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Abstract

The particular concern of this paper is the construction of a confidence region with pointwise

asymptotically correct size for the true value of a parameter of interest based on the generalized

Anderson-Rubin (GAR) statistic when the moment variance matrix is singular. The large

sample behaviour of the GAR statistic is analysed using a Laurent series expansion around the

points of moment variance singularity. Under a condition termed first order moment singularity

the GAR statistic is shown to possess a limiting chi-square distribution on parameter sequences

converging to the true parameter value. Violation, however, of this condition renders the GAR

statistic unbounded asymptotically. The paper details an appropriate discretisation of the

parameter space to implement a feasible GAR-based confidence region that contains the true

parameter value with pointwise asymptotically correct size. Simulation evidence is provided

that demonstrates the efficacy of the GAR-based approach to moment-based inference described

in this paper.
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1 Introduction

The generalized Anderson-Rubin (GAR) statistic is often used as the basis for the construction

of an asymptotically valid confidence region for the true value θ0 of a dθ-vector θ ∈ Θ of unknown

parameters with Θ ⊆ Rdθ the corresponding parameter space. A GAR-based confidence region

estimator for θ0 with asymptotic level α, 0 < α < 1, is formed by the inversion of the non-rejection

region of a GAR-based test with asymptotic size 1− α of the hypothesis H0 : θ = θ0.

To be more precise the moment indicator vector g(z, θ), a dg-vector of known functions of

the dz-dimensional data observation vector z and θ, forms the basis for inference on θ0 in the

following discussion and analysis. It is assumed that θ0 satisfies the population unconditional

moment equality condition

EP0 [g(z, θ)] = 0. (1.1)

where EP0 [·] denotes expectation taken with respect to the true population probability law (P0) of

z. Throughout the paper zi, (i = 1, . . . , n), will denote a random sample of size n of observations

on z. Let gi(θ) = g(zi, θ) and Gi(θ) = ∂gi(θ)/∂θ
′, (i = 1, . . . , n), ĝn(θ) =

∑n
i=1 gi(θ)/n, Ĝn(θ) =∑n

i=1Gi(θ)/n and Ω̂n(θ) =
∑n

i=1 gi(θ)gi(θ)
′/n. A GAR-based confidence region estimator for θ0

is defined in terms of the GAR statistic

T̂n(θ) = nĝn(θ)
′Ω̂n(θ)

−1ĝn(θ). (1.2)

The particular context for this study concerns circumstances in which the variance matrix

Ω = EP0 [g(z, θ0)g(z, θ0)
′] of the moment indicator vector g(z, θ) at the true parameter value θ0

is singular. Since the sample second moment matrix Ω̂n(θ) at θ = θ0 is consequentially rendered

singular, a number of theoretical issues then arise with the GAR-based approach to confidence

region estimation which are highlighted in this paper. First, the GAR statistic (1.2) does not exist

for certain parameter sequences θn converging to θ0. Next, even for those parameter sequences

for which T̂n(θn) does exist, the probability limit of Ω̂n(θn) is singular. This paper addresses

both of these concerns and provides conditions for the construction of a feasible GAR-based con-

fidence region that contains θ0 with pointwise asymptotically correct size. To derive the requisite

asymptotic properties of the GAR statistic T̂n(θ) (1.2), the paper adopts an approach new to the

literature using a Laurent series expansion of the inverse of the sample moment variance matrix

Ω̂n(θ) around points of singularity. The paper places minimal restrictions on the rank and form

of the moment variance matrix Ω and the expected Jacobian G = EP0 [∂g(z, θ0)/∂θ
′] and provides

a direct extension of those results for the GAR statistic with nonsingular Ω in Stock and Wright

(2000).

We devote attention primarily to a relatively mild assumption on the columns of the sample

Jacobian matrix Ĝn(θ0) which we term first order moment singularity. This condition enables

a Laurent series expansion of Ω̂n(θn)
−1 to be established and, consequently, the existence of the

GAR statistic on particular parameter sequences θn converging to true parameter value θ0. We

also show that, in the absence of this condition, the GAR statistic is asymptotically unbounded

on a subset of such sequences. When Ω is singular the asymptotic size of a GAR-based confidence

region depends crucially on the properties of the discretized parameter space Θn on which the GAR
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statistic is inverted in practice. Therefore, the paper details how to discretize appropriately the

parameter space Θ to guarantee that it contains parameter sequences for which the GAR statistic is

asymptotically chi-square distributed. The feasible GAR-based confidence region contains θ0 with

correct size under relatively mild assumptions and requires no knowledge of points of singularity,

so that all such points need not be included in the discretised parameter space Θn. Furthermore,

feasible GAR-based inference does not require any regularization or pre-testing, and so is less

computationally burdensome than a regularization approach. A number of examples of moment

functions with singular variance matrix are provided. A simulation study illustrates the results of

this paper.

Much of the literature on identification-robust inference originating with Anderson and Rubin

(1949) has been concerned with linear instrumental variable (IV) models. An array of alternative

approaches providing asymptotically valid inference on θ0 under a minimal set of assumptions has

been developed since this seminal work, including, but not limited to, Andrews and Marmer (2008),

Andrews et al. (2007), Chernozhukov et al. (2009), Guggenberger et al. (2012), Kleibergen (2002),

Kleibergen and Mavroeidis (2009), Magnusson (2010) and Moreira (2003). Important extensions to

nonlinear moment indicator functions have been developed in which Ω is maintained non-singular.

For example, Stock and Wright (2000) study confidence regions formed by inverting the GAR

statistic (1.2) non-rejection region under weak identification. These results are generalized to the

many weak moment setup in Newey and Windmeijer (2009). Guggenberger and Smith (2005,

2008), Kleibergen (2005) and Guggenberger et al. (2012) consider GMM and generalized empirical

likelihood based inference with the GAR statistic as a special case.

In nonlinear models identification failure may directly result in the singularity of Ω. Conse-

quently, research has focused on methods of inference that do not require Ω to be full rank. Andrews

and Guggenberger (2018) study the asymptotic properties of, among others, a singularity-robust-

GAR (SR-GAR) statistic that deletes redundant directions of the moment indicator vector across

the parameter space Θ. This method allows for general forms of Ω. However, to obtain correct

asymptotic size for an SR-GAR-based confidence region, all points of singularity are required to

be included in the discretized parameter space used in practice. Dufour and Valéry (2016) develop

a regularized Wald statistic providing valid pointwise inference on strongly identified functions of

θ0 in the presence of a singular Ω. Peñaranda and Sentana (2012) study GMM inference when the

rank of Ω is known using a generalized inverse of the sample moment variance matrix. Another

strand in the literature has studied the asymptotic properties of confidence regions based on various

statistics with specific forms of singular moment indicator variance matrix. Andrews and Cheng

(2012, 2013, 2014) and Cheng (2014) derive conditions for valid subvector inference (in a uniform

sense) using t, Wald, quasi-likelihood ratio and maximum likelihood (ML) statistics. They consider

moment indicators with a singular variance matrix arising from identification failure in a class of

nonlinear models. Rotnitzky, Cox, Bottai and Robins (2000) study the asymptotic properties of

inference based on the likelihood ratio statistic when Ω is rank dθ − 1. In related work, Bottai

(2003) considers inference from various ML-based statistics where dθ = 1 and Ω = 0.

The remainder of the paper is set out as follows. Section 2 details the notation used in the

paper. Section 3 studies asymptotic properties of the GAR statistic (1.2) when Ω is singular.

Section 4 details feasible GAR-based confidence regions formed by inverting the GAR statistic

[2]



over a discretization Θn of the parameter space Θ. Section 5 establishes sufficient conditions

appropriate for nonlinear conditional moment restriction models. A simulation study is provided

in Section 6, corroborating the main results of this paper. Section 7 presents conclusions and

directions for further research. The Appendices collect proofs of the main theorems and subsidiary

lemmas used in this paper. Supplements E and S contain examples and additional simulation

evidence.

2 Notation

p→,
d→ denote convergence in probability and distribution, respectively, ‘w.p.(a.)1’ is ‘with

probability (approaching) 1’ and ‘i.i.d.’ is ‘independent and identically distributed’. op(a) and

Op(a) respectively indicate a variate that, after division by a, converges to zero w.p.a.1 and to a

variate that is bounded w.p.a.1 by a bounded non-stochastic sequence; similar definitions apply for

their deterministic counterparts o(a), O(a). For an arbitrary random variable x, a.s.(x) denotes

‘almost surely’ x.

EP0 [·] and VarP0 [·] denote expectation and variance taken with respect to the true population

probability law (P0) of z. For arbitrary random variables y and x, EP0 [y|x] is the conditional

expectation of y given x. χ2
k denotes a central chi-square distributed random variable with k

degrees of freedom.

rk(A) and N (A) denote the rank and (right) null space, respectively, of a matrix A whereas

tr(A) and det(A) are the trace and determinant, respectively, of a square matrix A. For integer

k > 0, Ik denotes a k × k identity matrix. For a full column rank k × p matrix A and k × k

nonsingular matrix K, PA(K) denotes the oblique projection matrix A(A′K−1A)−1A′K−1 and

MA(K) = Ik − PA(K) its orthogonal counterpart. We abbreviate this notation to PA and MA

if K = Ik and, if p = 0, set MA = Ik. For square matrices A and B, diag(A,B) denotes a

block-diagonal matrix with diagonal blocks A and B.

∥A∥ = tr(A′A)1/2 denotes the Euclidean norm of the matrix A and d(x, y) = ∥x − y∥ the

Euclidean distance between vectors x, y ∈ Rd for integer d ≥ 1. The Hausdorff distance between

sets A and B is defined as dH(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(A, b)}, where d(a,B) = inf
b∈B

∥b− a∥,

and dH(A,B) = ∞ if either A or B is the null set ∅.

The expectations of the moment vector, Jacobian matrix and moment function second moment

matrix are defined as g(θ) = EP0 [g(z, θ)], G(θ) = EP0 [∂g(z, θ)/∂θ
′] and Ω(θ) = EP0 [g(z, θ)g(z, θ)

′]

respectively, θ ∈ Θ.

At the true value θ0 the dependence on θ0 is suppressed where there can be no confusion. Thus,

gi = gi(θ0), Gi = Gi(θ0), (i = 1, . . . , n), ĝn = ĝn(θ0) and Ω̂n = Ω̂n(θ0). Recall G = G(θ0) and

Ω = Ω(θ0).
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3 Asymptotic Properties of the GAR Statistic with Singular Mo-

ment Variance

When Ω is singular, Ω̂n is also singular w.p.1 so that the GAR statistic T̂n(θ) (1.2) does not exist

at θ = θ0. Consequently, its large sample properties can no longer be studied using the standard

analysis to be found in, e.g., Stock and Wright (2000). To deal with this difficulty, this section

provides conditions under which T̂n(θn) exists w.p.a.1 and T̂n(θn)
d→ χ2

dg
for suitable parameter

sequences θn = θ0 + o(n−1/2).

Remark 3.1. Another form of GAR statistic is T̃n(θ) = nĝn(θ)
′Ω̃n(θ)

−1ĝn(θ) based on the

alternative moment variance matrix estimator Ω̃n(θ) =
∑n

i=1(gi(θ) − ḡn(θ))(gi(θ) − ḡn(θ))
′/n.

Although the discussion below primarily concerns the GAR statistic T̂n(θ), the results for the

alternative GAR statistic T̃n(θn) are almost identical to those for T̂n(θn).

By symmetry, the moment indicator second moment matrix Ω(θ) satisfies the spectral decom-

position

Ω(θ) = P (θ)Λ(θ)P (θ)′

= P+(θ)Λ+(θ)P+(θ)
′ + P0(θ)Λ0(θ)P0(θ)

′

= P+(θ)Λ+(θ)P+(θ)
′ (3.1)

where the eigen-vectors and eigen-values of Ω(θ) respectively constitute the columns of the dg×dg
orthonormal matrix P (θ) and the diagonal elements, arranged in non-increasing order of magni-

tude, of the dg × dg diagonal matrix Λ(θ). Given rk(Ω(θ)) = rΩ(θ), defining r̄Ω(θ) = dg − rΩ(θ),

P (θ) = (P+(θ), P0(θ)) and Λ(θ) = diag(Λ+(θ),Λ0(θ)) are partitioned such that P+(θ) and P0(θ)

are of dimensions dg × rΩ(θ) and dg × r̄Ω(θ) respectively with Λ+(θ) and Λ0(θ) rΩ(θ)× rΩ(θ) and

r̄Ω(θ) × r̄Ω(θ) diagonal matrices respectively with the rΩ(θ) positive and r̄Ω(θ) zero eigen-values

as diagonal elements. At the true value θ0, we write rΩ = rΩ(θ0), r̄Ω = dg − rΩ, P+ = P+(θ0),

P0 = P0(θ0), Λ+ = Λ+(θ0) and Λ0 = Λ0(θ0).

To study the limiting properties of the GAR statistic T̂n(θ) (1.2), define the set of sequences

Θ0
n(δ) = {θn ∈ Θ : θn = θ0 + n−εδn, ε > 1/2, n1/2(δn − δ) → 0, δ ̸= 0, δ ∈ Rdθ}. (3.2)

Section 3.1 provides conditions under which T̂n(θn)
d→ χ2

dg
for θn ∈ Θ0

n(δ) (3.2) when Ω has

deficient rank. Section 3.2 shows that the GAR statistic is asymptotically unbounded, and, thus,

GAR-based confidence regions empty, if a particular hypothesis of Section 3.1 fails to hold. Section

3.3 discusses the potential importance of the singularity of Ω for the construction of the GAR

statistic (1.2) and the consequent GAR-based confidence region for θ0.

3.1 Asymptotic Properties when P ′
0Gδ = 0

When Ω is singular, then P ′
0ΩP0 = 0 and, thus, P ′

0gi = 0 w.p.1., (i = 1, . . . , n), i.e., r̄Ω linearly

independent combinations of the moment indicator function g(z, θ) evaluated at θ0 are degenerate.

This section provides results on the large sample behaviour of the GAR statistic (1.2) under a
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condition that we term first order moment singularity, namely, there exists δ ∈ Rdθ such that

rk(VarP0 [P
′
0(Giδ−EP0 [Giδg

′
i]Ω

−gi)]) = r̄Ω, where Ω
− = P+Λ

−1
+ P ′

+ is the Moore-Penrose inverse of

Ω.

The following example highlights the importance of first order moment singularity for estab-

lishing the asymptotic properties of T̂n(θn) for sequences θn ∈ Θ0
n(δ) when Ω is singular. Suppose

gi(θ) is linear in θ ∈ Θ, i.e., Gi(θ) = Gi, (i = 1, . . . , n). Setting δn = δ for simplicity, then, for

θn ∈ Θ0
n(δ), substituting for θn,

nεP ′
0gi(θn) = P ′

0Giδ w.p.1

since P ′
0gi = 0 w.p.1, i.e., there exists r̄Ω linearly independent combinations of nεgi(θn) that do not

involve gi, (i = 1, . . . , n). Unlike the full rank case, the first order asymptotic properties of T̂n(θn)

depend not only on the mean and variance matrix of P ′
+gi but those of P ′

0Giδ or, more precisely,

P ′
0(Giδ − EP0 [Giδg

′
i]Ω

−gi). For θn ∈ Θ0
n(δ),

EP0 [n
εP ′

0gi(θn)− P ′
0EP0 [Giδg

′
i]Ω

−gi(θn)] = P ′
0Gδ − n−εP ′

0EP0 [Giδg
′
i]Ω

−Gδ

= P ′
0Gδ + o(1)

and

VarP0 [n
εP ′

0gi(θn)− P ′
0EP0 [Giδg

′
i]Ω

−gi(θn)] = P ′
0(EP0 [Giδδ

′G′
i]−Gδδ′G′

−EP0 [Giδg
′
i]Ω

−EP0 [Giδg
′
i]
′)P0 + o(1).

Moreover, and importantly,

CovP0 [P
′
+gi(θn), n

εP ′
0gi(θn)− P ′

0EP0 [Giδg
′
i]Ω

−gi(θn)] = o(1).

For the GAR statistic (1.2) to exist and be asymptotically bounded for sequences θn ∈ Θ0
n(δ), we

require that nεP ′
0gi(θn) has zero mean, i.e., P ′

0Gδ = 0. Moreover, not only should nεP ′
0gi(θn) have

full rank variance matrix, i.e., rk(P ′
0EP0 [Giδδ

′G′
i]P0) = r̄Ω, but, crucially, the variance matrix of

nεP ′
0gi(θn) − P ′

0EP0 [Giδg
′
i]Ω

−gi(θn) should also be full rank, i.e., rk(P ′
0(EP0 [Giδδ

′G′
i] − Gδδ′G′ −

P ′
0EP0 [Giδg

′
i]Ω

−EP0 [Giδg
′
i]
′)P0) = r̄Ω. If both of these conditions are met, then T̂n(θn) can be

expressed w.p.a.1 as a quadratic form in dg moment functions with zero mean and full rank

variance matrix, namely, P ′
+ĝ and P ′

0(Ĝδ − EP0 [Giδg
′
i]Ω

−ĝ) that, asymptotically, are both mean

zero with full rank rΩ and r̄Ω variance matrices respectively and, critically, are asymptotically

uncorrelated. Hence, for any sequence θn ∈ Θ0
n(δ) satisfying these conditions, T̂n(θn)

d→ χ2
dg
.

More generally, under the regularity condition Assumption 3.1, Theorem 3.1 below states that

T̂n(θn)
d→ χ2

dg
for any sequence θn ∈ Θ0

n(δ) that satisfies Assumption 3.2.

Assumption 3.1. (a) zi, (i = 1, . . . , n), is a random sample of size n on the dz-dimensional

observation vector z; (b) EP0 [supθ∈Θ ∥g(z, θ)∥2] < ∞, EP0 [supθ∈Θ ∥∂g(z, θ)/∂θ′∥2] < ∞; (c)

∥Ω̂n(θa)− Ω̂n(θb)∥ ≤ M̂Ω,n∥θa − θb∥ uniformly θa, θb ∈ Θ for some M̂Ω,n = Op(1); (d) ∥Ĝn(θa)−
Ĝn(θb)∥ ≤ M̂G,n∥θa − θb∥ uniformly θa, θb ∈ Θ for some M̂G,n = Op(1).

Remark 3.2. Assumption 3.1 provides a set of relatively mild regularity conditions similar to
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those commonly made in the literature on GAR-based inference. The random sampling Assump-

tion 3.1(a) is primarily made for simplicity but could be weakened straightforwardly to allow for

non-i.i.d. data. Assumptions A.1(b) and (c) ensure ĝn(θ)
p→ g(θ), Ĝn(θ)

p→ G(θ) and Ω̂n(θ)
p→ Ω(θ)

uniformly θ ∈ Θ by an i.i.d. uniform weak law of large numbers.

Define the sets

∆b = {δ ∈ Rdθ : rk(VarP0 [P
′
0(Giδ − EP0 [Giδg

′
i]Ω

−gi)] = r̄Ω},

∆c = {δ ∈ Rdθ : P ′
0Gδ = 0}.

Assumption 3.2. (a) rk(Λ+) = rΩ; (b) ∆b ̸= ∅; (c) ∆b ∩∆c ̸= ∅.

Remark 3.3. A necessary and sufficient condition for Assumptions 3.2(a) and (b) is that the

variance matrix of P ′
+gi and P

′
0Giδ is full rank dg.

Define the set of sequences

Θ0
n(∆b ∩∆c) = {θn ∈ Θ0

n(δ) : δ ∈ ∆b ∩∆c}.

Theorem 3.1. Let Assumptions 3.1 and 3.2 hold. Then, for any sequence θn ∈ Θ0
n(∆b ∩∆c), (a)

T̂n(θn)
d→ χ2

dg
; (b) T̃n(θn)

d→ χ2
dg
.

Remark 3.4. If Assumptions 3.1 and 3.2(a) hold, it is straightforward to establish Theorem

3.1 whenΩ is full rank, i.e., r̄Ω = 0; cf. Remark 3.3. A key step in the Proof of Theorem 3.1

is an expansion for T̂n(θn) based on a Laurent series expansion of Ω̂n(θn)
−1 around points of

singularity; see Lemma A.3 in Appendix A. Assumption 3.2(b), first order moment singularity,

is a relatively mild requirement and is sufficient if Assumption 3.1 holds for the Laurent series

expansion of Ω̂n(θn)
−1 needed to establish the large sample properties of the statistic T̂n(θn) and

those sequences θn ∈ Θ for which T̂n(θn) exists w.p.a.1.
1

Remark 3.5. Given Assumption 3.2(b), Assumption 3.2(c) requires that there exists δ ∈ ∆b

such that P ′
0Gδ = 0. Thus T̂n(θn) is asymptotically bounded; see the Proof of Theorem 3.1. A

sufficient condition for Assumption 3.2(c) if Assumption 3.2(b) is satisfied, is N (Ω) ⊆ N (G′), i.e.,

G′P0 = 0, and, thus, ∆c = Rdθ . Section 5 provides general conditions for N (Ω) ⊆ N (G′) for

nonlinear conditional moment functions; these conditions always hold for single equation nonlinear

least squares moment functions but may not do so in multiple equation models.

3.2 Asymptotic Properties when P ′
0Gδ ̸= 0

The next theorem establishes that T̂n(θn) = Op(n) for sequences θn ∈ Θ0
n(δ) that satisfy

Assumption 3.2(b) but when Assumption 3.2(c) fails, i.e., P ′
0Gδ ̸= 0.

1To illustrate, consider the nonlinear regression ϵ(θ) = y − h(x, θ). Non-linear LS estimation of θ0 defines
g(z, θ) = ϵ(θ)∂h(x, θ)/∂θ and Ω(θ) = EP0 [ϵ(θ)

2∂h(x, θ)/∂θ∂h(x, θ)/∂θ′]. If P ′
0g(z, θ0) = 0, i.e., P ′

0∂h(x, θ0)/∂θ =
0, Assumption 3.2(b) fails if and only if Var[P ′

0∂
2h(x, θ0)/∂θ∂θ

′δ] < r̄Ω for all δ ∈ Rdθ noting ∂g(x, θ)/∂θ′ =
ϵ(θ)∂2h(x, θ)/∂θ∂θ′ + ∂h(x, θ)/∂θ∂ϵ(θ)/∂θ′.

[6]



Let ∆̄c denote the complement of ∆c, i.e.,

∆̄c = {δ ∈ Rdθ : P ′
0Gδ ̸= 0}.

Also let Υ(δ) = P ′
0EP0 [Giδδ

′G′
i]P0 and Σ(δ) = Υ(δ) − Ψ(δ)Ω−Ψ(δ)′, where Ψ(δ) = P ′

0EP0 [Giδg
′
i]

and Ω− = P+Λ
−1
+ P ′

+. Define Υ̃(δ) = Υ(δ)− P ′
0GδδG

′P0 and Σ̃(δ) = Υ̃(δ)−Ψ(δ)Ω−Ψ(δ)′.

Theorem 3.2. Suppose Assumptions 3.1, 3.2(a) and (b) are satisfied. Then, for all θn ∈ Θ0
n(∆b∩

∆̄c), (a) T̂n(θn)/n
p→ δ′G′P0Σ(δ)P

′
0Gδ; (b) T̃n(θn)/n

p→ δ′G′P0Σ̃(δ)P
′
0Gδ.

Remark 3.6. Unless P ′
0G = 0, i.e., N (Ω) ⊆ N (G′), there exist sequences θn ∈ Θ0

n(∆b∩∆̄c) for

which the GAR statistic T̂n(θn) is asymptotically unbounded. Section 4 shows how an appropriate

discretisation Θn of the parameter space Θ to a sufficiently fine degree ensures sequences θn ∈
Θn∩Θ0

n(∆b∩∆c) for large enough n and, thereby, that Theorem 3.1 is satisfied for such sequences.

3.3 Degeneracy in the Parameter Space

The singularity of Ω(θ), θ ∈ Θ, leads to degeneracies in the parameter space, i.e., parameter

subsets where particular functions of z and θ are constant w.p.1.2

To illustrate, consider the scalar moment indicator g(z, θ) = exp(θz) − (1 + θ) in which case

dg = dθ = 1. Suppose r̄Ω = 1. Hence, g(z, θ0) = 0 for all z ∈ R and θ0 = 0 w.p.1, i.e, the true value

θ0 = 0 is identified w.p.1 from a single observation z. Although it is obviously still the case that

EP0 [g(z, θ)] = 0 at θ0 = 0, any GAR-based confidence region is rendered irrelevant. No matter

that GAR-based inference would not be considered, the hypotheses of Theorem 3.1 may hold. In

this example, P0 = 1, so VarP0 [P
′
0Giδ] > 0 satisfies Assumption 3.2(b) for ∆b = {δ ∈ R : |δ| > 0}.

Since G = EP0 [z]−1, Assumption 3.2(c) holds if Gδ = 0 which is possible if and only if G = 0 given

δ ̸= 0, i.e., EP0 [z] = 1 and, thus, ∆c = R. Then, from Theorem 3.1, T̂ (θn)
d→ χ2

1 for all sequences

θn ∈ Θ0
n(∆b ∩∆c), i.e, θn ∈ Θ0

n(∆b) when G = 0. In fact, this result may be shown directly from

a Taylor expansion of Ω̂(θn)
−1 around θ0. When G ̸= 0, then ∆c = ∅ and T̂ (θn) = Op(n) for all

θn ∈ Θ0
n(∆b) by Theorem 3.2 as ∆b ∩ ∆̄c = ∆b in this case too.

In the one moment, one parameter, setting, the singularity of Ω, i.e., Ω = 0, implies that the

moment condition holds w.p.1 and the true value θ0 of the parameter vector θ can be deduced

from a single observation of z. Similarly, and more generally, in the just-identified case, i.e.,

dg = dθ, a single observation of z is sufficient to deduce the true value θ0. However, in the more

general over-identified setting when dg > dθ and in which r̄Ω(θ) > 0 linear combinations of g(z, θ)

are degenerate, the value θ is restricted to a dθ−r̄Ω(θ) dimensional stochastic (sub-)manifold of Θ

w.p.1 by the restriction P0(θ)
′g(z, θ) = 0 w.p.1. Let gθ(z, θ) = P0(θ)

′g(z, θ), i.e., gθ(z, θ) = 0

w.p.1, and is, of course, invariant to z. Partition θ = (θ′dθ−r̄Ω(θ), θ
′
r̄Ω(θ)

)′, where θdθ−r̄Ω(θ) and θr̄Ω(θ)

are, respectively, dθ − r̄Ω(θ) and r̄Ω(θ) sub-vectors of θ with the sub-vector θr̄Ω(θ) chosen so that

the derivative matrix ∂gθ(z, θ)/∂θr̄Ω(θ) is nonsingular. Thus, by the implicit function theorem,

there exists a function θr̄Ω(θ)(·) such that θr̄Ω(θ) = θr̄Ω(θ)(θdθ−r̄Ω(θ)). Consequently, the parametric

dimension dθ is reduced to dθ−r̄Ω(θ), i.e., θdθ−r̄Ω(θ)
, and, correspondingly, the moment function

2We are indebted to P.C.B. Phillips for raising this issue.
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dimension dg to rΩ(θ), i.e., P+(θdθ−r̄Ω(θ), θr̄Ω(θ)(θdθ−r̄Ω(θ)))
′g(z, θdθ−r̄Ω(θ), θr̄Ω(θ)(θdθ−r̄Ω(θ))), since

the moment restriction P0(θdθ−r̄Ω(θ), θr̄Ω(θ)(θdθ−r̄Ω(θ)))
′g(z, θdθ−r̄Ω(θ), θr̄Ω(θ)(θdθ−r̄Ω(θ))) = 0 w.p.1 is

now redundant. To illustrate, consider Example E.1 in Supplement E in which P0(θ)
′g(z, θ) = 0

at θ = θ0 implies y1 − y2 = x1θ10 − x2θ20 w.p.1. Hence, θ10 = (y1 − y2)/x1 + θ20x2/x1 w.p.1 if

P0{x1 = 0} = 0. Thus, g(z, θ0) can be expressed as a function of θ20 only; written this way the

first two moment indicators are identical and the first moment function can be dropped in this

example.

In principle, then, the singularity of Ω(θ) allows the dimensions dg of the moment indicator

function g(z, θ) and dθ of the parameter vector θ to be reduced to, respectively, rΩ(θ) and dθ−r̄Ω(θ)

with the r̄Ω(θ) redundant directions P0(θ)
′g(z, θ) of the moment indicator vector g(z, θ) conse-

quently deleted. A GAR-type statistic may then be based on the reduced moment indicator vector

P+(θ)
′g(z, θ) which, by definition, has full rank variance matrix. This is, essentially, the approach

taken in Andrews and Guggenberger (2018) to the formulation of the SR-GAR statistic with P+(θ)

and P0(θ) estimated from Ω̂n(θ). In the just-identified Example E.3 in Supplement E, where singu-

larity of Ω occurs at σ0 = a0, setting parameter values so that σ = a and deleting the last moment

indicator reduces the parametric dimension dθ to dθ − r̄Ω(θ) = 3 and the moment indicator di-

mension dg to rΩ(θ) = 3. The difficulty with the Andrews and Guggenberger (2018) approach is

that, in general, all points of singularity, i.e., those θ ∈ Θ such that r̄Ω(θ) > 0, cannot be known

a priori. Even if the points of singularity were to be known, it may not be possible to include

all such points in the discretised parameter set Θn necessitated for practical implementation of a

GAR statistic based on the reduced moment indicator vector P+(θ)
′g(z, θ) and of a consequent

GAR-based confidence region for θ0. See Section 4 for further discussion of the construction of the

discretised parameter set Θn.

Remark 3.7. The Andrews and Guggenberger (2018) SR-GAR method is particularly suited

to the case in which P0(θ) = P0 and, thus, the moment indicator vector g(z, θ) is redundant for

all θ ∈ Θ in the column directions of P0. Hence, the GAR statistic (1.2) does not exist for any

value of θ ∈ Θ. Indeed, this case does not satisfy the hypotheses of Theorem 3.1. To see this,

by the mean value theorem, P ′
0gi(θa) = P ′

0gi(θb) + P ′
0Gi(θ̄)(θa − θb) for any θa, θb ∈ Θ, where θ̄

lies on the line segment joining θa and θb, and, thus, P
′
0Gi(θ̄)(θa − θb) = 0. Hence, since θa and

θb are arbitrary, P ′
0Gi(θ) = 0 for all θ ∈ Θ, a negation of Assumption 3.2(b). With identities in

the moment indicator vector, redundant moments can be deleted straightforwardly and standard

GAR-based inference undertaken if the reduced dimension moment indicator vector at θ0 is not

subject to further, possibly unknown, singularities.

4 Feasible GAR-Based Confidence Regions

This section details a discretisation Θn of the parameter space Θ required to implement a

feasible GAR-based confidence region to ensure, for n large enough, coverage of (a subset of)

sequences θn ∈ Θ0
n(δ) for any arbitrary δ ∈ Rdθ where θn ∈ Θ0

n(δ) is defined in (3.2). The approach

described below then exploits Theorem 3.1 to construct a GAR-based confidence region which is

shown to contain θ0 with asymptotically correct size.
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The concern then is a study of the asymptotic properties of the feasible GAR-based confidence

region

Ĉn(χ2
dg(α)) = {θ ∈ Θn : T̂n(θ) ≤ χ2

dg(α)}, (4.1)

where χ2
dg
(α) denotes the 100 × α percentile of the χ2

dg
distribution. The confidence region

Ĉn(χ2
dg
(α)) (4.1) is formed by the inversion over Θn of the non-rejection region of a GAR-based

test with asymptotic size 1− α of the hypothesis H0 : θ = θ0.
3

Remark 4.1. If Ω is non-singular, i.e., rΩ = dg, under suitable regularity conditions, see, e.g.,

Stock and Wright (2000), T̂n(θ0) → χ2
dg
. Hence, pointwise, limn→∞ P0{θ0 ∈ Ĉn(χ2

dg
(α))} = α for

θ0 satisfying (1.1).

In general, however, there is no guarantee that Θn contains θ0 or any particular parameter

sequence θn converging to θ0. Unless P ′
0G = 0, i.e., N (Ω) ⊆ N (G′), there exist sequences θn ∈

Θ0
n(∆b ∩ ∆̄c) for which the GAR statistic T̂n(θn) is asymptotically unbounded by Theorem 3.2.

Consequently, GAR-based confidence regions are empty asymptotically, i.e., Ĉn(χ2
dg
(α)) = ∅ w.p.a.1

for any α ∈ (0, 1). If Θn ∩ Θ0
n(∆b ∩ ∆c) ̸= ∅ for n large enough, then, from Theorem 3.1,

Ĉn(χ2
dg
(α)) contains sequences θn such that d(θn, θ0) = o(n−1/2) and has correct asymptotic level

α. Our concern then is to show how discretising Θ to a sufficiently fine degree ensures that

Θn ∩Θ0
n(∆b ∩∆c) ̸= ∅ for large enough n.

Remark 4.2. Theorem 15.1, p.20, in the Supplement to Andrews and Guggenberger (2018)

demonstrates that a confidence region formed by inverting the SR-GAR based non-rejection region

constructed using a Moore-Penrose pseudoinverse of Ωn(θ) over Θ has correct asymptotic size.

However, for this result to hold when the SR-GAR based confidence region is constructed in

practice with a discretised parameter space Θn, θ0 ∈ Θn (or θn ∈ Θn with rk(Ω̂n(θn)) = rk(Ω̂n(θ0))

w.p.a.1) is required for correct asymptotic level when Ω is singular. The asymptotic properties of

the SR-GAR statistic in this case may be studied using the methods in this paper, or similar.

The asymptotic properties of the GAR-based confidence region estimator Ĉn(χ2
dg
(α)) (4.1) are

studied for Θn either fixed or selected at random. Hence the events {θn ∈ Θn} and {T̂n(θn) ≤
χ2
dg
(α)} are independent, i.e.,

P0{θn ∈ Ĉn(χ2
dg(α))} = P0{θn ∈ Θn}P0{T̂n(θn) ≤ χ2

dg(α)}. (4.2)

Remark 4.3. Even if Ω is full rank, when T̂n(θn)
d→ χ2

dg
, from (4.2), limn→∞ P0{θ0 ∈ Θn} = 1

is a necessary condition for the confidence region Ĉn(χ2
dg
(α)) (4.1) to have correct asymptotic size

α. However, this condition is non-trivial and not readily verifiable in practice, irrespective of how

finely the parameter space Θ is discretized.4

The issue noted in Remark 4.3 is especially important when Ω is singular, as indicated by

Theorem 3.1, since if N (Ω) * N (G′), then the GAR statistic T̂n(θn) (1.2) is asymptotically

unbounded for θn ∈ Θ0
n(∆b∩∆̄c) and the confidence region Ĉn(χ2

dg
(α)) (4.1) correspondingly empty

3Mikusheva (2010) proposed a similar solution that inverts T̂n(θ) over some Θn in a one parameter linear IV model
with non-singular moment variance matrix that is equivalent to the solution of a system of quadratic inequalities
inverted over Θn that can be solved explicitly.

4Consider dθ = 1 with Θ = [0, 1]. Suppose Θn = {0, 1
n
, ..., n−1

n
, 1} and θ0 = 1/

√
2. Then θ0 /∈ Θn for all n and,

thus, P0{θ0 ∈ Θn} = 0. Hence P0{θn ∈ Ĉn(χ2
dg (α))} = 0 by (4.2).
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w.p.a.1 if Θn ⊆ Θ0
n(∆b ∩ ∆̄c). Hence, in general, the discretized set Θn should contain a subset

of sequences θn ∈ Θ0
n(∆b ∩ ∆c) such that, by Theorem 3.1, the GAR statistic is asymptotically

distributed as a χ2
dg

random variate. Therefore, the GAR-based confidence region Ĉn(χ2
dg
(α)) will

include sequences θn ∈ Θ0
n(∆b ∩ ∆c) with correct asymptotic size α. To construct a confidence

region that includes θ0 with probability α asymptotically, first consider the discretisation

Θn = {−kn,−
[nκ]− 1

nκ
kn, ...,−

1

nκ
, 0,

1

nκ
, ...,

[nκ]− 1

nκ
kn, kn}dθ (4.3)

when dθ = 1 where kn > 0, kn → ∞ and κ > 1; the extension to the case dθ > 1 is straightforward

by applying the same argument element-wise to θ ∈ Θ.

Remark 4.4. The discretisation Θn (4.3) is chosen so that θ0 is at most a 1/nκ perturbation

from some element of Θn for n large enough and, thus, θ0 is in the convex hull of Θn as kn → ∞.

Then, for any ϵ > 1/2 such that κ ≥ ϵ + 1/2 and some bn, bn ∈ Bn = {1, . . . , [knnκ]}, where [·] is
the integer part of ·, there exists θ̃n ∈ Θn such that −bn/nκ−ϵ ≤ nϵ(θ̃n − θ0) ≤ bn/n

κ−ϵ. For any

δ ∈ R, for n large enough, there exists bn = cn − nκ−ϵδ and bn = cn + nκ−ϵδ for some bounded

cn, cn in the convex hull of Bn so that −cn/nκ−ϵ ≤ nϵ(θ̃n − θ0) − δ ≤ cn/n
κ−ϵ. Thus, writing

δn = nϵ(θ̃n − θ0), since κ− ϵ > 1/2 and cn, cn are O(1), n1/2(θ̃n − θ0)− δ → 0, i.e., θ̃n ∈ Θ0
n(δ).

The argument of Remark 4.4 holds for any δ ∈ Rdθ so that Θn includes sequences θn ∈ Θ0
n(δ)

for 1/2 < ϵ ≤ κ− 1/2. Therefore, the feasible confidence region Ĉn(χ2
dg
(α)) = {θ ∈ Θn : T̂n(θ) ≤

χ2
dg
(α)} with Θn defined above will contain sequences in Θ0

n(δ) with probability α as n→ ∞ under

Assumptions 3.1 and 3.2. Importantly this discussion does not establish that θ0 ∈ Ĉn(χ2
dg
(α))

with asymptotic probability α unless T̂n(θ0) exists and θ0 ∈ Θn for n large enough but rather that

Ĉn(χ2
dg
(α)) covers certain o(n−1/2) perturbations to θ0 with asymptotic probability α. Further

modifications to Ĉn(χ2
dg
(α)) are therefore required for a feasible GAR-based confidence region that

covers θ0 with asymptotic level α.

Consider the set

Ĉ0
n(χ

2
dg(α)) = {θ ∈ Θ : dH(θ, Ĉn(χ2

dg(α))) ≤ Cn−v} (4.4)

for some C > 0 and v > 1/2. Theorem 4.1 below shows that a (piecewise) continuous confidence

region Ĉ0
n(χ

2
dg
(α)) where Ĉ0

n(χ
2
dg
(α)) ⊇ Ĉn(χ2

dg
(α)) contains θ0 with asymptotic probability α.

Theorem 4.1. Suppose Assumptions 3.1 and 3.2 are satisfied. Then, if κ > v+1/2 and v > 1/2,

limn→∞ P0{θ0 ∈ Ĉ0
n(χ

2
dg
(α))} = α.

Remark 4.5. The feasible GAR-based confidence region Ĉ0
n(χ

2
dg
(α)) (4.4) can be constructed

by forming Θn (4.3) for some large kn > 0 and κ > 1 where v < κ − 1/2. Under the relatively

mild assumptions needed for Theorem 3.1, Theorem 4.1 establishes that Ĉ0
n(χ

2
dg
(α)) includes θ0

asymptotically with probability α with little restriction on the form of Ω or a priori knowledge of

points of singularity.

Remark 4.6. The construction of the confidence set Ĉ0
n(χ

2
dg
(α)) essentially ignores the in-

formation P ′
0g(z, θ0) = 0 w.p.1 associated with the singular moment variance matrix Ω; see the
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discussion in Section 3.3. As noted in Remark 4.2, however, the Andrews and Guggenberger (2018)

SR-GAR confidence region requires θ0 ∈ Θn for correct asymptotic level if Ω is singular.

5 Conditions For N (Ω) ⊆ N (G′)

As noted above, ∆c = Rdθ when N (Ω) ⊆ N (G′), i.e., P ′
0Gδ = 0 for all δ ∈ ∆b. Thus,

T̂n(θn)
d→ χ2

dg
for all sequences θn ∈ Θ0

n(δ), δ ∈ ∆b, i.e., sequences θn such that T̂n(θn) exists

w.p.a.1.

In this section, the moment function g(z, θ) is defined via a residual dρ-dimensional vector

ρ(z, θ) and the conditional moment restriction

EP0 [ρ(z, θ)|x] = 0 a.s.(x).

We distinguish between two types of moment function depending upon whether an initial

estimation of EP0 [∂ρ(z, θ)/∂θ
′|x] is required.

Let D(x, θ) = EP0 [∂ρ(z, θ)/∂θ
′|x] and V (x, θ) = EP0 [ρ(z, θ)ρ(z, θ)

′|x]. Then the optimal vector

of instruments is D(x, θ)′V (x, θ)−1ρ(z, θ); see, e.g., Newey (1993).

5.1 Case A. EP0 [∂ρ(z, θ)/∂θ
′|x] = ∂ρ(θ)/∂θ′ a.s.(x)

Since θ0 is unknown, the moment indicator vector is often formed in practice as

g(z, θ) =
∂ρ(θ)′

∂θ
ρ(z, θ),

i.e., as if the conditional moment variance matrix V (x, θ0) is the identity matrix Idρ . Here, dg = dθ.

Hence, G = (∂ρ(θ0)/∂θ
′)′(∂ρ(θ0)/∂θ

′) and Ω = (∂ρ(θ0)/∂θ
′)′EP0 [ρ(z, θ0)ρ(z, θ0)

′](∂ρ(θ0)/∂θ
′). If

the unconditional variance matrix EP0 [ρ(z, θ0)ρ(z, θ0)
′] of the residual vector ρ(z, θ0) is non-singular

then, for any β ∈ Rdθ , Ωβ = 0 if and only if (∂ρ(θ0)/∂θ
′)β = 0, i.e., D(x, θ0)β = 0. Hence, G′β = 0

if and only if (∂ρ(θ0)/∂θ
′)β = 0. Therefore N (Ω) = N (G′).

Proposition 5.1. Let g(z, θ) = (∂ρ(θ)/∂θ′)ρ(z, θ0). Then, if EP0 [ρ(z, θ0)ρ(z, θ0)
′] is non-singular,

N (Ω) = N (G′).

Remark 5.1. More generally, if EP0 [ρ(z, θ0)ρ(z, θ0)
′] is singular, then N (G′) ⊆ N (Ω). Propo-

sition 5.1 is applicable to the nonlinear IV simultaneous equation model.

5.2 Case B. EP0 [∂ρ(z, θ)/∂θ
′|x] ̸= ∂ρ(θ)/∂θ′ a.s.(x)

When the condition EP0 [∂ρ(z, θ)/∂θ
′|x] = ∂ρ(θ)/∂θ′ a.s.(x) fails to hold, it often the case in

practice that the unconditional moment vector g(z, θ) is constructed using a dψ-vector of functions

ψ(x) = (ψ1(x), ..., ψdψ(x))
′ of the instruments x, i.e.,

g(z, θ) = ρ(z, θ)⊗ ψ(x);

[11]



cf. inter alia Jorgenson and Laffont (1974). Here, dg = dρdψ. Hence, G = EP0 [EP0 [∂ρ(z, θ0)/∂θ
′|x]⊗

ψ(x)] and Ω = EP0 [EP0 [ρ(z, θ0)ρ(z, θ0)
′|x] ⊗ ψ(x)ψ(x)′]. We assume that ψ(x) does not include

any linearly redundant components, i.e., EP0 [ψ(x)ψ(x)
′] is non-singular. Hence, Ω is singular only

if EP0 [ρ(z, θ0)ρ(z, θ0)
′|x] has deficient rank a.s.(x).

Define δ = (δ′1, . . . , δ
′
dρ
)′ where δj ∈ Rdψ , (j = 1, . . . , dψ).

Proposition 5.2. Let g(z, θ) = ρ(z, θ)⊗ ψ(x). Then, if EP0 [ψ(x)ψ(x)
′] is non-singular, N (Ω) ⊆

N (G′) if and only if G′δ = 0 for all δ ∈ Rdg such that (Idρ ⊗ψ(x)′)δ ∈ N (EP0 [ρ(z, θ0)ρ(z, θ0)
′|x]⊗

Idψ) a.s.(x).

Remark 5.2. If the residual function ρ(z, θ) is conditionally homoskedastic a.s.(x), i.e.,

EP0 [ρ(z, θ0)ρ(z, θ0)
′|x] = EP0 [ρ(z, θ0)ρ(z, θ0)

′], then rk(Ω) = rρdψ where rρ = rk(EP0 [ρ(z, θ0)ρ(z, θ0)
′]).

6 Simulation Evidence

6.1 Preliminaries

Consider the bivariate linear IV regression model, cf. Example E.1 in Supplement E,

yj = θ0jxj + εj , (j = 1, 2),

where xj = πw1 + ηj , (j = 1, 2), and w = (w1, w2)
′ denotes the vector of instruments.

In all cases, the true value of the parameter vector θ0 is given by θ01 = 1.0, θ02 = 0.5 and the

instruments wj , (j = 1, 2), are independent standard normal variates.

Since π1 = π2 = π, it follows from Example E.1 that P ′
0Gδ = −π(δ1 − δ2)/

√
2. We consider

θn = θ0 + n−1δn where δn = (δ1n, δ2n)
′; cf. (3.2). By Theorem 3.2, in the common shock case of

Example E.1, i.e., ε1 = ε2, T̂ (θn)/n→ δ′G′P0Φ(δ)
−1P ′

0Gδ ∝ π2

2 (δ1− δ2)2; here limn→∞ δ1n− δ2n =

δ1 − δ2.

6.2 Design

The structural innovations ε1, ε2 are described by

ε1 =

√
1 + ρ

2
υ1 +

√
1− ρ

2
υ2

ε2 =

√
1 + ρ

2
υ1 −

√
1− ρ

2
υ2.

and (υ1, υ2, η1, η2)
′ is distributed conditional on w as N(0,Ξ) where

Ξ =


1.0 0.0 0.3 0.0

0.0 1.0 0.5 0.0

0.3 0.0 1.0 0.0

0.0 0.5 0.0 1.0


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For sequences θn, we set δ1n = δ1 = 1 and δ2n = 1+ ϵn where ϵn = 10 exp(0.15j)/ exp(0.15Jn),

j ∈ {0, · · · , Jn}, Jn ∈ {90, 100, 110, 115} corresponding to n = 100, 500, 1000 and 5000 respectively.

This specification allows for sequences θn such that δ2n deviates from δ1n by ϵn ranging from

10/ exp(−0.15Jn) to 10 with smaller increments for larger sample sizes. For any such θn, the

minimum of δ2−δ1, i.e., the limit of δ1n−δ2n, is 9. This set of sequences θn includes ϵn = o(n−1/2).

Hence, some sequences θn ∈ Θ0
n(∆b∩∆c) are also covered so that the limiting distribution of T̂ (θn)

is χ2
3 by Theorem 3.1; see Section 3.1.

Sample sizes n = 100, 500, 1000 and 5000 are examined. All results are based on 1, 000 random

draws.

6.3 Results

Figure 1 plots P0{Ĉ0
n(χ

2
dg
(0.90)} (4.4) against δ2n − δ1n on a logarithmic scale.

It is immediately apparent that, for all sample sizes n, sequences δ2n−δ1n, ρ and π, the coverage
P0{θ0 ∈ Ĉ0

n(χ
2
dg
(0.90)} is approximately 0.1 for δ2n − δ1n close to zero, i.e., those sequences {θn}

satisfying Theorem 3.1. Overall, test size is increasing in ρ and π with size approaching 0.1 for

ρ < 1.0 and at a faster rate as n increases the further ρ is from 1.0. When ρ = 1.0, test size quickly

approaches 1.0 as n increases with δ2n− δ1n bounded away from zero. The GAR statistic T̂ (θn) is

oversized for those sequences δ2n − δ1n → 9 as π increases even if ρ = 0.9 when Ω is non-singular.

Note that the sequences θn are all O(n−1) perturbations to θ0. Figure 1 shows that the coverage

P0{θ0 ∈ Ĉ0
n(χ

2
dg
(0.90)} can be highly sensitive to very small perturbations to θ0, being oversized

for moment indicator functions with some elements with correlation at most 0.9. Figure 1 also

highlights the necessity for Θn to be discretized sufficiently finely in order that, for asymptotically

correct size, the feasible confidence region contains sequences θn converging to θ0; see Section 3.

7 Summary and Conclusions

This paper derives the asymptotic properties of GAR-based confidence regions in the presence

of a singular moment variance matrix. To do so, the inverse of the sample moment variance

matrix Ω̂n(θ) is expanded around points of singularity of Ω using a Laurent series expansion. This

approach is new in the literature and does not presuppose the form of singularity of the moment

variance matrix is known. The main results of this paper allow both the expected Jacobian G and

moment variance matrix Ω to have arbitrary rank and form and provide a direct extension to those

for the GAR statistic with nonsingular Ω in Stock and Wright (2000).

We devote attention to first order moment singularity. This is a sufficient condition that enables

the Laurent series expansion to be established, which is a key step in showing that the GAR statistic

exists asymptotically on a set of parameter sequences converging to the true parameter value θ0.

We show that a sufficient condition for the GAR statistic to converge in distribution to a χ2
dg

variate on all such sequences is that the null space of the moment variance matrix Ω is a subset

of that of the transposed expected Jacobian matrix G′. In the absence of this condition, the GAR

statistic may be asymptotically unbounded on a subset of such sequences.
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Figure 1: GAR rejection probabilities plotted against δ2n − δ1n for n = 100, 500, 1000, 5000.
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On the basis of these results, the paper details how to discretise appropriately the parame-

ter space over which the non-rejection region of a GAR-based test is inverted to guarantee that

parameter sequences for which the GAR statistic is asymptotically chi-square distributed are cov-

ered. A feasible GAR-based confidence region contains the value θ0 with correct asymptotic size

under relatively mild assumptions and requires no knowledge of points of singularity. Furthermore,

GAR-based inference does not require any regularization or pre-testing, and so is less computa-

tionally burdensome than a regularization approach. Supplement E provides a number of examples

of moment functions with singular variance matrix. A simulation study illustrates the results of

this paper. Additional simulation evidence is provided in Supplement S.

Useful extensions of the results in this paper would be to the many weak moments case consid-

ered in Newey and Windmeijer (2009) and to accommodate subvector inference. Another avenue

for future research is the extension of the results on generalised empirical likelihood based inference

with weak identification of Guggenberger and Smith (2005), Guggenberger and Smith (2008) and

Guggenberger et al. (2012) to allow for a singular moment variance matrix.

Appendix

The following auxiliary lemmas are established under Assumptions 3.1 and 3.2 and are used

in the proofs of Theorems 3.1, 3.2 and 4.1 in Appendix B. Lemmas A.1 and A.2 are used to show

Lemma A.3, which expands Ω̂n(θn)
−1 and Ω̃n(θn)

−1 around points of singularity by a Laurent

series expansions for sequences θn ∈ Θ0
n(∆b), a key step in proving Theorem 3.1.

The argument θ is suppressed for expositional simplicity throughout the Appendices where

there is no possibility of confusion.

Throughout the Appendices, C will denote a generic positive constant that may be different

in different uses with CS, M and T the Cauchy-Schwartz, Markov and triangle inequalities respec-

tively. In addition UWL and CLT refer to, respectively, a uniform weak law of large numbers and

a central limit theorem for i.i.d. random variables.

Appendix A: Auxiliary Lemmas

Lemma A.1. Under Assumption 3.1, then for any θn ∈ Θ0
n(δ) for all δ ∈ Rdθ (a) n2εP ′

0Ω̂n(θn)P0
p→

P ′
0EP0 [Giδδ

′G′
i]P0; (b) n

2εP ′
0Ω̃n(θn)P0

p→ P ′
0(EP0 [Giδδ

′G′
i]−Gδδ′G′)P0.

Proof. (a). By the mean value theorem

gi(θn) = gi + n−εGi(θ
∗
n)δn

where θ∗n is on the line segment joining θn and θ0. Hence

Ω̂n(θn) = Ω̂n +
1

n1+2ε

n∑
i=1

Gi(θ
∗
n)δnδ

′
nGi(θ

∗
n)

′ +
1

n1+ε

n∑
i=1

Gi(θ
∗
n)δng

′
i +

1

n1+ε

n∑
i=1

giδ
′
nGi(θ

∗
n)

′.
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Since P ′
0gi = 0 w.p.1

n2εP ′
0Ω̂n(θn)P0 =

1

n

n∑
i=1

P ′
0Gi(θ

∗
n)δnδ

′
nGi(θ

∗
n)

′P0.

Now
1

n

n∑
i=1

Gi(θ
∗
n)δnδ

′
nGi(θ

∗
n)

′ =
1

n

n∑
i=1

Giδδ
′G′

i +Rn.

where Rn =
∑4

k=1Rkn and

R1n =
1

n

n∑
i=1

(Gi(θ
∗
n)−Gi)δnδ

′
n(Gi(θ

∗
n)−Gi)

′,

R2n =
1

n

n∑
i=1

(Gi(θ
∗
n)−Gi)δnδ

′
nG

′
i = R′

3n,

R4n =
1

n

n∑
i=1

Gi(δnδ
′
n − δδ′)G′

i.

By T and Assumption 3.1(d),

∥R1n∥ ≤ ∥δn∥2
1

n

n∑
i=1

∥Gi(θ∗n)−Gi∥2

≤ ∥δn∥2Op(1)∥θn − θ0∥2 = Op(n
−2ε) = op(1).

Similarly, by CS and UWL,

∥R2n∥ ≤ ∥δn∥2
1

n

n∑
i=1

∥Gi(θ∗n)−Gi∥∥Gi∥

≤ ∥δn∥2(
1

n

n∑
i=1

∥Gi(θ∗n)−Gi∥2)1/2(
1

n

n∑
i=1

∥Gi∥2)1/2 = Op(n
−ε) = op(1).

Finally,

∥R4n∥ ≤ ∥δnδ′n − δδ′∥ 1
n

n∑
i=1

∥Gi∥2

≤ Op(n
−1/2)Op(1) = op(1).

Therefore,

n2εP ′
0Ω̂n(θn)P0 =

1

n

n∑
i=1

P ′
0Giδδ

′G′
iP0 + op(1)

and the conclusion follows, noting EP0 [∥Giδδ′G′
i∥] ≤ ∥δ∥2EP0 [∥Gi∥2] <∞.

(b). Recall Ω̃n(θn) = Ω̂n(θn)− ĝn(θn)ĝn(θn)
′. From part (a)

nεP ′
0ĝn(θn) =

1

n

n∑
i=1

P ′
0Gi(θ

∗
n)δn.
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Now
1

n

n∑
i=1

Gi(θ
∗
n)δn =

1

n

n∑
i=1

Giδ +Rn.

where Rn =
∑2

k=1Rkn and

R1n =
1

n

n∑
i=1

(Gi(θ
∗
n)−Gi)δn,

R2n =
1

n

n∑
i=1

Gi(δn − δ).

By similar arguments to those in part (a) ∥R1n∥ ≤ Op(n
−ε) and ∥R2n∥ ≤ Op(n

−1/2). Hence, by

UWL, nεP ′
0ĝn(θn)

p→ P ′
0Gδ and the conclusion follows.�

Lemma A.2. Under Assumption 3.1, then for any θn ∈ Θ0
n(δ) for all δ ∈ Rdθ (a) nεP ′

0Ω̂n(θn)
p→

P ′
0EP0 [Giδg

′
i]; (b) n

εP ′
0Ω̃n(θn)

p→ P ′
0EP0 [Giδg

′
i].

Proof. (a). From the Proof of Lemma A.1(a), by the mean value theorem and since P ′
0gi = 0

w.p.1

nεP ′
0Ω̂n(θn) =

1

n

n∑
i=1

P ′
0Gi(θ

∗
n)δnδ

′
nGi(θ

∗
n)

′ +
1

n

n∑
i=1

P ′
0Gi(θ

∗
n)δng

′
i.

where θ∗n is on the line segment joining θn and θ0. Recall

1

n

n∑
i=1

Gi(θ
∗
n)δnδ

′
nGi(θ

∗
n)

′ p→ EP0 [Giδδ
′G′

i].

Similarly to the Proof of Lemma A.1(b)

1

n

n∑
i=1

Gi(θ
∗
n)δng

′
i =

1

n

n∑
i=1

Giδg
′
i +Rn.

where Rn =
∑2

k=1Rkn and

R1n =
1

n

n∑
i=1

(Gi(θ
∗
n)−Gi)δng

′
i,

R2n =
1

n

n∑
i=1

Gi(δn − δ)g′i.

By similar arguments to those in the Proof of Lemma A.1

∥R1n∥ ≤ ∥δn∥
1

n

n∑
i=1

∥Gi(θ∗n)−Gi∥∥gi∥

≤ ∥δn∥(
1

n

n∑
i=1

∥Gi(θ∗n)−Gi∥2)1/2(
1

n

n∑
i=1

∥gi∥2)1/2 = Op(n
−ε) = op(1)
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and

∥R2n∥ ≤ ∥δn − δ∥ 1
n

n∑
i=1

∥Gi∥∥gi∥

≤ O(n−1/2)(
1

n

n∑
i=1

∥Gi∥2)1/2(
1

n

n∑
i=1

∥gi∥2)1/2 = Op(n
−1/2) = op(1).

Hence, by UWL, nεP ′
0Ω̂n(θn)

p→ P ′
0EP0 [Giδg

′
i] giving the conclusion.

(b). Follows immediately from part (a) as nεP ′
0ĝn(θn)

p→ P ′
0Gδ from the Proof of Lemma

A.1(b) and ĝn(θn) = op(1) by UWL.�

Central to the Proof of Lemma A.3 is a Laurent series expansion for Ω̂n(θn) that relies on

Avrachenkov et al. (2013, Theorems 2.10 and 2.11, pp.22-25). Let A, B be m×m matrices where

rk(A) = rA < m and B = Op(1). Let A(z) = A+ zB, z ∈ R. Then, for all z → 0, if A(z)−1 exists

in a neighbourhood of z = 0 and B satisfies det(V ′
0BV0) ̸= 0 w.p.a.1 where V0 is a m × (m − rA)

matrix such that AV0 = 0 w.p.a.1,

A(z)−1 =
1

z
V0(V

′
0BV0)

−1V ′
0 +MV0(B)A−

∞∑
j=0

(−MV0(B)(zB)MV0(B)′A−)jMV0(B)′,

where A− is the Moore-Penrose generalized inverse of A.

Let ∂Ω̂n = Ω̂n(θn)− Ω. Recall MP0(∂Ω̂n) = Idg − P0(P
′
0∂Ω̂nP0)

−1P ′
0∂Ω̂n.

Lemma A.3. Let Assumptions 3.1, 3.2(a) and (b) be satisfied. Then, if r̄Ω > 0, for all sequences

θn ∈ Θ0
n(∆b), apart from an op(∥MP0(∂Ω̂n)∥2) term,

(a)

Ω̂n(θn)
−1 = P0(P

′
0∂Ω̂nP0)

−1P ′
0

+MP0(∂Ω̂n)Ω
−(Ω + EP0 [giδ

′G′
i]P0Σ(δ)

−1P ′
0EP0 [Giδg

′
i])Ω

−MP0(∂Ω̂n)
′

where Σ(δ) = P ′
0(EP0 [Giδδ

′G′
i]− EP0 [Giδg

′
i]Ω

−EP0 [giδ
′G′

i])P0;

(b)

Ω̃n(θn)
−1 = P0(P

′
0∂Ω̃nP0)

−1P ′
0

+MP0(∂Ω̃n)Ω
−(Ω + EP0 [giδ

′G′
i]P0Σ̃(δ)

−1P ′
0EP0 [Giδg

′
i])Ω

−MP0(∂Ω̃n)
′

where Σ̃(δ) = P ′
0(EP0 [Giδδ

′G′
i]−Gδδ′G′ − EP0 [Giδg

′
i]Ω

−EP0 [giδ
′G′

i])P0.

Proof. (a). Set z = n−2ε, A = Ω, B = n2ε∂Ω̂n, V0 = P0 and, thus, A(z) = Ω̂n(θn). Now,

using Lemma A.1(a),

V ′
0BV0 = n2εP ′

0∂Ω̂nP0
p→ P ′

0EP0 [Giδδ
′G′

i]P0

with P ′
0EP0 [Giδδ

′G′
i]P0 full rank under Assumption 3.2(b). Hence, rk(n2εP ′

0∂Ω̂nP0) = r̄Ω w.p.a.1.

Therefore, with these definitions, Ω̂n(θn) satisfies the hypotheses of Avrachenkov et al. (2013,
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Theorems 2.10 and 2.11, pp.22-25) and, thereby, noting zB = ∂Ω̂n, admits the Laurent series

expansion

Ω̂n(θn)
−1 = P0(P

′
0∂Ω̂nP0)

−1P ′
0 +MP0(∂Ω̂n)Ω

−
∞∑
j=0

(−MP0(∂Ω̂n)∂Ω̂nMP0(∂Ω̂n)
′Ω−)jMP0(∂Ω̂n)

′

for all sequences θn ∈ Θ0
n(∆b).

Consider

MP0(∂Ω̂n)∂Ω̂nMP0(∂Ω̂n)
′Ω− = (∂Ω̂n − ∂Ω̂nP0(P

′
0∂Ω̂nP0)

−1P ′
0∂Ω̂n)Ω

−

= (∂Ω̂n − Ω̂n(θn)P0(P
′
0Ω̂n(θn)P0)

−1P ′
0Ω̂n(θn))Ω

−.

By Lemmas A.1(a) and A.2(a), since P ′
0∂Ω̂nP0 is non-singular w.p.a.1,

nεΩ̂n(θn)P0(n
2εP ′

0Ω̂n(θn)P0)
−1nεP ′

0Ω̂n(θn)
p→ EP0 [giδ

′G′
i]P0(P

′
0EP0 [Giδδ

′G′
i]P0)

−1P ′
0EP0 [Giδg

′
i].

By T, ∥∂Ω̂n∥ ≤ ∥Ω̂n(θn)− Ω̂n∥+∥Ω̂n−Ω∥ = op(1), using Assumption 3.1(d) and by UWL. Hence,

noting Ω− = Op(1),

MP0(∂Ω̂n)∂Ω̂nMP0(∂Ω̂n)
′Ω− p→ −EP0 [giδ

′G′
i]P0(P

′
0EP0 [Giδδ

′G′
i]P0)

−1P ′
0EP0 [Giδg

′
i]Ω

−.

Let X = EP0 [giδ
′G′

i]P0 and V = P ′
0EP0 [Giδδ

′G′
i]P0. Rewrite

Ω−
∞∑
j=0

(−MP0(∂Ω̂n)∂Ω̂nMP0(∂Ω̂n)
′Ω−)j = Ω−

∞∑
j=0

(XV −1X ′Ω− + op(1))
j

= Ω− +Ω−X(V −1
∞∑
j=0

(X ′Ω−XV −1 + op(1))
j)X ′Ω−.

Repeated use of the Sherman-Morrison-Woodbury formula, see Horn and Johnson (2013, p.19),

yields

V −1
∞∑
j=0

(X ′Ω−XV −1)j = (V −X ′Ω−X)−1 = Σ−1

since Σ = V −XΩ−X ′ is full rank by Assumption 3.2(b).

Therefore, apart from an op(∥MP0(∂Ω̂n)∥2) term,

Ω̂n(θn)
−1 = P0(P

′
0∂Ω̂nP0)

−1P ′
0 +MP0(∂Ω̂n)Ω

−(Ω +X ′Σ−1X)Ω−MP0(∂Ω̂n)
′

for all sequences θn ∈ Θ0
n(∆b).

(b). Let ∂Ω̃n = Ω̃n(θn)− Ω. Recall MP0(∂Ω̃n) = Idg − P0(P
′
0∂Ω̃nP0)

−1P ′
0∂Ω̃n.

The proof is the same as that of Lemma A.3(a) except that Lemmas A.1(b) and A.2(b) sub-

stitute for Lemmas A.1(a) and A.2(a).

Apart from setting B = n2ε∂Ω̃n and, thus, A(z) = Ω̃n(θn), the other definitions remain the

[19]



same as in the Proof of Lemma A.3. Using Lemma A.1(b),

V ′
0BV0 = n2εP ′

0∂Ω̃nP0
p→ P ′

0(EP0 [Giδδ
′G′

i]−Gδδ′G′)P0

with P ′
0(EP0 [Giδδ

′G′
i]−Gδδ′G′)P0 full rank under Assumption 3.2(b). Hence, rk(n2εP ′

0∂Ω̃nP0) = r̄Ω

w.p.a.1. Therefore, Ω̃n(θn), noting zB = ∂Ω̃n, admits the Laurent series expansion

Ω̃n(θn)
−1 = P0(P

′
0∂Ω̃nP0)

−1P ′
0 +MP0(∂Ω̃n)Ω

−
∞∑
j=0

(−MP0(∂Ω̃n)∂Ω̃nMP0(∂Ω̃n)
′Ω−)jMP0(∂Ω̃n)

′

for all sequences θn ∈ Θ0
n(∆b).

By the same arguments as in the Proof of Lemma A.3(a), by Lemma A.1(b) and A.2(b),

MP0(∂Ω̃n)∂Ω̃nMP0(∂Ω̃n)
′Ω− p→ −EP0 [giδ

′G′
i]P0(P

′
0(EP0 [Giδδ

′G′
i]−Gδδ′G′)P0)

−1P ′
0EP0 [Giδg

′
i]Ω

−.

With X = EP0 [giδ
′G′

i]P0 and now V = P ′
0(EP0 [Giδδ

′G′
i] − Gδδ′G′)P0, again defining Σ =

V −XΩ−X ′,

Ω̃n(θn)
−1 = P0(P

′
0∂Ω̃nP0)

−1P ′
0 +MP0(∂Ω̃n)Ω

−(Ω +X ′Σ−1X)Ω−MP0(∂Ω̃n)
′

apart from an op(∥MP0(∂Ω̃n)∥2) term, for all sequences θn ∈ Θ0
n(∆b). �

Appendix B: Proofs of Theorems

Proof of Theorem 3.1. (a). Using the mean value theorem, ĝn(θn) = ĝn + n−εĜn(θ
∗
n)δn,

where θ∗n is on the line segment joining θn and θ0. Hence,

T̂n(θn) = nĝ′nΩ̂n(θn)
−1ĝn + 2n1−εĝ′nΩ̂n(θn)

−1Ĝn(θ
∗
n)δn + n1−2εδ′nĜn(θ

∗
n)

′Ω̂n(θn)
−1Ĝn(θ

∗
n)δn

= T̂ 1
n + T̂ 2

n + T̂ 3
n .

Lemma A.3 is applied to each term T̂ jn, (j = 1, 2, 3), in turn. Recall Σ(δ) = P ′
0(EP0 [Giδδ

′G′
i]−

EP0 [Giδg
′
i]Ω

−EP0 [giδ
′G′

i])P0.

First, noting P ′
0ĝn = 0 w.p.1, MP0(∂Ω̃n)

′ĝn = ĝn and op(∥MP0(∂Ω̂n)
′ĝn∥) = op(∥ĝn∥) =

op(n
−1/2) w.p.1. Hence,

T̂ 1
n = nĝ′nΩ

−(Ω + EP0 [giδ
′G′

i]P0Σ(δ)
−1P ′

0EP0 [Giδg
′
i])Ω

−ĝn + op(1). (B.1)

Secondly, by Assumption 3.1(d) and CLT n1/2(Ĝn −G) = Op(1),

n1/2(Ĝn(θ
∗
n)−G) = n1/2(Ĝn(θ

∗
n)− Ĝn) + n1/2(Ĝn −G)

= n1/2(Ĝn −G) + op(n
1/2−ε).
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Hence, from Assumption 3.2(c), since δn = δ + o(1),

n1/2P ′
0Ĝn(θ

∗
n)δn = n1/2P ′

0Ĝn(θ
∗
n)(δ + o(1))

= n1/2P ′
0(Ĝn(θ

∗
n)−G)(δ + o(1))

= n1/2P ′
0(Ĝn −G)δ + op(n

1/2−ε).

Then, by a similar argument to that in the Proof of Lemma A.3, using Lemmas A.1(a) and A.2(a),

n1/2−εMP0(∂Ω̂n)
′Ĝn(θ

∗
n)δn = (n−εIdg − nεΩ̂n(θn)P0(n

2εP ′
0Ω̂n(θn)P0)

−1n1/2P ′
0Ĝn(θ

∗
n)δn

= −EP0 [giδ
′G′

i]P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1n1/2P ′
0(Ĝn −G)δ + op(1).

Therefore,

T̂ 2
n = −2n1/2ĝ′nΩ

−(Ω + EP0 [giδ
′G′

i]P0Σ(δ)
−1P ′

0EP0 [Giδg
′
i])Ω

−

×EP0 [giδ
′G′

i]P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1n1/2P ′
0(Ĝn −G)δ + op(1)

= −2n1/2ĝ′nΩ
−EP0 [giδ

′G′
i]P0Σ(δ)

−1n1/2P ′
0(Ĝn −G)δ + op(1) (B.2)

noting Σ(δ)−1 = (P ′
0EP0 [Giδδ

′G′
i]P0)

−1
∑∞

j=0(P
′
0EP0 [Giδg

′
i])Ω

−EP0 [giδ
′G′

i])P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1)j .

Finally, similarly,

T̂ 3
n = n1/2δ′(Ĝn −G)′P0(P

′
0EP0 [Giδδ

′G′
i]P0)

−1n1/2P ′
0(Ĝn −G)δ

+n1/2δ′(Ĝn −G)′P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1P ′
0EP0 [Giδg

′
i]

×Ω−(Ω + EP0 [giδ
′G′

i]P0Σ(δ)
−1P ′

0EP0 [Giδg
′
i])Ω

−

×EP0 [giδ
′G′

i]P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1n1/2P ′
0(Ĝn −G)δ

+op(1)

= n1/2δ′(Ĝn −G)′P0Σ(δ)
−1n1/2P ′

0(Ĝn −G)δ + op(1). (B.3)

Therefore, combining eqs. (B.1), (B.2) and (B.3), up to an op(1) term,

T̂n(θn) = nĝ′nΩ
−ĝn

+n(P ′
0((Ĝn −G)δ − EP0 [Giδg

′
i]Ω

−ĝn))
′Σ(δ)−1(P ′

0((Ĝn −G)δ − EP0 [Giδg
′
i]Ω

−ĝn)).

Now, since n1/2ĝn
d→ N(0,Ω) by CLT, nĝ′nΩ

−ĝn
d→ χ2

rΩ
. Similarly,

n(P ′
0((Ĝn −G)δ − EP0 [Giδg

′
i]Ω

−ĝn))
′Σ(δ)−1(P ′

0((Ĝn −G)δ − EP0 [Giδg
′
i]Ω

−ĝn))
d→ χ2

r̄Ω

as, by CLT, n1/2(P ′
0((Ĝn − G)δ − EP0 [Giδg

′
i]Ω

−ĝn))
d→ N(0,Σ(δ)). Theorem 3.1(a) is then im-

mediate since P ′
0((Gi − G)δ − EP0 [Giδg

′
i]Ω

−gi) and Ω−gi are uncorrelated, i.e., EP0 [P
′
0((Gi −

G)δ − EP0 [Giδg
′
i]Ω

−gi)g
′
iΩ

−] = 0 from the definition of a Moore-Penrose generalized inverse, i.e.,

Ω−ΩΩ− = Ω−.

(b) The proof, being almost identical to that of part (a), is omitted.�

Proof of Theorem 3.2. (a) First, Ĝn(θ
∗
n) = (Ĝn(θ

∗
n) − Ĝn) + Ĝn = G + op(1), noting
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Ĝn(θ
∗
n)− Ĝn = Op(n

−ε) and Ĝn −G = Op(n
−1/2) from Assumption 3.1(d) and CLT. Then, since

Assumption 3.2(c) no longer holds, i.e., P ′
0Gδ ̸= 0,

P ′
0Ĝn(θ

∗
n)δn = P ′

0Gδ + op(1).

Secondly, from the Proof of Theorem 3.1(a), from eq. (B.1), by CLT,

T̂ 1
n/n = ĝ′nΩ̂n(θn)

−1ĝn

= ĝ′nΩ
−(Ω + EP0 [giδ

′G′
i]P0Σ(δ)

−1P ′
0EP0 [Giδg

′
i])Ω

−ĝn + op(1)

= op(1). (B.4)

Next, from Lemmas A.1(a) and A.2(a),

n−εMP0(∂Ω̂n)
′Ĝn(θ

∗
n)δn = (n−εIdg − nεΩ̂n(θn)P0(n

2εP ′
0Ω̂n(θn)P0)

−1P ′
0Ĝn(θ

∗
n))δn

= −EP0 [giδ
′G′

i]P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1P ′
0Gδ + op(1).

Hence,

T̂ 2
n/n = 2n−εĝ′nΩ̂n(θn)

−1Ĝn(θ
∗
n)δn

= −2ĝ′nΩ
−(Ω + EP0 [giδ

′G′
i]P0Σ(δ)

−1P ′
0EP0 [Giδg

′
i])Ω

−

×EP0 [giδ
′G′

i]P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1P ′
0Gδ + op(1)

= −2ĝ′nΩ
−EP0 [giδ

′G′
i]P0Σ(δ)

−1P ′
0Gδ + op(1)

= op(1). (B.5)

Finally,

T̂ 3
n/n = n−2εδ′nĜn(θ

∗
n)

′Ω̂n(θn)
−1Ĝn(θ

∗
n)δn

= δ′G′P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1P ′
0Gδ

+δ′G′P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1P ′
0EP0 [Giδg

′
i]

×Ω−(Ω + EP0 [giδ
′G′

i]P0Σ(δ)
−1P ′

0EP0 [Giδg
′
i])Ω

−

×EP0 [giδ
′G′

i]P0(P
′
0EP0 [Giδδ

′G′
i]P0)

−1P ′
0(Ĝn −G)δ

+op(1)

= δ′G′P0Σ(δ)
−1P ′

0Gδ + op(1). (B.6)

Combining eqs. (B.4), (B.5) and (B.6), gives the required result.

(b). The only alteration necessary to the Proof of Theorem 4.1(a) is the substitution of

Σ̃(δ) = P ′
0(EP0 [Giδδ

′G′
i]−Gδδ′G′ −EP0 [Giδg

′
i]Ω

−EP0 [giδ
′G′

i])P0 for Σ(δ) in the Proof of Theorem

3.1(a).�

Proof of Theorem 4.1. The proof demonstrates that the events {θn ∈ Ĉn(χ2
dg
(α))} and
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{θ0 ∈ Ĉ0
n(χ

2
dg
(α))} are equivalent for large enough n, for any θ0, i.e.,

lim
n→∞

P0{θ0 ∈ Ĉ0
n(χ

2
dg(α))} = lim

n→∞
P0{θn ∈ Ĉn(χ2

dg(α))} = α

where the second equality follows by Theorem 3.1 for θn ∈ Θ0
n(∆b ∩∆c).

By definition {θn ∈ Ĉn(χ2
dg
(α))} implies {θn ∈ Ĉ0

n(χ
2
dg
(α))}; see (4.4). Consider θn ∈ Θn where

Θn is defined in (4.3) with ε = κ − 1/2. Hence, as κ > v + 1/2 and v > 1/2 by hypothesis,

κ > 1 and thus ε > v > 1/2. Therefore, because, by definition, ∥θn − θ0∥ ≤ n−ε∥δn∥ ≤ Cn−ε and

∥θ − θn∥ ≤ Cn−v for all θ ∈ Ĉ0
n(χ

2
dg
(α)), since ε > v, θ0 ∈ Ĉ0

n(χ
2
dg
(α)) for all n large enough.

To show the reverse, first note that θ0 ∈ Ĉ0
n(χ

2
dg
(α)) implies Ĉ0

n(χ
2
dg
(α)) contains θ0 and all

θ ∈ Θ such that dH(θ, Ĉ0
n(χ

2
dg
(α))) ≤ Cn−v. Let Bn denote a ball of radius Cn−v centred at

θ0. Hence Bn includes θ ∈ Ĉ0
n(χ

2
dg
(α)) such that ∥θ − θ0∥ ≤ Cn−v. Therefore, since ε > v, for

sufficiently large n, there exists a sequence θn = θ0 + n−εδn such that θn ∈ Ĉ0
n(χ

2
dg
(α)).�
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4.11
Example E.1 Bivariate Linear IV Regression Model with a Com-

mon Shock

To provide an initial, albeit stylised, illustration, consider the bivariate linear regression model

with a common shock component ε

yj = θ0jxj + ε, (j = 1, 2).

Here θ0 = (θ01, θ02)
′ with dθ = 2. The 2 × 1 covariate vector x = (x1, x2)

′ is generated according

to xj = πjw1 + ηj where EP0 [ηj |w] = 0, EP0 [η
2
j |w] = 1, (j = 1, 2), and EP0 [η1η2|w] = 0. Here

w = (w1, w2)
′ denotes a 2× 1 vector of instruments.

In this example yj , (j = 1, 2), are both subject to the common shock ε. It is assumed

for simplicity that the instruments wj, (j = 1, 2), are independent standard normal variates,

EP0 [ε|w] = 0, EP0 [ε
2|w] = 1 and EP0 [εηj |w] = ρεη where 0 ≤ ρ2εη ≤ 1/2 which follows since

det(VarP0(ε, η1, η2)) = 1− 2ρ2εη > 0.

∗Address for correspondence: N.L. Grant, Arthur Lewis Building, Department of Economics, School of Social

Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.
†Arthur Lewis Building, Department of Economics, School of Social Sciences, University of Manchester, Oxford

Road, Manchester M13 9PL, United Kingdom.
‡Faculty of Economics, University of Cambridge, Austin Robinson Building, Sidgwick Avenue, Cambridge CB3

9DD, UK.
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Define εj(θ) = yj − θjxj , j = 1, 2, and θ = (θ1, θ2)
′. The moment indicator function g(z, θ)

comprises the elements

g1(z, θ) = ε1(θ)w1,

g2(z, θ) = ε2(θ)w.

Hence, dg = 2. Moreover, g1(θ) and the first element of g2(θ) are perfectly correlated at θ = θ0.

In terms of the notation of Section 3

Ω =

 1 1 0

1 1 0

0 0 1

 , P0 =
1√
2

 1

−1

0

 , G = −

 π1 0

0 π2

0 0

 .

Hence,

P ′
0Gδ = −π1

∆1√
2
+ π2

∆2√
2

where δ = (δ1, δ2)
′. Therefore,

Deltac = {δ ∈ R2 : −π1δ1 + π2δ2 = 0} and ∆c = R2 if and only if π1 = π2 = 0, i.e., P ′
0G = 0′.

To derive those δ ∈ ∆c that also belong to ∆b, first note that P ′
0Giδ = P ′

0(Gi − G)δ =
1√
2
(−η1iw1iδ1 + η2iw1iδ2) for δ ∈ ∆c. Thus,

Var(P ′
0Giδ) = Υ(δ)

=
1

2
EP0 [w

2
1(δ

2
1η

2
1 + δ22η

2
2 − 2δ1δ2η1η2)]

=
1

2
(δ21 + δ22) > 0if δ1 ̸= 0 or δ2 ̸= 0 on ∆c.

Hence, ∆b ∩∆c = {δ ∈ R2 : −π1∆1 + π2∆2 = 0, δ1 ̸= 0 or δ2 ̸= 0} ̸= ∅.

We now establish that rk(Φ(δ)) = r̄Ω on ∆b ∩∆c where Φ(δ) = Υ(δ)−Ψ(δ)Ω+Ψ(δ)′ is defined

in eq.?.

This result follows from Assumption 3.2(b), i.e., ∆b ̸= ∅. Recall Θ0
n(∆b ∩ ∆c) is the set of

sequences on which Theorem 3.1 holds. We could establish this result more generally on ∆b =

{δ ∈ R2 : δ1 ̸= 0 and/or δ2 ̸= 0} where ∆b ∩∆c ⊆ ∆b, but this is omitted for brevity.

Define Ki(δ) = P ′
0Giδg

′
iP+Λ

−1/2
+ . Then Ψ(δ)Ω+Ψ(∆)′ = EP0 [Ki(δ)]EP0 [Ki(δ)

′]. Noting

P+ =

 1/
√
2 0

1/
√
2 0

0 1

 , Λ+ =

(
2 0

0 1

)
,

g′iP+Λ
−1/2
+ = εi(w1i, w2i). Hence, since P

′
0Giδ =

1
sqrt2w1i(x2iδ2 − x1iδ1), EP0 [Ki(δ)] =

1√
2
(ρεη(δ2 −
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δ1), 0), and

Φ(∆) =
1

2
(δ21 + δ22 − ρ2εη(δ1 − δ2)

2)

≥ 1

2
(δ21 + δ22 −

1

2
(δ1 − δ2)

2)

> 0 on ∆b ∩∆c

as ρ2εη ≤ 1/2 and δ21 + δ22 − 1
2(δ1 − δ2)

2 = 1
2(δ1 + δ2)

2 > 0 unless δ1 = δ2 = 0.

Example E.2 Nonlinear Regression Model with First Order Mo-

ment Singularity

Consider the following nonlinear regression model

y = α0 + π0(1 + κ0x)
−1 + ε, x ≥ 0,EP0 [ε|x] = 0.

Here the parameter vector of interest is θ0 = (α0, π0, κ0)
′, i.e., dθ = 3, and the moment indicator

vector is defined by

g(z, θ) = ε(θ)(x, (1 + κx)−1,−πx(1 + κx)−2)′,

where ε(θ) = y − α− π(1 + κx)−1 and θ = (α, π, κ)′, i.e., dg = 3.

There are two cases when the moment indicator variance matrix Ω has deficient rank 2. First, if

π0 = 0, then κ0 is unidentified. Moment functions with this form of singular variance matrix have

been studied previously in Andrews and Cheng (2012, 2013, 2014) although they consider, more

generally, weak and semi-strong identification in which a particular transformation of the moment

variance matrix is full rank; see Andrews and Cheng (2012, Assumption D2, p.25). Secondly, if

κ0 = 0, then the first and third element of the moment indicator vector are perfectly correlated.

In this case, since P ′
0g(z, θ0) = 0, P0 =

1√
1+π2

0

(π0, 0, 1)
′ and, thus,

P ′
0Giδ =

εi√
1 + π20

(−xiδ2 + 2π0x
2
i δ3).

Hence,

∆b = {δ ∈ R3 : δ2 ̸= 0 or δ3 ̸= 0} ̸= ∅.

where δ = (δ1, δ2, δ3)
′. Therefore VarP0(P

′
0Giδ) > 0 on ∆b since P ′

0G = 0 noting EP0 [εi|xi] = 0.

Consequently, P ′
0Gδ = 0 on ∆c = R3 and, thus, ∆b ∩∆c = ∆b ̸= ∅.

Example E.3 Interest Rate Dynamics

Suppose that the interest rate r is generated by the process

r − r−1 = a0(b0 − r−1) + εσ0r
γ0
−1,
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where ε is stationary and r−1 denotes the first lag of r. Here, θ0 = (a0, b0, γ0, σ0)
′ and z = (r, r−1)

′.

Consider the moment indicator vector function

g(z, θ) =


a(b− r)r−2γ − γσ2r−1

a(b− r)r−2γ+1 − (γ − 1
2)σ

2

(b− r)r−a − 1
2σ

2r2γ−a−1

a(b− r)r−σ − 1
2σ

3r2γ−σ−1

 ,

where θ = (a, b, γ, σ)′, which has zero mean at θ = θ0; see Jagannathan et al. (2002, p.479).

If σ0 = a0, γ0 = 1/2(a0 + 1) and/or γ0 = 1/2(σ0 + 1), then Ω is singular. Consider the case

when σ0 = a0, then the third and fourth elements of g(z, θ0) are perfectly correlated, assuming

for simplicity that γ0 ̸= 1/2(a0 + 1). Hence, r̄Ω = 1 and P0 = 1√
2
(0, 0, 1,−1)′. Without loss of

generality, set σ0 = a0 = b0 = 1 and γ0 = 0, i.e., r = 1 + ε. Write δ = (δa, δb, δγ , δσ)
′ and set

δb = δγ = 0 for simplicity. Then

P ′
0Giδ =

(
1

2
r−2 − (1− r)r−1 log r − 1

2
r−2 log r

)
δσ√
2

+

(
−(1− r)r−1(1 + log r) +

1

2
r−2 log r

)
δa√
2
.

Hence, VarP0(P
′
0Giδ) > 0 on ∆b ∩∆c if δa ̸= 0 and/or δσ ̸= 0 and so ∆b ̸= ∅. Taking expectations,

P ′
0Gδ = µσδσ+µaδa, where µσ = 1√

2
EP0 [

1
2r

−2−(1−r)r−1 log r− 1
2r

−2 log r] and µα = 1√
2
EP0 [−(1−

r)r−1(1+log r)+ 1
2r

−2 log r]. Then ∆c includes all δ such that µσδσ+µaδa = 0 which has a solution

if δσ ̸= 0 and/or δa ̸= 0. Hence ∆b ∩∆c ̸= ∅.

Example E.4 Bivariate Linear Simultaneous Equations Model with

Polynomial Instruments

Consider bivariate linear simultaneous equations model

yj = θ0jxj + εj ,

where εj = υ exp(−ζjw/2), (j = 1, 2), with common shock υ. Here, z = (y1, y2, x1, x2, w)
′ with

w a scalar instrument, θ = (θ1, θ2)
′ and dθ = 2. It is assumed that EP0 [υ|w] = 0, EP0 [υ

2|w] = 1,

EP0 [x1|w] = π(1+w) and EP0 [x2|w] = π(1+w2). Therefore, EP0 [εj |w] = 0, EP0 [ε
2
j |w] = exp(−ζjw),

(j = 1, 2), and EP0 [ε1ε2|w] = exp(−(ζ1 + ζ2)w/2). The instrument w is distributed as a standard

normal variate.

The residual function is then defined by

ρ(z, θ) =

(
y1 − θ1x1

y2 − θ2x2

)
.

Hence dρ = 2. Let the dψ-vector of instruments ψ(w) = (1, w, . . . , wdψ−1)′; cf. section 5.2. Define
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p̄ = (p′1,−p′2)′, where

pj = (1,
ζj
2
, . . . ,

(ζj/2)
dψ−1

(dψ − 1)!
)′, (j = 1, 2).

Then EP0 [(p
′
jψ(w)− exp(ζjw/2))

2] → 0, (j = 1, 2), as dψ → ∞.

Now, writing Ωw(θ) = EP0 [ρ(z, θ)ρ(z, θ)
′|w]⊗ ψ(w)ψ(w)′,

Ωw(θ) =

(
exp(−ζ1w) exp(−(ζ1 + ζ2)w/2)

exp(−(ζ1 + ζ2)w/2) exp(−ζ2w)

)
⊗ ψ(w)ψ(w)′.

Therefore

p̄′Ωw(θ)p̄ = exp(−ζ1w)(p′1ψ(w))2 + exp(−ζ2w)(p′2ψ(w))2

−2 exp(−(ζ1 + ζ2)w)(p
′
1ψ(w))(p

′
2ψ(w))

→ 0 as dψ → ∞.

Hence, p̄′Ωp̄→ 0 as dψ → ∞. However, since

EP0 [p̄
′Gi|w] = −π

(
(1 + w)p′1ψ(w) −(1 + w2)p′2ψ(w)

)
,

it follows that lim
dψ→∞

p̄′0G ̸= 0′. Therefore, in the limit, as dψ → ∞, there exists δ ∈ R2 that

satisfy Assumption 3.2(b) but violate Assumption 3.2(c). From Theorem 3.2, the GAR statistic

T̂ (θn) is asymptotically unbounded for sequences θn for such δ. Note that p̄ is not an eigenvector

corresponding to a zero eigenvalue of Ωw(θ) but rather a vector which annihilates Ωw(θ) as dψ → ∞.

To illustrate, consider the case when dψ = 2, i.e., ψ(w) = (1, w)′, and ζ1 = ζ2 = 0. Then

G = −π


1 0

1 0

0 2

0 0

 , P ′
0 =

1√
2

(
0 1 0 −1

1 0 1 0

)
.

Hence,

P ′
0Gδ = − 1√

2

(
δ1

δ1 + 2δ2

)
.

By Theorem 3.2, T̂ (θn) is asymptotically unbounded for sequences θn ∈ Θ0
n(∆b ∩ ∆̄c) if δ1 ̸= 0

or δ1 ̸= −2δ2. Simulation S.2 in Supplement S, which considers a specific case of this example,

indicates that confidence regions based on the GAR statistics T̂ (θn) are oversized for large n as dψ

increases for sequences θn ∈ Θ0
n(∆b ∩ ∆̄c), i.e., for δ such that lim

dψ→∞
P ′
0Gδ ̸= 0.
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4.11
Simulation S.1 Nonlinear Regression Model with First Order Mo-

ment Singularity

Consider the following nonlinear regression model of Example E.2 in Supplement E

y = α0 + π0(1 + κ0x)
−1 + ε, x ≥ 0,EP0 [ε|x] = 0.

Here the true value of the parameter vector of interest is θ0 = (α0, π0, κ0)
′ = (1, 2, κ0)

′ with

κ0 = 0.00, 0.05 and 0.50, i.e.,

y = x+ 2(1 + κ0x)
−1 + ε,

with x and ε distributed, respectively, as the absolute value of and, given x, standard normal

variates. Recall from Example E.2 in Supplement E that if κ0 = 0.00, then the first and third

element of the moment indicator vector are perfectly correlated, i.e., rk(Ω(κ0)) = 2; rk(Ω(κ0)) = 3

if κ0 ̸= 0.
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†Arthur Lewis Building, Department of Economics, School of Social Sciences, University of Manchester, Oxford
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Table 1 plots the rejection probabilities P0{T̂ (θn) ≥ χ2
3(0.9)}, i.e., level α = 0.1, estimated

using R = 5000 replications for a GAR-based test of the null hypothesis H0 : θ = θn against the

alternative hypothesis H1 : θ ̸= θn for θn = θ0 + n−1(0, 1, 1)′, i.e., δn = δ = (0, 1, 1)′, for sample

sizes n = 100, 500, 1000, 5000 and 50000. Recall ∆b = {δ ∈ R3 : δ2 ̸= 0 or δ3 ̸= 0} ̸= ∅ and

∆c = R3. Hence, ∆b ∩∆c = ∆b ̸= ∅ and Assumption 3.2 is satisfied.

κ0 = 0.00 κ0 = 0.05 κ0 = 0.50

n = 100 0.088 0.088 0.091

n = 500 0.099 0.100 0.100

n = 1000 0.102 0.099 0.100

n = 5000 0.098 0.106 0.099

n = 50000 0.094 0.097 0.109

Table 1: GAR Rejection Probabilities: Nonlinear Regression with First Order Moment Singularity.

Table 1 corroborates Theorem 3.1. For the larger sample sizes n, and for all values of κ0, the

0.9 quantile of T̂ (θn) is well approximated by that of the χ2
3 distribution. Not reported here, in

other experiments, this observation appeared to be robust for δn = o(n−1/2) with δ2 ̸= 0 or δ3 ̸= 0.

If the discretisation Θn of Θ is sufficiently fine so that dH(Θn, θ0) = o(n−1/2), then the GAR-based

confidence region eq. (4.4) covers all sequences θn ∈ Θn with correct asymptotic size.

Simulation S.2 Bivariate Linear Simultaneous Equations Model

with Polynomial Instruments

This simulation is based on a specific case of Example E.4 in Supplement E; viz.

y1 = 1.0x1 + ε1, x1 = π(1 + w) + η1, ε1 = υ1 exp(−ζ1w/2),

y2 = 0.5x2 + ε2, x2 = −π(1 + w2) + η2, ε2 = υ2 exp(−ζ2z/2).

The innovation vector (υ1, υ2, η1, η2)
′ is distributed conditional on w as N(0,Ξ) where

Ξ =


1.0 ρ 0.3 0.0

ρ 1.0 0.5 0.0

0.3 0.0 1.0 0.0

0.0 0.5 0.0 1.0

 .

We consider values ρ = 0.999500, 0.999995 and 1.000000, π = 0.0, 0.1, 0.5, (ζ1, ζ2) = (0.0, 0.0),

(0.0, 0.5), (0.0, 1.0). The instrument vectors are (1, w)′, (1, w, w2)′ and (1, w, w2, w3)′, i.e., polyno-

mial instruments with dimensions dψ = 2, 3 and 4 respectively. Hence, since dρ = 2, dg = 2dψ.

GAR statistic rejection probabilities (α = 0.1) for R = 5000 replications are tabulated for

θn = (1, 0.5)′ + n−1δ with δ = (1, 1)′ for sample sizes n = 100, 500, 1000, 5000, 50000. This choice
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for δ does not satisfy p̄′0Gδ → 0; see Example E.4 in Supplement E with ζ1 = ζ2 = 0 for dψ = 2.1

Table 2 displays the GAR-based test rejection probabilities for π = 0.1.2 When ρ = 1.0 and

ζ1 = ζ2 = 0, i.e., Ω is singular, the GAR-based test rejection probabilities converge to 1 as n

increases as expected from Theorem 3.2 since T̂ (θn) is asymptotically unbounded in this case for

any dg. For both values ρ = 0.999995 and ρ = 0.999500, the rejection probabilities for any n and

dg are smaller when compared with those for ρ = 1.000000 but are still oversized in small samples.

As ζ2 increases, and the residuals become less correlated conditional on w, the rejection prob-

abilities decrease for any value of ρ and n. Table 3 indicates that the GAR-based test rejection

probabilities increase as dψ increases, corroborating the intuition in Example E.4 in Supplement

E that with many polynomial instruments T̂ (θn) diverges when Ωw(θ0) is nearly singular a.s.(w)

and p̄′0Gδ 9 0.

This pattern is also observed in Table 3 with stronger instruments, i.e., when π = 0.5. In this

case the GAR-based test rejection probabilities are, in general, relatively more oversized for any n,

dg, ρ and ζ2 than those when π = 0.1. In this case p̄′0Gδ is further from zero so that the rejection

probabilities are relatively more oversized than when π̄ = 0.1.

1It may be demonstrated that p̄′0Gδ 9 0 as dψ → ∞ but the proof is omitted for brevity.
2The value π = 0.0 was also considered when ∆c = R2 and Theorem 3.1 holds in all cases. Rejection probabilities

around 0.1 were found for all n, ρ, ζ1, ζ2 and dg but these results are not reported here for brevity.
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