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Abstract

This paper studies a model with both a parametric global trend and a nonparametric

local trend. This model may be of interest in a number of applications in economics, finance,

ecology, and geology. The model nests the parametric global trend model considered in

Phillips (2007) and Robinson (2012), and the nonparametric local trend model. We first

propose two hypothesis tests to detect whether either of the special cases are appropriate.

For the case where both null hypotheses are rejected, we propose an estimation method

to capture both aspects of the time trend. We establish consistency and some distribution

theory in the presence of a large sample. Moreover, we examine the proposed hypothesis

tests and estimation methods through both simulated and real data examples. Finally, we

discuss some potential extensions and issues when modelling time effects.
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1 Introduction

Time trends have been widely studied and used for more than a century (e.g., Jones, 1943;

Anderson, 1971; Hamilton, 2017; Andrews and McDermott, 1995; Phillips, 2001, 2005, 2007,

2009), see Mills and Patterson (2015) for an historical review. There is no doubt that time trends

exist in many data sets from different fields, so that how to mimic time effects always plays a

crucial role in data-driven science (e.g., economics, finance, ecology, geology, etc.). In some

applications, like climate modelling, the trend is the object of interest. In other applications,

like some in macroeconomics, interest focusses on the fluctuations about the trend, which is why

so many applied works start from detrending the data (e.g., Greene, 2005; Feng and Serletis,

2008). Either way, it is important to have a good methodology for dealing with the trend. There

are several general approaches to trend modelling that have widespread appeal for practitioners,

these include:

1. using a deterministic global trend under a parametric setting (cf., Chapter 3 of Anderson

(1971)). For example, production economists usually incorporate time trends by simply

adding a linear term t and/or a quadratic term t2 to so-called translog production/cost

functions in order to capture time effects (e.g., Greene, 2005, Eq. 10; Feng and Serletis,

2008, Eq. 13 and 19, and so on); or

2. using a local deterministic trend under the nonparametric setting (cf., Robinson, 1997;

Chen et al., 2012b; Dong and Linton, 2016). For example, Engle and Rangel (2008) and

Hafner and Linton (2010) use such nonparametric trends to capture slowly varying long run

components of volatility. The Hodrick-Prescott filter widely deployed in macroeconomics

is best interpreted as fitting such a trend model to the level of the series (Phillips and Jin,

2015); or

3. using a stochastic trend driven by a unit root or random walk process (cf., Harvey, 1989;

Greene, 2002).

We are concerned with deterministic trend models, i.e., the first two cases considered above.

Not much work has been done to examine the correct functional form in the parametric global

trend model, with linear or quadratic being the dominant choices. On the other hand, the

nonparametric trend literature confines its attention to the case where the trend is bounded as

the sample size increases, which puts some limits on its applicability. In our empirical study we

will consider the global mean sea level (GMSL) data, which is plotted below in Figure 1. The

plot looks like having a strong linear time trend, but how to defend (or deny) this conjecture

against nonlinear alternatives by using a proper statistical tool has not been fully resolved yet.

Power trends have been studied by Phillips (2007) and Robinson (2012) under parametric

frameworks respectively, where the traditional least squares method remains valid due to the
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Figure 1: Global mean sea level

parametric nature of their models. The corresponding rates of convergence and asymptotic

normalities are established therein. Inspired by these two works, we consider the following

model

yt � gpτtqtθ0 � εt, (1.1)

where τt � t{T with t � 1, . . . , T , εt is a stationary mixing error process, gp�q is an unknown

but smooth function, and θ0 is an unknown parameter defined on a compact set Θ with θ0 ¥ 0.

The slowly varying component g can capture nonlinear trend of a quite varied nature, so long

as it is bounded and smoothly varying, whereas the global trend part tθ0 allows the outcome

variable to increase without bound as the horizon lengthens. The error term εt is allowed to be

weakly dependent and can represent short term “cyclical” behaviour, which we do not model

or estimate. Our model nests the parametric global trend models considered in Phillips (2007)

and Robinson (2012) and the nonparametric local trend model that underpins a lot of statistical

trend fitting. In this study, we are interested in estimating θ0 and gp�q from a time series dataset

on yt.

We comment briefly on some related literature. Sornette (2003) proposes deterministic trend

and cusp models for modelling stock market crashes. A markedly different approach is provided

by unobserved components models from the state space literature; see Harvey (1989) for a

comprehensive overview. In these models, the trend is stochastic in nature. It is hard to compare

this approach with ours in theoretical terms, since they are nonnested. The pure random walk

model implies linear growth in both mean and variance, so by itself is not well suited to describe

the flexible trend we propose. From a practical point of view, the two methods offer alternative

ways to flexibly estimate the trend behaviour of a time series. In the unobserved components

model, the flexibility comes through small stochastic innovations in the trend and the cycle. Our

model in contrast owes its flexibility to the nonparametric nature of the deterministic component

functions. Dahlhaus (1997) introduces locally stationary process, which combines deterministic
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local trends with stochastic variation, see also Giraitis et al. (2014) who consider a time-varying

coefficient model with stochastic variation.

The structure of this paper is as follows. In Section 2 we propose two hypothesis tests for

evaluating the nested parametric and nonparametric models. In Section 3 we propose estima-

tors of both trend components and derive their consistency and limiting distributions. Some

simulation studies are implemented in Section 4 to examine the proposed tests and estimation

methods. In Section 5 we apply our methodology to the global mean sea level (GMSL) data.

Section 6 discusses some potential extensions and issues; Section 7 concludes. Mathematical

proofs of the main theories are given in Appendix A. Finally, in Appendix B, we provide the

omitted proofs, and some extensions to include (1) theoretical development supporting some of

our discussions given in Section 6, (2) another modelling issue of studying power trend, and (3)

corresponding simulation studies.

Before proceeding to Section 2, it is convenient to introduce some notations that will be

used throughout this paper. ÑP denotes converging in probability; ÑD denotes converging in

distribution; tau means the largest integer not exceeding a; Kp�q and h represent a symmetric

kernel function and a corresponding bandwidth of the kernel method, respectively; moreover,

Kh puq � 1
h
K
�
u
h

�
.

2 Two Pre-Testing Issues

Sections 2 and 3 together provide the asymptotic results of the paper. To be precise, the main

testing and estimation steps are as follows.

1. We first consider two hypothesis tests:

(a). Parametric test:

#
H0 : θ0 � 0

H1 : θ0 ¡ 0
; (2.1)

(b). Nonparametric test:

#
H�

0 : gpτq is a constant function

H�
1 : gpτq is a non-constant function

. (2.2)

2. If we fail to reject either of these null hypotheses, everything goes back to some well

studied models of the literature. For example, failure to reject “H0 : θ0 � 0” gives a

model yt � gpτtq � εt, which is a special case of Robinson (1997), Dong and Linton (2016)

and so forth; and failure to reject “H�
0 : gpτq is a constant function” leads to yt � β0 t

θ0�εt,
which has been studied in Phillips (2007) and Robinson (2012).

3. If both null hypotheses get rejected, we move on to Section 3. We point out the failure

of some intuitive methods in Section 3.1, and provide consistent estimators of g and θ0 in
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Section 3.2.

We now make some assumptions to facilitate the derivation throughout the paper.

Assumption 1:

1. (a) 0 ¤ θ0 P Θ, and Θ is a compact set defined on R.

(b) gp�q is second order differentiable on r0, 1s, and satisfies that 0   A1 ¤ inf
uPr0,1s

|gpuq| ¤

sup
uPr0,1s

|gpuq| ¤ A2   8 and sup
pθ,uqPΘ�rh,1s

����druθ�θ0gpuqsdu

���� ¤ A3   8 for the same h defined

in Assumption 1.4 below, where A1, A2 and A3 are positive constants;

2. tεt |t � 1, . . . , T u is a strictly stationary and α-mixing error process with mixing coeffi-

cients tαpiq |i � 1, 2, . . .u such that
°8
i�1rαpiqs

δ
2�δ   8 for some δ ¡ 0, where αpiq �

sup
j

sup
APFj

�8
, BPF8j�i

|PrpA X Bq � PrpAqPrpBq| and Fkj is the σ-filed generated by tεt |j ¤

t ¤ ku. Moreover, Erε1s � 0, E|ε1|2 � σ2
ε and E|ε1|2�δ{2   8 for the same δ.

3. Let Kp�q be symmetric and defined on r�1, 1s. Assume further that Kp1qpuq is uniformly

bounded on r�1, 1s, ³1�1
Kpuqdu � 1 and

³1
�1
|u|Kpuqdu   8.

4. For the bandwidth h, suppose that h � OpT�νq for some 0   ν   1.

Under a parametric setting, Robinson (2012) allows for θ0 ¡ �1
2

with θ0 � 0, but, for our

nonparametric model, we have to impose a stronger restriction in Assumption 1.1.a, so that the

kernel method remains valid for the denominator of (3.1) provided below. In the same spirit,

Assumption 1.1.b imposes some conditions on gp�q to ensure that the kernel method works for

the numerator of (3.1). Assumptions 1.2-1.4 are standard in the literature (cf. Fan and Yao,

2003).

2.1 Parametric Test

If g were known, it would be easy to obtain the Gaussian likelihood as follows:

QT pθq �
Ţ

t�1

�
yt � gpτtqtθ

�2
,

which yields a score function ST pθq � BQT pθq
Bθ � 1

T

°T
t�1

�
yt � gpτtqtθ

�
gpτtqtθ ln t. Thus, under the

null, it reduces to ST p0q � 1
T

°T
t�1 pyt � gpτtqq gpτtq ln t.

In practice, since g is unknown, we take the estimate pST � 1
T

°T
t�1 pyt � pgpτtqq pgpτtq ln t, wherepgpuq � °T

t�1Khpu�τtqyt°T
t�1Khpu�τtq

. By the development similar to (A.17) of Wang and Xia (2009), it is easy

to obtain that under the null
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sup
uPr0,1s

|pgpuq � gpuq| � OP

�?
lnT?
Th

�
�OP phq. (2.3)

Notice that using the full sample to construct the test will get two leading terms to cancel

with each other (see (B.2) for more details), so that further difficulties will arise when deriving the

asymptotic distribution. In order to avoid this problem, we use the even numbered observations

to estimate gp�q and evaluate the score function using the odd numbered observations below.

Thus, the final version of the score function is

pST � 1

Todd

¸
t odd

pyt � pgpτtqq pgpτtq ln t, (2.4)

where Todd stands for the total number of odd numbered observations, and

pgpuq � °
t evenKhpu� τtqyt°
t evenKhpu� τtq . (2.5)

Based on the above discussions, we derive a formal hypothesis test, which is described in the

next theorem.

Theorem 2.1. Let Assumption 1 hold.

1. Suppose that (2.1), (2.3) holds under the null. In addition, suppose that εt is i.i.d. across

t. As T Ñ 8,

yLM �
1

2
?
T

°
t odd pyt � pgpτtqq pgpτtq ln t!rσ2

ε � 1
T

°T
t�1 rrgpτtq ln ts2

)1{2 ÑD Np0, 1q, (2.6)

where rσ2
ε � 1

T

°T
t�1 pyt � rgpτtqq2 ÑP σ2

ε , and rg is defined in the same way as (2.5) but

utilizes the full sample.

2. Suppose that θ0 ¡ 0. As T Ñ 8, yLM Ñ 8.

For the sake of readability, we leave a generalized version of the parametric test (i.e., H0 :

θ0 � a vs. H1 : θ0 ¡ a) with the corresponding discussions in the Appendix B of the paper.

To ensure the test also works for the case where εt is not i.i.d. over t, certain development as

in Andrews (1991) is required. It may lead to another research paper, so we do not pursue it

further in order not to deviate from our main goal.

2.2 Nonparametric Test

In this subsection, we consider the nonparametric test (2.2). Notice that, under H�
0 , we have a

parametric model of the form

yt � β0 t
θ0 � εt,
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where the unknown parameters pβ0, θ0q can be estimated by the nonlinear least squares estima-

tion method:

ppβ, pθq � arg min
pβ,θq

Ţ

t�1

�
yt � β tθ

�2
. (2.7)

By Theorems 1 and 2 of Robinson (2012), we have

pθ � θ0 � OP pT χ�θ0� 1
2 q and pβ � β0 � OP pplnT qT χ�θ0� 1

2 q (2.8)

for any given sufficiently small χ ¡ 0 under minor restrictions.

By (2.8) and building on Fan and Li (1996) and Li (1999), we propose a nonparametric test

of the form

pL � max
hPH

Lphq with Lphq �
°T
t�1

°T
s�1,�tK

�
τt�τs
h

� pes petb°T
t�1

°T
s�1,�tK

2
�
τt�τs
h

� pe2
s pe2

t

, (2.9)

where H � th � hmaxa
k : h ¥ hmin, k � 0.1, 2, . . .u with 0   hmin   hmax and 0   a   1, andpet � yt � pβ tpθ.

Moreover, the associated critical values can be drawn by the following bootstrap procedure.

1. For t � 1, . . . , T , generate y�t � pβ tpθ � petut, where ut’s are sampled randomly from Np0, 1q.

2. Use the data set ty�t |t � 1, . . . , T u to implement (2.7) in order to obtain prβ, rθq, and

compute the statistic L� that is obtained by replacing yt and ppβ, pθq with y�t and prβ, rθq,
respectively, in (2.9).

3. Repeat the above steps J times to produce J versions of L� denoted by L�j for j �
1, . . . , J . Use tL�1 , . . . , L�Ju to construct the empirical bootstrap distribution function, that

is, F �pwq � 1
J

°J
j�1 1pL�j ¤ wq. Further use the empirical bootstrap distribution function

to estimate the asymptotic critical value, lα.

Theorem 2.2. Let Assumption 1 hold, and suppose that θ0 ¡ 0.

1. For the nonparametric test (2.2), (2.8) holds under the null.

2. In addition, for H of (2.9), let c0rlnplnT qs�1 � hmax ¡ hmin ¥ T�γ ¡ 0 with some

constants c0 and γ such that 0   γ   1
3
. Then we have limTÑ8 PrppL ¡ lαq � α for the

above procedure.

The first result of Theorem 2.2 follows from Robinson (2012) straight away. The second

result of Theorem 2.2 follows from the development similar to Fan and Li (1996), Li (1999)

and Gao and Hawthorne (2006). The same principle of this nonparametric test has also been

employed in Su et al. (2015) to study a panel data model. As the alternative hypothesis of (2.2)
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does not specify a clear function form for gp�q, we do not further investigate the limit of (2.9)

under the alternative. Instead, we consider different functional forms of gp�q in the simulation

study of Section 4.

3 Estimation Method and Theory

We now consider estimating (1.1) for the case in which θ0 ¡ 0 and gp�q is a non-constant function.

For @pθ, uq, the kernel based OLS estimator of gpuq is intuitively expressed as follows:

pgpu, θq � � Ţ

t�1

t2θKh pu� τtq
��1 Ţ

t�1

tθytKh pu� τtq , (3.1)

where Kh px� uq � 1
h
K
�
x�u
h

�
, and Kp�q and h have been defined in Assumption 1. Then the

key question becomes how to recover θ0. Once we have obtained a consistent estimator for θ0,

we need only to plug it in (3.1) to estimate gpuq.

3.1 Failure of Some Intuitive OLS Methods

We first explain why two very intuitive OLS methods fail when encountering time trends with

time-varying coefficient.

By the traditional profile method (cf., Robinson, 2012; Dong et al., 2016), the first objective

function is defined as follows:

QT pθq �
Ţ

t�1

�
yt � tθpgpτt, θq�2

, (3.2)

where pgpu, θq is denoted in (3.1). According to Lemma 3.1 below, one finding is that

tθpgpτt, θq � tθtθ0�θgpτtqp1� oP p1qq � tθ0gpτtqp1� oP p1qq,

where θ disappears from the leading term and only exists in the residual. Thus, it would be

difficult to recover θ0 from (3.2), as the limit of QT pθq is not in the form of Qpθ� θ0q with Qpwq
being a continuous function and having a unique local minimum at w � 0.

Alternatively, one may follow Section 6 of Phillips (2007) to define an objective function for

any given u as

QT pα|uq �
ņ

t�1

�
yt � β tθ

�2
Kh pτt � uq , (3.3)

where α � pβ, θq. Thus, the corresponding estimator is obtained by

pαpuq � �pβpuq, pθpuq	 � argmin
α

QT pα|uq. (3.4)
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Building on (3.4), the estimator of θ0 is finally defined as pθ � ³1
0
pθpuqψpuqdu, where ψp�q serves

as a weight function.

Note that, in order to minimize QT pα|uq, the following two equations must hold:

BQT pα|uq
Bβ

���
α�pαpuq

� 0 and
BQT pα|uq

Bθ
���
α�pαpuq

� 0.

Simple algebra shows that BQT pα|uq
Bβ

��
α�pαpuq � 0 yields

pβpuq � � Ţ

t�1

t2
pθpuqKh pu� τtq

��1 Ţ

t�1

t
pθpuqytKh pu� τtq ,

which has the same form as (3.1), and indicates that the leading term of QT ppα|uq is independent

of pθpuq by the same discussions under (3.2). In other words, we can find different θ’s belonging to

Θ (say, pθ1puq and pθ2puq) to ensure QT ppα1puq|uq and QT ppα2puq|uq are asymptotically equivalent,

where pα1puq � ppβpuq, pθ1puqq and pα2puq � ppβpuq, pθ2puqq. This concludes why the second approach

fails.

We will further examine the above two methods in the simulation study of Section 4.

3.2 Consistent Estimation

In order to establish a consistent estimator of θ0, we firstly state the next lemma.

Lemma 3.1. Let Assumption 1 hold. In addition, suppose that

1. BT pθ0q represents a subset of Θ centred at θ0 with radius M
lnT

, where M is a positive

constant;

2. Bε1phq � rp1� ε1qh, 1s, where ε1 is a sufficiently small positive constant.

Then, for pgpu, θq defined by (3.1), as T Ñ 8,

sup
pθ,uqPBT pθ0q�Bε1 phq

��pgpu, θq � puT qθ0�θgpuq�� � OP

� ?
lnT

T
1
2
�θ0h

1
2
�2θ0

�
�Ophq.

Compared with some similar results in the literature (e.g., Vogt, 2012, Eq. 16; Chen et al.,

2012b, Eq. B.10), one main difference is that we have to take the power term θ into consideration

while deriving the rate of uniform convergence, which is the main reason why we have to introduce

ε1 in the above lemma. The constant ε1 controls the minimum value that u can take, and in

this sense serves the same purpose as C1 of Theorem 4.2 of Vogt (2012). The slow rate Ophq
has also been achieved in Wang and Xia (2009, Eq. A.17-A.19), where the uniform convergence

of another kernel based method is studied. It is noteworthy that if we truncate the interval

rp1 � ε1qh, 1s to rp1 � ε1qh, 1 � hs as in Vogt (2012, Eq. 16), we can replace h with h2 after
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imposing extra restrictions on gp�q. Moreover, compared to Theorem 2 of Robinson (2012) (i.e.,

the second term of (2.8) of Section 2), we actually do not need to introduce a term T χ in the

above asymptotic results, which in a sense improves the rate of convergence slightly regardless

of the terms caused by the nonparametric method.

In addition, Lemma 3.1 indicates that pgpu, θq with θ P BT pθ0q is a consistent estimator of

gpuq subject to a constant term puT qθ0�θ, which is not guaranteed to be 1 if θ is very close to

(or on) the boundary of BT pθ0q. Below, we are going to show that pθ defined by (3.6) indeed falls

in BT pθ0q with probability approaching one in Theorem 3.1, and further deal with the unknown

constant in Theorem 3.2.

Finally, Lemma 3.1 suggests that constructing an objective function in logarithmic form may

asymptotically converge to a continuous function having a unique minimum at θ � θ0. We define

the objective function

RT pθq �
$&%λT � ln

�� 1

T

Ţ

t�tThu�1

τ 2θ
t pgpτt, θq

��2,.-
2

, (3.5)

where we let λT � 1
lnT

for notational simplicity, and pgp�, �q is defined in (3.1).

Remark 3.1.

1. Note that the number of observations lying between tThu and tT p1 � ε1qhu is limited and

negligible, as ε1 is an arbitrary small positive constant. Thus, with some abuse of notation,

we define (3.5) by using observations from tThu� 1, . . . , T throughout this paper.

2. The term τ 2θ
t serves the purpose of solving a technical issue when recovering the normalizer

of Theorem 3.3. A short explanation is that without the term τ 2θ
t , 1

T

°T
t�tThu�1

Bpgpτt,θ0q
Bθ

will yield a term 1
T

°T
t�tThu�1 τ

�2θ0
t in the denominator. Intuitively, one may think that

1
T

°T
t�tThu�1 τ

�2θ0
t converges to

³1
0
u�2θ0du, however, it is not the case given the assumption

on θ0. Let alone the fact that
³1
0
u�2θ0du does not exist in general, because

³1
0
u�2θ0du   8

does not hold for 1� 2θ0   0.

According to (3.5), the estimator of θ0 is given by

pθ � argmin
θPΘ

RT pθq, (3.6)

and we summarize the corresponding asymptotic results by the next theorem.

Theorem 3.1. Suppose that Assumption 1 holds. Then, as T Ñ 8,

1. pθ � θ0 � OP pλT q, where λT is defined in (3.5);

2. sup
uPrp1�ε1qh, 1s

���pgpu, pθq � puT qθ0�pθ � gpuq
��� � OP

� ?
lnT

T
1
2
�θ0h

1
2
�2θ0

�
� Ophq, where ε1 is the same

one as denoted in Lemma 3.1.
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Remark 3.2. Due to taking the logarithm in (3.5), we can only achieve a slow rate of conver-

gence (i.e., λT ) for pθ. Compared to the parametric setting (Robinson, 2012), the slow rate is

caused by the nonparametric nature of (1.1). A similar phenomenon has also been observed in

Pesaran and Yang (2016) (cf., discussions under their Eq. 80), even though it is not directly

related to our model.

We now briefly explain the key difference between the fixed coefficient power trend and the

time-varying coefficient power trend by using a simple parametric model even without an error

term, say yt � τ θ0t . Simple calculation shows

QT pθq � 1

T

Ţ

t�1

pyt � τ θt q2 �
1

T

Ţ

t�1

τ 2θ0
t � 2

T

Ţ

t�1

τ θ0�θt � 1

T

Ţ

t�1

τ 2θ
t

�
�» 1

0

u2θ0du� 2

» 1

0

uθ0�θdu�
» 1

0

u2θdu



� p1� op1qq

�
�

1

2θ0 � 1
� 2

θ0 � θ � 1
� 1

2θ � 1



� p1� op1qq

� 2pθ0 � θq2
p2θ0 � 1qpθ0 � θ � 1qp2θ � 1q � p1� op1qq

under minor restrictions on θ, where the third equality follows from the definition of Riemann

integral. Note the parameter θ will not exist in the power any more as T diverges. In other words,

it does not require taking logarithm to obtain an objective function having a unique minimum

at θ � θ0 asymptotically. However, this is not the case any more for models with time-varying

power trend.

Remark 3.3. It is easy to see that the rate of convergence of the second result of Theorem 3.1

will reach the minimum value when h � O
�
T
� 1�2θ0

3�4θ0 � plnT q� 1
3�4θ0

	
. We will further examine this

finding, and explain how to select the “optimal” bandwidth practically in the simulation study of

Section 4.

Before proceeding further, we take a careful look at the estimation of gp�q, and explain the

identification issue of g mentioned under Lemma 3.1. Consider the following distance between

pθ, gq and pθ�, fq

DT tpθ, gq, pθ�, fqu �
Ţ

t�1

!
gpτtqtθ � fpτtqtθ�

)2

�
Ţ

t�1

!
T θgpτtqτ θt � T θ

�

fpτtqτ θ�t
)2

.

Based on Theorem 3.1, we let θ � θ� � M
lnT

with M being a constant. Then we can write

DT tpθ, gq, pθ�, fqu �
Ţ

t�1

!
T θ

�

Mgpτtqτ θt � T θ
�

fpτtqτ θ�t
)2

� T 2θ�
Ţ

t�1

τ 2θ�

t

!
MgpτtqτM{ lnT

t � fpτtq
)2

,
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so any sequence fT puq � MgpuquM{ lnT � Mgpuq will set this objective function exactly zero.

This identification issue is purely due to the slow rate of convergence obtained by (1) of Theorem

3.1. At this stage, how to achieve a faster rate to overcome this problem remains unclear to us.

In order to identify the unknown constant, we let |gp1q| � 1 in the rest of this paper. For

those gp�q’s not satisfying |gp1q| � 1, we are essentially recovering a rescaled version of gpuq
below, i.e., gpuq � gpuq{|gp1q| given gp1q � 0. See Su and Jin (2012) and Dong and Linton

(2016) for similar settings on the functional component.

We further make the following assumption.

Assumption 2: Let γpt � sq � Erεtεss satisfy that pThqCpK;Thq Ñ 0 as T Ñ 8, where

CpK;uq � ³1�1

³1
�1
KpxqKpyq |γppx� yquq| Irx � ys dxdy.

Assumption 2 is used to establish the existence of the contribution from the long-run covari-

ance in such kernel estimation. It can easily be verified if we impose |γpuq| ¤ Aρ|u| for |u| ¥ 1,

0   ρ   1 and 0   A   8. Another example can be found in Gao and Anh (1999, p. 41).

Before stating the next theorem, we define for @u P p0, 1q

pηT � 1

T

Ţ

t�tThu�1

τ 2pθ
t rgpτtq, rgpuq � puT q� logT |pgp1,pθq|pgpu, pθq,

pΣ � pσ2
ε

» 1

�1

K2pxqdx, pσ2
ε �

1

T

Ţ

t�tThu�1

�
yt � t

pθ pgpτt, pθq	2

,

κ1T ppθ, uq � |pgp1, pθq|�1 �
� Ţ

t�1

t2
pθKhpu� τtq

	�1 Ţ

t�1

t
pθ�θ0gpτtqKh pu� τtq � gpuq. (3.7)

Theorem 3.2. Let Assumptions 1 and 2 hold.

(1). For @u P p0, 1q, as T Ñ 8,

T θ0�
1
2h

1
2 � u

pθ

pηTapΣ
�
|pgp1, pθq|�1 � pgpu, pθq � gpuq � κ1T ppθ, uq	ÑD Np0, 1q,

where κ1T ppθ, uq � OP phq.

Suppose further that, for @u P p0, 1q, supθPΘ

���d2rwθ�θ0gpwqsdw2

���
w�u

���   8, and h � OpT�νq with

0   ν ¤ 1� 2�θ0
2.5�2θ0

.

(2). Then κ1T ppθ, uq will achieve a fast rate, i.e., κ1T ppθ, uq � OP ph2q.

Due to the nonparametric nature of our model, the rate of convergence and the normality on

the estimate of the coefficient function cannot be established using Theorem 8.1 of Wooldridge

(1994) as in the proof Theorem 6.3 of Phillips (2007). The profile method under nonparametric

11



framework employed in this paper allows us to avoid bringing a term diverging at a rate of lnT

to slow down the rate of convergence (see Theorem 6.3 of Phillips (2007) for details).

The fact that limTÑ8 |pηT | � ���³10 u2θ0gpuqdu
��� ¡ 0 is verified by (A.11) and (A.12). The bias

term κ1T ppθ, uq is due to the use of the kernel method, and the extra conditions in the body of

Theorem 3.2 make certain that κ1T ppθ, uq will have the usual order OP ph2q as in the literature

of nonparametric regression (see Chen et al., 2012b; Vogt, 2012, for example). Without these

restrictions, the slow rate (i.e., OP phq) applies.

Having established the above results, we are now ready to consider the asymptotic distribu-

tion of pθ. By definition of (3.6) and Mean Value Theorem,

0 � BRT pθq
Bθ

���
θ�pθ

� BRT pθq
Bθ

���
θ�θ0

� B2RT pθq
Bθ2

���
θ�rθ

ppθ � θ0q, (3.8)

where rθ lies between pθ and θ0; and BRT pθq
Bθ and B2RT pθq

Bθ2 are provided in (A.1) of Appendix A of the

paper. The following theorem holds, and it associated proof is provided in Appendix A below.

Theorem 3.3. Suppose that Assumption 1 holds. As T Ñ 8,

(1). plnT qppθ � θ0q ÑP ln
���³10 u2θ0gpuqdu

���;
Given that

���³10 u2θ0gpuqdu
��� � 1,

(2). lnT
ln |pηT |ppθ � θ0q ÑP 1, where ηT has been defined in (3.7).

For Theorem 3.3, we make some comments in the next remark.

Remark 3.4. Theorem 3.3 shows that the limit of plnT qppθ� θq is in fact a constant rather than

a distribution in this paper. Without the terms A1, A3 and A5 in the proof of Theorem 3.3, the

right hand side of (A.25) would lead to an asymptotic normality as in Theorem 6.3 of Phillips

(2007) and Theorem 3 of Robinson (2012). However, these terms cannot be removed using a

bias correction procedure for our nonparametric model, so we state Theorem 3.3 as it is.

We will further examine Theorem 3.3 in the simulation study below.

4 Numerical Studies

We next conduct some simulation studies to examine the asymptotic results established in Sec-

tions 2 and 3. For better presentation, we report some selected results below and leave extra

simulation results in the Appendix B of this paper.

12



4.1 Parametric Test

To examine the hypothesis test provided in Section 2.1, the data generating process (DGP) is

yt � gpτtqtθ0 � εt, where εt � i.i.d. Np0, 1q. We consider the following cases under different

sample sizes in order to evaluate the size and power of (2.6).

• Case 1 – Size: θ0 � 0

Case 1.1: gpwq � exppwq; Case 1.2: gpwq � w2 � 1

• Case 2 – Power: θ0 � 0.3, 0.5, 0.7

Case 2.1: gpwq � exppwq; Case 2.2: gpwq � w2 � 1

For each generated data set, we calculate yLM of (2.6), and let αLM � 1pyLM ¡ 1.6449q
(i.e., rejecting the null at 95% significant level), where 1p�q is an indicator function. After J

replications, we calculate the simple average sαLM � 1
J

°J
j�1 αLM,j, where αLM,j stands for the

value of αLM at the jth replication. Below we choose J � 1000. In view of (2.3), the bandwidth

is set to h � � lnT
T

�1{3
, which is the “optimal” one under the null subject to an unknown constant.

We plot the value of sαLM (i.e., rejection rate) at different sample sizes in Figures 2 and 3 instead

of reporting them in tables.
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Figure 2: Parametric test: Case 1 – Size
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Figure 3: Parametric test: Case 2 – Power

According to Figures 2 and 3, the proposed parametric test (2.6) in general has good finite

sample performance. In addition, Figure 3 suggests that as θ0 gets far away from the null, the

power of (2.6) tends to get improved. It should be expected, because when θ0 is closer to 0, we

would need more data to distinguish θ0 and 0.
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4.2 Nonparametric Test

In this subsection, we study the nonparametric test proposed in Section 2.2. It is worth to

mention that the principle of this nonparametric test is in fact not new and has been well

studied in the literature, so interested readers can refer to the previous studies (e.g., Fan and

Li, 1996; Li, 1999; Gao and Hawthorne, 2006; Su et al., 2015) for more detailed and systematic

simulation studies on the finite sample performance of this type of test.

The main DGP is still yt � gpτtqtθ0 � εt, where εt � i.i.d. Np0, 1q. In order to examine the

size and power, we consider the following cases.

• Case 1 – Size: gpwq � 1 and θ0 � 0.5, 1

• Case 2 – Power: θ0 � 0.5, 1

Case 2.1: gpwq � exppwq; Case 2.2: gpwq � w2 � 1

For each generated data set, we calculate the statistic value by (2.9), and 95% critical values

by Theorem 2.2 based on 299 bootstrap replications.3 Similar to the above subsection, if we

reject the null at 95% significant level for the jth data set, we then record αL,j � 1, otherwise

αL,j � 0. After J replications, we calculate the simple average sαL � 1
J

°J
j�1 αL,j. Again, we

choose J � 1000, and plot the values of sαL at different sample sizes in Figures 4 and 5 below.
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Figure 4: Nonparametric test: Case 1 – Size
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Figure 5: Nonparametric test: Case 2 – Power

3Here, we follow exactly the same procedure of (9) of Gao and Hawthorne (2006).
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The size of the nonparametric test is still as good as expected by Figure 4, while, according

to Figure 5, the power of the nonparametric test is much better than what we see from the

parametric test.

4.3 Evaluation of the Estimates

In this subsection, we examine the asymptotic results provided in Section 2.3. Building on Re-

mark 3.3, we firstly explain how to implement our nonparametric method while taking bandwidth

selection into account.

Remark 4.1. Bandwidth selection:

1. Provide an initial bandwidth (say h0 � T�1{3);

2. For kth (k ¥ 1) iteration, use hk�1 obtained from pk � 1qth iteration to calculate pθk. Stop

iteration, if |pθk � pθk�1| ¤ ε, where ε is a sufficiently small positive number and serves as

a stopping criteria. Otherwise, update the bandwidth by hk � T
� 1�2pθk

3�4pθk � plnT q�
1

3�4pθk and

proceed to pk � 1qth iteration.

According to Remark 3.3, the above bandwidth selection procedure yields an “optimal” one

up to an unknown constant. Unfortunately, how to identify this constant remains unclear.

Specifically, the DGP is yt � gpτtqtθ0 � εt, where θ0 � 0.8, εt � i.i.d. Np0, 1q, and gpuq �
3pu � 1q2 � 1. For each generated data set, we first estimate θ0 and g by our nonparametric

method proposed in this paper (referred to as NM hereafter). More specifically, we recover θ0

by (3.6), and estimate gpτtq for t � tThu � 1, . . . , T by rgpuq � puT q� logT |pgp1,pθq|pgpu, pθq based on

the second result of Lemma 3.1. In addition, we calculate lnT
ln |pηT |ppθ � θ0q � 1 in order to further

examine Theorem 3.3.

For each generated data, we record three squared errors:

1. seg � 1

T � tThu

Ţ

t�tThu�1

prgpτtq � gpτtqq2;

2. seθ � ppθ � θ0q2;

3. se�θ �
�

lnT
ln |pηT |ppθ � θ0q � 1

	2

.

We repeat the above procedure J times, and calculate three root mean squared errors (RMSE)

by RMSEθ �
�

1
J

°J
j�1 seθ,j

	1{2
, RMSE�

θ �
�

1
J

°J
j�1 se�θ,j

	1{2
and RMSEg �

�
1
J

°J
j�1 seg,j

	1{2
,

where seθ,j, se�θ,j and seg,j stand for the values of seθ, se�θ and seg obtained from jth replication,

respectively.
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For the purpose of comparison, we also recover θ0 by minimizing (3.2) and (3.3) respectively,

and estimate gpτtq for t � tThu� 1, . . . , T by (3.1) with corresponding estimates of θ0. In order

to put all methods on equal footing, we change (3.2) and (3.3) respectively to

QT pθq �
Ţ

t�tThu�1

�
yt � tθpgpτt, θq�2

, (4.1)

QT pα|uq �
Ţ

t�tThu�1

�
yt � βtθ

�2
Kh pτt � uq with α � pβ, θq (4.2)

in the simulation study. For (4.2), we implement
�pβpuq, pθpuq	 � argminαQT pα|uq to obtain

tpθpτtq |t � tThu� 1, . . . , T u, and then without losing generality take simple average to calculatepθ � 1

T � tThu

Ţ

t�tThu�1

pθpτtq. We refer to these two methods as OLS1 and OLS2, respectively,

and report their RMSEs in the same way as we defined above.

Below, we set J � 1000, T � 200, 500, 1000 and h � hopt, T
�1{3, T�1{5, T�1{8, where

“hopt” is referred to as the one selected by the procedure of Remark 4.1. For the other methods,

we adopt the same combinations of the bandwidth and sample size but exclude h � hopt. The

results are reported in Table 1.

Table 1: Simulation Results for Section 3

RMSEg RMSEθ RMSE�θ
hzT 200 500 1000 200 500 1000 200 500 1000

NM hopt 0.0226 0.0112 0.0063 0.1114 0.0960 0.0870 0.1126 0.0962 0.0860

T�1{3 0.0638 0.0443 0.0322 0.1164 0.0983 0.0883 0.0880 0.0830 0.0780

T�1{5 0.1293 0.1209 0.1100 0.1369 0.1114 0.0975 0.0182 0.0258 0.0308

T�1{8 0.1112 0.1387 0.1474 0.1687 0.1349 0.1168 0.0377 0.0341 0.0296

OLS1 T�1{3 4.8626 7.0742 9.2029 0.3000 0.3000 0.3000

T�1{5 4.5374 6.5958 8.6375 0.3000 0.3000 0.3000

T�1{8 4.4457 6.2569 8.0620 0.3000 0.3000 0.3000

OLS2 T�1{3 4.1406 6.2579 7.8744 0.2740 0.2819 0.2786

T�1{5 3.6473 5.6527 7.7828 0.2661 0.2780 0.2861

T�1{8 3.0284 5.1373 7.0172 0.2414 0.2725 0.2819

As expected, both OLS1 and OLS2 perform rather poorly, and NM method with hopt in

general provides relatively good estimates in terms of RMSEg and RMSEθ. On the other hand,

hopt does not yield the best estimate in terms of RMSE�
θ , but the difference only happens at the

second or third decimal, so negligible.
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5 Empirical Study

We now provide a case study by investigating the global mean seal level (GMSL). The data

is collected from CSIRO (http://www.cmar.csiro.au/sealevel/index.html), and is recorded in

millimetres originally. As shown in Figure 1, the range of raw data covering years 1880 to 2005

is from -169.9 to 37.6, and has a strong time trend. Note that although our model (1.1) and

the model of Robinson (2012) (i.e., (5.1) below) are defined on t � 1, . . . , T , both models in fact

have y0 � 0 if we allow for t � 0. Therefore, we shift the data set vertically to let y0 (i.e., the

value of year 1880) be 0 for better fit.

We first implement the two hypothesis tests of Section 2. The detailed testing procedures are

identical to Section 4, so we do not repeat them again for conciseness. Table 2 below summarizes

the statistic values of two tests and the corresponding decisions at 95% significant level.

Table 2: Two tests

Statistic Value Decision

Parametric Test 4.74 Reject

Nonparametric Test 2.44 Reject

Based on Table 2, we have enough evidences to move on to consider (1.1) for the case where

θ0 ¡ 0 and g is a non-constant function. Hereafter, we always refer to our nonparametric method

as NM. We select the bandwidth (referred to as hopt) by the procedure given in Remark 4.1.

In order to check the sensitivity of our nonparametric approach, we use two more bandwidths

hL � hopt � 0.03 and hR � hopt � 0.03 to implement the nonparametric regression below.

For the purpose of comparison, we also consider a parametric setting of Robinson (2012)

(referred to as Para-R hereafter) of the form:

yt �
ḑ

j�1

βjt
θ0,j � εt, (5.1)

and estimate θ0 � pθ0,1, . . . , θ0,dq1 and β0 � pβ1, . . . , βdq1 of (5.1) by the approach of Robinson

(2012). It is noteworthy that how to choose the value of d is still an open question. However,

in our study, we always get a warning from Matlab saying “Matrix is close to singular or badly

scaled” when d ¥ 2. Therefore, we set d � 1 throughout this study, which essentially gives the

model of Phillips (2007).

We report the estimation results of both methods in Table 3, and plot the estimated g0 under

three choices of bandwidth in Figure 6.4 It is clear that the estimation results of θ0 and g0 are

quite stable with respect to the choice of bandwidth.

4The 95% confidence interval is drawn under the choice of hopt by using Theorem 3.2 and ignoring the bias
term.
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Table 3: Estimation Results for Section 4

θ0 β0

NM hopt � 0.1020 0.8533 –

hL � 0.0720 0.8534 –

hR � 0.1320 0.8530 –

Para-R – 1.0000 0.4676
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Figure 6: Estimation of g0 (i.e., pgp�, pθq)
To further compare the performance of two methods, we finally plot the estimation residuals

from both methods in Figure 7 below. It is easy to see that the residual terms of NM indeed are

smaller than those of Para-R, which should be expected. As we have rejected the nonparametric

test in the beginning of this section, so the model (1.1) potentially can fit the data set in a better

fashion.
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Figure 7: Estimation Residuals

6 Extensions with Discussion

Below, we discuss some potential extensions with the corresponding issues.

Extension 1: Building on Robinson (2012), one intuitive extension might be
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yt �
ḑ

j�1

gjpτtqtθ0,j � εt with t � 1, . . . , T, (6.1)

where gjp�q for j � 1, . . . , d are unknown functions, and θ0 � pθ0,1, . . . , θ0,dq1 is defined on a

compact set Θ � Rd and satisfies certain restrictions.

However, model (6.1) suffers from an identification issue. To make the explanation clearer

and simpler, we now suppose θ0 is known. Then, for @u P p0, 1q, the kernel based OLS estimator

of Gpuq � pg1puq, . . . , gdpuqq1 is

pGpuq � � Ţ

t�1

ztz
1
tKh pu� τtq

��1 Ţ

t�1

ztytKh pu� τtq , (6.2)

where zt � ptθ0,1 , . . . , tθ0,dq1. For (6.2), we normalize the matrix in the inverse as follows:

D�1
θ0

Ţ

t�1

ztz
1
tKh pu� τtqD�1

θ0
, (6.3)

where Dθ0 � diagtT 1{2�θ0,1 , . . . , T 1{2�θ0,du. For the pi, jqth element of (6.3) with 1 ¤ i, j ¤ d, we

can show that

1

Th

Ţ

t�1

τ
θ0,i�θ0,j
t K

�u� τt
h

	
� uθ0,i�θ0,jp1� op1qq (6.4)

after going through a procedure similar to those for Lemma A.2 of this paper. (6.4) indicates

that (6.3) can be rewritten as

D�1
θ0

Ţ

t�1

xtx
1
tKh pu� τtqD�1

θ0
� puθ0,1 , . . . , uθ0,dq1puθ0,1 , . . . , uθ0,dqp1� op1qq, (6.5)

which is obviously not invertible, i.e., (6.2) is not well defined.

Compared to Robinson (2012), the problem is due to the nonparametric nature of (6.1). The

parametric case does not have the kernel function in (6.2), and yields

1

T

Ţ

t�1

τ
θ0,i�θ0,j
t �

» 1

0

uθ0,i�θ0,jdu � p1� op1qq � 1

θ0,i � θ0,j � 1
� p1� op1qq. (6.6)

Thereby, the limit of D�1
θ0

°T
t�1 ztz

1
tD

�1
θ0

is a Cauchy matrix, and is invertible under certain

restrictions. Then all the discussions given in Remark 3.2 apply.

Extension 2: One may include some explanatory variables and then consider a generalized

trending model of the form:

yt � fpxt, τtq � gpτtqtθ0 � εt, (6.7)
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where xt is a d� 1 vector including all the observable regressors, fp�, �q is an unknown function,

and the other variables are defined in the same way as (1.1). It is worthy pointing out that (1.1)

is equivalent to (1) of Vogt (2012) including a time trend, and also nests the following model as

special cases:

yt � fpxtq � gpτtqtθ0 � εt, (6.8)

where (6.8) is similar to (1) of Gao and Hawthorne (2006) and (1.1) of Dong and Linton (2016)

but replacing weak trends with strong ones.

However, there are some issues when recovering f . For example, (1) Vogt (2012) argues that

fpxt, τtq suffers the curse of dimensionality, so one can decompose fpxt, τtq to an additive form

fpxt, τtq �
°d
j�1 fjpxt,j, τtq with xt � pxt,1, . . . , xt,dq1 in order to bypass this issue, which is exactly

what Dong and Linton (2016) do in their paper while sieve estimation technique being employed;

(2) Phillips et al. (2017) point out that the usual asymptotic methods and limit theory of kernel

estimation break down when fpxt, τtq has a linear form of fpxt, τtq � x1tfpτtq with xt being an

integrated process; and so forth. We will leave detailed analysis of fp�, �q to future studies, but

we would like to point out that, under some restrictions on fp�, �q and txt |t � 1, . . . , T u, the

main results of this paper may still hold after certain modifications on the assumptions and the

proofs. A formal statement is given in Appendix B of this paper for the sake of presentation.

7 Conclusions

In summary, this paper provides the practitioner from a variety of fields with a new nonpara-

metric trending method to exam/capture/remove time effects. We firstly study two hypothesis

tests. Then we consider the case where both of the null hypotheses get rejected. The consistent

estimators and their corresponding asymptotic properties are established in the paper. More-

over, we examine the proposed hypothesis tests, estimation methods through both simulated and

real data examples. Finally, we discuss some extensions with corresponding potential issues in

the end of this paper, which may guide our future research. Some extra results and simulations

are given in Appendix B of this paper. We assume smoothness on g, but it may be possible to

extend the methodology to consider a finite number of trend breaks or discontinuities in g, see

Delgado and Hidalgo (2000). Likewise the global trend may be subject to some breaks, Bai and

Perron (1998).

Appendix A

In this appendix, we firstly introduce some notations and necessary lemmas, before we complete the

proofs of the main theorems. It is worthy mentioning that the proof of Theorem 2.1 is relatively straight
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forward, after we establish Theorem 3.1 to Theorem 3.3. Thus, we leave it in the Appendix B of this

paper, although it is the first asymptotic result in the main text. The proof of Theorem 2.2 follows

from the development similar to Fan and Li (1996), Li (1999) and Gao and Hawthorne (2006), thus

omitted.

Recall that we have denoted ΛT,hpu, θq �
°T
t�1 t

2θKhpu�τtq in Theorem 3.2 for notational simplicity.

Simple calculation shows that

Bpgpu, θq
Bθ � �2Λ�2

T,hpu, θq
�
Ţ

t�1

Ţ

s�1

pt?sq2θysKhpu� τtqKhpu� τsq ln t

�

�Λ�1
T,hpu, θq

�
Ţ

t�1

tθytKhpu� τtq ln t

�
;

B2pgpu, θq
Bθ2

� 8Λ�3
T,hpu, θq

�
Ţ

t�1

Ţ

s�1

Ţ

r�1

pts?rq2θyrKhpu� τtqKhpu� τsqKhpu� τrqpln tqpln sq
�

�4Λ�2
T,hpu, θq

�
Ţ

t�1

Ţ

s�1

pt?sq2θysKhpu� τtqKhpu� τsqpln tq lnpt?sq
�

�2Λ�2
T,hpu, θq

�
Ţ

t�1

Ţ

s�1

pt?sq2θysKhpu� τtqKhpu� τsqpln tqpln sq
�

�Λ�1
T,hpu, θq

�
Ţ

t�1

tθytKhpu� τtqpln tq2
�

;

BRT pθq
Bθ � 4λ2

T

$&%ln

�� 1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq

��2,.- �
�� 1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq

���1

�
$&% 1

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ � 2

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq ln τt

,.- ;

B2RT pθq
Bθ2

� �4λ2
T

$&%ln

�� 1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq

��2,.- �
�� 1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq

���2

�
$&% 1

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ � 2

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq ln τt

,.-
2

�4λ2
T

$&%ln

�� 1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq

��2,.- �
�� 1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq

���1

�
$&% 1

T

Ţ

t�tThu�1

τ2θ
t

B2pgpτt, θq
B2θ

� 4

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ ln τt � 4

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θqpln τtq2

,.-
�8λ2

T

�� 1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq

���2

�
$&% 1

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ � 2

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq ln τt

,.-
2

.

(A.1)
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Lemma A.1.

1. Let tXt, t ¥ 1u be a zero-mean α-mixing process satisfying Prp|Xt| ¤ bq � 1 for all t ¥ 1. Then

for each integer q P r1, n2 s and each ε ¡ 0, we have

Pr

������ Ţ
t�1

Xt

����� ¡ nε

�
¤ 4 exp

��8�1ε2qrvpqqs�2
�� 22

�
1� 4bε�1

�1{2
qα ptT {p2qquq ,

where v2pqq � 2
p2
σ2pqq � bε

2 with p � T
2q and

σ2pqq � max
1¤j¤2q�1

E
 ptjpu� 1� jpqXtjpu�1 �Xtjpu�2 � � � � �Xtpj�1qpu

�ppj � 1qp� tpj � 1qpuqXtpj�1qpu�1

(2
;

2. 1
T

°T
t�1 ln t � lnT � 1� op1q, as T Ñ8.

Proof of Lemma A.1:

(1). The detailed proof can been seen in Bosq (1998), thus omitted here.

(2). Write

1

T

Ţ

t�1

ln t � 1

T

Ţ

t�1

pln τt � lnT q �
» 1

0
plnuqdu� op1q � lnT

� uplnuq��1
0
�
» 1

0
udplnuq � op1q � lnT

� �1� op1q � lnT,

where the second equality follows from the definition of Riemann integral.

The proof is now completed. �

Lemma A.2. Let Assumption 1 hold. As T Ñ8,

1. sup
uPr0,1s

����� 1

T

Ţ

t�1

τt
θεtKhpu� τtq

����� � OP

�c
lnT

Th

�
for @θ P Θ;

2. sup
pθ,uqPΘ�r0,1s

����� 1

T

Ţ

t�1

τt
θεtKhpu� τtq

����� � OP

�c
lnT

Th

�
;

3. sup
pθ,uqPΘ�r0,1s

����� 1

T

ņ

t�1

τt
θpln τtqεtKhpu� τtq

����� � OP

�
plnT q 3

2?
Th

�
;

4. sup
pθ,uqPΘ�rh,1s

����� 1

T

Ţ

t�1

τ θ�θ0t gpτtqKh pτt � uq � rcuθ�θ0gpuq����� � Ophq, where

rc �
$'&'% 1, u P rh, 1� hs³c

�1Kpwqdw, u � 1� ch P p1� h, 1s pi.e., c P r0, 1qq
;
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5. sup
pθ,uqPΘ�rp1�ε1qh,1s

����� 1

T

Ţ

t�1

τ2θ
t Kh pτt � uq � rcu2θ

����� � Oph2c�q, where rc and c� have been defined in (4)

of this lemma and Assumption 1.1.a respectively, and ε1 is a sufficiently small positive constant;

6. sup
θPUpθ0q

|vT pθq � vpθq| � op1q, where Upθ0q is a sufficiently small compact set that θ0 belongs to,

vT pθq � 1
T

°T
t�1 τ

θ0�θ
t gpτtq and vpθq � ³1

0 u
θ0�θgpuqdu.

Proof of Lemma A.2:

(1). Let lpT q be any positive function satisfying that lpT q Ñ 8 as T Ñ8. By the arguments same

as (B.10) and (B.11) of Chen et al. (2012b), it suffices to prove that for @θ P Θ

sup
uPr0,1s

����� 1

T

Ţ

t�1

τt
θεtKhpu� τtq

����� � oP

�
lpT q

c
lnT

Th

�
.

In order to do so, we cover r0, 1s by finite number of subintervals tBiu that are centred at bi and

of length δT � oph2q. Denote UT as the number of such subintervals, which immediately gives that

UT � Opδ�1
T q. Write

sup
uPr0,1s

����� 1

T

Ţ

t�1

τ θt Kh pu� τtq εt
�����

¤ max
1¤i¤UT

sup
uPBi

����� 1

Th

Ţ

t�1

τ θt K

�
u� τt
h



εt � 1

Th

Ţ

t�1

τ θt K

�
bi � τt
h



εt

�����
� max

1¤i¤UT

����� 1

Th

Ţ

t�1

τ θt K

�
bi � τt
h



εt

�����
:� Π1T �Π2T ,

where the definitions of Π1T and Π2T should be obvious.

Below, we take δT � rlpT qs1�ν �
b

lnT
Th � h2 for a sufficiently small ν ¡ 0.

For Π1T , write

Π1T � max
1¤i¤UT

sup
uPBi

����� 1

Th

Ţ

t�1

τ θt K

�
u� τt
h



εt � 1

Th

Ţ

t�1

τ θt K

�
bi � τt
h



εt

�����
� max

1¤i¤UT
sup
uPBi

����� 1

Th

Ţ

t�1

τ θt �
u� bi
h

�Kp1q pu�q εt
�����

¤ Op1q max
1¤i¤UT

sup
uPBi

δT
h2

1

T

Ţ

t�1

τ θt |εt|

� OP p1qδT
h2

�
» 1

0
uθdu � E|εt| � OP

�
rlpT qs1�ν

c
lnT

Th

�
� oP

�
lpT q

c
lnT

Th

�
,

where u� lies between u�τt
h and bi�τt

h ; the second equality follows from Mean Value Theorem; the

third equality follows from the definition of Riemann integral; and the fourth equality follows from the

construction of δT .

For Π2T , we use truncation technique, so for the same ν ¡ 0 above denote
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rεt � εt � 1p|εt| ¤ T 1{ν lpT qq and rεct � εt � rεt,
where 1p�q is the indicator function.

Thus, we obtain that

Π2T ¤ max
1¤i¤UT

����� 1

Th

Ţ

t�1

τ θt K

�
bi � τt
h


 rεt
������ max

1¤i¤UT

����� 1

Th

Ţ

t�1

τ θt K

�
bi � τt
h


 rεct
�����

:� Π2T,1 �Π2T,2,

where the definitions of Π2T,1 and Π2T,2 should be obvious.

For Π2T,1, observe that���� 1

Th
� τ θt K

�
bi � τt
h


 rεt���� ¤ Op1qT 1{ν�1lpT qh�1 � Op1qξ,

where ξ � T 1{ν�1lpT qh�1.

Then, for any ε ¡ 0, letting lp�q satisfying

lpT q Ñ 8 and
T 1�2{νh

rlpT qs4 � lnT Ñ8,

and applying Lemma A.1 with

q � T

2p
, p � 1

εrlpT qs2
c
T 1�2{νh

lnT
, ε1 � εT�1lpT q

c
lnT

Th
, and

2σ2pqq
p2

� ξε1
2

¤ Op1q
T 2hp

,

we have

Pr pΠ2T,1 ¡ Tε1q � Pr

�
Π2T,1 ¡ εlpT q

c
lnT

Th

�

¤ Op1qδ�1
T exp

���ε2rlpT qs2q lnT
T 3h

Op1q
T 2hp

�
�Op1qδ�1
T

�
1� 4ξ

ε1


1{2
qαptT {p2qquq

¤ Op1qδ�1
T exp

��Op1qε2rlpT qs2 lnT
��Op1qδ�1

T

�
1� 4ξ

ε1


1{2
qαptT {p2qquq.

By exactly the same arguments as those for (B.16) of Chen et al. (2012b), we immediately obtain

that Π2T,1 � oP

�
lpT q

b
lnT
Th

	
.

For Π2T,2, write

Pr

�
Π2T,2 ¥ εlpT q

c
lnT

Th

�

� Pr

�
max

1¤i¤UT

����� 1

Th

Ţ

t�1

τ θt K

�
bi � τt
h


 rεct
����� ¥ εlpT q

c
lnT

Th

�

¤ Pr

�
max

1¤i¤UT
max

1¤t¤T

����1hτ θt K
�
bi � τt
h


 rεct ���� ¥ εlpT q
c

lnT

Th

�

¤ Pr

�
max

1¤i¤UT
K

�
bi � τt
h



max

1¤t¤T

���τ θt rεct ��� ¥ εlpT q
c
h lnT

T

�
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¤ Pr

�� max
1¤t¤T

|rεct | ¥ εlpT q
c
h lnT

T
� 1

max1¤i¤UT K
�
bi�τt
h

	
max1¤t¤T

��τ θt ��
�


¤ Pr

�
max

1¤t¤T
|rεct | ¥ 0



¤

Ţ

t�1

Pr p|rεct | ¥ 0q ¤
Ţ

t�1

Pr
�
|εt| ¥ T 1{ν lpT q

	
¤

Ţ

t�1

E|εt|ν
rlpT qsνT

� Op1q 1

rlpT qsν � op1q.

Based on the analysis of Π2T,1 and Π2T,2, we have Π2T � oP

�
lpT q

b
lnT
Th

	
. In connection with the

analysis of Π1T , the proof is completed.

(2). We now use Lemma A2 of Newey and Powell (2003) to show the second result of this lemma.

It suffices to show that

sup
pθ,uqPΘ�r0,1s

?
Th

lpT q?lnT

����� 1

T

Ţ

t�1

τt
θεtKhpu� τtq

����� � oP p1q ,

where lpT q is an arbitrary positive function satisfying that lpT q Ñ 8 as T Ñ8.

Step 1 : Θ� r0, 1s is a compact subspace of R2 with Euclidean norm, which verifies condition (i) of

Lemma A2 of Newey and Powell (2003).

Step 2 : For @θ P Θ, sup
uPr0,1s

?
Th

lpT q?lnT

����� 1

T

Ţ

t�1

τt
θεtKhpu� τtq

����� � oP p1q holds by results (1) of this

lemma. Thus, we immediately obtain that for @pθ, uq P Θ� r0, 1s
?
Th

lpT q?lnT

����� 1

T

Ţ

t�1

τt
θεtKhpu� τtq

����� � oP p1q

Step 3 : Condition (iii) of Lemma A2 of Newey and Powell (2003) holds apparently in this case.

Therefore, we conclude that the second result of this lemma holds.

(3). The procedure of proof is the same as (1) and (2) of this lemma, so omitted.

(4). Divide Θ� rh, 1s into the following two subsets:$'&'% Case 1: pθ, uq P Θ� rh, 1� hs
Case 2: pθ, uq P Θ� p1� h, 1s, i.e., pθ, cq P Θ� r0, 1q with u � 1� ch.

For Case 1, write

sup
pθ,uqPΘ�rh,1�hs

����� 1

Th

Ţ

t�1

τ θ�θ0t gpτtqK
�
τt � u

h



� uθ�θ0gpuq

�����
� sup

pθ,uqPΘ�rh,1�hs

����1h
» 1

0
wθ�θ0gpwqK

�
w � u

h



dw �O

�
1

Th



� uθ�θ0gpuq

����
� sup

pθ,uqPΘ�rh,1�hs

�����
» p1�uq{h

�u{h
m1pu� whqKpwqdw �O

�
1

Th



� uθ�θ0gpuq

�����
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� sup
pθ,uqPΘ�rh,1�hs

����» 1

�1

�
m1puq �m

p1q
1 pruqwh	Kpwqdw �O

�
1

Th



� uθ�θ0gpuq

����
� sup

pθ,uqPΘ�rh,1�hs

����» 1

�1
m
p1q
1 pruqwhKpwqdw �O

�
1

Th


����
� Ophq �O

�
1

Th



� Ophq,

where ru lies between u and u�wh; m1puq � uθ�θ0gpuq; the first equality follows from the definition of

Riemann integral; the third equality follows from Taylor expansion and the fact that Kpwq is defined on

r�1, 1s; the fifth equality follows from Assumption 1.1.b; and the sixth equality follows from Assumption

1.4.

For Case 2, pθ, uq P Θ � p1 � h, 1s is equivalent to pθ, cq P Θ � r0, 1q with u � 1 � ch. Notice that

for u� lies between u and u� wh where w P r�1, cs, we have

1� 2h ¤ u� h ¤ u� ¤ u� ch � 1, (A.2)

where the equality follows from the construction of u. Thus, write

sup
pθ,cqPΘ�r0,1q

����� 1

Th

Ţ

t�1

τ θ�θ0t gpτtqK
�
τt � u

h



� uθ�θ0gpuq

» c
�1
Kpwqdw

�����
� sup

pθ,cqPΘ�r0,1q

�����
» p1�uq{h

�u{h
m1pu� whqKpwqdw �O

�
1

Th



� uθ�θ0gpuq

» c
�1
Kpwqdw

�����
� sup

pθ,cqPΘ�r0,1q

����» c�1

�
m1puq �m

p1q
1 pruqwh	Kpwqdw �O

�
1

Th



� uθ�θ0gpuq

» c
�1
Kpwqdw

����
� sup

pθ,cqPΘ�r0,1q

����» c�1
m
p1q
1 pruqwhKpwqdw �O

�
1

Th


����
� Ophq �O

�
1

Th



� Ophq,

where ru lies between u and u � wh; m1pwq � wθ�θ0gpwq; the first equality follows from the definition

of Riemann integral; the second equality follows from Taylor expansion and the construction of u �
1� ch; the fourth equality follows from (A.2) and Assumption 1.1.b; and the fifth equality follows from

Assumption 1.4.

Based on the above analysis, the result follows.

(5). Similar to result (4) of this lemma, divide Θ� rp1� ε1qh, 1s into the following two subsets:$'&'% Case 1: pθ, uq P Θ� rp1� ε1qh, 1� hs
Case 2: pθ, uq P Θ� p1� h, 1s, i.e., pθ, cq P Θ� r0, 1q with u � 1� ch.

Before considering Case 1, note that for u� lying between u and u� wh with u P rp1� ε1qh, 1� hs
and w P r�1, 1s, we have

ε1h ¤ p1� ε1 � 1qh ¤ u� h ¤ u� ¤ u� h ¤ 1. (A.3)

Thus,
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sup
pθ,uqPΘ�rp1�ε1qh,1s

|pu�q2θ�1h| � sup
θPΘ

pε1hq2c��1h � Oph2c�q, (A.4)

where c� has been defined in Assumption 1.1.a.

Then we are able to write

sup
pθ,uqPΘ�rp1�ε1qh,1�hs

����� 1

Th

Ţ

t�1

τ2θ
t K

�
τt � u

h



� u2θ

�����
� sup

pθ,uqPΘ�rp1�ε1qh,1�hs

����1h
» 1

0
w2θK

�
w � u

h



dw �O

�
1

Th



� u2θ

����
� sup

pθ,uqPΘ�rp1�ε1qh,1�hs

�����
» p1�uq{h

�u{h
pu� whq2θKpwqdw �O

�
1

Th



� u2θ

�����
� sup

pθ,uqPΘ�rp1�ε1qh,1�hs

����» 1

�1

�
u2θ � 2θru2θ�1wh

	
Kpwqdw �O

�
1

Th



� u2θ

����
� sup

pθ,uqPΘ�rp1�ε1qh,1�hs

����» 1

�1
2θru2θ�1whKpwqdw �O

�
1

Th


����
� Oph2c�q �O

�
1

Th



� Oph2c�q,

where ru lies between u and u � wh; the first equality follows from the definition of Riemann integral;

the third equality follows from Mean Value Theorem and the fact that Kpwq is defined on r�1, 1s; and

the fifth equality follows from (A.4).

For Case 2, write

sup
pθ,cqPΘ�r0,1q

����� 1

Th

Ţ

t�1

τ2θ
t K

�
τt � u

h



� u2θ

» c
�1
Kpwqdw

�����
� sup

pθ,cqPΘ�r0,1q

�����
» p1�uq{h

�u{h
w2θKpwqdw �O

�
1

Th



� u2θ

» c
�1
Kpwqdw

�����
� sup

pθ,cqPΘ�r0,1q

����» c�1

�
u2θ � 2θru2θ�1wh

	
Kpwqdw �O

�
1

Th



� u2θ

» c
�1
Kpwqdw

����
� sup

pθ,cqPΘ�r0,1q

����» c�1
2θru2θ�1whKpwqdw �O

�
1

Th


����
� Ophq �O

�
1

Th



� Ophq,

where ru lies between u and u�wh; the first equality follows from the definition of Riemann integral; the

second equality follows from Taylor expansion and the construction of u � 1 � ch; the fourth equality

follows from (A.2); and the fifth equality follows from Assumption 1.4.

Therefore, the result follows immediately.

(6). We now consider the sixth result of this lemma.

Step 1 : Upθ0q is a compact subspace of R with Euclidean norm, which verifies condition (i) of

Lemma A2 of Newey and Powell (2003).

Step 2 : For @θ P Upθ0q, it is easy to know vT pθq�vpθq � op1q by the definition of Riemann integral.

Step 3 : Note that by keeping using integration by parts, it is easy to know
³1
0plnuq4du   8. We

now verify the continuity of vpθq, and write
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|vpθ1q � vpθ2q| �
����» 1

0
puθ0�θ1 � uθ0�θ2qgpuqdu

���� � ����pθ1 � θ2q �
» 1

0
uθ
�

gpuqplnuqdu
����

¤ |θ1 � θ2|
"» 1

0
u2θ�du �

» 1

0
g2puqplnuq2du

*1{2

� |θ1 � θ2|
"

1

2θ� � 1
u2θ��1

���1
0

*1{2 "» 1

0
g2puqplnuq2du

*1{2

� |θ1 � θ2|
"

1

2θ� � 1
u2θ��1

���1
0

*1{2 "» 1

0
g4puqdu �

» 1

0
plnuq4du

*1{4

� Op|θ1 � θ2|q, (A.5)

where θ� lies between θ0 � θ1 and θ0 � θ2; the second equality follows from Mean Value Theorem;

the first inequality follows from Cauchy Schwarz inequality; the fifth equality follows from Assumption

1.1.b and the fact that we point out in the beginning of Step 3. In connection with Step 2, we obtain

|vT pθ1q � vT pθ2q| ¤ Op1q|θ1 � θ2|, which verifies condition (iii) of Lemma A2 of Newey and Powell

(2003).

Then the proof is completed. �

Proof of Lemma 3.1:

(1). Write

sup
pθ,uqPBT pθ0q�Bε1 phq

���pgpu, θq � puT qθ0�θgpuq
���

¤ sup
pθ,uqPBT pθ0q�Bε1 phq

1

T θ

������
�

1

T

Ţ

t�1

τt
2θKhpu� τtq

��1
1

T

Ţ

t�1

τt
θεtKhpu� τtq

������
� sup

pθ,uqPBT pθ0q�Bε1 phq
T θ0�θ

������
�

1

T

Ţ

t�1

τt
2θKhpu� τtq

��1
1

T

Ţ

t�1

τt
θ�θ0gpτtqKhpu� τtq � puT qθ0�θgpuq

������
:� A1 �A2,

where the definitions of A1 and A2 should be obvious.

Firstly, note that one simple fact is

sup
θPBT pθ0q

�
1

h


θ�θ0
¤ sup

θPBT pθ0q
T |θ�θ0| � Op1q. (A.6)

We then consider A1 to A3 one by one. Start from A1.

A1 � OP

�c
lnT

Th

�
sup

pθ,uqPBT pθ0q�rp1�ε1qh,1s
T�θ

�
ru2θ �Ophqs�1

	
¤ OP

�c
lnT

Th

�#
sup

θPBT pθ0q
h�θ

+#
sup

θPBT pθ0q
pThq�θ

+

� OP

�c
lnT

Th

�
T�θ0h�2θ0

#
sup

θPBT pθ0q
hθ0�θ

+#
sup

θPBT pθ0q
pThqθ0�θ

+

� O

� ?
lnT

T
1
2
�θ0h

1
2
�2θ0

�
, (A.7)
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where the first equality follows from (2) and (5) of Lemma A.2; the first inequality follows from As-

sumption 1.1.a; and the third equality follows from (A.6).

By (4) of Lemma A.2, write

A2 � O phq sup
θPBT pθ0q

T θ0�θ � O phq . (A.8)

By (A.7) and (A.8), the proof is now complete. �

As explained in Remark 3.1, the number of observations lying between tThu and tT p1 � ε1qhu is

limited and negligible, as ε1 is an arbitrary small positive constant. Thus, with a bit abuse notation,

we define (3.5) by using observations from tThu� 1, . . . , T throughout the following proofs.

Proof of Theorem 3.1:

(1). Note that RT pθq � λ2
T � R�

T pθq, where R�
T pθq �

"
ln
�

1
T

°T
t�tThu�1 τ

2θ
t pgpτt, θq�2

*2

. As λT is

independent of θ, we simply focus on R�
T pθq below. More specifically, we show that for any given ε ¡ 0,

there exists a sufficiently large positive constant C such that

lim inf
T

Pr tR�
T pθ0 � λTCq ¡ R�

T pθ0qu ¥ 1� ε, (A.9)

lim inf
T

Pr tR�
T pθ0 � λTCq ¡ R�

T pθ0qu ¥ 1� ε. (A.10)

Both (A.9) and (A.10) holding true implies with probability at least 1 � ε that there exists a local

minimum in the interval UT pθ0q � rθ0 � λTC, θ0 � λTCs. Hence, there exists a local minimizer such

that pθ � θ0 � OP pλT q. The above argument is in line with the same spirit of the proofs of Theorem 1

of Fan and Li (2001) and Lemma A.1 of Wang and Xia (2009).

Write

R�
T pθq �R�

T pθ0q

�
$&%ln

�� 1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq

��2,.-
2

�
$&%ln

�� 1

T

Ţ

t�tThu�1

τ2θ0
t pgpτt, θ0q

��2,.-
2

�
$&%ln

�� 1

T

Ţ

t�tThu�1

τ2θ
t

�
pτtT qθ0�θgpτtq � oP p1q

���2,.-
2

�
$&%ln

�� 1

T

Ţ

t�tThu�1

τ2θ0
t rgpτtq � oP p1qs

��2,.-
2

�
$&%2pθ0 � θq lnT � ln

�� 1

T

Ţ

t�tThu�1

τ θ0�θt gpτtq � oP p1q
��2,.-

2

�
$&%ln

�� 1

T

Ţ

t�tThu�1

τ2θ0
t gpτtq � oP p1q

��2,.-
2

� 4pθ0 � θq2plnT q2 � 2pθ0 � θqplnT q � ln
�� 1

T

Ţ

t�tThu�1

τ θ0�θt gpτtq � oP p1q
��2
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�
$&%ln

�� 1

T

Ţ

t�tThu�1

τ θ0�θt gpτtq � oP p1q
��2,.-

2

�
$&%ln

�� 1

T

Ţ

t�tThu�1

τ2θ0
t gpτtq � oP p1q

��2,.-
2

:� 4B1T pθq � 2B2T pθq �B3T pθq �B4T pθ0q,

where the definitions of B1T pθq, B2T pθq, B3T pθq and B4T pθ0q should be obvious; and the second equality

follows from Lemma 3.1.

Notice that, for
���³1
h u

θ0�θgpuqdu
���2, the following two expressions hold uniformly in θ P Θ:

����» 1

h
uθ0�θgpuqdu

����2 ¥ A2
1

����» 1

h
uθ0�θdu

����2 � A2
1

�
1

θ0 � θ � 1
uθ0�θ�1

���1
h


2

¥ 1

2 supθPΘpθ0 � θ � 1qA
2
1 ¥ K1 ¡ 0, (A.11)

and ����» 1

h
uθ0�θgpuqdu

����2 ¤ » 1

0
u2pθ0�θqdu

» 1

0
g2puqdu ¤ A2

2

» 1

0
u2pθ0�θqdu

� A2
2 � u2pθ0�θq�1

��1
0

2pθ0 � θq � 1
¤ 1

2 infθPΘpθ0 � θq � 1
2A2

2 ¤ K2   8, (A.12)

where A1 and A2 are defined in Lemma 1.1.b; K1 and K2 indeed exist and are two finite positive

constants due to the compactness of Θ and Assumption 1.1.a.

Thus, it is easy to know that B2T pθq � OP p|θ0 � θ| � plnT qq. Similarly, we can show that B3T pθq �
OP p1q uniformly in θ. B4T pθ0q is independent of θ, so ignored.

Based on the above analysis, we immediately obtain that for θ � θ0 � λTC

R�
T pθq �R�

T pθ0q � 4C2 � 2C �OP p1q �OP p1q,

which immediately indicates that (A.9) and (A.10) hold true with sufficiently large C.

The proof of the first result is now completed.

(2). By Lemma 3.1, the second result follows similarly. �

Proof of Theorem 3.2:

In order to establish the normality of gpuq for @u P p0, 1q, write

|pgp1, pθq|�1 � pgpu, pθq � gpuq

� |pgp1, pθq|�1 �
�

Ţ

t�1

t2
pθKh pu� τtq

��1 Ţ

t�1

t
pθ�θ0gpτtqKh pu� τtq � gpuq

�|pgp1, pθq|�1 �
�

Ţ

t�1

t2
pθKh pu� τtq

��1 Ţ

t�1

t
pθεtKh pu� τtq

:� A1 �A2,

where the definitions of A1 and A2 should be obvious.

30



Note that by (4) and (5) of Lemma A.2, it is easy to know that A1 � OP phq � OP
�

1
Th

�
. After

imposing the conditions in the body of this theorem, it is easy to show that A1 will have a faster rate

OP ph2q.
We now focus on the normalized version of

1

T

Ţ

t�1

t
pθεtKh pu� τtq and write

1

T

Ţ

t�1

τ
pθ
t εtKh pu� τtq

� 1

T

Ţ

t�1

τ θ0t εtKh pu� τtq � 1

T

Ţ

t�1

�
τ
pθ
t � τ θ0t

	
εtKh pu� τtq

:� B1 �B2.

By (3) of Lemme A.2, we know that

B2 � 1

T

Ţ

t�1

ppθ � θ0qτ θ�t pln τtqεtKh pu� τtq

� ppθ � θ0q 1

T

Ţ

t�1

τ θ
�

t pln τtqεtKh pu� τtq

� OP

�
ppθ � θ0q � plnT q

3
2?

Th

�
.

Also, by standard argument of time series analysis (e.g., proof of Theorem 2 of Cai (2007)), we can

prove that

?
ThB1 ÑD Np0,Σ�q,

where Σ� � limTÑ8 1
Th

°T
t�1

°T
s�1 τ

θ0
t τ

θ0
s K

�
w�τt
h

�
K

�
w�τs
h

�
Erεtεss.

Further note that we have

1

Th

Ţ

t�1

Ţ

s�1

τ θ0t τ
θ0
s K

�
u� τt
h



K

�
u� τs
h



Erεtεss

� 1

Th

Ţ

t�1

t2θ0K2

�
u� τt
h



Erε2

1s �
1

Th

Ţ

t�1

Ţ

s�1,�t
τ θ0t τ

θ0
s K

�
u� τt
h



K

�
u� τs
h



Erεtεss

:� V1T � V2T . (A.13)

By Assumption 2, we then have as T Ñ8

V1T � p1� op1qqσ2
εu

2θ0

» w
h

w�1
h

K2pwqdw, (A.14)

|V2T | � T

h

����» 1

0

» 1

0
vθ01 v

θ0
2 K

�
u� v1

h



K

�
u� v2

h



γppv2 � v1qT q dv1 dv2

����
� p1� op1qqpThq

�����
» u
h

u�1
h

» u
h

u�1
h

pu� xhqθ0pu� yhqθ0KpxqKpyqγppx� yqThq dy dx
�����

¤ p1� op1qq
» u
h

u�1
h

» u
h

u�1
h

|u� xh|θ0 |u� yh|θ0 KpxqKpyq pThq |γppx� yqThq| Irx � ys dydx
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� op1q. (A.15)

It is easy to show that V1T � p1 � op1qqσ2
εu

2θ0
³1
�1K

2pwqdw. By the identical development for the

term I2 on page 182 of Cai (2007), we have V2T � op1q.
Further note that

|pgp1, pθq| � T θ0�pθ ÑP

����» 1

0
u2θ0gpuqdu

�����1

, (A.16)

where the last step follows from the first result of Theorem 3.3 immediately (the details are temporarily

omitted for now).

Also, simple calculation yields

pηT � 1

T

Ţ

t�tThu�1

τ2pθ
t gpτtq �

1

T

Ţ

t�tThu�1

τ2pθ
t prgpτtq � gpτtqq

� 1

T

Ţ

t�tThu�1

τ2pθ
t gpτtq � oP p1q �

» 1

0
u2θ0gpuqdu� oP p1q, (A.17)

where rg has been defined in the body of this theorem, and the last equality follows from similar

development of (A.18).

Thus, the result follows based on the above analyses. �

Remark A.1. Recall that we have defined vT p�q and vp�q in (6) of Lemma A.2, so write���vT ppθq � vpθ0q
��� ¤ ���vT ppθq � vppθq���� ���vppθq � vpθ0q

��� � oP p1q,

where
���vT ppθq � vppθq��� � oP p1q follows from (6) of Lemma A.2, and

���vppθq � vpθ0q
��� � oP p1q follows from

(A.5).

By Theorem 3.1, we have |pθ � θ| lnT � OP p1q. Then the next limit indeed exists:

φ1 � plim
TÑ8

T θ0�rθ � 1

T

Ţ

t�tThu�1

τ θ0�
rθ

t gpτtq � rα0

» 1

0
u2θ0gpuqdu, (A.18)

where rθ is defined in (3.8), and lies between pθ and θ0; and rα0 � plim
TÑ8

T θ0�rθ.

Similarly, the next two limits exist:

φ2 � plim
TÑ8

T θ0�rθ � 1

T

Ţ

t�tThu�1

τ θ0�
rθ

t gpτtq ln τt � rα0

» 1

0
u2θ0gpuqplnuqdu, (A.19)

φ3 � plim
TÑ8

T θ0�rθ � 1

T

Ţ

t�tThu�1

τ θ0�
rθ

t gpτtqpln τtq2 � rα0

» 1

0
u2θ0gpuqplnuq2du, . (A.20)

With (A.18) to (A.20) in hand, we are now ready to provide the next lemma.
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Lemma A.3. Under Assumption 1, as T Ñ8,

1.
1

T

Ţ

t�tThu�1

τ2θ
t

B2pgpτt, θq
Bθ2

���
θ�rθ

� plnT q2φ1 � 2plnT qφ2 � φ3 � oP p1q,

2.
1

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ

���
θ�rθ

� �plnT qφ1 � φ2 � oP p1q,

3.
1

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ ln τt

���
θ�rθ

� �plnT qφ2 � φ3 � oP p1q,

4.
1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq��θ�rθ � φ1 � oP p1q,

5.
1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq ln τt

��
θ�rθ � φ2 � oP p1q,

6.
1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θqpln τtq2��θ�rθ � φ3 � oP p1q,

7. B2RT pθq
Bθ2

���
θ�rθ

� 8� oP p1q,

where φ1 to φ3 are defined by (A.18) to (A.20) respectively; and rθ is defined in (3.8).

Proof of Lemma A.3:

(1). Recall that we have defined B2pgpu,θq
Bθ2 and ΛT,hpu, θq in the beginning of Appendix A. Write

1

T

Ţ

t�tThu�1

τ2θ
t

B2pgpτt, θq
Bθ2

���
θ�rθ

� 8

T

Ţ

t�tThu�1

τ2rθ
t Λ�3

T,hpτt, rθq
�

Ţ

u�1

Ţ

s�1

Ţ

r�1

pus?rq2rθyrKhpτt � τuqKhpτt � τsqKhpτt � τrqplnuqpln sq
�

� 4

T

Ţ

t�tThu�1

τ2rθ
t Λ�2

T,hpτt, rθq
�
Ţ

r�1

Ţ

s�1

pr?sq2rθysKhpτt � τrqKhpτt � τsqpln rq lnpr?sq
�

� 2

T

Ţ

t�tThu�1

τ2rθ
t Λ�2

T,hpτt, rθq
�
Ţ

r�1

Ţ

s�1

pr?sq2rθysKhpτt � τrqKhpτt � τsqpln rqpln sq
�

� 1

T

Ţ

t�tThu�1

τ2rθ
t Λ�1

T,hpτt, rθq
�
Ţ

s�1

s
rθysKhpτt � τsqpln sq2

�

:� 8A1 � 4A2 � 2A3 �A4,

where the definitions of A1 to A4 should be obvious.

We now consider A1 to A4 one by one. Firstly, further decompose A1 as follows:

A1 � 1

T

Ţ

t�tThu�1

τ2rθ
t T

�6rθ�3

�
1

T

Ţ

s�1

τ2rθ
s Khpτt � τsq

��3

33



�T 5rθ�θ0�3

�
1

T 3

Ţ

u�1

Ţ

s�1

Ţ

r�1

pτuτsq2rθτ rθ�θ0r gpτrqKhpτt � τuqKhpτt � τsqKhpτt � τrqplnuqpln sq
�

� 1

T

Ţ

t�tThu�1

τ2rθ
t T

�6rθ�3

�
1

T

Ţ

s�1

τ2rθ
s Khpτt � τsq

��3

�T 5rθ�3

�
1

T 3

Ţ

u�1

Ţ

s�1

Ţ

r�1

pτuτsq2rθτ rθr εrKhpτt � τuqKhpτt � τsqKhpτt � τrqplnuqpln sq
�

:� A11 �A12,

where the definitions of A11 and A12 should be clear.

For A11, write

A11 � 1

T

Ţ

t�tThu�1

τ2rθ
t T

�6rθ�3

�
1

T

Ţ

s�1

τ2rθ
s Khpτt � τsq

��3

�T 5rθ�θ0�3

�
1

T 3

Ţ

u�1

Ţ

s�1

Ţ

r�1

pτuτsq2rθτ rθ�θ0r gpτrqKhpτt � τuqKhpτt � τsqKhpτt � τrqplnuqpln sq
�

� T θ0�rθp1�OP ph2c�qq � 1

T

Ţ

t�tThu�1

τ2rθ
t τ

�6rθ
t

�
�

1

T

Ţ

u�1

τ2rθ
u plnuqKhpτt � τuq

�2 �
1

T

Ţ

u�1

τ
rθ�θ0
u gpτuqKhpτt � τuq

�

� T θ0�rθp1�OP ph2c�qq � 1

T

Ţ

t�tThu�1

τ θ0�3rθ
t gpτtq

�
1

T

Ţ

u�1

τ2rθ
u pln τu � lnT qKhpτt � τuq

�2

� T θ0�rθplnT q2p1�OP ph2c�qq � 1

T

Ţ

t�tThu�1

τ θ0�3rθ
t gpτtq

�
1

T

Ţ

u�1

τ2rθ
u Khpτt � τuq

�2

�2T θ0�rθplnT qp1�OP ph2c�qq 1

T

Ţ

t�tThu�1

τ θ0�3rθ
t gpτtq

�
�

1

T

Ţ

u�1

τ2rθ
u pln τuqKhpτt � τuq

��
1

T

Ţ

u�1

τ2rθ
u Khpτt � τuq

�

�T θ0�rθp1�OP ph2c�qq � 1

T

Ţ

t�tThu�1

τ θ0�3rθ
t gpτtq

�
1

T

Ţ

u�1

τ2rθ
u pln τuqKhpτt � τuq

�2

� T θ0�rθplnT q2p1�OP ph2c�qq � 1

T

Ţ

t�tThu�1

τ θ0�
rθ

t gpτtq

�2T θ0�rθplnT qp1�OP ph2c�qq � 1

T

Ţ

t�tThu�1

τ θ0�
rθ

t gpτtq ln τt

�T θ0�rθp1�OP ph2c�qq � 1

T

Ţ

t�tThu�1

τ θ0�
rθ

t gpτtqpln τtq2

� plnT q2φ1 � 2plnT qφ2 � φ3 � oP p1q, (A.21)

where the second, third and fifth equalities follow from (4) and (5) of Lemma A.2; and the last equality
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follows from (A.18) to (A.20) and the definition of Riemann integral.

Similar to the analysis of A11, we have

A12 � OP p1qT�rθplnT q2 � 1

T

Ţ

t�tThu�1

τ2rθ
t

�
1

T

Ţ

s�1

τ2rθ
s Khpτt � τsq

��3

�
�

1

T 3

Ţ

u�1

Ţ

s�1

Ţ

r�1

pτuτsq2rθτ rθr εrKhpτt � τuqKhpτt � τsqKhpτt � τrq
�

� OP p1qT�θ0T θ0�rθplnT q2 � 1

T

Ţ

t�tThu�1

�
1

T

Ţ

r�1

τ
rθ
r εrKhpτt � τrq

�

� OP

�
T�θ0plnT q2

?
lnT?
Th

�
� OP

�
1

T θ0
� plnT q

5{2
?
Th

�
,

where the second equality follows from (5) of Lemma A.2; and the third equality follows from (2) of

Lemma A.2 and Theorem 3.1.

Based on the development of A11 and A12, we immediately obtain that

A1 � plnT q2φ1 � 2plnT qφ2 � φ3 � oP p1q .

Similarly, we have

A2 � 1

T

Ţ

t�tThu�1

t2
rθT�4rθ�2

�
1

T

Ţ

s�1

τ2rθ
s Khpτt � τsq

��2

�T 3rθ�θ0�2

�
1

T 2

Ţ

r�1

Ţ

s�1

τ2rθ
r τ

rθ
s ysKhpτt � τrqKhpτt � τsqpln rq

�
ln r � 1

2
ln s


�
� 3

2

�plnT q2φ1 � 2plnT qφ2 � φ3

�� oP p1q ,

A3 � plnT q2φ1 � 2plnT qφ2 � φ3 � oP p1q ,
A4 � plnT q2φ1 � 2plnT qφ2 � φ3 � oP p1q .

Based on the above, the second result of this lemma holds.

(2). We now consider
1

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ

��
θ�rθ and write

1

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ

���
θ�rθ

� �2

T

Ţ

t�tThu�1

τ2rθ
t

�
Ţ

u�1

u2rθKhpτt � τuq
��2 � Ţ

u�1

Ţ

s�1

pu?sq2rθysKhpτt � τuqKhpτt � τsq lnu

�

� 1

T

Ţ

t�tThu�1

τ2rθ
t

�
Ţ

u�1

u2rθKhpτt � τuq
��1 � Ţ

u�1

u
rθyuKhpτt � τuq lnu

�

:� �2A1 �A2,

where the definitions of A1 and A2 should be obvious.
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For A1, write

A1 � p1�OP ph2c�qqT�4rθ�2 � 1

T

Ţ

t�tThu�1

τ�2rθ
t

�
Ţ

u�1

Ţ

s�1

pu?sq2rθgpτsqsθ0Khpτt � τuqKhpτt � τsq lnu

�

�p1�OP ph2c�qqT�4rθ�2 � 1

T

Ţ

t�tThu�1

τ�2rθ
t

�
Ţ

u�1

Ţ

s�1

pu?sq2rθεsKhpτt � τuqKhpτt � τsq lnu

�

� p1�OP ph2c�qqT θ0�rθplnT q
T

Ţ

t�tThu�1

τ�2rθ
t

�
1

T 2

Ţ

u�1

Ţ

s�1

τ2rθ
u τ

rθ�θ0
s gpτsqKhpτt � τuqKhpτt � τsq

�

�p1�OP ph2c�qqT θ0�rθplnT q
T

Ţ

t�tThu�1

τ�2rθ
t

�
1

T 2

Ţ

u�1

Ţ

s�1

pτu?τsq2rθεsKhpτt � τuqKhpτt � τsq
�

�p1�OP ph2c�qqT θ0�rθ
T

Ţ

t�tThu�1

τ�2rθ
t �

�
1

T 2

Ţ

u�1

Ţ

s�1

τ2rθ
u τ

rθ�θ0
s gpτsqKhpτt � τuqKhpτt � τsq ln τu

�

�p1�OP ph2c�qqT θ0�rθ
T

Ţ

t�tThu�1

τ�2rθ
t �

�
1

T 2

Ţ

u�1

Ţ

s�1

pτu?τsq2rθεsKhpτt � τuqKhpτt � τsq ln τu

�

� plnT qφ1 � φ2 � oP p1q ,

where the first equality follows from (5) of Lemma A.2; and the third equality follows the development

similar to (A.21).

Similarly, we can show that

A2 � plnT qφ1 � φ2 � oP p1q .

Based on the above, the third result of this lemma holds.

(3). We now consider
1

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ ln τt

��
θ�rθ and write

1

T

Ţ

t�tThu�1

τ2θ
t

Bpgpτt, θq
Bθ ln τt

���
θ�rθ

� �2

T

Ţ

t�tThu�1

pln τtqτ2rθ
t

�
Ţ

u�1

u2rθKhpτt � τuq
��2 � Ţ

u�1

Ţ

s�1

pu?sq2rθysKhpτt � τuqKhpτt � τsq lnu

�

� 1

T

Ţ

t�tThu�1

pln τtqτ2rθ
t

�
Ţ

u�1

u2rθKhpτt � τuq
��1 � Ţ

u�1

u
rθyuKhpτt � τuq lnu

�

:� �2A1 �A2,

where the definitions of A1 and A2 should be obvious.

For A1, write

A1 � p1�OP ph2c�qqT�4rθ�2 � 1

T

Ţ

t�tThu�1

pln τtqτ�2rθ
t

�
Ţ

u�1

Ţ

s�1

pu?sq2rθgpτsqsθ0Khpτt � τuqKhpτt � τsq lnu

�

�p1�OP ph2c�qqT�4rθ�2 � 1

T

Ţ

t�tThu�1

pln τtqτ�2rθ
t

�
Ţ

u�1

Ţ

s�1

pu?sq2rθεsKhpτt � τuqKhpτt � τsq lnu

�
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� p1�OP ph2c�qqT θ0�rθplnT q
T

Ţ

t�tThu�1

pln τtqτ�2rθ
t

�
1

T 2

Ţ

u�1

Ţ

s�1

τ2rθ
u τ

rθ�θ0
s gpτsqKhpτt � τuqKhpτt � τsq

�

�p1�OP ph2c�qqT θ0�rθplnT q
T

Ţ

t�tThu�1

pln τtqτ�2rθ
t

�
1

T 2

Ţ

u�1

Ţ

s�1

pτu?τsq2rθεsKhpτt � τuqKhpτt � τsq
�

�p1�OP ph2c�qqT θ0�rθ
T

Ţ

t�tThu�1

pln τtqτ�2rθ
t �

�
1

T 2

Ţ

u�1

Ţ

s�1

τ2rθ
u τ

rθ�θ0
s gpτsqKhpτt � τuqKhpτt � τsq ln τu

�

�p1�OP ph2c�qqT θ0�rθ
T

Ţ

t�tThu�1

pln τtqτ�2rθ
t �

�
1

T 2

Ţ

u�1

Ţ

s�1

pτu?τsq2rθεsKhpτt � τuqKhpτt � τsq ln τu

�

� plnT qφ2 � φ3 � oP p1q ,

where the first equality follows from (5) of Lemma A.2; and the third equality follows the development

similar to (A.21).

Similarly, we can show that

A2 � plnT qφ2 � φ3 � oP p1q .

Based on the above, the third result of this lemma holds.

(4)-(6). Similar to results (2)-(3) of this lemma,

1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq���

θ�rθ
� φ1 � oP p1q ,

1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θq ln τt

���
θ�rθ

� φ2 � oP p1q ,

1

T

Ţ

t�tThu�1

τ2θ
t pgpτt, θqpln τtq2���

θ�rθ
� φ3 � oP p1q .

(7). By (1)-(6) of this lemma, simple calculation immediately gives

B2RT pθq
Bθ2

���
θ�rθ

� 8� oP p1q.

The proof is now completed. �

Before proving Theorem 3.3, we denote some variables for notational simplicity and provide some

discussions.

Σ � lim
TÑ8

Ţ

t�1

Ţ

s�1

ErVtVss, Vt � V1t � V2t, V1t � � 1

T 3{2

Ţ

u�tThu�1

τ θ0u εuKhpτu � τtq,

V2t � 1

T 3{2 lnT

Ţ

v�tThu�1

τ θ0v pln τvqεtKhpτv � τtq. (A.22)

Remark A.2. We now verify the existence of Σ. Simple algebra shows that ln τt
lnT � �p1� ln t

lnT q, so V2t is

a rescaled version of V1t. Thus, we just focus on
°T
t�1

°T
s�1ErV1tV1ss for the purpose of demonstration.
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Note that it is easy to obtain

» 1

h
Khpw � uqdw �

$''''&''''%
³1
�cKpwqdw, u � h� ch P r0, hq pi.e., c P r0, 1qq

1, u P r2h, 1� hs³c
�1Kpwqdw, u � 1� ch P p1� h, 1s pi.e., c P r0, 1qq

, (A.23)

which indicates 0 ¤ supuPr0,1s
³1
hKhpw � uqdw ¤ 1. Thus, for

°T
t�1

°T
s�1ErV1tV1ss, we have

Ţ

t�1

Ţ

s�1

ErV1tV1ss � 1

T 3

Ţ

s1�1

Ţ

s2�1

Ţ

t1�tThu�1

Ţ

t2�tThu�1

Erεs1εs2sτ θ0s1 τ θ0s2Khpτt1 � τs1qKhpτt2 � τs2q

� 1

T

Ţ

s1�1

Ţ

s2�1

Erεs1εs2sτ θ0s1 τ θ0s2
» 1

h
Khpw � τs1qdw

» 1

h
Khpw � τs2qdw � op1q,

where the second the equality follows from the definition of Riemann integral, and the right hand side

converges by (A.23) and standard argument of time series analysis.

Proof of Theorem 3.3:

(1). Write$&% 1

T

Ţ

u�tThu�1

τ2θ
u

Bpgpτu, θq
Bθ � 2

T

Ţ

u�tThu�1

τ2θ
u pgpτu, θq ln τu

,.-���
θ�θ0

� � 2

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��2 � Ţ

t�1

Ţ

s�1

pt?sq2θ0ysKhpτu � τtqKhpτu � τsq ln t

�

� 1

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��1 � Ţ

t�1

tθ0ytKhpτu � τtq ln t

�

� 2

T

Ţ

u�tThu�1

pln τuqτ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��1 � Ţ

t�1

tθ0ytKhpτu � τtq
�

� � 2

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��2 � Ţ

t�1

Ţ

s�1

pt?sq2θ0sθ0gpτsqKhpτu � τtqKhpτu � τsq ln t

�

� 2

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��2 � Ţ

t�1

Ţ

s�1

pt?sq2θ0εsKhpτu � τtqKhpτu � τsq ln t

�

� 1

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��1 � Ţ

t�1

t2θ0gpτtqKhpτu � τtq ln t

�

� 1

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��1 � Ţ

t�1

tθ0εtKhpτu � τtq ln t

�

� 2

T

Ţ

u�tThu�1

pln τuqτ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��1 � Ţ

t�1

t2θ0gpτtqKhpτu � τtq
�

� 2

T

Ţ

u�tThu�1

pln τuqτ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��1 � Ţ

t�1

tθ0εtKhpτu � τtq
�
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:� �2A1 � 2A2 �A3 �A4 � 2A5 � 2A6, (A.24)

where the definitions of A1 to A6 should be obvious.

Focus on T θ0�
1
2

lnT p�2A2 � A4 � 2A6q first. By repeatedly using Lemma A.2 as we have done in the

proof of Lemma A.3, we are able to write

T θ0�
1
2

lnT
p�2A2 �A4 � 2A6q

� �T
θ0� 1

2

lnT
� 2

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��2 � Ţ

t�1

Ţ

s�1

pt?sq2θ0εsKhpτu � τtqKhpτu � τsq ln t

�

�T
θ0� 1

2

lnT
� 1

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��1 � Ţ

t�1

tθ0εtKhpτu � τtq ln t

�

�T
θ0� 1

2

lnT
� 2

T

Ţ

u�tThu�1

pln τuqτ2θ0
u

�
Ţ

t�1

t2θ0Khpτu � τtq
��1 � Ţ

t�1

tθ0εtKhpτu � τtq
�

� � T
1
2

lnT
� 2

T

Ţ

u�tThu�1

τ2θ0
u

�
1

T

Ţ

t�1

τ2θ0
t Khpτu � τtq

��2 �
1

T

Ţ

t�1

τ2θ0
t Khpτu � τtq ln t

�

�
�

1

T

Ţ

t�1

τ θ0t εtKhpτu � τtq
�

� T
1
2

lnT
� 1

T

Ţ

u�tThu�1

τ2θ0
u

�
1

T

Ţ

t�1

τ2θ0
t Khpτu � τtq

��1 �
1

T

Ţ

t�1

τ θ0t εtKhpτu � τtq ln t

�

� T
1
2

lnT
� 2

T

Ţ

u�tThu�1

pln τuqτ2θ0
u

�
1

T

Ţ

t�1

τ2θ0
t Khpτu � τtq

��1 �
1

T

Ţ

t�1

τ θ0t εtKhpτu � τtq
�

� �p1� op1qq � T
1
2

lnT
� 2

T

Ţ

u�tThu�1

τ�2θ0
u

�
τ2θ0
u ln τu � τ2θ0

u lnT
� � 1

T

Ţ

t�1

τ θ0t εtKhpτu � τtq
�

�p1� op1qq � T
1
2

lnT
� 1

T

Ţ

u�tThu�1

�
1

T

Ţ

t�1

τ θ0t εtKhpτu � τtqpln τt � lnT q
�

�p1� op1qq � T
1
2

lnT
� 2

T

Ţ

u�tThu�1

pln τuq
�

1

T

Ţ

t�1

τ θ0t εtKhpτu � τtq
�

� �p1� op1qq � T
1
2

lnT
� 2

T

Ţ

u�tThu�1

rln τu � lnT s
�

1

T

Ţ

t�1

τ θ0t εtKhpτu � τtq
�

�p1� op1qq � T
1
2

lnT
� 1

T

Ţ

u�tThu�1

�
1

T

Ţ

t�1

τ θ0t εtKhpτu � τtqpln τt � lnT q
�

�p1� op1qq � T
1
2

lnT
� 2

T

Ţ

u�tThu�1

pln τuq
�

1

T

Ţ

t�1

τ θ0t εtKhpτu � τtq
�

� p1� oP p1qq � 1

T 3{2

Ţ

u�tThu�1

Ţ

t�1

!
�2τ θ0t εtKhpτu � τtq � τ θ0t εtKhpτu � τtq

)

�p1� oP p1qq � 1

T 3{2 lnT

Ţ

u�tThu�1

Ţ

t�1

τ θ0t pln τtqεtKhpτu � τtq � p1� oP p1qq �
Ţ

t�1

Vt, (A.25)
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where Vt � V1t � V2t,

V1t � � 1

T 3{2

Ţ

u�tThu�1

τ θ0t εtKhpτu � τtq,

V2t � 1

T 3{2 lnT

Ţ

u�tThu�1

τ θ0t pln τtqεtKhpτu � τtq. (A.26)

We then can use the large block and small block technique (e.g., Lemma A of Chen et al. (2012a))

to show that
°T
t�1 Vt ÑD Np0,Σq, where Σ has been defined in (A.22).

Thus, we know that

�2A2 �A4 � 2A6 � OP

�
lnT

T θ0�
1
2



. (A.27)

To further simplify the notation, letting ξT � 1

T

Ţ

t�tThu�1

τ2θ0
t pgpτt, θ0q, it is easy to know that

ξT ÑP

» 1

0
u2θ0gpuqdu (A.28)

by the development of (A.18). Thus, rearranging (3.8) using the decomposition (A.24) gives�B2RT pθq
Bθ2

���
θ�rθ

��1 "�4λ2
T � ln ξ2

T

ξT
� plnT qp�2A2 �A4 � 2A6q

*
� plnT q

#
ppθ � θ0q �

�B2RT pθq
Bθ2

���
θ�rθ

��1
4λ2

T � ln ξ2
T

ξT
p2A1 �A3 � 2A5q

+
. (A.29)

Note that (A.27) and (7) of Lemma A.3 together imply�B2RT pθq
Bθ2

���
θ�rθ

��1 "�4λ2
T � ln ξ2

T

ξT
� plnT qp�2A2 �A4 � 2A6q

*
� OP

�
1

T θ0�
1
2



.

Thus, we can further simplify (A.29) to obtain

plnT qppθ � θ0q � plnT q
�B2RT pθq

Bθ2

���
θ�rθ

��1
4λ2

T � ln ξ2
T

ξT
p2A1 �A3 � 2A5q �OP

�
1

T θ0�
1
2



� λT

ln |ξT |
ξT

p2A1 �A3 � 2A5q �OP

�
1

T θ0�
1
2



. (A.30)

Below we just need to focus on A1, A3 and A5. Start from A1.

A1 � 1

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

τ2θ0
t Khpτu � τtq

��2

�
�
Ţ

t�1

Ţ

s�1

τ2θ0
t τ2θ0

s gpτsqKhpτu � τtqKhpτu � τsqpln τt � lnT q
�

� plnT q � 1

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

τ2θ0
t Khpτu � τtq

��2 � Ţ

t�1

Ţ

s�1

τ2θ0
t τ2θ0

s gpτsqKhpτu � τtqKhpτu � τsq
�

� 1

T

Ţ

u�tThu�1

τ2θ0
u

�
Ţ

t�1

τ2θ0
t Khpτu � τtq

��2 � Ţ

t�1

Ţ

s�1

τ2θ0
t τ2θ0

s gpτsqKhpτu � τtqKhpτu � τsq ln τt

�
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:� A11 �A12.

For A11, we have

A11 � plnT q �
�

1�Oph2c�q
	
� 1

T

Ţ

u�tThu�1

τ2θ0
u τ�4θ0

u τ2θ0
u τ2θ0

u gpτuq

� plnT q �
�

1�Oph2c�q
	
� 1

T

Ţ

u�tThu�1

τ2θ0
u gpτuq

� plnT q �
�

1�Oph2c�q
	
�
�» 1

h
u2θ0gpuqdu�O

�
1

Th




� plnT q

» 1

0
gpuqdu� op1q,

where the first equality follows from (4) and (5) of Lemma A.2; and the third equality follows from the

definition of Riemann integral.

Similarly,

A12 �
�

1�Oph2c�q
	
� 1

T

Ţ

u�tThu�1

τ2θ0
u τ�4θ0

u τ2θ0
u τ2θ0

u gpτuqpln τuq

�
�

1�Oph2c�q
	
�
�» 1

h
u2θ0gpuqplnuqdu�O

�
lnp1{hq
T




�

» 1

0
u2θ0gpuqplnuqdu� op1q,

where the second equality follows from the definition of Riemann integral.

Therefore,

A1 � plnT q
» 1

0
u2θ0gpuqdu�

» 1

0
u2θ0gpuqplnuqdu� op1q.

Similarly, we can show that

A3 � plnT q
» 1

0
u2θ0gpuqdu�

» 1

0
u2θ0gpuqplnuqdu� op1q,

A5 �
» 1

0
u2θ0gpuqplnuqdu� op1q.

By the analyses of A1, A3 and A5, we obtain that

2A1 �A3 � 2A5 � plnT q
» 1

0
u2θ0gpuqdu � p1�OP pλT qq. (A.31)

In connection with (A.30) and (A.28), we can conclude that

plnT qppθ � θ0q � ln |ξT |
ξT

» 1

0
u2θ0gpuqdu�OP pλT q � ln

����» 1

0
u2θ0gpuqdu

����� oP p1q,

where the existence of ln
���³1

0 u
2θ0gpuqdu

��� has been verified by (A.11) and (A.12) already.

Thus, the proof of the first result of this theorem is now complete.

(2). The second result follows from (A.17) straight away. �
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Appendix B

We first provide the omitted proof for Theorem 2.1.

Proof of Theorem 2.1:

(1). The proof of (2.3) follows from the standard arguments, so omitted. We take a further look at

(2.4) at first, and write

pST � � 1

Todd

¸
t odd

r�εt � pgpτtq � gpτtqs � rpgpτtq � gpτtq � gpτtqs ln t

� 1

Todd

¸
t odd

εtgpτtq ln t� 1

Todd

¸
t odd

εt � rpgpτtq � gpτtqs ln t

� 1

Todd

¸
t odd

rpgpτtq � gpτtqs gpτtq ln t� 1

Todd

¸
t odd

rpgpτtq � gpτtqs2 ln t

:� ST,1 � ST,2 � ST,3 � ST,4, (B.1)

where the definitions of ST,1 to ST,4 should be obvious. Since it is easy to show that ST,2 � oP pST,1q
and ST,4 � oP pST,1q, we just focus on ST,1 � ST,3 as follows:

ST,1 � ST,3 � 1

Todd

¸
t odd

εtgpτtq ln t� 1

Todd

¸
t odd

rpgpτtq � gpτtqs gpτtq ln t

� 1

Todd

¸
t odd

εtgpτtq ln t� 1

Todd

¸
t odd

°
s evenKhpτt � τsqεs°
s evenKhpτt � τsq gpτtq ln t

� 1

Todd

¸
t odd

�°
s evenKhpτt � τsqgpτsq°

s evenKhpτt � τsq � gpτtq
�
gpτtq ln t

� 1

Todd

¸
t odd

εtgpτtq ln t� Teven
Todd

� 1

Teven

¸
t even

εt
¸
s odd

Khpτt � τsq°
j evenKhpτj � τsqgpτsq ln s

�oP p1q

� 1

Todd

¸
t odd

εtgpτtq ln t� 1� oP p1q
Teven

¸
t even

εtgpτtq ln t� oP p1q

� 2

T

¸
t odd

εtgpτtq ln t� 2� oP p1q
T

¸
t even

εtgpτtq ln t� oP p1q, (B.2)

where the fourth equality follows from

gpτtq ln t�
¸
s odd

Khpτt � τsq°
j evenKhpτj � τsqgpτsq ln s � oP p1q

uniformly in t by the proof similar to those given for Theorem 3.3 of the main text.

Based on (B.2) and the assumptions in the body of this theorem, the result follows immediately.

Then the proof is complete.

(2). We now consider what happens under the alternative hypothesis, i.e., θ0 ¡ 0. For @u P p0, 1q,
we have

|pgpuq| �
�����
°T
t�1Khpu� τtqyt°T
t�1Khpu� τtq

����� �
�����
°T
t�1Khpu� τtqgpτtqtθ0°T

t�1Khpu� τtq
�

°T
t�1Khpu� τtqεt°T
t�1Khpu� τtq

�����
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�
�����T θ0 �

°T
t�1Khpu� τtqgpτtqτ θ0t°T

t�1Khpu� τtq

������ oP p1q � T θ0 �
�
uθ0 |gpuq| � oP p1q

	
� oP p1q

ÑP 8. (B.3)

In connection with (B.1), it is easy to see that ST,4 is the true leading term due to the involvement of

the quadratic term. Then by the definition of (2.6) and under the alternative hypothesis, yLM Ñ8 as

T Ñ8. �

A Generalized Parametric Test with Discussions

We now discuss if a more generalized version of (2.1) can be achieved. To be precise, the test is specified

as follows:

H0 : θ0 � a vs. H1 : θ0 ¡ a, (B.4)

where a is a positive constant. Under the null, the estimator of g reduces to a special case of (3.1), i.e.,

pgpu, θ0q �
�
Ţ

t�1

t2θ0Kh pu� τtq
��1 Ţ

t�1

tθ0ytKh pu� τtq . (B.5)

In order to avoid
�°T

t�1 t
2θ0Kh pu� τtq

��1
blowing up the rate of convergence in the sup norm below,

we further restrict u to the set rc, 1 � hs and suppose that suppθ,uqPΘ�rc,1�hs
���d2ruθ�θ0gpuqsdu2

���   8, where

c P p0, 1q is a fixed constant. Then by the proof of Lemma 3.1, a faster rate convergence for pgpu, θ0q
can be achieved as follows:

sup
uPrc,1�hs

|pgpu, θ0q � gpuq| � OP

� ?
lnT

T
1
2
�θ0h

1
2

�
�Oph2q. (B.6)

Note that in this case, the score function becomes

ST pθ0q � 1

T

Ţ

t�1

�
yt � gpτtqtθ0

	
gpτtqtθ0 ln t.

In order to use (B.6), we denote Bh � tt |tcT u ¤ t ¤ tp1 � hqT uu and let T � be the cardinality of Bh.

Then consider the following approximation for the score function in practice:

pST � 1

T �{2
¸

t oddPBh

�
yt � pgpτtqtθ0	 pgpτtqtθ0 ln t, (B.7)

where

pgpuq � � ¸
t evenPBh

t2θ0Kh pu� τtq
��1 ¸

t evenPBh
tθ0ytKh pu� τtq . (B.8)

Based on the above, write

pST � � 1

T �{2
¸

t oddPBh

�
�εt � pgpτtqtθ0 � gpτtqtθ0

�
� rpgpτtq � gpτtq � gpτtqs tθ0 ln t
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� 2

T �
¸

t oddPBh
εtgpτtqtθ0 ln t� 2

T �
¸

t oddPBh
εt � rpgpτtq � gpτtqs tθ0 ln t

� 2

T �
¸

t oddPBh
rpgpτtq � gpτtqs gpτtqt2θ0 ln t� 2

T �
¸

t oddPBh
rpgpτtq � gpτtqs2 t2θ0 ln t

:� ST,1 � ST,2 � ST,3 � ST,4. (B.9)

Similar to the proof of Theorem 2.1, it is easy to show that
?
T �ST,2 and

?
T �ST,4 are negligible, and

ST,1 � ST,3 can be rewritten as

ST,1 � ST,3 � 2

T �
¸

t oddPBh
εtgpτtqtθ0 ln t� 2� oP p1q

T �
¸

t evenPBh
εtgpτtqtθ0 ln t� oP p1q (B.10)

provided h2T 2θ0 lnT Ñ 0 in view of (B.6) and the development of (B.2).

Therefore, we are able to state the next result.

Corollary B.1. Let the conditions of Theorem 2.1 hold. Suppose further that h2T 2θ0 lnT Ñ 0 and

suppθ,uqPΘ�rc,1�hs
���d2ruθ�θ0gpuqsdu2

���   8.

1. Under the null, as T Ñ8,

yLM �
?
T�

2
pST!pσ2

ε � 1
T�

°
tPBh rpgpτtqtθ0 ln ts2

)1{2 ÑD Np0, 1q, (B.11)

where pσ2
ε � 1

T�
°
tPBh pyt � pgpτtqq2 ÑP σ

2
ε , and pST and pgpuq have been defined in (B.7) and (B.8)

respectively.

2. Under the alternative, as T Ñ8, yLM Ñ8.

The proof of the second result of the above corollary follows from almost an identical procedure as

(B.3), thus omitted.

Remark B.1.

1. The condition h2T 2θ0 lnT Ñ 0 implies θ0 cannot be greater than or equal to 1.

2. Note that tθ |yLMpθq   zαu gives the 1 � α confidence interval for θ0, where α stands for the

significant level and zα presents the corresponding critical value.

Below, we implement some simulation study to back up our arguments. Particularly, the DGP is

yt � exppτtqtθ0 � εt, where the variables are generated in exactly the same way as Case 1.1 of Section

4.1. We choose the value of θ0 from t0.2, 0.4, 0.6, 0.8, 1.0u. The bandwidth is set to h � p lnT
T q7{10,

and we let c � 0.3 without losing generality. As the above development requires h2T 2θ0 lnT Ñ 0, so we

would expect that the size of the test will go wrong when θ0 ¥ 0.7. For simplicity, we report the size

based on 1000 replications in Figure 8, which is sufficient to explain our argument on the requirement

of θ0   0.7. The power test can be done as in Section 4.1, so we do not pursue it further.
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Figure 8: Size of (B.11) at 5% Significant Level

As expected, while θ0 � 0.2, 0.4, 0.6, the size of (B.11) is reasonably well (i.e., moving around 5%).

However, when θ0 � 0.8, 1, the size of the test totally goes wrong, which confirms our argument on

the requirement of h2T 2θ0 lnT Ñ 0.

Extension 2 of Section 5

We now formalize the statement made in Extension 2 of Section 5. Consider a general trending model

of the form:

yt � fpxt, τtq � gpτtqtθ0 � εt. (B.12)

Assumption 3:

Suppose that fp�, �q and txt |t � 1, . . . , T u satisfy one of the following three cases:

1. txt |t � 1, . . . , T u is a strictly stationary and α-mixing error process with a density function ppwq.
Moreover, sup

pw,uqPRd�r0,1s
ppwqBfpw, uqBu   8 and E

�
sup
uPr0,1s

|fpx1, uq|
�
; or

2. txt |t � 1, . . . , T u is a locally stationary process.5 Let fp�, �q be uniformly bounded and satisfy that

|fpx1, uq � fpx2, uq| ¤ A4}x1 � x2} for @u P r0, 1s, where A4 is a positive constant; or

3. (a) Let fp�, �q be uniformly bounded, and xt � xt�1 � wt for t ¥ 1 and }x0} � OP p1q;
(b) Let wt �

°8
j�0 ψjεt�j, where

°8
j�0 j}ψj}   8 and ψ :� °8

j�0 ψj � 0;

5We adopt the following definition for a locally stationary process (cf., Vogt, 2012; Dong and Linton, 2016):

Definition 7.1. The process txt |t � 1, . . . , T u is locally stationary if for each rescaled time point u P r0, 1s there
exists an associated process txtpuq |t � 1, . . . , T u with the following two properties:

(a) txtpuq |t � 1, . . . , T uis strictly stationary with density fupwq;

(b) It holds that }xt � xtpuq}r ¤
�
|τt � u| � T�1

�
Utpuq a.s., where τt � t{T , tUtpuqu is a process of positive

variables satisfying E|Utpuq|
ρ   C for some ρ ¥ 1 and C   8 independent of u, t, and T . Moreover, } � }r

denotes an arbitrary norm on Rd.
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(c) Let tεj | �8   j   8u be a scalar sequence of i.i.d. random variables having an absolutely

continuous distribution with respect to the Lebesgue measure and satisfying Erε1s � 0d�1,

Erε1ε11s � Id, E}ε1}q   8 for some q ¡ 2. The characteristic function of ε1 is integrable.

Corollary B.2. Let pθ and pgpu, θq be those defined in Section 2 of the paper. Under Assumptions 1

and 3, suppose further that h � OpT�νq with ν being a positive constant and satisfying 0   ν   1
2 . As

T Ñ8,

1. sup
pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt fpxt, τtqKhpu� τtq
��� � OP p1q;

2. pθ � θ0 � OP pλT q, where λT is defined in (3.5);

3. sup
uPrh,1s

���pgpu, pθq � puT qθ0�pθ � gpuq
��� � oP p1q.

Proof of Corollary B.2:

(1). First, we point out one simple fact below:

» p1�uq{h

�u{h
Kpwqdw �

$''''&''''%
1, u P rh, 1� hs³c
�1Kpwqdw, u � 1� ch with c P r0, 1q³1
�cKpwqdw, u � ch with c P r0, 1q

.

Therefore, it is easy to know that

sup
uPr0,1s

�
» p1�uq{h

�u{h
Kpwqdw � Op1q. (B.13)

Case 1: Under Assumption 3.1, we have

E

�
sup

pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt fpxt, τtqKhpu� τtq
����

¤
»

sup
pθ,uqPΘ�r0,1s

1

T

Ţ

t�1

τ θt |fpw, τtq|Khpu� τtqppwqdw

¤ Op1q
»

sup
uPr0,1s

1

T

Ţ

t�1

|fpw, τtq|Khpu� τtqppwqdw

� Op1q
»

sup
uPr0,1s

» 1

0
|fpw1, w2q| � ppw1qKhpu� w2qdw2dw1

� Op1q
»

sup
uPr0,1s

» p1�uq{h

�u{h
|fpw1, u� w2hq| � ppw1qKpw2qdw2dw1

� Op1q
»

sup
uPr0,1s

|fpw1, uq|
» p1�uq{h

�u{h
Kpw2qdw2 � ppw1qdw1

¤ Op1q
»

sup
uPr0,1s

|fpw, uq|ppwqdw � Op1q,

where the second inequality follows from the fact that 0 ¤ τ θ   1 uniformly; the first equality follows

from the definition of Riemann integral; the third and fourth equalities follows from Assumption 3.1.;

the third inequality follows from (B.13).
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Therefore, sup
pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt fpxt, τtqKhpu� τtq
��� � OP p1q under Assumption 3.a.

Case 2: Let Assumption 3.2 hold. Note that by the definition of a locally stationary process, it is

easy to know that Utpuq � OP p1q uniformly in t and u.

Write

sup
pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt fpxt, τtqKhpu� τtq
���

¤ sup
pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt pfpxt, τtq � fpxtpτtq, τtqqKhpu� τtq
���

� sup
pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt fpxtpτtq, τtqKhpu� τtq
���

:� A1 �A2,

where the definitions of A1 and A2 should be obvious.

For A1, we have

A1 � sup
pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt pfpxt, τtq � fpxtpτtq, τtqqKhpu� τtq
���

¤ Op1q sup
pθ,uqPΘ�r0,1s

1

T

Ţ

t�1

τ θt }xt � xtpτtq}Khpu� τtq

¤ Op1q sup
pθ,uqPΘ�r0,1s

1

T 2

Ţ

t�1

τ θt UtpτtqKhpu� τtq

¤ Op1q 1

T 2h

Ţ

t�1

Utpτtq ¤ OP p1q 1

Th
.

where the first inequality follows from Assumption 3.2; the second inequality follows from the definition

of locally stationary process; and the fourth inequality follows from the fact (i.e., Utpτtq � OP p1q) that

we point out in the beginning of Case 2.

For A2, it is easy to obtain that

ErA2s � E

�
sup

pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt fpxtpτtq, τtqKhpu� τtq
����

¤ sup
pθ,uqPΘ�r0,1s

1

T

Ţ

t�1

Khpu� τtq � Op1q sup
uPr0,1s

1

h

» 1

0
Khpu� wqdw

� Op1q sup
uPr0,1s

» p1�uq{h

�u{h
Kpwqdw � Op1q,

where the first inequality follows from Assumption 3.2; and the second equality follows from the defi-

nition of Riemann integral; and the fourth equality follows from (B.13).

Based on the analyses of A1 and A2, we have sup
pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt fpxt, τtqKhpu� τtq
��� � OP p1q.

Case 3: Let Assumption 3.3 hold. Construct a νT satisfying that νT Ñ 8 and νT {pThq Ñ 0. By

Lemma C.5 of Dong et al. (2016), we know that, for sufficiently large t, xt{
?
t has a pdf function φtpwq,
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which is uniformly bounded in both t and w.

E

�
sup

pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt fpxt, τtqKhpu� τtq
����

� E

�
sup

pθ,uqPΘ�r0,1s

��� 1

T

νŢ

t�1

τ θt fpxt, τtqKhpu� τtq
����

�E
�

sup
pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�νT�1

τ θt fpxt, τtqKhpu� τtq
����

� Op1q νT
Th

� E

�
sup

pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt f

�?
t � xt?

t
, τt



Khpu� τtq

����

¤ Op1q νT
Th

� 1

T

Ţ

t�νT�1

»
sup

pθ,uqPΘ�r0,1s
τ θt |fp

?
tw, τtq|Khpu� τtqφtpwqdw

¤ Op1q νT
Th

� sup
uPr0,1s

1

T

Ţ

t�1

Khpu� τtq
»
φtpwqdw � Op1q,

where the second inequality follows from Assumption 3.3; and the last equality follows from (B.13) and

the fact that φtpwq is a density function.

Thus, we have sup
pθ,uqPΘ�r0,1s

��� 1

T

Ţ

t�1

τ θt fpxt, τtqKhpu � τtq
��� � OP p1q, so the proof of the first result is

complete.

Based on the first result of this corollary, the second and third results can be verified by exactly

the same procedure as documented in the Appendix A of the this paper. �

Another Potential Issue

We now explain the failure of a sieve based OLS method based on model (1.1). Still consider yt �
gpτtqtθ0 � εt. Further assume θ0 is known. Following Newey (1997), we can expand gp�q by power series

on certain support as follows:

T�θ0yt � T�θ0
k�1̧

i�0

ciτ
i
t t
θ0 � T�θ0

8̧

i�k
ciτ

i
t t
θ0 � T�θ0εt

�
k�1̧

i�0

ciτ
i�θ0
t �

8̧

i�k
ciτ

i�θ0
t � T�θ0εt.

In view of (6.6), it is easy to obtain

1

T

Ţ

t�1

pτ θ0t , τ θ0�1
t , . . . , τ θ0�k�1

t qpτ θ0t , τ θ0�1
t , . . . , τ θ0�k�1

t q1

�
"

1

2θ0 � i� j � 1

*
k�k

� p1� op1qq (B.14)

for 0 ¤ i, j ¤ k � 1 under proper restrictions on k and T . Thus, as k diverges, the right hand side of

(B.14) is asymptotically singular, which indicates that the sieve based OLS method also does not work

for model (1.1). Certainly, the choice of basis functions plays an important role when implementing the
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sieve based OLS method. However, it is not clear to us which series can solve the ill-posed problem at

this stage.

Numerical Studies

We now use simulation to examine Corollary B.2 and the potential issue mentioned above together.

Specifically, we adopt the following DGPs:

DGP 1: yt � fpxt, τtq � gpτtqtθ0 � εt with gpuq � 3pu� 1q2 � 1,

DGP 2: yt � fpxt, τtq � gpτtqtθ0 � εt with gpuq � 3|u� 1|0.7 � 1. (B.15)

The fp�, �q and txtu are generated as follows:

• Case 1 (Stationary): xt follows an AR(1) process xt � 0.5xt�1 � vt, and

fpx, uq � °d
j�1 |xj | � 5 sinpu � πq with x � px1, . . . , xdq1;

• Case 2 (Nonstationary): xt follows an integrated process xt � xt�1 � vt, and

fpx, uq � exp
!
�p°d

j�1 xjq2
)
� 5 sinpu � πq with x � px1, . . . , xdq1.

In both cases, x0 � Np0d�1, Idq and vt � i.i.d. Np0d�1, Idq. We set d � 1 without losing generality.

The other variables are generated in exactly the same way as Section 3 of this paper.

We first implement NM, FOLS1 and FOLS2 methods documented in the main text to DGP 1 under

both Cases 1 and 2, and report results in Tables 4 and 5 below.

Table 4: (DGP1, Case 1)

RMSEθ RMSEg

hzT 200 500 1000 200 500 1000

NM T�2{5 0.1004 0.0914 0.0846 0.1020 0.0534 0.0326

T�1{3 0.1057 0.0938 0.0859 0.0383 0.0215 0.0157

T�1{5 0.1263 0.1069 0.0951 0.0869 0.0946 0.0928

T�1{8 0.1581 0.1304 0.1144 0.0976 0.1283 0.1396

FOLS1 T�2{5 0.3000 0.3000 0.3000 5.4512 7.4493 9.4524

T�1{3 0.3000 0.3000 0.3000 5.3382 7.3816 9.4220

T�1{5 0.3000 0.3000 0.3000 4.9488 6.8721 8.8398

T�1{8 0.3000 0.3000 0.3000 4.8027 6.4911 8.2334

FOLS2 T�2{5 0.2746 0.2688 0.2676 4.6967 6.0574 7.4868

T�1{3 0.2773 0.2808 0.2794 4.6713 6.4921 8.1174

T�1{5 0.2628 0.2790 0.2865 3.9134 5.9406 7.9951

T�1{8 0.2431 0.2728 0.2827 3.3330 5.3493 7.2129
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Table 5: (DGP1, Case 2)

RMSEθ RMSEg

hzT 200 500 1000 200 500 1000

NM T�2{5 0.1025 0.0923 0.0851 0.0948 0.0482 0.0286

T�1{3 0.1078 0.0947 0.0864 0.0382 0.0229 0.0175

T�1{5 0.1284 0.1078 0.0956 0.0873 0.0951 0.0933

T�1{8 0.1603 0.1314 0.1149 0.0976 0.1284 0.1397

FOLS1 T�2{5 0.3000 0.3000 0.3000 5.3572 7.3848 9.4045

T�1{3 0.3000 0.3000 0.3000 5.2526 7.3231 9.3785

T�1{5 0.3000 0.3000 0.3000 4.8719 6.8208 8.8019

T�1{8 0.3000 0.3000 0.3000 4.7293 6.4433 8.1987

FOLS2 T�2{5 0.2733 0.2670 0.2670 4.5755 5.9264 7.4130

T�1{3 0.2762 0.2808 0.2791 4.5590 6.4374 8.0573

T�1{5 0.2652 0.2783 0.2866 3.9096 5.8606 7.9608

T�1{8 0.2416 0.2722 0.2822 3.2417 5.2840 7.1504

As can be seen, the procedure of recovering θ0 and g0 is not affected by fp�, �q and txt |t � 1, . . . , T u
too much, which indicates that one can implement our procedure to detrend the data set in a bet-

ter fashion practically. However, when FOLS1 and FOLS2 get employed, huge biases arise. Thus,

detrending the data set by a proper econometric tool indeed matters.

Below we focus on DGPs 1 and 2 under Case 1 only in order to examine the issue raised by sieve

estimation technique. Apart from our proposed method, we also use sieve based OLS method (referred

to as SOLS). In particular, we use power series t1, u, u2, . . .u to approximate gpuq in our simulation

study (cf., Newey (1997)). Specifically, the new objective function is

QT pθq �
Ţ

t�1

�
yt � tθpgkpτt, θq	2

, (B.16)

where pgkpτt, θq � z1t pCpθq, zt � p1, τ1
t , . . . , τ

k�1
t q1, and pCpθq � �°T

t�1

�
tθzt

� � �tθzt�1	�1 °T
t�1

�
tθzt

�
yt. In

order to demonstrate our arguments under (B.14), we set the truncation parameter to k � 2, 3, 5, 10, 15.

For the purpose of comparison, we set the bandwidth to h � 1{k when implementing our method.6

In Table 6, it is not surprising to see the best estimate comes from SOLS method with k � 3, as this

choice of power series perfectly fits the DGP 1. However, when we increase the value of truncation

parameter, the matrix in the inverse is getting closer to singular as explained under (B.14), which is

also confirmed by Matlab over simulation study as we always receive warnings saying “Matrix is close

to singular or badly scaled”.

6The setting of h � 1{k is indeed reasonable. As for a nonparametric model yt � gpxtq� et with t � 1, . . . , T ,

it is easy to see that the leading terms of the rates of convergence are
b

kd

T and 1?
Thd

for the sieve based method

and the kernel based method, respectively, under certain restrictions, where k is the truncation parameter, h is
the bandwidth, and d is the dimension of xt. For more details, see Chen (2007) and Gao (2007) for excellent
reviews of nonparametric regression.
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Table 6: (DGP 1, Case 1)

RMSEθ RMSEg

T � 200 T � 500 T � 1000 T � 200 T � 500 T � 1000

NM h � 1{2 0.1548 0.1378 0.1263 0.1019 0.1183 0.1263

h � 1{3 0.1240 0.1121 0.1034 0.0822 0.1122 0.1254

h � 1{5 0.1083 0.0985 0.0911 0.0295 0.0492 0.0659

h � 1{10 0.1015 0.0927 0.0859 0.0826 0.0281 0.0157

h � 1{15 0.1003 0.0918 0.0850 0.1046 0.0432 0.0198

SOLS k � 2 0.3000 0.3000 0.3000 4.7499 6.4232 8.0886

k � 3 0.0161 0.0057 0.0030 0.1035 0.0365 0.0178

k � 5 0.0599 0.0199 0.0094 0.6624 0.2456 0.1313

k � 10 0.2407 0.2124 0.1998 1.0880 1.2357 1.3105

k � 15 0.3242 0.3167 0.1237 1.2188 1.4768 0.9684

Although the power series may work well with a relatively small truncation parameter when gp�q is

a certain polynomial function, it may not even work well for the case where the powers of polynomial

functions are not integers, which is confirmed by the simulation study for DGP 2. In Table 7, we see

that the results of SOLS generally perform worse than our proposed method, which indicates that the

choice of the basis functions indeed matters. However, at this stage, it is not clear which particular

class of basis functions can potentially solve the problem discussed under (B.14), while the finite sample

results are generally good.

Table 7: (DGP 2, Case 1)

RMSEθ RMSEg

T � 200 T � 500 T � 1000 T � 200 T � 500 T � 1000

NM h � 1{2 0.0723 0.0650 0.0598 0.9221 0.9424 0.9522

h � 1{3 0.0435 0.0408 0.0381 0.8646 0.8981 0.9133

h � 1{5 0.0312 0.0301 0.0284 0.6699 0.7209 0.7436

h � 1{10 0.0269 0.0265 0.0252 0.4152 0.4806 0.5090

h � 1{15 0.0262 0.0259 0.0247 0.2948 0.3642 0.3943

SOLS k � 2 0.1879 0.1876 0.1877 1.2468 1.4045 1.5010

k � 3 0.2131 0.2192 0.2219 4.5228 6.0737 7.5396

k � 5 0.1866 0.1719 0.1656 3.8811 4.2123 4.6908

k � 10 0.2736 0.2853 0.2002 1.6633 2.0399 1.8726

k � 15 0.2679 0.2573 0.2002 1.6132 1.9826 1.8734
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