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Abstract

We provide a finite sample inference method for the structural parameters of a semiparametric binary

response model under a conditional median restriction originally studied by Manski (1975, 1985). Our

inference method is valid for any sample size and irrespective of whether the structural parameters are

point identified or partially identified, for example due to the lack of a continuously distributed covariate

with large support. Our inference approach exploits distributional properties of observable outcomes

conditional on the observed sequence of exogenous variables. Moment inequalities conditional on this

size n sequence of exogenous covariates are constructed, and the test statistic is a monotone function

of violations of sample moment inequalities. The critical value used for inference is provided by the

appropriate quantile of a known function of n independent Rademacher random variables. Simulation

studies compare the performance of the test to two alternative tests using an infeasible likelihood ratio

statistic and Horowitz’s (1992) smoothed maximum score estimator.
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1 Introduction

In Chapter 41 of Volume 4 of the Handbook of Econometrics on the estimation of semiparametric models,

Powell (1994) on page 2488 cites Manski (1975) as the earliest example of semiparametric analysis of limited

dependent variable models. Manski (1985) provided further analysis for the binary outcome version of the

model, in which the outcome is determined by the linear index threshold-crossing specification

Y = 1{Xβ + U ≥ 0},

for observable variables Y ∈ {0, 1} and X a row vector in RK , where the unobservable variable U is restricted

to satisfy the zero conditional median restriction

median (U | X) = 0.

This semiparametric model is thus distribution-free with regard to unobservable U .1 Full stochastic inde-

pendence between U and X is not required, allowing for the conditional distribution of U given X = x to

vary with the conditioning value x, and thus accommodating general forms of heteroskedasticity. Under

both a rank condition and a large support condition on a continuous regressor Manski (1985) established

point identification of β as well as the large deviations convergence rate of the maximum score estimator.

Several further analyses of the maximum score and similar estimators for this and closely related semi-

parametric binary response models have since been provided, and the literature on the asymptotic properties

of the maximum score estimator is now vast. Kim and Pollard (1990) showed that the convergence rate

of the maximum score estimator is cube-root and established its nonstandard asymptotic distribution after

appropriate centering and scaling. Horowitz (1992) developed a smoothed maximum score estimator that

converges faster than the n−1/3 rate and is asymptotically normal under some additional smoothness as-

sumptions. Additional papers that study large sample estimation and inference applicable in the maximum

score context include Manski and Thompson (1986), Delgado, Rodŕıguez-Poo, and Wolf (2001), Abrevaya

and Huang (2005), Léger and MacGibbon (2006), Komarova (2013), Blevins (2015), Jun, Pinkse, and Wan

(2015, 2017), Chen and Lee (2018, 2019), Patra, Seijo, and Sen (2018), Seo and Otsu (2018), Cattaneo,

Jansson, and Nagasawa (2019), and Mukherjee, Banerjee, and Ritov (2019).

In contrast to prior approaches for inference on β that employ asymptotic distributional approximations,

in this paper we develop a method for conducting finite sample inference on β. To do this we employ a

conditional moment inequality characterization of the observable implications of the binary response model

in the finite sample. Moment inequality characterizations of the model’s implications have been previously

used by Komarova (2013), Blevins (2015), and Chen and Lee (2019), but none of these papers proposed

an inference method which is valid in the finite sample. As was the case in the analysis provided in these

papers, we do not require that β is point identified. For instance, we do not require that any component of

X is continuously distributed, much less with large support.

In fact, even if β is point identified, and regardless of the support of X in the population, the set of

observed values of X in any finite sample is discrete. Indeed, Manski (1985, page 320) defines, “the maximum

score estimate B̂n to be the set of solutions to the problem maxb∈B Sn(b)” where B is the parameter space

and Sn(·) denotes the sample score function.2 He shows that if the given sufficient conditions for point

1As noted in Manski (1985), his analysis easily generalizes to cover the restriction that the conditional τth quantile of U
given X is 0, where τ ∈ (0, 1) is known. The analysis in this paper can be similarly generalized.

2Manski (1985) used B to denote the parameter space and upper case N to denote sample size, which we have changed to
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identification hold, then the distance between B̂n and β converges almost surely to zero, implying consistency

of any sequence of β̂n ∈ B̂n for β. Intuitively, the set of possible maximum score point estimators shrinks to

a point as n→∞. Given that our aim in this paper is to conduct finite sample inference, we must own up

to the fact that even if β is point identified, there is a proper set of values b to which β is observationally

equivalent on the basis of only values of X observed in the finite sample.

We thus introduce the concept of the finite sample identified set as the set of parameter vectors b ∈ B that

satisfy the observable implications of the binary response model conditional on a size n sequence of observable

covariate vectors Xn ≡ (X1, . . . , Xn). This set can be thought of as what the population identified set would

be if the support of X were in fact Xn. It differs from the set estimator B̂n because it is not a function of the

outcomes Y1, ...., Yn, instead only incorporating the observable implications of the model for the distribution

of outcomes conditional on Xn. This newly defined finite sample identified set is useful because our finite

sample inference approach is driven only by observable implications regarding Y1, ...., Yn conditional on Xn,

and will be explicit in not being able to detect violations of conditional moment inequalities that condition

on values of X not observed in the sample.

The approach taken here exploits the implication of the binary response model that conditional on Xn,

each outcome Yi is distributed Bernoulli with parameter p (Xi, β) ≡ P (Ui ≥ −Xiβ | Xn). In practice the

Bernoulli probabilities p (Xi, β) are unknown. Nonetheless, conditional on Xn, each p (Xi, β) is bounded

from above or below by 1/2 according to the sign of Xiβ. Consequently, for any known nonnegative-valued

function g (·) : Xn → R, the finite sample distributions of ωui(β, g) ≡ (2Yi − 1)1{Xiβ ≥ 0}g (Xi) and

ωli(β, g) ≡ (1 − 2Yi)1{Xiβ ≤ 0}g (Xi) conditional on Xn can be bounded from below. The test statistic

Tn(b) that we use to implement our test of the null hypothesis H0 : β = b is a supremum of weighted sample

averages of −ωui(β, g) and −ωli(β, g), where the supremum is taken over particular collections of functions

g (·). The test statistic Tn(b) is shown to be bounded from above by a function T ∗n (b) of n independent

Rademacher random variables, such that the finite sample distribution of T ∗n (b) given Xn is known. Then,

under the null hypothesis β = b, we have

P (Tn(b) > q1−α | Xn) ≤ α,

where q1−α is the 1− α quantile of T ∗n (b) given Xn. We establish that if particular functions g (·) are used,

the moment functions which Tn(b) incorporates preserve all the identifying information contained in the

finite sample identified set. We further establish a power result for alternatives that lie outside this set.

For the sake of comparison we also consider likelihood ratio tests. Optimality of the likelihood ratio test

for the null hypothesis of β = b depends on the specification of the alternative hypothesis. The likelihood

ratio test is a most powerful test when the alternative hypothesis is simple, meaning that it specifies a

unique conditional distribution P (Y1, ..., Yn | Xn). However, when the alternative hypothesis is of the form

β 6= b or β = b̃, many possible distributions of P (Y1, ..., Yn | Xn) are permitted under the conditional median

restriction. These alternatives are therefore composite. The likelihood ratio test of the null hypothesis β = b

against either of these alternatives corresponds to a coin flip independent of the data, and has only trivial

power against any distribution under either of these composite alternative hypotheses. We establish a lower

bound on the power of our test, and we show that this power bound is increasing in the degree to which a

hypothesized parameter vector b violates the inequalities that characterize the finite sample identified set.

Thus values of b that are sufficiently far from the finite sample identified set by this measure are guaranteed

B and lower case n to match our notation.
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to be rejected with probability exceeding the size of the test.

Among the aforementioned papers from the literature on maximum score, the most closely related is that

of Chen and Lee (2019), who also cast the implications of Manski’s (1985) model as conditional moment

inequalities for the sake of delivering a new insight, albeit one that is entirely different from ours. Chen and

Lee (2019) expand on the conditional moment inequalities used by Komarova (2013) and Blevins (2015) to

develop a novel conditional moment inequality characterization of the identified set which involves condi-

tioning on two linear indices instead of on the entire exogenous covariate vector. They apply intersection

bound inference from Chernozhukov, Lee, and Rosen (2013) to this conditional moment inequality charac-

terization to achieve asymptotically valid inference. This cleverly exploits the model’s semiparametric linear

index restriction in order to side step the curse of dimensionality. Although a good deal of focus is given to

Manski’s (1985) binary response model, their method can also be applied to other semiparametric models.

To the best of our knowledge, this paper is the first to propose a finite sample inference method for β

in Manski’s (1985) semiparametric binary response model. The test proposed is shown to control size for

any sample size n. This paper is also the first to introduce the concept of a finite sample identified set,

both within the context of the semiparametric binary response model and more broadly, explicitly defining

the set of model parameters logically consistent with the modeling restrictions and only information that

can be gathered from observable implications conditional on realizations of exogenous variables observed

in the finite sample. There are however a handful of precedents for employing finite sample inference with

other partially identifying models. Manski (2007) considers the problem of predicting choice probabilities

for the choices individuals would make if subjected to counterfactual variation in their choice sets. In the

absence of the structure afforded by commonly used random utility models, he shows that counterfactual

choice probabilities are partially identified, and proposes a procedure for inference using results from Clopper

and Pearson (1934). Chernozhukov, Hansen, and Jansson (2009) propose a finite sample inference method

in quantile regression models in which the outcome is continuously distributed. Their approach exploits a

“conditionally pivotal property” to bound the finite sample distribution of a GMM criterion incorporating

moment equalities, but which does not require point identification for its validity. Syrgkanis, Tamer, and

Ziani (2018) conduct inference on partially identified parameters of interest in auction models imposing

weak assumptions on bidders’ information. They propose a method to conduct finite sample inference on

moments of functions of the underlying valuation distribution using concentration inequalities. Armstrong

and Kolesár (2018) provide methods for optimal inference on average treatments that are finite sample valid

in the special case in which regression errors are normal, and asymptotically valid more generally. Their

conditions cover cases where identification may fail due to lack of overlap of the support of conditioning

variables. The approach taken in this paper for finite sample inference in the context of Manski’s (1985)

binary response model is different from all of these.

The rest of this paper is organized as follows. Section 2 formally sets out the testing problem and the

moment inequality representation of the finite sample identified set. Section 3 lays out the construction

of the test statistic and corresponding critical value, and establishes the finite sample validity of the test.

It also establishes a finite sample (lower) power bound for our test. Section 4 considers the likelihood

ratio test. Section 5 demonstrates the performance of our approach by reporting results from Monte Carlo

simulations with comparison to inference using an infeasible likelihood ratio test and Horowitz’s (1992)

smoothed maximum score estimator. Section 6 concludes and discusses avenues for future research. All

proofs are in the Appendix. Unless otherwise stated, our analysis throughout this paper should be read as

conditional on observable covariate vectors Xn ≡ (X1, . . . , Xn).
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2 Model and Moment Restrictions

This section is divided into three subsections, the first of which formally presents the modeling restrictions

imposed. The second subsection describes the observable implications of the binary response model condi-

tional on a size n sequence of covariate vectors, Xn, in contrast to those observable implications obtainable

from knowledge of the population distribution of observable variables. Based on these observable implica-

tions, this second subsection introduces our definition of the finite sample identified set. It clarifies what

violations of our model’s implications the proposed test can feasibly detect, which is useful for power con-

siderations. The third subsection uses the special case in which covariates Xi are bivariate as an illustrative

example. The developments of Subsections 2.2 and 2.3 are however not essential for establishing size control

of the test presented in Section 3.

2.1 Model

The following assumption formalizes the restrictions of the semiparametric binary response model under

study and the requirements on the sampling process. We maintain these assumptions throughout this paper.

Assumption 1. (i) Random vectors {(Yi, Xi, Ui) : i = 1, . . . , n} reside on a probability space (Ω,F,P),

where F contains the Borel sets on Ω. (ii) Variables {(Yi, Xi) : i = 1, . . . , n} are observed. (iii) There is

a column vector β ∈ RK such that P (Yi = 1{Xiβ + Ui ≥ 0} | Xn) = 1 and P (Ui ≥ 0 | Xn) = 1/2 for every

i = 1, . . . , n, where Xn ≡ (X1, . . . , Xn). (iv) There is a known set B ⊆ RK to which β belongs. (v) The

unobservable variables (1{U1 ≥ 0}, . . . , 1{Un ≥ 0}) are mutually independent conditional on Xn.

The requirements of Assumption 1 are slightly weaker than the assumptions used in the existing literature

(e.g., Manski, 1975, 1985). Parts (i), (ii) and (iv) are standard. Although it is not necessary in this paper

because we employ partial identification analysis, the parameter space B can be restricted by imposing one

of the usual scale normalizations from the literature, such as |b1| = 1 for all b ∈ B. Part (iii) imposes

the binary response structure and the requirement that P (Ui ≥ 0 | Xn) = 1/2 for each i. Binary response

models typically require that Ui is continuously distributed in a neighborhood of zero, in which case this is

implied by the usual conditional median restriction. Strictly speaking, we do not need to impose that each

Ui is continuously distributed at zero, and hence we replace the median restriction with this requirement.

Part (v) holds if (Yi, Xi, Ui) are independent and identically distributed, but is much more general. The

observations {(Yi, Xi) : i = 1, . . . , n} can be non-independent and non-identically distributed. Indeed, even

if {(Yi, Xi) : i = 1, . . . , n} were restricted to be i.i.d., it would remain the case that {Yi : i = 1, . . . , n} would

not be i.i.d. conditional on Xn. Throughout the text, E[·] is used to denote population expectations taken

with respect to P, and En[·] ≡ n−1
∑n
i=1[·].

The power result presented in Theorem 5 in Section 3 and the results of Section 4 on the likelihood ratio

test additionally invoke the following assumption.

Assumption 2. The unobservable variables (U1, ..., Un) are mutually independent conditional on Xn.

This restriction is common in the prior literature on maximum score estimation, but is not required for

many of the results in this paper, and in particular is not necessary to establish size control for our test.

The assumption is satisfied for example in models that restrict (Xi, Ui) to be i.i.d.3 Note however that

Assumption 2 does not require U1, ..., Un to be i.i.d. given Xn, but only mutually independent.

3For instance this is implied by Assumption 3 of Manski (1985).
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2.2 Observable Implications Conditional on Xn
To conduct finite sample inference, we focus solely on the implications obtainable from a sequence of n draws

of (Y,X) in a sample {(Yi, Xi) : i = 1, . . . , n} and not on features of the population distribution of these

variables that could only be obtained on the basis of infinitely many observations. Consequently our focus

is not on the identified set that could be obtained from knowledge of the population distribution of (Y,X)

in an infinitely large population, but rather on the set obtainable solely from knowledge of a size n sample

of observations in accord with Assumption 1. By definition, this is the set of parameter vectors b ∈ B such

that the distribution of Y1, . . . , Yn conditional on Xn matches that of Ỹi ≡ 1{Xib+ Ũi ≥ 0} for a sequence of

random variables Ũ1, . . . , Ũn that satisfy the restrictions placed on the conditional distribution of U1, . . . , Un

in Assumption 1. We refer to this set as the finite sample identified set and denote it as B∗n.

Definition 1. The finite sample identified set for β, denoted B∗n, is the set of b ∈ B for which there

exist random variables {Ỹi : i = 1, . . . , n} and {Ũi : i = 1, . . . , n} such that:

(i): P
(
Ỹi = 1{Xib+ Ũi ≥ 0} | Xn

)
= 1,

(ii): (Ỹ1, . . . , Ỹn) and (Y1, . . . , Yn) have the same distribution conditional on Xn,

(iii): P
(
Ũi ≥ 0 | Xn

)
= 1/2 for every i = 1, . . . , n,

(iv): {1{Ũi ≥ 0} : i = 1, . . . , n} are mutually independent given Xn.

Our next task is to express B∗n with a moment inequality representation useful for inference. The following

lemma sets out two observable implications that will be useful for this purpose.

Lemma 1. Under Assumption 1,

Xiβ ≥ 0 =⇒ E[2Yi − 1 | Xn] ≥ 0, (2.1)

Xiβ ≤ 0 =⇒ E[2Yi − 1 | Xn] ≤ 0. (2.2)

From the inequalities of the lemma, it further follows that if Xiβ = 0 then E[2Yi− 1 | Xn] = 0. Moreover

(2.1) and (2.2) and the implications of them described above hold with β replaced by any b that is an element

of the finite sample identified set B∗n. This can be proven by following precisely the same steps as in the

proof of the lemma with Ũi from Definition 1 replacing Ui.

With Lemma 1 in hand, the following theorem provides a moment inequality characterization of the finite

sample identified set.

Theorem 1. Under Assumption 1, the finite sample identified set for β is

B∗n = {b ∈ B : E [(2Yi − 1) 1{Xib ≥ 0} | Xn] ≥ 0 ≥ E [(2Yi − 1) 1{Xib ≤ 0} | Xn] for every i = 1, . . . , n} .

The conditional moment inequalities characterizing B∗n in Theorem 1 are equivalent to (2.1) and (2.2) for

all i = 1, . . . , n. However, using this conditional moment inequality representation to conduct inference on β

is complicated by the fact that in a sample of n observations the distribution of Yi given Xn can vary across

i, even if (Yi, Xi) : i = 1, . . . , n are identically distributed, and there is only one observation of (Yi, Xi) for

each i.

Some level of aggregation of these implications across i is therefore required. One way to do this is to

interact the expressions inside the conditional expectation operators in Theorem 1 with nonnegative-valued
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functions of the exogenous covariates and take sample averages. For this purpose, define {gu(·, v) : v ∈ Vu}
and {gl(·, v) : v ∈ Vl} to be collections of such non-negative instrument functions indexed by v ∈ Vu and

v ∈ Vl, respectively. That is, for any v ∈ Vu, gu(·, v) : RK → R+ is an instrument function mapping from K

dimensional Euclidean space (on which each Xi resides) to the nonnegative reals. Likewise, for each v ∈ Vl,
the function gl(·, v) also maps to the nonnegative reals. Shortly, particular collections of such functions and

corresponding index sets Vu and Vl will be defined for construction of our proposed test statistic.

Since the instrument functions are nonnegative-valued, interacting them with the expressions inside

the conditional expectations in Theorem 1 and averaging across i will preserve the sign of the conditional

expectation. Specifically, consider for any nonnegative valued instrument function g (·) the conditional

moment inequalities

E [En [(2Y − 1)1{Xb ≥ 0}g(X)] | Xn] ≥ 0, (2.3)

E [En [(1− 2Y )1{Xb ≤ 0}g(X)] | Xn] ≥ 0. (2.4)

These inequalities are valid for all b ∈ B∗n because they are implications of the conditional moment inequal-

ities characterizing B∗n in Theorem 1. Indeed, they are both valid for any collection of nonnegative-valued

instrument functions. A potential drawback to aggregation of the conditional moments however is that (2.3)

and (2.4) for just any such collection of positive instrument functions need not in general fully characterize

B∗n, so that using the latter inequalities can result in a loss of identification power.

Particular collections {gu(·, v) : v ∈ Vu} and {gl(·, v) : v ∈ Vl} are now defined so that imposing (2.3)

and (2.4) ensures preservation of the full identifying power of the conditional-on-Xn moment inequalities

in Theorem 1. These collections differ from those used by Andrews and Shi (2013) for translating the

identifying power of conditional moment inequalities to a collection of unconditional moment inequalities.

In the present setting, there is no issue of converting inequalities conditional on continuous variables to

unconditional ones, because the conditioning set in the inequalities characterizing B∗n is finite. Instead, the

problem to be addressed is how best to aggregate these implications across observations i given the non-i.i.d.

nature of Yi conditional on Xn. In constructing our collection of information-preserving instrument functions,

we exploit two features specific to the task at hand, namely first that our focus is on finite sample inference

conditional on Xn and second that whether or not E [2Yi − 1 | Xn] ≥ 0 (≤ 0) depends only on whether the

linear index Xiβ is at least (at most) zero. In the existing literature, Pinkse (1993, Section 3.3) has used the

second feature for exact computation of the maximum score estimator.

Toward this end, consider the following two sequences of binary indicators:

ru (b) ≡ (1{X1b ≥ 0}, . . . , 1{Xnb ≥ 0}) ,

rl (b) ≡ (1{X1b ≤ 0}, . . . , 1{Xnb ≤ 0}) .

Irrespective of how g(X) is defined, En [(2Y − 1)1{Xb ≥ 0}g(X)] = En [(2Y − 1)1{Xb′ ≥ 0}g(X)] whenever

ru(b) = ru(b′) and En [(1− 2Y )1{Xb ≤ 0}g(X)] = En [(1− 2Y )1{Xb′ ≤ 0}g(X)] whenever rl(b) = rl(b
′).

Using the functions ru(·) and rl(·), we denote by Vu the coimage of the function ru(·) on B, and by Vl

that of the function rl(·).4 That is, taking for instance Vu, the sequences of inequalities defining unique

values for ru(·), namely Xib ≥ 0 and Xib < 0 for i = 1, . . . , n, partition RK into the collections of sets Vu.

Similarly, the partition Vl comprises regions on which the function rl(·) takes the same sequence of ones

4The coimage of a function f is defined as the quotient set of the equivalence relation defined by f .
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and zeros according to the satisfaction of inequalities Xib ≤ 0 and Xib > 0, i = 1, . . . , n. The partitions

Vu and Vl coincide with each other, with the exception of how points at which Xib = 0 are assigned within

each partition. This ensures that when Xib = 0, the joint implication of the inequalities (2.1) and (2.2) are

captured by our testing procedure.

Thus the partitions Vu and Vl are collections of sets defined by whether or not they satisfy sequences

of linear inequalities Xib ≥ 0 and Xib ≤ 0, i = 1, . . . , n, respectively. Equivalently, each such set comprises

an intersection of n hyperplanes in RK . Such partitions are referred to as hyperplane arrangements in the

computational geometry literature. Algorithms for their enumeration and computation have been devel-

oped, and indeed put to good use recently in econometrics by Gu and Koenker (2018) for the purpose of

computing nonparametric maximum likelihood estimators for binary response models. The model studied

by Gu and Koenker (2018) differs from the one in this paper, as it allows for random coefficients but requires

independence of covariates and unobservable variables, and its focus is on computation rather than finite

sample inference. Nonetheless, the same developments from the computational geometry literature on the

enumeration of hyperplane arrangements can be employed for efficient computation here.

Since n is finite, there are only finitely many elements of each of Vu and Vl. With regard to the inequalities

(2.3) and (2.4), all members v of any set in Vu and all members v of any set in Vl produce the same values

of E [En [(2Y − 1)1{Xb ≥ 0}gu(X, v)] | Xn] and E [En [(1− 2Y )1{Xb ≤ 0}gl(X, v)] | Xn] for any b ∈ B. Thus

it will suffice for us to work with a single representative from each set, i.e., the full identifying power is

preserved as long as Vu and Vl have a representative from each element of Vu and Vl, respectively. This is

formalized in Theorem 2 below.

In order to assess how large the partitions Vu and Vl can be, it is helpful to note that in our context

each separating hyperplane is of the form {v ∈ RK : Xiv = 0}, inducing a homogeneously linearly separable

dichotomy, as described by Cover (1965). From Theorem 1 of that paper, the number of such dichotomies

that can be constructed from n points in RK is bounded from above by

C (n,K) ≡ 2

K−1∑
j=0

(
n− 1

j

)
.

This is equivalently the upper bound on the number of elements in each of the partitions Vu and Vl, and is

attained when every subset of K points from the n points X1, . . . , Xn are linearly independent.5

This upper bound on the cardinality of Vu and Vl, and thus on the number of representative points in

the sets Vu and Vl, can be quite large. Fortunately their computation can be carried out by making use

of the aforementioned results from computational geometry on computing an exhaustive set of hyperplane

arrangements, also referred to as the vertex enumeration problem. Examples of available algorithms include

Avis and Fukuda (1996), Sleumer (1998), and Rada and Černý (2018), as well as a novel computational

method proposed by Gu and Koenker (2018) building on Rada and Černý (2018).6

With partitions Vu and Vl now defined, the following theorem establishes a representation of the finite

sample identified set B∗n given in Theorem 1 that takes the form of a finite collection of inequalities of the

form (2.3) and (2.4).

5In this case X1, ..., Xn are said to be in general position.
6To investigate the performance of our inference method, Monte Carlo experiments are presented in Section 5. Like most

of the prior literature, we use designs with two covariates. This constitutes the simplest setting in which to investigate the
performance of our inference method, and affords computational tractability. In such cases the use of sophisticated vertex
enumeration algorithms is unnecessary, for reasons explained in Section 2.3. We thus do not investigate the use of these
algorithms here, but we note their availability for higher dimensional settings.
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Theorem 2. Let Assumption 1 hold and let b ∈ B. If b ∈ B∗n then

∀v ∈ Vu : E [ En [(2Y − 1)1{Xb ≥ 0}1{Xv < 0}] | Xn] ≥ 0, (2.5)

and

∀v ∈ Vl : E [ En [(1− 2Y )1{Xb ≤ 0}1{Xv > 0}] | Xn] ≥ 0. (2.6)

Moreover, if Vu and Vl have at least one element from each member of Vu and Vl, respectively, then (2.5)

and (2.6) imply that b ∈ B∗n, so that

B∗n = {b ∈ B : (2.5) and (2.6) hold}.

The moment inequalities (2.5) and (2.6) are conditional on Xn and are thus different from those employed

previously in the literature. Our representation is perhaps most closely related to that of Chen and Lee (2019)

for the identified set in the underlying population. Their characterization uses inequalities that condition on

the values of two linear indices in X: Xb and Xγ, leading to significant dimension reduction when estimating

conditional moments employed for asymptotic inference. In this paper our goal is finite sample inference,

made operational by conditioning on Xn. Our construction leading to (2.5) and (2.6) exploits the finite

nature of Xn. This is done by establishing that given Xn, one can partition the parameter space B into

equivalence classes Vu and Vl whose members comprise elements that all produce the same values of the

moment functions appearing in (2.5) and (2.6), respectively. Then, using our proposed instrument functions

the moment inequalities (2.5) and (2.6) aggregate values of 2Yi − 1 and 1− 2Yi according to whether pairs

of indices Xb and Xv in each of the two inequalities disagree in particular directions.

In Section 3 we provide a test statistic that combines the extent to which these moment inequalities are

violated when evaluated at any conjectured parameter vector b ∈ RK . A confidence set for β can then be

constructed by way of test inversion. Note however that for test inversion parameter vectors b and b̃ need

only be considered if they do not lie in the same elements of both partitions Vu and Vl. Any two such vectors

that both reside in the same partitions will produce identical values for all moment inequalities (2.5) and

(2.6), and consequently the same value of the test statistic proposed in Section 3.

2.3 A Simple Example: Computation with Two Covariates

When the covariates Xi have only two components the characterization of the relevant hyperplane arrange-

ments is greatly simplified. This makes it an ideal case in which to showcase and demonstrate the inference

approach. Because the distribution of the unobservables is nonparametrically specified, a scale normalization

may be imposed, e.g., restricting the first component of β to have absolute value of one. Due to the scale

normalization, the circumstance in which there are only two components of Xi is the simplest non-trivial

case in which to study the semiparametric binary response model of this paper. For this reason, the case in

which dim (Xi) = 2 has appeared prominently in simulation studies of maximum score type estimators, and

this is also the setting on which we focus in our Monte Carlo investigations in Section 5.

The panels of Figure 1 illustrate the construction of partitions Vu and Vl for bivariate Xi in a simple

example in which n = 3. Panel (a) depicts X1, X2, and X3, into which panel (b) additionally incorporates

the values of vi for which Xivi = 0. Panel (c) drops the covariate vectors Xi and panel (d) uses different

colors to depict the interiors of the elements of Vu and Vl. Note that the partitions Vu and Vl only differ

on their boundaries. Theorem 2 indicates that in order to preserve the full identifying power of the finite

9



sample identified set B∗n, it suffices to employ moment inequalities of the form (2.5) and (2.6) with sets Vu
and Vl each containing one element from each of these six different colored regions.

Figure 1: A schematic illustration of partitions Vu and Vl for n = 3.

(a) Vectors X1, X2, and X3 in RK . (b) X1, X2, X3 with v1, v2, v3 such that each Xivi = 0.

(c) Lines defined by those v1, v2, v3 for which Xivi = 0. (d) Partitions of RK defined by inequalities Xivi ≶ 0.

To understand the further simplification afforded by the scale normalization, first note that for any v

with v1 6= 0 we can normalize the first component of v such that |v1| = 1 in the instrument functions that

appear in (2.5) and (2.6) for the same reason that one can normalize the first component of the parameter

vector β.7 Specifically for any v ∈ RK with v1 6= 0,

Xiv T 0 ⇐⇒ Xi1
v1

|v1|
+Xi2

v2

|v1|
T 0. (2.7)

Consequently it suffices in the inequalities of (2.5) and (2.6) to use only values of v with |v1| = 1, and we

impose the common scale normalization on the parameter space that B comprises a compact subset of R2

such that for all b ∈ B, |b1| = 1. Geometrically, this means that we can select the required six representatives

v to form Vu and Vl from the regions illustrated in Figure 1 panel (d) by focusing solely on values in which

the first component is either −1 or 1.

7The alternative normalization that ‖v‖ = 1 could also be used.
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For the sake of actually computing such sets of representative values of v, possibly with much larger n,

we may proceed making use of the normalization |v1| = 1 imposed as follows. Values of v that are on the

boundary of satisfying the inequalities constituent in ru (v) and rl (v), namely those satisfying Xiv = 0, can

be separated into two cases:

if v1 = +1 : Xiv = 0 ⇐⇒ −Xi1

Xi2
= v2

if v1 = −1 : Xv = 0 ⇐⇒ Xi1

Xi2
= v2.

Thus the sequences of indicators, ru (v) and rl (v), depend only on where v2 lies relative to the ordered

sequence of values of −Zi if v1 = +1 and those of Zi if v1 = −1, where Zi ≡ Xi1
Xi2

.8

Consequently, a set of instrument values Vu that contains one element from each member of Vu can be

obtained by dividing the real line into intervals according to ordered sequences of values of −Zi and Zi,

i = i, ..., n, and then collecting all pairs v = (1, v2) such that v2 lies in the interior of the first sequence

of intervals, and all pairs v = (−1, v2) such that v2 lies in the interior of the second sequence of intervals.

Specifically, let ϑ1 ≤ · · · ≤ ϑn denote the order statistics of Zi, so that ϑ1 ≡ mini Zi and ϑn ≡ maxi Zi and

consider the following ordered sequences of intervals:

Iu ≡ {(−∞,−ϑn), (−ϑn,−ϑn−1), · · · , (−ϑ2,−ϑ1), (−ϑ1,∞)}, (2.8)

and

Il ≡ {(−∞, ϑ1), (ϑ1, ϑ2), · · · , (ϑn−1, ϑn), (ϑn,∞)}, (2.9)

such that Iu and Il each comprise n+ 1 open non-overlapping intervals on R.

Recall that the inequalities in ru (v) and rl (v) depend only on where v2 lies relative to the endpoints of

these intervals. Consider a set of values of v, say V, comprising a pair (1, v2) for each v2 ∈ Iu and a pair

(−1, v2) for each v2 ∈ Il.9 Then this set V will feature one representative from each member of the partition

Vu. Moreover, because the elements of the partition Vl differ from those of Vu only up their boundaries,

such a set V also has one representative from each member of Vl. Thus, using any such V as the sets Vu and

Vl specified in (2.5) will yield a moment inequality characterization of the finite sample identified set B∗n, i.e.

with no loss of identifying power.

Such a construction for V is quite useful in cases whereXi has two components. A set V can be constructed

simply by ordering the observed values of Zi (= Xi1/Xi2), selecting one element from each of the intervals

in (2.8) and (2.9), and pairing them with ±1 accordingly. Computation of the test statistic proposed in the

following section will require taking the supremum of a function of v over the set V, which turns out to be

easy by computing V and taking the maximum by brute force in the case of two dimensional Xi. When

Xi has more elements, the resulting hyperplane arrangements are not as straightforward to characterize.

Nonetheless, it appears that advances from the computational geometry literature can be used to achieve

computational tractability in such cases.

8Here it is to be understood that when Xi2 = 0, Zi is defined to be ±∞ according to the sign of Xi1 if Xi1 6= 0 and Zi = 0
if Xi1 = 0.

9More precisely, the condition for V is (i) for every interval Iu ∈ Iu, the intersection V ∩ ({1}× Iu) is nonempty, and (ii) for
every interval Il ∈ Il, the intersection V ∩ ({−1} × Il) is nonempty.
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3 Inference Based on Moment Inequalities

For a given value b ∈ B, we consider the hypothesis test

H0 : β = b versus H1 : β 6= b, (3.1)

on the basis of n observations {(Yi, Xi) : i = 1, . . . , n} following the restrictions of the semiparametric binary

response model given by Assumption 1. If one wishes to construct a confidence set for β, the set of b for which

H0 is not rejected by a size α test will provide a confidence set guaranteed to contain β with probability at

least 1 − α. As noted in the introduction, our method does not require point identification of β, and thus

we do not assume sufficient conditions for point identification. Most notably, the existence of a continuous

covariate – much less one with full support on R – is not required.

To perform inference based on moment inequalities in Theorem 2, we incorporate sample analogs of the

moments appearing in (2.5) and (2.6), which are

m̂u(b, v) ≡ En [(2Y − 1)1{Xb ≥ 0, Xv < 0}] , v ∈ Vu,

m̂l(b, v) ≡ En [(1− 2Y )1{Xb ≤ 0, Xv > 0}] , v ∈ Vl,

into our test statistic

Tn (b) ≡ max{0, T̂u (b,Vu) , T̂l (b,Vl)}, (3.2)

where

σ̂2
u(b, v) ≡ En [1{Xb ≥ 0 > Xv}]− m̂u(b, v)2, (3.3)

σ̂2
l (b, v) ≡ En [1{Xb ≤ 0 < Xv}]− m̂l(b, v)2, (3.4)

T̂c(b,V) ≡ sup
v∈V

√
n
−m̂c (b, v)

max{σ̂c(b, v), ε}
, c ∈ {u, l}, (3.5)

and ε is an arbitrarily small positive number taken to ensure a non-zero denominator.10

Instead of deriving the finite sample distribution of Tn (b) under H0, which is unknown, we construct a

random variable T ∗n (b) which has a known finite sample distribution given Xn and which satisfies

Tn(b) ≤ T ∗n (b) under H0 : β = b. (3.6)

To this purpose define Y ∗1 , . . . , Y
∗
n by

Y ∗i = 1{Ui ≥ 0}, i = 1, . . . , n,

and define T ∗n (b) ≡ max{0, T ∗u (b,Vu) , T ∗l (b,Vl)} analogously to (3.3) – (3.4) but with

m̂∗u(b, v) ≡ En [(2Y ∗ − 1)1{Xb ≥ 0, Xv < 0}]

m̂∗l (b, v) ≡ En [(1− 2Y ∗)1{Xb ≤ 0, Xv > 0}] ,
10In cases where either σ̂2

u (b, v) or σ̂2
u (b, v) is zero, the ratio in the definition of T̂c(b,V) can simply be set to ±∞ according

to the sign of the numerator, or zero if the numerator is zero. The ratio that results from the use of arbitrarily small ε here
simply serves as a placeholder for ±∞ in computations without any substantive effect.

12



replacing m̂u(b, v) and m̂l(b, v), respectively. The random variable T ∗n (b) itself is not observed because

Y ∗1 , . . . , Y
∗
n are not observed, but the finite sample distribution of T ∗n (b) given Xn is known since (2Y ∗1 −

1, . . . , 2Y ∗n − 1) are independent Rademacher random variables conditional on Xn.

Thus, for a given level α ∈ (0, 1), the critical value used for our test is the conditional 1− α quantile of

T ∗n (b) given Xn, namely

q1−α ≡ inf{c ∈ R : P (T ∗n (b) ≤ c | Xn) ≥ 1− α}.

This critical value can be computed up to arbitrary accuracy by drawing a large number of simulations, each

of which comprises a sequence of n independent Rademacher random variables.

The relationship between Tn(b) and T ∗n (b) in (3.6) implies Theorem 3, establishing finite sample size

control of the proposed test. As is the case with all formal mathematical results stated in the paper, the

proofs of inequality (3.6) and Theorem 3 are in the Appendix.

Theorem 3. Let Assumption 1 hold. Under the null H0 : β = b, P(Tn(b) ≤ q1−α | Xn) ≥ 1− α.

Theorem 3 establishes finite sample size control of the rejection rule 1{Tn(b) > q1−α} for hypothesis test

(3.1). While it is possible that P (Tn(β) ≤ q1−α | Xn) strictly exceeds 1 − α, the following theorem shows

that a test with a smaller critical value cannot achieve size control if the critical value is a deterministic

function of Xn. It should however be noted that Theorem 4 is silent with regard to critical values that are

a function of both X1, . . . , Xn and Y1, . . . , Yn.

Theorem 4. Let Assumption 1 hold. The proposed critical value is not conservative in the sense that,

for every function cv of Xn with cv < q1−α, there is a distribution of (U1, . . . , Un) given Xn under which

P(Tn(b) ≤ cv | Xn) < 1− α under the null H0 : β = b.

Theorem 4 implies that the use of a more stringent critical value that is a function of Xn for testing using

Tn(b) is not possible without losing size control.

We can establish a power result for our test as a function of a measure of the violation of moment

inequalities that define the finite sample identified set. Specifically, Hoeffding’s inequality is used to establish

a lower bound on finite sample power for certain violations of the inequalities (2.5) and (2.6) from Theorem

2. The result is given in the following theorem.

Theorem 5. Let Assumptions 1 and 2 hold, and let ρ be any number in (0, 1). If there is v ∈ Vu such that

E [ En [(2Y − 1)1{Xb ≥ 0, Xv < 0}] | Xn]

≤ − 1√
n

(
q1−α max

{
ε,

√
En[1{Xb ≥ 0, Xv < 0}]

1 + q2
1−α/n

}
+
√

2 log(1/ρ)En[1{Xb ≥ 0, Xv < 0}]

)
, (3.7)

or there is v ∈ Vl such that

E [ En [(1− 2Y )1{Xb ≤ 0, Xv > 0}] | Xn]

≤ − 1√
n

(
q1−α max

{
ε,

√
En[1{Xb ≤ 0, Xv > 0}]

1 + q2
1−α/n

}
+
√

2 log(1/ρ)En[1{Xb ≤ 0, Xv > 0}]

)
, (3.8)

then the rejection probability is at least 1− ρ, i.e., P(Tn(b) > q1−α | Xn) ≥ 1− ρ.

Furthermore, inversion of the conditions in Theorem 5 provides a power guarantee for any parameter

value b /∈ B∗n.
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Corollary 1. Let Assumptions 1 and 2 hold. For any b /∈ B∗n, the rejection probability P(Tn(b) > q1−α | Xn)

is at least the maximum of the following two expressions:

max
v∈Vu

(
1− exp

(
−1

2

(
max

{
0,
√
nζ̃u(b, v)− q1−α max

{
ε̃u(b, v), (1 + q2

1−α/n)−1/2
}})2

))
, (3.9)

max
v∈Vl

(
1− exp

(
−1

2

(
max

{
0,
√
nζ̃l(b, v)− q1−α max

{
ε̃l(b, v), (1 + q2

1−α/n)−1/2
}})2

))
, (3.10)

where the quantities in the above expressions are defined as

ζ̃u(b, v) ≡ −E [ En [(2Y − 1)1{Xb ≥ 0, Xv < 0}] | Xn]√
En[1{Xb ≥ 0, Xv < 0}]

ζ̃u(b, v) ≡ −E [ En [(1− 2Y )1{Xb ≤ 0, Xv > 0}] | Xn]√
En[1{Xb ≤ 0, Xv > 0}]

ε̃u(b, v) ≡ ε√
En[1{Xb ≥ 0, Xv < 0}]

ε̃l(b, v) ≡ ε√
En[1{Xb ≤ 0, Xv > 0}]

.

The power bound provided by Theorem 5 depends on the degree to which the inequalities (2.5) and

(2.6) that characterize B∗n are violated relative to
√

En[1{Xb ≥ 0, Xv < 0}] and
√
En[1{Xb ≤ 0, Xv > 0}].

However, Theorem 5 further implies an explicit mapping between (i) the extent to which a given parameter

vector b violates the inequalities that define the finite sample identified set and (ii) a lower bound on the

finite sample power of our test for β = b that does not depend on sample quantities. To see this, define

Q(b) ≡ max{Qu(b), Ql(b)},

where

Qu(b) ≡ −min{0, min
v∈Vu

E [ En [(2Y − 1)1{Xv < 0 ≤ Xb}] | Xn]},

Ql(b) ≡ −min{0,min
v∈Vl

E [ En [(1− 2Y )1{Xb ≤ 0 < Xv}] | Xn]}.

The values of Qu(b) and Ql(b) denote the maximal violation exhibited by b of the inequalities (2.5) and (2.6)

that characterize B∗n in Theorem 2. Theorem 5 implies that for γ = 1 − ρ, our test is guaranteed to have

power at least γ whenever the measure of violation Q(b) is at least C(γ), defined by

C(γ) ≡ 1√
n

(
q1−α max

{
ε, (1 + q2

1−α/n)−1/2
}

+
√
−2 log(1− γ)

)
. (3.11)

Inversion of this relation also provides an explicit power guarantee as a function of Q(b). The following

corollary to Theorem 5 gives the formal results.

Corollary 2. Let Assumptions 1 and 2 hold and let γ ∈ (0, 1).

1. If Q(b) ≥ C(γ), then P(Tn(b) > q1−α | Xn) ≥ γ.
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2. For any b /∈ B∗n, the rejection probability P(Tn(b) > q1−α | Xn) is at least

1− exp

(
−1

2

(
max

{
0,
√
nQ(b)− q1−α max

{
ε, (1 + q2

1−α/n)−1/2
}})2

)
.

In particular, Corollary 2 can be used to indicate how big Q(b) must be in order for Theorem 5 to

guarantee our test has power at least α against a parameter value b̃ irrespective of sample quantities. As we

show in the next section, the likelihood ratio test of β = b against β = b̃ can only achieve power α against

any b̃.

Finally, it should be noted that the power bounds delivered by Theorem 5 provide power guarantees, but

may not be sharp. That is, the test may achieve higher power than the bounds guarantee.

4 Likelihood Ratio Tests

In this section, we consider the use of likelihood ratio tests under Assumptions 1 and 2. The analysis

is divided according to the type of null and alternative hypotheses considered, the key distinctions being

whether each hypothesis is simple or composite. When considering the likelihood ratio test, the relevant

consideration is the set of conditional distributions for Y1, . . . , Yn given Xn allowed under each hypothesis. A

point null hypothesis for β is a composite hypothesis because it does not specify the distribution of U1, . . . , Un

conditional on Xn, and therefore admits many different possible conditional distributions for Y1, . . . , Yn even

under the maintained assumptions that P (Ui ≥ 0 | Xn) = 1/2 and that P (U1 ≤ t1, . . . , Un ≤ tn | Xn) =∏n
i=1 P (Ui ≤ ti | Xn) for any real numbers t1, . . . , tn.

The likelihood ratio test is most powerful as long as the alternative hypothesis is simple. However,

as shown below, when the alternative hypothesis is composite, the likelihood ratio test based on the least

favorable pair has only trivial power (i.e. its power is equal to its size, α) because the least favorable null and

alternative distributions coincide. Unlike the likelihood ratio test, our proposed test has power greater than

its size α against alternatives b̃ that are sufficiently in violation of the moment inequalities that characterize

the finite sample identified set, as can be seen from Theorem 5.

Let GU |Xn (·) denote the conditional distribution of U1, . . . , Un given Xn. Under Assumptions 1 and 2,

the likelihood of (Y1, . . . , Yn) = (y1, . . . , yn) conditional on Xn is defined by the product form

P
(
y1, . . . , yn;β,GU |Xn

)
≡

n∏
i=1

(yi ·Gi ([−Xiβ,∞)) + (1− yi) ·Gi ((−∞,−Xiβ))) ,

where Gi denotes the marginal distribution of Ui conditional on Xn induced by GU |Xn , i.e., Gi (T ) ≡
GU |Xn ({s ∈ Rn : si ∈ T }) for every measurable set T ⊂ R.

Below we begin by considering the simplest case, in which the null and alternative hypothesis both

specify each of β and GU |Xn , and hence uniquely determine the likelihood P
(
y1, . . . , yn;β,GU |Xn

)
, before

considering composite hypotheses.

Simple Null Hypotheses and Simple Alternative Hypotheses

Consider the following test of two simple hypotheses.

H0 :
(
β,GU |Xn

)
= (b,G) versus H1 :

(
β,GU |Xn

)
=
(
b̃, G̃

)
. (4.1)
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The likelihood ratio test is the test that rejects H0 in favor of H1 with probability φ(y1, . . . , yn) defined by

φ(y1, . . . , yn) =


1 if P

(
y1, . . . , yn; b̃, G̃

)
> kP (y1, . . . , yn; b,G)

ξ if P
(
y1, . . . , yn; b̃, G̃

)
= kP (y1, . . . , yn; b,G)

0 otherwise,

where k and ξ ∈ [0, 1] are chosen such that∑
(y1,...,yn)

φ(y1, . . . , yn)P (y1, ..., yn; b,G) = α, (4.2)

where the summation is to be understood as taken over all (y1, . . . , yn) ∈ {0, 1}n.11 Defining

pi ≡ Gi ([−Xib,∞) | Xn) , (4.5)

and

p̃i ≡ G̃i
(

[−Xib̃,∞) | Xn
)

, (4.6)

The test φ(Y1, . . . , Yn) can then be written as

φ(y1, . . . , yn) =


1 if

∏n
i=1 p̃

yi
i (1− p̃i)1−yi > k

∏n
i=1 p

yi
i (1− pi)1−yi ,

ξ if
∏n
i=1 p̃

yi
i (1− p̃i)1−yi = k

∏n
i=1 p

yi
i (1− pi)1−yi ,

0 otherwise,

where k and ξ ∈ [0, 1] are chosen such that

∑
(y1,...,yn)∈{0,1}n

φ(y1, . . . , yn)

n∏
i=1

pyii (1− pi)1−yi = α.

When the null and alternative distributions of a hypothesis test are simple, then by the Neyman-Pearson

Lemma (e.g., Chapter 3.2 of Lehmann and Romano (2005)), the likelihood ratio test is the uniformly most

powerful test. However, the hypothesis test of interest, (3.1), differs because neither the null or alternative

specify GU |Xn .

11This test uses randomization in the event that P (y1, ..., yn; b′, G′) = kP (y1, ..., yn; b,G). If a non-randomized implementa-
tion of the LRT is preferred that can be done in the usual way by making the modification

φ(y1, . . . , yn) =

{
1 if P (y1, ..., yn; b′, G′) > kP (y1, ..., yn; b,G) ,

0 otherwise,
(4.3)

with k chosen as small as possible subject to the constraint that∑
(y1,...,yn)

φ(y1, . . . , yn)P (y1, ..., yn; b,G) ≤ α. (4.4)

The conclusion of Theorem 6 would then be that the LRT is a most powerful non-randomized test of (4.7) subject to achieving
size control. Subsequent results could be similarly modified without substantive change of conclusions.
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Composite Null Hypothesis and Simple Alternative Hypothesis

In a step closer to the two-sided hypothesis test (3.1), consider first the hypothesis test

H0 : β = b versus H1 :
(
β,GU |Xn

)
=
(
b̃, G̃

)
, (4.7)

which comprises the same null hypothesis of (3.1) and the alternative hypothesis of (4.1). This test features

a composite null hypothesis and a simple alternative hypothesis for
(
β,GU |Xn

)
.

Using Theorem 3.8.1 of Lehmann and Romano (2005), we can reduce H0 to a simple hypothesis by finding

the least favorable distribution of (Y1, . . . , Yn) given Xn. This entails pairing the null value β = b with the

distribution GU |Xn among those satisfying the restrictions maintained in Assumptions 1 and 2 for which

the likelihood ratio test has minimal power against H1. Using the independence restriction of Assumption

2, the admitted distributions of (Y1, . . . , Yn) given Xn are given by the marginal Bernoulli probabilities for

each i, so that the hypotheses can be characterized by the implied collections of probabilities (p1, . . . , pn)

and (p̃1, . . . , p̃n) coincident with (4.5) under the null and alternative, respectively. Thus the null hypothesis

in (4.7) can be written as

H0 :
(
β,GU |Xn

)
=

(
b,

n∏
i=1

Gi

)
for some (G1, . . . , Gn).

For each observation i consider the probabilities pi and p̃i. Note that under Assumptions 1 and 2,

pi−1/2 is nonpositive (nonnegative) if Xib is nonpositive (nonnegative), and likewise p̃i−1/2 is nonpositive

(nonnegative) if Xib̃ is nonpositive (nonnegative). When Xib and p̃i − 1/2 have the same sign, then there

exists a distribution of unobservable Ui conditional on Xn such that pi can be made equal to p̃i. For such

i, the least favorable distribution will thus have pi = p̃i. When instead Xib and p̃i − 1/2 have the opposite

sign, then in general pi cannot be equal to p̃i under the null due to the requirement in Assumption 1(iii)

that P(Ui ≥ 0 | Xn) = 1/2. The probability pi will however be made as close as possible to p̃i while adhering

to this assumption if the conditional distribution of Ui allocates all mass to regions in which |Ui| > |Xib|, so

that pi = 1/2.

We now formally define p̄i to denote the null probabilities pi = P{Yi = 1 | Xn} in keeping with the above

intuition for constructing the least favorable distribution under the composite null β = b as follows:

p̄i =

1/2 if Xib(p̃i − 1/2) < 0 or (Xib = 0 and p̃i < 1/2),

p̃i otherwise.
(4.8)

These probabilities lie within the null set in (4.7) because pi = 1/2 is possible for any value of b, and pi = p̃i

is possible when p̃i−1/2 and Xib are either both positive or negative, as well as when Xib = 0 and p̃i ≥ 1/2.

By the Neyman-Pearson Lemma, the likelihood ratio test for the simple null of p̄1, . . . , p̄n against p̃1, . . . , p̃n

is most powerful. Theorem 6 verifies that the likelihood ratio test for this simple hypothesis controls size

under the composite null β = b, thus enabling application of Theorem 3.8.1 of Lehmann and Romano (2005)

and establishing that these null probabilities are least favorable.

To proceed consider the corresponding test φ̄(Y1, . . . , Yn) for (4.7) that makes use of this configuration
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of implied probabilities under the null.

φ̄(y1, . . . , yn) =


1 if

∏n
i=1 p̃

yi
i (1− p̃i)1−yi > k

∏n
i=1 p̄

yi
i (1− p̄i)1−yi ,

ξ if
∏n
i=1 p̃

yi
i (1− p̃i)1−yi = k

∏n
i=1 p̄

yi
i (1− p̄i)1−yi ,

0 otherwise,

(4.9)

where k and ξ ∈ [0, 1] are chosen such that

∑
(y1,...,yn)∈{0,1}n

φ̄(y1, . . . , yn)

n∏
i=1

p̄yii (1− p̄i)1−yi = α. (4.10)

There is the following result, leveraging Theorem 3.8.1 of Lehmann and Romano (2005).

Theorem 6. Let Assumptions 1 and 2 hold. Consider the null and alternative hypotheses stated in (4.7) and

the test φ̄(y1, . . . , yn) defined in (4.9) and (4.10). If the null hypothesis is true then the rejection probability

is no greater than α, that is, E
[
φ̄(Y1, . . . , Yn) | Xn

]
≤ α. Moreover,

P
(
y1, . . . , yn; b,GU |Xn

)
=

n∏
i=1

p̄yii (1− p̄i)1−yi (4.11)

is the least favorable distribution of (Y1, . . . , Yn) given Xn under H0 against H1, and the test φ̄(Y1, . . . , Yn)

is a most powerful test of H0 against H1.

Composite Null Hypothesis and Composite Alternative Hypothesis

When the researcher’s goal is to test β = b against the simple alternative hypothesis in (4.7) that completely

specifies the conditional distribution of Y1, . . . , Yn given Xn, then the likelihood ratio test implemented by

adopting the rejection probability specified in (4.8) – (4.10) is most powerful. When instead the researcher

wishes to control power against a composite alternative, such as that of

H0 : β = b versus H1 : β = b̃, (4.12)

Theorem 6 is silent because each conditional distribution of Y1, . . . , Yn allowed under the alternative hypoth-

esis will result in a different likelihood ratio test. However, following arguments in Chapter 8.1 of Lehmann

and Romano (2005), it is straightforward to construct the least favorable pair of distributions for this test.

Note that for any b̃ hypothesized under the alternative, distributions G̃i can be specified such that for all i:

p̃i ≡ G̃i
(

[−Xib̃,∞) | Xn
)

= 1/2. (4.13)

In particular, this is achieved by distributions G̃i that allocate all mass to regions on which |Ui| ≥ |Xib̃|, while

obeying the constraint P (Ui ≥ 0 | Xn) = 1/2.12 Such a combination of
(
b̃, G̃

)
under the alternative yields

p̃i = 1/2 for all i. This conclusion holds irrespective of the hypothesized value of b̃ in (4.7). Indeed it also

holds for the value of β = b hypothesized under the null. Correspondingly the least favorable {p̄i : i = 1, ..., n}
under the null given by (4.8) when all p̃i = 1/2 is given by p̄i = 1/2 for all i. Thus from Theorem 6 we have

12If the distribution of Ui were restricted to have positive density on R, then Gi could be specified to allocate probability
1− ε to {ui : |ui| ≥ |Xib

′|} for any small ε > 0.
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the following implications for the two-sided test of β = b against β = b̃.

Corollary 3. Let Assumptions 1 and 2 hold. The least favorable pair of {p̄i : i = 1, ..., n} and {p̃i : i =

1, ..., n} for the test (4.7) is given by p̄i = 1/2 for all i and p̃i = 1/2 for all i. Moreover, since the conclusion

holds for any b and b̃, this is also the least favorable pair for the two-sided hypothesis test of β = b in (3.1).

This corollary is a direct implication of Theorem 6. While it may be conceptually appealing to construct

the likelihood ratio test for the two-sided test (4.12) based on the least favorable pair, we see from (4.9)

and (4.10) that this results in a test which rejects the null hypothesis with probability α irrespective of the

data. This is because the hypothesis β = b always includes the distribution under which pi = 1/2 for all

i, for any hypothesized value of b. Thus the sets of feasible conditional distributions for (Y1, ..., Yn) given

Xn compatible with each of the two hypotheses, β = b and β = b̃ overlap. Therefore, in the language of

Chesher and Rosen (2017) and Kaido and Zhang (2019), even if b̃ lies outside the finite sample identified

set, parameter values b and b̃ are potentially observationally equivalent.

Against certain alternatives, the likelihood ratio test using the least favorable pair can achieve higher

power than the inequality test using Tn(b), but the reverse is also true, so that neither test dominates.

Unlike the likelihood ratio test for the composite hypothesis 3.1, the inequality test we propose in this paper

based on Tn(b) does not simply reject with probability α irrespective of the data. Moreover, Theorem 5

and Corollaries 2 and 3 provide lower power envelopes as a function of the violation of the inequalities

characterizing the finite sample identified set. In particular, these results can be used to characterize values

of b̃ against which the inequality test achieves nontrivial power by setting γ > α. For such alternatives, the

inequality test achieves a higher power than the likelihood ratio test.

5 Monte Carlo Experiments

In this section, we present Monte Carlo results illustrating the relative performance of our test compared to

that of a test using the smoothed maximum score estimator from Horowitz (1992) with a bootstrap critical

value following Horowitz (2002), and a likelihood ratio test against a simple alternative hypothesis.13 We

consider examples in which there are two covariates. In each design, the first component of β is normalized

to one, and we report the results of conducting tests of the null hypothesis β = (1, θ)′ against the alternative

hypothesis β 6= (1, θ)′ for θ ranging from θ−3 to θ+3. In the population design for the actual data generation

process, the true parameter value is β = (1, 1)′.

For the likelihood ratio test, the alternative hypothesis consists of the simple hypothesis corresponding

to the true data distribution. This is known in the Monte Carlo simulation, but would be unknown in

practice. This likelihood ratio test is therefore the (infeasible) optimal test of the hypothesis β = b against

β = (1, 1)′ paired with GU |Xn , producing Bernoulli probabilities for p̃1, . . . , p̃n for the actual DGP employed

in the Monte Carlo simulations. This is thus a test of the composite null β = b against a point alternative

as described by (4.7).

In the Monte Carlo experiments, we use one random draw of the n-tuple (X1, . . . , Xn), and 500 indepen-

dent draws of the n-tuple (Y1, . . . , Yn), where the sample size is n = 100. In this simulation design the finite

sample identified set is thus fixed across experiments.

To implement the three inference methods, we use the following tuning parameters. The variable ε was

set to MATLAB’s eps value of approximately 2.2 · 10−16. To compute the critical value, we use 500 random

13For the likelihood ratio test, as with our own test, we use a non-randomized test, so that the size of the test is as close as
possible to α without exceeding it, as described in Footnote 11.
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draws of n Rademacher random variables and 500 samples for the bootstrap procedure described in Horowitz

(2002). In all cases we considered tests with size α = 0.10.

Following Horowitz (1992, Section 3), X = (X1, X2) is a bivariate normal random vector with E[X1] = 0,

E[X2] = 1, V ar(X1) = V ar(X2) = 1 and Cov(X1, X2) = 0. The distribution of unobservable U in each

design is as follows, with U independent of X in designs 1-3 and V independent of X in design 4.

• Design 1: U is distributed according to the logistic distribution with mean zero and variance one.

• Design 2: U is uniformly distributed on [−
√

12/2,
√

12/2].

• Design 3: U is distributed according to the Student’s t distribution normalized to have variance one.

• Design 4: U = 0.25(1 + 2Z2 +Z4)V where Z = X1 +X2 and V is distributed according to the logistic

distribution with mean zero and variance one.

Figure 2 presents non-rejection frequencies for θ ranging from θ − 3 to θ + 3 for α = 0.10. For the non-

rejection frequencies, we conduct inference using the smoothed maximum score bootstrap implementation

described in Horowitz (2002) (Horowitz-Bootstrap), our proposed method (Rosen-Ura), and the (infeasible)

likelihood ratio test (LRT). For reference, the finite sample identified set (FSID) is also illustrated with height

of 1 − α on the vertical axis by a dashed blue line. The qualitative comparison among the three inference

methods is similar for all four designs. The non-rejection frequency for our method is maximized around

the population value of θ = 1 and exceeds 0.90 in a range spanning from about 0.6 to 1.7. Our method is

always less powerful than the infeasible likelihood ratio test, which results from the fact that the alternative

hypothesis for our method is the composite hypothesis β 6= b, while the likelihood ratio test is based on using

the actual population distribution as the simple alternative hypothesis. This is what makes the likelihood

ratio test considered here infeasible; in an application, the population distribution of Y1, . . . , Yn conditional

on Xn is unknown.

Compared to inference using the bootstrap implementation of the smoothed maximum score estimator, we

find an asymmetry in the simulation results. For values smaller than the true parameter value, our method is

more powerful than the smoothed maximum score bootstrap procedure, although the performance is almost

the same in Design 4. For values larger than the true parameter value, our method is less powerful than the

smoothed maximum score bootstrap procedure, but the smoothed maximum score bootstrap procedure is

more powerful than the optimal test (the likelihood ratio test) for some values larger than the true parameter

value. This is likely because the formal asymptotic theory for the smoothed maximum score estimator in

Horowitz (1992) and its use for inference by way of the bootstrap implementation described in Horowitz

(2002) invoke stronger assumptions than those of Assumptions 1 and 2 in this paper, and these additional

assumptions hold in the data generating processes used in these illustrations. Further, we see in Designs 1

and 2 that inference using the smoothed maximum score bootstrap results in rejection frequencies in excess

of α = 0.1 for certain parameter values that lie inside the finite sample identified set. This is not surprising

because its performance is guaranteed to achieve size control asymptotically under conditions whereby the

identified set is in fact a singleton.

In Appendix B, we provide additional illustrations of simulation results for a different population param-

eter value θ0 = 2 and/or a larger sample size n = 250. The results are qualitatively similar to those shown

in Figure 2.
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6 Conclusion

In this paper we have proposed an approach to conduct finite sample inference on the parameters of Manski’s

(1985) semiparametric binary response model, for which the maximum score estimator has been shown to

be cube-root consistent with a non-normal asymptotic distribution when there is point identification. Our

finite sample inference approach circumvents the need to accommodate the complicated asymptotic behavior

of this point estimator. Since our goal was finite sample inference, we considered the problem of making

inference conditional on the n covariate vectors observable in a finite sample. With covariates taking on only

a finite number of observed values, the parameter vector β is not point identified. We therefore employed

moment inequality implications for β for the sake of constructing our test statistic for inference, as the

moment inequalities are valid no matter whether β is point identified. In order to exposit what observable

implications can be distilled on only the basis of exogenous variables observed in the finite sample, we

defined the notion of a finite sample identified set. We showed how to make use of the full set of observable

implications conditional on the size n sequence of exogenous variables in our construction of a test statistic

Tn(b). Finite sample valid critical values were established, and were shown to be easily computed by making

use of many simulations of size n sequences of independent Rademacher variables. A finite sample power

(lower) bound was also presented and the results of some Monte Carlo experiments were reported, illustrating

the performance of the test.

Several interesting directions for future research are possible. The maximum score estimator is one of

several estimators in the econometrics literature that consistently estimate a model parameter that may

only be identified under support conditions that can never be satisfied by an empirical distribution based

on a finite sample. Some such estimators, like the maximum score estimator, exhibit slower than n−1/2

convergence rates. Other such estimators, such as the maximum rank correlation estimator of Han (1987)

achieve the parametric rate. In this paper we have exploited the particular structure of the semi-parametric

binary response model, but there may nonetheless be potential to extend ideas in this paper to such settings

to alleviate dependence on conditions not satisfied by empirical distributions that result from finite data.

Other possible avenues of investigation pertain to optimal testing. One direction could be to exploit the

likelihood ratio test analysis in this paper to consider minimax testing rates under additional assumptions

on the distribution of Ui.
14 Minimax optimal estimation has recently been investigated in a setting in which

covariates have high-dimension by Mukherjee, Banerjee, and Ritov (2019) in an asymptotic framework under

sufficient conditions for point identification. Investigation of minimax optimal estimators and tests could be

interesting to consider when conditions for point identification are not guaranteed to hold. More generally,

in future work we aim to continue to explore the interplay between partial identification and testability,

and in particular the implications of not having point identification based on an underlying discrete data

distribution, as one always has when using the empirical distribution obtained in a finite data set.

14This line of research was suggested by Tim Armstrong.
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Figure 2.a: Design 1.
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Figure 2.b: Design 2.
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Figure 2.c: Design 3.
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Figure 2.d: Design 4.

Figure 2: Non-rejection frequencies with 1− α = 90% with true θ0 = 1 and n = 100.
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Rada, M., and M. Černý (2018): “A New Algorithm for Enumeration of Cells of Hyperplane Arrangements
and a Comparison with Avis and Fukuda’s Reverse Search,” Siam Journal of Discrete Mathematics, 32(1),
455 – 473.

Seo, M. H., and T. Otsu (2018): “Local M-estimation with discontinuous criterion for dependent and
limited observations,” Ann. Statist., 46(1), 344–369.

Sleumer, N. (1998): “Output-sensitive Cell Enumeration in Hyperplane Arrangements,” in Algorithm
Theory — SWAT’98, ed. by S. Arnborg, and L. Ivansson, pp. 300–309. Springer-Verlag Berlin Heidelberg.

Syrgkanis, V., E. Tamer, and J. Ziani (2018): “Inference on Auctions with Weak Assumptions on
Information,” Working paper, arXiv:1710.03830.

24



A Proofs

Proof of Lemma 1. If Xiβ ≥ 0, then Yi = 1{Xiβ + Ui ≥ 0} ≥ 1{Ui ≥ 0} and therefore E[2Yi − 1 |
Xn] ≥ 2P(Ui ≥ 0 | Xn) − 1 = 0. If Xiβ ≤ 0, then Yi = 1{Xiβ + Ui ≥ 0} ≤ 1{Ui ≥ 0} and therefore

E[2Yi − 1 | Xn] ≤ 2P(Ui ≥ 0 | Xn)− 1 = 0.

Proof of Theorem 1. Directly from Lemma 1, b ∈ B∗n implies

E [(2Yi − 1) 1{Xib ≥ 0} | Xn] ≥ 0 and E [(1− 2Yi) 1{Xib ≤ 0} | Xn] ≥ 0.

To demonstrate the other direction, let b be any element of B such that E [(2Yi − 1) 1{Xib ≥ 0} | Xn] ≥ 0

and E [(1− 2Yi) 1{Xib ≤ 0} | Xn] ≥ 0 for every i = 1, . . . , n. Then

Xib ≥ 0 =⇒ P(Yi = 1 | Xn) ≥ 1/2, (A.1)

Xib ≤ 0 =⇒ P(Yi = 1 | Xn) ≤ 1/2. (A.2)

To show that b is in B∗n as defined in Definition 1, we now construct a collection of random variables

{Ũi : i = 1, . . . , n} such that for all i = 1, . . . , n: (i) P(Yi = 1{Xib + Ũi ≥ 0} | Xn) = 1, and (ii)

P(∀i, 1{Ui ≥ 0} = 1{Ũi ≥ 0} | Xn) = 1. To do so, let κi : i = 1, . . . , n be n positive random variables defined

on (Ω,F,P) and consider each of the cases Xiβ < 0, Xiβ = 0, and Xiβ > 0 in turn as follows.

Case 1: Xiβ < 0. By Lemma 1,

E[2Yi − 1 | Xn] ≤ 0. (A.3)

Let

Ũi ≡


max{−Xib, 0}+ κi if Ui ≥ −Xiβ

0 if 0 ≤ Ui < −Xiβ

min{−Xib, 0} − κi if Ui < 0.

Then 1{Ũi ≥ 0} = 1{Ui ≥ 0}, which verifies (ii). To verify (i), note that:

1{Xib+ Ũi ≥ 0} = 1{Xiβ + Ui ≥ 0}+ 1{0 ≤ Ui < −Xiβ, Xib ≥ 0} = Yi + 1{0 ≤ Ui < −Xiβ,Xib ≥ 0},

because

Xib+ Ũi =


max{Xib, 0}+ κi if Ui ≥ −Xiβ

Xib if 0 ≤ Ui < −Xiβ

min{Xib, 0} − κi if Ui < 0.

Therefore,

P(Yi = 1{Xib+ Ũi ≥ 0} | Xn) = P(1{0 ≤ Ui < −Xiβ,Xib ≥ 0} = 0 | Xn)

≥ P(1{0 ≤ Ui < −Xiβ} = 0 | Xib ≥ 0,Xn)

= P(Ui ≥ −Xiβ | Xib ≥ 0,Xn)− P(Ui ≥ 0 | Xib ≥ 0,Xn)

= P(Yi = 1 | Xib ≥ 0,Xn)− 1/2.

Since (A.1) and (A.3) imply that P(Yi = 1 | Xib ≥ 0,Xn) = 1/2, we have P(Yi = 1{Xib+ Ũi ≥ 0} | Xn) = 1,

which verifies (i).
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Case 2: Xiβ = 0. Let

Ũi ≡

max{−Xib, 0}+ κi if Ui ≥ 0

min{−Xib, 0} − κi if Ui < 0.
(A.4)

Then 1{Ũi ≥ 0} = 1{Ui ≥ 0}, which verifies (ii). It further follows from (A.4) that

Xib+ Ũi =

max{0, Xib}+ κi if Ui ≥ 0

min{0, Xib} − κi if Ui < 0.

Consequently since Xiβ = 0, Xib+ Ũi ≥ 0 if and only if Xiβ + Ui ≥ 0, verifying (i).

Case 3: Xiβ > 0. The proof is similar to Case 1 with

Ũi ≡


max{−Xib, 0}+ κi if Ui ≥ 0

−Xib if −Xiβ ≤ Ui < 0

min{−Xib, 0} − κi if Ui < −Xib.

Proof of Theorem 2. That b ∈ B∗n implies (2.5) and (2.6) is immediate. To demonstrate the other direction,

we are going to show that (2.5) and (2.6) imply that

E [(2Yi − 1) 1{Xib ≥ 0} | Xn] ≥ 0 and E [(1− 2Yi) 1{Xib ≤ 0} | Xn] ≥ 0 (A.5)

for every i = 1, . . . , n. To show the result, let b ∈ B such that (2.5) and (2.6) hold. Let vu ∈ Vu and vl ∈ Vl
such that ru (vu) = ru (β) and rl (vl) = rl (β). Note that under Assumption 1 (iii), such vu and vl exist.

Lemma 1 implies

−En [|E [2Y − 1 | Xn] |1{Xb ≥ 0, Xβ < 0}] = En [E [2Y − 1 | Xn] 1{Xb ≥ 0, Xβ < 0}]

= En [E [2Y − 1 | Xn] 1{Xb ≥ 0, Xvu < 0}]

= E [ En [(2Y − 1)1{Xb ≥ 0, Xvu < 0}] | Xn]

≥ 0 (A.6)

−En [|E [2Y − 1 | Xn] |1{Xb ≤ 0, Xβ > 0}] = En [E [1− 2Y | Xn] 1{Xb ≤ 0, Xβ > 0}]

= En [E [1− 2Y | Xn] 1{Xb ≤ 0, Xvl > 0}]

= E [ En [(1− 2Y ) 1{Xb ≤ 0, Xvl > 0}] | Xn]

≥ 0. (A.7)

Moreover, since both −|E [2Yi − 1 | Xn] |1{Xib ≥ 0, Xiβ < 0} and −|E [2Yi − 1 | Xn] |1{Xib ≤ 0, Xiβ > 0}
must be non-positive for every i = 1, . . . , n, we have

|E [2Yi − 1 | Xn] |1{Xib ≥ 0, Xiβ < 0} = |E [2Yi − 1 | Xn] |1{Xib ≤ 0, Xiβ > 0} = 0 (A.8)

for every i = 1, . . . , n. We can demonstrate Eq. (A.5) for every i = 1, . . . , n by considering the following three

cases: E [2Yi − 1 | Xn] = 0, E [2Yi − 1 | Xn] > 0, and E [2Yi − 1 | Xn] < 0. For every i with E [2Yi − 1 | Xn] =

0, Eq. (A.5) holds with equality. For every i with E [2Yi − 1 | Xn] > 0, we have Xiβ > 0 from Lemma 1, and
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therefore Eq. (A.8) implies Xib > 0, which in turn implies Eq. (A.5). For every i with E [2Yi − 1 | Xn] < 0,

we have Xiβ < 0 from Lemma 1, and therefore Eq. (A.8) implies Xib < 0, which in turn implies Eq.

(A.5).

Proof of Theorem 3. If Eq. (3.6) holds under H0, then P (Tn(β) ≤ q1−α | Xn) ≥ P (T ∗n(β) ≤ q1−α | Xn) ≥
1− α. For the rest of the proof, we are going to show inequality (3.6) under H0. SinceYi ≥ Y ∗i if Xiβ ≥ 0

Yi ≤ Y ∗i if Xiβ ≤ 0,

for every i = 1, . . . , n, we have

En [(2Y − 1)1{Xβ ≥ 0, Xv < 0}] ≥ En [(2Y ∗ − 1)1{Xβ ≥ 0 > Xv}] , ∀v ∈ Vu

and

En [(1− 2Y )1{Xβ ≤ 0, Xv > 0}] ≥ En [(1− 2Y ∗)1{Xβ ≤ 0 < Xv}] , ∀v ∈ Vl.

By the construction of T ∗ (β) and Tn (β), it suffices to show that, for every v ∈ RK , the two functions,

t 7→ max

{
0,
√
n

−t
max{ε,

√
En[1{Xβ ≥ 0, Xv < 0}]− t2}

}

and

t 7→ max

{
0,
√
n

−t
max{ε,

√
En[1{Xβ ≤ 0, Xv > 0}]− t2}

}
are weakly decreasing. For the rest of the proof, we focus on the first function

f(t) ≡ max

{
0,
√
n

−t
max{ε,

√
En[1{Xβ ≥ 0, Xv < 0}]− t2}

}
.

Consider t1 and t2 with t1 < t2. If t2 ≥ 0, we have f(t1) ≥ 0 = f(t2). For the rest of the proof, therefore,

we are going to show f(t1) ≥ f(t2) when t1 < t2 < 0. Since t22 < t21, we have

En[1{Xβ ≥ 0, Xv < 0}]− t21 < En[1{Xβ ≥ 0, Xv < 0}]− t22,

so

0 < max

{
ε,
√
En[1{Xβ ≥ 0, Xv < 0}]− t21

}
≤ max

{
ε,
√

En[1{Xβ ≥ 0, Xv < 0}]− t22
}
.

Since −t1 > −t2 > 0, we have

−t1
max{ε,

√
En[1{Xβ ≥ 0, Xv < 0}]− t21}

>
−t2

max{ε,
√

En[1{Xβ ≥ 0, Xv < 0}]− t22}
.

Therefore, f(t1) > f(t2).

Proof of Theorem 4. By the choice of cv and q1−α, we have P (T ∗n(β) ≤ cv | Xn) < 1−α−η for some positive

number η. Consider a distribution of (U1, . . . , Un) given Xn under which U1, . . . , Un are independent given
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Xn and Ui | Xn ∼ N(0, σ2) for every i = 1, . . . , n, where σ is chosen to satisfy

1−
n∏
i=1

(
Φ

(
min{−Xiβ, 0}

σ

)
+ 1− Φ

(
max{−Xiβ, 0}

σ

))
≤ η.

(Such σ exists because the left hand side converges to 0 as σ → ∞.) Note that if Yi = Y ∗i for every i =

1, . . . , n, then Tn(β) = T ∗n(β). Then

P (Tn(β) ≤ cv | Xn) ≤ P (Tn(β) ≤ cv, Yi = Y ∗i ∀i = 1, . . . , n | Xn) + 1− P (Yi = Y ∗i ∀i = 1, . . . , n | Xn)

≤ P (T ∗n(β) ≤ cv | Xn) + 1− P (Yi = Y ∗i ∀i = 1, . . . , n | Xn)

< 1− α− η + 1− P (Yi = Y ∗i ∀i = 1, . . . , n | Xn) .

To show the statement of this theorem, the rest of the proof is going to show P (Yi = Y ∗i ∀i = 1, . . . , n | Xn) ≥
1−η. Since U1, . . . , Un are independent given Xn, the events {Y1 = Y ∗1 }, . . . , {Yn = Y ∗n } are also independent

given Xn, and then 1−P (Yi = Y ∗i ∀i = 1, . . . , n | Xn) = 1−
∏n
i=1 P (Yi = Y ∗i | Xn). Since the distribution of

Ui given Xn satisfies

P (Yi = Y ∗i | Xn) = P (1{Xiβ + Ui ≥ 0} = 1{Ui ≥ 0} | Xn)

= P (Ui < min{−Xiβ, 0} or Ui ≥ max{−Xiβ, 0} | Xn)

= Φ

(
min{−Xiβ, 0}

σ

)
+ 1− Φ

(
max{−Xiβ, 0}

σ

)
,

we have

1− P (Yi = Y ∗i ∀i = 1, . . . , n | Xn) = 1−
n∏
i=1

(
Φ

(
min{−Xiβ, 0}

σ

)
+ 1− Φ

(
max{−Xiβ, 0}

σ

))
≤ η.

Proof of Theorem 5. In this proof, we focus on Eq. (3.7). Define W = (2Y − 1)1{Xb ≥ 0, Xv < 0}. First,

we are going to show that

√
nEn[W ] < −q1−α max

{
ε,

√
En[W 2]

1 + q2
1−α/n

}
=⇒ Tn(b) > q1−α. (A.9)

Suppose
√
nEn[W ] < −q1−α max

{
ε,
√

En[W 2]
1+q2

1−α/n

}
. Note that

En[W ] < 0 (A.10)

and

nEn[W ]2 > max

{
ε2q2

1−α,En[W 2]
q2
1−α

1 + q2
1−α/n

}
.

The second inequality implies nEn[W ]2 > max{ε2q2
1−α,En[W 2]q2

1−α − En[W ]2q2
1−α}. Using Eq. (A.10),

−
√
nEn[W ] > q1−α max{ε,

√
En[W 2]− En[W ]2} and then

√
n

−En[W ]

max{ε,
√
En[W 2]− En[W ]2}

> q1−α
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which implies Tn(b) > q1−α.

Then, we are going to show P(Tn(b) > q1−α | Xn) ≥ 1− ρ. Using Eq. (A.9), we have

P(Tn(b) > q1−α | Xn) ≥ P

(
√
nEn[W ] < −q1−α max

{
ε,

√
En[W 2]

1 + q2
1−α/n

}
| Xn

)
.

Eq. (3.7) implies

P(Tn(b) > q1−α | Xn) ≥ P

(
En[W ] < E [En[W ] | Xn] +

√
2 log(1/ρ)En[1{Xb ≥ 0, Xv < 0}]

n
| Xn

)

= 1− P

(
En[W ] ≥ E [En[W ] | Xn] +

√
2 log(1/ρ)En[1{Xb ≥ 0, Xv < 0}]

n
| Xn

)
.

Since −1{Xb ≥ 0, Xv < 0} ≤ Wi ≤ 1{Xb ≥ 0, Xv < 0} for every i = 1, . . . , n, Hoeffding (1963)’s inequality

implies

P(Tn(b) > q1−α | Xn) ≥ 1− exp

−
2n2

(√
2 log(1/ρ)En[1{Xb≥0,Xv<0}]

n

)2

4
∑n
i=1 1{Xib ≥ 0, Xiv < 0}

 = 1− ρ.

Proof of Corollary 1. Let 1− ρ denote the maximum of the power bounds (3.9) and (3.10) in the statement

of the corollary. If the expressions max{0, ·} in (3.9) and (3.10) are both zero for all v ∈ Vu and v ∈ Vl, then

the implication of the corollary is trivially satisfied. Thus suppose instead that the maximum of (3.9) and

(3.10) is greater than zero. It follows that there is either a v ∈ Vu such that

1− ρ = 1− exp

(
−1

2

(√
nζ̃u(b, v)− q1−α max

{
ε̃u(b, v), (1 + q2

1−α/n)−1/2
})2

)
,

or a v ∈ Vl such that

1− ρ = 1− exp

(
−1

2

(√
nζ̃l(b, v)− q1−α max

{
ε̃l(b, v), (1 + q2

1−α/n)−1/2
})2

)
,

implying (3.9) in the former case and (3.10) in the latter. The conclusion of the corollary then follows from

Theorem 5.

Proof of Corollary 2. The first part of the corollary can be shown by first noting that Q(b) ≥ C(γ) implies

that at least one of the following inequalities hold:

E [ En [(2Y − 1)1{Xb ≥ 0, Xv < 0}] | Xn] ≤ −C(γ),

E [ En [(1− 2Y )1{Xb ≤ 0, Xv ≥ 0}] | Xn] ≤ −C(γ).

Then because −C(1−ρ) is less than or equal to each of the expressions on the right hand side of inequalities

(3.7) and (3.8), at least one of (3.7) and (3.8) is true and Theorem 5 delivers the result.

For the second claim of the corollary, consider first that if
√
nQ(b) ≤ q1−α max

{
ε, (1 + q2

1−α/n)−1/2
}

the
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result holds trivially. Thus, suppose instead that
√
nQ(b) > q1−α max

{
ε, (1 + q2

1−α/n)−1/2
}

and consider

γ = 1− exp

(
−1

2

(√
nQ(b)− q1−α max

{
ε, (1 + q2

1−α/n)−1/2
})2

)
.

Then Q(b) = C(γ) and the desired implication follows from the first part of the corollary.

Proof of Theorem 6. Assume w.l.o.g. that {i : p̄i 6= p̃i} = {1, . . . , n̄}, which can be achieved by rearranging

i’s. Then (p̄1, . . . , p̄n̄) = (1/2, . . . , 1/2) and the test in (4.9) simplifies as

φ̄(y1, . . . , yn̄) =


1 if

∏n̄
i=1 p̃

yi
i (1− p̃i)1−yi > k2−n̄,

ξ if
∏n̄
i=1 p̃

yi
i (1− p̃i)1−yi = k2−n̄,

0 otherwise.

Define

RP(p1, . . . , pn̄) ≡
∑

(y1,...,yn̄)∈{0,1}n̄
φ̄(y1, . . . , yn̄)

n̄∏
i=1

pyii (1− pi)1−yi .

For the rest of the proof, we first show that RP(p1, . . . , pn̄) is the probability that φ̄(y1, . . . , yn) rejects the

null hypothesis when P{Yi = 1 | Xn} = pi for all i, that is,

RP(p1, . . . , pn̄) =
∑

(y1,...,yn)∈{0,1}n
φ̄(y1, . . . , yn)

n∏
i=1

pyii (1− pi)1−yi , (A.11)

where the right-hand side of the above equation is the sum of 2n terms instead of 2n̄. From this, it follows

from (4.10) that RP(p̄1, . . . , p̄n̄) = α. Subsequently we show that (p̄1, . . . , p̄n̄) is the constrained maximizer

of RP(p1, . . . , pn̄) with respect to p1, . . . , pn̄, subject to p1, . . . , pn̄ being compatible with the null hypothesis.

Thus (4.9) achieves size control, i.e.,
∑

(y1,...,yn)∈{0,1}n φ̄(y1, . . . , yn)
∏n
i=1 p

yi
i (1−pi)1−yi ≤ α for any sequence

(p1, . . . , pn) under the null hypothesis. By Theorem 3.8.1 of Lehmann and Romano (2005) the test (4.9) is

a most powerful test of the composite null β = b against the simple alternative H1, and (4.11) is the least

favorable distribution of (Y1, . . . , Yn) given Xn.

First, to establish (A.11), we have

RP(p1, . . . , pn̄) =
∑

(y1,...,yn̄)∈{0,1}n̄
φ̄(y1, . . . , yn̄)

n̄∏
i=1

pyii (1− pi)1−yi

=
∑

(y1,...,yn̄)∈{0,1}n̄
φ̄(y1, . . . , yn̄)

∑
(yn̄+1,...,yn)

n∏
i=1

pyii (1− pi)1−yi

=
∑

(y1,...,yn)∈{0,1}n
φ̄(y1, . . . , yn)

n∏
i=1

pyii (1− pi)1−yi ,

where the second equality holds because
∑

(yn̄+1,...,yn)

∏n
i=n̄+1 p

yi
i (1 − pi)

1−yi = 1 and the third equality

follows because φ̄(y1, . . . , yn) does not depend on yn̄+1, . . . , yn.

For the next step of the proof, notice that (4.8) implies that, under the null hypothesis, (P (Yi = 1 | Xn)−
1/2)(p̃i − 1/2) ≤ 0 for every i = 1, . . . , n̄. Thus we next show that (p̄1, . . . , p̄n̄) is the constrained maximizer

of RP(p1, . . . , pn̄) subject to (pi − 1/2)(p̃i − 1/2) ≤ 0 for all i = 1, . . . , n̄. Let φ̄(d, y−j) be the shorthand for
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φ̄(y1, . . . , yj−1, d, yj+1, . . . , yn), where d ∈ {0, 1}. Note thatφ̄(1, y−j)− φ̄(0, y−j) ≥ 0 if p̃j > 1/2,

φ̄(1, y−j)− φ̄(0, y−j) ≤ 0 if p̃j < 1/2,

for every j = 1, . . . , n̄, and that p̃j 6= 1/2 because p̄j 6= p̃j for all j = 1, . . . , n̄. Since

∂

∂pj
RP(p1, . . . , pn̄) =

∑
(y1,...,yn̄)∈{0,1}n̄

(2yj − 1)φ̄(y1, . . . , yn̄)
∏
i6=j

pyii (1− pi)1−yi

=
∑
y−j

φ̄(1, y−j)
∏
i 6=j

pyii (1− pi)1−yi −
∑
y−j

φ̄(0, y−j)
∏
i6=j

pyii (1− pi)1−yi

=
∑
y−j

(φ̄(1, y−j)− φ̄(0, y−j))
∏
i 6=j

pyii (1− pi)1−yi ,

we have  ∂
∂pj

RP(p1, . . . , pn̄) ≥ 0 if p̃j > 1/2,

∂
∂pj

RP(p1, . . . , pn̄) ≤ 0 if p̃j < 1/2.

Thus (1/2, . . . , 1/2) maximizes RP(p1, . . . , pn̄) with respect to (p1, . . . , pn̄) subject to (pi−1/2)(p̃i−1/2) ≤ 0

for all i = 1, . . . , n̄, completing the proof.

Proof of Corollary 3. The corollary follows directly from Theorem 6 and the reasoning given in the text.
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B Additional Simulation Results
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Figure 3.a: Design 1.
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Figure 3.c: Design 3.
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Figure 3.d: Design 4.

Figure 3: Non-rejection frequencies with 1− α = 90% with true θ0 = 1 and n = 250.
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Figure 4: Non-rejection frequencies with 1− α = 90% with true θ0 = 2 and n = 100.
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Figure 5: Non-rejection frequencies with 1− α = 90% with true θ0 = 2 and n = 250.
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