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Abstract

This paper studies a model with both a parametric global trend and a nonparametric
local trend. This model may be of interest in a number of applications in economics, finance,
ecology, and geology. The model nests the parametric global trend model considered in
Phillips (2007) and Robinson (2012), and the nonparametric local trend model. We first
propose two hypothesis tests to detect whether either of the special cases are appropriate.
For the case where both null hypotheses are rejected, we propose an estimation method
to capture both aspects of the time trend. We establish consistency and some distribution
theory in the presence of a large sample. Moreover, we examine the proposed hypothesis
tests and estimation methods through both simulated and real data examples. Finally, we

discuss some potential extensions and issues when modelling time effects.
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1 Introduction

Time trends have been widely studied and used for more than a century (e.g., Jones, 1943;
Anderson, 1971; Hamilton, 2017; Andrews and McDermott, 1995; Phillips, 2001, 2005, 2007,
2009), see Mills and Patterson (2015) for an historical review. There is no doubt that time trends
exist in many data sets from different fields, so that how to mimic time effects always plays a
crucial role in data-driven science (e.g., economics, finance, ecology, geology, etc.). In some
applications, like climate modelling, the trend is the object of interest. In other applications,
like some in macroeconomics, interest focusses on the fluctuations about the trend, which is why
so many applied works start from detrending the data (e.g., Greene, 2005; Feng and Serletis,
2008). Either way, it is important to have a good methodology for dealing with the trend. There
are several general approaches to trend modelling that have widespread appeal for practitioners,

these include:

1. using a deterministic global trend under a parametric setting (cf., Chapter 3 of Anderson
(1971)). For example, production economists usually incorporate time trends by simply
adding a linear term ¢ and/or a quadratic term #* to so-called translog production/cost
functions in order to capture time effects (e.g., Greene, 2005, Eq. 10; Feng and Serletis,

2008, Eq. 13 and 19, and so on); or

2. using a local deterministic trend under the nonparametric setting (cf., Robinson, 1997;
Chen et al., 2012b; Dong and Linton, 2016). For example, Engle and Rangel (2008) and
Hafner and Linton (2010) use such nonparametric trends to capture slowly varying long run
components of volatility. The Hodrick-Prescott filter widely deployed in macroeconomics
is best interpreted as fitting such a trend model to the level of the series (Phillips and Jin,
2015); or

3. using a stochastic trend driven by a unit root or random walk process (cf., Harvey, 1989;
Greene, 2002).

We are concerned with deterministic trend models, i.e., the first two cases considered above.
Not much work has been done to examine the correct functional form in the parametric global
trend model, with linear or quadratic being the dominant choices. On the other hand, the
nonparametric trend literature confines its attention to the case where the trend is bounded as
the sample size increases, which puts some limits on its applicability. In our empirical study we
will consider the global mean sea level (GMSL) data, which is plotted below in Figure 1. The
plot looks like having a strong linear time trend, but how to defend (or deny) this conjecture
against nonlinear alternatives by using a proper statistical tool has not been fully resolved yet.

Power trends have been studied by Phillips (2007) and Robinson (2012) under parametric

frameworks respectively, where the traditional least squares method remains valid due to the
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Global mean seal level (GMSL) 1880-2005
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Figure 1: Global mean sea level

parametric nature of their models. The corresponding rates of convergence and asymptotic
normalities are established therein. Inspired by these two works, we consider the following

model
ye = g(r)t" + 2, (1.1)

where 7, = ¢/T with t = 1,...,T, & is a stationary mixing error process, ¢(-) is an unknown
but smooth function, and 6y is an unknown parameter defined on a compact set © with 6y > 0.
The slowly varying component g can capture nonlinear trend of a quite varied nature, so long
as it is bounded and smoothly varying, whereas the global trend part t% allows the outcome
variable to increase without bound as the horizon lengthens. The error term &; is allowed to be
weakly dependent and can represent short term “cyclical” behaviour, which we do not model
or estimate. Our model nests the parametric global trend models considered in Phillips (2007)
and Robinson (2012) and the nonparametric local trend model that underpins a lot of statistical
trend fitting. In this study, we are interested in estimating 6 and g(-) from a time series dataset
on Y.

We comment briefly on some related literature. Sornette (2003) proposes deterministic trend
and cusp models for modelling stock market crashes. A markedly different approach is provided
by unobserved components models from the state space literature; see Harvey (1989) for a
comprehensive overview. In these models, the trend is stochastic in nature. It is hard to compare
this approach with ours in theoretical terms, since they are nonnested. The pure random walk
model implies linear growth in both mean and variance, so by itself is not well suited to describe
the flexible trend we propose. From a practical point of view, the two methods offer alternative
ways to flexibly estimate the trend behaviour of a time series. In the unobserved components
model, the flexibility comes through small stochastic innovations in the trend and the cycle. Our
model in contrast owes its flexibility to the nonparametric nature of the deterministic component

functions. Dahlhaus (1997) introduces locally stationary process, which combines deterministic

2



local trends with stochastic variation, see also Giraitis et al. (2014) who consider a time-varying
coefficient model with stochastic variation.

The structure of this paper is as follows. In Section 2 we propose two hypothesis tests for
evaluating the nested parametric and nonparametric models. In Section 3 we propose estima-
tors of both trend components and derive their consistency and limiting distributions. Some
simulation studies are implemented in Section 4 to examine the proposed tests and estimation
methods. In Section 5 we apply our methodology to the global mean sea level (GMSL) data.
Section 6 discusses some potential extensions and issues; Section 7 concludes. Mathematical
proofs of the main theories are given in Appendix A. Finally, in Appendix B, we provide the
omitted proofs, and some extensions to include (1) theoretical development supporting some of
our discussions given in Section 6, (2) another modelling issue of studying power trend, and (3)
corresponding simulation studies.

Before proceeding to Section 2, it is convenient to introduce some notations that will be
used throughout this paper. —p denotes converging in probability; —p denotes converging in
distribution; |a| means the largest integer not exceeding a; K(-) and h represent a symmetric

kernel function and a corresponding bandwidth of the kernel method, respectively; moreover,
K () = 1 ().

2 Two Pre-Testing Issues

Sections 2 and 3 together provide the asymptotic results of the paper. To be precise, the main

testing and estimation steps are as follows.

1. We first consider two hypothesis tests:

HO . 00 = 0
(a). Parametric test: :
Hi: 6,>0

H; : g(7) is a constant function
(b). Nonparametric test: . (2.2)

H : g(7) is a non-constant function

2. If we fail to reject either of these null hypotheses, everything goes back to some well
studied models of the literature. For example, failure to reject “Hy : 6y = 0”7 gives a
model y; = g(7) + &, which is a special case of Robinson (1997), Dong and Linton (2016)
and so forth; and failure to reject “Hg : g(7) is a constant function” leads to y; = By t% +¢;,
which has been studied in Phillips (2007) and Robinson (2012).

3. If both null hypotheses get rejected, we move on to Section 3. We point out the failure

of some intuitive methods in Section 3.1, and provide consistent estimators of g and 6y in
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Section 3.2.

We now make some assumptions to facilitate the derivation throughout the paper.

Assumption 1:

1. (a) 0<0y€©, and © is a compact set defined on R.

(b) g(-) is second order differentiable on [0, 1], and satisfies that 0 < A; < inf |g(u)| <

u€e[0,1]
d 0+6o
sup |g(u)| < Ay <o and  sup dlu™g(w))
wel0,1] (0,u)e@x[h1] du
in Assumption 1.4 below, where Ay, Ay and As are positive constants;

< Az < oo for the same h defined

2. {e; [t = 1,...,T} is a strictly stationary and a-mizing error process with mizing coeffi-
cients {af(i) |i = 1,2,...} such that Y, |« ()]216 < o for some 6 > 0, where a(i) =
sup sup | Pr(A n B) — Pr(A)Pr(B)| and F} is the o-filed generated by {e; |j <

J Ae]-"] . BeFr,

< k}. Moreover, Ele1] =0, Ele1|? = 02 and E|e,[**9? < o for the same §.

3. Let K(-) be symmetric and defined on [—1,1]. Assume further that K™ (u) is uniformly
bounded on [~1,1], §*, K(u)du =1 and §" | |u|K (u)du < oo.

4. For the bandwidth h, suppose that h = O(T~") for some 0 < v < 1.

Under a parametric setting, Robinson (2012) allows for 6, > —% with 6y # 0, but, for our
nonparametric model, we have to impose a stronger restriction in Assumption 1.1.a, so that the
kernel method remains valid for the denominator of (3.1) provided below. In the same spirit,
Assumption 1.1.b imposes some conditions on g(-) to ensure that the kernel method works for
the numerator of (3.1). Assumptions 1.2-1.4 are standard in the literature (cf. Fan and Yao,

2003).

2.1 Parametric Test

If g were known, it would be easy to obtain the Gaussian likelihood as follows:
d 2
= Z (yt - g(Tt)te) )
t=1

which yields a score function Sp(6) = aQT(G) =7z Lyt (v — g(m)t?) g(7)t? In¢t. Thus, under the
null, it reduces to Sr(0) = % LS (g — ( ) g(1) Int.

In practice, since g is unknown, we take the estimate Sy = T S (e — G(m)) §(7) In't, where
g(u) = M By the development similar to (A.17) of Wang and Xia (2009), it is easy

Zz 1Kh(“ Tt)
to obtain that under the null



sup [g(u) — g(u)| =
ue[0,1]

VinT
P \/ﬁ

Notice that using the full sample to construct the test will get two leading terms to cancel
with each other (see (B.2) for more details), so that further difficulties will arise when deriving the
asymptotic distribution. In order to avoid this problem, we use the even numbered observations
to estimate ¢(-) and evaluate the score function using the odd numbered observations below.
Thus, the final version of the score function is

LS (- 3 §(m) Int, (2.4)

Todd t odd

Sr =

where T4, stands for the total number of odd numbered observations, and

_ Zt even Kh(u — Tt)yt

o) = Klu—m)

(2.5)

Based on the above discussions, we derive a formal hypothesis test, which is described in the

next theorem.

Theorem 2.1. Let Assumption 1 hold.

1. Suppose that (2.1), (2.3) holds under the null. In addition, suppose that &, is i.i.d. across

t. AsT — o0,
1 ~ ~
= 2 oaa W —g(12)) g(7:) Int
IM = 2\/T2t aa (Yt (7)) 4( t)1/2 —p N(O, 1), (2.6)
{72 43 gt m e
where 52 = L3 (e — §(1))? —p 02, and § is defined in the same way as (2.5) but

utilizes the full sample.
2. Suppose that 6y > 0. AsT — oo, LM — oo,

For the sake of readability, we leave a generalized version of the parametric test (i.e., Hp :
0o = a vs. Hy : 6y > a) with the corresponding discussions in the Appendix B of the paper.
To ensure the test also works for the case where &; is not i.i.d. over ¢, certain development as
in Andrews (1991) is required. It may lead to another research paper, so we do not pursue it

further in order not to deviate from our main goal.

2.2 Nonparametric Test

In this subsection, we consider the nonparametric test (2.2). Notice that, under Hj, we have a

parametric model of the form

Yy = Bot™ + ¢,
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where the unknown parameters (g, 6p) can be estimated by the nonlinear least squares estima-

tion method:

~

T

(6 = argml Z Y — Bte (2.7)
s

By Theorems 1 and 2 of Robinson (2012), we have

0 —0o=O0p(T¥ % 2) and B — B = Op((InT)TX %~2) (2.8)

for any given sufficiently small x > 0 under minor restrictions.
By (2.8) and building on Fan and Li (1996) and Li (1999), we propose a nonparametric test

of the form

~ K (m=) 8.6
L ZI}JL&%(L(h) with  L(h) = Zt 125 1,#t ( h )6 €t
) \/Zt 1 Qe 1¢tK2 (Tt TS) A?

where H = {h = Rinaz@® : B = Rpin, k = 0.1,2,...} with 0 < Apin < Pyae and 0 < a < 1, and
er =y — Bte-

Moreover, the associated critical values can be drawn by the following bootstrap procedure.

(2.9)

1. Fort =1,...,T, generate y; = Bt§ + éyuy, where u,’s are sampled randomly from N(0, 1).

2. Use the data set {y* |t = 1,...,T} to implement (2.7) in order to obtain (f,6), and
compute the statistic L* that is obtained by replacing y; and (B, 5) with y and (5, 5),
respectively, in (2.9).

3. Repeat the above steps J times to produce J versions of L* denoted by L} for j =
. J. Use {L¥,..., L%} to construct the empirical bootstrap distribution function, that
is, F*(w) = %ijl 1(L} < w). Further use the empirical bootstrap distribution function

to estimate the asymptotic critical value, [,.
Theorem 2.2. Let Assumption 1 hold, and suppose that 6y > 0.

1. For the nonparametric test (2.2), (2.8) holds under the null.

2. In addition, for H of (2.9), let co[In(InT)] ™' = hpaw > hmin = T-7 > 0 with some

constants co and vy such that 0 < v < % Then we have limp_, 4 Pr(lAL > l,) = « for the

above procedure.

The first result of Theorem 2.2 follows from Robinson (2012) straight away. The second
result of Theorem 2.2 follows from the development similar to Fan and Li (1996), Li (1999)
and Gao and Hawthorne (2006). The same principle of this nonparametric test has also been

employed in Su et al. (2015) to study a panel data model. As the alternative hypothesis of (2.2)



does not specify a clear function form for g(-), we do not further investigate the limit of (2.9)
under the alternative. Instead, we consider different functional forms of ¢(-) in the simulation

study of Section 4.

3 Estimation Method and Theory

We now consider estimating (1.1) for the case in which 6, > 0 and ¢(-) is a non-constant function.

For ¥(0,u), the kernel based OLS estimator of g(u) is intuitively expressed as follows:

g(u,0) [Z tzeKh (u—7 ] Z 'y, K, (u—m), (3.1)

where Kj, (z —u) = +K (4*), and K(-) and h have been defined in Assumption 1. Then the
key question becomes how to recover 6. Once we have obtained a consistent estimator for 6,

we need only to plug it in (3.1) to estimate g(u).

3.1 Failure of Some Intuitive OLS Methods

We first explain why two very intuitive OLS methods fail when encountering time trends with
time-varying coefficient.
By the traditional profile method (cf., Robinson, 2012; Dong et al., 2016), the first objective

function is defined as follows:
d 2
Qr(0) = > (v —t"3(,0))" (3.2)
=1

where g(u, 6) is denoted in (3.1). According to Lemma 3.1 below, one finding is that
t°g(7:,0) = """ g(r) (1 + 0p(1)) = t*g(7)(1 + op(1)),

where 6 disappears from the leading term and only exists in the residual. Thus, it would be
difficult to recover 6y from (3.2), as the limit of Q7(6) is not in the form of Q(6 — ) with Q(w)
being a continuous function and having a unique local minimum at w = 0.

Alternatively, one may follow Section 6 of Phillips (2007) to define an objective function for

any given u as
r(afu) = Z ) K (1 — ), (3.3)

where o = (3, 0). Thus, the corresponding estimator is obtained by

~

a(u) = (ﬂ(u), é(u)) = argmin Qr(alu). (3.4)



Building on (3.4), the estimator of 6 is finally defined as = Sé é(u)w(u)du, where () serves
as a weight function.

Note that, in order to minimize Qr(«|u), the following two equations must hold:

Q) Qe
55 a=a(u) o0 a=a(u)
Simple algebra shows that wg—%}‘“) ad(u) = 0 yields

T ~ ~
B(U) _ [Z t29(u)Kh (u _ Tt)] Z t@(u)ytKh (u _ Tt) 7
t=1 t=1

which has the same form as (3.1), and indicates that the leading term of Qr(a|u) is independent
of A(u) by the same discussions under (3.2). In other words, we can find different 6’s belonging to
© (say, 0 (u) and GAg(u)) to ensure Qr (& (u)|u) and Q7 (@a(u)|u) are asymptotically equivalent,
where a;(u) = (B(w), 01 () and Ga(u) = (B(u), f5(w)). This concludes why the second approach
fails.

We will further examine the above two methods in the simulation study of Section 4.

3.2 Consistent Estimation

In order to establish a consistent estimator of y, we firstly state the next lemma.

Lemma 3.1. Let Assumption 1 hold. In addition, suppose that

M

i, where M is a positive

1. By(6y) represents a subset of © centred at 0y with radius

constant;
2. B, (h) = [(1 4 €1)h, 1], where €1 is a sufficiently small positive constant.

Then, for g(u, ) defined by (3.1), as T — oo,

. VInT
sup u,0) — (W) guw)| = Op | ——r—— | + O(h).
s [300) = D ()] = O T ) + 00

Compared with some similar results in the literature (e.g., Vogt, 2012, Eq. 16; Chen et al.,
20126, Eq. B.10), one main difference is that we have to take the power term 6 into consideration
while deriving the rate of uniform convergence, which is the main reason why we have to introduce
€, in the above lemma. The constant €; controls the minimum value that u can take, and in
this sense serves the same purpose as C; of Theorem 4.2 of Vogt (2012). The slow rate O(h)
has also been achieved in Wang and Xia (2009, Eq. A.17-A.19), where the uniform convergence
of another kernel based method is studied. It is noteworthy that if we truncate the interval

[(1 + €)h, 1] to [(1 + €1)h,1 — h] as in Vogt (2012, Eq. 16), we can replace h with h? after
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imposing extra restrictions on ¢(-). Moreover, compared to Theorem 2 of Robinson (2012) (i.e.,
the second term of (2.8) of Section 2), we actually do not need to introduce a term TX in the
above asymptotic results, which in a sense improves the rate of convergence slightly regardless
of the terms caused by the nonparametric method.

In addition, Lemma 3.1 indicates that g(u,0) with § € Br(6y) is a consistent estimator of
g(u) subject to a constant term (u7)%~? which is not guaranteed to be 1 if 8 is very close to
(or on) the boundary of Br(fy). Below, we are going to show that 8 defined by (3.6) indeed falls
in Br(6p) with probability approaching one in Theorem 3.1, and further deal with the unknown
constant in Theorem 3.2.

Finally, Lemma 3.1 suggests that constructing an objective function in logarithmic form may
asymptotically converge to a continuous function having a unique minimum at 6 = 6,. We define

the objective function

2~ 2
T

1 .
Rp(0) = { Ar+In | — > 7%(n.0) : (3.5)

t=|Th|+1

where we let Ay = = for notational simplicity, and §(-, -) is defined in (3.1).

Remark 3.1.

1. Note that the number of observations lying between |T'h| and |T(1 + €;)h] is limited and
negligible, as €1 is an arbitrary small positive constant. Thus, with some abuse of notation,

we define (3.5) by using observations from |Th| + 1,...,T throughout this paper.

2. The term 2% serves the purpose of solving a technical issue when recovering the normalizer

of Theorem 3.3. A short explanation is that without the term 179, %ZZ%TMH ag(gtg,eo)

will yield a term %ZZ;[ThJ—H 72 in the denominator. Intuitively, one may think that
%ZtT:[ThJH Tt_%)o converges to Sé w2 du, however, it is not the case given the assumption
on Oy. Let alone the fact that Sé u=?%du does not exist in general, because Sé u?Pdy < o

does not hold for 1 — 26y < 0.

According to (3.5), the estimator of 6 is given by

0 = argmin Ry(6), (3.6)
0e©

and we summarize the corresponding asymptotic results by the next theorem.

Theorem 3.1. Suppose that Assumption 1 holds. Then, as T — o,
10— 0o = Op(A7), where \r is defined in (3.5);
5 ( vInT
P

2. sup gu’é\_uT@)*@_gu‘:O v
ue[(1+e1)h, 1] (t,6) = {uT) (v) T'5+60},3+2600

one as denoted in Lemma 3.1.

> + O(h), where € is the same



Remark 3.2. Due to taking the logarithm in (3.5), we can only achieve a slow rate of conver-
gence (i.e., \r) for 0. Compared to the parametric setting (Robinson, 2012), the slow rate is
caused by the nonparametric nature of (1.1). A similar phenomenon has also been observed in
Pesaran and Yang (2016) (cf., discussions under their Eq. 80), even though it is not directly
related to our model.

We now briefly explain the key difference between the fized coefficient power trend and the
time-varying coefficient power trend by using a simple parametric model even without an error

term, say y; = Tt . Stmple calculation shows

1 I T 9 T vy 1 T y
Qr(0) = Z(?Jt—Tt ; fZTtOJr +f;17't

r= -
1 1 1
= (f uQGOdU—QJ u9°+6du+f u%du) -(1+0(1))
0 0 0
1 2 1
- - S(1+o(1
(290+1 90+9+1+29+1) (1+0(1))

B 2(6y — )?
(200 + 1) (6 + 60+ 1)(20 + 1)

(14 0(1))

under minor restrictions on 0, where the third equality follows from the definition of Riemann
integral. Note the parameter 6 will not exist in the power any more asT diverges. In other words,
it does not require taking logarithm to obtain an objective function having a unique minimum
at 0 = 6y asymptotically. However, this is not the case any more for models with time-varying

power trend.

Remark 3.3. It is easy to see that the rate of convergence of the second result of Theorem 3.1
+ Q

will reach the minimum value when h = O (T 54400 . (InT)~ 3+1“’0). We will further ezamine this

finding, and explain how to select the “optimal” bandwidth practically in the simulation study of

Section 4.

Before proceeding further, we take a careful look at the estimation of g(-), and explain the

identification issue of g mentioned under Lemma 3.1. Consider the following distance between
(6, 9) and (6%, f)

Drl(6,9), ( i{ (r)t* — f(r)" ) = i{ ~T" fm)rl )

t=1

Based on Theorem 3.1, we let 6 = 6* + % with M being a constant. Then we can write

Dr{(0,9),

i{TeMthTt I f()to }2

- . 2
Z {Mg Tt) TtM/lnT - f(Tt)} )

~
—_

10



so any sequence fr(u) = Mg(u)u™/™T ~ Mg(u) will set this objective function exactly zero.
This identification issue is purely due to the slow rate of convergence obtained by (1) of Theorem
3.1. At this stage, how to achieve a faster rate to overcome this problem remains unclear to us.

In order to identify the unknown constant, we let |g(1)| = 1 in the rest of this paper. For
those ¢(-)’s not satisfying |g(1)] = 1, we are essentially recovering a rescaled version of g(u)
below, i.e., g(u) = g(u)/|g(1)| given g(1) # 0. See Su and Jin (2012) and Dong and Linton

(2016) for similar settings on the functional component.

We further make the following assumption.

Assumption 2: Let ’y(t — 8) = Eleies] satisfy that (Th) C(K;Th) — 0 as T — oo, where
= {1, 55 K@K (y) (@ = y)w)l I[x # y] ddy.

Assumption 2 is used to establish the existence of the contribution from the long-run covari-

ance in such kernel estimation. It can easily be verified if we impose |y(u)| < Ap/"! for |u| = 1

0<p<1landO< A < oo. Another example can be found in Gao and Anh (1999, p. 41).

Before stating the next theorem, we define for Yu € (0, 1)

T

=z D) THm), §) = () 0G0, f),
t=|Th]+1

~ 1 1 & - N2

£=82 | K@de, 32=7 Y (w-1"3(r.0) .
-1 Tt:[ThJ+1

kar(0,w) = 15(1,0)] (Zﬁému—n) Zte% VKn (u— 1) — gw). (3.7

t=1

Theorem 3.2. Let Assumptions 1 and 2 hold.

(1). ForYue (0,1), as T — oo,

1.1 U ~ MNi—-1 ~ o) )
TP+ 3p5 (18107 3(u.0) — 9(u) = w1 (B, ) ) —p N(0,).

where ki (0, u) = Op(h).

d?[w?*% g(w)]
dw?

Suppose further that, for Yu € (0,1), supgeg < o0, and h = O(T™") with

2469
2.54260p °

‘w:u

O<r<<l—

(2). Then mlT(é, u) will achieve a fast rate, i.e., IilT(é\, u) = Op(h?).

Due to the nonparametric nature of our model, the rate of convergence and the normality on
the estimate of the coefficient function cannot be established using Theorem 8.1 of Wooldridge

(1994) as in the proof Theorem 6.3 of Phillips (2007). The profile method under nonparametric
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framework employed in this paper allows us to avoid bringing a term diverging at a rate of Inl’
to slow down the rate of convergence (see Theorem 6.3 of Phillips (2007) for details).

The fact that limy_ 77| = ‘S(l] u290g(u)du‘ > 0 is verified by (A.11) and (A.12). The bias
term IﬁlT(é\, u) is due to the use of the kernel method, and the extra conditions in the body of
Theorem 3.2 make certain that /<L1T(9A, u) will have the usual order Op(h?) as in the literature
of nonparametric regression (see Chen et al., 2012b; Vogt, 2012, for example). Without these

restrictions, the slow rate (i.e., Op(h)) applies.

Having established the above results, we are now ready to consider the asymptotic distribu-

tion of . By definition of (3.6) and Mean Value Theorem,

_ORp(0))  _ 0Rr(0) 0°Rr(0)

= AN (Y ,
0 00 lo=0 00 0=90+ 002 925( 0); (3.8)

where 6 lies between 6 and y; and aRaTe(g) and % are provided in (A.1) of Appendix A of the

paper. The following theorem holds, and it associated proof is provided in Appendix A below.
Theorem 3.3. Suppose that Assumption 1 holds. As T — oo,

(1). (InT)(@ — 6y) —p In ‘ 2 w20 g () du

Given that ‘Sé uzeog(u)du‘ # 1,

(2). M(é— 0o) —p 1, where ny has been defined in (3.7).

In |77 |
For Theorem 3.3, we make some comments in the next remark.
Remark 3.4. Theorem 3.3 shows that the limit of (InT)(6 — 6) is in fact a constant rather than
a distribution in this paper. Without the terms Ay, Az and As in the proof of Theorem 3.3, the
right hand side of (A.25) would lead to an asymptotic normality as in Theorem 6.3 of Phillips
(2007) and Theorem 3 of Robinson (2012). However, these terms cannot be removed using a

bias correction procedure for our nonparametric model, so we state Theorem 3.3 as it 1s.

We will further examine Theorem 3.3 in the simulation study below.

4 Numerical Studies

We next conduct some simulation studies to examine the asymptotic results established in Sec-
tions 2 and 3. For better presentation, we report some selected results below and leave extra

simulation results in the Appendix B of this paper.
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4.1 Parametric Test

To examine the hypothesis test provided in Section 2.1, the data generating process (DGP) is
v = g(m)t% + &, where &, ~ i.i.d. N(0,1). We consider the following cases under different

sample sizes in order to evaluate the size and power of (2.6).
e Case 1l — Size: 6, =0
Case 1.1: g(w) = exp(w);  Case 1.2: g(w) =w? +1
e Case 2 — Power: 0y, = 0.3, 0.5, 0.7
Case 2.1: g(w) = exp(w);  Case 2.2: g(w) = w? + 1

For each generated data set, we calculate LM of (2.6), and let apy = 1(@ > 1.6449)
(i.e., rejecting the null at 95% significant level), where 1(-) is an indicator function. After .J
replications, we calculate the simple average ary = %Z;}:l araj, where agyr; stands for the

value of ary at the j™ replication. Below we choose J = 1000. In view of (2.3), the bandwidth

isset to h = (%)1/3

We plot the value of @y (i.e., rejection rate) at different sample sizes in Figures 2 and 3 instead

, which is the “optimal” one under the null subject to an unknown constant.

of reporting them in tables.

Case 1.1: 6, = 0 and g(w) = exp(w) 04 Case 1.2: 6 = 0 and g(w) = w? + 1
[0 ‘ ‘ ‘ ‘ ‘ ’ ‘ ‘ ‘ ‘ ‘
[
c
S 005 \/\/\/\NJ—\/\’\/\/ 0.05
[&]
2
(0]
o
0 : : : : : 0 : : : :
50 100 150 200 250 300 50 100 150 200 250 300
Sample size Sample size
Figure 2: Parametric test: Case 1 — Size
Case 2.1: g(w) = exp(w) Case 2.2: g(w) = w? +1
1 o e 1 o = —
o
[
2 05
O
e |/ =05 L ..
o)
o ;
0= — : : : : : 0Z— : : : : :
50 100 150 200 250 300 50 100 150 200 250 300
Sample size Sample size

Figure 3: Parametric test: Case 2 — Power

According to Figures 2 and 3, the proposed parametric test (2.6) in general has good finite
sample performance. In addition, Figure 3 suggests that as 6, gets far away from the null, the
power of (2.6) tends to get improved. It should be expected, because when 6, is closer to 0, we

would need more data to distinguish 6, and 0.
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4.2 Nonparametric Test

In this subsection, we study the nonparametric test proposed in Section 2.2. It is worth to
mention that the principle of this nonparametric test is in fact not new and has been well
studied in the literature, so interested readers can refer to the previous studies (e.g., Fan and
Li, 1996; Li, 1999; Gao and Hawthorne, 2006; Su et al., 2015) for more detailed and systematic
simulation studies on the finite sample performance of this type of test.

The main DGP is still y; = g(7:)t% + &, where &; ~ i.i.d. N(0,1). In order to examine the

size and power, we consider the following cases.
e Case 1 — Size: g(w) =1 and 6, =0.5, 1
e Case 2 — Power: 0y = 0.5, 1
Case 2.1: g(w) = exp(w); Case 2.2: g(w) = w? + 1

For each generated data set, we calculate the statistic value by (2.9), and 95% critical values
by Theorem 2.2 based on 299 bootstrap replications.> Similar to the above subsection, if we
reject the null at 95% significant level for the j data set, we then record ay ; = 1, otherwise
ar; = 0. After J replications, we calculate the simple average &y = %ijl ar;. Again, we

choose J = 1000, and plot the values of a;, at different sample sizes in Figures 4 and 5 below.

Case 1: g(w) =1
007 - g(w)

0.06
[
g 0.05
c
2
g
.0 0.04
[
o
0.03
0.02 Il Il Il Il Il I
50 100 150 200 250 300
Sample size
Figure 4: Nonparametric test: Case 1 — Size
1 Case 2.1: g(w) = exp(w) 1 Case 2.2: g(w) = w? +1
2
o
c
Re]
©
o} 8y = 0.5 0 =05
& ........ =1 | A/ |eeeeeaas 6 =1
50 100 150 200 250 300 . 50 100 150 200 250 300
Sample size Sample size

Figure 5: Nonparametric test: Case 2 — Power

3Here, we follow exactly the same procedure of (9) of Gao and Hawthorne (2006).
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The size of the nonparametric test is still as good as expected by Figure 4, while, according
to Figure 5, the power of the nonparametric test is much better than what we see from the

parametric test.

4.3 Evaluation of the Estimates

In this subsection, we examine the asymptotic results provided in Section 2.3. Building on Re-
mark 3.3, we firstly explain how to implement our nonparametric method while taking bandwidth

selection into account.
Remark 4.1. Bandwidth selection:
1. Provide an initial bandwidth (say ho = T~3);

2. For k™ (k = 1) iteration, use hy 1 obtained from (k — 1)™ iteration to calculate Br. Stop

iteration, if |0k — Or_1| < €, where € is a sufficiently small positive number and serves as
1+20),

_ 1420 1
a stopping criteria. Otherwise, update the bandwidth by hy = T 3+ - (InT) 3+4% and
proceed to (k + 1)™ iteration.

According to Remark 3.3, the above bandwidth selection procedure yields an “optimal” one

up to an unknown constant. Unfortunately, how to identify this constant remains unclear.

Specifically, the DGP is y; = g(7:)t% + &;, where 6y = 0.8, g, ~ i.i.d. N(0,1), and g(u) =
3(u — 1)?> + 1. For each generated data set, we first estimate 6y and g by our nonparametric
method proposed in this paper (referred to as NM hereafter). More specifically, we recover 6
by (3.6), and estimate g(;) for t = |Th| +1,...,T by g(u) = (uT)~'er \;;(1,@)\'9\(% HA) based on
the second result of Lemma 3.1. In addition, we calculate %(5 —0p) — 1 in order to further

examine Theorem 3.3.

For each generated data, we record three squared errors:
1 T
~ 2
L sey = T—[Th], > @) - g(m);

2. sep = (6 — 6p)%

3. sej = (M(g— ) — 1)2.

In |77

We repeat the above procedure J times, and calculate three root mean squared errors (RMSE)

1/2 1/2 1/2
by RMSEy = (43 ysen;)  RMSE; = (537 sef,) " and RMSE, = (5337 se,5)
where seg j, sej ; and se, ; stand for the values of seg, sej and se, obtained from j* replication,

respectively.

15



For the purpose of comparison, we also recover 6y by minimizing (3.2) and (3.3) respectively,
and estimate g(ry) for t = |Th| +1,...,T by (3.1) with corresponding estimates of 6. In order
to put all methods on equal footing, we change (3.2) and (3.3) respectively to

T

Qr()= > (v —1'9(n.0))", (4.1)
t=|Th|+1

Qr(alu) = Y (y— Bt Ky(rn—u) with o= (4,0) (4.2)

t=|Th|+1

in the simulation study. For (4.2), we implement (B(u), HA(u)) = argmin, Qr(a|u) to obtain

{5 (r;) [t =|Th]+1,...,T}, and then without losing generality take simple average to calculate

~ 1 .
0 = ——— Z 0(ry). We refer to these two methods as OLS1 and OLS2, respectively,

T —|Th|
t=|Th|+1
and report their RMSEs in the same way as we defined above.

Below, we set J = 1000, 7' = 200, 500, 1000 and h = hyy, T3, T7Y5 T-Y8 where
“hopt” is referred to as the one selected by the procedure of Remark 4.1. For the other methods,
we adopt the same combinations of the bandwidth and sample size but exclude h = hgp. The

results are reported in Table 1.

Table 1: Simulation Results for Section 3

RMSE, RMSE, RMSE;
W\T 200 500 1000 200 500 1000 200 500 1000
NM  hg, 00226 00112 00063  0.1114 00960 0.0870  0.1126 0.0962 0.0860
T-Y3 00638 0.0443 0.0322  0.1164 0.0983 0.0883  0.0880 0.0830 0.0780
T-Y5 01293 01209 01100  0.1369 0.1114 0.0975  0.0182 0.0258 0.0308
T-Y8 01112 0.1387 01474  0.1687 0.1349 0.1168  0.0377 0.0341 0.0296

OLS1 T-Y3 4.8626 7.0742 9.2029 0.3000 0.3000 0.3000
T-Y5 4.5374 6.5958 8.6375 0.3000 0.3000 0.3000
T8 44457 6.2569 8.0620 0.3000 0.3000 0.3000

OLS2 T~Y3 41406 6.2579 7.8744 0.2740 0.2819 0.2786
T-Y5 3.6473 5.6527 7.7828 0.2661 0.2780 0.2861
T-1/8 30284 5.1373 7.0172 0.2414 0.2725 0.2819

As expected, both OLS1 and OLS2 perform rather poorly, and NM method with h,, in
general provides relatively good estimates in terms of RMSE, and RMSE,. On the other hand,
hopt does not yield the best estimate in terms of RMSE, but the difference only happens at the

second or third decimal, so negligible.
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5 Empirical Study

We now provide a case study by investigating the global mean seal level (GMSL). The data
is collected from CSIRO (http://www.cmar.csiro.au/sealevel/index.html), and is recorded in
millimetres originally. As shown in Figure 1, the range of raw data covering years 1880 to 2005
is from -169.9 to 37.6, and has a strong time trend. Note that although our model (1.1) and
the model of Robinson (2012) (i.e., (5.1) below) are defined on t = 1,..., T, both models in fact
have yo = 0 if we allow for ¢ = 0. Therefore, we shift the data set vertically to let yo (i.e., the
value of year 1880) be 0 for better fit.

We first implement the two hypothesis tests of Section 2. The detailed testing procedures are
identical to Section 4, so we do not repeat them again for conciseness. Table 2 below summarizes

the statistic values of two tests and the corresponding decisions at 95% significant level.

Table 2: Two tests

Statistic Value Decision
Parametric Test 4.74 Reject
Nonparametric Test 2.44 Reject

Based on Table 2, we have enough evidences to move on to consider (1.1) for the case where
By > 0 and g is a non-constant function. Hereafter, we always refer to our nonparametric method
as NM. We select the bandwidth (referred to as h,y,) by the procedure given in Remark 4.1.
In order to check the sensitivity of our nonparametric approach, we use two more bandwidths
hi = hopt —0.03 and hr = gy + 0.03 to implement the nonparametric regression below.

For the purpose of comparison, we also consider a parametric setting of Robinson (2012)

(referred to as Para-R hereafter) of the form:
d

wo= Bt + e, (5.1)
j=1

and estimate 0y = (6p1,...,004) and Sy = (B1,...,B4) of (5.1) by the approach of Robinson
(2012). It is noteworthy that how to choose the value of d is still an open question. However,
in our study, we always get a warning from Matlab saying “Matrix is close to singular or badly
scaled” when d = 2. Therefore, we set d = 1 throughout this study, which essentially gives the
model of Phillips (2007).

We report the estimation results of both methods in Table 3, and plot the estimated gy under
three choices of bandwidth in Figure 6.* It is clear that the estimation results of 6, and gy are

quite stable with respect to the choice of bandwidth.

4The 95% confidence interval is drawn under the choice of hopt by using Theorem 3.2 and ignoring the bias
term.
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Table 3: Estimation Results for Section 4

%o Bo
NM hopt = 0.1020  0.8533 -

hr, = 0.0720 0.8534 —
hr = 0.1320 0.8530 -
Para-R — 1.0000 0.4676

0.6 | | | | | | | | |

~

Figure 6: Estimation of gy (i.e., g(-,6))
To further compare the performance of two methods, we finally plot the estimation residuals
from both methods in Figure 7 below. It is easy to see that the residual terms of NM indeed are

smaller than those of Para-R, which should be expected. As we have rejected the nonparametric

test in the beginning of this section, so the model (1.1) potentially can fit the data set in a better

fashion.

Estimation Residuals

15 I I I I I I I I I I I
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Figure 7: Estimation Residuals

6 Extensions with Discussion

Below, we discuss some potential extensions with the corresponding issues.

Extension 1: Building on Robinson (2012), one intuitive extension might be
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d

ye= Y, 9;(r)t" +e with t=1,...T, (6.1)
j=1
where g;(-) for j = 1,...,d are unknown functions, and 6y = (6p1,...,6p,4) is defined on a

compact set © — R? and satisfies certain restrictions.
However, model (6.1) suffers from an identification issue. To make the explanation clearer

and simpler, we now suppose 6 is known. Then, for Yu € (0, 1), the kernel based OLS estimator
of G(U) = (gl(u)7 s 7gd(u))l is

é(“) = (Z 22 K (u — Tt)) Z 2y K (u— 1), (6.2)

t=1 t=1
where z, = (%1 ... t%a)' For (6.2), we normalize the matrix in the inverse as follows:
T
Dy Y 22Ky (u—7) D, ! (6.3)
t=1

where Dy, = diag{T /2% . TY2+%.a} For the (i, 7)™ element of (6.3) with 1 <4,j < d, we

can show that

T
1 00.i+00. 5 U — T ) )
DI (F57) = w1+ o(1) (6.4)
after going through a procedure similar to those for Lemma A.2 of this paper. (6.4) indicates

that (6.3) can be rewritten as

T
DQ_O1 Z z 2y Ky (u — 1) 139_01 = (ueo’l, . ,ueoﬁd)'(ueo’l, . ,ueovd)(l + o(1)), (6.5)
=1
which is obviously not invertible, i.e., (6.2) is not well defined.
Compared to Robinson (2012), the problem is due to the nonparametric nature of (6.1). The

parametric case does not have the kernel function in (6.2), and yields

T

1 ‘ ' 1
f Z Tt0071+90,] — L ueo,ﬁeo,jdu . (1 + 0(1))

t=1

1

= a1 (o) (6.6)

Thereby, the limit of D, ! ZtT:1 22Dy, ! is a Cauchy matrix, and is invertible under certain

restrictions. Then all the discussions given in Remark 3.2 apply.

Extension 2: One may include some explanatory variables and then consider a generalized

trending model of the form:
ye = [l m) + g(m)t™ + &, (6.7)
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where x; is a d x 1 vector including all the observable regressors, f(+,) is an unknown function,
and the other variables are defined in the same way as (1.1). It is worthy pointing out that (1.1)
is equivalent to (1) of Vogt (2012) including a time trend, and also nests the following model as

special cases:
ye = f(x) + g(r)t® + ¢, (6.8)

where (6.8) is similar to (1) of Gao and Hawthorne (2006) and (1.1) of Dong and Linton (2016)
but replacing weak trends with strong ones.

However, there are some issues when recovering f. For example, (1) Vogt (2012) argues that
f(z¢, 1) suffers the curse of dimensionality, so one can decompose f(x;,7;) to an additive form
flzy, 1) = Z?Zl fi@y, ) with zp = (241, ..., 24) in order to bypass this issue, which is exactly
what Dong and Linton (2016) do in their paper while sieve estimation technique being employed;
(2) Phillips et al. (2017) point out that the usual asymptotic methods and limit theory of kernel
estimation break down when f(x,7;) has a linear form of f(zy, ) = z,f(7) with x; being an
integrated process; and so forth. We will leave detailed analysis of f(-,-) to future studies, but
we would like to point out that, under some restrictions on f(-,-) and {z; [t = 1,...,T}, the
main results of this paper may still hold after certain modifications on the assumptions and the

proofs. A formal statement is given in Appendix B of this paper for the sake of presentation.

7 Conclusions

In summary, this paper provides the practitioner from a variety of fields with a new nonpara-
metric trending method to exam/capture/remove time effects. We firstly study two hypothesis
tests. Then we consider the case where both of the null hypotheses get rejected. The consistent
estimators and their corresponding asymptotic properties are established in the paper. More-
over, we examine the proposed hypothesis tests, estimation methods through both simulated and
real data examples. Finally, we discuss some extensions with corresponding potential issues in
the end of this paper, which may guide our future research. Some extra results and simulations
are given in Appendix B of this paper. We assume smoothness on g, but it may be possible to
extend the methodology to consider a finite number of trend breaks or discontinuities in g, see
Delgado and Hidalgo (2000). Likewise the global trend may be subject to some breaks, Bai and
Perron (1998).

Appendix A

In this appendix, we firstly introduce some notations and necessary lemmas, before we complete the

proofs of the main theorems. It is worthy mentioning that the proof of Theorem 2.1 is relatively straight
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forward, after we establish Theorem 3.1 to Theorem 3.3. Thus, we leave it in the Appendix B of this
paper, although it is the first asymptotic result in the main text. The proof of Theorem 2.2 follows
from the development similar to Fan and Li (1996), Li (1999) and Gao and Hawthorne (2006), thus
omitted.

Recall that we have denoted A (u, §) = ZtT=1 20 Kj,(u—7) in Theorem 3.2 for notational simplicity.

Simple calculation shows that

5(u,0) S
89’ = _2ATh u,6) Z Z 2y Kp(u— 1) Kp(u— 75) Int
t=1s=1

T
—i—Ailh(u, 0) [2 teytKh(u —7¢)In t] :
=1

an(u 9) T T T
TQ, = SAE{%(U’ 0) [Z Z Z tsf erh(U — 1) Kp(u — 75)Kp(u — 1) (Int) (In s)]
t=1s=1r=1
T T
—4A77 (u, 0) [Z N (V) ys Kn (u — ) K (u — 75) (1nt) ln(t\/g)]
t=1s=1
T T
—2A;72h(u, 0) [2 Z (t+/5)*ys Kp(u — 7) Kp(u — 75) (Int) (In s)]
t=1s=1

T
Th u, ) [Z %, Ky, (u — ) (Int) ] ;

2 -1
ORp(0 1 & R 1< .
6T¢9( ) =4)%<{1In T 2 Tt26g(7't,9) |7 2 ngg(n,ﬁ)
t=|Th|+1 t=|Th|+1
T ~ T
1 26 ag(Tt’ 9) 2 20~ .
T > om —w 7 > 5, 0)nr ¢
t=|Th|+1 t=|Th|+1

t=|Th|+1 t=|Th|+1
2
T ~ T
1 0q(t,0 2 ~
— 2 Tt29 (0; ) + T 2 Tt%g(Tt,G) Int;
t=|Th|+1 t=|Th|+1
1 < i 1 < -
+4)\% {1n = > 7G(m.0) |7 > 2%5(n,0)
t=|Th|+1 t=|Th|+1
T 9n T ~ T
1 4 4
— Z 7_3978 ga(;;’ %) + T 2 72 59(87;, 2 Inm + T Z 729G(71,0) (In 1)
t=|Th|+1 t=|Th|+1 t=|Th|+1
_92 2
T T ~ T
1 - 1 0g(m,0) 2 ~
2 20 20 ’ 20
+8\7 T Z T79(7%,0) .{T Z i 20 +f Z 709(m,0) InTy p .
t=|Th|+1 t=|Th|+1 t=|Th|+1

(A1)
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4.

Lemma A.1.

1. Let {X,t

2, Xe

T
Pr (
t=1

> TZE) < 4dexp (—8_162

where v?(q) = 1%02(61) —6 with p = o cmd
s AP

+((j + p —

JP)Xjpl+1 + Xjpje2 +

TZtT_llntzlnT—l—i-o(l), as T — o

Proof of Lemma A.1

(1). The detailed proof can been seen in Bosq (1998), thus omitted here
(2). Write

1 T T 1
TZlnt Z Inmy +InT) = f
t=1 t=1

(Inuw)du + o(1) + InT
0

. 1
u(lnu)‘o - L ud(lnu) +o(1) +InT

—1+4+o0(1)+1InT,

where the second equality follows from the definition of Riemann integral
The proof is now completed

Lemma A.2. Let Assumption 1 hold. As T — o

InT
=Op <\/ Th) for ¥0 € ©;
sup

w)e[m]TEJJQKMU_H)
,u)EO %[0,

1.

sup

Z Tt €tKh(u — Tt)
uelo, 1]

2.

3. sup

(0,u)e®x%[0,1] T

T
1
sup - Z 70 g(r) Ky (1 — u) — "t g(u)| = O(h), where
(oweoxni]|T 5
N 1, € [h,1 — h]
C =
§°, K(w)duw,

u=1-che(1—-h,1] (ie,ce]0,1))

22

1} be a zero-mean a-mixing process satisfying Pr(|Xy| < b) =1 for all t
for each integer q € [1, 5] and each € > 0, we have

q[v(q)]_2) + 22 (1 + 4b€_1)1

+ X|(j+1)p)
. 2
LG + DpD) X |+1)p)+1}

> 1. Then



5. Z 720K, (1, — u) — | = O(h>"), where € and ¢* have been defined in (4)
(6, u)e@x[(1+61 )h,1]
of this lemma (md Assumptwn 1.1.a respectively, and €1 is a sufficiently small positive constant;

6. sup |vp(0) —v(0)| = o(1), where U(6y) is a sufficiently small compact set that 6y belongs to,
QEU(Q())

vr(8) = L3 7000 g(7) and v() = §u®t0g(u)du.

Proof of Lemma A.2:
(1). Let {(T") be any positive function satisfying that {(T') — o0 as T — oo. By the arguments same
as (B.10) and (B.11) of Chen et al. (2012b), it suffices to prove that for V0 € ©

=op (l(T)q/?Zj) .

In order to do so, we cover |0, 1| by finite number of subintervals {B;} that are centred at b; and

1 T
- Z Tt6€tKh(U - Tt)

sup
T t=1

u€e[0,1]

of length 67 = o(h?). Denote Ur as the number of such subintervals, which immediately gives that
Ur = O(671). Write

sup
u€[0,1]

T
1
TETth (u—T¢) ey
1

T
1 9 U — Tt 1 0 bi—Tt
ThZTtK< n >€t—MZTtK( n E¢

< max sup
1<i<Ur weB;

t=1 t=1
T
1 0 bl Tt
4+ max |— K 1>
1<i<Up Th; ! ( h ¢
= Il + a7,

where the definitions of II17 and Ils7 should be obvious.
Below, we take 67 = [I(T)]}*" - I;T h? for a sufficiently small v > 0.

For II 7, write

T T
- 1 9 U — T 1 0 bi — Tt
H1T—123§ngg hZTtK<h )st—ThtZthK< — )
1 T
- — Rl (D (*
s, s g g K 0

or 1 <
< O(1) max sup hQTZTﬂaﬂ
t=1

1<i<Urp ueB;

1 n n

where u* lies between “7™ and bi;—”; the second equality follows from Mean Value Theorem; the
third equality follows from the definition of Riemann integral; and the fourth equality follows from the
construction of dr.

For Ilsp, we use truncation technique, so for the same v > 0 above denote
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&= - 1e| <TYVUT)) and &5 =¢,—5,

where 1(-) is the indicator function.

Thus, we obtain that

+ max
1<i<Ur

IIor € max
1<i<Ur

Th;TtK A €t

p et (M

= Ilor + o2,

where the definitions of Ils7; and IIa7 2 should be obvious.

For o7 1, observe that

_T ~
‘ T9K< h t)ét

where &€ = T/~ 1(T)h 1.
Then, for any € > 0, letting I(-) satisfying

<OMTY" = (T)h~' = O(1)¢,

T1—2/uh
ur d
(L) = oo and oy %
and applying Lemma A.1 with
T 1 Ti-2/vh InT 20%(q)  &e1 _ O(1)
= — = = eI (T — d 2o < ,
1 2p’ P e|l(T)]? mr (T) o M p? 5 T2hp
we have

P (Hng >T61) Pr (Hng >6l( ) 1;?;)
2[1(T)|2q 2T 46\ 1/2
< omazt e | ~“HGHE ) ot (14+25) gz
T2hp

46\ 12
< O(1)d7" exp (—O(V)E[(T)]*InT) + O(1)67! (1 + q) qa(|T/(29)])-

By exactly the same arguments as those for (B.16) of Chen et al. (2012b), we immediately obtain

that H2T71 = op (Z(T)q / 1%7}7;)

For Ilo7 9, write

T
1 0 bl — Tt InT
_ K =C > T _
Th t;” ( I ) fi| = D 7 )
1 0 bz — Tt \ ~e InT
< > —
SPri may wax|pnk < h > fi| = DN 7 )




hlnT 1
< Pr| max |5 = el(T)y/ ; : k
st<T maxi i<y K (%ﬂ) maxi<t<T ‘Tte‘

Based on the analysis of Ilp7 1 and Ilor 9, we have Ilor = op (l(T) %) In connection with the

analysis of II;7, the proof is completed.

(2). We now use Lemma A2 of Newey and Powell (2003) to show the second result of this lemma.

It suffices to show that

. vTh

o I W T et Kp(u —
e (DI T | T Zt K~ )

=op (1),

where [(T') is an arbitrary positive function satisfying that [(T') — o0 as T' — 0.
Step 1: © x [0, 1] is a compact subspace of R? with Euclidean norm, which verifies condition (i) of

Lemma A2 of Newey and Powell (2003).

vTh
Step 2: For V§ € ©, sup ————
wefo,)] (T)VInT |T

lemma. Thus, we immediately obtain that for V(G u) € © x [0,1]

JTh
{(T)WIT |T

ZTt stKh(u—Tt)‘ = op (1) holds by results (1) of this

=op(1)

Z Tt EtKh(u — Tt)

Step 3: Condition (iii) of Lemma A2 of Newey and Powell (2003) holds apparently in this case.

Therefore, we conclude that the second result of this lemma holds.
(3). The procedure of proof is the same as (1) and (2) of this lemma, so omitted.

(4). Divide © x [h, 1] into the following two subsets:

Case 1: (0,u) € © x [h,1 — h]
Case 2: (0,u) € © x (1 —h,1], i.e., (0,¢c) € © x [0,1) with u = 1 — ch.

For Case 1, write

sup - Z 7_9+60 (Tt ]; U) . u9+9og(u)

(0,u)€© x [h,1—h]

3 e (w0 () -
= sup — | wgw)K | —— | dw+ O —u g(u
0,)e0x[h,1—h] |17 Jo (w) h Th (u)

(1—u)/h 1
= sup f mi(u + wh)K (w)dw + O ( ) — w0 g(u)
(0,u)€0x [h,1—h] |J—u/h Th
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= sup
(0,u)€O x [h,1—h]

fl@m>+m9wm@ K +0 (7 ) =gl

1
m w)whK dw—l—O( )‘
(9u)e®><h1 h] f (w) Th

= O0(h) + 0 (Th> = O(h),

where 7 lies between v and u + wh; my(u) = u’+%g(u); the first equality follows from the definition of
Riemann integral; the third equality follows from Taylor expansion and the fact that K (w) is defined on
[—1, 1]; the fifth equality follows from Assumption 1.1.b; and the sixth equality follows from Assumption
1.4.

For Case 2, (0,u) € © x (1 — h,1] is equivalent to (0,¢) € © x [0,1) with w = 1 — ch. Notice that

for u* lies between u and u + wh where w € [—1, ¢, we have

l1-2h<u—h<u*<u+ch=1, (A.2)

where the equality follows from the construction of u. Thus, write

ey T U\ gy, ‘
sup Thz (h > u’ 0 g(u) Jl K(w)dw

(0,0)€0x[0,1)

(1—u)/h c
= sup J mi(u 4+ wh)K(w)dw + O < ! ) — uf % g(uw) J K(w)dw
(0,0)€0x[0,1) | —u/h Th 1

I Jc@m>+m9<m@ Ko +0 (g5) = g0) [ Kwyiu

(0,0)e@x%[0,1)

1
= sup J m w)whK (w)dw + O < )‘
(0,c)e0x[0,1) Th

—0(h) +0 (Th> O(h),

where 7 lies between u and u + wh; m(w) = w9*%g(w); the first equality follows from the definition
of Riemann integral; the second equality follows from Taylor expansion and the construction of u =
1 — ch; the fourth equality follows from (A.2) and Assumption 1.1.b; and the fifth equality follows from
Assumption 1.4.

Based on the above analysis, the result follows.

(5). Similar to result (4) of this lemma, divide © x [(1 + €;)h, 1] into the following two subsets:
Case 1: (0,u) € © x [(1 +€1)h,1 —h]

Case 2: (0,u) € © x (1 —h,1], ie., (0,c) € © x [0,1) with u = 1 — ch.

Before considering Case I, note that for u* lying between u and u + wh with w € [(1 + €1)h,1 — h]

and w € [—1, 1], we have

eth<(l+e—-1)h<u—h<u" <u+h<1 (A.3)

Thus,
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sup |(u*)?~1h| = sup(eh)** ~'h = O(h*"), (A.4)
(0,u)e®@x[(1+e€1)h,1] 0e©

where ¢* has been defined in Assumption 1.1.a.

K (Tt;u) —u?
J w-u dw + O i —u?
0 h Th

(1—u)/h

Then we are able to write

sup
(0,u)€©x [(1+€1)h,1—h]

=
[
=
o

gl\’)
>
=

= sup
(0,u)e©x[(1+e€1)h,1—h]

(u 4+ wh)? K (w)dw + O (Tlh) —u®

= sup
(0,u)e©x[(1+€1)h,1—h]

‘% > -
g
~
=

= sup
(0,u)e©x[(1+e€1)h,1—h]

| [

1
20 ~20—1 )
(u + 200 wh) K(w)dw + O <Th) u

| [

= sup
(0,u)e©x[(1+e€1)h,1—h]

=m#ﬁ+o(;)=omwy

Th

2001 wh K (w)dw + O (1> ‘
1

where U lies between u and u + wh; the first equality follows from the definition of Riemann integral;
the third equality follows from Mean Value Theorem and the fact that K(w) is defined on [—1, 1]; and
the fifth equality follows from (A.4).

For Case 2, write

T
1 20 (Tt —u) » J‘C
sup — > K| —— | —u K(w)dw
w£k@me>1712; ' h 4

(1—u)/h 1 c
= sup J w2 K (w)dw + O <) —u? J K(w)dw
(0,0)€0x[0,1) | J—u/h Th 1

= sup J (u20 + 29&29*11011) K(w)dw + O <1) - uzef K(w)dw‘
(0,0)e0x[0,1) |J1 Th 1

= sup J 200 wh K (w)dw + O (1> ‘
(0,c)e@x[0,1) [J-1 Th

1

:ow+o<ﬂJ:om%

where 4 lies between u and u +wh; the first equality follows from the definition of Riemann integral; the
second equality follows from Taylor expansion and the construction of u = 1 — ch; the fourth equality
follows from (A.2); and the fifth equality follows from Assumption 1.4.

Therefore, the result follows immediately.

(6). We now consider the sixth result of this lemma.

Step 1: U(fy) is a compact subspace of R with Euclidean norm, which verifies condition (i) of
Lemma A2 of Newey and Powell (2003).

Step 2: For V0 € U(6p), it is easy to know vr(6) —v(#) = o(1) by the definition of Riemann integral.

Step 3: Note that by keeping using integration by parts, it is easy to know Sé(ln u)*du < oo. We

now verify the continuity of v(#), and write
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[v(01) = v(ba2)] =

1 v
L (ufot0r — 00492y g (1) du| = ‘(91 — ) - f u?” g(u)(In w)du

1 1 1/20
< |6 — 62 {fo W du - L gz(u)(lnu)Qdu}
1 26% 411 V2 2 2 i

1 20% 41| e 4 ' 4 v
= |91—92|{29*+1u ‘0} {Jo g (u)du-fo(lnu) du}
= O(|6h — 62)), (A.5)

where 0* lies between 6y + 61 and 6y + 65; the second equality follows from Mean Value Theorem:;
the first inequality follows from Cauchy Schwarz inequality; the fifth equality follows from Assumption
1.1.b and the fact that we point out in the beginning of Step 3. In connection with Step 2, we obtain

lor(61) — vr(62)] < O(1)]|01 — 02|, which verifies condition (iii) of Lemma A2 of Newey and Powell
(2003).

Then the proof is completed. |

Proof of Lemma 3.1:

(1). Write
~ 6o—0
sup  [(w,0) = (uT)" ()|
(0,u)eBr(60)x Be, (h)
111 & Lz
< sup — || = theKh(u —T) — TtestKh(u —T)
(6,u)Br(60)x Bey () T° (T ,;1 T ;

(0,u)eBr(00) % Bey (h)

T
+ sup T%~? < 2 20 K (u — Tt)) Z 700 g(m) Ky (u — 74) — (uT)~g(u)

= A1 + Ao,

where the definitions of A1 and As should be obvious.

Firstly, note that one simple fact is

1\ % 1060
sup < sup TV =0(1). (A.6)
9eBr(60) \ 1 9eBr(60)

We then consider A; to As one by one. Start from Aj.

l T

- sup T ([u29 + O(h)]*1>

(9 u EBT(G()) [(1+€1)h,1]
( ) { sup h_e} { sup (Th)_e}
GEBT(Go) QEBT(eo)
th T=%p=2% ! sup ho~0 sup (Th)%~?
OEBT(Qo) GEBT(Qo)

vVInT
T2 +90h2 +260¢
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where the first equality follows from (2) and (5) of Lemma A.2; the first inequality follows from As-
sumption 1.1.a; and the third equality follows from (A.6).
By (4) of Lemma A.2, write

Ay =0(h) sup T % =0(h). (A.8)
9eBr(60)
By (A.7) and (A.8), the proof is now complete. [ |

As explained in Remark 3.1, the number of observations lying between |Th| and [T(1 + €;1)h] is
limited and negligible, as €; is an arbitrary small positive constant. Thus, with a bit abuse notation,

we define (3.5) by using observations from |Th| + 1,...,T throughout the following proofs.

Proof of Theorem 3.1: )
2
(1). Note that Rp(8) = A2 - R%(0), where R%(0) = {ln [% 2?:[Thj+1 Tt%:q\(ﬁ,&)] } . As Ap s
independent of 6, we simply focus on R%.(6) below. More specifically, we show that for any given € > 0,

there exists a sufficiently large positive constant C such that
limTinf Pr{R} (6o + A\rC) > R} (6p)} = 1 — ¢, (A.9)

limTinf Pr{R} (6o — A\rC) > R} (6p)} = 1 —e. (A.10)

Both (A.9) and (A.10) holding true implies with probability at least 1 — e that there exists a local
minimum in the interval Up(6p) = [0y — ArC, 0y + ArC]. Hence, there exists a local minimizer such
that 0 — 0o = Op(Ar). The above argument is in line with the same spirit of the proofs of Theorem 1
of Fan and Li (2001) and Lemma A.1 of Wang and Xia (2009).

Write

R7(0) — Rr(6o)

_ 25 2 25 2
=<{In 1 i TQGA(T 0) —<In 1 i T290A(T o)
t=|Th|+1 t=|Th|+1
_ 2~ 2
T
= Y @) +op(1)]
T t
t=|Th]+1
25 2
1 T
—{n |5 Y wle(m) +op(1)]
t=|Th|+1
T 2?2
= 2(90—9)1nT+1n% Z 700 4(7) + op(1)
t=|Th|+1
2+ 2
1 &S o
—<In| = Z 2% (1) + op(1)
t=|Th]+1
T 2
1
= 4(00 — 0)’(InT)*> +2(6 — O)(InT) -In | — > 7% g(m) + 0p(1)
t=|Th|+1
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T T
1 1
+<In T 2 700 5(7) + op(1) —<1In T Z 2% 4(1) + op(1)
t=|Th|+1 t=|Th|+1

:= 4B17(#) + 2By7(0) + Bsr(0) — Byr(bo),

where the definitions of By7(0), Bor(6), Bsr(60) and Byr(6y) should be obvious; and the second equality
follows from Lemma 3.1.

: 1. 60+6 2
Notice that, for ‘Shu 0 g(u)du

, the following two expressions hold uniformly in 6 € ©:

1 2
J u90+9du
h

1
=
2 SUPgeo (00 + 0 + 1)

2

1
> A

1 2
_ A2 90+9+1‘
1(90+0+1u h

AT 2 Ky >0, (A.11)

1
L u?* g(u)du

and

2 1 1 1
< J u2(90+9)duf > (u)du < A%J w0010) gy
0 0 0
A% . u2(90+9)“‘é 1 )
= < — 245 < Ky < o, A12
200 +0)+1 2infgee (0o +0) +1° 2 2 ( )

1
f w0 g(u)du
h

where A; and A, are defined in Lemma 1.1.b; K; and K5 indeed exist and are two finite positive
constants due to the compactness of © and Assumption 1.1.a.

Thus, it is easy to know that Bor(6) = Op(|6o — 0] - (InT')). Similarly, we can show that Bsr(0) =
Op(1) uniformly in 6. Byr(6p) is independent of 6, so ignored.

Based on the above analysis, we immediately obtain that for 6 = 6y + AprC
R7(0) — Ri(60) = 4C* £2C - Op(1) + Op(1),

which immediately indicates that (A.9) and (A.10) hold true with sufficiently large C.

The proof of the first result is now completed.

(2). By Lemma 3.1, the second result follows similarly. [ |

Proof of Theorem 3.2:
In order to establish the normality of g(u) for Yu € (0, 1), write

5(1,0)7 - §(u, 8) — g(u)

T -
~ 1501,8) (2 K (u - n>> S0 0g(r) Ky (u - 1) — g()
t=1 t=1
T -1
+g(L. )™ (Z t* Ky, (U—Tt)> Dt Ky (u— 1)
t=1 t=1

where the definitions of A1 and As should be obvious.
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Note that by (4) and (5) of Lemma A.2, it is easy to know that A; = Op(h) + Op (). After
imposing the conditions in the body of this theorem, it is easy to show that A; will have a faster rate
Op(h?).

1 & G
We now focus on the normalized version of — 2 taatK n(u — 1) and write

t=1

1
TZTEQK}Z (u—7)

=1
1 & 1 &/ 5
= 7 Z TfOEtKh (u—1¢) + T 2 (Tt9 — Tteo) et Kp (u — 1)
=1 =1

:= By + B».
By (3) of Lemme A.2, we know that

1 ~ s
By = T 2(9 — 00) 0 (Iny)es K (u — 77)

T
= 0 00) = Z (Inmy)e Kp (u — 7¢)

Also, by standard argument of time series analysis (e.g., proof of Theorem 2 of Cai (2007)), we can
prove that

VThB; —p N(0,5%),

where ¥* = lim7,0 7 ST ST sk () K (257) Elees].
Further note that we have

i 2 St (M) o (157 e
o

T
1 2% 7.2 Tt 9 1 00 6 U — Ty U — Tg
= 77 oK ( ) Blel] + o DY bk —— | K (=) Blees]
t=1s=1,#t
= Vir + Var. (A-13)
By Assumption 2, we then have as T' — o
Vir = (1 4 o(1))o2u?% Jh ) K%(w)dw (A.14)

|Var| =

vl U2 <u ;Ul) K (u _hw> v((vg —v1)T) dvy dvg

f f g K (@)K (g (( — y)Th) dy de

= (1 + o(1))(Th)

<o) [ Ll ju = 2hl? fu — yhl" K (@)K ) (Th) b((x — ) Th)] T # yldyda
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= o(1). (A.15)

It is easy to show that Viz = (1 + o(1)) o2u?% S£1 K?(w)dw. By the identical development for the
term Io on page 182 of Cai (2007), we have Var = o(1).
Further note that

R -1

1
15(1,0)| = %% ->p f w0 g(u)du| (A.16)
0

where the last step follows from the first result of Theorem 3.3 immediately (the details are temporarily
omitted for now).

Also, simple calculation yields

I S LR CR N
= > mPe(m) + T > G - g9(m)
t=|Th|+1 t=|Th|+1
1 < 5 1
=7 Z 20g(m) + op(1) = f w0 g(u)du + op(1), (A.17)
t=|Th|+1 0

where § has been defined in the body of this theorem, and the last equality follows from similar

development of (A.18).

Thus, the result follows based on the above analyses. |

Remark A.1. Recall that we have defined vr(-) and v(-) in (6) of Lemma A.2, so write

~ ~

jor(®) = o(00)| < [vr®) — v@)| + [o@) — v(00)| = 0r (1),

where UT(é\) —v(0)
(A.5).
By Theorem 3.1, we have |§— O|InT = Op(1). Then the next limit indeed exists:

~ ‘

= op(1) follows from (6) of Lemma A.2, and ‘v(é\) - v(@o)‘ = op(1) follows from

¢1 = plim T% 7.

T—wo

N[~

T - 1
S rfolg(n) = & j 2 g(u)du, (A.18)
t=|Th|+1 0

where 0 is defined in (3.8), and lies between 8 and 6y; and & = plim 7000,

T—w
Similarly, the next two limits exist:
~ 1 T ~ 1
do = glim %0 T Dt g(m)Inn = d JO w0 g(u)(Inu)du, (A.19)
—® t=|Th|+1
~ 1 T ~ 1
b3 = glim Tt T Z 700 g (7)(In )% = &OJO w0 g(u)(Inw)?du, . (A.20)
—® t=|Th|+1

With (A.18) to (A.20) in hand, we are now ready to provide the next lemma.
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Lemma A.3. Under Assumption 1, as T — o0,

1 L 2982§(Tt79) 2
Logo Y R, = T e 20 T)6s + 65 +op(),
t=|Th|+1

T o~
ez S PO uT)e s op(),

t
t=|Th|+1 o0
3 ! i 720 09(71,9) lnrt‘ = —(InT)py — ¢35 + op(1)
o t ~ T - )
T = |ThI+1 00 0=0
1 T
4' T Z Tt29§(7t79)|9:9~ = ¢1 + OP(]-);
t=|Th|+1
1 T
5 = Z 720G (71, 0) lnn‘ezg = ¢2 +op(1),
t=|Th|+1
1 T
6. > m29(m, 0)(Inm)?|,_j = ¢3 + op(1),
t=|Th|+1

2
7. Chr(0) s =8+op(D),

where ¢1 to ¢3 are defined by (A.18) to (A.20) respectively; and 0 is defined in (3.8).

Proof of Lemma A.3:
(1). Recall that we have defined o g (u % and Arp n(u,0) in the beginning of Appendix A. Write

T ~
1 290°9(7¢,0)
T X T ‘975
t=|Th|+1
] T T T T
-7 Z TtQGATh (7¢,0 [2 Z Z Us\f erh(Tt — Tu) Kp (1 — 75) Kp (72 —Tr)(lnu)(lns)]
t=|Th|+1 u=1s=1r=1
T T T
A S A 0 | S Y )Py K — ) (e — 7)(inr) In(r5)
T [V A2 Ys K p (Tt — T ) IS (T2 — T5)(In7) In(rv/s
t=|Th]+1 [ r=15=1
T T
= i 203, 0) | 2 D V) Py K — 1) K (7 — 7,) (m ) (In s)
T t A p\lt r ys e — ) K — 75)(In7r)(ln s
t:lThJ+1 _T‘=18=
1 < , N A
tr Z TtgeAilh(Ttae) ZseysKh(Tt—Ts)(lns)Ql
t=|Th|+1 | s=1

= 8A1 —4A9 — 2A3 + Ay,

where the definitions of A; to A4 should be obvious.

We now consider A1 to A4 one by one. Firstly, further decompose A; as follows:

T N A —3
A = T Z 07603 [T Z 720 K (1 — Ts)]
t=|Th|+1 s=1
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T T T
~ 1 ~ o~
A [TS DY Fur) P g () Kn(ri — 1) Ky — 75) Kn(1 — 77) (Inw) (In 3)]
u=1s=1r=1
1 @ ofrehs|l v o -
N [T > K- m]
t=|Th|+1 =1
N T T
P03 [ Z Z Z TuTs) 07 67«Kh(7't — Tu) Kn (1t — 75) Kp(7e — 77-) (Inw)(In 3)]
u=1s=1r=1
= An + Az,

where the definitions of A7 and A1 should be clear.

For Aqq, write

1 G oiei
Ay = - 2 720p-66-3
t=|Th]+1

50+00+3 [1 ZT: 2
T3

u=1s=1r=1

S

-3
1 ~
T Z TszeKh (1 — TS)]
s=1

T

(rurs) 07000 g (7.) Ky (7 — 7) K (70 — 72) K (72 — 7) (In u)(In s)]
T

_9 o 1 0 —eb
=T 01+ 0p(h*))- = D, 7%
t=|Th|+1

1 & 1L
. [ Z 3 (Inw)Kp(me — 7 ] [T Z 70400 g (1) K (1 — Tu)]
u=1 u=1

M|

T
~ 1 _ ~
=T+ 0p(W*7)) - o 3, 7" g(m)

T 2
1
T 2 3 (Int, + nT)Kp(m¢ — Tu)]
t=|Th|+1 u=1

T
=TI T(1+ 0p (7)) 5 Y 7 g(n)
t=|Th|+1
n L, "
+27%=%(InT)(1 + Op(hQC*))— Z 7'?07399(7})
T t=|Th|+1

1 & Ly
T Z 720 K, (1 — Tu)]

u=1

1 & Ly ’
T Z 20K (1 — Tu)]
u=1

T
Z lnTu Kp(1e — 1)

T

2
Z 1117'u VK (1 — Tu)]

T
J 1
T+ Op(h*T)) - o D) A
t=|Th|+1

_ Teofg(lnT)z(l + OP(hQC*)) . l 2 Tt90+9g(7't)

+27%=%(InT)(1 + Op(h2c*)) 1 Z Tfﬁeg(ﬁ) In7y
T e
~ 1 T
+T0 014 0p(h*)) - Y Hg(n) ()’
t=|Th|+1

= (InT)*¢1 + 2(InT)g + ¢3 + op(1), (A.21)

where the second, third and fifth equalities follow from (4) and (5) of Lemma A.2; and the last equality
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follows from (A.18) to (A.20) and the definition of Riemann integral.

Similar to the analysis of Ay1, we have

T T -3
~ 1 ~ 1 ~
Ao = 0p()T %(InT)?- T oo [T DT Ky (e — Ts)]

t=|Th]+1 s=1

1 T T T
' [3 ST S (rur) Pl K — ) K (e — ) K (12 — n>]
[ Z T ErKh(Tt - Tr)]

1 lnT 5/2
o 7

where the second equality follows from (5) of Lemma A.2; and the third equality follows from (2) of
Lemma A.2 and Theorem 3.1.

Based on the development of A7 and A2, we immediately obtain that

Ay = (InT)%¢1 + 2(InT) o + ¢3 + op (1)

Similarly, we have

T

T —2
1 40—

t=|Th|+1

T T

> 1

T30+60+2 [ 5 Z 2 7‘297’ ys K (s — 1) Ky (14 — 75)(In7) <ln’r + 5 5)]
r=1s=1

[(I0T)?¢1 + 2(In T2 + d3] + op (1),
Az = (InT)*¢1 +2(InT)¢a + ¢3 + op (1),
Aq = lnT) o1 + 2(1I1T)¢2 + ¢3 + op (1) .

Based on the above, the second result of this lemma holds.
T

. 1 208./9\(7—157
(2). We now consider T Z o 7 ‘ gy and write
t=|Th|+1
Loy 79(.0)
t -
|Th|+1 0 lo=0
9 I IOl AR 2rr T N
== 2 [Z u? K (e —Tu)] [Z 3 (un/5)?y K (1 — ) K (e —rs)lnu]

13

—
= —2A; + AQ,

where the definitions of A; and Ay should be obvious.
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For A;, write

T T T
~ 1 ~
Ay = (14 Op(R>*)T—4-2. T Z % [Z Z (uv/s) 2 9(75)s% K (1 — Tu) K (1 — Ts)an]
t=|Th|+1 u=1s=1

T

¥ A0 1
+(1+O0p(h*>" )T~ 2? oo
|7k

T T
Z Z 55Kh(Tt — 7u) Kn (1t — 75) lnu]

+1

T

1+ 0p(h2*NT% 1) & 51 & & 55

:( p( 12) (InT) Z % —Z 2720750+009(75)Kh(7t—Tu)Kh(Tt—Ts)
t=|Th|+1

1+ 0p(h2* N1y & sl 1 & & 5
+( P( ]z) ( ) Z Ty 20 =) Z Z(Tu ) egsKh(Tt - Tu)Kh(Tt - Ts)
t=|Th|+1 u=1s=1
1+ Op(h2* )10 & i1 & o
fAROPO TR Sh i | LS S a0500g (1) K — ) K — ) I,
t=|Th]+1 |~ u=ls=1

1 h2c* TGO 3 T ~ 1 T T ~
—i-( + Op( T ) 2 7'{29 | = Z Z(Tu Ts)zee’:‘sKh(Tt — 7)) Kp(1t — 75) In T,
t=|Th|+1 L~ u=ls=1

= (InT)¢1 + ¢2 +op (1),

where the first equality follows from (5) of Lemma A.2; and the third equality follows the development
similar to (A.21).

Similarly, we can show that

Ay = (1nT)¢1 + ¢2 +op (1) .

Based on the above, the third result of this lemma holds.
T

0g(t, 0
(3). We now consider — Z 20 g(;;’ ) In Tt‘gzg and write
t=|Th|+1
T
1 29(
— Z 29 g Tt’ lnrt‘ ~
=|Th|+ =
9 I T 2rr T
= Z lnTt Tt [2 uQGKh (1t — Tu)] [Z Z ysKh Tt — Tu) Kp (1 — Ts)lnu]
=|Th|+ u=1 u=1s=1

T -1
—i—% Z (Iny)m, [Z 29Kh Tt—Tu)] [

ugyuKh(Tt - Tu) In u]
t=|Th|+1 u—1

L

= —2A1 + Ao,

where the definitions of A and As should be obvious.

For Ay, write

~ T T T
Ay = (14 0p(R*)T 4072 % Z lﬂTt [Z Z (u/s) 20 9(7)s K (10 — 70) K (2 — 75) lnu]
=|Th| u=1s=1
T T
+(1+ Op(h2c*))T_49 2 % Z (Iny)m, [Z (ua/s) 2985Kh (10 — Tu) Kp (11 — 75) lnu]
t=|Th|+1 u=1s=1
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ot o—0 n T - T T
= (1+Op(n? ))TG 0(1 T) Z (lnTt)Tt_Qg [1 Z Z T 07'9+90 Ts) Kn (¢ — Tu) Kp (178 — Ts)]

2
T t=|Th|+1 o |
14 0p(h2*)T% (1) & A
L p( 12) (InT) D (nm)r T2 D2 (run/7s) 20 Ky (¢ — ) K (7 — 75)
t=|Th]+1 u=1s=1
1+ Op(h2* )10 L [ LT
+( p( - ) (In Tt)Tt_Qe |72 Z Z r "wa‘)g(Ts)Kh(Tt — Tu) Kp(1t — 75) In 7y
t=|Th|+1 | u=1s=1

(1+ Op(h>*))T0~0
* T

G

S
3=
1=
1~

(Tu\/?s) EsKh(Tt — 7u) Kp(1 — 75) In Tu]
1

-
Il
S
=
+
—_

T

IS
Il
—
»
Il

= (InT)¢p2 + ¢3 +op (1),

where the first equality follows from (5) of Lemma A.2; and the third equality follows the development
similar to (A.21).

Similarly, we can show that
Ay = (InT)pa + ¢3 +op (1).

Based on the above, the third result of this lemma holds.

(4)-(6). Similar to results (2)-(3) of this lemma,

T
% TZ: 70G(7, 0 ‘9:5 =¢1+op(l),

1 T

f TE 7°G(7,,0) lnTtL:N = ¢2 +op (1),

1 < )

f TZ: Tt g 74, 0)(In %) ‘0_5 =¢3+op(l).

(7). By (1)-(6) of this lemma, simple calculation immediately gives

aQRT(e)‘ L= 8 +0p(1).

062

The proof is now completed. |

Before proving Theorem 3.3, we denote some variables for notational simplicity and provide some

discussions.
1 T
S=Jim 3y BV Vi=Vie+ Vo, Vie=-——n ), mtenki(nu— ),
t=1s=1 u=|Th|+1
1 T
— 0
Vai = ot > P (InTy)e Kn(r — 7). (A.22)
v=|Th|+1

Inmy _ _ (9 _ Int
t (

Remark A.2. We now verify the existence of .. Simple algebra shows that 1.7 = T

), so Vo is

a rescaled version of Viz. Thus, we just focus on Zle ZST:1 E[V1iVis] for the purpose of demonstration.
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Note that it is easy to obtain

1 (' K(w)dw, uw=h+chel0,h) (ie,cel0,1))
L Kp(w—u)dw =< 1, u€ [2h,1 — h] ) (A.23)
§°, K(w)dw, uw=1-che(l—h1] (ie., cel0,1))

which indicates 0 < supyefo 1 S,ll Kp(w —uw)dw < 1. Thus, for ZtT=1 Zstl E[V1,Vis], we have

T T 1 T T
Z Z E Vltvls - ﬁ Z Z E[Es1532] 31 Tso Kh(Ttl 7-51)Kh(7-t2 - TS2)
=|Th|+1te=|Th|+

M)ﬂ mMQ

M| =

T

t=1s=1 s1=1s9=1
T

so=1

Eles es,]T 51 ”J Kp(w — 75, de Kp(w — 7g,)dw + o(1),
1

S1

where the second the equality follows from the definition of Riemann integral, and the right hand side

converges by (A.23) and standard argument of time series analysis.

Proof of Theorem 3.3:

(1). Write
T T
1 09(1y,0) 2
= Z 20 8Z + T Z 7. 9(7y,0) InT, ‘ o,
u=|Th|+1 u=|Th|+1
T T 172171
-2 D1 Y PR (=) || D D (V) Py Ky (ry — ) K (7 — ) Int
u u t YsBhp\Ty t) A p\Ty
u=|Th|+1 t=1 1 Li=1s=1
1 T T 11T
+— Z 720 Z 20 K (10 — 71) Z %4, Ky (7, — 1) In t]
|Th|+ [ t=1 i L¢=1
T T “Irr
L2 D () | YK (ry — ) %y, Ky, (1 — 1)
T u) Ty W Ty — Tt Z Yt A p Ty — Tt
u=|Th|+1 t=1 t=1
T T 17217 T
2
= -z Z 7200 Z 20 Ky, (1, — 71) Z Z (ty/5)2905% g (1) K1, (10 — 1) K1 (70 — 75) In t]
u=|Th|+1 | t=1 | | t=1s=1
T [T 1277 T
_2 Z 260 theOK (Tu — 71) 22(2&\/5)2905 Ky (1y — 1) Kp(my — 75) Int
u h\7Tu t s p\Tu t h\Tu s
u=|Th|+1 | t=1 | | t=1s=1
1 T [T 11T
+— Z 7390 Z t290Kh( —T) 2 tQHOQ(Tt)Kh(Tu —T¢) lnt]
u=|Th|+1 [ t=1 | | t=1
1 T [T 11T
+o Z 720 Z 20K, (1 — T1) 2 1%, Kp (1 — 1) In t]
u=|Th|+1 | t=1 i | t=1

1
|

T T “lrr
2
+r Z (In7,)r2% Z 20 K, (1, — T1) 2 200 (1) Ky (1 — Tt)]

u=|Th|+1 [ t=1 a L t=1
9 T 1-trr
—i—T 2 (InT,)7s 200 Z t200Kh (Tu — 7¢) Z teoetKh(Tu - Tt)]
u=|Th|+1 t=1 | Lt=1
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= —2A1 — 2A5 + A3 + Ay + 2A5 + 2A¢, (A.24)

where the deﬁnitions of A1 to Ag should be obvious.
Focus on Tle T 2 (—2Ay + Ay + 2A¢) first. By repeatedly using Lemma A.2 as we have done in the

proof of Lemma A.3, we are able to write

T90+% A "
—2A 2
T ( 2 + Ay + 246)
Th+s 9 T T 1217 T
=T T 2 7200 Z 200 K, (70 — 71) Z Z(t\/g)%oesKh(Tu — 1) Kp(1y — 75) Int
n u=|Th|+1 | t=1 i Lt=1s=1
T90+% 1 T T 17 irr
+ WwT T Z 7390 Z t290Kh(Tu —T) Z teOEtKh(Tu —7)Int
n w=|Th|+1 =1 1 =
Th+L 9 T , T , “lrr ,
+ T T Z (In Tu)'rg ’ 2 £ O Kp(Tu — Tt) Z et Kp(Tu — 7t)
n u=|Th|+1 t=1 t=1

-2

T: 2 i 20 [1 i 26 1 i 20
== i To | 7 O K (Tu — Tt) = 7 Ky (Ty —7¢) Int
T T u=|Th|+1 T T t=1

t=1

T

1

T Z TtGOEtKh(Tu - Tt)]
t=1

X
1 T T T
T2 1 1 1
mT T Z 7'390 [T Z thaoKh(Tu — 7t) T 2 TfostKh(Tu —Tt) lnt]
u=|Th|+1 t=1 t=1
1 T T T
T2 2 1 1
N Z (In7,)72% T Z % Ky (ry — 7) T Z 708 Kp (7 — Tt)]
u=|Th|+1 t=1 t=1
T: 2 & 15
= —(1+0(1)) - WwT T Z 75200 [7390 In7, + 7'390 lnT] T Z TfOEtKh(Tu —7¢)
n u=|Th|+1 t=1
1 T T
T2 1 1
(L+o) =7 > TETfogtKh(Tu_Tt)(1n7t+lnT)]
u=|Th|+1 t=1

_
4
=)
=
3
M|
gl

(In7y,) [ ZTt et K (T —Tt)]
+1

u=

—_—

Th|

1 T
T2 2 1 0,
=—(1+o0(1)) - 7T 2 [In7, +InT| [T Z T et K (T, — Tt)]
u=|Th|+1 t=1
T: 1 & 1 &,
+(1+0(1) 1 = > TZTtOEtKh(Tu—Tt)(lnTt+1nT)
u=|Th|+ t=1
1 T
T2 2
+(1 +o(1)) - 7T Z lnTu [ 2 Oy Kp(Ty — Tt)]
u:[ThJ
1
= (1+o0p(1)) - T3z > Z {—QTtgoé‘tKh(Tu — 1) + 70 K (1 — Tt)}
u=|Th|+1t=1
1 T T
0
+(1+o0p(1)) - TRLT l;”“;no(ln T)et Kp(my — 1) = (1 + op(1 Z Vi, (A.25)
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where V; = Vi + Vo,

T

1
Vi = T Z TtgoetKh(Tu —T),
u=|Th|+1
1 T
Vor = =T 2 Tfo(lnTt)EtKh(Tu —T). (A.26)
T / InT u=|Th|+1

We then can use the large block and small block technique (e.g., Lemma A of Chen et al. (2012q))
to show that Zthl Vi =»p N(0,%), where ¥ has been defined in (A.22).
Thus, we know that

InT
—2A9 + Ay + 244 = Op <T:0+%> . (A.27)
, I
To further simplify the notation, letting &7 = T Z 77%G(71, 0o), it is easy to know that
t=|Th|+1

1
e —p J 2% g (u)du (A.28)

0

by the development of (A.18). Thus, rearranging (3.8) using the decomposition (A.24) gives

O? Ry (6 L4022 g2
[ag?()‘eg] {ZTHT -(InT) (=242 + Ay + 2A6)}

B ~ PRp(0)] 1 ' 4XZ - Ing?
- ““T){(Q‘HU)‘ S e

Note that (A.27) and (7) of Lemma A.3 together imply

O2Rp(0)) 17! (—4X2 - Ing2 1

(241 — As — 2A5)} . (A.29)

Thus, we can further simplify (A.29) to obtain

QQRT(Q)‘ ThaN2 e
002 lo=0 &

(241 — A3 — 2A5) + Op <

(InT)(6 — 6p) = (InT) {

In [&7|
T

1

) . (A.30)

TY0+3

Below we just need to focus on Ay, Az and As. Start from A;.

1 T T —2
20
A=z Y [Zn OKhm—n)]
u=|Th|+1 t=1

T T
) [Z Z 7'7&2907'3909(7'5)Kh(7u — 1) Kp(ty — 75)(In7y +1InT)

|
=
=]
3

t=1

1 T T 2rp T

’ T Z 7—390 [2 7—1526’0](h(7_u - Tt)] [Z Z 200 5290 Ts Kh( - Tt)Kh(Tu - Ts)]
1 T T -

+f Z 7—300 [Z TtZQOKh(Tu - Tt)] [Z Z 200 290 Ts Kh( - Tt)Kh(Tu - 7-5) 1n7—t]

t=1s=1
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= A1 + Aqo.

For Ai1, we have

T
* 1
Ay = (InT) - <1 + O(h* )) T Z 739075490759073909(@)

u=|Th]+1

=(nT)- (1 + O(hQC*)) . % i 72%4(7,)
u=|Th|+1

=(nT)- (1 + O(hQC*)) . (Ll w0 g(u)du + O (Tlh)>

1
=(InT) f g(u)du + o(1),

0
where the first equality follows from (4) and (5) of Lemma A.2; and the third equality follows from the

definition of Riemann integral.
Similarly,

T
1
Ap = (1 + O(h2c*)) ‘T 2 7200 7 ~490 72607200 (7 Y (In 7,,)
u=|Th|+1

_ (1 . O(hQC*)) ' (Ll w29 g(w)(Inw)du + O (m(lT/fL)))

1
- JO w0 g(u)(Inw)du + o(1),

where the second equality follows from the definition of Riemann integral.

Therefore,
1

w0 g(u)du + f w0 g(u)(Inw)du + o(1).
0

1

Ay = (mT)J

0

Similarly, we can show that

As = (m:r)f

0

1
w0 g(u)du + f w0 g(u)(Inu)du + o(1),
0

1

As = Ll w0 g(u)(Inw)du + o(1).

By the analyses of A1, A3 and As, we obtain that

241 — A3 — 245 = (InT) Jol P g(u)du - (1 4+ Op (Ar)). (A.31)

In connection with (A.30) and (A.28), we can conclude that

(In )@ — g0) = 2ol 700 _
0) = u*g(u)du + Op(Ar) =In +op(1),

§&r Jo

1
J w0 g(u)du
0

where the existence of In ‘Sé u?0 g(u)du‘ has been verified by (A.11) and (A.12) already.

Thus, the proof of the first result of this theorem is now complete.

(2). The second result follows from (A.17) straight away.
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Appendix B

We first provide the omitted proof for Theorem 2.1.
Proof of Theorem 2.1:

(1). The proof of (2.3) follows from the standard arguments, so omitted. We take a further look at
(2.4) at first, and write

~ 1

Sr = —% > [+ 3(m) — g(m)] - [§(7) — 9(7) + g(7)] Int
odd 4" 544

1 1 ~
=7 etg(m) Int + T Z et - [9(7¢) — g(m)] Int

odd t odd odd 4" 544

g(1)] (1) g(7¢ ] Int
todd t odd

:=S71+ S12 — 513 — ST4, (B.1)

where the definitions of St to S74 should be obvious. Since it is easy to show that Sto = op(S7,1)

and St4 = op(St,1), we just focus on S — St 3 as follows:

1

Sti1—Sr3 = e1g(Tt) [9(1e) — g(1¢)] 9(7¢) Int
odd 4544 odd 4044
Kp(
- Z erg(m) Int — 2 2s even I? T 7-8)580_(](7'1t)1n75
odd ;"4 odd £ odd 5 even h(Tt - Ts)

— g(T ) Int
Todd Zs even Kh(Tt - TS) g( t):| g( t)

1 Teven 1 Ky (1 — 75
= Z etg(m) Int — . Z €t Z n(7: ) )g(rs)lns

1 |:Zs even Kh(Tt - TS)g(TS)
t odd

Todd £ odd Todd  Teven toven s odd ZJ even Kh(Tj —Ts
+0p(1)
1 1+o0p(1
= etg(m) Int — 1+ op(l) Z etg(m)Int + op(1)
odd Teven
t odd t even
2 2 1
== Z erg(m) Int — —i_;P() Z etg(m)Int + op(1), (B.2)
t odd t even
where the fourth equality follows from
K —
g(m)Int — Z n(r = 75) g9(7s)Ins = op(1)
s odd Z] even Kh (TJ - Ts)

uniformly in ¢ by the proof similar to those given for Theorem 3.3 of the main text.
Based on (B.2) and the assumptions in the body of this theorem, the result follows immediately.

Then the proof is complete.

(2). We now consider what happens under the alternative hypothesis, i.e., y > 0. For Vu € (0, 1),

we have

Zthl Kn(u— 1)y

Zt 1Kh(U—Tt)g( ) Zt 1Kh(U—Tt)€t
ST Kn(u— ) "

|g(w)] ST Kp(u—1) S Kn(u—7)
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T 0
T@() . Zt:l Kh(u - Tt)g(Tt)Tt ?
Sy Kn(u =)

—>p Q0. (B.3)

Fop (1) = 7% - (4% g(u)| + 0p(1)) +o0p (1)

In connection with (B.1), it is easy to see that Sp4 is the true leading term due to the involvement of
the quadratic term. Then by the definition of (2.6) and under the alternative hypothesis, LM — o as
T — 0. |

A Generalized Parametric Test with Discussions

We now discuss if a more generalized version of (2.1) can be achieved. To be precise, the test is specified

as follows:

Ho : 90 =a vs. Hi: 9(] > a, (B.4)

where a is a positive constant. Under the null, the estimator of g reduces to a special case of (3.1), i.e.,

T -1
G(u,6o) = [Z 200K (u — Tt)] Dty Ky, (u—7). (B.5)

t=1 t=1

-1
In order to avoid [Zthl 200 I, (u— Tt)] blowing up the rate of convergence in the sup norm below,

d?[uf*%0 g(u)]
du?

c € (0,1) is a fixed constant. Then by the proof of Lemma 3.1, a faster rate convergence for g(u, o)

we further restrict u to the set [¢,1 — h] and suppose that SUD(9,4)€0 x [¢,1~h]

< o0, where

can be achieved as follows:

~ AVInT
sup |g(u,0o) — g(u)| = Op s wwsesul B O(hQ)- (B.6)
u€lc,1—h] Ta2t0p3
Note that in this case, the score function becomes
1 X
St(0o) = T ; (yt - g(Tt)tao) g(m)t% Int.

In order to use (B.6), we denote By, = {t ||cT'| <t < |(1 —h)T|} and let T be the cardinality of By,.

Then consider the following approximation for the score function in practice:

~ 1 . .
Sr=gm 0 (0 = 5(r)t™ ) G(r)t™ 1, (B.7)
t oddeBy,

where

-1
Glu) = [ > K, (u—Tt)] >ty K, (). (B.8)

t evene By, t evene By,

Based on the above, write

. 1 ~ ~
St =~ )y [—Et + g(m)t% — g(Tt)teo] [9(m) = g(m) + g(7)] % nt
t oddeBy,
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2 ~
= e Z Etg(Tt)teo Int + T 2 e [9(re) — g(7)] t% It

t oddeBy, t odde By,
2 . 2 ~
T > 13(m) — 9] g(r)* Int — T > [Gm) = g(r))? 2% Int
t oddeBy, t oddeBy,
= S71+ S12— 573 — ST4- (B.9)

Similar to the proof of Theorem 2.1, it is easy to show that +/T*St9 and vT*St4 are negligible, and
St,1 — St,3 can be rewritten as
2 2+op(l
Sty — ST3 =+ Z erg(m)t% Int — Tf() Z erg(m)t% Int + op(1) (B.10)
t oddeBy, t eveneBy,
provided h2T?% InT — 0 in view of (B.6) and the development of (B.2).

Therefore, we are able to state the next result.

Corollary B.1. Let the conditions of Theorem 2.1 hold. Suppose further that h*T?InT — 0 and

d*[u®*f0g(u)]
2

T < Q0.

SUP(9,u)e0@ x [¢,1—h]

1. Under the null, as T — o0,

_ VTS,
LM = 75 —p N0, 1), (B.11)
~ ~ 2
{62 7% s, [t ]’ |

where 52 = ¢ Duen, (Ut — G(m)* =p o2, and St and g(u) have been defined in (B.7) and (B.8)

respectively.

2. Under the alternative, as T — o0, LM — .

The proof of the second result of the above corollary follows from almost an identical procedure as

(B.3), thus omitted.

Remark B.1.

1. The condition h*T?% InT — 0 implies 0y cannot be greater than or equal to 1.

2. Note that {0 |IT]\7(0) < za} gives the 1 — v confidence interval for 0y, where o stands for the

significant level and z, presents the corresponding critical value.

Below, we implement some simulation study to back up our arguments. Particularly, the DGP is
yr = exp(7:)t? 4 &4, where the variables are generated in exactly the same way as Case 1.1 of Section
4.1. We choose the value of 6y from {0.2, 0.4, 0.6, 0.8, 1.0}. The bandwidth is set to h = (#)7/10,
and we let ¢ = 0.3 without losing generality. As the above development requires h272% InT — 0, so we
would expect that the size of the test will go wrong when 6y > 0.7. For simplicity, we report the size
based on 1000 replications in Figure 8, which is sufficient to explain our argument on the requirement

of 6y < 0.7. The power test can be done as in Section 4.1, so we do not pursue it further.
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DGP: y, = exp(1)t? + ¢,

Rejection rate

Figure 8: Size of (B.11) at 5% Significant Level

As expected, while 6y = 0.2, 0.4, 0.6, the size of (B.11) is reasonably well (i.e., moving around 5%).
However, when 6y = 0.8, 1, the size of the test totally goes wrong, which confirms our argument on

the requirement of A2T2% InT — 0.

Extension 2 of Section 5

We now formalize the statement made in Extension 2 of Section 5. Consider a general trending model

of the form:
e = [ m) + g(r)t? + e (B.12)

Assumption 3:

Suppose that f(-,-) and {z; |t = 1,...,T} satisfy one of the following three cases:

1. {zy |t = 1,...,T} is a strictly stationary and a-mizing error process with a density function p(w).
of (w,
Moreover, sup p(w)M < and E| sup |f(z1,u)]]; or
(w,u)eRx [0,1] Ju uel0,1

2. {xy [t =1,...,T} is a locally stationary process.®> Let f(-,-) be uniformly bounded and satisfy that

|f(z1,u) — f(z2,u)| < Aq|z1 — m2| for Yu € [0,1], where Ay is a positive constant; or
3. (a) Let f(-,-) be uniformly bounded, and x; = x¢—1 + wy fort =1 and |zol| = Op(1);

(b) Let wy = Z;io i€, where Z;)-Ozojﬂi/)jH < o0 and P := Z;‘O:o Y #0;

®We adopt the following definition for a locally stationary process (cf., Vogt, 2012; Dong and Linton, 2016):

Definition 7.1. The process {z¢ |t = 1,...,T} is locally stationary if for each rescaled time point u € [0, 1] there
exists an associated process {x¢(u) |t =1,...,T} with the following two properties:
(a) {x:(u) |t =1,...,T}is strictly stationary with density fu(w);

(b) It holds that ||z, — z¢(w)|, < (|7 —ul + T71) Up(u) a.s., where 7, = t/T, {U(u)} is a process of positive
variables satisfying E\Uy(u)|? < C for some p =2 1 and C < o0 independent of u, t, and T. Moreover, || - ||,
denotes an arbitrary norm on R?.
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(c) Let {€j | —o0 < j < 0} be a scalar sequence of i.i.d. random variables having an absolutely
continuous distribution with respect to the Lebesgue measure and satisfying Ele1] = O0gx1,

Elei€}] = 14, El|e1|? < oo for some q > 2. The characteristic function of €1 is integrable.

Corollary B.2. Let 0 and g(u,0) be those defined in Section 2 of the paper. Under Assumptions 1

and 3, suppose further that h = O(T™") with v being a positive constant and satisfying 0 < v < % As
T — oo,
|
1. sup ‘TZTff(CUt,Tt)Kh(U—Tt ‘ = Op(1);
(,w)eox[0,1]"'4 =

2. 0— 0o = Op(\r), where Ay is defined in (3.5);

5. sup [5(u,0) = (WD)~ - g(w)| = 0p(1
u€lh,1]

~—

Proof of Corollary B.2:

(1). First, we point out one simple fact below:

1, welh,1—h]
(1-u)/
J y K(w)dw = §°, K(w)dw, u=1-chwithce[0,1)
—u/h
Sl_c K(w)dw, w = ch with ce[0,1)

Therefore, it is easy to know that

(1—u)/h
sup = f K(w)dw = O(1). (B.13)
wel0,l] -/

Case 1: Under Assumption 3.1, we have

E

sup ‘TZTtaf(ﬂﬁt,Tt)Kh(U—Tt)‘]
1

(0,u)e©x[0,1]

<J su 1ZT:7'9|f(w )| Kp(u — 1) p(w)dw
X ( p T t s It h t)P

0,u)e0x[0,1] 4 4

< O(l)f sup — 2 |f(w, 7)| Kp (u — 7¢) p(w)dw

ueOl]T =1

J sup J | f (w1, wa)| - p(w1) Kp(u — wa)dwadw;
UEe 0 1

(1—u)/
f sup J fwr,u + wah)| - p(wr) K (we)dwadw,
u/h

ue 0 1
(1-u)/n
=0(1) J sup |f(wy,u)] K (ws)dws - p(wy )dwy
u€el0,1] —u/h

<0mfswlﬂwmeMw=0m,

u€[0,1]

where the second inequality follows from the fact that 0 < 7% < 1 uniformly; the first equality follows

from the definition of Riemann integral; the third and fourth equalities follows from Assumption 3.1.;

the third inequality follows from (B.13).
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Therefore, sup ‘
0.weox(o,1] T

Case 2: Let Assumptlon 3 2 hold. Note that by the definition of a locally stationary process, it is

Z Ttef(f)«“t,Tt)Kh(u —1¢)| = Op(1) under Assumption 3.a.
—1

easy to know that Ui(u) = Op(1) uniformly in ¢ and u.
Write

sup ‘ fo,T)Kh(u—T)‘
(0,0)e0x[0,1] th n '

(eu)?@l}i 0] ‘Tth (x4, 7t) f(xt(Tt)aTt))Kh(u_Tt)‘

T

1 6
+ su pt T, T (7)), T Ki(u—T7
(9,@6@2[0’1] T ; t (7)), 7) K ( t)‘

= Ay + Ao,

where the definitions of A4 and As should be obvious.
For Ay, we have
| I
Av=sup ST (f(we ) = S (@n(me), 1)) Knlu = 71)
(b.weex[0,1]'L [

< O(l) sup Z T H{L‘t Tt HKh(U B Tt)
(6,u)e®x[0,1]
1 T
< O(1 sup  — Y U(r)Kp(u—T
( )(G,u)e®x[071] T2 ; L Ug(1y) K ( )

T
1 1
<O 7y D Ui(m) < Or(1) 7 -
t=1

where the first inequality follows from Assumption 3.2; the second inequality follows from the definition
of locally stationary process; and the fourth inequality follows from the fact (i.e., Uy(1y) = Op(1)) that
we point out in the beginning of Case 2.

For A, it is easy to obtain that

T
1
E[AQ] = sup ‘TZTth(IEt(Tt),Tt)Kh(U—Tt)‘]
@weoxo1]! T =
1 !
< sup —ZKh u—1) =0() sup — | Kp(u—w)dw
(0,u)e®x%[0,1] u€[0,1] 0

(1 u)/h
_0(1) sup f K (w)dw = O(1),
u€l0,1] J—u/h

where the first inequality follows from Assumption 3.2; and the second equality follows from the defi-
nition of Riemann integral; and the fourth equality follows from (B.13).
Based on the analyses of A; and As, we have sup ‘ 2 70 f(@e, ) Kp(u— 1) = Op(1).
uweoxoi T =

Case 3: Let Assumption 3.3 hold. Construct a vr 5at15fy1ng that v — o0 and vp/(Th) — 0. By
Lemma C.5 of Dong et al. (2016), we know that, for sufficiently large ¢, z;/+/t has a pdf function ¢;(w),

47



which is uniformly bounded in both ¢ and w.

E[( sup ‘TZth xtaTt)Kh(u_Tt)‘]

0,u)eO©x[0,1]

=LK [ sup ‘T f(aftht)Kh(U - Tt)‘]
(0,u)e©x[0,1]

1 &
+E [(GU)SUP T Z th(xt,Tt)Kh(u_Tt)‘]

u)eOx[0,1] t=vp+1

sup ]‘;i f(\[ \/E t)Kh(u—Tt)‘]

(0,u)e©x%[0,1

<o 2] sup of | f(v/w, )| K — 1) by ()

t vr+1 (9u€@><01

1

<O(1)—+ sup — » Kp(u—m f(bt )dw = O(1),
Th = e T ;

where the second inequality follows from Assumption 3.3; and the last equality follows from (B.13) and

the fact that ¢(w) is a density function.
T

Thus, we have sup Tt O f(xe, 7)) Kp(u — 7 ‘ = Op(1), so the proof of the first result is

(0,4)e0x[0,1] ‘T
complete.

Based on the first result of this corollary, the second and third results can be verified by exactly

the same procedure as documented in the Appendix A of the this paper. |

Another Potential Issue

We now explain the failure of a sieve based OLS method based on model (1.1). Still consider y; =
g(7)t% + ¢;. Further assume 6 is known. Following Newey (1997), we can expand g(-) by power series

on certain support as follows:

k—1 0
T*GOyt =7 % Z cirfteo + 1% Z cnfteo + T Y0g,
i=0 i—k

— ch +90+Zcz +90+T 90625
In view of (6.6), it is easy to obtain

T
Oo+1 Go+k—1y( 60 _Bo+1 Bo+k—1ys
ZTt STE e T I A AR ey )

T
{290+z+3+1}kxk'(1+0(1)) (B.14)

for 0 < 4,7 < k — 1 under proper restrictions on k¥ and 7. Thus, as k diverges, the right hand side of
(B.14) is asymptotically singular, which indicates that the sieve based OLS method also does not work

for model (1.1). Certainly, the choice of basis functions plays an important role when implementing the
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sieve based OLS method. However, it is not clear to us which series can solve the ill-posed problem at

this stage.

Numerical Studies

We now use simulation to examine Corollary B.2 and the potential issue mentioned above together.

Specifically, we adopt the following DGPs:

DGP 1: i = f(ze, ) + g(r)t? + 60 with  g(u) = 3(u — 1)% + 1,

3
DGP 2:  y; = f(ze,m) + g(m)t% + ¢, with  g(u) = 3Ju —1)°7 + 1. (B.15)
The f(-,-) and {z;} are generated as follows:

e Case 1 (Stationary): z; follows an AR(1) process x; = 0.5x4—1 + vy, and

flx,u) = Z?:l |z;| + 5sin(u - m) with & = (z1,...,24)";

e Case 2 (Nonstationary): x; follows an integrated process x; = x4 + vy, and

f(z,u) = exp {—(Z?=1 $]-)2} + 5sin(u - 7) with = (x1,...,24)".

In both cases, xg ~ N(0gx1,1q) and vy ~ i.i.d. N(Ogx1,Iq). We set d = 1 without losing generality.
The other variables are generated in exactly the same way as Section 3 of this paper.

We first implement NM, FOLS1 and FOLS2 methods documented in the main text to DGP 1 under
both Cases 1 and 2, and report results in Tables 4 and 5 below.

Table 4: (DGP1, Case 1)

RMSEy RMSE,

P\T 200 500 1000 200 500 1000

NM T-2/5 0.1004 0.0914 0.0846 0.1020 0.0534 0.0326
-3 0.1057 0.0938 0.0859 0.0383 0.0215 0.0157

T-5  0.1263 0.1069 0.0951 0.0869 0.0946 0.0928

T-Y% 0.1581 0.1304 0.1144 0.0976 0.1283 0.1396

FOLS1 T2/ 0.3000 0.3000 0.3000 5.4512  7.4493 9.4524
T-13 0.3000 0.3000 0.3000 5.3382 7.3816  9.4220

T-5  0.3000 0.3000 0.3000 4.9488 6.8721 8.8398

T-8 0.3000 0.3000 0.3000 4.8027 6.4911 8.2334

FOLS2 T2/ 02746 0.2688 0.2676 4.6967 6.0574 7.4868
T-Y3 0.2773 0.2808 0.2794 4.6713 6.4921 8.1174

-5 0.2628 0.2790 0.2865 3.9134 5.9406 7.9951

T-Y8 0.2431 0.2728 0.2827 3.3330 5.3493 7.2129
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Table 5: (DGP1, Case 2)

RMSE, RMSE,

PINT 200 500 1000 200 500 1000

NM 725 01025 00923 00851  0.0948 0.0482 0.0286
T-1/3 01078 0.0947 0.0864  0.0382 0.0229 0.0175

T-1/5 01284 0.1078 0.0956  0.0873 0.0951 0.0933

T-Y% 01603 0.1314 0.1149  0.0976 0.1284 0.1397

FOLS1 T-2/5 03000 0.3000 0.3000 53572 7.3848 9.4045
T-1/3 03000 0.3000 0.3000 52526 7.3231 9.3785

T-1/5 03000 0.3000 0.3000  4.8719 6.8208 8.8019

T-1% 03000 0.3000 0.3000  4.7293 6.4433 8.1987
FOLS2 T-%5 02733 02670 0.2670  4.5755 5.9264 7.4130
T-1/3 02762 02808 0.2791 45590 6.4374 8.0573

T-1/5 02652 02783 0.2866  3.9096 5.8606 7.9608

T8 02416 02722 02822 32417 52840 7.1504

As can be seen, the procedure of recovering 6y and gg is not affected by f(-,-) and {x; [t =1,...,T}
too much, which indicates that one can implement our procedure to detrend the data set in a bet-
ter fashion practically. However, when FOLS1 and FOLS2 get employed, huge biases arise. Thus,

detrending the data set by a proper econometric tool indeed matters.

Below we focus on DGPs 1 and 2 under Case 1 only in order to examine the issue raised by sieve
estimation technique. Apart from our proposed method, we also use sieve based OLS method (referred
to as SOLS). In particular, we use power series {1,u,u?,...} to approximate g(u) in our simulation

study (cf., Newey (1997)). Specifically, the new objective function is

T
Qr(0) = 3 (v~ 5u(7.0)) (3.16)
t=1

where G (71,0) = 21C(0), 2z = (1,7}, . .. , 71y and C() = (Zthl [t92] - [tezt],) - ST [t%2] yi. In
order to demonstrate our arguments under (B.14), we set the truncation parameter to k = 2, 3, 5, 10, 15.
For the purpose of comparison, we set the bandwidth to h = 1/k when implementing our method.5
In Table 6, it is not surprising to see the best estimate comes from SOLS method with k = 3, as this
choice of power series perfectly fits the DGP 1. However, when we increase the value of truncation
parameter, the matrix in the inverse is getting closer to singular as explained under (B.14), which is
also confirmed by Matlab over simulation study as we always receive warnings saying “Matriz is close

to singular or badly scaled”.

6The setting of h = 1/k is indeed reasonable. As for a nonparametric model y; = g(z;) +e; witht =1,...,T,

it is easy to see that the leading terms of the rates of convergence are 4/ %d and \/ﬁ for the sieve based method

and the kernel based method, respectively, under certain restrictions, where k is the truncation parameter, h is
the bandwidth, and d is the dimension of z;. For more details, see Chen (2007) and Gao (2007) for excellent
reviews of nonparametric regression.
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Table 6: (DGP 1, Case 1)

RMSE, RMSE,

T=200 T=50 T=1000 T=200 T=50 T =1000

NM  h=1/2 01548 0.1378  0.1263 0.1019  0.1183  0.1263
h=1/3 01240 01121  0.1034 0.0822  0.1122  0.1254

h=1/5 01083  0.0985  0.0911 0.0205  0.0492  0.0659
h=1/10 01015  0.0927  0.0859 0.0826  0.0281  0.0157
h=1/15 01003  0.0918  0.0850 0.1046  0.0432  0.0198

SOLS k= 0.3000  0.3000  0.3000 47499 64232 8.0886
k=3 0.0161  0.0057  0.0030 0.1035  0.0365  0.0178

k= 0.0599  0.0199  0.0094 0.6624 02456  0.1313

k=10 0.2407 02124 0.1998 1.0880  1.2357  1.3105

k=15 0.3242 03167  0.1237 1.2188 14768  0.9684

Although the power series may work well with a relatively small truncation parameter when g(-) is
a certain polynomial function, it may not even work well for the case where the powers of polynomial
functions are not integers, which is confirmed by the simulation study for DGP 2. In Table 7, we see
that the results of SOLS generally perform worse than our proposed method, which indicates that the
choice of the basis functions indeed matters. However, at this stage, it is not clear which particular
class of basis functions can potentially solve the problem discussed under (B.14), while the finite sample

results are generally good.

Table 7: (DGP 2, Case 1)

RMSE, RMSE,

T=200 T=50 T=1000 T=200 T=50 T =1000

NM  h=1/2 00723  0.0650  0.0598 09221  0.9424  0.9522
h=1/3 00435  0.0408  0.0381 0.8646  0.8981  0.9133

h=1/5 00312 00301  0.0284 0.6699  0.7209  0.7436
h=1/10 00269 00265  0.0252 0.4152 04806  0.5090
h=1/15 00262 00259  0.0247 0.2048  0.3642  0.3943

SOLS k=2 0.1879  0.1876  0.1877 1.2468  1.4045  1.5010
k= 02131 02192  0.2219 45228  6.0737  7.5396

k= 0.1866  0.1719  0.1656 3.8811  4.2123  4.6908

k=10 02736 0.2853  0.2002 1.6633 20399  1.8726

k=15 0.2679  0.2573  0.2002 1.6132  1.9826  1.8734
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