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Abstract

In this paper we investigate panel regression models with interactive fixed effects. We

propose two new estimation methods that are based on minimizing convex objective

functions. The first method minimizes the sum of squared residuals with a nuclear

(trace) norm regularization. The second method minimizes the nuclear norm of the

residuals. We establish the consistency of the two resulting estimators. Those estima-

tors have a very important computational advantage compared to the existing least

squares (LS) estimator, in that they are defined as minimizers of a convex objective

function. In addition, the nuclear norm penalization helps to resolve a potential iden-

tification problem for interactive fixed effect models, in particular when the regressors

are low-rank and the number of the factors is unknown. We also show how to construct

estimators that are asymptotically equivalent to the least squares (LS) estimator in Bai

(2009) and Moon and Weidner (2017) by using our nuclear norm regularized or mini-

mized estimators as initial values for a finite number of LS minimizing iteration steps.

This iteration avoids any non-convex minimization, while the original LS estimation

problem is generally non-convex, and can have multiple local minima.
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1 Introduction

In this paper we consider a linear panel regression model of the form

Yit =
K∑
k=1

β0,kXk,it +

R0∑
r=1

λ0,ir f0,tr + Eit , (1)

where i = 1 . . . N and t = 1 . . . T label the cross-sectional units and the time periods,

respectively, Yit is an observed dependent variable, Xk,it are observed regressors, β0 =

(β0,1, . . . , β0,K)′ are unknown regression coefficients, f0,tr and λ0,ir are unobserved factors

and factor loadings, Eit is an unobserved idiosyncratic error term, R0 denotes the number

of factors, and K denotes the number of regressors. The factors and loadings are also called

interactive fixed effects. They parsimoniously represent heterogeneity in both dimensions of

the panel, and they contain the conventional additive error components as a special case.

We assume that R0 � min(N, T ), and for our asymptotic results we will consider R0 as

fixed, as N, T →∞. We can rewrite this model in matrix notation as

Y = β0 ·X + Γ0 + E, (2)

where β0 ·X :=
∑K

k=1Xkβ0,k and Γ0 := λ0f
′
0, and Y , Xk, Γ0 and E are N×T matrices, while

λ0 and f0 are N×R0 and T×R0 matrices, respectively. The parameters β0 and Γ0 are treated

as non-random throughout the whole paper, that is, all stochastic statements are implicitly

conditional on their realization. Without loss of generality we assume R0 = rank(Γ0).

One widely used estimation technique for interactive fixed effect panel regressions is the

least squares (LS) method,1 which treats λ and f as parameters to estimate (fixed effects).2

Let the Frobenius norm of an N × T matrix A be ‖A‖2 :=
(∑N

i=1

∑T
t=1A

2
it

)1/2

. Then, the

LS estimator for β reads

β̂LS,R := argmin
β∈RK

LR(β), LR(β) := min
{λ∈RN×R, f∈RT×R}

1

2NT
‖Y − β ·X − λf ′‖2

2 , (3)

where R is the number of factors chosen in estimation. A matrix Γ ∈ RN×T can be written

as Γ = λf ′, for some λ ∈ RN×R and f ∈ RT×R, if and only if rank(Γ) ≤ R. The profiled

1The LS estimator in this context is also sometimes called concentrated least squares estimator, and was
originally proposed by Kiefer (1980).

2Other estimation methods of panel regressions with interactive fixed effects include the quasi-difference
approach (e.g., Holtz-Eakin, Newey, and Rosen 1988), generalized method of moments estimation (e.g. Ahn,
Lee, and Schmidt 2001, 2013), the common correlated random effect method (e.g., Pesaran 2006), the decision
theoretic approach (e.g., Chamberlain and Moreira 2009), and Lasso type shrinkage methods on fixed effects
(e.g., Cheng, Liao, and Schorfheide 2016, Lu and Su 2016, Su, Shi, and Phillips 2016).
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least square objective function LR(β) can therefore equivalently be expressed as

LR(β) = min
{Γ∈RN×T | rank(Γ)≤R}

1

2NT
‖Y − β ·X − Γ‖2

2 . (4)

It is known that under appropriate regularity conditions (including exogeneity of Xk,it with

respect to Eit), for R ≥ R0, and as N, T → ∞ at the same rate, the LS estimator β̂LS,R

is
√
NT -consistent and asymptotically normal, with a bias in the limiting distribution that

can be corrected for (e.g., Bai 2009, Moon and Weidner 2015, 2017).

The LS estimation approach is convenient, because it does not restrict the relationship be-

tween the unobserved heterogeneity (Γ0) and the observed explanatory variables (X1, ..., XK).

However, the calculation of β̂LS,R requires solving a non-convex optimization problem. While

‖Y − β ·X − Γ‖2
2 is a convex function of β and Γ, the profiled objective function LR(β) is

in general not convex in β, and can have multiple local minima, as will be discussed in Sec-

tion 2.1 in more detail. The reason for the non-convexity is that the constraint rank(Γ) ≤ R

is non-convex.

In this paper we use a convex relaxation of this rank constraint. Let s(Γ) := [s1(Γ),

s2(Γ), . . . , smin(N,T )(Γ)] be the vector of singular values of Γ.3 The rank of a matrix is equal

to the number of non-zero singular values, that is, rank(Γ) = ‖s(Γ)‖0, where ‖v‖0 equals

the number of non-zero elements of the vector v (sometimes calles the “`0-norm” of v). The

nuclear norm of Γ is defined by ‖Γ‖1 := ‖s(Γ)‖1 =
∑min(N,T )

r=1 sr(Γ), that is, the nuclear norm

of the matrix Γ is simply the `1-norm of the vector s(Γ).4 A convex relaxation of (4) can then

be obtained by replacing the non-convex constraint rank(Γ) ≤ R by the convex constraint

‖Γ‖1 ≤ c, for some constant c. This gives

min{
Γ∈RN×T

∣∣ ‖Γ‖1≤cψ}
1

2NT
‖Y − β ·X − Γ‖2

2

= min
Γ∈RN×T

[
1

2NT
‖Y − β ·X − Γ‖2

2 +
ψ√
NT
‖Γ‖1

]
=: Qψ(β), (5)

where in the second line we replaced the constraint on the nuclear norm by a nuclear-norm

penalty term.5 Choosing a particular penalization parameter ψ > 0 is equivalent to choosing

3The non-zero singular values of Γ are the square roots of non-zero eigenvalues of ΓΓ′. Singular values
are non-negative by definition.

4The nuclear norm ‖Γ‖1 is the convex envelope of rank(Γ) over the set of matrices with spectral norm at
most one, see e.g. Recht, Fazel, and Parrilo (2010). The nuclear norm is also sometimes called trace norm,
Schatten 1-norm, or Ky Fan n-norm. Our index notation for the nuclear norm ‖Γ‖1, Frobenius norm ‖Γ‖2,

and spectral norm ‖Γ‖∞ = limq→∞ ‖Γ‖q is motivated by the unifying formula ‖Γ‖q =
∑min(N,T )
r=1 [sr(Γ)]

q
.

5The normalizations with 1/(2NT ) and 1/
√
NT in (5) are somewhat arbitrary, but turn out to be

convenient for our purposes.
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a particular value for c = cψ, and we find it more convenient to parameterize the convex

relaxation Qψ(β) of LR(β) by ψ instead of c. For a given ψ > 0 the nuclear-norm regularized

estimator reads

β̂ψ := argmin
β∈RK

Qψ(β).

We also define β̂∗ := limψ→0 β̂ψ for fixed N and T .6 We will show in Section 2.2 that

β̂∗ = argminβ ‖Y − β ·X‖1, that is, β̂∗ can alternatively be obtained by minimizing the

nuclear norm of Y − β · X. The main goal of this paper is to explore the properties of β̂ψ

and β̂∗, that is, we want to understand how these estimators can be used to help identify

and estimate β0.

Those estimators have a very important computational advantage compared to the LS

estimator, in that they are defined as minimizers of convex objective functions. The LS

objective function in (4) is in general non-convex and can have multiple local minima. This

can become a serious computational obstacle if the dimension of the regression coefficients

is large. If the underlying panel regression model is nonlinear (e.g., Chen 2014, Chen,

Fernandez-Val, and Weidner 2014), then optimizing a non-convex objective function with

respect to the high-dimensional parameters λ and f becomes even more challenging. By

contrast, under appropriate non-collinearity conditions on the regressors, the nuclear norm

penalized objective function in (5) is strictly convex and therefore has a unique local mini-

mum that is also the global minimum.

In addition to this computational advantage the nuclear norm penalization also helps to

resolve a potential identification problem for interactive fixed effect models. Namely, without

restrictions on the parameter matrix Γ0 in (2), we cannot separate β0 ·X and Γ0 uniquely,

because for any other parameter β we can write

Y = β0 ·X + Γ0 + E = β ·X + Γ(β,X) + E, where Γ(β,X) := Γ0 − (β − β0)X,

implying that (β0,Γ0) and (β,Γ(β,X)) are observationally equivalent. If any non-trivial

linear combination of the regressors Xk is a high-rank matrix, then the assumption that

R0 = rank(Γ0) � min(N, T ) is sufficient to identify β0, because rank[Γ(β,X)] will be large

for any other value of β. However, if some of the regressors Xk have low rank, and the

true number of factors R0 is unknown, then there is an identification problem, and some

regularization device is needed to resolve this. In Section 2 we show that the nuclear norm

6Here, the limit ψ → 0 is for fixed N and T , and has nothing to do with our large N , T asymptotic
considerations.

4



penalization indeed provides such a regularization device to uniquely identify β0.

After that identification discussion, we establish asymptotic results for β̂ψ and β̂∗ when

both panel dimensions become large. Under appropriate regularity conditions we show√
min(N, T )-consistency of these estimators. We also show how to use β̂ψ and β̂∗ as initial

values for a finite iteration procedure that gives improved estimates that are asymptotically

equivalent to the LS estimator.

Nuclear norm penalized estimation has been widely studied in machine learning and sta-

tistical learning literature. There, the parameter of interest is usually the matrix that we

call Γ in our model, in particular, there are many papers that use this penalization method

in matrix completion (e.g., Recht, Fazel, and Parrilo 2010 and Hastie, Tibshirani, and Wain-

wright 2015 for recent surveys), and for reduced rank regression estimation (e.g., Rohde and

Tsybakov 2011). More recently, nuclear norm penalization has also been used in the econo-

metrics literature: Bai and Ng (2017) use it to improve estimation in a pure factor models.

Athey, Bayati, Doudchenko, Imbens, and Khosravi (2017) apply nuclear norm penalization to

treatment effect estimation with unbalanced panel data due to missing observations together

with a regularization on the high dimensional regression coefficients – their primary interest

is to predict the left-hand side variable using the regularization. Chernozhukov, Hansen,

Liao, and Zhu (2018) consider panel regression models with heterogeneous coefficients, while

in this paper we focus on panel regression with homogenous coefficients. To the best of our

knowledge, our results here on the estimates of the common regression coefficients β0 are new

in this literature, and the nuclear norm minimizing estimator β̂∗ has also not been proposed

previously.

The paper is organized as follows. Section 2 provides theoretical motivations of nuclear

regularization over the conventional rank restriction. In Section 3 we derive consistency

results on β̂ψ and β̂∗. Section 4 shows how to use these two estimators as a preliminary

estimator to construct an estimator through iterations that achieves asymptotic equivalence

to the fixed effect estimator. Section 5 investigates finite sample properties of the estimators.

In Section 6 we briefly discuss extensions to nonlinear panel models with interactive fixed

effects, and Section 7 concludes the paper. All technical derivations and proofs are presented

in the appendix or supplementary appendix.

2 Motivation of Nuclear Norm Regularization

In this section we provide further motivation and explanation of the nuclear norm regularized

estimation method. This estimation approach comes with the computational advantage of

having a convex objective function, and it also provides a solution to the identification
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problem of interactive fixed effect models with low-rank regressors.

2.1 Convex Relaxation

We have already introduced the profile LS objective function LR(β) and its convex relaxation

Qψ(β) in the introduction. Here, we explain those objective functions further. Firstly, we

want to briefly explain why Qψ(β) is indeed convex. We have introduced the nuclear norm

as ‖Γ‖1 :=
∑min(N,T )

r=1 sr(Γ), but it is not obvious from this definition that ‖Γ‖1 is convex

in Γ, because the singular values sr(Γ) themselves are generally not convex functions of Γ,

except for r = 1. A useful alternative definition of the nuclear norm is

‖Γ‖1 = max{
A∈RN×T

∣∣‖A‖∞≤1

}Tr(A′ Γ), (6)

that is, the nuclear norm is dual to the spectral norm ‖ · ‖∞. From this it is easy to see

that ‖ · ‖1 is indeed a matrix norm, and thus convex in Γ.7 Therefore, the nuclear norm

regularized objective function

1

2NT
‖Y − β ·X − Γ‖2

2 +
ψ√
NT
‖Γ‖1

as a function of (β,Γ) is convex. Profiling with respect to Γ preserves convexity, that is,

Qψ(β) is also convex.

By contrast, the least squares objective 1
2NT
‖Y − β ·X − λf ′‖2

2 is generally non-convex

in the parameters β, λ and f . However, the non-convexity of the LS minimization over λ

and f is actually not a serious problem in computing the profile objective function LR(β),

as long as the regression model is linear and one of the dimensions N or T is not too large.8

Recall that sr(Y − β · X) is the rth largest singular value of the matrix (Y − β · X), for

r = 1, ...,min(N, T ). One can show that (see Moon and Weidner (2017)) the profile least

7Let B and C be matrices of the same size. Then, by (6) there exists a matrix A of the same size with
‖A‖∞ ≤ 1 such that ‖B+C‖1 = Tr[A′ (B+C)] = Tr(A′B) + Tr(A′C) ≤ ‖B‖1 + ‖C‖1, which is the triangle
inequality for the nuclear norm. Together with absolute homogeneity of ‖·‖1 this implies convexity.

8The optimal λ̂ and f̂ are simply given by the leading R principal components of Y − β ·X. Calculating
them requires to find the eigenvalues and eigenvectors of either the N ×N matrix (Y −β ·X)(Y −β ·X)′ or
the T × T matrix (Y − β ·X)′(Y − β ·X), which takes at most a few seconds on modern computers, as long
as min(N,T ) / 5.000, or so. The non-zero eigenvalues of (Y −β ·X)(Y −β ·X)′ and (Y −β ·X)′(Y −β ·X)
are identical, and are equal to the square of the non-zero singular values of Y − β ·X.
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Figure 1: Plot of LR(β) and Qψ(β) for the example detailed in Appendix A.1. The true
parameter is β0 = 2.

squares objective function is

LR(β) =
1

2NT

min(N,T )∑
r=R+1

[sr(Y − β ·X)]2, (7)

where the largest R singular values are omitted in the sum, because they were absorbed by

the principal component estimates λ̂ and f̂ . The remaining problem in calculating β̂LS,R is

the generally non-convex minimization of LR(β) over β.9 To illustrate the potential difficulty

caused by this non-convexity, in Figure 1 we plot LR(β) for the simple example described in

Appendix A.1. In this example LR(β) is non-convex and has two local minima, one of which

(the global one) is close to the true parameter β0 = 2. The figure also shows that Qψ(β) is

convex and only has a single local minimum.

For any ψ > 0 define the functions `ψ : [0,∞) 7→ [0,∞) and qψ : [0,∞) 7→ [0,∞) by

`ψ(s) :=

{
1
2
s2, for s < ψ,

0, for s ≥ ψ,
qψ(s) :=

{
1
2
s2, for s < ψ,

ψs− ψ2

2
, for s ≥ ψ.

(8)

For an N × T matrix A let `ψ(A) :=
∑min(N,T )

r=1 `ψ(sr(A)) and qψ(A) :=
∑min(N,T )

r=1 qψ(sr(A)).

9In our discussion here we focus on the calculation of β̂LS,R via minimization of the profile objective

function LR(β). More generally, β̂LS,R can be obtained by any method that minimizes ‖Y − β ·X − λf ′‖22
over β, λ, f , see e.g. Bai (2009) or the supplementary appendix in Moon and Weidner (2015). For any
such method the non-convexity of the objective function is a potential problem, because the algorithm may
converge to a local minimum, or potentially even to a critical point that is not a local minimum.
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Figure 2: Plot of the functions qψ(s) and `ψ(s) for ψ = 1.

We can then rewrite (7) as

LR(β) = `ψ(β,R)

(
Y − β ·X√

NT

)
, (9)

where ψ(β,R) satisfies

sR+1

(
Y − β ·X√

NT

)
< ψ(β,R) ≤ sR

(
Y − β ·X√

NT

)
. (10)

Here, the normalization with 1/
√
NT is natural, because under standard assumptions the

largest singular value of Y − β · X is of order
√
NT , as N and T grow. The formulation

(9) is interesting for us, because the following lemma shows that we have a very similar

representation for Qψ(β).

Lemma 1. For any β ∈ RK and any ψ > 0 we have

Qψ(β) = qψ

(
Y − β ·X√

NT

)
.

The proof is given in the appendix. Figure 2 shows the functions qψ(s) and `ψ(s) for real

valued arguments s and ψ = 1. For values s < ψ the functions are identical, but at s = ψ

the function `ψ(s) has a non-continuous jump, implying that `ψ(s) is non-convex, while qψ(s)

continues linearly for s ≥ ψ, thus remaining convex.

Comparing LR(β) and Qψ(β) we see that the parameter R that counts the number of fac-

tors is replaced by the parameter ψ that characterizes the magnitude at which the singular

values of (Y − β · X)/
√
NT are considered to be factors, and for a given β the relation-

ship between R and ψ is given by (10). Large R corresponds to small ψ, and vice versa.
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Furthermore, Γ̂ψ(β) := argminΓ
1

2NT
‖Y − β ·X − Γ‖2

2 + ψ√
NT
‖Γ‖1 has singular values10

sr

(
Γ̂ψ(β)

)
= max

(
sr

(
(Y − β ·X)/

√
NT

)
− ψ, 0

)
r = 1, ...,min(N, T ),

that is, the nuclear norm penalization shrinks the singular of Y − β · X towards zero by a

fixed amount.

Fixing ψ as opposed to fixing R already changes the functional form of the profile ob-

jective function, because according to (10) their relationship depends on β. In addition,

the objective function is convexified by replacing the function `ψ(s) that is applied to the

singular values of (Y −β ·X)/
√
NT with the function qψ(s), as defined in (8). The function

qψ(s) provides a convex continuation of `ψ(s) for s ≥ ψ.

Using the closed-form expression for Qψ(β) in Lemma 1, and noticing that it is convex

in β, one can compute the minimizer β̂ψ of Qψ(β) using various optimizing algorithms for a

convex function (see chapter 5 of Hastie, Tibshirani, and Wainwright 2015). If the dimension

of β is small, then one may even use a simple grid search method to find β̂ψ. We will discuss

a data dependent choice of the penalty parameter ψ in Section 5.

2.2 Unique Matrix Separation

When estimating the interactive fixed effect model (1) in practice both β0 and R0 are un-

known. Showing that β0 and R0 can be consistently estimated jointly is a difficult problem

in general.11 Within the interactive fixed effects estimation framework this joint inference

problem has only been successfully addressed when both of the following assumptions are

satisfies:12

(C1) There is a known upper bound Rmax such that R0 ≤ Rmax.

(C2) All the regressors Xk are “high-rank regressors”, that is, rank(Xk) is large for all k.

Under those assumptions (and other regularity conditions) the consistency proofs of Bai

(2009) and Moon and Weidner (2015) are applicable to the LS estimator for β that uses

R = Rmax ≥ R0 factors in the estimation, and one can also show the convergence rate result

10See Lemma S.1 in the supplementary appendix for details.
11The problem of joint identification of β0 and R0 is often avoided in the literature. Some papers (e.g.

Bai 2009, Li, Qian, and Su 2016, Moon and Weidner 2017) assume that the number of factors R0 is known
when showing consistency for an estimator of β0. Alternatively, Lu and Su (2016) allow for unknown R0,
but assume consistency of their estimator for β0.

12Some existing estimation methods avoid specifying R when estimating β0, but always at the cost of
some additional assumptions on the data generating process. For example, the common correlated effects
estimator of Pesaran (2006) avoids choosing R, but requires assumptions on how the factors f0 enter into
the observed regressors Xk, and requires all regressors of interest to be high-rank.
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∥∥β̂LS,Rmax − β0

∥∥ = OP

(
min(N, T )−1/2

)
, as N, T → ∞. To obtain a consistent estimator for

R0 one can then apply inference methods from pure factor models without regressors (e.g.

Bai and Ng 2002, Onatski 2010, Ahn and Horenstein 2013) to the matrix Y − β̂LS,Rmax ·X.

The condition (C2) above is particularly strong, because “low-rank regressors” are quite

common in practice. If we can write Xk,it = wk,ivk,t, then we have rank(Xk) = 1, and the

condition (C2) is violated. For example, Gobillon and Magnac (2016) estimate an interactive

fixed effects model in a panel treatment effect setting, where the main regressor of interest

indeed can be multiplicatively decomposed in this way, with wk,i being the treatment indi-

cator of unit i, and vk,t being the time indicator of treatment. Those interactive fixed effects

models for panel treatment effect applications have grown very popular recently.13 However,

when R0 is unknown, then the presence of such low-rank regressors creates an identification

problem, as illustrated by the following example.

Example 1. Consider a single (K = 1) low-rank regressor X1 = vw′, with vectors v ∈ RN

and w ∈ RT . Let RF = R0 + 1, λF = [λ0, v], and fF = [f0, (β0,1 − βF,1)w]. Then, model

(1) with parameters β0, R0, λ0, f0 is observationally equivalent to the same model with

parameters βF, RF, λF, fF, because we have β0,1X1 + λ0f
′
0 = βF,1X1 + λFf

′
F. Thus, β0 is

observationally equivalent to any other value βF if the true number of factors is unknown.

The example shows that regression coefficients of low-rank regressors are not identified if

R0 is unknown, because β ·X could simply be absorbed into the factor structure λf ′, which

is also a low-rank matrix. Therefore, without some additional assumption or regularization

device, the two low-rank matrices β0 · X and Γ0 = λ0f
′
0 cannot be uniquely disentangled,

which is what we mean by “unique matrix separation” in the title of this section.

Nuclear Norm Minimizing Estimation

In the following we explain how the nuclear norm minimization approach overcomes the

restrictions (C1), that is, how to estimate regression coefficients when R0 is unknown. We

already introduced β̂∗ = limψ→0 β̂ψ in Section 1. Using Lemma 1 we can now characterize

β̂∗ differently. It is easy to see that limψ→0 ψ
−1qψ(s) = s, for s ∈ [0,∞), and therefore

limψ→0 ψ
−1qψ(A) = ‖A‖1, for A ∈ RN×T . Lemma 1 thus implies that limψ→0 ψ

−1Qψ(β) =

‖(Y−β·X)/
√
NT‖1. Another way to see this is as follows. According to (10), the limit ψ → 0

corresponds to choosing R very large, i.e., R = min(N, T ). In this case, Γ̂ψ(β) = Y − β ·X,

13Other recent applications in the same vein as Gobillon and Magnac (2016) are Chan and Kwok (2016),
Powell (2017), Gobillon and Wolff (2017), Adams (2017), Piracha, Tani, and Tchuente (2017), Li (2018), to
list just a few. This literature is also related to the synthetic control method (Abadie and Gardeazabal 2003,
Abadie, Diamond, and Hainmueller 2010, Abadie, Diamond, and Hainmueller 2015; see also Hsiao, Ching,
and Wan 2012).
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and the profile objective function is Qψ(β) = ψ√
NT
‖Γ̂ψ(β)‖1 = ψ√

NT
‖Y − β ·X‖1. From this

we deduce limψ→0 ψ
−1Qψ(β) = ‖Y−β·X‖1√

NT
.

Notice that for ψ = 0 we trivially have Q0(β) = 0, but the rescaled objective function

ψ−1Qψ(β) nevertheless has a non-trivial limit as ψ → 0. Since rescaling the objective function

by a constant does not change the minimizer we thus find that

β̂∗ = argmin
β∈RK

‖Y − β ·X‖1 , (11)

that is, the small ψ limit of the nuclear norm regularized estimator β̂ψ is the nuclear norm

minimizing estimator β̂∗. The objective function ‖Y − β ·X‖1 is convex in β.

We cannot expect the LS estimator β̂LS,R to have good properties (in particular consis-

tency) if we choose the number of factors equal to, or close to, its maximum possible value

R = min(N, T ). It is therefore somewhat surprising that β̂ψ has a well-defined limit as

ψ → 0, and that we are able to show consistency of the limiting estimator β̂∗ under appro-

priate regularity conditions in the following sections, because the resulting estimator for Γ

is certainly not consistent for Γ0 in that limit.14

The main significance of β̂∗ is that it provides an estimator for β that does not require

any choice of “bandwidth parameter”, because neither R nor ψ needs to be specified. It

thus provides a method to estimate β0 consistently without requiring knowledge of an upper

bound on R0 as in the condition (C1) above. In a second step we can then estimate R0

consistently by applying, for example, the Bai and Ng (2002) method for pure factor models

without regressors to the matrix Y − β̂∗ ·X.

Notice that the pooled OLS estimator β0 minimizes ‖Y−β·X‖2
2 =

∑min(N,T )
r=1 sr(Y−β·X)2,

the `2-norm of the singular values of the residual matrix, Y − β ·X, while the nuclear norm

minimizing estimator β̂∗ minimizes the `1-norm, ‖Y − β ·X‖1 =
∑min(N,T )

r=1 sr(Y − β ·X), of

the residual matrix. The relationship between these two estimators is therefore analogous

to that of the OLS estimator and the LAD (least absolute deviation) estimator for cross-

sectional samples. β̂∗ is robust with respect to the unobserved factors, which are “outliers”

in the singular value spectrum, while the pooled OLS estimator is not robust towards the

presence of those unobserved factors (because they may be correlated with the regressors).

Nuclear Norm Penalization Approach for Matrix Separation

Next, we explain how the nuclear norm regularization approach helps to overcome the re-

strictions (C2) above, that is, how to estimate regression coefficients for low-rank regressors

14The ψ → 0 limit (for fixed N , T ) of the optimal Γ in (5) is Y − β̂∗ ·X, which as N and T grow converges

to λ0f
′
0 + E for consistent β̂∗, that is, the estimator for Γ that corresponds to β̂∗ is not consistent for λ0f

′
0.
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when R0 is unknown. The goal is to provide conditions on the regressors Xk under which

the nuclear norm penalization approach indeed solves the matrix separation problem for

low-rank regressors and interactive fixed effects.

We first want to answer this in a simplified setting, where the objective function is

replaced by the expected objective function, that is, we consider

β̄ψ := argmin
β

min
Γ

{
1

2NT
E
[
‖Y − β ·X − Γ‖2

2

∣∣∣X]+
ψ√
NT
‖Γ‖1

}
. (12)

Here, the expectation is conditional on all the regressors (X1, . . . , XK), and also implicitly

on all the parameters β0 and Γ0, because those are treated as non-random.15

For a matrix A, let PA := A(A′A)†A′ and MA := I − PA be the projectors onto and

orthogonal to the column span of A, where I is the identity matrix of appropriate dimensions,

and † refers to the Moore-Penrose generalized inverse. Remember also our notation α ·X :=∑K
k=1 αkXk for α ∈ RK . For vectors v we write ‖v‖ for the Euclidian norm.

Proposition 1. Suppose that N , T , R0 and K are fixed. Let E(Eit | X) = 0, and E (E2
it | X) <

∞, for all i, t. For all α ∈ RK \ {0} assume that

‖Mλ0(α ·X)Mf0‖1 > ‖Pλ0(α ·X)Pf0‖1 . (13)

Then,
∥∥β̄ψ − β0

∥∥ = O(ψ), as ψ → 0.

The proof is given in the appendix. The proposition considers fixed N , T , with only ψ →
0.16 The statement of the proposition implies that limψ→0 β̄ψ = β0. Thus, the proposition

provides conditions under which the nuclear norm regularization approach identifies the true

parameter β0. The proposition does not restrict the rank of the regressors, so the result

is applicable to both low-rank and high-rank regressors. The assumption E(Eit | X) = 0

requires strict exogeneity of all regressors, but we will allow for pre-determined regressors in

consistency results of Section 3.2 below.

The beauty of Proposition 1 is that it provides a very easy to interpret non-collinearity

condition on the regressors Xk. It requires that for any linear combination of the regressors

the part Mλ0(α ·X)Mf0 , which cannot be explained by neither λ0 nor f0, is larger in terms

of nuclear norm than the part Pλ0(α ·X)Pf0 , which can be explained by both λ0 and f0. For

a single (K = 1) regressor with X1,it = viwt, as in Example 1, the condition simply becomes

15β̄ψ can be viewed as a population version of β̂ψ for an appropriately defined population distribution of Y
conditional on X. But independent of this interpretation, β̄ψ is a convenient tool of discussing the necessary
non-collinearity condition on the regressors without requiring asymptotic analysis, yet.

16Display (S.6) in the appendix provides a bound on ‖β̄ψ − β0‖ for finite ψ, but the limit ψ → 0 is what
matters most to us, because that limit allows to identify β0.
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‖Mλ0v‖‖Mf0w‖ > ‖Pλ0v‖‖Pf0w‖. Here, ‖Mλ0v‖2 and ‖Pλ0v‖2 are the residual sum of

squares, and the explained sum of squares of a regression of vi on the λ0,i, and analogously

for ‖Mf0w‖2 and ‖Pf0w‖2. In Example 1 we obviously have ‖MλFv‖ = 0 and ‖MfFw‖ = 0,

that is, the parameters RF, βF, λF, fF are ruled out by the condition on the regressors in

Proposition 1.

Related to the regularity condition (13) of Proposition 1, it is possible to show (see Bai

2009, Moon and Weidner 2017) that the weaker condition Mλ0(α ·X)Mf0 6= 0 for any linear

combination α 6= 0 is sufficient for local identification of β in a sufficiently small neighborhood

around β0. However, that weaker condition is not sufficient for global identification of β0,

as illustrated by the examples in the supplementary appendix S.3 of Moon and Weidner

(2017). The stronger condition (13) in Proposition 1 guarantees global identification of β0

when using the nuclear norm penalization approach as a regularization device.

Providing such global identification conditions for models with low-rank regressors and

unknown R0 is a new contribution to the interactive fixed effects literature.17 Our approach

here is similar to the “Identification via a Strict Convex Penalty” proposed in Chen and

Pouzo (2012).

3 Consistency of β̂ψ and β̂∗

Proposition 1 above provides an identification result for β0 for fixed N and T , based on the

expected objective function. We now turn to the actual estimators β̂ψ and β̂∗ and investigates

their sampling properties as N, T →∞.

All our consistency results for β̂ψ are for asymptotic sequences where ψ = ψNT → 0, as

N, T →∞, but we do not usually make the dependence of ψ on the sample size explicit. In

addition, we assume that the number of the regressors K, and the true number of factors

R0 = rank(Γ0) are both fixed. However, do not restrict whether the factors are strong or

weak, nor do we restrict the magnitude of Γ0 in any matrix norm.

3.1 Consistency Results for Low-Rank Regressors

Here, we consider a special case where the regressors X1, ..., XK are of low rank. This section

is short, because the results here are relatively straightforward extensions of Section 2.2. The

17If the model would not have any idiosyncratic errors (i.e. E = 0), then Y − β ·X = (β0 − β) ·X + Γ0,
and a natural solution to this identification problem would be to choose β as the solution to the rank
minimization problem minβ∈RK rank (Y − β ·X) , where at the true parameters we have rank (Y − β0 ·X) =
rank(Γ0) = R0, that is, we are minimizing the number of factors required to describe the data. However,
once idiosyncratic errors E are present, then this rank minimization does not work, because Y − β ·X is of
large rank for all β.
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more general case that allows both high-rank and low-rank regressors will be discussed in

the following subsection.

Theorem 1. Consider N, T →∞ with ψ → 0, and assume that

(i) There exists a constant c such that

min
{α∈RK : ‖α‖=1}

∥∥∥∥Mλ0(α ·X)Mf0√
NT

∥∥∥∥
1

−
∥∥∥∥Pλ0(α ·X)Pf0√

NT

∥∥∥∥
1

≥ c > 0, (14)

for all sample sizes N, T .

(ii) ‖E‖∞ = OP (
√

max(N, T )), and
∑K

k=1 rank(Xk) = OP (1).

Then we have

∥∥∥β̂ψ − β0

∥∥∥ = OP (ψ) +OP

(
1√

min(N, T )

)
,

∥∥∥β̂∗ − β0

∥∥∥ = OP

(
1√

min(N, T )

)
.

Various examples of DGP’s for E that satisfy the assumption ‖E‖∞ = OP (
√

max(N, T ))

can be found in the supplementary appendix S.2 of Moon and Weidner (2017). Loosely

speaking, that condition is satisfied as along as the entries Eit have zero mean, some ap-

propriately bounded moments, and are not too strongly correlated across i and over t. The

condition
∑K

k=1 rank(Xk) = OP (1) requires all regressors to be low-rank. The interpretation

of condition (14) is the same as for condition (13) in Proposition 1, and Theorem 1 is indeed

a sample version of that proposition, except that low-rank regressors are required here.

The theorem shows that both β̂∗ and β̂ψ, for ψ = ψNT = O
(

1/
√

min(N, T )
)

, converge to

β0 at a rate of at least
√

min(N, T ). The proof of the theorem is provided in the appendix,

and is a relatively easy generalization of the proof of Proposition 1. This is because the

assumption that all the regressors Xk are low-rank allows to easily decouple the contribution

of the high-rank matrix E and the low-rank matrix β · X + Γ to the penalized objective

functionQψ(β). However, dealing with the contribution of the idiosyncratic errors E becomes

more complicated once high-rank regressors are present, as will be explained in the following.

3.2 Consistency Results for General Regressors

The previous subsection considered the case where all regressor matrices Xk are low-rank.

We now study situation where all or some of the regressor matrices Xk are high-rank.

14



3.2.1 Consistency of β̂ψ and Γ̂ψ

Applying Lemma 1 and the model for Y we have

Qψ(β) = qψ

(
E + Γ− (β − β0) ·X√

NT

)
=

min(N,T )∑
r=1

qψ

(
sr

(
E + Γ− (β − β0) ·X√

NT

))
.

The proof strategy for Theorem 1 requires that both Γ and Xk are low-rank, which allows to

(approximately) separate off E in this expression for Qψ(β). But if one of the regressors Xk is

a high-rank matrix that proof strategy turns out not to work anymore, because the singular

value spectrum of the sum of two high-rank matrices E and Xk does not decompose (or

approximately decompose) into a contribution from E and from Xk, but instead all singular

values depend on both of those high-rank matrices in a complicated non-linear way.

We therefore now follow a different strategy, where instead of studying the objective

function after profiling out Γ, we now explicitly study the properties of the estimator for Γ.

Let

(β̂ψ, Γ̂ψ) =

[
argmin

β,Γ

1

2NT
‖Y − β ·X − Γ‖2

2︸ ︷︷ ︸
=:L(β,Γ)

+
ψ√
NT
‖Γ‖1

]
.

For the results in this subsection we are going to first show consistency of Γ̂ψ, and afterwards

use that to obtain consistency of β̂ψ. This is a very different logic than in the preceding

section, where consistency of Γ̂ψ is usually not achieved, because we do not impose any

lower bound on ψ. In order to achieve consistency of Γ̂ψ one requires ψ not be too small.

The approach here is much more similar to the machine learning literature (e.g., Negahban,

Ravikumar, Wainwright, and Yu 2012), where the matrix that we call Γ is usually the object

of interest, and correspondingly a lower bound on the penalization parameter is required.

We also follow that literature here by imposing a so-called “restricted strong convexity”

condition below, which is critical to show consistency of Γ̂ψ and consequently of β̂ψ is the

following.

It is convenient to introduce some additional notation: Let vec(A) be the vector that

vectorizes the columns of A. Denote mat(·) as the inverse operator of vec(·), so for a = vec(A)

we have mat(a) = A. We use small letters to denote vectorized variables and parameters.

Let y = vec(Y ), xk = vec(Xk), γ0 = vec(Γ0), and e = vec(E). Define x = (x1, ..., xk). Using

this, we express the model (2) as y = xβ0 + γ0 + e, where all the summands are NT -vectors,

and the least-squares objective function reads L(β,Γ) = 1
2NT

(y − xβ − γ)′(y − xβ − γ).

Assumption 1 (Restricted Strong Convexity).
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Let C =
{

Θ ∈ RN×T | ‖Mλ0ΘMf0‖1 ≤ 3‖Θ−Mλ0ΘMf0‖1

}
. We assume that there exists

µ > 0, independent from N and T , such that for any θ ∈ RNT with mat(θ) ∈ C we have

θ′Mxθ ≥ µ θ′θ, for all N , T .

The intuitive interpretation of Assumption 1 is very similar to condition (13) in Propo-

sition 1: The cone C contains matrices Θ that are close to Γ0 = λ0f
′
0, in the sense that the

part Mλ0ΘMf0 of Θ that cannot be explained by λ0 and f0 is small compared to remaining

part of Θ, in terms of nuclear norm. The assumption then imposes that all those matrices

Θ ∈ C in the cone are sufficiently different from the regressors, in the sense that θ = vec(Θ)

cannot be perfectly explained by xk = vec(Xk).

Specifically, the condition assumes that the quadratic term, 1
2NT

(γ − γ0)′Mx(γ − γ0), of

the profile likelihood function, minβ L(β,Γ), is bounded below by a strictly convex function,
µ

2NT
(γ−γ0)′(γ−γ0), if Θ = Γ−Γ0 belongs in the cone C. Notice that without any restriction

on the parameter θ = γ − γ0, we cannot find a strictly positive constant µ > 0 such that

minΓ(γ − γ0)′Mx(γ − γ0) ≥ µ(γ − γ0)′(γ − γ0). Assumption 1 imposes that if we restrict

the parameter set to be the cone C, then we can find a strictly convex lower bound of the

quadratic term of the profile likelihood. Assumption 1 corresponds to the restricted strong

convexity condition in Negahban, Ravikumar, Wainwright, and Yu (2012), and it plays the

same role as the restricted eigenvalue condition in recent LASSO literature (e.g., see Candes

and Tao (2007) and Bickel, Ritov, and Tsybakov (2009)).

Notice that for R0 = 0 we have Mλ0 = IN and Mf0 = IN , and therefor C = {0N×T},
implying that Assumption 1 is trivially satisfied for any µ > 0.

The requirement in Assumption 1 is to take a lower bound of θ′Mxθ with strictly convex

function. To have some intuition, suppose that the regressor is scalar and assume that

‖X‖2 = (x′x)1/2 = 1 without loss of generality because the projection operator Mx is

invariant to the scale change. Also assume that θ 6= 0. Then,

θ′Mxθ = θ′θ − (θ′x)2 = (θ′θ)

(
1− (θ′x)2

θ′θ

)
= (θ′θ)

(
x′x− x′θ(θ′θ)−1θ′x

)
≥ (θ′θ) min

θ∈C
‖x− θ‖2.

In this case, if the limit of the distance between the regressor and the restricted parameter

set is positive, Assumption 1 is satisfied if µ := lim infN,T minθ∈C ‖x − θ‖2, the distance of

the normalized regressor x and convex cone C is positive. An obvious necessary condition

for this is that the normalized regressor does not belong in the cone C, that is,

‖Mλ0XMf0‖1 > 3‖X −Mλ0XMf0‖1.
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For example, if X has an approximate factor structure

X = λxf
′
x + Ex,

with Ex,it ∼ i.i.d.N (0, σ2), then we can use random matrix theory results to show that

Assumption 1 is satisfied.

Lemma 2 (Convergence Rate of Γ̂ψ). Let Assumption 1 holds and assume that

ψ ≥ 2√
NT
‖mat(Mxe)‖∞. (15)

Then we have
1√
NT

∥∥∥Γ̂ψ − Γ0

∥∥∥
2
≤ 3
√

2R0

µ
ψ.

The lemma shows that once we impose restricted strong convexity and a lower bound on

ψ, then we can indeed bound the difference between Γ̂ψ and Γ0. This lemma is obviously

key to obtain a consistency results for Γ̂ψ. Notice furthermore that

β̂ψ − β0 = (x′x)−1x′ (y − γ̂ψ) = (x′x)
−1

[x′e− x′(γ̂ψ − γ0)] ,

that is, once we have a consistency result for Γ̂ψ (or equivalently γ̂ψ), then we can also show

consistency of β̂ψ. Using that derivation strategy we obtain the following theorem, which

provides a consistency result for both Γ̂ψ and β̂ψ.

Theorem 2. Let Assumption 1 hold, and as N, T →∞ assume that

(i) ‖E‖∞ = OP

(
max(N, T )1/2

)
,

(ii) 1√
NT

e′x = OP (1),

(iii) 1
NT

x′x →p Σx > 0,

(iv) ψ = ψNT → 0 such that
√

min(N, T )ψNT →∞.

Then we have

1√
NT

∥∥∥Γ̂ψ − Γ0

∥∥∥
2
≤ OP (ψ).

∥∥∥β̂ψ − β0

∥∥∥ ≤ OP (ψ).

The additional regularity conditions imposed in Theorem 2 are weak and quite general. As

mentioned before, various examples of E that satisfy (i) can be found in the supplementary
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appendix S.2 of Moon and Weidner (2017); these include weakly dependent errors, and

nonidentical but independent sequences of errors. Condition (ii) is satisfied if the regressors

are exogenous with respect to the error, E(xiteit) = 0, and xiteit are weakly correlated over t

and across i so that 1
NT

∑N
i,j=1

∑T
t,s=1 E(xk,itxl,jseitejs) is bounded asymptotically. Condition

(iii) is the standard non-collinearity condition for the regressors. Condition (iv) restricts

the choice of the regularization parameter ψ, which has to converge to zero (as discussed

before for identification and consistency of β0), but not to quickly (if ψ is too small, then Γ̂ψ

picks up all the noise E and cannot be consistent). The conditions (i) and (iv) are sufficient

regularity conditions for (15). To see this in more detail, since mat(Mxe) = E −
∑K

k=1 Êk

with Êk = Xk(x
′
kxk)

−1(x′ke), we have

‖mat(Mxe)‖∞ =

∥∥∥∥∥E −
K∑
k=1

Êk

∥∥∥∥∥
∞

≤ ‖E‖∞ +
K∑
k=1

‖Êk‖∞

= ‖E‖∞ +
K∑
k=1

∥∥∥∥ Xk√
NT

∥∥∥∥
∞

(
x′kxk
NT

)−1 ∣∣∣∣ x′ke√
NT

∣∣∣∣ ≤ ‖E‖∞(1 +
OP (1)

‖E‖∞

)
.

Then, choosing ψ ≥ 2√
NT
‖E‖∞

(
1 + OP (1)

‖E‖∞

)
makes ψ satisfy (15) with probability approach-

ing one, and the rate condition in condition (iv) guarantees this.

Theorem 2 requires ψ = ψNT to grow faster than 1/
√

min(N, T ). By choosing ψ appro-

priately we can therefore obtain a convergence rate of β̂ψ that is just below
√

min(N, T ),

which is essentially the same convergence rate that we found in Section 3.1 for the case of

only low-rank regressors.

For the special case R0 = 0 we have Γ0 = 0N×T , and if ψNT then satisfies (15), one can

show that

‖Γ̂ψ − Γ0‖1 = 0, (16)

wpa1, see the appendix for a proof of this. In this case, the regularized estimator of β

becomes the pooled OLS estimator, β̂ψ = (x′x)−1x′y, wpa1.

3.2.2 Consistency of β̂∗

Here, we establish consistency of the nuclear norm minimization estimator β̂∗ for high-rank

regressors. For simplicity we only discuss the case of a single regressor (K = 1) in the main

text, and we simply write X for the N × T regressor matrix X1 in this subsection. The

general case of multiple regressors (K > 1) is discussed in Appendix B.6.

Remember that β̂∗ is the minimizer of the objective function ‖Y − β ·X‖1 = ‖E + (β0−
β)X + Γ0‖1 =

∑
r sr (E + (β0 − β)X + Γ0). Asymptotically separating the contribution of

18



the low-rank matrix Γ0 to the singular values of the sum E + (β0 − β)X + Γ0 is possible

under a strong factor assumption.18 However, characterizing the singular values of the sum

of two high-rank matrices E + (β0 − β)X requires results from random matrix theory that

are usually only shown under relatively strong assumptions on the distribution of the matrix

entries. We therefore first provide a theorem under high-level assumptions, and afterwards

discuss how to verify those assumptions using results from random matrix theory. We write

SVD for “singular value decomposition” in the following.

Theorem 3. Suppose that K = 1, and assume that as N, T →∞, with N > T , we have

(i) ‖E‖∞ = OP (
√
N), and ‖X‖∞ = OP (

√
NT ).

(ii) There exists a finite positive constant cup such that 1
T
√
N
‖E‖1 ≤ 1

2
cup, wpa1.

(iii) Let UESEV
′
E be the SVD of Mλ0EMf0.19 We assume Tr (X ′UEV

′
E) = OP (

√
NT ).

(iv) There exists a constant clow > 0 such that T−1N−1/2‖Mλ0XMf0‖1 ≥ clow, wpa1.

(v) Let UxSxV
′
x = Mλ0XMf0 be the SVD of the matrix Mλ0XMf0. We assume that there

exists cx ∈ (0, 1) such that Tr (U ′EUxSxU
′
xUE) ≤ (1− cx)Tr(Sx), wpa1.

We then have
√
T
(
β̂∗ − β0

)
= OP (1).

The theorem considers the case N > T , because the two panel dimensions are not treated

symmetrically in the assumptions and proof of this theorem. Alternatively, we could consider

T < N , but then we also need to swap N and T , and replace X by X ′ and E by E ′ in all

the assumptions (the case T = N is ruled out here for technical reasons). For both N > T

and T < N the statement of theorem can be written as
√

min(N, T )
(
β̂∗ − β0

)
= OP (1),

that is, we have the same convergence rate result here for β̂∗ as in Theorem 1 above.

Condition (i) in the theorem is quite weak, we already discussed the rate restriction

on ‖E‖∞ above, and we have ‖X‖∞ ≤ ‖X‖2 =
√∑

i

∑
tX

2
it = OP (

√
NT ) as long as

supit E(X2
it) is finite. Condition (ii) almost follows from ‖E‖∞ = OP (

√
N), because we have

‖E‖1 ≤ rank(E) ‖E‖∞ ≤ T‖E‖∞ = OP (T
√
N), and the assumption is only slightly stronger

than this in assuming a fixed upper bound with probability approaching one, which can also

be verified for many error distributions. Condition (iii) is a high level condition and will be

satisfied if

sup
r

E|V ′E,rX ′UE,r| ≤M, (17)

18In Moon and Weidner (2015, 2017) we use the perturbation theory of linear operator to do exactly that.
19That is, UESEV

′
E = Mλ0EMf0 and UE is an N × rank(Mλ0EMf0) matrix of singular vectors, SE is a

rank(Mλ0
EMf0)× rank(Mλ0

EMf0) diagonal matrix, and VE is an T × rank(Mλ0
EMf0) matrix of singular

vectors.
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for some finite constant M , where UE,r and VE,r are the rth columns of UE,r and VE, re-

spectively. An example of DGP’s of X and E that satisfies condition (17) is given by

Assumption LL (i) and (ii) in Moon and Weidner (2015). Condition (iv) rules out “low-rank

regressors”, for which we typically have ‖Mλ0XMf0‖1 = OP (
√
NT ), but is satisfied gener-

ically for “high-rank regressors”, for which Mλ0XMf0 has T singular values of order
√
N ,

so that ‖Mλ0XMf0‖1 is of order T
√
N . Condition (v) requires that the singular vectors of

Mλ0XMf0 are sufficiently different from the singular vectors Mλ0EMf0 . If X and E are

independent, then we expect that assumption to hold quite generally.

4 Post Nuclear Norm Regularized Estimation

In Section 3 we have shown that β̂ψ and β̂∗ are consistent for β0 at a
√

min(N, T )-rate, which

is a slower convergence rate than the
√
NT -rate at which the LS estimator β̂LS,R converges to

β0 under appropriate regularity conditions. Our Monte Carlo results in Section 5 confirm this

relatively slow rate of convergence of β̂ψ and β̂∗, that is, those rates are not an artifact of our

proof strategy, but are a genuine property of those estimators. In this section we investigate

how to establish an estimator that is asymptotically equivalent to the LS estimator, and yet

avoids minimizing any non-convex objective function. Our suggestion is to use either β̂ψ or

β̂∗ as a preliminary estimator and iterate estimating Γ0 = λ0f
′
0 and β0 a finite number of

times.

The conditions that are usually needed to show that the global minimizer β̂LS,R of the

objective function LR(β) is consistent for β0 (i.e. Assumption A in Bai (2009), or Assump-

tion 4 in Moon and Weidner (2017)) are not required here, because we have already shown

consistency of β̂ψ or β̂∗ under different conditions (our discussion in Section 2.2 highlights

those differences). It is therefore convenient to introduce a local version of the LS estimator

in (3) as

β̂ local
LS,R := argmin

β∈B(β0,rNT )

LR(β), B(β0, rNT ) :=
{
β ∈ RK : ‖β − β0‖ ≤ rNT

}
, (18)

where rNT is a sequence of positive numbers such that rNT → 0 and
√
NT rNT →∞. Those

rate conditions guarantee that β̂ local
LS,R is an interior point of B(β0, rNT ), wpa1, under the

assumptions of Theorem 4 below. If the global minimizer β̂LS,R is consistent, then we expect

β̂LS,R = β̂ local
LS,R wpa1, but β̂ local

LS,R is consistent by definition even if β̂LS,R is not. Our goal in

the following is to obtain an estimator that is asymptotically equivalent to β̂ local
LS,R .

For simplicity, we first discuss the case where the number of factors R0 is known. For

unknown R0 we recommend to use a consistent estimate instead, and we discuss estimation
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of R0 in Section 5 below. Starting from our initial nuclear norm regularized or minimized

estimators we consider the following iteration procedure to obtain improved estimates of β:

Step 1: For s = 0 set β̂(s) = β̂ψ (or = β̂∗), the preliminary consistent estimate for β0.

Step 2: Estimate the factor loadings and the factors of the s−step residuals Y − β̂(s) ·X by

the principle component method:

(λ̂(s+1), f̂ (s+1)) ∈ argmin
λ∈RN×R0 ,f∈RT×R0

∥∥∥Y − β̂(s) ·X − λf ′
∥∥∥2

2
.

Step 3: Update the s-stage estimate β̂(s) by

β̂(s+1) = argmin
β∈RK

min
g∈RT×R0 ,h∈RN×R0

∥∥∥Y −X · β − λ̂(s+1) g′ + h f̂ (s+1)′
∥∥∥2

2

=
(
x′
(
Mf̂ (s+1) ⊗Mλ̂(s+1)

)
x
)−1

x′
(
Mf̂ (s+1) ⊗Mλ̂(s+1)

)
y. (19)

Step 4: Iterate step 2 and 3 a finite number of times.

The following theorem shows that if the initial estimator β̂(0) is consistent, then β̂(s) gets

close to β̂ local
LS,R0

as the number of iteration s increases. This result is very similar to the

quadratic convergence result of a Newton-Raphson algorithm for minimizing a smooth ob-

jective function, and the above iteration step is indeed very similar to performing a Newton-

Raphson step to minimize LR0(β).

Theorem 4. Assume that N and T grow to infinity at the same rate, and that

(i) plimN,T→∞ (λ′0λ0/N) > 0, and plimN,T→∞ (f ′0f0/T ) > 0.

(ii) ‖E‖∞ = OP

(
max(N, T )1/2

)
, and ‖Xk‖∞ = OP

(
(NT )1/2

)
for all k ∈ {1, . . . , K}.

(iii) plimN,T→∞
1
NT

x′ (Mf0 ⊗Mλ0)x > 0.

(iv) 1√
NT

x′ (Mf0 ⊗Mλ0) e = OP (1).

Then, if the sequence rNT > 0 in (18) satisfies rNT → 0 and
√
NT rNT →∞ we have

√
NT

(
β̂ local

LS,R0
− β0

)
= OP (1).

Assume furthermore that

(iv) ‖β̂(0) − β0‖ = OP (cNT ), for a sequence cNT > 0 such that cNT → 0.
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For s ∈ {1, 2, 3, . . .} we then have

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥ = OP

{
cNT

(
cNT +

1√
min(N, T )

)s}
.

Here, assumption (i) is a strong factor condition, and is often used in the literature on

interactive fixed effects. The conditions in assumption (ii) of the theorem have been dis-

cussed in previous sections and are quite weak (remember that ‖Xk‖∞ ≤ ‖Xk‖2 =
√
x′kxk).

Assumption (iii) guarantees that LR(β) is locally convex around β0 – that condition can

equivalently be written as plimN,T→∞ ‖Mλ0(α · X)Mf0‖2 > 0 for any α ∈ RK \ {0}, which

connects more closely to our discussion in Section 2.2. This is a non-collinearity condition

on the regressors after profiling out both λ0 and f0. Only the true values λ0 and f0 appear

in that non-collinearity condition, and it is therefore much weaker than the correspond-

ing assumptions required for consistency of β̂LS,R0 in Bai (2009) and Moon and Weidner

(2017). Our results from the previous sections show that ‖β̂(0) − β0‖ = OP (cNT ) for both

β̂(0) = β̂ψ and β̂(0) = β̂∗, under appropriate assumptions, where cNT is typically either

cNT = 1/
√

min(N, T ) or slightly slower than this, if ψ = ψNT is chosen appropriately.

The following corollary is an immediate consequence of Theorem 4.

Corollary 1. Let the assumptions of Theorem 4 hold, and assume that cNT = o((NT )−1/6).

For s ∈ {2, 3, 4, . . .} we then have

√
NT

(
β̂(s) − β̂ local

LS,R0

)
= oP (1),

√
NT

(
β̂(s) − β0

)
= OP (1).

The first statement of the corollary shows that if the initial estimators β̂ψ and β̂∗ satisfy

typical convergence rates results derived in the previous sections, then the iterated estimator

β̂(s) is asymptotically equivalent to β̂ local
LS,R0

after s = 2 iterations or more. Remember that

if β̂LS,R0 is consistent, then we have β̂ local
LS,R0

= β̂LS,R0 wpa1, but by showing asymptotic

equivalence with β̂ local
LS,R0

here we avoid imposing conditions that require consistency of β̂LS,R0 .

From the results in Bai (2009) and Moon and Weidner (2017) we also know that β̂ local
LS,R0

is

asymptotically normally distributed, but potentially with a bias in the limiting distribution.

According to the corollary the same is therefore true for β̂(s) for s ≥ 2. Asymptotic bias

corrections could then also be applied to β̂(s), s ≥ 2, to eliminate the bias in the limiting

distribution and allow for inference on β0. See Bai (2009) and Moon and Weidner (2017) for

details.
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5 Implementation and Monte Carlo Simulations

To implement the nuclear norm regularized estimator we need to choose the regularization

parameter ψ, and for the post estimator β̂(s) we need to determine the number of factors

R0. In this section we suggest a data depenence choice of ψ as well as an estimate of R0.

We assume that an upper bound Rmax ≥ R0 is known.

Data Dependent Choice of ψ.

We suggest the following procedure to choose ψ.

Step 1: Calculate the nuclear norm minimizing estimator β̂∗, and the corresponding resid-

uals

Ê∗ = Y − β̂∗ ·X.

Step 2: Choose Rmax, calculate Rmax principal components of Ê∗,{
λ̂max, f̂max

}
∈ argmin

λ∈RN×Rmax , f∈RT×Rmax

∥∥∥Ê∗ − λf ′∥∥∥2

2
,

and use those to eliminate all the factors in Ê∗, the new residuals are

Ẽ∗ = Ê − λ̂maxf̂
′

max.

Step 3: Choose

ψ̂ =
2‖Ẽ∗‖∞√

NT
.

This choice of ψ̂ is motivated by the condition (15) in Lemma 2, which guarantees that ψ

is sufficiently large to obtain estimates Γ̂ψ that are close to Γ0. Notice also that the nuclear

norm minimizing estimator β̂∗ in step 1 does not require any regularization parameter to be

specified.

Estimation of R0.

The post nuclear norm regularized estimator introduced above assumes that the number

of factors R0 is known. In practice R0 needs to be estimated, for example, by applying a

consistent estimation method for the number of the factors in a pure factor model to the

residuals Ê∗, see e.g. Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013).
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For our Monte Carlo simulations below we use an alternative estimation that thresholds

the singular values of Ê∗ using the estimate ψ̂ introduced above. Namely, we estimate R0

by

R̂ =

min(N,T )∑
r=1

1

{
sr

(
Ê∗

)
≥ 2
√
NT ψ̂

}
.

The motivation behind this estimator is that those singular values of Ê∗ that are significantly

larger than
√
NT ψ̂ should correspond to factors, while singular values close to

√
NT ψ̂ and

smaller should originate from idiosyncratic noise. The choice of the factor 2 in the formula

for R̂ is somewhat arbitrary, any alternative factor larger than one would also be plausible

here.

Monte Carlo Results

We generate data from the following linear panel model regression model with two regressor

(including the intercept) and two factors:

Yit = β0,1 + β0,2Xit +
2∑
r=1

λ0,irf0,tr + Eit,

Xit = 1 + Ex,it +
2∑
r=1

(λ0,ir + λx,ir)(f0,tr + f0,t−1,r), (20)

where f0,tr ∼ i.i.d.N (0, 1); λ0,ir, λx,ir ∼ i.i.d.N (1, 1); Ex,it, Eit ∼ i.i.d.N (0, 1); and all

mutually independent. Table 1 reports the bias and standard deviation for the various

estimators for different combinations of N and T .

As shown in Table 1, the nuclear norm regularized estimator β̂ψ and the nuclear norm

minimization estimator β̂∗ have biases due to the regularization which vanish slowly as the

sample size increases. This confirms that those estimator are indeed not
√
NT consistent,

but only have a
√

min(N, T ) convergence rate to β0. The table also shows that the post

nuclear norm regularized estimators β̂(s) quickly reduces the bias, and essentially agrees with

the LS estimator (which is a consistent estimator in this MC design) after two iterations, as

the theory predicts. The columns ATL(1) - ALT(5) in that table contain the results for an

alternative bias corrected estimator that is presented in the appendix. It turns out that the

alternative bias correction method is less effective in reducing the bias, and we therefore do

not discuss it in the main text. Our recommendation in practice for inference on β0 is the

iteration procedure for β̂(s) explained in the previous section.
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(N/T)  POLS  LS  NNmin  NNpen  POST(1)  POST(2)  POST(3)  ALT(1)  ALT(2)  ALT(3)  ALT(4)  ALT(5)

(25/25)

BIAS 0.2379 0.0508 0.1447 0.1712 0.0695 0.0527 0.0510 0.1005 0.0677 0.0520 0.0442 0.0403

STD (0.0241) (0.0613) (0.0259) (0.0237) (0.0479) (0.0598) (0.0612) (0.0287) (0.0341) (0.0387) (0.0418) (0.0438)

(100/25)

BIAS 0.2382 0.0603 0.1349 0.1706 0.0750 0.0614 0.0603 0.0998 0.0684 0.0542 0.0476 0.0446

STD (0.0150) (0.0612) (0.0159) (0.0143) (0.0479) (0.0601) (0.0611) (0.0218) (0.0301) (0.0358) (0.0393) (0.0413)

(100/100)

BIAS 0.2395 0.0000 0.1024 0.1504 0.0209 0.0008 0.0000 0.0656 0.0285 0.0123 0.0053 0.0022

STD (0.0105) (0.0061) (0.0102) (0.0095) (0.0061) (0.0061) (0.0061) (0.0085) (0.0067) (0.0058) (0.0056) (0.0057)

(400/25)

BIAS 0.2388 0.0546 0.1339 0.1695 0.0704 0.0558 0.0547 0.0967 0.0644 0.0499 0.0432 0.0401

STD (0.0111) (0.0589) (0.0139) (0.0117) (0.0456) (0.0579) (0.0588) (0.0190) (0.0274) (0.0332) (0.0365) (0.0384)

(400/100)

BIAS 0.2397 0.0000 0.0941 0.1348 0.0175 0.0006 0.0000 0.0515 0.0195 0.0073 0.0028 0.0010

STD (0.0058) (0.0026) (0.0076) (0.0065) (0.0037) (0.0026) (0.0026) (0.0050) (0.0034) (0.0028) (0.0026) (0.0026)

(400/400)

BIAS 0.2399 0.0000 0.0672 0.1091 0.0114 0.0002 0.0000 0.0326 0.0095 0.0028 0.0008 0.0002

STD (0.0050) (0.0013) (0.0042) (0.0042) (0.0017) (0.0013) (0.0013) (0.0027) (0.0016) (0.0014) (0.0013) (0.0013)

Table 1: Monte Carlo results based on 1000 repetitions for the design specified in display
(20). Reported are the bias and standard deviation for the pooled OLS estimator (POLS),
the least squares estimator with R0 = 2 factors (LS), the nuclear norm minimizing estimator

β̂∗ (NNpen), the nuclear norm penalized estimator with ψ = ψ̂ (NNpen), the post estimator

β̂(s) for s = 1, 2, 3 iterations and using R = R̂ factors (POST(s)), and the alternative bias

correction method (see the appendix) using R = R̂ factors and s = 1, 2, 3, 4, 5 iterations.

6 Extension to Single Index Models

We now consider the following generalization of the penalized LS estimator,

(
β̂ψ, Γ̂ψ

)
∈ argmin

β∈RK ,Γ∈RN×T
Qψ(β,Γ), Qψ(β,Γ) :=

1

NT

N∑
i=1

T∑
t=1

mit (X ′itβ + Γit) +
ψ√
NT
‖Γ‖1 ,

where mit(z) := m(Wit, z) is a known convex function of the single index z ∈ R, which also

depends on the observed variables Wit. The single index X ′itβ+Γit has the same structure as

the conditional mean of the linear model (2), and for Wit = Yit and mit(z) = 1
2
(Yit − z)2 we

obtain the penalized LS estimator that was studied in previous sections. The nuclear norm

penalty term is unchanged.

Let mit(z) = E(mit(z)|X) be the expected objective function, conditional on X = {Xit :

i = 1, . . . , N ; t = 1, . . . , T},20 and denote derivatives of mit(z) and mit(z) with respect to z

by ∂zmit(z), ∂zmit(z), ∂z2mit(z), etc. Let z0
it = X ′itβ0 + Γ0,it be the index evaluated at the

true parameters. Let W denote the domain of Wit. We make the following assumptions on

the objective function.

20Remember that we consider Γ0 as non-random, that is, all expectations are implicitly conditional on Γ0

as well. Also, we condition on all the observed X here, implying that we only consider strictly exogenous
regressors in this section, but in principle the results could be extended to dynamic models.
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Assumption 2. Let Z ⊂ R be such that ∪i,t[z0
it − ε, z0

it + ε] ⊂ Z, for some ε > 0. Assume:

(i) Wit is independently distributed across i and over t, conditional on X.

(ii) The objective function m(w, z) is convex in z, and once continuously differentiable in

z almost everywhere in W ×Z. For any function zit = zit(X) ∈ Z the first derivative

∂zmit(zit) exists almost surely, and satisfies maxi,t,N,T E
{

[∂zmit(zit)]
4
∣∣ X} <∞.

(iii) mit(z) is four times continuously differentiable in Z, with derivatives bounded uniformly

over i, t, N, T , Z. There exists b > 0 such that mini,t,N,T minz∈Z ∂z2mit(z) ≥ b.

(iv) ∂zmit(z
0
it) = 0, for all i, t.

Here, the last assumption crucially connects the distribution of Wit conditional on Xit

with the chosen objective function mit(z). For the LS case we have ∂zmit(z
0
it) = Eit, and

Assumption 2 then becomes the familiar mean independence condition E(Eit|X) = 0. This

condition excludes a predetermined regressor. Some further examples for data generating

processes and corresponding objective functions are

(a) Maximum likelihood: Let Yit conditional on X have probability mass or density func-

tion p(y|z0
it), set Wit = Yit and mit(z) = − log p(Yit|z), and assume that mit(z) is

strictly convex in z and three times continuously differentiable. A concrete example is

a binary choice probit model, where p(y|z) = 1(y = 1)Φ(z) + 1(y = 0)[1− Φ(z)], and

Φ(.) is the cdf of N (0, 1).

(b) Weighted Least Squares: Let outcomes Yit be generated from the linear model (2) with

E(Eit|Xit, Sit) = 0, and let mit(z) = 1
2
Sit(Yit − z)2, and Wit = (Yit, Sit). Here, the

Sit ≥ 0 are observed weights for each observation. A special case is Sit ∈ {0, 1}, where

Sit is an indicator of a missing outcome Yit.

(c) Quantile Regression: Let outcomes Yit be generated from the linear model (2), but

instead of the mean restriction for Eit we impose the quantile restriction E[1(Eit ≤
0)|Xit] = τ , and we let mit(z) = ρτ (Yit−z), and Wit = Yit, where ρτ (u) = u · [τ−1(u <

0)] is the quantile regression objective function, and τ ∈ (0, 1) is a chosen quantile of

interest.

Some additional regularity conditions are needed to guarantee that those examples satisfy

Assumption 2. For many models (e.g. quantile regressions and binary choice likelihood)

we have limz→±∞ ∂z2mit(z) = 0. Then, the lower bound on ∂z2mit(z) in Assumption 2(iii)

will require us to impose that Z is a bounded set, which can be guaranteed by assuming
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that Xit and Γ0,it are uniformly bounded. Apart from that it is straightforward to verify

Assumption 2 under standard regularity conditions for the respective model. Notice also that

Assumption 2(ii) is formulated with the quantile regression case in mind, where ∂zmit(zit) =

τ − 1(Yit − z < 0) is not well-defined at zit = Yit, but that is a probability zero event for

continuously distributed Yit.

In the following theorem we show that β̂ − β0 = OP (ψ1/2) for ψ → 0 with ψ
√
NT →∞

and the regressors have a generalized factor structure. We present in a special case where

there exists a single regressor (i.e., K = 1) and the regressor is strictly exogenous for technical

simplicity.

Theorem 5. Let Assumption 2 be satisfied. Let N, T →∞, ψ → 0, and
√
NTψ →∞. Let

K = 1. Assume that

(i) ‖Γ0‖1 = O(
√
NT ).

(ii) The regressor can be decomposed as X = X(1)+X(2) such that ‖X(1)‖1 = oP (
√
NT ψ−1/2),

and ‖X(2)‖∞ = oP (
√
NT ψ1/2).

(iii) W := 1
NT

∑N
i=1

∑T
t=1(X

(2)
it )2 satisfies W →P W∞ > 0.

Then we have β̂ψ − β0 = OP (ψ1/2).

Condition (i) of the theorem is a restriction on the growth rate of the nuclear norm of Γ0,

which was not required for the results in Section 3, where we assumed only that R0 =

rank(Γ0) is fixed. However, this condition (i) imposes only an upper bound on the growth

of Γ0, it allows that Γ0 contains both strong factors and weak factors.21

Condition (ii) is satisfied if the regressor has a generalized factor structure,

X = λxf
′
x︸︷︷︸

X(1)

+ Ex︸︷︷︸
X(2)

,

where ‖λxf ′x‖1 = OP (
√
NT ) and ‖Ex‖∞ = OP (

√
max(N, T ), and we have ψ → 0 with

min(N, T )ψ →∞.

The proof of Theorem 5 is presented in the appendix, where we also discuss how the

result could in principle be extended to K > 1 regressors, which requires some additional

technical restrictions. Notice also that the convergence rate of ψ1/2 in Theorem 5 is different

from the convergence rate ψ obtained in Section 3, but this likely an artifact of our proof

strategy for Theorem 5. Finally, the analog of the nuclear-norm minimizing estimator β̂∗

21For a discussion of weak factors we refer to Onatski (2012).
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to non-linear models is given by limψ→0 β̂ψ (limit for fixed N, T ), but we do not provide

results for that limiting estimator here. The goal of this section was not to fully discuss the

non-linear case, but to highlight the potential of the nuclear norm penalization approach

beyond the linear model that is main focus of this paper.

7 Conclusions

In this paper we analyze two new estimation methods for interactive fixed effect panel regres-

sions that are based on convex objective functions: (i) nuclear norm penalized estimation,

and (ii) nuclear norm minimizing estimation. The resulting estimators can also be applied

in situations where the LS estimator may not be consistent, in particular when low-rank

regressors are present and the true number of factors is unknown. We provide consistency

and convergence rate results for the new estimators of the regression coefficients, and we

show how to use them as a preliminary estimator to achieve asymptotic equivalence to the

local version of the LS estimator. We have focused on the linear model with homogenous

coefficients, which is a natural starting point to understand the usefulness of nuclear norm

penalization approach for panel regression models, but there are several ongoing extensions,

including developing a unified method to deal with non-linear models, heterogeneous coef-

ficients, treatment effect estimation, nonparametric sieve estimation, and high-dimensional

regressors, see Section 6 above, and also Athey, Bayati, Doudchenko, Imbens, and Khosravi

(2017) and Chernozhukov, Hansen, Liao, and Zhu (2018).
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A Appendix

A.1 An Example of a Non-convex LS Profile Objective Function

As an example for a non-convex LS profile objective function we consider the following linear

model with one regressor and two factors:

Yit = β0Xit +
2∑
r=1

λ0,irf0,tr + Eit,

Xit = 0.04Ex,it + λ0,i1f0,t2 + λx,ifx,t,

where

λ0,i =
(
λ0,i1
λ0,i2

)
∼ iidN

((
0

0

)
,

(
1 0.5

0.5 1

))
, f0,t =

(
f0,t1
f0,t2

)
∼ iidN

((
0

0

)
,

(
1 0.5

0.5 1

))
,

and λx,i ∼ iid 2χ2(1), fx,t ∼ iid 2χ2(1), Ex,it, Eit ∼ i.i.d.N (0, 1), and {λ0,i}, {f0,t}, {λx,i},
{fx,t}, {Ex,it}, {Eit} are all independent of each other. For (N, T ) = (200, 200), we generate

the panel data for (Yit, Xit), and plot the LS objective function (3) in Figure 1, which is

discussed in the main text.

A.2 Alternative Bias Correction

In this section, we discuss an alternative bias reduction method used in the Monte Carlo

simulations in Section 5. The alternative method reduces the bias of the score function of the

regularized least squares objective function Qψ(β). We introduce the procedure in a heuristic

way without presenting a rigorous proof. We have implemented this alternative method in

our Monte Carlo simulations, and while it indeed improves the of the nuclear-norm penalized

estimates (see Table 1), it does not perform better than the iteration method described in

Section 4.

Recall that LR(β,Γ) = 1
2NT
‖Y − β ·X − Γ‖2

2, where Γ = λf ′. Define

Γ̂R(β) := argmin
Γ:rank(Γ)≤R

LR(β,Γ).

We can write

LR(β) = LR(β, Γ̂R(β)) =
1

2

min(N,T )∑
r=R+1

sr

(
Y − β ·X√

NT

)2

.
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Let Γ̂ψ(β) = argminΓQψ(β,Γ), and

R̂(β, ψ) :=

min(N,T )∑
r=1

I{sr(Y − β ·X) ≥
√
NTψ} = rank

(
Γ̂ψ(β)

)
.

Suppose that we choose ψ such that

R̂(β, ψ) = R0 (A.1)

Then, in view of (8) and (10), we write the profile objective function of the regularized least

squares as

Qψ(β) := qψ

(
Y − βX√

NT

)
=

1

2

min(N,T )∑
r=R0+1

sr

(
Y − βX√

NT

)2

+ ψ

R(β,ψ)∑
r=1

sr

(
Y − βX√

NT

)
− 1

2
ψ2R(β, ψ)

= LR0(β) + ψ

R0∑
r=1

sr

(
Y − βX√

NT

)
− 1

2
ψ2R0

= LR0(β) + ψ
∥∥∥Γ̂R0(β)

∥∥∥
1
− 1

2
ψ2R0. (A.2)

This shows that the term
∥∥∥Γ̂R0(β)

∥∥∥
1

is the main source of the regularization bias. We suggest

to approximate
∥∥∥Γ̂R0(β)

∥∥∥
1

as follows,

‖Γ0 − (β − β0) ·X + E‖1 ≈ ‖Γ0‖1 − (β − β0)′BNT , (A.3)

where BNT = (BNT,1, ..., BNT,K)′, with

BNT,k :=
1√
NT

Tr
[
(λ′0λ0)−1/2λ′0Xkf0(f ′0f0)−1/2

]
.

From (A.2) and (A.3) we expect that Qψ(β) + ψ(β − β0)BNT should be a good approxima-

tion to LR0(β). This heuristics suggests that we may reduce the bias of the nuclear norm

regularized estimation by modifying the objective function.

For this, suppose that ψ̂ is a data dependent choice of ψ that satisfies the condition (A.1).

Let R̂ be a consistent estimator of R0. Let β̂
(0)
alt be an preliminary estimator. For example,

β̂(0) = β̂ψ̂ or β̂(0) = β̂∗.
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For s = 0, 1, 2, ..., define

(λ̂(s), f̂ (s)) ∈ argmin
λ∈RN×R̂,f∈RT×R̂

∥∥∥Y − β̂(s)
alt ·X − λf

′
∥∥∥2

2
,

and

B̂
(s)
NT,k :=

1√
NT

Tr
[
(λ̂(s)′λ̂(s))−1/2λ̂(s)′Xkf̂

(s)(f̂ (s)′f̂ (s))−1/2
]
.

We modify the nuclear norm regularized objective function as

Qbc,s+1

ψ̂
(β) := Qψ̂(β) + ψ̂(β − β̂(s)

alt )B̂
(s)
NT

and update the estimator as

β̂
(s+1)
alt := argmin

β
Qbc,s+1

ψ̂
(β).
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B Supplementary Appendix

B.1 Proofs for Section 2.1

For matrix A, let the singular value decomposition of A be given by A = UASAV
′
A, where

SA = diag(s1, . . . , sq), with q = rank(A).

Lemma S.1. For any ψ > 0 we have

min
Γ

(
1

2
‖A− Γ‖2

2 + ψ‖Γ‖1

)
= qψ(A),

argmin
Γ

(
1

2
‖A− Γ‖2

2 + ψ‖Γ‖1

)
= UAdiag((s1 − ψ)+, . . . , (sq − ψ)+)V ′A,

where the minimization is over all matrices Γ of the same size as A and (s)+ = max(0, s).

Proof of Lemma S.1. The dependence of the various quantities on ψ is not made explicit

in this proof. Let Q(A) = minΓ

(
1
2
‖A− Γ‖2

2 + ψ‖Γ‖1

)
. A possible value for Γ is Γ∗ =

UAS
∗V ′A, where S∗ = diag(s∗1, . . . , s

∗
q) and s∗r = max(0, sr − ψ), and therefore we have

Q(A) ≤ 1

2
‖A− Γ∗‖2

2 + ψ‖Γ∗‖1 =
1

2
‖SA − S∗‖2

2 + ψ‖S∗ψ‖1

=

q∑
r=1

[
1

2
(sr − s∗r)

2 + ψs∗r

]
=

q∑
r=1

qψ(sr) = qψ(A).

The nuclear norm satisfies ‖Γ‖1 = max‖B‖∞≤1 Tr(Γ′B). A possible value for B is B∗ =

UAD
∗V ′A, whereD∗ = diag(d∗1, . . . , d

∗
q) and d∗r = min(1, ψ−1sr), which indeed satisfies ‖B∗‖∞ =

‖D∗‖∞ = maxr |d∗r| ≤ 1, and therefore we have

Q(A) ≥ min
Γ

[
1

2
‖A− Γ‖2

2 + ψTr(Γ′B∗)

]
=

1

2
‖A− (A− ψB∗)‖2

2 + ψTr[(A− ψB∗)′B∗]

= ψTr(A′B∗)− ψ2

2
‖B∗‖2

2 = ψTr(S ′AD
∗)− ψ2

2
‖D∗‖2

2

=

q∑
r=1

[
ψ srd

∗
r −

ψ2

2
(d∗r)

2

]
=

q∑
r=1

qψ(sr) = qψ(A),

where in the second step we found and plugged in the minimizing Γ = A−ψB∗. By combing

the above upper and lower bound on Q(A) we obtain Q(A) = qψ(A), which is the first

statement of the lemma. Since argminΓ

(
1
2
‖A− Γ‖2

2 + ψ‖Γ‖1

)
is unique, we deduce that

Γ∗ = UAS
∗V ′A is the minimizing value, which is the second statement in the lemma.

Proof of Lemma 1. The lemma follows from the first statement of Lemma S.1 by replacing
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A and Γ in Lemma S.1 with Y−β·X√
NT

and 1√
NT

Γ, respectively.

B.2 Proofs for Section 2.2

The function qψ(s) that appears in Lemma S.1 was defined in (8). We now define a similar

function gψ : [0,∞)→ [0,∞) by gψ(s) = ψ−1qψ(s) for ψ > 0, and gψ(s) = s for ψ = 0, that

is, we have

gψ(s) :=

{
1

2ψ
s2, for s < ψ,

s− ψ
2
, for s ≥ ψ,

(S.1)

and for matrices A we define gψ(A) :=
∑rank(A)

r=1 gψ(sr(A)). Using Lemma S.1 and the defini-

tion of the nuclear norm we can write

gψ(A) =

{
minΓ

(
1

2ψ
‖A− Γ‖2

2 + ‖Γ‖1

)
, for ψ > 0,

‖A‖1, for ψ = 0.
(S.2)

As already discussed in the main text, it is natural to rescale the profiled nuclear norm

penalized objective function by ψ−1, because it then has a non-trivial limit as ψ → 0.

Using gψ instead qψ therefore helps to clarify the scaling with ψ in various expressions. The

following lemma summarizes some properties of the function gψ(A), which are useful for the

subsequent proofs.

Lemma S.2. Let A and B be N × T matrices, λ be an N ×R1 matrix, and f be a T ×R2

matrix. We then have

(i) gψ(A) ≥ ‖A‖1 − ψ
2
rank(A).

(ii) gψ(A+B) ≤ gψ(A) + ‖B‖1, and gψ(A+B) ≥ gψ(A)− ‖B‖1.

(iii) gψ(A) ≥ gψ(MλAMf ) + gψ(PλAPf ).

Proof of Lemma S.2. # Part (i): From the definition of gψ(s) in (S.1) one finds gψ(s) ≥
s− ψ

2
for all s ≥ 0. We thus obtain

gψ(A) =

rank(A)∑
r=1

gψ(sr(A)) ≥
rank(A)∑
r=1

[
sr(A)− ψ

2

]
= ‖A‖1 −

ψ

2
rank(A).

# Part (ii): For ψ = 0 this is just the triangle inequality for the nuclear norm. For ψ > 0
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we use (S.2) to write

gψ(A+B) = min
Γ

(
1

2ψ
‖A+B − Γ‖2

2 + ‖Γ‖1

)
= min

Γ

(
1

2ψ
‖A− Γ‖2

2 + ‖Γ +B‖1

)
≤ min

Γ

(
1

2ψ
‖A− Γ‖2

2 + ‖Γ‖1

)
+ ‖B‖1 = gψ(A) + ‖B‖1.

where in the second step we reparameterized Γ 7→ Γ + B in the minimization problem, in

the third step we used the triangle inequality for the nuclear norm, and in the final step

we employed again (S.2). We have thus shown the first statement of this part. The second

statement is obtained from the first statement by replacing B 7→ −B and A 7→ A+B.

# Part (iii): We first show the result for ψ = 0. Let MλAMf = U1S1V
′

1 and PλAPf =

U2S2V
′

2 be the singular value decompositions of those N × T matrices. We then have

‖MλAMf‖1 = Tr[V1(MλAMf )U
′
1] and ‖PλAPf‖1 = Tr[V2(PλAPf )U

′
2]. Furthermore,

we have g0(A) = ‖A‖1 = max‖C‖≤1 Tr(C ′A). By choosing C∗ = U1V
′

1 + U2V
′

2 we obtain

‖A‖1 ≥ Tr(C∗′A) = Tr[V1(MλAMf )U
′
1] + Tr[V2(PλAPf )U

′
2] = ‖MλAMf‖1 + ‖PλAPf‖1 ,

(S.3)

which is the statement of part (iii) of the lemma for ψ = 0. For ψ > 0 we find

gψ(A) = min
Γ

(
1

2ψ
‖A− Γ‖2

2 + ‖Γ‖1

)
≥ min

Γ

(
1

2ψ
‖A− Γ‖2

2 + ‖MλΓMf‖1 + ‖PλΓPf‖1

)
= min

Γ

[
1

2ψ

(
‖Mλ(A− Γ)Mf‖2

2 + ‖Pλ(A− Γ)Pf‖2
2 + ‖Pλ(A− Γ)Mf‖2

2 + ‖Mλ(A− Γ)Pf‖2
2

)
+ ‖MλΓMf‖1 + ‖PλΓPf‖1

]
= min

Γ

[
1

2ψ

(
‖Mλ(A− Γ)Mf‖2

2 + ‖Pλ(A− Γ)Pf‖2
2

)
+ ‖MλΓMf‖1 + ‖PλΓPf‖1

]
≥ min

Γ

(
1

2ψ
‖Mλ(A− Γ)Mf‖2

2 + ‖MλΓMf‖1

)
+ min

Γ

(
1

2ψ
‖Pλ(A− Γ)Pf‖2

2 + ‖PλΓPf‖1

)
≥ min

Γ

(
1

2ψ
‖MλAMf − Γ‖2

2 + ‖Γ‖1

)
+ min

Γ

(
1

2ψ
‖PλAPf − Γ‖2

2 + ‖Γ‖1

)
= gψ(MλAMf ) + gψ(PλAPf ),

where in the first step we used (S.2); in the second step we used (S.3) with A replaced by Γ;

in the third step we decomposed ‖A− Γ‖2
2 into four parts; in the fourth step we used that

the minimization over Γ implies that ‖Pλ(A− Γ)Mf‖2
2 = 0 and ‖Mλ(A− Γ)Pf‖2

2 = 0 at

the optimum, because the components PλΓMf and MλΓPf of Γ appear nowhere else in the
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objective function, so that choosing PλΓMf = PλAMf and MλΓPf = MλAPf is optimal;

the fifth step is obvious (it is actually an equality, which is less obvious, but not required for

our argument); in the sixth step we replaced MλΓMf and PλΓPf by an unrestricted Γ in

the minimization problems, which can only make the minimizing values smaller (again, this

is actually an equality, but ≤ is sufficient to show here); and the final step again employs

(S.2). We have thus shown the desired result.

Before presenting the next lemma it is useful to introduce some further notation. For

β ∈ RK let ∆β := β − β0. Let λX be an N × Rc matrix such that the column span of λX

equals the columns span of the N × TK matrix [X1, . . . , XK ]. Analogously, let fX be an

T × Rr matrix such that the column span of fX equals the columns span of the T × NK
matrix [X ′1, . . . , X

′
K ].

Lemma S.3. Let model (1) hold. Then, the penalized profiled objective function Qψ(β)

defined in (5) satisfied, for all β ∈ RK, and all ψ > 0,

Qψ(β)−Qψ(β0)

ψ
≥ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
−
∥∥∥∥Pλ0(∆β ·X)Pf0√

NT

∥∥∥∥
1

− ψ

2
rank(Γ0)

−
∥∥∥∥P[λ0,λX ] EP[f0,fX ]√

NT

∥∥∥∥
1

−
∥∥∥∥E −M[λ0,λX ]EM[f0,fX ]√

NT

∥∥∥∥
1

.

For ψ = 0 the same bound holds if one replaces ψ−1 [Qψ(β)−Qψ(β0)] by its ψ → 0 limit∥∥(Y − β ·X)/
√
NT

∥∥
1
−
∥∥(Y − β0 ·X)/

√
NT

∥∥
1
.

Proof of Lemma S.3. We have

gψ

(
Y − β ·X√

NT

)
= gψ

(
Γ0 −∆β ·X + E√

NT

)
≥ gψ

(
P[λ0,λX ](Γ0 −∆β ·X + E)P[f0,fX ]√

NT

)
+ gψ

(
M[λ0,λX ] EM[f0,fX ]√

NT

)
= gψ

(
Γ0 −∆β ·X√

NT
+

P[λ0,λX ]EP[f0,fX ]√
NT

)
+ gψ

(
M[λ0,λX ] EM[f0,fX ]√

NT

)
≥ gψ

(
Γ0 −∆β ·X√

NT

)
−
∥∥∥∥P[λ0,λX ]EP[f0,fX ]√

NT

∥∥∥∥
1

+ gψ

(
M[λ0,λX ] EM[f0,fX ]√

NT

)
.

Here, we first plugged in the model for Y , then used part (iii) of Lemma S.2 with λ = [λ0, λX ]

and f = [f0, fX ], and in the final step used part (ii) of Lemma S.2. In the same way we
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obtain

gψ

(
Γ0 −∆β ·X√

NT

)
≥ gψ

(
Pλ0(Γ0 −∆β ·X)Pf0√

NT

)
+ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
= gψ

(
Γ0√
NT
− Pλ0(∆β ·X)Pf0√

NT

)
+ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
≥ gψ

(
Γ0√
NT

)
−
∥∥∥∥Pλ0(∆β ·X)Pf0√

NT

∥∥∥∥
1

+ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
≥
∥∥∥∥ Γ0√

NT

∥∥∥∥
1

− ψ

2
rank(Γ0)−

∥∥∥∥Pλ0(∆β ·X)Pf0√
NT

∥∥∥∥
1

+ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
,

where in the last step we also used part (i) of Lemma S.2. Furthermore, we find

gψ

(
Y − β0 ·X√

NT

)
= gψ

(
E + Γ0√
NT

)
= gψ

(
M[λ0,λX ]EM[f0,fX ] +

(
E −M[λ0,λX ]EM[f0,fX ]

)
+ Γ0√

NT

)

≤ gψ

(
M[λ0,λX ]EM[f0,fX ]√

NT

)
+

∥∥∥∥E −M[λ0,λX ]EM[f0,fX ]√
NT

∥∥∥∥
1

+

∥∥∥∥ Γ0√
NT

∥∥∥∥
1

,

where we used part (ii) of Lemma S.2 and the triangle inequality for the nuclear norm.

Combining the inequalities in the last three displays gives

gψ

(
Y − β ·X√

NT

)
− gψ

(
Y − β0 ·X√

NT

)
≥ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
−
∥∥∥∥Pλ0(∆β ·X)Pf0√

NT

∥∥∥∥
1

− ψ

2
rank(Γ0)

−
∥∥∥∥P[λ0,λX ]EP[f0,fX ]√

NT

∥∥∥∥
1

−
∥∥∥∥E −M[λ0,λX ]EM[f0,fX ]√

NT

∥∥∥∥
1

.

The derivation so far was valid for all ψ ≥ 0. For ψ = 0 the left hand side of the last display

simply is
∥∥(Y − β ·X)/

√
NT

∥∥
1
−
∥∥(Y − β0 ·X)/

√
NT

∥∥
1
. For ψ > 0 we have, by (S.2),

Qψ(β)−Qψ(β0)

ψ
= gψ

(
Y − β ·X√

NT

)
− gψ

(
Y − β0 ·X√

NT

)
,

so that we have shown the statement of the lemma.

Lemma S.4. Let model (2) hold, and let E(Eit | X) = 0, and E (E2
it | X) < ∞, for all i, t.

Then we have, for all ψ > 0,

gψ

(
Mλ0(∆β̄ψ ·X)Mf0√

NT

)
−
∥∥∥∥Pλ0(∆β̄ψ ·X)Pf0√

NT

∥∥∥∥
1

≤ ψ

2
rank(Γ0).

Proof of Lemma S.4. Using the model and the assumptions on Eit in the proposition we
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find

E
[
‖Y − β ·X − Γ‖2

2

∣∣∣X] =
N∑
i=1

T∑
t=1

E
[

(Γ0,it − Γit −X ′it ∆β + Eit)
2
∣∣∣X]

=
N∑
i=1

T∑
t=1

(Γ0,it − Γit −X ′it ∆β)
2

+
N∑
i=1

T∑
t=1

E
(
E2
it

∣∣X)
= ‖Γ0 − Γ−∆β ·X‖2

2 + E
(
‖E‖2

2

∣∣X) ,
where the expectation is also implicitly conditional on Γ0, because Γ0 is treated as non-

random throughout the whole paper. Because E
(
‖E‖2

2

∣∣X) is just a constant that does not

depend on the parameters β and Γ, we can thus rewrite the definition of β̄ψ in (12) as

β̄ψ = argmin
β

Qψ(β), Qψ(β) := min
Γ

{
1

2NT
‖Γ0 − Γ−∆β ·X‖2

2 +
ψ√
NT
‖Γ‖1

}
.

We can obtain Qψ(β) from the profiled objective function Qψ(β) that was defined in (5) by

simply setting E = 0 in the model (2). The bound on ψ−1 [Qψ(β)−Qψ(β0)] in Lemma S.3

is therefore applicable to Qψ(β) if we just set E = 0 in that lemma. We thus have, for all

β ∈ RK ,

Qψ(β)−Qψ(β0)

ψ
≥ gψ

(
Mλ0(∆β ·X)Mf0√

NT

)
−
∥∥∥∥Pλ0(∆β ·X)Pf0√

NT

∥∥∥∥
1

− ψ

2
rank(Γ0).

We have Qψ(β̄ψ) − Qψ(β0) ≤ 0, because β̄ψ minimizes Qψ(β), and combining this with the

result in the last display gives the statement of the lemma.

Proof of Proposition 1. Let

c = min
{α∈RK : ‖α‖=1}

C(α), C(α) =
‖Mλ0(α ·X)Mf0‖1 − ‖Pλ0(α ·X)Pf0‖1√

NT
.

Using the absolute homogeneity of the nuclear norm this definition implies that for any

α ∈ RK we have

c ‖α‖ ≤
∥∥∥∥Mλ0(α ·X)Mf0√

NT

∥∥∥∥
1

−
∥∥∥∥Pλ0(α ·X)Pf0√

NT

∥∥∥∥
1

. (S.4)

Since the ball
{
α ∈ RK : ‖α‖ = 1

}
is a compact set, and C(α) is a continuous function there

exists a value α∗ ∈
{
α ∈ RK : ‖α‖ = 1

}
where the minimum is attained, that is, c = C(α∗).

By the assumption on the regressors in Proposition 1 we thus have c = C(α∗) > 0.
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Next, applying part (i) of Lemma S.2 we obtain

gψ

(
Mλ0(∆β̄ψ ·X)Mf0√

NT

)
≥
∥∥∥∥Mλ0(∆β̄ψ ·X)Mf0√

NT

∥∥∥∥
1

− ψ

2
rank

[
Mλ0(∆β̄ψ ·X)Mf0

]
, (S.5)

and also using Lemma S.4 we thus find that∥∥∥∥Mλ0(∆β̄ψ ·X)Mf0√
NT

∥∥∥∥
1

−
∥∥∥∥Pλ0(∆β̄ψ ·X)Pf0√

NT

∥∥∥∥
1

≤ ψ

2

{
rank(Γ0) + rank

[
Mλ0(∆β̄ψ ·X)Mf0

]}
≤ ψ

2

{
rank(Γ0) + max

α∈RK
rank [Mλ0(α ·X)Mf0 ]

}
.

From this and (S.4) with α = ∆β̄ψ we obtain for any ψ > 0 that22

∥∥β̄ψ − β0

∥∥ ≤ ψ

2c

{
rank(Γ0) + max

α∈RK
rank [Mλ0(α ·X)Mf0 ]

}
, (S.6)

and therefore
∥∥β̄ψ − β0

∥∥ = O(ψ), as ψ → 0.

B.3 Proofs for Section 3.1

Lemma S.5. Let Rc := rank([X1, . . . , XK ]) and Rr := rank([X ′1, . . . , X
′
K ]). Assume that

C := min
{α∈RK : ‖α‖=1}

∥∥∥∥Mλ0(α ·X)Mf0√
NT

∥∥∥∥
1

−
∥∥∥∥Pλ0(α ·X)Pf0√

NT

∥∥∥∥
1

satisfies C > 0. Then we have, for all ψ > 0,∥∥∥β̂ψ − β0

∥∥∥ ≤ 1

C

[(
ψ

2
+
‖E‖∞√
NT

)
[R0 + min(Rc, Rr)] +

‖E‖∞√
NT

(2R0 +Rc +Rr)

]
,

and ∥∥∥β̂∗ − β0

∥∥∥ ≤ 1

C

‖E‖∞√
NT

[3R0 +Rc +Rr + min(Rc, Rr)] .

Proof of Lemma S.5. By definition we have Qψ(β̂ψ)−Qψ(β0) ≤ 0. Combining this with

22The bound (S.6) is sufficient for our purposes since we ultimately consider the limit ψ → 0 here, but
for a fixed value of ψ (and N,T ) this bound is potentially very crude if high-rank regressors Xk are present.
From Lemma S.4 one could then obtain a sharper bound on β̄ψ − β0 by not using part (i) of Lemma S.2 to

simplify gψ

[(
Mλ0

(∆β̄ψ ·X)Mf0

)
/
√
NT

]
.
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Lemma S.3 and equation (S.5), and writing rank(Γ0) = R0, we obtain

0 ≥

∥∥∥∥∥Mλ0(∆β̂ψ ·X)Mf0√
NT

∥∥∥∥∥
1

−

∥∥∥∥∥Pλ0(∆β̂ψ ·X)Pf0√
NT

∥∥∥∥∥
1

− ψ

2

{
R0 + max

α∈RK
rank [Mλ0(α ·X)Mf0 ]

}
−
∥∥∥∥P[λ0,λX ] EP[f0,fX ]√

NT

∥∥∥∥
1

−
∥∥∥∥E −M[λ0,λX ]EM[f0,fX ]√

NT

∥∥∥∥
1

.

The definition of c in the theorem together with the absolute homogeneity of the nuclear

norm implies

c
∥∥∥∆β̂ψ

∥∥∥ ≤ ∥∥∥∥∥Mλ0(∆β̂ψ ·X)Mf0√
NT

∥∥∥∥∥
1

−

∥∥∥∥∥Pλ0(∆β̂ψ ·X)Pf0√
NT

∥∥∥∥∥
1

.

We have

max
α∈RK

rank [Mλ0(α ·X)Mf0 ] ≤ max
α∈RK

rank(α ·X) ≤ min(Rc, Rr),

because we have α · X = [X1, . . . , XK ](α ⊗ IT ), and therefore rank(α · X) ≤ Rc, and also

(α ·X)′ = [X ′1, . . . , X
′
K ](α⊗ IN), and therefore rank(α ·X) ≤ Rr.

We also have∥∥∥∥P[λ0,λX ] EP[f0,fX ]√
NT

∥∥∥∥
1

≤
∥∥∥∥P[λ0,λX ] EP[f0,fX ]√

NT

∥∥∥∥
∞

rank
(
P[λ0,λX ] EP[f0,fX ]

)
≤ ‖E‖∞√

NT
min

{
rank

(
P[λ0,λX ]

)
, rank

(
P[f0,fX ]

)}
=
‖E‖∞√
NT

min {R0 +Rc, R0 +Rr} =
‖E‖∞√
NT

[R0 + min(Rc, Rr)] ,

and similarly∥∥∥∥E −M[λ0,λX ]EM[f0,fX ]√
NT

∥∥∥∥
1

=

∥∥∥∥P[λ0,λX ] E√
NT

+
M[λ0,λX ] EP[f0,fX ]√

NT

∥∥∥∥
1

≤
∥∥∥∥P[λ0,λX ] E√

NT

∥∥∥∥
1

+

∥∥∥∥M[λ0,λX ] EP[f0,fX ]√
NT

∥∥∥∥
1

≤ ‖E‖∞√
NT

rank
(
P[λ0,λX ]

)
+
‖E‖∞√
NT

rank
(
P[f0,fX ]

)
=
‖E‖∞√
NT

(2R0 +Rc +Rr) .
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Combining the above inequalities gives the finite sample bound in the theorem,

c
∥∥∥β̂ψ − β0

∥∥∥ ≤ (ψ
2

+
‖E‖∞√
NT

)
[R0 + min(Rc, Rr)] +

‖E‖∞√
NT

(2R0 +Rc +Rr) ,

and the same bound holds for β̂∗ if we set ψ = 0, because all bounds above, including

Lemma S.3 are applicable for ψ = 0 as well. Finally, the asymptotic statements in the

theorem are immediate corollaries of the finite sample bounds.

Proof of Theorem 1. The theorem follows immediately from Lemma S.5, because our

assumptions guarantee that C ≥ c > 0 (and therefore 1/C = O(1)), R0 = OP (1), Rc =

OP (1), Rr = OP (1), and

‖E‖∞√
NT

= OP

(
1√

min(N, T )

)
.

B.4 Proofs for Section 3.2.1

Lemma S.6. Suppose that A and B are two matrices with ranks of A and B are rank(A)

and rank(B), respectively.

(i) ‖A‖∞ ≤ ‖A‖2 ≤ ‖A‖1 ≤
√

rank(A)‖A‖2 ≤ rank(A)‖A‖∞.

(ii) ‖AB‖∞ ≤ ‖A‖∞‖B‖∞.

(iii) ‖AB‖2 ≤ ‖A‖∞‖B‖2 ≤ ‖A‖2‖B‖2.

(iv) If AB′ = 0 and A′B = 0, then ‖A+B‖∞ = max(‖A‖∞, ‖B‖∞).

(v) If A′B = 0 (or equivalently B′A = 0), then ‖A+B‖2
∞ ≤ ‖A‖2

∞ + ‖B‖2
∞.

Recall that the rank of Γ0 = λ0f
′
0 is R0, which is fixed. Throughout the rest of the

appendix, we use the following singular value decomposition of Γ0,

Γ0 = USV ′, (S.7)

where U ∈ RN×R0 with U ′U = IR0 , V ∈ RT×R0 with V ′V = IR0 , S is the R0 × R0 diagonal

matrix of singular values of Γ0.

Suppose that f0 is normalized as 1
T
f ′0f0 = IR0 . Then, we have

f0 =
√
TV λ0 =

US√
T
.
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Some further notation:

L(β,Γ) =
1

2NT
‖Y − β ·X − Γ‖2

2, Qψ(β,Γ) =
1

2NT
‖Y − β ·X − Γ‖2

2 +
ψ√
NT
‖Γ‖1.

Let

Qψ(Γ) := inf
β
Qψ(β,Γ), L(Γ) := inf

β
L(β,Γ).

These are the profile objective functions of Qψ(β,Γ) and L(β,Γ), respectively, which con-

centrate out parameter the β. We also use the notation Θ := Γ− Γ0 and θ := vec(Θ).

Proof of Lemma 2.

# Step 1: Use (15) to show Θ̂ψ ∈ C
By definition, we have

0 ≥ Qψ(Γ0 + Θ̂ψ)−Qψ(Γ0)

= L(Γ0 + Θ̂ψ)− L(Γ0) +
ψ√
NT

(
‖Γ0 + Θ̂ψ‖1 − ‖Γ0‖1

)
,

where Θ̂ψ := Γ̂ψ−Γ0. Let θ̂ψ := vec(Θ̂ψ), Θ̂ψ,1 := MU0Θ̂ψMV0 and Θ̂ψ,2 := Θ̂ψ−MU0Θ̂ψMV0 .

Then

L(Γ0 + Θ̂ψ)− L(Γ0) =
1

2NT
θ̂′ψMxθ̂ψ −

1

NT
e′Mxθ̂ψ

≥ − 1

NT
e′Mxθ̂ψ

= − 1

NT
Tr(Θ̂′ψ mat(Mxe))

≥ −‖Θ̂ψ‖1√
NT

‖mat(Mxe)‖∞√
NT

≥ −ψ
2

‖Θ̂ψ‖1√
NT

≥ −ψ
2

‖Θ̂ψ,1‖1√
NT

− ψ

2

‖Θ̂ψ,2‖1√
NT

.

Here the first inequality holds since θ̂′ψMxθ̂ψ ≥ 0, the second inequality holds by the Hölder

inequality, the third inequality holds by (15), and the last inequality holds by the triangle
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inequality. We furthermore have

ψ√
NT

(
‖Γ0 + Θ̂ψ‖1 − ‖Γ0‖1

)
=

ψ√
NT

(
‖Γ0 + Θ̂ψ,1 + Θ̂ψ,2‖1 − ‖Γ0‖1

)
≥ ψ√

NT

(
‖Γ0 + Θ̂ψ,1‖1 − ‖Γ0‖1

)
− ψ√

NT
‖Θ̂ψ,2‖1

=
ψ√
NT
‖Θ̂ψ,1‖1 −

ψ√
NT
‖Θ̂ψ,2‖1.

Therefore,

0 ≥ L(Γ0 + Θ̂ψ)− L(Γ0) +
ψ√
NT

(
‖Γ0 + Θ̂ψ‖1 − ‖Γ0‖1

)
≥ −ψ

2

‖Θ̂ψ,1‖1√
NT

− ψ

2

‖Θ̂ψ,2‖1√
NT

+ ψ
‖Θ̂ψ,1‖1√
NT

− ψ‖Θ̂ψ,2‖1√
NT

=
ψ

2

1√
NT

(
‖Θ̂ψ,1‖1 − 3‖Θ̂ψ,2‖1

)
.

Thus, we have

Θ̂ψ ∈ C :=
{
B ∈ RN×T | ‖MUBMV ‖1 ≤ 3‖B −MUBMV ‖1

}
.

# Step 2: Also use Assumption 1 to show the final result: Using Assumption 1 and

the same derivation as above, we find

Qψ(Γ0 + Θ̂ψ)−Qψ(Γ0) =
1

2NT
θ̂′ψMxθ̂ψ −

1

NT
e′Mxθ̂ψ +

ψ√
NT

(
‖Γ0 + Θ̂ψ‖1 − ‖Γ0‖1

)
≥ µ

2NT
‖Θ̂ψ‖2

2 +
ψ

2

1√
NT

(
‖Θ̂ψ,1‖1 − 3‖Θ̂ψ,2‖1

)
≥ µ

2NT
‖Θ̂ψ‖2

2 −
3ψ

2

1√
NT
‖Θ̂ψ,2‖1.

Because 0 ≥ Qψ(Γ0 + Θ̂ψ)−Qψ(Γ0) we thus have

µ

2NT
‖Θ̂ψ‖2

2 −
3ψ

2

1√
NT
‖Θ̂ψ,2‖1 ≤ 0.

Since the rank of Θ̂ψ,2 is at most 2R0 (e.g., see Recht, Fazel, and Parrilo (2010)), we have

‖Θ̂ψ,2‖1 ≤
√

2R0‖Θ̂ψ,2‖2
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and we also have

‖Θ̂ψ,2‖2 ≤ ‖Θ̂ψ‖2.

Therefore,

1

NT
‖Θ̂ψ‖2

2 −
3ψ
√

2R0

µ

1√
NT
‖Θ̂ψ‖2 ≤ 0,

and

‖Θ̂ψ‖2√
NT

≤ 3
√

2R0 ψ

µ
.

Proof of Theorem 2.

Part (i). Part (i) follows by Lemma 2 and the condition on ψ in Theorem 2.

Part (ii). Let β̂(Γ) = (x′x)−1x′(y − γ). Then, by definition we have

β̂ψ − β0 := β̂(Γ̂ψ)− β0 =

(
1

NT
x′x

)−1(
1

NT
x′e− 1

NT
x′(γ̂ψ − γ0)

)
.

Under the assumption of the theorem we have
(

1
NT
x′x
)−1

= OP (1) and 1
NT
e′x = OP ( 1√

NT
).

Also, by Part (a) we have∥∥∥∥ 1

NT
x′(γ̂ψ − γ0)

∥∥∥∥
2

≤ 1√
NT
‖X‖2

1√
NT
‖Γ̂ψ − Γ0‖2

= OP (1)ψ.

Combining these, we can deduce the required result for Part (b).

Proof of (16).

Since Mx is positive semi-definite, |e′Mxγ̂ψ| ≤ ‖Γ̂ψ‖1‖mat(Mxe)‖∞ by Hölder inequality,
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and Γ0 = 0, we have

0 ≥ Q(Γ̂ψ)−Q(Γ0)

=
1

2NT
(γ̂ψ − γ0)′Mx(γ̂ψ − γ0)− 1

NT
e′Mx(γ̂ψ − γ0) +

ψ√
NT
‖Γ̂ψ − Γ0‖1

≥ − 1

NT
e′Mx(γ̂ψ − γ0) +

ψ√
NT
‖Γ̂ψ − Γ0‖1

≥ − 1√
NT
‖Γ̂ψ − Γ0‖1

1√
NT
‖mat(Mxe)‖∞ +

ψ√
NT
‖Γ̂ψ − Γ0‖1

=

(
ψ − ‖mat(Mxe)‖∞√

NT

)
‖Γ̂ψ − Γ0‖1√

NT
.

The required result follows since ψ − ‖mat(Mxe)‖∞ > 0.

B.5 Sufficient Conditions for Restricted Strong Convexity

In this section we discuss Assumption 1 in more detail. Define the distance H(A,C) between

a matrix A ∈ RN×T and the cone C by

H(A,C) :=

[
min
B∈C

Tr(A−B)′(A−B)

]1/2

.

The following lemma provides an alternative formulation for our restricted strong convexity

assumption.

Lemma S.7. Let there exists a positive constant µ > 0 such that for any α ∈ RK with

α′
(
x′x
NT

)
α = 1, the regressors X1, ..., XK satisfy

H
(
α · X√

NT
,C
)2

≥ µ > 0, wpa1.

Then Assumption 1 holds.

Proof of Lemma S.7. Recall the definition x = [x1, ..., xK ], (NT × K), where xk =

vec(Xk). Firstly, if θ = 0, then the required result holds for any constant µ > 0. Secondly, if

θ′x = 0, then the required result holds for µ = 1 because (θ′θ − θ′x(x′x)−1x′θ) = θ′θ. Thus,

in the following we only need to consider the case θ 6= 0 and θ′x 6= 0. Also let x 6= 0.

47



Define x̃θ = Pxθ
‖Pxθ‖ , and X̃θ := mat(x̃θ). Then, for any Θ ∈ C and Θ 6= 0, we have

1

2NT

(
θ′θ − θ′x(x′x)−1x′θ

)
=

1

2NT
(θ′θ − θ′x̃θx̃′θθ) (by the definition of x̃θ)

=
1

2NT
‖Θ‖2

2

(
1− θ′x̃θx̃

′
θθ

θ′θ

)
(since θ 6= 0)

=
1

2NT
‖Θ‖2

2

(
1− x̃′θ

θθ′

θ′θ
x̃θ

)
=

1

2NT
‖Θ‖2

2

(
x̃′θx̃θ − x̃′θ

θθ′

θ′θ
x̃θ

)
=

1

2NT
‖Θ‖2

2

(
‖x̃θ −Pθx̃θ‖2

2

)
≥ 1

2NT
‖Θ‖2

2

(
min
A∈C
‖x̃θ − vec(A)‖2

)
=

1

2NT
‖Θ‖2

2

(
H(X̃θ,C)2

)
, (S.8)

where the inequality holds because mat(Pθx̃θ) ∈ C since Θ ∈ C and C is a cone. Notice that

x̃θ =
Pxθ

‖Pxθ‖2

=
x√
NT

α∗,

where α∗ =

(
x′x
NT

)−1
x′√
NT

θ(
θ′ x√

NT
( x′xNT )

−1 x′√
NT

θ
)1/2 and α′∗

(
x′x
NT

)
α∗ = 1. This implies

X̃θ = α∗ ·
X√
NT

with α′∗α∗ = 1. Therefore, we have

(S.8) ≥ 1

2NT
‖Θ‖2

2

(
min

α′( x′xNT )α=1

H
(
α · X√

NT
,C
)2
)
.

Then, the required result of the lemma follows by the assumptions in the lemma.

Lemma S.8. Consider K = 1. Let s1 ≥ s2 ≥ s3 ≥ . . . ≥ smin(N,T ) ≥ 0 be the singular values

of the N × T matrix Mλ0X1Mf0. Assume that there exists a sequence qNT ≥ 2 such that

(i) 1√
NT
‖X1‖2 = OP (1).

(ii) 1
NT

∑min(N,T )
r=qNT

s2
r ≥ c > 0 wpa1.

(iii) 1√
NT

∑qNT−2
r=1 (sr − sqNT )→P ∞.
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Then Assumption 1 is satisfied with µ = c.

This lemma could be generalized to K > 1. We would then need to impose the conditions

for X1 in the lemma for all linear combination α ·X, in an appropriate uniform sense over

all α with ‖α‖ = 1.

Proof of Lemma S.8. For given N × T matrix X, and N × R0 matrix λ0, and T × R0

matrix f0, we want to find a lower bound on

νNT := NT H
(

X1√
NT

,C
)2

= NT min
Θ∈C

∥∥∥X1/
√
NT −Θ

∥∥∥2

2

= min
Θ∈RN×T

‖X1 −Θ‖2
2 s.t. ‖Mλ0ΘMf0‖1 ≤ 3 ‖Θ−Mλ0ΘMf0‖1 .

By definition, we have

‖X1 −Θ‖2
2 = ‖Mλ0X1Mf0 −Mλ0ΘMf0‖

2
2 + ‖(X1 −Mλ0X1Mf0)− (Θ−Mλ0ΘMf0)‖

2
2 .

Also, rank(Θ−Mλ0ΘMf0) ≤ 2R0 (e.g., see Lemma 3.4 of Recht, Fazel, and Parrilo (2010)),

and therefore ‖Θ−Mλ0ΘMf0‖1 ≤
√

2R0 ‖Θ−Mλ0ΘMf0‖2. Using this we find

νNT ≥ min
Θ∈RN×T

{
‖Mλ0X1Mf0 −Mλ0ΘMf0‖

2
2 + ‖(X1 −Mλ0X1Mf0)− (Θ−Mλ0ΘMf0)‖

2
2

}
s.t. ‖Mλ0ΘMf0‖1 ≤ 3

√
2R0 ‖Θ−Mλ0ΘMf0‖2 .

Here, we have weakened the constraint (allowing more values for Θ), and the minimizing

value therefore weakly decreases. It is easy to see that for ω ≥ 0 we have

(
‖X1 −Mλ0X1Mf0‖2 − ω

)2
= min

Θ∈RN×T
‖(X1 −Mλ0X1Mf0)− (Θ−Mλ0ΘMf0)‖

2
2

s.t. ‖Θ−Mλ0ΘMf0‖2 = ω,

because the optimal Θ−Mλ0ΘMf0 here equals X1−Mλ0X1Mf0 rescaled by a non-negative

number. We therefore have

νNT ≥ min
ω≥0

min
Θ∈RN×T

(
‖Mλ0X1Mf0 −Mλ0ΘMf0‖2

)2
+
(
‖X1 −Mλ0X1Mf0‖2 − ω

)2

s.t. ‖Mλ0ΘMf0‖1 ≤ 3
√

2R0 ω.

Let

Mλ0X1Mf0 =

min(N,T )−R0∑
r=1

sr vrw
′
r,
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be the singular value decomposition of Mλ0X1Mf0 with singular values sr ≥ 0 and normalized

singular vectors vr ∈ RN and wr ∈ RT . The optimal Mλ0ΘMf0 in the last optimization

problem has the form
min(N,T )−R0∑

r=1

max(0, sr − ξ) vrw′r,

for some ξ ≥ 0 (see Lemma S.1). Here, ξ = 0 occurs if the constraint is not binding, that is,

if ‖Mλ0X1Mf0‖1 ≤ 3
√

2R0 ω. We therefore have

νNT ≥ min
ω≥0, ξ≥0

min(N,T )−R0∑
r=1

(sr −max(0, sr − ξ))2 +
(
‖X1 −Mλ0X1Mf0‖2 − ω

)2

s.t.

min(N,T )−R0∑
r=1

max(0, sr − ξ) ≤ 3
√

2R0 ω.

Here, the optimal ω equals max
{
‖X1 −Mλ0X1Mf0)‖2 ,

1
3
√

2R0

∑min(N,T )−R0

r=1 max(0, sr − ξ)
}

,

and we thus have

νNT ≥min
ξ≥0

min(N,T )−R0∑
r=1

[
min(s2

r, ξ
2)

+

max

0,
1

3
√

2R0

min(N,T )−R0∑
r=1

max(0, sr − ξ)

− ‖X1 −Mλ0X1Mf0‖2


2 ]

.

Let ∞ = s0 > s1 ≥ . . . ≥ smin(N,T )−R0 ≥ smin(N,T )−R0+1 = 0. For any ξ ≥ 0 there exists q be
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such that ξ ∈ [sq+1, sq]. We can therefore write

νNT ≥ min
q∈{0,1,2,...,min(N,T )−R0}

min
ξ∈[sq+1,sq ]

[
q ξ2 +

min(N,T )−R0∑
r=q+1

s2
r

+

(
max

{
0,

1

3
√

2R0

(
q∑
r=1

(sr − ξ)

)
1{q ≥ 1} − ‖X1 −Mλ0X1Mf0)‖2

})2 ]

≥ min
q∈{0,1,2,...,min(N,T )−R0}

[(
min

ξ∈[sq+1,sq ]
q ξ2

)
+

min(N,T )−R0∑
r=q+1

s2
r

+

(
max

{
0,

1

3
√

2R0

(
min

ξ∈[sq+1,sq ]

q∑
r=1

(sr − ξ)

)
1{q ≥ 1} − ‖X1 −Mλ0X1Mf0)‖2

})2 ]

= min
q∈{0,1,2,...,min(N,T )−R0}

[
q s2

q+1 +

min(N,T )−R0∑
r=q+1

s2
r

+

(
max

{
0,

1

3
√

2R0

(
q−1∑
r=1

(sr − sq)

)
1{q ≥ 2} − ‖X1 −Mλ0X1Mf0)‖2

})2 ]
.

Shifting q 7→ q − 1 we can rewrite this as

νNT
NT

≥ min
q∈{1,2,...,min(N,T )−R0}

(
a(q) + [max {0, b(q)}]2

)
,

where

a(q) =
1

NT

(q − 1) s2
q +

min(N,T )∑
r=q

s2
r

 ,
b(q) =

1√
NT

[
1

3
√

2R0

(
q−2∑
r=1

(sr − sq)

)
1{q ≥ 3} − ‖X1 −Mλ0X1Mf0‖2

]
.

Notice that a(q) is nonnegative and weakly decreasing and b(q) is weakly increasing. Then,
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for any integer valued sequence qNT between 1 and min(N, T )−R0 such that b(qNT ) > 0,

min
q∈{1,2,...,min(N,T )−R0}

(
a(q) + [max {0, b(q)}]2

)
= min

{
min

q∈{1,2,...,qNT }

(
a(q) + [max {0, b(q)}]2

)
, min
q∈{qNT+1,...,min(N,T )−R0}

(
a(q) + [max {0, b(q)}]2

)}
≥ min

{
min

q∈{1,2,...,qNT }
a(q), min

q∈{qNT+1,...,min(N,T )−R0}
[max {0, b(q)}]2

}
≥ min

{
a(qNT ), b(qNT + 1)2

}
.

The assumptions of the lemma thus guarantee that νNT/(NT ) ≥ c. The definition of νNT

together with Lemma S.7 thus guarantees that Assumption 1 is satisfied with µ = c.

Remarks

(a) When X is a“high-rank” regressor and sq’s are of an order OP (
√

max(N, T )), we can

choose, for example, qNT = bmin(N, T )/2c, for N, T converging to infinity at the

same rate, where bac is the integer part of a. Then, it is easy to verify those sufficient

condition (i), (ii) and (iii) for e.g. Xit ∼ i.i.d.N (0, σ2) from well-known random matrix

theory results. More generally, we can explicitly verify (i), (ii) and (iii) if X has an

approximate factor structure

X = λxf
′
x + Ex,

where λxf
′
x is an arbitrary low-rank factor structure, and Ex ∼ i.i.d.N (0, σ2).

(b) For a low-rank regressor with rank(X) = 1, we have singular values s1 = ‖Mλ0XMf0‖2

and sr = 0 for all r ≥ 2. In that case we find that a(1) = 1
NT
s2

1 and a(q) = 0 for q > 1,

and we have b(1) = b(2) = 0 and b(q) = b(3) = 1√
NT

[
1

3
√

2R0
s1 − ‖X −Mλ0XMf0‖2

]
for all q ≥ 3. Also, a(1) ≥ b(2). Therefore

min
q∈{1,2,...,min(N,T )}

[
a(q) + (max {0, b(q)})2

]
= min

{
a(1), (max{0, b(3)})2}

Thus, the assumptions of Lemma S.8 are satisfied if wpa1 we have

1√
NT

[
‖Mλ0XMf0‖2 − 3

√
2R0 ‖X −Mλ0XMf0‖2

]
≥ c1 > 0

for some constant c1. This last condition simply demands that the part of X that

cannot be explained by λ0 and f0 needs to be sufficiently larger than the part of X that

can be explained by either λ0 or f0. This is a sufficient condition for Assumption 1.
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An analysis that is specialized towards low-rank regressors will likely give a weaker

condition for Assumption 1 in this case.

B.6 Proofs for Section 3.2.2

Proof of Theorem 3 . Remember the following singular value decompositions: Γ0 = USV ′,

Mλ0EMf0 = MUEMV = UESEV
′
E, and Mλ0XMf0 = MUXMV = UxSxV

′
x. The proof con-

sists of two steps. In the first step, we show that the local minimizer that minimizes the

objective function Q∗(β) in a convex neighborhood of β0 defined by

B :=

{
β :

cx clow

cup

|∆β| ≤ 1

}
is
√
T - consistent. In the second step, we show that the local minimizer is the global mini-

mizer, for which we use convexity of the objective function Q∗(β).

Step 1. By definition of the nuclear norm, we have

Q∗(β) = ‖Γ0 + E −∆β ·X‖1 = sup
{A : ‖A‖∞≤1}

Tr
[
(Γ0 + E −∆β ·X)′A

]
.

To obtain a lower bound on Q∗(β) we choose the following matrix A in the above minimiza-

tion,

Aβ = UV ′ +
√

1− a2
β UEV

′
E − aβ (sgn ∆β) MUEUxV

′
x,

where MUE = IN − UEU ′E and aβ ∈ [0, 1] is given by

aβ =
cx clow

cup

|∆β|.

We have ‖Aβ‖∞ ≤ 1, because

‖Aβ‖2
∞ = max

{
‖UV ′‖2

∞ ,
∥∥∥√1− a2

β UEV
′
E − aβ (sgn ∆β) MUEUxV

′
x

∥∥∥2

∞

}
≤ max

{
‖UV ′‖2

∞ , (1− a
2
β) ‖UEV ′E‖

2
∞ + a2

β ‖MUEUxV
′
x‖

2
∞

}
= 1.

Here, for the first line, we used that UV ′ is orthogonal to
√

1− a2
β UEV

′
E−aβ (sgn ∆β) MUEUxV

′
x

in both matrix dimensions (that is, U ′UE, U
′Uk, V

′VE, V
′Vx = 0) and applied Lemma S.6(iv).

For the second line, we used that the columns of UEV
′
E are orthogonal to the columns of
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MUEUxV
′
x since U ′EMUE = 0, and applied Lemma S.6(v). In the final line we used that

‖UV ′‖∞ = ‖UEV ′E‖∞ = 1 and that ‖MUEUxV
′
x‖∞ ≤ 1.

With this choice of A = Aβ we obtain the following lower bound for the objective function;

for all β ∈ B,

Q∗(β) ≥ Tr
[
(Γ0 + E −∆β ·X)′Aβ

]
= ‖Γ0‖1 + Tr (E ′UV ′) + Tr

[
(−∆β ·X)′ UV ′

]
+
√

1− a2
β ‖MUEMV ‖1 +

√
1− a2

β Tr
[
(−∆β ·X)′ UEV

′
E

]
+ aβ |∆β|Tr [X ′MUEUxV

′
x] ,

where we used the following:

Tr (Γ′0UV
′) = Tr (V SU ′UV ′) = Tr(S) = ‖Γ0‖1,

Tr (E ′UEV
′
E) = Tr ((E −MUEMV + MUEMV )′UEV

′
E)

= Tr((MUEMV )′UEV
′
E)) = Tr(SE) = ‖MUEMV ‖1,

Tr (Γ′0UEV
′
E) = Tr (V SU ′UEV

′
E) = 0,

Tr [Γ′0MUEUxV
′
x] = Tr [V SUMUEUxV

′
x] = 0,

Tr [E ′MUEUxV
′
x] = Tr [MVE

′MUMUEUxV
′
x] + Tr [(E ′ −MVE

′MU)MUEUxV
′
x] = 0.

We furthermore have Q(β0) = ‖Γ0 + E‖1. Thus, applying the assumptions of the theorem

and also using
√

1− a2
β ≥ 1− 1

2
a2
β − 1

2
a4
β, we obtain for β ∈ B,

Q∗(β)−Q∗(β0) ≥ Tr
[
(Γ0 + E −∆β ·X)′Aβ

]
− ‖Γ0 + E‖1

≥ aβ |∆β|Tr [X ′MUEUxV
′
x]

− 1

2
a2
β ‖MUEMV ‖1 − (‖Γ0 + E‖1 − ‖Γ0‖1 − ‖MUEMV ‖1)

+ Tr (E ′UV ′)− 1

2
a4
β‖MUEMV ‖1

+
√

1− a2
β Tr

[
(−∆β ·X)′ UEV

′
E

]
+ Tr

[
(−∆β ·X)′ UV ′

]
=: B1 −B2 −B3 +B4 −B5 +B6. (S.9)

54



Here we bound B1 from below by

B1 = aβ |∆β|Tr (X ′MUEUxV
′
x)

= aβ |∆β| [Tr (MVX
′MUMUEUxV

′
x)− Tr ((X ′ −MVX

′MU)MUEUxV
′
x)]

= aβ |∆β|Tr (VxSxU
′
xMUEUxV

′
x)

= aβ |∆β| |∆β| [Tr (Sx)− Tr (U ′EUxSxU
′
xUE)]

≥ aβ cx |∆β| Tr (Sx) = aβ cx |∆β| ‖MUXMV ‖1

≥ aβ cx clow T
√
N |∆β| .

Here the first inequality holds by assumption (vi), and the second inequality holds by as-

sumption (v).

We bound B2 from above by

B2 =
1

2
a2
β ‖MUEMV ‖1

≤ 1

2
a2
β (‖E‖1 + ‖PUE‖1 + ‖EPV ‖1 + ‖PUEPV ‖1)

≤ 1

2
a2
β (‖E‖1 + 3R0‖E‖∞)

≤ 1

2
a2
β T
√
N

(
cup

2
+

1

T
OP (1)

)
wpa1

≤ 1

2
a2
β T
√
N cup wpa1,

where the first inequality holds by the triangle inequality, the second inequality holds by

Lemma S.6(i) and the third and the fourth inequalities follow by assumption (i) and (ii).

We bound term B3 from above by

B3 = ‖Γ0 + E‖1 − ‖Γ0‖1 − ‖MUEMV ‖1

≤ ‖E −MUEMV ‖1 = ‖PUE + EPV −PUEPV ‖1

≤ ‖PUE‖1 + ‖EPV ‖1 + ‖PUEPV ‖1

≤ 3R0‖E‖∞
≤ OP (

√
N)

where the second inequality holds by the triangle inequality and the third inequality holds

by Lemma S.6(i).
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For B4, by Hölder’s inequality we have

B4 = ‖Tr (E ′UV ′) ‖ ≤ ‖E‖∞‖UV ′‖1 = OP (
√
N).

For B5, denoting OP+(·) as a stochastically strictly positive and bounded term and using

similar arguments for the bound of term B2, we obtain

B5 =
1

2
a4
β‖MUEMV ‖1 = OP+(1)a4

β T
√
N = OP+(1)(∆β)4 T

√
N.

For B6, we have

B6 =
√

1− a2
β Tr

[
(−∆β ·X)′ UEV

′
E

]
+ Tr

[
(−∆β ·X)′ UV ′

]
= OP

(√
NT |∆β|

)
,

where the last equality holds since Tr(XkUEV
′
E) = OP (

√
NT ) by assumption (vi), and

Tr(XkUV
′) ≤ ‖X‖∞‖UV ′‖1 = OP (

√
NT ) under assumption (iii).

Notice that our choice for aβ above is such that aβ cx clow|∆β| − 1
2
a2
β cup is maximized,

which guarantees that B1 −B2 is positive, namely

B1 −B2

T
√
N
≥ c2

xc
2
low

2 cup

|∆β|2.

Combining the above, for any β ∈ B, we have

1

T
√
N
{Q∗(β)−Q∗(β0)} ≥ c2

xc
2
low

2 cup

|∆β|2 +OP

(
1√
T
|∆β|

)
+OP (T−1) +OP+(1)|∆β|4,

which holds uniformly over β ∈ B (i.e. none of the constants hidden in the OP (.) notation

depends on β).

Let

β̃∗ := argmin
β∈B

Q∗(β)

be the local minimizer in a convex neighborhood B of β0. Notice that since β0 ∈ B, Q∗(β̂∗) ≤
Q∗(β0) by definition. Therefore, we have

0 ≥ 1

T
√
N

(Q∗(β̃∗)−Q∗(β0))

≥ c2
xc

2
low

2 cup

|β̃∗ − β0|2 +OP

(
1√
T
|β̃∗ − β0|

)
+OP

(
1

T

)
+OP+

(
|β̃∗ − β0|4

)
.
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This implies

OP+

(
1

T

)
≥
(
c2
xc

2
low

2 cup

+OP+(1)|β̃∗ − β0|2
)
|β̃∗ − β0|2 +OP

(
1√
T

)
|β̃∗ − β0|

≥ c2
xc

2
low

2 cup

|β̃∗ − β0|2 +OP

(
1√
T

)
|β̃∗ − β0|.

From this we deduce

|β̃∗ − β0| = OP

(
1√
T

)
. (S.10)

Step 2. Let β̄ ∈ ∂B, that is, αβ̄ = 1. Write ∆β̄ := β̄ − β0. From (S.9) with aβ̄ = 1, we can

bound Q∗(β̄)−Q∗(β0) from below by

1

T
√
N

(Q∗(β̄)−Q∗(β0))

≥ cx clow |∆β̄| −
1

2
cup +OP

(
1√
T
|∆β̄|

)
+OP

(
1

T

)
+OP+(1)|∆β̄|4

=
1

2
cup +OP

(
1

T

)
+OP

(
1√
T

)
cup

cx clow

+OP+(1)

(
cup

cx clow

)4

> 0 wpa1,

where the equality holds since |∆β̄| = cup
cx clow

.

Since Q∗(β) is convex and has unique minimum, the local minimum at β̃∗ is also the

global minimum asymptotically. Therefore, asymptotically

β̃∗ = β̂∗ wpa1.

Combining this with the
√
T− consistency result of the local minimizer in (S.10) gives the

statement of the theorem.

B.6.1 Extension of Theorem 3

Theorem 3 is the special case of one regressors (K = 1). We can extend this to a more

general case with K regressors. The proof of the following general theorem is similar to that

of Theorem 3, and we skip it.

Theorem S.1 (Generalization of Theorem 3 to multiple regressors). Let there exist

symmetric idempotent T×T matrices Qk = Qk,NT such that QkV = 0, for all k ∈ {1, . . . , K},
and QkQ` = 0, for all k, ` ∈ {1, . . . , K}. Suppose that N > T . As N, T → ∞, we assume

the following conditions hold.
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(i) ‖E‖∞ = OP (
√
N).

(ii) There exists a finite positive constant cup such that 1
T
√
N
‖E‖1 ≤ 1

2
cup, wpa1.

(iii) ‖Xk‖∞ = OP (
√
NT ), for k ∈ {1, . . . , K}.

(vi) Let UESEV
′
E be the singular value decomposition of Mλ0EMf0. We assume Tr (X ′kUEV

′
E) =

OP (
√
NT ) for all k ∈ {1, . . . , K}.

(v) We assume that there exists a constant clow > 0 such that wpa1

T−1N−1/2‖MUXkMVQk‖1 ≥ clow,

for all k ∈ {1, . . . , K}.

(vi) For k = 1, . . . , K let UkSkV
′
k = MUXkMVQk(= MUXkQk) be the singular value de-

composition of the matrix MUXkMVQk. We assume that there exists cx ∈ (0, 1) such

that wpa1 ‖U ′kUE‖2
∞ ≤ (1− cx) for all k = 1, . . . , K.

We then have
√
T
(
β̂∗ − β0

)
= OP (1).

Remark For t ∈ {1, 2, . . . , T}, let et be the t’th unit vector of dimension T . For k ∈
{1, . . . , K}, let Ak = (eb(k−1)T/Kc+1, eb(k−1)T/Kc+2, . . . ebkT/Kc) be a T × bT/Kc matrix, and

let PAk be the projector onto the column space of Ak. Also define f0,k = PAkf0 and Bk =

Mf0,kAk. Then, for K > 1 one possible choice for Qk in assumption (vi) of Theorem S.1 is

given by

Qk = PBk = Mf0,kPAk .

The discussion of assumption (vi) of Theorem S.1 is then analogous to the K = 1 case,

except that for the k’th regressor only the time periods b(k − 1)T/Kc + 1 to bkT/Kc are

used in the assumption, that is, we need enough variation in the k’th regressor within those

time periods. Other choices of Qk are also conceivable.

B.7 Proofs for Section 4

For β ∈ RK we define {
λ̂(β), f̂(β)

}
:= argmin

λ∈RN×R0 ,f∈RT×R0

‖Y − β ·X‖2
2 ,

and the corresponding projection matrices

Mλ̂(β) := IN − λ̂(β)
(
λ̂(β)′λ̂(β)

)−1

λ̂(β)′, Mf̂ (β) := IT − f̂(β)
(
f̂(β)′f̂(β)

)−1

f̂(β)′.
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Lemma S.9. Under the assumptions (i) and (ii) of Theorem 4 we have

Mλ̂(β) = Mλ0 + M
(1)

λ̂,E
+ M

(2)

λ̂,E
−

K∑
k=1

(βk − β0,k) M
(1)

λ̂,k
+ M

(rem)

λ̂,E
+ M

(rem)

λ̂
(β) ,

Mf̂ (β) = Mf0 + M
(1)

f̂ ,E
+ M

(2)

f̂ ,E
−

K∑
k=1

(βk − β0,k) M
(1)

f̂ ,k
+ M

(rem)

f̂ ,E
+ M

(rem)

f̂
(β) ,

where the spectral norms of the remainders satisfy for any series rNT → 0,

sup
β∈B(β0,rNT )

∥∥∥M(rem)

λ̂
(β)
∥∥∥
∞

‖β − β0‖2 + (NT )−1/2‖E‖∞‖β − β0‖
= OP (1) , sup

β∈B(β0,rNT )

∥∥∥M(rem)

λ̂,E

∥∥∥
∞

(NT )−3/2‖E‖3
∞

= OP (1) ,

sup
β∈B(β0,rNT )

∥∥∥M(rem)

f̂
(β)
∥∥∥
∞

‖β − β0‖2 + (NT )−1/2‖E‖∞‖β − β0‖
= OP (1) , sup

β∈B(β0,rNT )

∥∥∥M(rem)

f̂ ,E

∥∥∥
∞

(NT )−3/2‖E‖3
∞

= OP (1) ,

and the expansion coefficients are given by

M
(1)

λ̂,E
= −Mλ0 E f0 (f ′0f0)−1 (λ′0λ0)−1λ′0 − λ0 (λ′0λ0)−1 (f ′0f0)−1 f ′0E

′Mλ0 ,

M
(1)

λ̂,k
= −Mλ0 Xk f0 (f ′0f0)−1 (λ′0λ0)−1λ′0 − λ0 (λ′0λ0)−1 (f ′0f0)−1 f ′0X

′
k Mλ0 ,

M
(2)

λ̂,E
= Mλ0 E f0 (f ′0f0)−1 (λ′0λ0)−1λ′0E f0 (f ′0f0)−1 (λ′0λ0)−1λ′0

+ λ0 (λ′0λ0)−1 (f ′0f0)−1 f ′0E
′ λ0 (λ′0λ0)−1 (f ′0f0)−1 f ′0E

′Mλ0

−Mλ0 EMf0 E
′ λ0 (λ′0λ0)−1 (f ′0f0)−1 (λ′0λ0)−1 λ′0

− λ0 (λ′0λ0)−1 (f ′0f0)−1 (λ′0λ0)−1 λ′0EMf0 E
′Mλ0

−Mλ0 E f0 (f ′0f0)−1 (λ′0λ0)−1 (f ′0f0)−1 f ′0E
′Mλ0

+ λ0 (λ′0λ0)−1 (f ′0f0)−1 f ′0E
′Mλ0 E f0 (f ′0f0)−1 (λ′0λ0)−1λ′0 ,
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analogously

M
(1)

f̂ ,E
= −Mf0 E

′ λ0 (λ′0λ0)−1 (f ′0f0)−1f ′0 − f0 (f ′0f0)−1 (λ′0λ0)−1 λ′0EMf0 ,

M
(1)

f̂ ,k
= −Mf0 X

′
k λ0 (λ′0λ0)−1 (f ′0f0)−1f ′0 − f0 (f ′0f0)−1 (λ′0λ0)−1 λ′0Xk Mf0 ,

M
(2)

f̂ ,E
= Mf0 E

′ λ0 (λ′0λ0)−1 (f ′0f0)−1f ′0E
′ λ0 (λ′0λ0)−1 (f ′0f0)−1f ′0

+ f0 (f ′0f0)−1 (λ′0λ0)−1 λ′0E f0 (f ′0f0)−1 (λ′0λ0)−1 λ′0EMf0

−Mf0 E
′Mλ0 E f0 (f ′0f0)−1 (λ′0λ0)−1 (f ′0f0)−1 f ′0

− f0 (f ′0f0)−1 (λ′0λ0)−1 (f ′0f0)−1 f ′0E
′Mλ0 EMf0

−Mf0 E
′ λ0 (λ′0λ0)−1 (f ′0f0)−1 (λ′0λ0)−1 λ′0EMf0

+ f0 (f ′0f0)−1 (λ′0λ0)−1 λ′0EMf0 E
′ λ0 (λ′0λ0)−1 (f ′0f0)−1f ′0 .

Proof. This lemma is a restatement of Theorem S.9.1 in the supplementary appendix of

Moon and Weidner (2017), and the proof is given there. However, in the presentation

here we split the remainder terms of the expansions into two components, e.g. M
(rem)

λ̂,E
+

M
(rem)

λ̂
(β), where M

(rem)

λ̂,E
summarizes all higher order expansion terms depending on E only,

and M
(rem)

λ̂
(β) summarizes all higher order terms also involving β − β0. The reason for this

change in presentation is that we will consider differences of the form Mλ̂(β1) −Mλ̂(β2)

below, and the remainder terms M
(rem)

λ̂,E
cancel in those differences.

Proof of Theorem 4. # The first statement of the theorem is an almost immediate con-

sequence of Theorem 4.1 in Moon and Weidner (2017). That theorem shows that, under the

assumptions we impose here, we have the following approximate quadratic expansion of the

profile LS objective function,

LR0(β) = LR0(β0) − 1√
NT

(β − β0)′CNT +
1

2
(β − β0)′WNT (β − β0) +

1

NT
RNT (β) ,

where the remainder RNT (β) is such that for any sequence rNT → 0 we have

sup
β∈B(β0,rNT )

|RNT (β)|(
1 +
√
NT ‖β − β0‖

)2 = op (1) ,

and WNT = 1
NT

x′ (Mf0 ⊗Mλ0)x, and CNT = C
(1)
NT+C

(2)
NT , with C

(1)
NT = 1

NT
x′ (Mf0 ⊗Mλ0)x,
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and the K-vector C
(2)
NT has entries, k = 1, . . . , K,

C
(2)
NT,k = − 1√

NT

[
Tr
(
EMf0 E

′Mλ0 Xk f0 (f ′0f0)−1 (λ′0λ0)−1 λ′0
)

+ Tr
(
E ′Mλ0 EMf0 X

′
k λ0 (λ′0λ0)−1 (f ′0f0)−1 f ′0

)
+ Tr

(
E ′Mλ0 XkMf0 E

′ λ0 (λ′0λ0)−1 (f ′0f0)−1 f ′0
) ]

.

We have assumed that plimN,T→∞WNT > 0 and C
(1)
NT = OP (1), and using our assumptions

(i) and (ii) we also find that∣∣∣C(2)
NT,k

∣∣∣ ≤ 3R0√
NT
‖E‖2

∞ ‖Xk‖∞ ‖λ0‖∞ ‖f0‖∞
∥∥(λ′0λ0)−1

∥∥
∞

∥∥(f ′0f0)−1
∥∥
∞ = OP (1),

and therefore CNT = 0. From this approximate quadratic expansion we conclude that LR0(β)

has indeed at least one local minimizer within B(β0, rNT ), and that any such local minimizer

within B(β0, rNT ) satisfied

√
NT

(
β̂ local

LS,R0
− β0

)
= W−1

NT CNT = OP (1).

# Next, we want to show the second statement of the theorem. Let λ̂ := λ̂
(
β̂ local

LS,R0

)
and

f̂ := f̂
(
β̂ local

LS,R0

)
. By definition we have λ̂(s+1) = λ̂

(
β̂(s)
)

and f̂ (s+1) = f̂
(
β̂(s)
)

, and

(
x′
(
Mf̂ (s+1) ⊗Mλ̂(s+1)

)
x
)
β̂(s+1) = x′

(
Mf̂ (s+1) ⊗Mλ̂(s+1)

)
y,(

x′
(
Mf̂ ⊗Mλ̂

)
x
)
β̂ local

LS,R0
= x′

(
Mf̂ ⊗Mλ̂

)
y.

By taking the difference of those last equations we obtain(
x′
(
Mf̂ ⊗Mλ̂

)
x
)(

β̂(s+1) − β̂ local
LS,R0

)
= x′

(
Mf̂ (s+1) ⊗Mλ̂(s+1) −Mf̂ ⊗Mλ̂

)(
y − x β̂(s+1)

)
= x′

(
Mf̂ (s+1) ⊗Mλ̂(s+1) −Mf̂ ⊗Mλ̂

) [
e− x

(
β̂(s+1) − β0

)
+ (f0 ⊗ λ0)vec(IR)

]
,

where in the last step we plugged in the model for y. Applying Lemma S.9, the result from

the first part of the theorem, and our assumptions we find that

1

NT
x′
(
Mf̂ ⊗Mλ̂

)
x =

1

NT
x′ (Mf0 ⊗Mλ0)x+ oP (1),
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and since the probability limit of 1
NT

x′ (Mf0 ⊗Mλ0)x is assumed to be invertible we obtain

β̂(s+1) − β̂ local
LS,R0

=

[
1

NT
x′ (Mf0 ⊗Mλ0)x

]−1
1

NT
x′
(
Mf̂ (s+1) ⊗Mλ̂(s+1) −Mf̂ ⊗Mλ̂

)
×
[
e− x

(
β̂(s+1) − β0

)
+ (f0 ⊗ λ0)vec(IR)

]
[1 + oP (1)].

Again applying Lemma S.9 and our assumptions one can show that∥∥∥Mf̂ (s+1) ⊗Mλ̂(s+1) −Mf̂ ⊗Mλ̂

∥∥∥
∞

= OP

(∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥) ,
and therefore

1

NT
x′
(
Mf̂ (s+1) ⊗Mλ̂(s+1) −Mf̂ ⊗Mλ̂

)
e = OP

(
‖E‖∞maxk ‖Xk‖∞

NT

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥)

= OP


∥∥∥β̂(s) − β̂ local

LS,R0

∥∥∥√
min(N, T )

 ,

and

1

NT
x′
(
Mf̂ (s+1) ⊗Mλ̂(s+1) −Mf̂ ⊗Mλ̂

)
x
(
β̂(s+1) − β0

)
= OP

(∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥∥∥∥β̂(s+1) − β0

∥∥∥)
= OP

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥∥∥∥β̂(s+1) − β̂ local
LS,R0

∥∥∥+

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥
√
NT

 ,

where in the last step we used that part of the theorem implies that β̂(s+1) − β0 = β̂(s+1) −
β̂ local

LS,R0
+OP (1/

√
NT ). Finally, using one more time Lemma S.9 and our assumptions we can

also show that

1

NT
x′
(
Mf̂ (s+1) ⊗Mλ̂(s+1) −Mf̂ ⊗Mλ̂

)
(f0 ⊗ λ0)vec(IR)

= OP

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥2

+

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥√
min(N, T )

 .

Combining the above gives

β̂(s+1) − β̂ local
LS,R0

= OP

{∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥[∥∥∥β̂(s+1) − β̂ local
LS,R0

∥∥∥+
∥∥∥β̂(s) − β̂ local

LS,R0

∥∥∥+
1√

min(N, T )

]}
[1 + oP (1)].
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Starting from the assumptions ‖β̂(0) − β0‖ = OP (cNT ), for cNT → 0, we thus conclude that

∥∥∥β̂(1) − β̂ local
LS,R0

∥∥∥ = OP

{
cNT

(
cNT +

1√
min(N, T )

)}
,

and then also

∥∥∥β̂(2) − β̂ local
LS,R0

∥∥∥ = OP

cNT
(
cNT +

1√
min(N, T )

)2
 ,

and by induction over s we conclude in this way that

∥∥∥β̂(s) − β̂ local
LS,R0

∥∥∥ = OP

{
cNT

(
cNT +

1√
min(N, T )

)s}
.

B.8 Proof of Section 6

Proof of Theorem 5. Like in the previous section, let Qψ(β) := minΓQψ(β,Γ). Let

Bψ(M) := {β ∈ B : ‖β − β0‖ = Mψ1/2} be the restricted parameter set consisting of

β’s whose distance to β0 is less than or equal to Mψ1/2. In the special case where β is a

scalar (i.e., K = 1) which is assumed in the theorem, Bψ(M) is a finite discrete set consisting

of two points,

Bψ(M) = {β0 −Mψ1/2, β0 +Mψ1/2} (S.11)

Since Qψ(β) is convex, if we show that there exists a finite constant M such that

min
β∈Bψ(M)

Qψ(β)−Qψ(β0,Γ0) > 0 wp1, (S.12)

then we can deduce

‖β̂ψ − β0‖ ≤Mψ1/2 wp1,

which is required for the theorem.

For (S.12), we find a function Q∗ψ(β,Γ) such that Qψ(β,Γ) ≥ Q∗ψ(β,Γ) for all β,Γ. With

Q∗ψ(β) := minΓQ
∗
ψ(β,Γ), we show that there exists a finite constant M such that

min
β∈Bψ(M)

Q∗ψ(β)−Q∗ψ(β0,Γ0) > 0 wp1. (S.13)
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# A lower bound objective function, Q∗ψ(β,Γ): For every pair i, t we define the function

m∗it : R→ R as the function that satisfies

m∗it(z
0
it) = mit(z

0
it), ∂zm

∗
it(z

0
it) = ∂zmit(z

0
it), ∀z ∈ R :

∂z2m
∗
it(z)

b
=
∂z2mit(z)

∂z2mit(z)
.

Here, the last condition on the second derivative should be interpreted in terms of “general-

ized functions” in cases where mit(z) is not twice differentiable. For example, in the quantile

regression example we have mit(z) = ρτ (Yit− z), and therefore ∂z2mit(z) = δ(Yit− z), where

δ(.) denotes the Dirac delta function. In general, solving for m∗it(z) we find that

m∗it(z) := mit(z
0
it) +

(
z − z0

it

)
∂zmit(z

0
it) + b

∫ z

z0it

∫ ζ

z0it

∂z2mit(ξ)

∂z2mit(ξ)
dξdζ,

where for z < z0
it the integral should be interpreted as

∫ z
z0it
q(ζ)dζ = −

∫ z0it
z
q(ζ)dζ, and

analogously for the integral over ξ.23 Let m∗it(z) = E(m∗it(z)|X). Our definition of m∗it(z)

together with E[∂zmit(z
0
it)|X] = 0 imply that

m∗it(z) = mit(z
0
it) +

b

2

(
z − z0

it

)2
,

that is, m∗it(z) is a quadratic function with second derivative equal to b. Our assumption

∂z2mit(z) ≥ b for all z ∈ Z (Assumption 2(iii)) together with convexity ofmit(z) (Assumption

2(ii)) imply furthermore that 0 ≤ ∂z2m
∗
it(z) ≤ ∂z2mit(z). Therefore, m∗it(z) is a convex

function and satisfies

mit(z)−mit(z
0
it) ≥ m∗it(z)−m∗it(z0

it), (S.15)

because m∗it(z
0
it) = mit(z

0
it) and the convex function mit(z) has a steeper curvature than the

convex function m∗it(z) everywhere.

Next, we define

Q∗ψ(β,Γ) :=
1

NT

N∑
i=1

T∑
t=1

m∗it (X ′it β + Γit) +
ψ√
NT

max{
A∈RN×T

∣∣‖A‖∞≤1

}Tr(Γ′A)

︸ ︷︷ ︸
=‖Γ‖1

, (S.16)

23In the quantile regression case we have∫ ζ

z0it

∂z2mit(ξ)

∂z2mit(ξ)
dξ =

1(z0it < Yit < ζ)− 1(ζ < Yit < z0it)

∂z2mit(Yit)
. (S.14)
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and Q∗ψ(β) := minΓ∈RN×T Q
∗
ψ(β,Γ). From (S.15) we obtain that

Qψ(β,Γ)−Qψ(β0,Γ0) ≥ Q∗ψ(β,Γ)−Q∗ψ(β0,Γ0).

# Additional definitions: We already defined the expected objective function mit(z) in the

main text. We now also define the deviation from the expectation m̃it(z) := mit(z)−mit(z).

We drop the argument z whenever those function and their derivatives are evaluated at the

true values z0
it, for example, mit = mit(z

0
it), ∂zm̃it = ∂zm̃it(z

0
it), ∂z2mit = ∂z2mit(z

0
it). We use

the same notation for m∗it(z), for example, ∂z2m
∗
it = ∂z2m

∗
it(z

0
it). In addition, we define the

N × T matrix Γ∗ := Γ0 +X(1) · β0, and we let zit(β) := X
(2)′
it β + Γ∗it.

# Deriving a lower bound on Q∗ψ(β) within the shriking neighborhood: Our goal here is to

find a lower bound on Q∗ψ(β) that is valid within the shrinking neighborhood of β0,Bψ(M).

To obtain such a lower bound we choose the matrix A in equation (S.16) to be the N × T
matrix A(β) with elements

Ait(β) := − 1√
NTψ

∂zm
∗
it (zit(β))

= − 1√
NTψ

[∂zm̃
∗
it (zit(β)) + ∂zm

∗
it (zit(β))] ,

= − 1√
NTψ

[
∂zm̃

∗
it (zit(β)) + bX

(2)′
it (β − β0)

]
,

where in the final step we used that ∂zm
∗
it (z) = ∂zm

∗
it + b(z − z0

it), and ∂zm
∗
it = 0, and

zit(β)− z0
it = X

(2)′
it (β − β0). For the mean zero N × T matrix ∂zm̃

∗ (z(β)) := [∂zm̃
∗
it (zit(β))]

we have

sup
β∈Bψ(M)

‖∂zm̃∗ (z(β))‖∞ ≤
∥∥∂zm̃∗ (z(β0 −Mψ1/2)

)∥∥
∞ +

∥∥∂zm̃∗ (z(β0 +Mψ1/2)
)∥∥
∞

= OP

(√
max(N, T )

)
.

We thus find that

sup
β∈Bψ(M)

‖A(β)‖∞ ≤ oP (1) + sup
β∈Bψ(M)

oP

(
‖β − β0‖
ψ1/2

)
≤ oP (M).

A sufficient condition for ‖A(β)‖∞ ≤ 1 wp1 uniformly in β ∈ Bψ(M) is therefore satisfied.

From now on, we use ≤u.p. to denote that the inequality holds wp1 uniformly in β ∈ Bψ(M).
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Under that condition we thus have

Q∗ψ(β) ≥ min
Γ∈RN×T

{
1

NT

N∑
i=1

T∑
t=1

m∗it (X ′it β + Γit) +
ψ√
NT

Tr[Γ′A(β)]

}

=
1

NT

N∑
i=1

T∑
t=1

m∗it

(
X

(2)′
it β + Γ∗it

)
+

ψ√
NT

Tr[
(
Γ0 −X(1) · (β − β0)

)′
A(β)]

≥ 1

NT

N∑
i=1

T∑
t=1

m∗it

(
X

(2)′
it β + Γ∗it

)
− ψ√

NT

∥∥Γ0 −X(1) · (β − β0)
∥∥

1
‖A(β)‖∞

≥u.p.
1

NT

N∑
i=1

T∑
t=1

m∗it

(
X

(2)′
it β + Γ∗it

)
− ψ ‖Γ0‖1√

NT
− ψ

∥∥X(1) · (β − β0)
∥∥

1√
NT

(S.17)

where the second line (the equality part) holds because we used that our choice of A(β)

implies that the FOC for the minimization over Γ are satisfied for Γ = Γ∗ − X(1) · β =

Γ0 −X(1) · (β − β0). The third line holds by the Holder inequality |TrA′B| ≤ ‖A‖∞‖B‖1,

and the last line holds by the triangle inequality and ‖A(β)‖1 ≤u.p. 1.

Next, by expanding X
(2)′
it β + Γ∗it around z0

it = X
(2)′
it β0 + Γ∗it and by definition of m∗it, we

obtain

1

NT

N∑
i=1

T∑
t=1

m∗it

(
X

(2)′
it β + Γ∗it

)
=

1

NT

N∑
i=1

T∑
t=1

m∗it

(
X

(2)′
it β + Γ∗it

)
+

1

NT

N∑
i=1

T∑
t=1

m̃∗it

(
X

(2)′
it β + Γ∗it

)
=

1

NT

N∑
i=1

T∑
t=1

m∗it + b(β − β0)′W (β − β0) +OP (1/
√
NT ), (S.18)

where the OP (1/
√
NT ) holds uniformly over β in Bψ(M).

# Consistency of β̂ψ:
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Using the low bounds of (S.17) and (S.18), and the definition of Q∗ψ(β0,Γ0), we have

min
β∈Bψ(M)

Q∗ψ(β)−Q∗ψ(β0,Γ0)

≥ min
β∈Bψ(M)

[
1

NT

N∑
i=1

T∑
t=1

(
m∗it

(
X

(2)′
it β + Γ∗it

)
−m∗it

(
X

(2)′
it β0 + Γ∗it

))]

− ψ2 ‖Γ0‖1√
NT

− ψ max
β∈Bψ(M)

∥∥X(1) · (β − β0)
∥∥

1√
NT

= min
β∈Bψ(M)

[
1

NT

N∑
i=1

T∑
t=1

(
m∗it

(
X

(2)′
it β + Γ∗it

)
−m∗it

)]
−O+(1)ψ − oP+(1)Mψ

≥ b min
β∈Bψ(M)

(β − β0)′W (β − β0)− OP+(1)√
NT

−O+(1)ψ − oP+(1)Mψ

≥ bλmin(W )M2ψ − OP+(1)√
NT

−O+(1)ψ − oP+(1)Mψ

≥Mψ

(
bλmin(W )M − OP+(1)

Mψ
√
NT
− O+(1)

M
− oP+(1)

)
.

Since λmin(W )→p λmin(W∞) > 0 and ψ
√
NT → 0, we can choose a large constant M such

that

bλmin(W )M − OP+(1)

Mψ
√
NT
− O+(1)

M
− oP+(1) > 0 wp1.

Then, we have the required result for the theorem.

To establish the consistency result in the theorem in a more general case where K > 1,

the proof requires some additional technical restrictions. The first technical requirement

is the uniform bound, supβ∈Bψ(M) ‖A(β)‖∞. For this, we may use a recent random matrix

theory result in Moon (2019) which requires further regularity conditions such as the tail

condition of the distribution of Ait(β) and a restriction of the entrophy of the parameter set

Bψ(M). Secondly, we need additional technical restrictions for a uniform stochastic bound

of supβ∈Bψ(M)
1
NT

∑N
i=1

∑T
t=1 m̃

∗
it

(
X

(2)′
it β + Γ∗it

)
= OP (1/

√
NT ).
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