the relation between measurement

error and true measures can deviate from the classical errors-in-variables model.

The remainder of the paper is organized as follows. Section 2 lays out the framework of small

variance approximation and derives an analytical expression of the first-order bias. It also shows

analytical results concerning the attenuation bias and extensions to settings with non-classical

errors-in-variables. Section 3 proposes plug-in based bias-corrected estimators for Spearman’s ρ

and Kendall’s τ . To assess the actual performance of the method, we conduct extensive Monte

4We restrict our analyses to sample sizes up to n = 1000. However, since the variance of the bias-corrected

estimator decreases with sample size, the MSE reduction is likely to be even larger for larger sample sizes.
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Carlo studies in Section 4. Section 5 illustrates the empirical implementation of our method using

Swedish income data, and Section 6 concludes. Proofs omitted from the main text are collected in

the Appendix.

2 Measurement Error Bias: Small Error Variance Approximation

Consider continuously distributed bivariate random variables (X,Y ) ∈ R2 with the joint cdf

FX,Y (·, ·). Assume that (X,Y ) are observable and measure latent random variables (X∗, Y ∗) ∈ R2

subject to additive measurement errors;

X = X∗ + µεX + σεX εX ,

Y = Y ∗ + µεY + σεY εY , (2.1)

where εX and εY are random variables with mean zero, unit marginal variances, and finite third-

order moments, µεX and µεY are the means of the measurement errors, and σεX ≥ 0 and σεY ≥ 0

are the standard deviations of the measurement errors. As evident from this representation, we

assume the measurement errors, X−X∗ and Y −Y ∗ have finite variances with potentially nonzero

means. The baseline setup of our analysis assumes classical measurement errors.

Assumption 2.1. (εX , εY ) are statistically independent of (X∗, Y ∗).

Even though the rank correlations between X and Y and X∗ and Y ∗ are invariant to monotonic

transformations, validity of the additive measurement error representation with Assumption 2.1 is

not. Admitting (2.1) and imposing Assumption 2.1 for a particular scale of measurement of (X,Y ),

nonlinear transformations of (X,Y ) does not guarantee the existence of the additive representation

in the form of (2.1) for the transformed measurements with additive classical measurement errors.

As a result, the bias-correction procedure proposed in this paper is not generally transformation

invariant, and this encourages us to argue for which scale of measurements of (X,Y ) , the additive

error representation of (2.1) and Assumption 2.1 is reasonable in view of economic theory or any

available knowledge of the sampling process.

While the classical measurement error assumption can be restrictive in some contexts, we main-

tain it in our baseline setup. In Section 2.4 below, we relax the classical measurement error as-

sumption and allow the errors to be correlated with X∗ and Y ∗.

We do not constrain the covariance of the measurement errors, so εX and εY can have nonzero

correlation σεXεY ≡ Corr(εX , εY ) = Cov (εX , εY ) .We denote the joint cdf of (X∗, Y ∗) by FX∗,Y ∗ (·, ·),
and the cdfs of (εX , εY ), εX , and εY by GεX ,εY (·, ·) , GεX (·), and GεY (·), respectively. The next

assumption imposes continuity and smoothness of the distribution of (X∗, Y ∗) .
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Assumption 2.2. (i) FX∗,Y ∗ (·, ·) has bounded probability density with respect to the Lebesgue

measure on R2.

(ii) The density function of FX∗,Y ∗ (·, ·) is everywhere three-times continuously differentiable.

2.1 Spearman’s ρ and Kendall’s τ

The Spearman’s rank correlation coefficient ρ of bivariate random variables (X,Y ) is defined by the

correlation of ranks Corr (FX (X) , FY (Y )). For our purpose of characterizing and correcting the

measurement error bias, it is convenient to express ρ in terms of the probabilities of concordance and

discordance. To do so, let (X1, Y1), (X2, Y2), and (X3, Y3) be independent copies of (X,Y ) ∼ FX,Y .

Following equation (5.1.14) of Nelsen (2006), ρ can be equivalently written as three times the

difference between the concordance and discordance probabilities of (X1, Y1) and (X2, Y3),

ρ = 3 [Pr ((X1 −X2)(Y1 − Y3) > 0)− Pr ((X1 −X2)(Y1 − Y3) < 0)]

= 6 [Pr(X1 > X2, Y1 > Y3) + Pr(X1 < X2, Y1 < Y3)]− 3.

= 12 Pr(X1 > X2, Y1 > Y3)− 3, (2.2)

where the second equality follows by noting that Pr(X1 > X2, Y1 < Y3) = 1
2−Pr(X1 < X2, Y1 < Y3)

and Pr(X1 < X2, Y1 > Y3) = 1
2 − Pr(X1 > X2, Y1 > Y3), and the third equality follows by noting

that Pr(X1 < X2, Y1 < Y3) = Pr(Y1 < Y3) − Pr(X1 > X2) + Pr(X1 > X2, Y1 > Y3) = Pr(X1 >

X2, Y1 > Y3).

Kendall’s τ for continuous bivariate random variables (X,Y ) is defined as the difference between

the concordance and discordance probabilities of (X1, Y1) and (X2, Y2),

τ ≡ Pr ((X1 −X2)(Y1 − Y2) > 0)− Pr ((X1 −X2)(Y1 − Y2) < 0)

= 4 Pr(X1 > X2, Y1 > Y2)− 1. (2.3)

Let (X∗1 , Y
∗

1 ), (X∗2 , Y
∗

2 ), and (X∗3 , Y
∗

3 ) be independent copies of (X∗, Y ∗) ∼ FX∗,Y ∗ , and denote the

Spearman’s and Kendall’s rank correlations of (X∗, Y ∗) by ρ∗ and τ∗, respectively.

Given a random sample of observable measurements (X,Y ), we can consistently estimate Spear-

man’s ρ and Kendall’s τ by their sample analogues. However, if the measurements (X,Y ) are

subject to nondegenerate measurement errors as in (2.1), they are generally biased estimators for

ρ∗ and τ∗. In Section 2.3, we investigate the conditions under which τ is subject to attenuation

bias, and the signs of ρ∗ and τ∗ are identified. Without strong distributional assumptions on the

measurement errors, it is not feasible to nonparametrically identify ρ∗ and τ∗. To develop a feasible

and widely applicable way to reduce the biases, we consider approximating the bias of ρ by applying

the small error variance approximation of Chesher (1991).
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2.2 Small Error Variance Approximations for Measurement Error Bias

For k, l = 1, 2, 3, k 6= l, let ∆klX = Xk−Xl, ∆klY = Yk−Yl, ∆klX
∗ = X∗k −X∗l , ∆klY

∗ = Y ∗k −Y ∗l ,

∆klεX = εXk−εXl , and ∆εY = εYk−εYl . We denote their joint distribution functions by F∆klX,∆k′l′Y ,

F∆klX∗,∆k′l′Y
∗ and G∆klεX ,∆k′l′εY , respectively. The measurement equations (2.1) and Assumption

2.1 imply that

Pr(Xk > Xl, Yk′ > Yl′) = Pr(∆lkX
∗ < σεX∆klεX ,∆l′k′Y

∗ < σεY ∆k′l′εY )

=

∫ ∞
−∞

∫ ∞
−∞

F∆lkX∗,∆l′k′Y
∗(σεX∆klεX , σεY ∆k′l′εY )dG∆klεX ,∆k′l′εY

where the second line follows as the convolution of (∆lkX
∗,∆l′k′Y

∗) with independent random

variables (∆klεX ,∆k′l′εY ). Viewing Pr(Xk > Xl, Yk′ > Yl′) as a function of (σεX , σεY ) and imposing

Assumption 2.2, we consider the second-order Taylor expansion of Pr(Xk > Xl, Yk′ > Yl′) around

(σεX , σεY ) = (0, 0). Since Pr(Xk > Xl, Yk′ > Yl′) at (σεX , σεY ) = (0, 0) equals Pr(X∗k > X∗l , Y
∗
k′ >

Y ∗l′ ), this expansion provides an approximation of the measurement error bias in Pr(Xk > Xl, Yk′ >

Yl′).

Lemma A1.1 in Appendix shows that this expansion yields

Pr(Xk > Xl, Yk′ > Yl′) = Pr(X∗k > X∗l , Y
∗
k > Y ∗l ) +

1

2
f ′∆lkX∗|∆l′k′Y

∗<0(0)σε2X
+

1

2
f ′∆l′k′Y

∗|∆lkX∗<0(0)σε2Y
+[1k=k′ − 1k=l′ − 1l=k′ + 1l=l′ ]f∆lkX∗,∆l′k′Y

∗(0, 0)σεXεY σεXσεY

+O((σεX + σεY )3).

where f∆lkX∗|∆l′k′Y
∗≤0 (·) is the pdf of ∆lkX conditional on ∆l′k′Y

∗ ≤ 0, f∆l′k′Y
∗|∆lkX∗≤0(·) is the

pdf of ∆l′k′Y
∗ conditional on ∆lkX

∗ ≤ 0, and f∆lkX∗,∆l′k′Y
∗ (·, ·) is the joint pdf of (∆lkX

∗,∆l′k′Y
∗).

Plugging this expansion into (2.2) and (2.3), we obtain the small error variance approximations of

ρ and τ .

Proposition 2.1. Under Assumptions 2.1 and 2.2,

ρ = ρ∗ + 6f ′∆21X∗|∆31Y ∗<0(0)σ2
εX

+ 6f ′∆31Y ∗|∆21X∗<0(0)σ2
εY

+12f∆21X∗,∆31Y ∗(0, 0)σεXεY σεXσεY +O((σεX + σεY )3), (2.4)

τ = τ∗ + 2f ′∆21X∗|∆21Y ∗≤0(0)σ2
εX

+ 2f ′∆21Y ∗|∆21X∗≤0(0)σ2
εY

(2.5)

+8f∆21X∗,∆21Y ∗(0, 0)σεXεY σεXσεY +O
(
(σεX + σεY )3

)
.

This proposition shows that the first-order measurement error biases of Spearman’s ρ and

Kendall’s τ depend on the density or the density derivatives of the joint or conditional distributions

of (∆21X
∗,∆l′k′Y

∗) at the origin, where (l′, k′) = (3, 1) for Spearman’s ρ and (l′, k′) = (2, 1) for

Kendall’s τ . These expressions of the bias approximations facilitate nonparametric estimation of
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the biases (given a user’s choice of (σ2
εX
, σ2

εY
, σεXεY )), as we discuss further in Section 3. The

validity of these bias approximations does not require any distributional assumptions of the true

measurements and errors. Furthermore, these approximation formulae remain valid even if we relax

the classical mesurement error assumption to a certain extent (see Section 2.4 below). The quality

of approximation, however, crucially depends on the magnitudes of the measurement error biases

relative to the variances of X∗ and Y ∗. We assess the quality of approximations by simulation in

Section 4.

2.3 Attenuation Bias and Identifying Signs

It is well known that the Pearson’s correlation coefficient of (X,Y ) identifies the sign of the correla-

tion coefficient of (X∗, Y ∗), but underestimates its magnitude. This is the well-known attenuation

bias caused by classical measurement errors. Are the rank correlation coefficients also subject to

attenuation bias? In this section, we characterize a set of sufficient conditions that implies an

attenuation bias for τ and the sign identification of ρ and τ .

We start with our analysis of Kendall’s τ . Suppose Assumption 2.1 holds and εX is independent

of εY . Then, τ admits the following representation:

τ = 2

∫ ∞
−∞

∫ y∗1

−∞
b(y∗1, y

∗
2) [2 Pr (X1 > X2|y∗1, y∗2)− 1] dFY ∗ (y∗2) dFY ∗ (y∗1) , (2.6)

where b(y∗1, y
∗
2) = 2 Pr (Y1 > Y2|y∗1, y∗2)−1. See Appendix A1 for a derivation of (2.6). On the other

hand, note that τ∗ can be written as

τ∗ = 2 [2 Pr (X∗1 > X∗2 , Y
∗

1 > Y ∗2 )− Pr(Y ∗1 > Y ∗2 )]

= 2

∫ ∞
−∞

∫ y∗1

−∞
[2 Pr (X∗1 > X∗2 |y∗1, y∗2)− 1] dFY ∗ (y∗2) dFY ∗ (y∗1) . (2.7)

A comparison of (2.6) and (2.7) shows that if (i) 0 ≤ b(y∗1, y∗2) ≤ 1 and (ii) 1
2 ≤ Pr (X1 > X2|y∗1, y∗2) ≤

Pr (X∗1 > X∗2 |y∗1, y∗2) hold for all y∗1 > y∗2, the sign of τ agrees with the sign of τ∗ but τ is biased

toward zero. The condition (i) always holds under the classical measurement errors, since the

facts that Pr (Y1 > Y2|y∗1, y∗2) = Pr(∆21εY < σ−1
εY

(y∗1 − y∗2)) holds and ∆21εY has median zero

imply 1
2 ≤ Pr (Y1 > Y2|y∗1, y∗2) ≤ 1 for any y∗1 ≥ y∗2. Hence, the condition (ii) is sufficient for τ

to be attenuated in case of τ∗ ≥ 0. Along the same line of argument, if Pr (X∗1 > X∗2 |y∗1, y∗2) ≤
Pr (X1 > X2|y∗1, y∗2) ≤ 1

2 for all y∗1 > y∗2, τ has an attenuation bias when τ∗ ≤ 0. We summarize

these results in the next proposition.

Proposition 2.2. Suppose Assumption 2.1 holds and εX is independent of εY .

(i) If 1
2 ≤ Pr (X1 > X2|y∗1, y∗2) ≤ Pr (X∗1 > X∗2 |y∗1, y∗2) holds for every y∗1 > y∗2, then

0 ≤ τ ≤ τ∗.

8



(ii) Symmetrically, if Pr (X∗1 > X∗2 |y∗1, y∗2) ≤ Pr (X1 > X2|y∗1, y∗2) ≤ 1
2 holds for every y∗1 > y∗2, then

τ∗ ≤ τ ≤ 0.

The conditions of Proposition 2.2 (i) or (ii) can be implied if we restrict the joint distribution

of (X∗, Y ∗) to a class characterized by the next proposition:

Proposition 2.3. Suppose Assumption 2.1 holds and εX is independent of εY . If Pr(X∗ > x|Y ∗ =

y) is nondecreasing in y for all x and the distribution of (X∗1 −X∗2 ) conditional on {Y ∗1 = y∗1, Y
∗

2 =

y∗2, y
∗
1 > y∗2} is symmetric and unimodal with the nonnegative mode for any y∗1 > y∗2, then the

condition of Proposition 2.2 (i) holds. Symmetrically, if Pr(X∗ > x|Y ∗ = y) is nonincreasing in y

for all x and the distribution of (X∗1−X∗2 ) conditional on {Y ∗1 = y∗1, Y
∗

2 = y∗2, y
∗
1 > y∗2} is symmetric

and unimodal with nonpositive mode, then the condition of Proposition 2.2 (ii) holds.

The assumption that Pr(X∗ > x|Y ∗ = y) is non-decreasing in y for all x corresponds to the

concept of stochastically increasing positive dependence defined in Lehmann (1966). This is a

concept of strong positive dependence that is invariant to monotonic transformations and implies

positive rank correlations. The same concept has been referred to as stochastic monotonicity in the

literature (see, e.g., Lee., Linton, and Whang (2009) and Delgado and Escanciano (2012)). The

assumption is likely to hold in the intergenerational context considered in our empirical application,

as we discuss below.

Note that the attenuation bias result of Proposition 2.2 does not rely on the small variance

approximation, so under the stated conditions, τ is subject to attenuation bias for any magnitude

of the error variances. We note that the sign of the measurement error bias predicted by the

first-order bias terms in (2.5) is consistent with the exact result of Proposition 2.3 under σεXεY = 0.

As for Spearman’s ρ, a representation analogous to (2.6) becomes more involved, and finding

succinct and interpretable sufficient conditions for the attenuation bias appears challenging. We

can, however, find a simple sufficient condition for the identification of the sign of ρ∗ by combining

Proposition 2.2 with the Daniels’ inequalities (Daniels (1950)) (see also Theorem 5.1.10 in Nelsen

(2006)),

3τ∗ − 1

2
≤ ρ∗ ≤ 3τ∗ + 1

2
,

which holds for any continuously distributed bivariate random variables (X∗, Y ∗). Under the setting

of Proposition 2.2 (i), τ ≤ τ∗ leads to 3τ−1
2 ≤ ρ∗. Hence, if τ ≥ 1/3, we can conclude ρ∗ ≥ 0 and

the sign of ρ agrees with that of ρ∗. A symmetric result is obtained under the setting of Proposition

2.2 (ii). The next proposition summarizes these results.

Proposition 2.4. Suppose Assumption 2.1 holds and εX is independent of εY .

(i) If 1
2 ≤ Pr (X1 > X2|y∗1, y∗2) ≤ Pr (X∗1 > X∗2 |y∗1, y∗2) hold for every y∗1 > y∗2 and τ ≥ 1/3, then,

ρ, ρ∗ ≥ 0. (ii) Symmetrically, if Pr (X∗1 > X∗2 |y∗1, y∗2) ≤ Pr (X1 > X2|y∗1, y∗2) ≤ 1
2 holds for every

y∗1 > y∗2 and τ ≤ −1/3, then ρ, ρ∗ ≤ 0.

9



2.4 Nonclassical Measurement Errors

The baseline model specification considered above assumes classical measurement errors (Assump-

tion 2.1). This assumption can be restrictive in some contexts (e.g., in the intergenerational mobility

example considered in Section 5). Exploiting the invariance property of the rank correlation with

respect to monotonic transformations, we can relax the assumption of classical errors to some

extent.

Specifically, the small error variance approximation developed above can accommodate nonclas-

sical errors in the following two scenarios specified in Assumptions 2.3 and 2.4 below.

Assumption 2.3. (Rank preserving measurement errors with mean dependence)

The conditional means of the measurement errors given their true measurements

E (X −X∗|X∗ = x) = µεX (x) , E (Y − Y ∗|Y ∗ = y) = µεY (y)

satisfy µ′εX > −1 and µ′εY > −1 , and the residuals (X −X∗ − µεX (X∗) , Y − Y ∗ − µεY (Y ∗)) are

statistically independent of (X∗, Y ∗) and have finite variances, i.e., the measurement equations can

be represented by

X = X∗ + µεX (X∗) + σεX εX ,

Y = Y ∗ + µεY (Y ∗) + σεY εY , (2.8)

where (εX , εY ) are the unit variance random variables independent of (X∗, Y ∗).

Under the derivative restrictions of Assumption 2.3, the random variables X̃ ≡ X∗ + µεX (X∗)

and Ỹ ≡ Y ∗ + µεY (Y ∗) can be viewed as strictly monotonic transformations of X∗ and Y ∗ so that

the rank correlation of (X̃, Ỹ ) agrees with that of (X∗, Y ∗) . Hence, under Assumption 2.3, the esti-

mation of the rank correlation of (X∗, Y ∗) can be reduced to the estimation of the rank correlation

of (X̃, Ỹ ) in the measurement equations (2.8) with additive classical errors. The small error variance

approximations of Proposition 2.1 then apply and provide the first-order bias approximations.

Assumption 2.3 extends the applicability of the bias-corrected estimator to other settings in

which classical measurement error assumptions would be too restrictive. An important exam-

ple is the literature on intergenerational mobility, in which lifetime incomes of fathers and sons

(X∗, Y ∗) are often the variables of interest. Jenkins (1987) and Haider and Solon (2006) note that

the relationship between observable (log) annual incomes (X,Y ) and lifetime incomes (X∗, Y ∗)

departs substantially from a classical errors-in-variables model. Haider and Solon show that a bet-

ter approximation is given by the “generalized” errors-in-variables model, X = λX∗ + uX with

Cov(X∗, uX) = 0, and Nybom and Stuhler (2016) find that this model captures much (but not

all) of the measurement error bias in estimates of the intergenerational income elasticity (the slope
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coefficient in the linear regression of Y ∗ on X∗). This generalized model is the standard way of

addressing life-cycle bias in the literature, and corresponds to a linearized version of the rank-

preserving measurement error with mean dependence assumed here, i.e. µεX (X∗) = (λ − 1)X∗ .

The condition d
dxµεX (x) > −1 is satisfied if λ > 0, as is the case as long as incomes are not measured

at very young ages (Böhlmark and Lindquist, 2006). These results suggest that the bias-corrected

estimators proposed here can be usefully applied to this literature.

The second scenario where the bias formulas of Proposition 2.1 can straightforwardly accom-

modate nonclassical errors is specified in the next assumption.

Assumption 2.4. The measurement equations are strictly increasing transformations of the right-

hand sides of equation (2.1), i.e.,

X = gX(X∗ + µεX + σεX εX),

Y = gY (Y ∗ + µεY + σεY εY ), (2.9)

where gX and gY and are strictly increasing functions and (εX , εY ) are mean zero random variables

with unit variances independent of (X∗, Y ∗) as in Assumption 2.1.

The measurement equations specified by (2.9) generally makes the errors X−X∗ dependent on

X∗. But the rank correlation of (X,Y ) and that of (g−1
X (X), g−1

Y (Y )) are identical, due to the strict

monotonicity of gX and gY (a similar point is made by Bhattacharya and Mazumder 2011 in the

context of transition probabilities). As such, the bias approximation formulas of Proposition 2.1

remain valid even without knowledge of gX and gY . The lack of knowledge of these transformations,

however, complicates the construction of a bias-corrected estimator as discussed in Section 3.

The invariance arguments of the rank correlations discussed here imply that the attenuation bias

results for τ shown in Proposition 2.2 is valid also when the classical errors-in-variables assumption

(Assumption 2.1) is weakened to the rank preserving measurement error assumption (Assumption

2.3) as far as the independence between εX and εY is maintained. In addition, Proposition 2.2 can

be generalized to a class of measurement equations of the form given by (2.9).

3 Bias-corrected Estimators for Rank Correlations

In the benchmark setting of Assumptions 2.1 and 2.2, the first-order biases shown in Proposition

2.1 depend on several unknown objects: the variances and correlation of the measurement errors,

and some distributional features of the latent variables (X∗, Y ∗). In the absence of additional

assumptions or auxiliary data, they cannot be identified so that it is infeasible to estimate them

directly from the observations of (X,Y ). To make the estimation of the first-order bias feasible,

we assume that the researcher has a credible point estimate
(
σ̂2
εX
, σ̂2

εY
, σ̂εXεY

)
for the unknown

11



parameters
(
σ2
εX
, σ2

εY
, σεXεY

)
. This point estimate may be based on user’s background knowledge

on the sampling process or an analysis of auxiliary data. To facilitate the elicitation of
(
σ̂2
εX
, σ̂2

εY

)
,

we normalize the variances of X∗ and Y ∗ to be one. That is, σ2
εX

and σ2
εY

are interpreted as

the relative size of the measurement error variances when the variances of the latent variables are

normalized to one. With this standardization, the variance of the observable X and Y are equal to

1 + σ2
εX

and 1 + σ2
εY

, respectively. In what follows, we assume that the observable measurements

(X,Y ) in the data are scaled accordingly, i.e., the raw observations of X and Y in the data are

each multiplied by
√

1 + σ̂2
εX
/σ̂X and

√
1 + σ̂2

εY
/σ̂Y , where σ̂X and σ̂Y are the sample standard

deviations of X and Y in the given data.

Given
(
σ̂2
εX
, σ̂2

εY
, σ̂εXεY

)
, the unknown quantities in the bias expression are those that depend

on the distribution of (X∗, Y ∗). Following Chesher (1991), we replace them with their analogues in

terms of the distribution of observables (X,Y ) . This simple replacement does notalter the leading

terms in the small error variance approximation, since the incurred additional approximation errors

are all in the order smaller than O((σεX + σεY )2).

The bias expressions of Proposition 2.1 suggest the following first-order-bias corrected estimator

for ρ∗ and τ∗,

ρ̂∗bc = ρ̂−6 ̂f ′∆21X|∆31Y≤0(0)σ̂2
εX
−6 ̂f ′∆31Y |∆21X≤0(0)σ̂2

εY
−12 ̂f∆21X,∆31Y (0, 0) σ̂εX σ̂εY σ̂εXεY , (3.1)

τ̂∗bc = τ̂ − 2 ̂f ′∆21X|∆21Y≤0(0)σ̂2
εX
− 2 ̂f ′∆21Y |∆21X≤0(0)σ̂2

εY
− 8 ̂f∆21X,∆21Y (0, 0) σ̂εX σ̂εY σ̂εXεY , (3.2)

where ρ̂ and τ̂ are consistent estimators for the Spearman’s and Kendall’s rank correlations of

(X,Y ). ̂f ′∆l1X|∆l′1Y≤0(0) is an estimator for the density derivative of ∆l1X given ∆l′1Y ≤ 0 eval-

uated at ∆l1X = 0, ̂f ′∆l′1Y |∆l1X≤0(0) is an estimator for the density derivative of ∆l′1Y given

∆l1X ≤ 0 evaluated at ∆l′1Y = 0, and ̂f∆l1X,∆l′1Y (0, 0) is an estimator for the joint den-

sity of (∆l1X,∆l′1Y ) evaluated at the origin. In estimation of these quantities, we construct

a size n sample of (X1i, Xli, Y1i, Yl′i) by setting {(X1i, Y1i) : i = 1, . . . , n} at the original sample

{(Xi, Yi) : i = 1, . . . , n} and, for each l = 2, 3, generating {(Xli, Yli) : i = 1, . . . , n} by randomly

permuting {(X1i, Y1i) : i = 1, . . . , n}. In the Monte Carlo study and empirical application be-

low, we estimate f ′∆l1X|∆l′1Y≤0 by the kernel density derivative estimator using the subsample

{i : ∆l′1Yi ≤ 0}. Tuning the smoothing parameters is a nontrivial task here given that the ultimate

object of interest is the rank correlation coefficients rather than the density derivative of the ob-

servables itself. In what follows, we estimate the densities f∆l1X|∆l′1Y≤0 and f∆l′1Y |∆l1X≤0 using

kernel density estimators with bandwidths chosen by maximum likelihood cross validation (see Hall,

Racine, and Li, 2004) with Gaussian kernel adjusted by multiplying n1/5−1/7 to the cross-validated

bandwidths. We then take their derivatives and evaluate them at the origin. We can estimate

f ′∆l′1Y |∆l1X≤0 in a similar manner. For the estimation of the joint density f∆l1X,∆l′1Y , we use a

bivariate kernel density estimator with a product kernel.
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Replacing the classical errors-in-variables assumption of Assumption 2.1 by Assumption 2.3

with unknown error dependences or Assumption 2.4 with unknown transformations complicates

the constructions of the bias-corrected estimators. In the former case, having nonclassical errors

affect the choices of σ2
εX

and σ2
εY

, since σ2
εX

corresponds to the conditional variance of X given

X∗ rather than the marginal variance of X − X∗, whose elicitation requires knowledge of their

magnitude relative to the variances of X∗ + µεX (X∗) and Y ∗ + µεX (Y ∗). Hence, it can be more

challenging to elicit σ2
εX

and σ2
εY

when we do not know µεX (·) or µεY (·).
In case of Assumption 2.4, the lack of knowledge of gX(·) and/or gY (·) leads to ambiguity about

the unit of (X,Y ) to be used for estimating the bias terms. The first-order bias terms expressed in

terms of the joint distribution of (X∗, Y ∗) are certainly invariant to gX(·) and/or gY (·), but their

estimators based on the observations of (X,Y ) are not since the standard kernel density estimators

are not invariant to nonlinear transformations of (X,Y ). Hence, without knowing gX and/or gY , it

is hard to argue why a particular unit of measurement is used to construct the bias-corrected rank

correlations.

4 Simulation Studies

We examine the approximation performance of the bias-corrected estimators for the Spearman and

Kendall rank correlations, starting in this section with Monte Carlo studies in simulated data.

Specifically, we draw (X∗, Y ∗) from a joint normal distribution with mean zero, variance one, and

correlation 0.5, and draw (εX , εY ) separately from independent normal distributions (Simulation 1)

or mixtures of a point mass at zero and a normal distribution (Simulation 2). The measurement

errors have mean zero and variances σ2
εX

= σ2
εY

= σ2
ε that are common across X and Y . We compare

the performance of the bias-corrected estimator ρ̂∗bc (or τ̂∗bc for the Kendall rank correlation) with

correct specifications of the error variance terms, the “observed” estimator ρ̂ (or τ̂) based on the

sample correlation of (X,Y ), and the infeasible “oracle” estimator ρ̂∗ (or τ̂∗) defined by the sample

correlation of (X∗, Y ∗). We consider σ2
ε = {0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5} to examine how the

quality of the small error variance approximation varies with the degree of measurement error, and

n = {100, 300, 1000} to illustrate how it changes with sample size.

4.1 Spearman’s ρ

Figure 1 illustrates the performance of the bias-corrected estimator for the Spearman rank correla-

tion as given by equation (3.1) when the true data generating process is jointly normal and (εX , εY )

are drawn from independent standard normal distributions. The sub-panels (a) to (c) report the

average bias (estimator’s mean minus true correlation ρ∗), standard deviation, and the square root

of the mean-squared error (MSE) of the bias-corrected, observed and oracle estimators across 1000

repetitions. Given the data generating process, the true Spearman correlation is ρ∗ ∼= 0.485. We
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construct the bias-corrected estimator under the assumption that the error variance σ2
ε is known.

Plots in panel (a) show that the oracle estimator ρ̂∗ is unbiased. In contrast, the estimator ρ̂

based on observed (X,Y ) understates the true correlation, by about one third when the errors have

half of the variance of the true observations (σ2
ε = 0.5). The bias-corrected estimator ρ̂∗bc reduces

this bias, with the extent of bias reduction being inversely related to the error variance: the bias

reduction amounts to more than 70 percent at σ2
ε = 0.05 and to about 55 percent at σ2

ε = 0.5.

The average bias of the observed estimator ρ̂ is stable across sample sizes, while the performance of

the bias-corrected estimator ρ̂∗bc improves slightly with sample size. However, these improvements

are modest, and the bias-corrected estimator performs well also in small samples: much of the bias

reduction is achieved with n = 100 or (not shown) fewer observations.

Panel (b) plots the average standard deviations of the three estimators across sample sizes. The

oracle and observed estimator have similar standard deviations, while the standard deviation of the

bias-corrected estimator is higher. In particular, the standard deviation is increasing in σ2
ε since the

nonparametric bias estimators become more volatile as σ2
ε becomes larger. However, this difference

in the standard deviation remains negligible if the error variance is small, or if the sample size is

large.

Panel (c) plots the square root of the MSE, which is a function of both the bias and the standard

deviation of the estimators. The bias correction procedure leads to a substantial reduction in the

MSE: while it increases slightly the standard deviation of the estimator, the bias reduction is more

sizable, resulting in a net reduction in the MSE. In percentage terms, this reduction is larger for

small error variances and for larger sample sizes. With n=1000 and σ2
ε ≥ 0.2, the bias-corrected

estimator reduces the MSE by about 80 percent. However, the correction procedure reduces the

MSE for any of the three sample sizes and all values of the error variance (the reduction is negligible

at n = 100 and σ2
ε = 0.05).

The observation that the correction procedure works well under different sample sizes and error

variances is important, as it suggests that in settings where the distribution of true measurement

and the error distributions are believed to be not far from Gaussian, it can be usefully applied even

in small samples and over a wide range of error variances.

To assess how sensitive these results are to the distribution of the measurement errors we

implement a second simulation, in which (εX , εY ) are instead drawn from a mixture of point mass

at zero and independent normal distributions with equal mixture weights. This choice is motivated

by the observation that in self-reported survey data, some interviewees do report truthfully and

accurately (Bollinger, 1998; An and Hu, 2012).

Figure 2 shows the results, again plotting the average bias, average standard deviation, and

square root of the MSE of the bias-corrected, observed and oracle estimators in sub-panels (a) to

(c). Comparing the results to Figure 1, the observed estimator is slightly less biased, but the bias

correction procedure performs equally well. The correction procedure reduces the bias and slightly
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Figure 1: Bias-corrected estimator of Spearman’s ρ (Simulation 1)

n=100, repetitions=1,000 n=300, repetitions=1,000 n=1,000, repetitions=1,000

(a) Bias
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Note: (X∗, Y ∗) from the joint normal distribution with mean zero and variance one with (Pearson) correlation 0.5.

(εX , εY ) drawn from independent standard normal distributions, µεX = µεY = 0, and σ2
εX = σ2

εY = σ2
ε . Bandwidths

for the kernel density estimation of f ′ are chosen by maximum likelihood cross validation as implemented by the

“np” package (npudensbw) in the statistical software R, multiplied with the adjustment factor n1/5−1/7 for derivative

estimation.

15



Figure 2: Bias-corrected estimator of Spearman’s ρ (Simulation 2)

n=100, repetitions=1,000 n=300, repetitions=1,000 n=1,000, repetitions=1,000

(a) Bias
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Note: (X∗, Y ∗) from the joint normal distribution with mean zero and variance one with (Pearson) correlation

0.5. (εX , εY ) are drawn from a mixture of point mass at zero and independent normal distributions with mean zero.

Bandwidths for the kernel density estimation of f ′ are chosen by maximum likelihood cross validation as implemented

by the “np” package (npudensbw) in the statistical software R, multiplied with the adjustment factor n1/5−1/7 for

derivative estimation.
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Figure 3: Bandwidth selection for the bias-corrected estimator of Spearman’s ρ (Simulation 1)

n=100, repetitions=1,000 n=300, repetitions=1,000 n=1,000, repetitions=1,000

(a) Bias
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(b) Standard deviation
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Note: (X∗, Y ∗) from the joint normal distribution with mean zero and variance one with (Pearson) correlation 0.5.

(εX , εY ) drawn from independent standard normal distributions, µεX = µεY = 0, and σ2
εX = σ2

εY = σ2
ε . Bandwidths

for the kernel density estimation of f ′ are perturbed by multiplying a factor from the set {1/3, 2/3, 1, 1.5, 2} to the

bandwidths used in the simulation study of Figure 1.
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increases the standard deviation, resulting in a net reduction in the MSE for any sample size and

error variance σ2
ε . With n = 1000 and sufficiently large error variance, the MSE reduction amounts

to up to 85 percent.

Finally, we examine how sensitive these results are to the choice of bandwidth for the kernel

density estimation. The choice of bandwidth is not straightforward, and the bandwidths chosen

by maximum likelihood cross validation are not guaranteed to be optimal in any formal sense for

our particular estimator. In Figure 3 we plot the results from Simulation 1, scaling the chosen

cross-validation bandwidths by factors from the set {1/3, 2/3, 1, 1.5, 2} to compute bias-corrected

estimators that differ only in their choice of bandwidth. The figure illustrates that a smaller

bandwidth may lead to a larger bias reduction, but at the cost of a larger standard deviation

of ρ̂∗ as estimates of the density derivatives become more noisy. The net effect on the MSE is

substantial at n = 100, but the difference become more negligible at larger sample sizes. Overall,

the performance of the bias-corrected estimator appears quite robust to the choice of bandwidth

for its underlying kernel density estimation.

4.2 Kendall’s τ

We repeat these exercises for Kendall’s rank correlation (τ). We first examine the performance of

the bias-corrected estimator as given by equation (3.2) in the setting identical to that of Figure 1.

Given the data generating process, the true Kendall correlation is τ∗ ∼= 0.337.

Panel (a) of Figure 4 plots the average bias of the three estimators. While the bias and the

standard deviation in Kendall’s τ̂ are both smaller in absolute value than in Spearman’s ρ̂, they

are similar in relative terms. The bias of the observed estimator is again stable across sample sizes,

while the performance of the bias-correction improves slightly with sample size. Panel (b) illustrates

that the standard deviation of the bias-corrected estimator increases – both in absolute terms and

relative to the observed estimator – in the error variance σ2
ε , and decreases in sample size. Overall,

we observe again a substantial net reduction in the square root of the MSE, as illustrated in Panel

(c). Similarly to the case of Spearman’s ρ, the bias correction procedure leads to substantially

improved estimates of Kendall’s τ , unless both sample and error variance are very small. The

gains are again larger for larger error variances and larger sample sizes. At n = 1000, the bias

correction reduces the bias by up to 75 percent, and the MSE by up to 80 percent, compared to

the uncorrected estimator.

We repeat this exercise for our second simulation, in which (εX , εY ) are instead drawn from a

mixture of point mass at zero and a normal distribution. Figure 5 shows the results, again plotting

the bias, standard deviation, and MSE of the bias-corrected, observed and oracle estimator in panels

(a) to (c). Compared to Figure 4, the results are nearly unchanged. The correction procedure

reduces the bias, and slightly increases the standard deviation, with a net reduction in the MSE for

any of the three sample sizes, and all considered values of the error variance σ2
ε . At n = 1000, the

18



Figure 4: Bias-corrected estimator of Kendall’s τ (Simulation 1)

n=100, repetitions=1,000 n=300, repetitions=1,000 n=1,000, repetitions=1,000

(a) Bias
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Note: (X∗, Y ∗) drawn from the joint normal distribution with mean zero and variance one with (Pearson) correlation

0.5, (εX , εY ) drawn from independent normal distributions with mean zero, µεX = µεY = 0, and σ2
εX = σ2

εY =

σ2
ε . Bandwidths for the kernel density estimation of f ′∆X|∆Y≤0 and f ′∆Y |∆X≤0 are chosen by maximum likelihood

cross validation as implemented by the “np” package (npudensbw) in the statistical software R, multiplied with the

adjustment factor n1/5−1/7 for derivative estimation.
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Figure 5: Bias-corrected estimator of Kendall’s τ (Simulation 2)

n=100, repetitions=1,000 n=300, repetitions=1,000 n=1,000, repetitions=1,000

(a) Bias
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Note: (X∗, Y ∗) from the joint normal distribution with mean zero and variance one with (Pearson) correlation

0.5. (εX , εY ) are drawn from a mixture of point mass at zero and independent normal distributions with mean

zero. Bandwidths for the kernel density estimation of f ′∆X|∆Y≤0 and f ′∆Y |∆X≤0 are chosen by maximum likelihood

cross validation as implemented by the “np” package (npudensbw) in the statistical software R, multiplied with the

adjustment factor n1/5−1/7 for derivative estimation.
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Figure 6: Bandwidth selection for the bias-corrected estimator of Kendall’s τ (Simulation 1)

n=100, repetitions=1,000 n=300, repetitions=1,000 n=1,000, repetitions=1,000

(a) Bias
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Note: (X∗, Y ∗) from the joint normal distribution with mean zero and variance one with (Pearson) correlation 0.5.

(εX , εY ) drawn from independent standard normal distributions, µεX = µεY = 0, and σ2
εX = σ2

εY = σ2
ε . Bandwidths

for the kernel density estimation of f ′∆X|∆Y≤0 and f ′∆Y |∆X≤0 are perturbed by multiplying a factor from the set

{1/3, 2/3, 1, 1.5, 2} to the bandwidths used in the simulation study of Figure 4.

21



bias correction reduces the bias by up to 80 percent and the MSE by up to 85 percent compared

to the uncorrected estimator.

Finally, we examine how sensitive these results are to the choice of bandwidth for the kernel

density estimation. In Figure 6 we plot results from Simulation 1, scaling the cross-validated

bandwidth by the factors {1/3, 2/3, 1, 1.5, 2}. While a smaller bandwidth leads to a larger bias

reduction, it also leads to a larger standard deviation, as estimates of the density derivatives,

and therefore τ̂∗, become more noisy. The different choices for bandwidth have a somewhat more

important effect at n = 100 than at larger sample sizes. Overall, the performance of the bias-

corrected estimator appears quite robust to the choice of bandwidth for the underlying kernel

density estimation.

5 An application to the estimation of intergenerational income

mobility

We now examine the performance of the bias-corrected estimator in an empirical application,

namely the estimation of intergenerational correlations in income. This literature – often referred to

as the literature on intergenerational mobility – aims to measure dependence in lifetime or perma-

nent incomes, but as these are rarely observed, estimations have to be based on short-run incomes

instead. However, the traditional log-linear correlations have been found to be severely biased

when estimated from short-run income data (Solon 1999, Mazumder 2016), while – consistent with

Spearman’s conjectures – rank correlations appear more robust (Dahl and DeLeire 2008, Chetty

et al. 2014a, Nybom and Stuhler 2017, Chen, Ostrovsky, and Piraino 2017). As a consequence,

rank-based measures have become the basis for much of the recent evidence on mobility differentials

across time (Chetty et al., 2014b; Pekkarinen, Salvanes, and Sarvimäki, 2017), countries (Corak,

Lindquist, and Mazumder, 2014; Bratberg et al., 2017), regions within countries (Chetty et al.,

2014a; Chetty and Hendren forthcoming (I); Chetty and Hendren, forthcoming (II)) and groups

(Mazumder and Davis 2018). In the absence of formal correction methods, measurement error

remains however a central concern.

5.1 Data

We employ an administrative data set based on a 35 percent random sample of the Swedish popu-

lation. We use as our main sample all males in the random sample that were born 1953-57 and use

a multigenerational register to link these individuals to their biological fathers. Our income data

come from official tax declaration files and span the years 1968-2007. We focus on a measure of

total income, which includes income from all sources, such as labor and capital income, and income-

based social transfers. For each son and father we construct one long-run income measure (“true”

income) and one potentially mismeasured approximation of long-run income (“observed” income).
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To decrease the amount of non-classical measurement error we focus on mid-career incomes (see

Haider and Solon, 2006; Nybom and Stuhler, 2017; and our discussion in Section 2.4). To this

end, we drop observations with fathers born before 1927. For the sons we approximate true income

as (the log of) the average of annual incomes between ages 30-50, and observed income as (log)

annual income at age 40. For the fathers, who we can only observe from age 40, we approximate

true income as the (log) average of annual incomes between ages 40-50, and observed income as

(log) annual income at age 45. We keep only those fathers and sons who had annual incomes of at

least 20,000 SEK (approximately 2,500 USD) in each of the years used to compute their long-run

average income.

Despite these restrictions, our data do not perfectly satisfy the classical errors-in-variables

assumptions. Hence, remaining correlations between errors and true values, as well as differences in

the higher-order moments of their distributions (e.g. skewness and kurtosis), may lead to deviations

from the theoretical and simulation results above. We present summary statistics in Table A1 and

a correlation matrix in Table A2 in the Appendix. Figure 7 plots histograms of the marginal

distribution of (demeaned) log lifetime income and measurement errors. Our full sample consists of

36,135 father-son pairs. The estimates of Spearman’s and Kendall’s rank correlations using “true”

incomes are ρ∗ = 0.26 and τ∗ = 0.18, while the corresponding (biased) estimates based on observed

annual incomes are ρ = 0.21 and τ = 0.14. We treat this random sample as the true underlying

population and assess the performances of the bias-corrected estimators based on repeatedly drawn

random subsamples of size n varying over {100,300,1000}.

5.2 Spearman’s ρ

Figure 8 reports the results for the bias-corrected estimator for Spearman’s ρ for each subsample

size, n = {100, 300, 1000}. Panels (a) to (c) report the average bias (estimator minus the true

correlation ρ∗), standard deviation, and square root of the MSE of the bias-corrected, observed

and oracle estimators across 500 repetitions. The x-axis indicates different specifications for the

error variance σ2
εX

in our bias correction procedure, while the actual value σ2
εX

= 0.259 (relative

to the variance of X∗ being standardized to one) is indicated by a vertical line in all graphs. The

corresponding error variance σ2
εY

is scaled proportionally. A comparison along the x-axis is therefore

informative about the sensitivity of the bias correction to misspecification of the underlying error

variance.

As in the simulations in Section 4, panel (a) shows that the application of the small error

variance approximation can greatly reduce the bias in estimates of Spearman’s ρ. In contrast to

the simulations, at the true value σ2
εX

= 0.259 the bias is slightly over- instead of under-corrected,

demonstrating that in real-world applications the correction may not always be conservative. To

avoid such over-correction, it may thus be advisable in similar applications to use estimates of σ2
εX

and σ2
εY

that are believed to be slightly smaller than their true values. Panel (b) unsurprisingly
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Figure 7: Marginal distributions

(a) Father’s and son’s log lifetime incomes
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shows that the bias correction leads to a modest increase in the standard deviation of the estimator,

in particular for smaller sample sizes. Panel (c) demonstrates that the combined effect of the

decrease in bias and the increase in standard deviation is a small net increase of the square-root of

the MSE at small sample size n = 100. However, for larger sample size (n = 1000) this combined

effect instead results in a substantial net reduction of roughly 60 percent as compared to the sample

estimators without the bias correction. Figure 8 also suggests that the over-correction of the biases

when choosing excessively large σ2
ε can increase the MSE compared to the uncorrected estimators.

In this application, the bias correction is therefore beneficial in small samples only if the bias

and not the sampling variance of the estimator is the main concern. This pattern is in contrast

to our Monte Carlo simulations, in which application of the bias correction led to a net reduction

of the MSE even for small sample sizes. A possible explanation is that more observations are in

the tails of the distribution in the empirical data compared to a normal distribution, in which f ′

are only imprecisely estimated in smaller samples. However, the bias correction does lead to a

substantial MSE reduction at n = 1000 (see Figure 8) or larger sample sizes (not shown here), at

which its application becomes advisable also when the MSE is the primary concern.5

5.3 Kendall’s τ

Figure 9 reports the corresponding results for the bias-corrected estimator of Kendall’s τ , which

are generally similar to those for Spearman’s ρ. Panel (a) shows that the uncorrected estimator is

attenuated towards zero. This result is in line with Proposition 2.3, as stochastic monotonicity –

in this context, that the conditional distribution function of child income given parent income is

increasing in parent income – is likely to hold in intergenerational relationships. Dardanoni, Fiorini,

and Forcina (2012) test 149 tables of intergenerational class mobility covering 35 countries, and find

that stochastic monotonicity can be rejected in only four cases. Delgado and Escanciano (2012)

propose a distribution-free test of stochastic monotonicity, and fail to reject the null hypothesis

of stochastic monotonicity in the association between child and parent income in the Panel Study

of Income Dynamics. And Nybom and Stuhler (2017) plot the joint density of parent and child

long-run incomes in a sample drawn from the same Swedish register data as we use here, which

suggests that stochastic monotonicity holds also in the Swedish population.6

The correction procedure again reduces the average bias substantially. In this case, the re-

maining bias after implementation of the correction procedure is in fact close to zero. As with the

Spearman rank correlation, the bias is marginally over-corrected for n = 1000. While the error

5Tentative evidence (not shown here) suggests that the non-zero correlation between measurement errors and

true values has very little effect on the bias correction. However, the extent of (over-)correction depends on chosen

bandwidths, and further work on how to optimally choose bandwidths in this context would be useful.
6However, stochastic monotonicity would fail to hold if child incomes are measured very early, as children from

high-income parents are more likely to enter higher education, and therefore less likely to work full-time in their early

20s.
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Figure 8: Bias-corrected estimator of Spearman’s ρ of father’s and son’s lifetime incomes

n=100, repetitions=500 n=300, repetitions=500 n=1,000, repetitions=500
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Note: (X∗, Y ∗) are drawn from our Swedish intergenerational income data standardized to mean zero and variance

one, with σ2
εX = 0.259 and σ2

εY = 0.399. Bandwidths for the kernel density estimation of f ′ are chosen by maximum

likelihood cross validation as implemented by the “np” package (npudensbw) in the statistical software R, multiplied

with the adjustment factor n1/5−1/7 for derivative estimation.
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Figure 9: Bias-corrected estimator of Kendall’s τ of father’s and son’s lifetime incomes

n=100, repetitions=500 n=300, repetitions=500 n=1,000, repetitions=500

(a) Bias

0.1 0.2 0.3 0.4 0.5

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

● ● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

● ● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

● ● ● ● ● ● ●

● ● ● ● ● ● ●

●

●

●

●

●

●

●

(b) Standard deviation

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

● ● ● ● ● ● ●● ● ● ● ● ● ●●
●

●
●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

● ● ● ● ● ● ●● ● ● ● ● ● ●
●

●
●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

● ● ● ● ● ● ●● ● ● ● ● ● ●● ● ● ●
●

●
●

(c) Square root of MSE

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ●
●

●

●

●

●

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

● ● ● ● ● ● ●

● ● ● ● ● ● ●

● ● ● ●
●

●

●

0.1 0.2 0.3 0.4 0.5

0.
00

0.
05

0.
10

0.
15

0.
20

● ● ● ● ● ● ●

● ● ● ● ● ● ●

●
●

● ●
●

●

●

assumed σ2
ε (error variance) assumed σ2

ε (error variance) assumed σ2
ε (error variance)

0.1 0.2 0.3 0.4 0.5

−0
.1
5

−0
.1
0

−0
.0
5

0.
00

0.
05

●

●

●

●

●

●

●

● ● ● ● ● ● ●
●

●

●

●

●

●

●

Observed Oracle Bias−corrected

Note: (X∗, Y ∗) are drawn from our Swedish intergenerational income data standardized to mean zero and variance

one, with σ2
εX = 0.259 and σ2

εY = 0.399. Bandwidths for the kernel density estimation of f ′∆X|∆Y≤0 and f ′∆Y |∆X≤0

are chosen by maximum likelihood cross validation as implemented by the “np” package (npudensbw) in the statistical

software R, multiplied with the adjustment factor n1/5−1/7 for derivative estimation.
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variance in our full sample equals σ2
εX

= 0.259, the bias is minimized when assuming a slightly

lower value for σ2
εX

. In line with both the simulations and the Spearman rank correlation, panel (b)

illustrates that the bias correction increases the standard deviation of the estimator, in particular

for larger assumed error variances and smaller sample sizes. However, panel (c) again demonstrates

that the combined effect of the bias reduction and the increased standard deviation is a net decrease

in the square root of the MSE at n = 1000. But as for the Spearman rank correlation, there is a

slight increase in the square root of the MSE at small sample size (n = 100) and when assuming

excessively large values of σ2
ε .

In contrast to the simulations, we thus find that in small samples the bias-corrected estimator

for Kendall’s τ is advantagous only if the bias itself is the main concern. If MSE reduction is the

main yardstick then the bias correction makes little difference (on average) for n = 300 but leads

to a sizable improvement at n = 1000, for a wide range of assumed values of σ2
ε . At even larger

sample sizes (not shown here), the MSE is reduced further.

6 Conclusion

In this paper, we analyzed the effects of measurement error on the estimation of Spearman’s ρ and

Kendall’s τ . Due to the nonlinear nature of these rank correlation coefficients, analytical character-

ization of the effect of measurement errors is not as simple as for that of the Pearson correlation or

regression coefficients. Using the approach of small error variance approximation first proposed by

Chesher (1991), we derive the first-order bias terms proportional to the variances and covariances

of the measurement errors. We also provide a simple sufficient condition for when measurement

error leads to attenuation biases, which also leads to identification of the signs of the rank correla-

tions. A notable feature of our analysis is that thanks to the transformation invariance of the rank

correlations, our method can also accommodate some forms of non-classical measurement errors.

This contrasts our analysis with previous applications of the small error variance approximation

where classical measurement error type assumptions are commonly assumed.

We construct bias-corrected estimators for Spearman’s ρ and Kendall’s τ by estimating the

first-order bias terms nonparametrically and subtracting them from the sample estimates. We

find that the bias-corrected estimators can improve the mean squared errors (MSE) relative to the

estimator that ignore the measurement errors. The MSE gains are substantial for a wide range

of measurement error variances, even when those variances are as large as half of the variances of

the true measurements. Our empirical application concerns the estimation of rank correlations of

parent and child lifetime incomes, using administrative data on life-cycle incomes for Sweden. We

find that the bias-corrected estimator improves the MSE by between 50 and 60 percent compared

to the estimator with no bias correction (for n = 1000). For small sample sizes the MSE reduction

is smaller, while for larger sample sizes it is larger, mainly due to the reduction of the variance of
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the non-parametric bias estimators.

Despite that Spearman’s ρ and Kendall’s τ have a long history in statistics and are also becoming

increasingly common in applied economics, surprisingly little work exists on their relationship

with measurement error. We hope that this new line of work will spark further research on the

relationship between rank-based measures of statistical dependence and measurement error and

equip applied researchers with appropriate tools and correction methods.

29



References
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Appendix

A1 Proofs

Proposition 2.1 follows as a corollary of the next lemma.

Lemma A1.1. Under Assumptions 2.1 and 2.2,

Pr(Xk > Xl, Yk′ > Yl′) = Pr(X∗k > X∗l , Y
∗
k > Y ∗l ) +

1

2
f ′∆lkX∗|∆l′k′Y

∗<0(0)σε2X
+

1

2
f ′∆l′k′Y

∗|∆lkX∗<0(0)σε2Y
+[1k=k′ − 1k=l′ − 1l=k′ + 1l=l′ ]f∆lkX∗,∆l′k′Y

∗(0, 0)σεXεY σεXσεY

+O((σεX + σεY )3).

Proof. The second-order Taylor expansion of Pr(Xk > Xl, Yk′ > Yl′) at (σεX , σεY ) = (0, 0) is

Pr(Xk > Xl, Yk′ > Yl′)

= Pr(X∗k > X∗l , Y
∗
k′ > Y ∗l′ ) +

∂ Pr(Xk > Xl, Yk′ > Yl′)

∂σεX

∣∣∣∣
0,0

σεX +
∂ Pr(Xk > Xl, Yk′ > Yl′)

∂σεY

∣∣∣∣
0,0

σεY

+
1

2

∂2 Pr(Xk > Xl, Yk′ > Yl′)

∂σ2
εX

∣∣∣∣
0,0

σ2
εX

+
1

2

∂2 Pr(Xk > Xl, Yk′ > Yl′)

∂σ2
εY

∣∣∣∣
0,0

σ2
εY
,

+
∂2 Pr(Xk > Xl, Yk′ > Yl′)

∂σεX∂σεY

∣∣∣∣
0,0

σεXσεY +O
(
(σεX + σεY )3

)
.

We compute each derivative term. First,

∂ Pr (Xk > Xl, Yk′ > Yl′)

∂σεX

∣∣∣∣
0,0

=

∫ ∞
−∞

∫ ∞
−∞

∂

∂a
F∆lkX∗,∆l′k′Y

∗ (a, b)

∣∣∣∣
a=b=0

∆klεXdG∆klεX ,∆k′l′εY

=
∂

∂a
F∆lkX∗,∆l′k′Y

∗ (a, b)

∣∣∣∣
a=b=0

· E (∆klεX) = 0,

as E (∆klεX) = 0. Similarly, we can show
∂ Pr(Xk>Xl,Yk′>Yl′ )

∂σεY

∣∣∣
0,0

= 0.

As for the second derivatives,

∂2 Pr (Xk > Xl, Yk′ > Yl′)

∂σ2
εX

∣∣∣∣
0,0

=

∫ ∞
−∞

∫ ∞
−∞

∂2

∂a2
F∆lkX∗,∆l′k′Y

∗ (a, b)

∣∣∣∣
a=b=0

(∆klεX)2 dG∆klεX ,∆k′l′εY

= 2
∂

∂a
f∆lkX∗|∆l′k′Y

∗≤0(a)

∣∣∣∣
a=0

F∆l′k′Y
∗ (0)

=
∂

∂a
f∆lkX∗|∆l′k′Y

∗≤0(a)

∣∣∣∣
a=0

,

where the second line follows from V ar (∆klεX) = 2 and

F∆lkX∗,∆l′k′Y
∗ (a, b) = Pr (∆lkX

∗ ≤ a|∆l′k′Y
∗ ≤ b)F∆l′k′Y

∗ (b) ,
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and the third line follows from F∆l′k′Y
∗ (0) = 1

2 . Similarly, it holds

∂2 Pr (Xk > Xl, Yk′ > Yl′)

∂σ2
εX

∣∣∣∣
0,0

=
∂

∂b
f∆l′k′Y

∗|∆lkX∗≤0 (b)

∣∣∣∣
b=0

.

For the cross derivative term, we have

∂2 Pr (Xk > Xl, Yk′ > Yl′)

∂σεY ∂σεX

∣∣∣∣
0,0

= f∆lkX∗∆l′k′Y
∗ (0, 0) · Cov (∆klεX ,∆k′l′εY )

= [1k=k′ − 1k=l′ − 1l=k′ + 1l=l′ ]σεXεY f∆lkX∗,∆l′k′Y
∗ (0, 0) .

With all these combined, we obtain the conclusion of this lemma.

Proof. [Derivation of equation (2.6)] Note

1

2
τ

= [Pr (X1 > X2, Y1 > Y2)− Pr (X1 < X2, Y1 > Y2)]

=

[
Pr (X1 > X2, Y1 > Y2, X

∗
1 > X∗

2 , Y
∗
1 > Y ∗

2 ) + Pr (X1 > X2, Y1 > Y2, X
∗
1 > X∗

2 , Y
∗
1 < Y ∗

2 )

+ Pr (X1 > X2, Y1 > Y2, X
∗
1 < X∗

2 , Y
∗
1 > Y ∗

2 ) + Pr (X1 > X2, Y1 > Y2, X
∗
1 < X∗

2 , Y
∗
1 < Y ∗

2 )

]

−

[
Pr (X1 < X2, Y1 > Y2, X

∗
1 > X∗

2 , Y
∗
1 > Y ∗

2 ) + Pr (X1 < X2, Y1 > Y2, X
∗
1 > X∗

2 , Y
∗
1 < Y ∗

2 )

+ Pr (X1 < X2, Y1 > Y2, X
∗
1 < X∗

2 , Y
∗
1 > Y ∗

2 ) + Pr (X1 < X2, Y1 > Y2, X
∗
1 < X∗

2 , Y
∗
1 < Y ∗

2 )

]

=

[
Pr (X1 > X2, Y1 > Y2, X

∗
1 > X∗

2 , Y
∗
1 > Y ∗

2 ) + Pr (X1 < X2, Y1 < Y2, X
∗
1 > X∗

2 , Y
∗
1 > Y ∗

2 )

−Pr (X1 < X2, Y1 > Y2, X
∗
1 > X∗

2 , Y
∗
1 > Y ∗

2 )− Pr (X1 > X2, Y1 < Y2, X
∗
1 > X∗

2 , Y
∗
1 > Y ∗

2 )

]
(A1)

+

[
Pr (X1 > X2, Y1 > Y2, X

∗
1 < X∗

2 , Y
∗
1 > Y ∗

2 ) + Pr (X1 < X2, Y1 < Y2, X
∗
1 < X∗

2 , Y
∗
1 > Y ∗

2 )

−Pr (X1 > X2, Y1 < Y2, X
∗
1 < X∗

2 , Y
∗
1 > Y ∗

2 )− Pr (X1 < X2, Y1 > Y2, X
∗
1 < X∗

2 , Y
∗
1 > Y ∗

2 )

]
where the second equality follows from the law of total probability, and the third line follows from

the exchangeability of (X1, X
∗
1 , Y1, Y

∗
1 ) and (X2, X

∗
2 , Y2, Y

∗
2 ), i.e., we can permute the subscripts of

the random variables in Pr (·). The first term in the first squared bracketed term in equation (A1)
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can be written as

Pr (X1 > X2, Y1 > Y2, X
∗
1 > X∗2 , Y

∗
1 > Y ∗2 )

=

∫ ∞
−∞

∫ ∞
−∞

∫ x∗1

−∞

∫ y∗1

−∞
Pr (X1 > X2, Y1 > Y2|x∗1, x∗2, y∗1, y∗2) dFX∗,Y ∗ (x∗2, y

∗
2) dFX∗,Y ∗ (x∗1, y

∗
1)

=

∫ ∞
−∞

∫ ∞
−∞

∫ x∗1

−∞

∫ y∗1

−∞
Pr (X1 > X2|x∗1, x∗2, y∗1, y∗2) Pr (Y1 > Y2|y∗1, y∗2) dFX∗|Y ∗ (x∗2|y∗2) dFY ∗ (y∗2)

·dFX∗|Y ∗ (x∗1|y∗1) dFY ∗ (y∗1)

=

∫ ∞
−∞

∫ y∗1

−∞

[∫ ∞
−∞

∫ x∗1

−∞
Pr (X1 > X2|x∗1, x∗2, y∗1, y∗2) dFX∗|Y ∗ (x∗2|y∗2) dFX∗|Y ∗ (x∗1|y∗1)

]
·Pr (Y1 > Y2|y∗1, y∗2) dFY ∗ (y∗2) dFY ∗ (y∗1)

=

∫ ∞
−∞

∫ y∗1

−∞
Pr (X1 > X2, X

∗
1 > X∗2 |y∗1, y∗2) Pr (Y1 > Y2|y∗1, y∗2) dFY ∗ (y∗2) dFY ∗ (y∗1) ,

where the second equality follows by the conditional independence (X1, X2) ⊥ (Y1, Y2) | (X∗1 , X∗2 , Y ∗1 , Y ∗2 )

and (Y1 ⊥ Y2) ⊥ (X∗1 , X
∗
2 ) | (Y ∗1 , Y ∗2 ) implied from the independence of the classical measurement

errors εX ⊥ εY , the third equality follows from interchanging the order of integrations. Similarly,

for each of the terms in the first squared brackets, we can write

Pr (X1 < X2, Y1 < Y2, X
∗
1 > X∗2 , Y

∗
1 > Y ∗2 )

=

∫ ∞
−∞

∫ y∗1

−∞
Pr (X1 < X2, X

∗
1 > X∗2 |y∗1, y∗2) Pr (Y1 < Y2|y∗1, y∗2) dFY ∗ (y∗2) dFY ∗ (y∗1)

Pr (X1 < X2, Y1 > Y2, X
∗
1 > X∗2 , Y

∗
1 > Y ∗2 )

=

∫ ∞
−∞

∫ y∗1

−∞
Pr (X1 < X2, X

∗
1 > X∗2 |y∗1, y∗2) Pr (Y1 > Y2|y∗1, y∗2) dFY ∗ (y∗2) dFY ∗ (y∗1) ,

Pr (X1 > X2, Y1 < Y2, X
∗
1 > X∗2 , Y

∗
1 > Y ∗2 )

=

∫ ∞
−∞

∫ y∗1

−∞
Pr (X1 > X2, X

∗
1 > X∗2 |y∗1, y∗2) Pr (Y1 < Y2|y∗1, y∗2) dFY ∗ (y∗2) dFY ∗ (y∗1) .

Hence, the first square-bracketed terms are reduced to[
Pr (X1 > X2, Y1 > Y2, X

∗
1 > X∗2 , Y

∗
1 > Y ∗2 ) + Pr (X1 < X2, Y1 < Y2, X

∗
1 > X∗2 , Y

∗
1 > Y ∗2 )

−Pr (X1 < X2, Y1 > Y2, X
∗
1 > X∗2 , Y

∗
1 > Y ∗2 )− Pr (X1 > X2, Y1 < Y2, X

∗
1 > X∗2 , Y

∗
1 > Y ∗2 )

]

=

∫ ∞
−∞

∫ y∗1

−∞
Pr (X1 > X2, X

∗
1 > X∗2 |y∗1, y∗2) [Pr (Y1 > Y2|y∗1, y∗2)− Pr (Y1 < Y2|y∗1, y∗2)] dFY ∗ (y∗2) dFY ∗ (y∗1)

−
∫ ∞
−∞

∫ y∗1

−∞
Pr (X1 < X2, X

∗
1 > X∗2 |y∗1, y∗2) [Pr (Y1 > Y2|y∗1, y∗2)− Pr (Y1 < Y2|y∗1, y∗2)] dFY ∗ (y∗2) dFY ∗ (y∗1)

=

∫ ∞
−∞

∫ y∗1

−∞
[Pr (X1 > X2, X

∗
1 > X∗2 |y∗1, y∗2)− Pr (X1 < X2, X

∗
1 > X∗2 |y∗1, y∗2)] (A2)

· [2 Pr (Y1 > Y2|y∗1, y∗2)− 1] dFY ∗ (y∗2) dFY ∗ (y∗1) .
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By repeating a similar algebra, the second square-bracketed terms in (A1) can be written as[
Pr (X1 > X2, Y1 > Y2, X

∗
1 < X∗2 , Y

∗
1 > Y ∗2 ) + Pr (X1 < X2, Y1 < Y2, X

∗
1 < X∗2 , Y

∗
1 > Y ∗2 )

−Pr (X1 > X2, Y1 < Y2, X
∗
1 < X∗2 , Y

∗
1 > Y ∗2 )− Pr (X1 < X2, Y1 > Y2, X

∗
1 < X∗2 , Y

∗
1 > Y ∗2 )

]

=

∫ ∞
−∞

∫ y∗1

−∞
[Pr (X1 > X2, X

∗
1 < X∗2 |y∗1, y∗2)− Pr (X1 < X2, X

∗
1 < X∗2 |y∗1, y∗2)] (A3)

· [2 Pr (Y1 > Y2|y∗1, y∗2)− 1] dFY ∗ (y∗2) dFY ∗ (y∗1) .

Summing up (A2) and (A3) leads to

1

2
τ

=

∫ ∞
−∞

∫ y∗1

−∞
[Pr (X1 > X2|y∗1, y∗2)− Pr (X1 < X2|y∗1, y∗2)] [2 Pr (Y1 > Y2|y∗1, y∗2)− 1] dFY ∗ (y∗2) dFY ∗ (y∗1)

=

∫ ∞
−∞

∫ y∗1

−∞
[2 Pr (X1 > X2|y∗1, y∗2)− 1] [2 Pr (Y1 > Y2|y∗1, y∗2)− 1] dFY ∗ (y∗2) dFY ∗ (y∗1) .

Hence, with b(y∗1, y
∗
2) = 2 Pr (Y1 > Y2|y∗1, y∗2)− 1, we obtain

τ = 2

∫ ∞
−∞

∫ y∗1

−∞
b(y∗1, y

∗
2) [2 Pr (X1 > X2|y∗1, y∗2)− 1] dFY ∗ (y∗2) dFY ∗ (y∗1) .

Proof of Proposition 2.3. We prove the claim for the positive τ∗ case only, since a symmetric argu-

ment applies to the negative τ∗ case.

First, we shall show that if (X∗, Y ∗) has stochastically increasing positive dependence, Pr(X∗1 >

X∗2 |y∗1, y∗2) ≥ 1/2 and Pr(X1 > X2|y∗1, y∗2) ≥ 1/2 hold for y∗1 ≥ y∗2. For δ > 0, it holds

Pr(X∗1 > X∗2 |Y ∗1 = y∗ + δ, Y ∗2 = y∗)

=
∫∞
−∞ Pr(X∗1 > x|Y ∗1 = y∗ + δ, Y ∗2 = y∗, X∗2 = x)dFX∗2 |Y ∗2 (x|y∗)

=
∫∞
−∞ Pr(X∗1 > x|Y ∗1 = y∗ + δ)dFX∗2 |Y ∗2 (x|y∗)

≥
∫∞
−∞ Pr(X∗1 > x|Y ∗1 = y∗)dFX∗2 |Y ∗2 (x|y∗)

=
∫∞
−∞ Pr(X∗1 > x|Y ∗1 = Y ∗2 = y∗, X∗2 = x)dFX∗2 |Y ∗2 (x|y∗)

= Pr(X∗1 > X∗2 |Y ∗1 = Y ∗2 = y∗), = 1/2

where the third line follows by the stochastically increasing dependence and the last equality follows

since (X∗1 , Y
∗

1 ) and (X∗2 , Y
∗

2 ) are independently and identically distributed.
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To show Pr(X1 > X2|y∗1, y∗2) ≥ 1/2, let G∆21εX (·) be the distribution function of ∆21εX . Con-

sider

Pr(X1 > X2|y∗1, y∗2)

=

∫ ∞
−∞

Pr(X∗1 > X∗2 + ∆21εX |y∗1, y∗2,∆21εX)dG∆21εX

=

∫ 0

−∞
Pr(X∗1 > X∗2 + ∆21εX |y∗1, y∗2,∆21εX)dG∆21εX

+

∫ ∞
0

Pr(X∗1 > X∗2 + ∆21εX |y∗1, y∗2,∆21εX)dG∆21εX

=
1

2
−
∫ 0

−∞
Pr(X∗2 ≥ X∗1 −∆21εX |y∗1, y∗2,∆21εX)dG∆21εX

+

∫ ∞
0

Pr(X∗1 > X∗2 + ∆21εX |y∗1, y∗2,∆21εX)dG∆21εX

=
1

2
−
∫ ∞

0
Pr(X∗2 ≥ X∗1 + ∆21εX |y∗1, y∗2,∆21εX)dG∆21εX

+

∫ ∞
0

Pr(X∗1 > X∗2 + ∆21εX |y∗1, y∗2,∆21εX)dG∆21εX ,

where we exploit the symmetry of the distribution of ∆21εX in the last line. When y∗1 = y∗2, the

two integrals in the last expression cancel out, so Pr(X1 > X2|Y ∗1 = Y ∗2 = y∗) = 1/2 holds. For

δ > 0, set y∗1 = y∗ + δ > y∗2 = y∗ and rewrite the previous equation as

1

2
+

∫ ∞
0

[Pr(X∗1 > X∗2 + ∆21εX |y∗1, y∗2,∆21εX)− Pr(X∗2 ≥ X∗1 + ∆21εX |y∗1, y∗2,∆21εX)] dG∆21εX

=
1

2
+

∫ ∞
0

[ ∫∞
−∞ Pr(X∗1 > x+ ∆21εX |Y ∗1 = y∗ + δ)dFX∗|Y ∗(x|y∗)
−
∫∞
−∞ Pr(X∗2 ≥ x+ ∆21εX |Y ∗2 = y∗)dFX∗|Y ∗(x|y∗ + δ)

]
dG∆21εX

≥1

2
+

∫ ∞
0

[ ∫∞
−∞ Pr(X∗ > x+ ∆21εX |Y ∗ = y∗)dFX∗|Y ∗(x|y∗)

−
∫∞
−∞ Pr(X∗ ≥ x+ ∆21εX |Y ∗ = y∗)dFX∗|Y ∗(x|y∗ + δ)

]
dG∆21εX ,

where the inequality follows by the assumption of stochastic increasing dependence. Since Pr(X∗ >

x+ ∆21εX |Y ∗ = y∗) is non-increasing in x and FX∗|Y ∗(·|y∗) is first-order stochastically dominated

by FX∗|Y ∗(·|y∗ + δ), we have∫ ∞
−∞

Pr(X∗ > x+∆21εX |Y ∗ = y∗)dFX∗|Y ∗(x|y∗) ≥
∫ ∞
−∞

Pr(X∗ ≥ x+∆21εX |Y ∗ = y∗)dFX∗|Y ∗(x|y∗+δ).

Hence, Pr(X1 > X2|y∗1, y∗2) ≥ 1/2.

Next, we show that the symmetric and unimodality with the nonnegative mode of the conditional

distribution of (X∗1 − X∗2 ) given {Y ∗1 = y∗1, Y
∗

2 = y∗2, y
∗
1 > y∗2} implies Pr(X∗1 > X∗2 |y∗1, y∗2) ≥

Pr(X1 > X2|y∗1, y∗2) for all y∗1 > y∗2. Let the conditional cdf and pdf of ∆12X
∗ = X∗1 − X∗2 given

{Y ∗1 = y∗1, Y
∗

2 = y∗2} be denoted by F∆12X∗(·|y∗1, y∗2) and f∆12X∗(·|y∗1, y∗2), respectively. We denote
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by g∆21εX (·) the Lebesgue density of ∆21εX . Let m ≥ 0 be the mode of the conditional distribution

of ∆12X
∗ given {Y ∗1 = y∗1, Y

∗
2 = y∗2, y

∗
1 ≥ y∗2}. Consider

Pr(X1 > X2|y∗1, y∗2) =

∫ ∞
−∞

[1− F∆12X∗(∆21εX |y∗1, y∗2)] dG∆21εX

=

∫ ∞
0
{[1− F∆12X∗(∆21εX |y∗1, y∗2)] + [1− F∆12X∗(−∆21εX |y∗1, y∗2)]} dG∆21εX

= 1− 2

∫ ∞
0

{
1

2
F∆12X∗(∆21εX |y∗1, y∗2) +

1

2
F∆12X∗(−∆21εX |y∗1, y∗2)

}
dG∆21εX ,

where the second line follows by the symmetry of the distribution of ∆21εX . Consider bounding the

integrand for each ∆21εX ≥ 0. For ∆21εX ∈ [0,m], since F∆12X∗(·|y∗1, y∗2) is convex in the left-tail

relative to the mode, 1
2F∆12X∗(∆21εX |y∗1, y∗2) + 1

2F∆12X∗(−∆21εX |y∗1, y∗2) ≥ F∆12X∗(0|y∗1, y∗2) holds.

For ∆21εX = m+δ > m, by the symmetry and unimodality of the distribution of ∆12X
∗|(y∗1, y∗2),

F∆12X∗(m+ δ|y∗1, y∗2) + F∆12X∗(−m− δ|y∗1, y∗2) is monotonically increasing in δ, as

d

dδ
(F∆12X∗(m+ δ|y∗1, y∗2) + F∆12X∗(−m− δ|y∗1, y∗2)) = f∆12X∗(m+ δ|y∗1, y∗2)− f∆12X∗(−m− δ|y∗1, y∗2)

≥ 0.

Hence, 1
2F∆12X∗(m+δ|y∗1, y∗2)+1

2F∆12X∗(−m−δ|y∗1, y∗2) ≥ 1
2F∆12X∗(m|y∗1, y∗2)+1

2F∆12X∗(−m|y∗1, y∗2) ≥
F∆12X∗(0|y∗1, y∗2) holds by the convexity of F∆12X∗(·|y∗1, y∗2) in the left-tail relative to the mode.

Combining these inequalities, we obtain

Pr(X1 > X2|y∗1, y∗2) ≤ 1− 2

[∫ m

0
F∆12X∗(0|y∗1, y∗2)dG∆21εX +

∫ ∞
m

F∆12X∗(0|y∗1, y∗2)dG∆21εX

]
= 1− F∆12X∗(0|y∗1, y∗2)

= Pr(X∗1 > X∗2 |y∗1, y∗2).

This completes the proof.

A2 Summary Statistics
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Table A1: Summary statistics for empirical application

Mean Std. dev. Skewness p10 p90 N

X∗ 0 1.000 0.644 -1.011 1.212 36135

X 0 1.148 -0.120 -1.135 1.311 36135

εX 0 0.509 -2.630 -0.391 0.411 36135

Y ∗ 0 1.000 0.909 -0.984 1.206 36135

Y 0 1.170 0.018 -1.169 1.328 36135

εY 0 0.632 -2.432 -0.516 0.511 36135

Note: Variables demeaned and variances of X∗ and Y ∗ standardized to one.

Table A2: Correlation matrix for empirical application

X∗ X εX Y ∗ Y εY

X∗ 1.000

X 0.897 1.000

εX 0.058 0.494 1.000

Y ∗ 0.295 0.253 -0.010 1.000

Y 0.240 0.206 -0.008 0.841 1.000

εY -0.022 -0.019 0.000 -0.025 0.519 1.000

Note: The table reports pairwise Pearson correlation coefficients.
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