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Abstract

This paper proposes a simple and efficient estimation procedure for
the model with non-ignorable missing data studied by Morikawa and Kim
(2016). Their semiparametrically efficient estimator requires explicit non-
parametric estimation and so suffers from the curse of dimensionality and
requires a bandwidth selection. We propose an estimation method based
on the Generalized Method of Moments (hereafter GMM). Our method is
consistent and asymptotically normal regardless of the number of moments
chosen. Furthermore, if the number of moments increases appropriately
our estimator can achieve the semiparametric efficiency bound derived in
Morikawa and Kim (2016), but under weaker regularity conditions. More-
over, our proposed estimator and its consistent covariance matrix are easily
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computed with the widely available GMM package. We propose two data-
based methods for selection of the number of moments. A small scale sim-
ulation study reveals that the proposed estimation indeed out-performs the
existing alternatives in finite samples.

Keywords: Nonignorable nonresponse; Generalized method of moments; Semi-
parametric efficiency.

1 Introduction

Missing data is common in many fields of applications. One way to deal with
the missing data problem is to delete observations containing missing data. In
doing so we may produce biased estimates and erroneous conclusions, depend-
ing on the data missing mechanism. If data are missing completely at random,
standard estimation and inference procedures are still consistent when the missing
data observations are ignored, see Heitjan and Basu (1996), Little (1988) among
others. If data are missing at random (MAR) in the sense that the propensity
of missingness depends only on the observed covariates, consistent estimation can
still be obtained through covariate balancing, see Rubin (1976a,b), Little and Ru-
bin (1989), Robins and Rotnitzky (1995), Robins et al. (1995), Bang and Robins
(2005), Qin and Zhang (2007), Chen et al. (2008), Tan (2010), Rotnitzky et al.
(2012), Little and Rubin (2014) among others. In many applications, data are
missing not at random (MNAR). For example, the income question in sample sur-
veys is often not answered by people at the top end of the distribution, that is,
their response frequency depends on an outcome variable that is often the key
focus. An investigator is examining the effect of sleep on pain by calling subjects
daily to ask them about last night’s sleep and their pain today. Patients who
are experiencing severe pain are more likely to not come to the phone leaving the
data missing for that particular day; again this would violate the MAR assump-
tion. From political science, roll-call votes, which measure legislatures ideological
positions, are subject to non-ignorable nonresponse because, unsurprisingly, politi-
cians behave strategically. In the MNAR case, the parameter of interest may not
even be identified (e.g., Robins et al. (1997)), let alone be consistently estimated.
To be more specific, let T ∈ {0, 1} denote the binary random variable indicating
the missing status of the outcome variable Y : Y is observed if T takes the value
one and Y is not observed if T takes the value zero. Let X denote a vector of
explanatory variables, let π(x, y) = P(T = 1|X = x, Y = y) denote the propen-
sity score function and let fY |X(y|x) denote the conditional density function of Y
given X. Robins et al. (1997) shows that if both the propensity score function and
the conditional density function are completely unknown, the joint distribution
of (T, Y ) given X is not point identifiable. In this case, a necessary identification
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condition is the parameterization of either the propensity score function or the
conditional density function. Molenberghs and Kenward (2007) proposes the pa-
rameterization of both the propensity score function and the conditional density
function as an identification strategy, while Sverchkov (2008) and Riddles et al.
(2016) parameterize the propensity score function and only a component of the
conditional density function: fY |X,T (y|x, T = 1).

If the joint distribution is not the parameter of interest, the identification strat-
egy above can be modified. For example, if the parameter of interest is the condi-
tional density of Y given X (i.e., fY |X(y|x)), parameterization of the propensity
score function is not needed. However, parameterization of fY |X(y|x) in this case
is not sufficient for identification due to missing data. Tang et al. (2003) suggests
parameterization of the marginal density fX(x) as well, while Zhao and Shao
(2015) imposes an exclusion retriction. In both studies, fY |X(y|x) is identified
and consistently estimated.

We consider estimation of the parameter θ0 = E[U(X, Y )], where U(·) is any
known function. We suppose that the propensity score π is parameterized but do
not restrict the conditional density function of the outcome variable. In earlier
work in this framework, either the coefficients in the propensity score function are
known or consistently estimated from an external sample (Kim and Yu (2011)) or
an exclusion restriction is imposed (Wang et al. (2014) and Shao and Wang (2016)).
Morikawa and Kim (2016) study the efficient estimation of θ0. They derive the
efficient score function (and hence the semiparametric efficiency bound) for θ0 in
this model. They propose to estimate the efficient score function by estimating
fY |X,T (y|,x, 1) by a working parametric model (MK1) or by kernel nonparametric
estimation (MK2). Their approach MK1 is not efficient unless the working para-
metric model is correct, although it is consistent. Their method MK2 suffers from
the curse of dimensionality (their smoothness conditions depend on the dimension-
ality of the covariates through their conditions C14) and the bandwidth selection
problem (about which they give no guidance).

We study the same estimation problem as in Morikawa and Kim (2016) but
propose a simpler yet equally efficient estimation procedure. Our proposed method
does not require explicit nonparametric estimation and hence does not suffer from
the curse of dimensionality. The proposed estimator is motivated by the key insight
that the model parameter satisfies a parametric conditional moment restriction,
of which the semiparametric efficiency bound is identical to the bound derived in
Morikawa and Kim (2016). The conditional moment restriction is then turned
into an expanding set of unconditional moment restrictions and the parameter of
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interest is estimated by applying the widely available and easy to compute GMM
estimation (see Hansen (1982)). Under some sufficient conditions, we establish
that the proposed estimator is consistent and asymptotically normally distributed
even if the set of unconditional moment restrictions does not expand, thereby
freeing us from the curse of dimensionality and the bandwidth selection problem;
when the set does expand, the proposed estimator attains the semiparametric ef-
ficiency bound. This is in contrast with the MK2 method of Morikawa and Kim
(2016), which is inconsistent if the bandwidth does not go to zero at a certain rate.

The paper is organized as follows. Section 2 describes the estimation, Section 3
derives the large sample properties of the estimator, Section 4 provides a consistent
asymptotic variance estimator, Section 5 suggests two data driven approaches to
determine the number of unconditional moment restrictions, Section 6 reports on
a small scale simulation study, followed by some concluding remarks in Section 7.
All technical proofs are relegated to the Appendix.

2 Basic Framework and Estimation

We begin by setting up the basic framework. DenoteZ = (X>, Y )>. The following
assumption shall be maintained throughout the paper:

Assumption 2.1. (i) Parameterization of data missing mechanism: P(T =
1|Y,X) = π(Y,X; γ0) = π(Z; γ0) holds for some known function π(.; .), where
γ0 ∈ Rp for some known p ∈ N is the true (unknown) value; (ii) exclusion restric-
tion: there exists some nonresponse instrument variables X1 in X = (X>1 ,X

>
2 )>

so that X2 is independent of T given both X1 and Y ; and (iii) the parameter of
interest is θ0 = E[U(Z)] for some known function U(·).

Under Assumption 2.1 and by applying the law of iterated expectations, we
obtain the following conditional moment restrictions:

E
[
1− T

π(Z; γ0)

∣∣∣∣X] = 0, (1)

E
[
θ0 −

T

π(Z; γ0)
U(Z)

]
= 0, (2)

which will form the basis for the proposed estimation. We notice that the param-
eters of interest in (1)-(2) are finite dimensional (and there is no explicit infinite
dimensional nuisance parameter) and can be easily estimated with GMM estima-
tion. We also notice that it is a special case of the model studied in Ai and Chen
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(2012). By applying their result (Remark 2.1, pp. 446), we obtain the semipara-
metric efficiency bound for model (1)-(2), which is identical to the bound derived
in Morikawa and Kim (2016), thereby suggesting a simple and efficient estimation.

The (nuisance) parameter γ0 is identified by (1) and the parameter of interest
θ0 is identified by (2). The following condition shall also be maintained throughout
the paper:

Assumption 2.2. The parameter space Γ is a compact subset of Rp. The true
value γ0 lies in the interior of Γ and is the only solution to (1). The parameter
space Θ is a compact subset of R and the true value θ0 lies in the interior of Θ.

To estimate model (1)-(2), we first turn it into a set of unconditional moment
restrictions. We work with a set of known basis functions: for each integer K ∈
N with K ≥ p , let

uK(X) = (u1K(X), . . . , uKK(X))>.

Discussion on the choice of uK(X) and its properties can be found in Section 8.2
in Appendix. Model (1)-(2) implies the unconditional moment restrictions:

E
[(

1− T

π(Z; γ0)

)
uK(X)

]
= 0, (3)

E
[
θ0 −

T

π(Z; γ0)
U(Z)

]
= 0. (4)

To avoid redundant moment restrictions, we require E
[
uK(X)uK(X)>

]
to be

nonsingular for every K. The following somewhat stronger identification condition
shall be maintained throughout the paper:

Assumption 2.2’. The parameter space Γ is a compact subset of Rp. The
true value γ0 lies in the interior of Γ and is the only solution to (3). The param-
eter space Θ is a compact subset of R and the true value θ0 lies in the interior of Θ.

We can estimate the parameter of interest by the GMM method. Let {Ti,Zi}Ni=1

denote an i.i.d. sample drawn from the joint distribution of (T,Z). Denote

GK(γ, θ) : =

(
N∑
i=1

[
1− Ti

π(Zi; γ)

]
uK(X i)

>,
N∑
i=1

[
θ − Ti

π(Zi; γ)
U(Zi)

])>

=
N∑
i=1

gK(Ti,Zi; γ, θ),
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where gK(T,Z; γ, θ) :=
([

1− T
π(Z;γ)

]
uK(X)>, θ − T

π(Z;γ)
U(Z)

)>
. The GMM es-

timator of γ0 and θ0 is defined as

(γ̌, θ̌) = arg min
γ∈Γ,θ∈Θ

GK(γ, θ)T ·W ·GK(γ, θ)

where W is a (K+1)×(K+1) symmetric weighting matrix. For every fixed K ≥ p,
Hansen (1982) shows that, under some regularity conditions, the estimator

(γ̌ − γ0, θ̌ − θ0) = Op(N
−1/2) (5)

is asymptotically normally distributed, but generally not the best unless the best
weighting matrix is used. The best weighting matrix is the inverse of

D(K+1)×(K+1) := E
[
gK(T,Z; γ0, θ0)gK(T,Z; γ0, θ0)>

]
.

The best estimator (within the class defined by the specific unconditional mo-
ments) is defined as

(γ, θ) = arg min
γ∈Γ,θ∈Θ

GK(γ, θ)T ·D−1
(K+1)×(K+1) ·GK(γ, θ).

Suppose that the propensity score function is differentiable with respect to γ.
Denote

B(K+1)×(p+1) = ∇γ,θE
[

1

N
GK(γ0, θ0)

]
=

 E
[
uK(X)∇γπ(Z;γ0)>

π(Z;γ0)

]
, 0K×1

E
[
U(Z)∇γπ(Z;γ0)>

π(Z;γ0)

]
, 1


and

V K =
{(
B(K+1)×(p+1)

)>
D−1

(K+1)×(K+1)

(
B(K+1)×(p+1)

)}−1

.

Hansen (1982) shows that, for every fixed K ≥ p,

V
−1/2
K

(√
N(γ − γ0)√
N(θ − θ0)

)
→ N

(
0, I(p+1)×(p+1)

)
in distribution. (6)

Since the best weighting matrix depends on the unknown parameter value, the
best estimator (γ, θ) is infeasible. Hansen (1982) suggests the following two-step
procedure:
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Step I. Compute the initial
√
N -consistent estimator

Ŵ 0 :=

(
1
N

∑N
i=1 uK(Xi)uK(Xi)

> 0K×1

0>K×1 1

)
,

(γ̌, θ̌) = arg min
(γ,θ)∈Γ×Θ

GK(γ, θ)T · Ŵ
−1

0 ·GK(γ, θ).

Step II. Compute the best weighting matrix and the best estimator

D̂(K+1)×(K+1) :=
1

N

N∑
i=1

gK(Ti,Zi; γ̌, θ̌)gK(Ti,Zi; γ̌, θ̌)
> ,

(γ̂, θ̂) = arg min
γ∈Γ,θ∈Θ

GK(γ, θ)T · D̂
−1

(K+1)×(K+1) ·GK(γ, θ).

Hansen (1982) establishes that, for every fixed K ≥ p,

V
−1/2
K

(√
N(γ̂ − γ0)√
N(θ̂ − θ0)

)
→ N

(
0, I(p+1)×(p+1)

)
in distribution. (7)

Moreover, denote

B̂(K+1)×(p+1) :=

 N−1
∑N

i=1 uK(X i)
∇γπ(Zi;γ̂)>

π(Zi;γ̂)
, 0K×1

N−1
∑N

i=1 U(Zi)
∇γπ(Zi;γ̂)>

π(Zi;γ̂)
, 1


and

V̂ K :=

{(
B̂(K+1)×(p+1)

)>
D̂
−1

(K+1)×(K+1)

(
B̂(K+1)×(p+1)

)}−1

.

Hansen (1982) proves that, for every fixed K ≥ p,

V̂ K → V K in probability. (8)

The best estimator (within the class defined by the specific unconditional mo-
ments) is generally not semiparametrically efficient. To obtain the efficient estima-
tor, we shall allow K to increase with the sample size at the rate o(N1/3) so that
{uK(X)} span the space of measureable functions (see also Geman and Hwang
(1982) and Newey (1997)). In the next two sections, we shall establish that results
in (5)-(8) still hold with expanding K = o(N1/3).
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The advantage of our proposed estimator over the existing estimators is evi-
dent. Our estimation problem is a parametric one, requiring no modeling of or
nonparametric estimation of fY |X,T (y|x, 1). In contrast, the estimators proposed
in Riddles et al. (2016) and Morikawa and Kim (2016) could be inconsistent if
fY |X,T (y|x, 1) is incorrectly specified or suffers from the curve of dimensionality
and bandwith selection problem of the nonparametric estimation of fY |X,T (y|x, 1).

3 Asymptotic Theory

In this section, we show that results in (5)- (7) still hold with expanding K, all
technical proof can be found in the supplemental material Ai et al. (2018). First,
we establish the convergence rate of the first step estimator (γ̌, θ̌).

Theorem 1. Under Assumptions 2.1-2.2 and Assumptions 1, 2, 4, 5, 7, and 8
listed in Appendix, with K = o(N1/3), the first step estimator satisfies

(γ̌ − γ0, θ̌ − θ0) = Op

(
N−1/2

)
.

Next, we establish the large sample properties of the infeasible best estimator
(γ, θ) without imposing the smoothness Assumptions 3 and 6 listed in Appendix.

Theorem 2. Under Assumptions 2.1-2.2 and Assumptions 1, 2, 4, 5, 7, and 8
listed in Appendix, with K = o(N1/3), the infeasible best estimator satisfies

V
−1/2
K

(√
N(γ − γ0)√
N(θ − θ0)

)
→ N

(
0, I(p+1)×(p+1)

)
in distribution.

If in addition the smoothness Assumptions 3 and 6 are satisfied, the next result
shows that V K → V eff in probability, where V eff is the semiparametric efficiency
bound of (γ0, θ0) derived in Morikawa and Kim (2016), see Lemma 1 in Section
8.3 of Appendix.

Theorem 3. Under Assumption 2.1-2.2 and Assumption 1-8 listed in Appendix,
with K = o(N1/3), we obtain

V K → V eff in probability.

By Theorem 1-3, the infeasible best estimator attains the semiparametric effi-
ciency bound. The next result establishes the equivalence between the best estima-
tor (γ̂, θ̂) and the infeasible best estimator (γ, θ), implying that the best estimator
also attains the semiparametric efficiency bound.

Theorem 4. Under Assumption 2.1-2.2 and Assumption 1-8 listed in Appendix,
with K = o(N1/3), we obtain(√

N(γ − γ̂)√
N(θ − θ̂)

)
= op(1).
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4 Variance Estimation

In order to conduct statistical inference, we need a consistent covariance estimator.
Notice that (5) implies that V̂ K is a consistent estimator of V K for every fixed
K ≥ p. We now show that this result still holds true with expanding K, thereby
providing a consistent covariance estimator.

Theorem 5. Under Assumption 2.1-2.2 and Assumption 1-8 listed in Appendix,
with K = o(N1/3), we obtain

V̂ K → V K in probability.

We notice that our covariance estimator is much simpler and more natural
than the one suggested in Morikawa and Kim (2016), which requires nonprametric
estimation of fY |X,T (y|x, 1) and tends to have poor performance in finite samples.
Our covariance estimator is the GMM covariance estimator and is easily computed
by existing statistical packages.

5 Selection of K

The large sample properties of the proposed estimator established in the previous
sections allow for a wide range of values for K, and theoretically the sensitivity of
the estimator to the choice of K is not so pronounced, it affects higher order terms
in a way that does not affect consistency and asymptotic normality. Neverthe-
less, there may be some higher order effect of the choice of K on perfomance. In
this section, we present two data-driven approaches to select K. Both approaches
strike a balance between bias and variance.

Covariate balancing approach. The first approach attempts to balance the
distribution of the covariates between the whole population and the non-missing
population through weighting. Notice that

E
[

T

π(Z; γ0)
I(Xj ≤ xj)

]
= E[I(Xj ≤ xj)] , j ∈ {1, ..., r} ,

where Xj is the jth component of X and I(Xj ≤ xj) is the indicator function. Ob-
viously the propensity score function π(Z; γ0) plays the role of balancing. Notice
that the estimator γ̂ depends on K. For a given K, we compute

F̂ j
N,K(xj) :=

1

N

N∑
i=1

Ti
π(X i; γ̂)

I(Xij ≤ xj), j ∈ {1, . . . , r}.
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We compute the empirical distributions of the covariates

F̃ j
N(xj) :=

1

N

N∑
i=1

I(Xij ≤ xj), j ∈ {1, . . . , r}.

We choose the lowest K so that the difference between {F̂ j
N,K}rj=1 and {F̂ j

N}rj=1 is

small. Denote the upper bound of K by K̄ (e.g. K̄ = 7 in our simulation studies).
We chooseK ∈ {1, ..., K̄} to minimize the aggregate Kolmogorov-Smirnov distance
between {F̂ j

N,K}rj=1 and {F̂ j
N}rj=1:

K̂ = arg min
K∈{1,...,K̄}

DN(K) =
r∑
j=1

sup
xj∈R

∣∣∣F̃ j
N(xj)− F̂ j

N,K(xj)
∣∣∣ .

Higher order MSE approach. The second approach chooses K to minimize
the mean-squared error of the estimator. Donald et al. (2009) derives the higher-
order asymptotic mean-square error (MSE) of a linear combination t>γ̂ for some
fixed t ∈ Rp.

Let γ̌ be some preliminary estimator. Define:

Π̂(K; t) =
N∑
i=1

ξ̂iiρ(Ti,X i, Yi; γ̌) · (t>Ω̂−1
p×pη̃i),

Φ̂(K; t) =
N∑
i=1

ξ̂ii

{
t>Ω̂−1

p×p

[
D̂∗i ρ(Ti,X i, Yi; γ̌)2 −∇γρ(Ti,X i, Yi; γ̌)

]}2

− t>Ω̂−1
p×p(Γ̂K×p)

>Υ̂−1
K×KΓ̂K×pΩ̂

−1
p×pt .

where ρ(Ti,X i, Yi; γ̌), Ω̂p×p, η̃i, ξ̂ii, D̂
∗
i , Γ̂K×p, and Υ̂K×K are defined in Section

8.2 of Appendix. Notice that Π̂(K; t)2/N is an estimate of the squared bias term
derived in Newey and Smith (2004) and Φ̂(K; t) is the asymptotic variance.

The second approach chooses K to minimize the following higher-order MSEs
of γ̂j, j = 1, . . . , p:

SGMM(K) =

p∑
j=1

{
1

N
Π̂(K; ej)

2 + Φ̂(K; ej)

}
, (9)

where ej is the jth column of the p-dimensional identity matrix. In practice, we set
the upper bound K̄ and then choose K ∈ {1, 2, . . . , K̄} to minimize the criteria
(9) .
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Table 1: Simulation results under Scenorio I
n = 200

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias 0.028 -0.125 0.039 0.055 0.120 0.106 -0.997 0.167 0.301
Stdev 0.254 0.413 0.129 0.229 0.272 0.118 0.197 0.266 0.101
MSE 0.065 0.186 0.018 0.055 0.088 0.025 1.033 0.099 0.101
CP — — 0.908 — — 0.908 — — 0.22

n = 500

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias 0.011 -0.067 0.016 0.048 0.058 0.063 -0.966 0.220 0.299
Stdev 0.161 0.282 0.090 0.151 0.193 0.077 0.126 0.160 0.063
MSE 0.026 0.084 0.008 0.025 0.040 0.010 0.949 0.074 0.093
CP — — 0.928 — — 0.892 — — 0.034

n = 1000

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias 0.005 -0.040 0.008 0.034 0.023 0.040 -0.962 0.235 0.298
Stdev 0.103 0.187 0.065 0.102 0.132 0.055 0.078 0.099 0.045
MSE 0.010 0.036 0.004 0.011 0.018 0.004 0.932 0.065 0.091
CP — — 0.934 — — 0.906 — — 0.012

Stdev: standard deviation ; MSE: mean squared error; CP: coverage probability. The bandwith used in

computing the nonparametric kernel estimators (α̂MK , β̂MK , θ̂MK) is h = 0.15.
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Table 2: Simulation results under Scenorio II
n = 200

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias -0.208 0.096 0.084 -0.552 0.588 0.173 -2.053 1.215 0.530
Stdev 0.646 0.555 0.201 0.372 0.245 0.125 0.809 0.148 0.205
MSE 0.462 0.318 0.047 0.443 0.406 0.045 4.873 1.498 0.323
CP — — 0.95 — — 0.784 — — 0.138

n = 500

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias -0.081 0.040 0.044 -0.313 0.392 0.122 -1.924 1.203 0.583
Stdev 0.406 0.363 0.131 0.261 0.186 0.085 0.175 0.064 0.132
MSE 0.171 0.134 0.019 0.166 0.188 0.022 3.732 1.451 0.357
CP — — 0.932 — — 0.764 — — 0.06

n = 1000

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias -0.036 0.019 0.019 -0.198 0.268 0.085 -1.900 1.201 0.590
Stdev 0.260 0.225 0.086 0.203 0.164 0.061 0.086 0.044 0.078
MSE 0.069 0.051 0.007 0.080 0.098 0.011 3.618 1.445 0.354
CP — — 0.932 — — 0.768 — — 0.018

Stdev: standard deviation ; MSE: mean squared error; CP: coverage probability. The bandwith used in

computing the nonparametric kernel estimators (α̂MK , β̂MK , θ̂MK) is h = 0.05.
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Table 3: Simulation results under Scenorio III
n = 200

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias 0.155 -0.171 0.003 0.047 0.015 0.071 -2.794 0.954 -1.146
Stdev 0.584 0.585 0.155 0.376 0.190 0.131 1.395 0.396 0.263
MSE 0.365 0.372 0.024 0.144 0.036 0.022 9.758 1.069 1.384
CP — — 0.934 — — 0.884 — — 0.032

n = 500

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias 0.034 -0.036 0.000 0.012 0.012 0.034 0.782 0.355 0.123
Stdev 0.305 0.224 0.103 0.250 0.128 0.085 0.433 0.113 0.101
MSE 0.094 0.051 0.010 0.062 0.016 0.008 0.799 0.139 0.025
CP — — 0.902 — — 0.894 — — 0.698

n = 1000

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias 0.009 -0.010 0.002 0.002 0.009 0.017 0.728 0.372 0.126
Stdev 0.215 0.157 0.069 0.167 0.083 0.056 0.302 0.078 0.067
MSE 0.046 0.024 0.004 0.028 0.007 0.003 0.621 0.144 0.020
CP — — 0.932 — — 0.934 — — 0.454

Stdev: standard deviation ; MSE: mean squared error; CP: coverage probability. The bandwith used in

computing the nonparametric kernel estimators (α̂MK , β̂MK , θ̂MK) is h = 0.1.
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Table 4: Simulation results under Scenorio IV
n = 200

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias 0.097 -0.114 0.005 -0.018 0.027 0.043 -1.002 1.003 0.136
Stdev 1.140 0.721 0.118 0.308 0.185 0.103 0.081 0.139 0.348
MSE 1.310 0.533 0.014 0.095 0.035 0.013 1.011 1.026 0.139
CP — — 0.914 — — 0.92 — — 0.998

n = 500

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias -0.001 -0.026 0.003 -0.042 0.041 0.022 -1.003 1.000 0.146
Stdev 0.203 0.139 0.071 0.172 0.100 0.067 0.048 0.088 0.199
MSE 0.041 0.020 0.005 0.031 0.011 0.005 1.010 1.009 0.061
CP — — 0.944 — — 0.946 — — 1.000

n = 1000

α̂ β̂ θ̂ α̂MK β̂MK θ̂MK α̃MAR β̃MAR θ̃MAR

Bias 0.010 -0.034 -0.001 -0.027 0.024 0.011 -1.000 0.997 0.134
Stdev 0.262 0.264 0.052 0.122 0.070 0.048 0.035 0.065 0.148
MSE 0.068 0.070 0.002 0.015 0.005 0.002 1.003 1.000 0.039
CP — — 0.936 — — 0.932 — — 1.000

Stdev: standard deviation ; MSE: mean squared error; CP: coverage probability. The bandwith used in

computing the nonparametric kernel estimators (α̂MK , β̂MK , θ̂MK) is h = 0.2.
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6 Simulations

After establishing the large sample properties of the proposed estimator, we now
evaluate its finite sample performance through a small scale simulation study. We
consider four scenarios. In all scenarios, the parameter of interest is θ0 = E[Y ] and
the sample size is set respectively at N = 200, 500 and 1000.

• Scenario I: X is generated from the normal distribution N(0, 1), and the
outcome Y is generated from the normal distribution with mean X + 1 and
unit variance, i.e. Y ∼ N(X + 1, 1). The relationship between the outcome
variable and the covariate is linear, and the distribution of outcome is normal.
The missing mechanism is modeled by

P(T = 1|Y,X) = [1 + exp(α0 + β0Y )]−1 ,

with the true value (α0, β0) = (0,−1.2). The true value of the parameter of
interest is θ0 = E[Y ] = 1.

• Scenario II: X is generated from the normal distribution N(0, 1), and the
outcome Y is generated from the normal distribution with mean X2 + 1
and unit variance, i.e. Y ∼ N(X2 + 1, 1). Thus the relationship between
the outcome variable and the covariate is nonlinear, and the distribution of
outcome is non-normal. The missing mechanism is modeled as

P(T = 1|Y,X) = [1 + exp(α0 + β0Y )]−1

with the true value (α0, β0) = (1.25,−1.2). The true value of the parameter
of interest is θ0 = E[Y ] = 2.

• Scenario III. The design follows Qin et al. (2002). We generate the outcome
from

Y = 0.1X2 + ZX1/2/5 ,

where Z and X are independent, Z is standard normal random variable, and
X follows the χ2

(6)/2 distribution. The missing mechanism is modeled as

P(T = 1|Y,X) = [1 + exp(α0 + β0Y )]−1

with the true value (α0, β0) = (3,−1). The true value of the target parame-
ter is θ0 = E[Y ] = 1.2.
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• Scenario IV. The design is similar to that in Kang and Schafer (2007).
Z = (Z1, Z2) is generated from the standard bivariate normal distribution,
and Y is generated from the normal distribution with mean 2 +Z1 and unit
variance. The missing mechanism is modeled as

P(T = 1|Y,X1, X2) = [1 + exp(α0Z1 + β0Y )]−1

with (α0, β0) = (1,−1). The true value of the parameter of interest is θ0 =
E[Y ] = 2. Instead of directly observing covariates Z, we observe a non-linear
transformation of Z: X1 = exp(Z1/2) and X2 = Z2/(1 + exp(Z1)).

In all scenarios, we generate J = 500 random samples, and for each sample, we
compute the following three estimators:

1. Naive estimator. We compute the missing at random estimator (α̃MAR, β̃MAR, θ̃MAR)
as

θ̃MAR =
1

N

N∑
i=1

Ti

π(X i; α̃MAR, β̃MAR)
Yi ,

where π(X i; α̃MAR, β̃MAR) is an estimated response model. In Scenarios I,

II & III, π(X i; α̃MAR, β̃MAR) =
[
1 + exp(α̃MAR + β̃MARXi)

]−1

and in Sce-

nario IV π(X i; α̃MAR, β̃MAR) =
[
1 + exp(α̃MARZ1i + β̃MARX2i)

]−1

, where

(α̃MAR, β̃MAR) are estimated by GMM.

2. MK2 estimator. We compute (α̂MK , β̂MK , θ̂MK) using the approach of Morikawa
and Kim (2016), i.e. (α̂MK , β̂MK , θ̂MK) is the solution of

N∑
i=1

(
Ŝ1(Ti,Zi;α, β)>, Ŝ2(Ti,Zi;α, β, θ)

)>
= 0 ,

where

Ŝ1(T,Z;α, β) = −
(

1− T

π(Z;α, β)

)
E?
[
∇γπ(Z;α, β)

1− π(Z;α, β)

∣∣∣∣X] ,

Ŝ2(T,Z;α, β, θ) = − T

π(Z;α, β)
U(Z) + θ −

(
1− T

π(Z;α, β)

)
E? [U(Z)|X] ,

and for any function g(Z) the quantity E?[g(Z)|X] is defined by

E?[g(Z)|X = x] :=

∑N
j=1 TjKh(x−Xj)Tjπ(Zj;α, β)−1O(x, Yj;α, β)g(x, Yj)∑N

j=1Kh(x−Xj)Tjπ(Zj;α, β)−1O(x, Yj;α, β)
;

O(z;α, β) =
1− π(z;α, β)

π(z;α, β)
,
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Kh(x−w) = K ((x−w/h)), K(·) is Gaussian kernel function and h is the
bandwidth.

3. Our GMM estimator. We compute (α̂, β̂, θ̂) using the proposed approach
and the covariate balancing approach to select K, with K̄ = 7 in Scenarios
I, II, III, and with K̄ = 10 in Scenario IV. Here K̄ is the maximal number
of candidate moments to be considered.

The simulation results (the bias, the standard deviation (Stdev), the mean squared
error (MSE), and the coverage probability (CP) (for significance level α = 0.05)
of the point estimates) for all scenarios are reported in Tables 1, 2, 3, and 4
respectively. The histogram of selected K ′s (based on 500 Monte Carlo samples)
in all scenarios is reported in Figure 1. Glancing at these tables, we find:

1. In all scenarios, the naive estimator using the missing at random assumption
has a large bias, because this assumption does not hold.

2. In all scenarios, our proposed estimator of E[Y ] out-performs the MK esti-
mator.

3. In all scenarios, our proposed variance estimator has coverage probability
close to 95%, even the sample size is small. The MK’s variance estimator
performs well in Scenario IV, but badly in other scenarios: in Scenarios I,
the coverage probability using MK’s approach converges to 90% rather than
95%; in Scenarios II, the CP values are far from 95% in Scenario 2 no matter
the sample size is small or large; in Scenarios III, the MK’s variance estimaotr
is consistent only when the sample size is large.

4. When the sample size is small the optimal K tends to be 2. When the
sample size is large, the optimal K tends to be 3. The growing rate of K is
extremely slow comparing to that of the sample size n, which is consistent
with our theoretical Assumption 8.

These results clearly show that the proposed approach has better finite sample
performance.
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Figure 1: Histogram of K

The Monte Carlo sample size used to plot the histogram of K is J = 500.
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7 Discussion

The data missing not at random problem is common in applications. Morikawa
and Kim (2016) studies the efficient estimation of a class of missing not at random
problems. But their approach requires nonparametric estimation of the conditional
density function and thus suffers from the curse of dimensionality and smoothing
parameter selection problem. In this paper, we study the same class of missing not
at random problems but present a much simpler and more natural efficient estima-
tor. Our approach is based on a parametric moment restriction model that does
not require nonparametric estimation and hence does not suffer from the curse of
dimensionality problem nor the bandwidth selection problem. Indeed the simu-
lation results confirm that the proposed approach out-performs their approach in
finite samples. The GMM approach is also easy to adapt to stratified sampling
and other sampling schemes common in survey data.

Both approaches require correct parameterization of the propensity score func-
tion. If the propensity score function is misspecified, then both approaches yield
inconsistent estimates. There is some attempt in the literature to mitigate this
problem. For instance, Zhao and Shao (2015) introduce a partial linear index
to model missing mechanism. The proposed approach can be extended in this
direction. Such extension shall be pursued in a future study.

8 Appendix

8.1 Assumptions

We first introduce the smoothness classes of functions used in the nonparametric
estimation; see e.g. Stone (1982, 1994), Robinson (1988), Newey (1997), Horowitz
(2012) and Chen (2007). Suppose that X is the Cartesian product of r-compact
intervals. Let 0 < δ ≤ 1. A fucntion f on X is said to satisfy a Hölder condition
with exponent δ if there is a positive constant L usch that ‖f(x1) − f(x2)‖ ≤
L‖x1 − x2‖δ for all x1,x2 ∈ X . Given a r-tuple α = (α1, ..., αr) of nonnegative
integer, denote [α] = α1 + · · · + αr and let Dα denote the differential operator

defined by Dα = ∂[α]

∂x
α1
1 ···∂x

αr
r

, where x = (x1, ..., xr).

Definition 1. Let s be a nonnegative integer and s := s0 + δ. The function f on
X is said to be s-smooth if it is s times continuously differentiable on X and Dαf
satisfies a Hölder condition with exponent δ for all α with [α] = s0.
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The following notations are needed for presenting the efficiency bounds:

O(Z) :=
1− π(Z; γ0)

π(Z; γ0)
, S0(Z) := − ∇γπ(Z; γ0)

1− π(Z; γ0)
, (10)

m(X) :=
E[O(Z)S0(Z)|X]

E[O(Z)|X]
, R(X) :=

E[O(Z)U(Z)|X]

E[O(Z)|X]
, (11)

S1(T,Z; γ0) :=

(
1− T

π(Z; γ0)

)
m(X) , (12)

S2(T,Z; γ0, θ0) := − T

π(Z; γ0)
U(Z) + θ0 −

(
1− T

π(Z; γ0)

)
R(X) . (13)

The following assumptions are required in this paper:

Assumption 1. There exists a nonresponse instrumental variable X2, i.e., X =
(X

ᵀ

1,X
ᵀ

2)
ᵀ
, such that X2 is independent of T given X1 and Y ; furthermore, X2 is

correlated with Y .

Assumption 2. The support of X, which is denoted by X , is a Cartesian product
of r-compact intervals, and we denote X = (X1, ..., Xr)

>.

Assumption 3. The functions E[O(Z)S0(Z)|X = x], E[O(Z)U(Z)|X = x] and
E[O(Z)|X = x] are s-smooth in x, where s > 0.

Assumption 4. There exists two finite positive constants a and a such that the
smallest (resp. largest) eigenvalue of E[uK(X)u>K(X)] is bounded away from a
(resp. a) uniformly in K, i.e.,

0 < a ≤ λmin(E[uK(X)uK(X)>]) ≤ λmax(E[uK(X)uK(X)>]) ≤ a <∞ .

Remark: Asssumption 4 implies that following results:

1.

E[‖uK(X)‖2] = tr
(
E
[
uK(X)uK(X)>

])
= O(K) ; (14)

2. the matrices ā · IK×K −E[uK(X)uK(X)>] and E[uK(X)uK(X)>]−a · IK×K
are positive definite, and

a ≤ inf
k∈{1,...,K}

E[ukK(X)2] ≤ sup
k∈{1,...,K}

E[ukK(X)2] ≤ a . (15)

Assumption 5. The full data {(Ti,X i, Yi)}Ni=1 are independently and identically
distributed.
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Assumption 6. Seff (T,Z; γ, θ) := (S
ᵀ

1(T,Z; γ), S2(T,Z; γ, θ))
ᵀ

is continuously
differentiable at each (γ, θ) ∈ Γ×Θ with probability one, and E

[
∂Seff (γ, θ)/∂(γ>, θ)

]
is nonsingular at (γ0, θ0).

Assumption 7. The response probability π satisfies the following conditions:

1. there exists two positive constants c̄ and c such that 0 < c ≤ π(x, y; γ) ≤ c̄ <
1 for all γ ∈ Γ and (x, y) ∈ X × R;

2. the propensity score π(x, y; γ) is twice continuously differentiable in γ ∈ Γ,
and the derivatives are uniformly bounded.

3. for any γ ∈ Γ, the conditional functions E
[
1− T

π(Z;γ)
|X = x

]
and E

[
∇γπ(Z;γ)

π(Z;γ)

∣∣∣∣X = x

]
are s-smooth in x, where s > 0.

Assumption 8. Suppose K →∞ and K3/N → 0.

The Assumption 1 is used for the identification of the model, which was dis-
cussed in Wang et al. (2014). Assumptions 2 and 3 are required for uniform
boundedness of approximations. Assumption 4 is a standard assumption used in
nonparametric sieve approximation, see also Newey (1997). Assumption 5 is a
standard condition for statistical sampling. Assumptions 6-7 are required for the
convergence of our estimator as well as the boundness of the asymptotic variance.
Assumption 8 is the same as Assumption 2 in Newey and Powell (2003), it is re-
quired for controlling the stochastic order of the residual terms, which is desirable
in practice because K grows very slowly with N so a relatively small number of
moment conditions is sufficient for the method proposed to perform well.

8.2 Discussion on uK

To construct the GMM estimator, we need to specify the matching function
uK(X). Although the approximation theory is derived for general sequences of
approximating functions, the most common class of functions are power series.
Suppose the dimension of covariate X is r ∈ N, namely X = (X1, ..., Xr)

>.
Let λ = (λ1, . . . λr)

> be an r-dimensional vector of nonnegative integers (multi-
indices), with norm |λ| =

∑r
j=1 λj. Let (λ(k))∞k=1 be a sequence that includes all

distinct multi-indicesand satisfies |λ(k)| ≤ |λ(k+1)|, and let Xλ =
∏r

j=1X
λj
j . For

a sequence λ(k) we consider the series ukK(X) = Xλ(k), k ∈ {1, ..., K}. Newey
(1997) showed the following property for the power series: there exists a universal
constant C > 0 such that

ζ(K) := sup
x∈X
‖uK(x)‖ ≤ CK , (16)
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where ‖ · ‖ denotes the usual matrix norm ‖A‖ =
√

tr(A>A).

Another important issue is choosing the number of the matching function K
in finite sample experiment. Donald et al. (2009) proposed a strategy for an
appropriate choice of K by minimizing the higher order MSE defined in (9), and
the following notations are needed to describe this criteria:

ρ(Ti,X i, Yi; γ̌) = 1− Ti
π(X i, Yi; γ̌)

, Υ̂K×K =
1

N

N∑
i=1

ρ(Ti,X i, Yi; γ̌)2uK(X i)
⊗2,

Γ̂K×p =
1

N

N∑
i=1

uK(X i)∇γρ(Ti,X i, Yi; γ̌)>, Ω̂p×p = (Γ̂K×p)
>Υ̂−1

K×KΓ̂K×p,

d̃i = (Γ̂K×p)
>

(
1

N

N∑
j=1

uK(Xj)
⊗2

)−1

uK(X i), η̃i = ∇γρ(Ti,X i, Yi; γ̌)− d̃i,

ξ̂ij =
1

N
uK(X i)

>Υ̂−1
K×KuK(Xj), D̂∗i = (Γ̂K×p)

>Υ̂−1
K×KuK(X i) .

8.3 Semiparametric Efficiency Bounds

The following lemma is Theorem 1 in Morikawa and Kim (2016).

Lemma 1 (Morikawa and Kim (2016)). The efficient variance bounds of (γ0, θ0) is
V eff := E [Seff (T,Z; γ0, θ0)⊗2]

−1
, where Seff = (S>1 , S2)> and S1, S2 are defined

in (12) and (13) respectively.

Let V γ0 (resp. Vθ0) be the efficient variance bound of γ0 (resp. θ0). After some
simple computation, we can find out

V γ0 =E
[

1− π(Z; γ0)

π(Z; γ0)
m(X)⊗2

]−1

(17)

and

Vθ0 = V ar
(
S2(T,Z; γ0, θ0)− κᵀ

S1(T,Z; γ0)
)

. (18)

where

κ
ᵀ

:= E
[
∇γπ(Z; γ0)

ᵀ

π(Z; γ0)
{R(Z)− U(X)}

]
· E
[
m(X)

π(Z; γ0)
∇γπ(Z; γ0)

ᵀ

]−1

. (19)

22



References

Ai, C. and Chen, X. (2012). The semiparametric efficiency bound for models of
sequential moment restrictions containing unknown functions, Journal of Econo-
metrics 170(2): 442–457.

Ai, C., Linton, O. and Zhang, Z. (2018). Supplemental material for “a simple
and efficient estimation method for models with nonignorable missing data”,
Technical report .

Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and
causal inference models, Biometrics 61(4): 962–973.

Chen, X. (2007). Large sample sieve estimation of semi-nonparametric models,
Handbook of econometrics 6: 5549–5632.

Chen, X., Hong, H. and Tarozzi, A. (2008). Semiparametric efficiency in gmm
models with auxiliary data, Ann. Statist. 36(2): 808–843.

Donald, S. G., Imbens, G. W. and Newey, W. K. (2009). Choosing instrumental
variables in conditional moment restriction models, Journal of Econometrics
152(1): 28–36.

Geman, S. and Hwang, C.-R. (1982). Nonparametric maximum likelihood estima-
tion by the method of sieves, The Annals of Statistics pp. 401–414.

Hansen, L. P. (1982). Large sample properties of generalized method of moments
estimators, Econometrica: Journal of the Econometric Society pp. 1029–1054.

Heitjan, D. F. and Basu, S. (1996). Distinguishing missing at random and missing
completely at random, The American Statistician 50(3): 207–213.

Horowitz, J. L. (2012). Semiparametric methods in econometrics, Vol. 131,
Springer Science & Business Media.

Kang, J. and Schafer, J. (2007). Demystifying double robustness: a comparison of
alternative strategies for estimating a population mean from incomplete data,
Statistical science 22(4): 523–539.

Kim, J. K. and Yu, C. L. (2011). A semiparametric estimation of mean functionals
with nonignorable missing data, Journal of the American Statistical Association
106(493): 157–165.

23



Little, R. J. (1988). A test of missing completely at random for multivari-
ate data with missing values, Journal of the American Statistical Association
83(404): 1198–1202.

Little, R. J. and Rubin, D. B. (1989). The analysis of social science data with
missing values, Sociological Methods & Research 18(2-3): 292–326.

Little, R. J. and Rubin, D. B. (2014). Statistical analysis with missing data, John
Wiley & Sons.

Morikawa, K. and Kim, J. K. (2016). Semiparametric adaptive estimation with
nonignorable nonresponse data, arXiv preprint arXiv:1612.09207 .

Newey, W. K. (1997). Convergence rates and asymptotic normality for series
estimators, Journal of econometrics 79(1): 147–168.

Newey, W. K. and Powell, J. L. (2003). Instrumental variable estimation of non-
parametric models, Econometrica 71(5): 1565–1578.

Newey, W. K. and Smith, R. J. (2004). Higher order properties of gmm and
generalized empirical likelihood estimators, Econometrica 72(1): 219–255.

Qin, J., Leung, D. and Shao, J. (2002). Estimation with survey data under nonig-
norable nonresponse or informative sampling, Journal of the American Statisti-
cal Association 97(457): 193–200.

Qin, J. and Zhang, B. (2007). Empirical-likelihood-based inference in missing
response problems and its application in observational studies, J. R. Statist.
Soc. B (Statistical Methodology) 69(1): 101–122.

Riddles, M. K., Kim, J. K. and Im, J. (2016). A propensity-score-adjustment
method for nonignorable nonresponse, Journal of Survey Statistics and Method-
ology 4(2): 215–245.

Robins, J. M., Ritov, Y. et al. (1997). Toward a curse of dimensionality appropri-
ate(coda) asymptotic theory for semi-parametric models, Statistics in medicine
16(3): 285–319.

Robins, J. M. and Rotnitzky, A. (1995). Semiparametric efficiency in multivari-
ate regression models with missing data, Journal of the American Statistical
Association 90(429): 122–129.

Robins, J. M., Rotnitzky, A. and Zhao, L. P. (1995). Analysis of semiparametric
regression models for repeated outcomes in the presence of missing data, Journal
of the american statistical association 90(429): 106–121.

24



Robinson, P. M. (1988). Root-n-consistent semiparametric regression, Economet-
rica: Journal of the Econometric Society pp. 931–954.

Rotnitzky, A., Lei, Q., Sued, M. and Robins, J. M. (2012). Improved double-robust
estimation in missing data and causal inference models, Biometrika 99(2): 439–
456.

Rubin, D. B. (1976a). Comparing regressions when some predictor values are
missing, Technometrics 18(2): 201–205.

Rubin, D. B. (1976b). Inference and missing data, Biometrika 63(3): 581–592.

Shao, J. and Wang, L. (2016). Semiparametric inverse propensity weighting for
nonignorable missing data, Biometrika 103(1): 175–187.

Stone, C. J. (1982). Optimal global rates of convergence for nonparametric regres-
sion, The annals of statistics pp. 1040–1053.

Stone, C. J. (1994). The use of polynomial splines and their tensor products in
multivariate function estimation, The Annals of Statistics pp. 118–171.

Sverchkov, M. (2008). A new approach to estimation of response probabilities when
missing data are not missing at random, Proceedings of the Survey Research
Methods Section, pp. 867–874.

Tan, Z. (2010). Bounded, efficient and doubly robust estimation with inverse
weighting, Biometrika 97(3): 661–682.

Tang, G., Little, R. J. and Raghunathan, T. E. (2003). Analysis of multivariate
missing data with nonignorable nonresponse, Biometrika 90(4): 747–764.

Wang, S., Shao, J. and Kim, J. K. (2014). An instrumental variable approach for
identification and estimation with nonignorable nonresponse, Statistica Sinica
pp. 1097–1116.

Zhao, J. and Shao, J. (2015). Semiparametric pseudo-likelihoods in generalized lin-
ear models with nonignorable missing data, Journal of the American Statistical
Association 110(512): 1577–1590.

25



Supplemental Material for

“A Simple and Efficient Estimation Method for Models
with Nonignorable Missing Data ”

Chunrong Ai∗– University of Florida
Oliver Linton†– University of Cambridge

Zheng Zhang‡– Renmin University of China

∗Department of Economics, University of Florida. E-mail: tsinghua@ufl.edu
†Faculty of Economics, University of Cambridge. E-mail: obl20@cam.ac.uk
‡Institute of Statistics and Big Data, Renmin University of China. E-mail: zhengzhang@ruc.edu.cn

1



Contents

1 Assumptions 3

2 Some useful results 4

2.1 Matrix inversion formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Discussion on uK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Convergence rate of L2 approximation . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Proof of Theorem 1 7

4 Proof of Theorem 2 12

5 Proof of Theorem 3 15

6 Proof of Theorem 4 23

7 Proof of Theorem 5 24

2



1 Assumptions
The following notations are needed for our proof:

O(Z) :=
1− π(Z; γ0)

π(Z; γ0)
, S0(Z) := − ∇γπ(Z; γ0)

1− π(Z; γ0)
, (1)

m(X) :=
E[O(Z)S0(Z)|X]

E[O(Z)|X]
, R(X) :=

E[O(Z)U(Z)|X]

E[O(Z)|X]
, (2)

S1(T,Z; γ0) :=

(
1− T

π(Z; γ0)

)
m(X) , (3)

S2(T,Z; γ0, θ0) := − T

π(Z; γ0)
U(Z) + θ0 −

(
1− T

π(Z; γ0)

)
R(X) , (4)

κ
ᵀ

:= E
[
∇γπ(Z; γ0)

ᵀ

π(Z; γ0)
{R(Z)− U(X)}

]
· E
[
m(X)

π(Z; γ0)
∇γπ(Z; γ0)

ᵀ

]−1

, (5)

V γ0 = E
[

1− π(Z; γ0)

π(Z; γ0)
m(X)⊗2

]−1

(the efficient variance bound of γ0) , (6)

Vθ0 = V ar
(
S2(T,Z; γ0, θ0)− κᵀ

S1(T,Z; γ0)
)

(the efficient variance bound of θ0) . (7)

The following assumptions are required in this paper:

Assumption 1 There exists a nonresponse instrumental variable X2, i.e., X = (X
ᵀ

1,X
ᵀ

2)
ᵀ
, such

that X2 is independent of T given X1 and Y ; furthermore, X2 is correlated with Y .

Assumption 2 The support of X, which is denoted by X , is a Cartesian product of r-compact

intervals, and we denote X = (X1, ..., Xr)
>.

Assumption 3 The functions E[O(Z)S0(Z)|X = x], E[O(Z)U(Z)|X = x] and E[O(Z)|X = x]

are s-smooth in x, where s > 0.

Assumption 4 There exists two finite positive constants a and a such that the smallest (resp.

largest) eigenvalue of E[uK(X)u>K(X)] is bounded away from a (resp. a) uniformly in K, i.e.,

0 < a ≤ λmin(E[uK(X)uK(X)>]) ≤ λmax(E[uK(X)uK(X)>]) ≤ a <∞ .

Remark: Asssumption 4 implies that following results:

1.

E[‖uK(X)‖2] = tr
(
E
[
uK(X)uK(X)>

])
= O(K) ; (8)
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2. the matrices ā · IK×K − E[uK(X)uK(X)>] and E[uK(X)uK(X)>] − a · IK×K are positive

definite, and

a ≤ inf
k∈{1,...,K}

E[ukK(X)2] ≤ sup
k∈{1,...,K}

E[ukK(X)2] ≤ a . (9)

Assumption 5 The full data {(Ti,X i, Yi)}Ni=1 are independently and identically distributed.

Assumption 6 Seff (T,Z; γ, θ) := (S
ᵀ

1(T,Z; γ), S2(T,Z; γ, θ))
ᵀ

is continuously differentiable at

each (γ, θ) ∈ Γ×Θ with probability one, and E
[
∂Seff (γ, θ)/∂(γ>, θ)

]
is nonsingular at (γ0, θ0).

Assumption 7 The response probability π satisfies the following conditions:

1. there exists two positive constants c̄ and c such that 0 < c ≤ π(x, y; γ) ≤ c̄ < 1 for all γ ∈ Γ

and (x, y) ∈ X × R;

2. the propensity score π(x, y; γ) is twice continuously differentiable in γ ∈ Γ, and the deriva-

tives are uniformly bounded.

3. for any γ ∈ Γ, the conditional functions E
[
1− T

π(Z;γ)
|X = x

]
and E

[
∇γπ(Z;γ)

π(Z;γ)

∣∣∣∣X = x

]
are

s-smooth in x, where s > 0.

Assumption 8 Suppose K →∞ and K3/N → 0.

2 Some useful results
We present some results which will be used in the proof of Theorems 1 and 2.

2.1 Matrix inversion formula

• (General Formula) Let A, C, and C−1 + DA−1B be non-singular square matrices; then

(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1 . (10)

• (Matrix Inversion in Block form) Let a (m+ 1)× (m+ 1) matrix M be partitioned into a

block form

M =

[
A , b

b> , d

]
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where A is a m×m matrix, b is a m dimensional column vector, d is a constant. Then

M−1 =

A−1 + 1
k
A−1bb>A−1, − 1

k
A−1b

− 1
k
b>A−1, 1

k

 , (11)

where k = d− b>A−1b.

2.2 Discussion on uK
To construct the GMM estimator, we need to specify the matching function uK(X). Although

the approximation theory is derived for general sequences of approximating functions, the most

common class of functions are power series. Suppose the dimension of covariate X is r ∈ N,

namely X = (X1, ..., Xr)
>. Let λ = (λ1, . . . λr)

> be an r-dimensional vector of nonnegative

integers (multi-indices), with norm |λ| =
∑r

j=1 λj. Let (λ(k))∞k=1 be a sequence that includes all

distinct multi-indicesand satisfies |λ(k)| ≤ |λ(k + 1)|, and let Xλ =
∏r

j=1X
λj
j . For a sequence

λ(k) we consider the series ukK(X) = Xλ(k), k ∈ {1, ..., K}. Newey (1997) showed the following

property for the power series: there exists a universal constant C > 0 such that

ζ(K) := sup
x∈X
‖uK(x)‖ ≤ CK , (12)

where ‖ · ‖ denotes the usual matrix norm ‖A‖ =
√

tr(A>A).

2.3 Convergence rate of L2 approximation

Suppose f : Rr → R is the function we want to approximate. Let fK(X) be the L2-projection

of f(X) on the space linearly spanned by uK(X), i.e.

fK(X) = β>KuK(X) (13)

where

βK := E
[
uK(X)uK(X)>

]−1 E [uK(X)f(X)] .

In this section, we establish the L2-convergence rate of fK(X) to f(X), which will be used for

proving the theorems of our paper.

Lemma 2.1 Under Assumpitons 2 and 4, suppose the function f : Rr → R is s-smooth and fK

is defined by (13), then we have

E
[
|f(X)− fK(X)|2

]
= O

(
K−

2s
r

)
.
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Proof. Since f(x) is s-smooth and the support X is compact by Assumpiton 2, from Section

2.3.1 of Chen (2007), we know that there exists β∗ ∈ RK such that

sup
x∈X

∣∣f(x)− (β∗)>uK(x)
∣∣ = O(K−

s
r ) .

We first claim that

‖βK − β∗‖ = O(K−
s
r ) . (14)

With the claim (14), Cauchy-Schwarz inequality, and Assumption 4, we can obtain that

E
[
|f(X)− fK(X)|2

]
=

∫
X

{
(βK − β∗)>uK(x) +

[
(β∗)>uK(x)− f(x)

]}2
dFX(x)

≤2(βK − β∗)>
∫
X
uK(x)uK(x)>dFX(x)(βK − β∗) + 2

∫
X

[
(β∗)>uK(x)− f(x)

]2
dFX(x)

≤2‖βK − β∗‖2 · λmax

(
E
[
uK(X)uK(X)>

])
+ 2 sup

x∈X

∥∥f(x)− (β∗)>uK(x)
∥∥2

=2‖βK − β∗‖2 ·O(1) +O(K−
2s
r ) = O(K−

2s
r ) .

We now prove the claim (14). Note that

βK − β∗ =E
[
uK(X)uK(X)>

]−1 E
[
uK(X)f(X)>

]
− β∗

=E
[
uK(X)uK(X)>

]−1 E
[
uK(X)f(X)>

]
− E

[
uK(X)uK(X)>

]−1 E
[
uK(X)uK(X)>β∗

]
=E

[
uK(X)uK(X)>

]−1 E
[
uK(X)

{
f(X)− (β∗)>uK(X)

}]
.

Then

‖βK − β∗‖2

=tr

(
E
[
uK(X)uK(X)>

]−1
E
[
uK(X)

{
f(X)− (β∗)>uK(X)

}]⊗2
E
[
uK(X)uK(X)>

]−1
)

≤λmax

(
E
[
uK(X)uK(X)>

]−1
)
· tr
(
E
[
uK(X)uK(X)>

]− 1
2 E
[
uK(X)

{
f(X)− (β∗)>u(X)

}]⊗2
E
[
uK(X)uK(X)>

]− 1
2

)
=λmax

(
E
[
uK(X)uK(X)>

]−1
)
· E
[{
f(X)− (β∗)>uK(X)

}
uK(X)>

]
E
[
uK(X)uK(X)>

]−1
E
[
uK(X)

{
f(X)− (β∗)>u(X)

}]
=λmax

(
E
[
uK(X)uK(X)>

]−1
)
· E
[∣∣∣∣E [{f(X)− (β∗)>uK(X)

}
uK(X)>

]
E
[
uK(X)uK(X)>

]−1
uK(X)

∣∣∣∣2
]

≤λmax

(
E
[
uK(X)uK(X)>

]−1
)
E
[∣∣∣f(X)− (β∗)>uK(X)

∣∣∣2]
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≤λmax

(
E
[
uK(X)uK(X)>

]−1
)

sup
x∈X

∣∣∣f(x)− (β∗)>uK(x)
∣∣∣2 = O(K−

2s
r ) ,

where the first inequality follow from the fact that tr(AB) ≤ λmax(B)tr(A) for any symmetric

matrix B and positive semidefinite matrix A; the second inequality follows from the fact that

E
[{
f(X)− (β∗)>uK(X)

}
uK(X)>

]
E
[
uK(X)uK(X)>

]−1
uK(X) is the L2-projection of f(X)−

(β∗)>uK(X) on the space spanned by uK(X), which implies∥∥∥E [{f(X)− (β∗)>uK(X)
}
uK(X)>

]
E
[
uK(X)uK(X)>

]−1
uK(X)

∥∥∥
L2
≤
∥∥f(X)− (β∗)>uK(X)

∥∥
L2 .

This complete the proof of the lemma.

3 Proof of Theorem 1
Define the objective function:

Q̂N(γ, θ) :=

{
1

N

N∑
i=1

gK(Ti,Zi; γ, θ)

}>
Ŵ
−1

0

{
1

N

N∑
i=1

gK(Ti,Zi; γ, θ)

}
,

and

Q0(γ, θ) := E

[(
E
[
1− T

π(Z; γ)

∣∣∣∣X])2
]

+

{
E
[
θ − T

π(Z; γ)
U(Z)

]}2

.

By definition, (γ̌, θ̌) (resp. (γ0, θ0)) is a unique minimizer of Q̂N(γ, θ) (resp. Q0(γ, θ)).

We first show that ‖(γ̌, θ̌) − (γ0, θ0)‖ p−→ 0. Since Γ × Θ is compact by definition, in order

to prove the consistency, it is sufficient to show the following conditions hold:

(a) Q̂N(γ, θ) is continuous in (γ, θ);

(b) Q0(γ, θ) is continuous in (γ, θ);

(c) sup(γ,θ)∈Γ×Θ |Q̂N(γ, θ)−Q0(γ, θ)| p−→ 0.

Condition (a) is implied by Assumption 7.2. Condition (b) follows from Assumption 7, and

Dominated Convergence Theorem. Therefore, we are left to show that Condition (c) holds.

7



Note that

Q̂N(γ, θ)

=

{
1

N

N∑
i=1

(
1− Ti

π(Zi; γ)

)
uK(X i)

}> [
1

N

N∑
i=1

uK(X i)uK(X i)
>

]−1{
1

N

N∑
i=1

(
1− Ti

π(Zi; γ)

)
uK(X i)

}

+

{
1

N

N∑
i=1

(
θ0 −

Ti
π(Zi; γ)

U(Zi)

)}2

=
1

N

N∑
i=1

(
Ê
[
1− T

π(Z; γ)

∣∣∣∣X = X i

])2

+

{
1

N

N∑
i=1

(
θ0 −

Ti
π(Zi; γ)

U(Zi)

)}2

,

where

Ê
[
1− T

π(Z; γ)

∣∣∣∣X = x

]
:=

{
1

N

N∑
l=1

(
1− Tl

π(Z l; γ)

)
uK(X l)

}> [
1

N

N∑
l=1

uK(X l)uK(X l)
>

]−1

uK(x) .

Therefore, to show sup(γ,θ)∈Γ×Θ |Q̂N(γ, θ)−Q0(γ, θ)| p−→ 0, it is sufficient to show that

sup
γ∈Γ

∣∣∣∣∣ 1

N

N∑
i=1

(
Ê
[
1− T

π(Z; γ)

∣∣∣∣X = X i

])2

− E

[(
E
[
1− T

π(Z; γ)

∣∣∣∣X])2
]∣∣∣∣∣ p−→ 0 , (15)

sup
(γ,θ)∈Γ×Θ

∣∣∣∣∣∣
{

1

N

N∑
i=1

(
θ − Ti

π(Zi; γ)
U(Zi)

)}2

−
{
E
[
θ − T

π(Z; γ)
U(Z)

]}2

∣∣∣∣∣∣ p−→ 0 . (16)

Since Ê
[
1− T

π(Z;γ)

∣∣∣∣X] is the least square regression of 1 − T
π(Z;γ)

on the basis uK(X), and As-

sumptions 2.2, 7, 8 hold, then the claim (15) follows from Corollary 4.2 of Newey (1991) .

Next we consider to prove (16). From Corrollary 2.2 of Newey (1991), to prove (16) it suffices

to show the following conditions hold:

1. (Compactness) Γ×Θ is compact;

2. (Pointwise Convergence) for each fixed (γ, θ) ∈ Γ×Θ,

{
1

N

N∑
i=1

(
θ − Ti

π(Zi; γ)
U(Zi)

)}2

−
{
E
[
θ − T

π(Z; γ)
U(Z)

]}2
p−→ 0 .
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3. For all (γ, θ) ∈ Γ×Θ, the derivative of 1
N

∑N
i=1

(
θ − Ti

π(Zi;γ)
U(Zi)

)
w.r.t. (γ, θ) is of Op(1).

The above three conditions can be easily verified based on our proposed assumptions. Condition

1 simply follows from our Assumption 2.2. Condition 2 follows from the weak law of large number

theorem (WLLN). Condition 3 follows from Assumption 7 and Markov’s inequality. Therefore,

we can obtain our desired result (16). Combining (15) and (16), we complete the verification of

Condition (c). Finally, we can obtain the consistency result

‖(γ̌, θ̌)− (γ0, θ0)‖ p−→ 0 . (17)

Next, we establish the rate of convergence ‖(γ̌, θ̌) − (γ0, θ0)‖ = Op(N
−1/2). Using the

first order condition of optimization in Step I, we obtain that

GK(γ̌, θ̌)T · Ŵ
−1

0 · ∇γ,θGK(γ̌, θ̌) = 0 . (18)

An application of Taylor’s expansion yields

01×(p+1) =
1√
N
Gᵀ
K(γ0, θ0) · Ŵ

−1

0 ·
[

1

N
∇γ,θGK(γ0, θ0)

]
+
(√

N(γ̌ − γ0)ᵀ,
√
N(θ̌ − θ0)

)
·
[

1

N
∇γ,θGK(γ̃, θ̃)

]ᵀ
· Ŵ

−1

0 ·
[

1

N
∇γ,θGK(γ̃, θ̃)

]
+

[
1

N
GK(γ̃, θ̃)

]ᵀ
· Ŵ

−1

0 ·
[

1

N
∇2
γ,θGK(γ̃, θ̃)

](√
N(γ̌ − γ0)ᵀ,

√
N · (θ̌ − θ0)

)ᵀ
, (19)

where (γ̃, θ̃) lies on the line joining (γ̌, θ̌) and (γ0, θ0). Obviously, in order to show ‖(γ̌, θ̌) −
(γ0, θ0)‖ = Op(N

−1/2), it suffices to establish the following resutls:

1√
N
Gᵀ
K(γ0, θ0) · Ŵ

−1

0 ·
[

1

N
∇γ,θGK(γ0, θ0)

]
= Op(1) , (20){[

1

N
∇γ,θGK(γ̃, θ̃)

]ᵀ
· Ŵ

−1

0 ·
[

1

N
∇γ,θGK(γ̃, θ̃)

]}−1

= Op(1) , (21)[
1

N
GK(γ̃, θ̃)

]ᵀ
· Ŵ

−1

0 ·
[

1

N
∇2
γ,θGK(γ̃, θ̃)

]
= op(1) . (22)

We first prove (20). Using Chebyshev’s inequality, Inequality (12), and Assumption 8, we can
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obtain that ∥∥∥∥ 1

N
GK(γ0, θ0)

∥∥∥∥ = Op

(√
K

N

)
= op(1) , (23)

∥∥∥Ŵ 0 − E[Ŵ 0]
∥∥∥ = Op

(√
K3

N

)
= op(1) , (24)

∥∥∥∥ 1

N
∇γ,θGK(γ0, θ0)−B(K+1)×(p+1)

∥∥∥∥ = Op

(√
K

N

)
= op(1) , (25)

∥∥∥∥ 1

N
∇2
γ,θGK(γ0, θ0)− E

[
1

N
∇2
γ,θGK(γ0, θ0)

]∥∥∥∥ = Op

(√
K

N

)
= op(1) . (26)

Using (23) and (24), we can deduce that

1√
N
Gᵀ
K(γ0, θ0) · Ŵ

−1

0 ·
[

1

N
∇γ,θGK(γ0, θ0)

]
=

1√
N
Gᵀ
K(γ0, θ0) · E[Ŵ 0]−1 ·B(K+1)×(p+1) + op(1) .

Computing the variance of N−1/2Gᵀ
K(γ0, θ0) · E[Ŵ 0]−1 ·B(K+1)×(p+1) yields:∥∥∥∥V ar( 1√

N
Gᵀ
K(γ0, θ0) · E[Ŵ 0]−1 ·B(K+1)×(p+1)

)∥∥∥∥ (27)

=
∥∥∥B>(K+1)×(p+1)E[Ŵ 0]−1E

[
gK(T,Z; γ0, θ0)⊗2

]
E[Ŵ 0]−1B(K+1)×(p+1)

∥∥∥
=E

[∥∥∥B>(K+1)×(p+1)E[Ŵ 0]−1gK(T,Z; γ0, θ0)
∥∥∥2
]

=E
[∥∥∥∥E [∇γπ(Z; γ0)

π(Z; γ0)
uK(X)>

]
E
[
uK(X)⊗2

]−1
uK(X)

{
1− T

π(Z; γ0)

}
+ E

[
∇γπ(Z; γ)

π(Z; γ)

]{
θ0 −

T

π(Z; γ0)
U(Z)

}∥∥∥∥2]
+ E

[∣∣∣∣θ0 −
T

π(Z; γ0)
U(Z)

∣∣∣∣2
]
.

Note that E
[
∇γπ(Z;γ0)

π(Z;γ0)
uK(X)>

]
E [uK(X)⊗2]

−1
uK(X) is the L2-projection of E

[
∇γπ(Z;γ0)

π(Z;γ0)

∣∣∣∣X] on

the space spanned by uK(X), by Lemma 2 in Appendix 2, we can have∥∥∥∥V ar( 1√
N
Gᵀ
K(γ0, θ0) · E[Ŵ 0]−1 ·B(K+1)×(p+1)

)∥∥∥∥
=E
[∥∥∥∥E [∇γπ(Z; γ0)

π(Z; γ0)

∣∣∣∣X]{1− T

π(Z; γ0)

}
+ E

[
∇γπ(Z; γ)

π(Z; γ)

]{
θ0 −

T

π(Z; γ0)
U(Z)

}∥∥∥∥2]
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+ E

[∣∣∣∣θ0 −
T

π(Z; γ0)
U(Z)

∣∣∣∣2
]

= O(1) ,

which implies our claim (20) by Chebyshev’s inequality.

We next consider to prove (21). Note that

[
1

N
∇γ,θGK(γ, θ)

]ᵀ
· Ŵ

−1

0 ·
[

1

N
∇γ,θGK(γ, θ)

]
=

 M̂
(1)

p×p(γ), M̂
(2)

p×1(γ)(
M̂

(2)

p×1(γ)
)>

, 1

 ,

where

M̂
(1)

p×p(γ) :=
1

N

N∑
i=1

Ê
[

Ti
π(Zi; γ)2

∇γπ(Zi; γ)

∣∣∣∣X i

]⊗2

+

{
1

N

N∑
i=1

Ti
π(Zi; γ)2

U(Zi)∇γπ(Zi; γ)

}⊗2

,

M̂
(2)

p×1(γ) :=
1

N

N∑
i=1

Ti
π(Zi; γ)2

U(Zi)∇γπ(Zi; γ) ,

and

Ê
[

Ti
π(Zi; γ)2

∇γπ(Zi; γ)

∣∣∣∣X]
:=

{
1

N

N∑
i=1

Ti
π(Zi; γ)2

∇γπ(Zi; γ)uK(X i)

}[
1

N

N∑
i=1

uK(X i)uK(X i)
>

]−1

uK(X) .

Similar to (15) and(16), we can obtain that

sup
γ∈Γ

∣∣∣M̂ (1)

p×p(γ)−M (1)
p×p(γ)

∣∣∣ = op(1) , (28)

sup
γ∈Γ

∣∣∣M̂ (2)

p×1(γ)−M (2)
p×1(γ)

∣∣∣ = op(1) . (29)

where

M
(1)
p×p(γ) := E

[
E
[

T

π(Z; γ)2
∇γπ(Z; γ)

∣∣∣∣X]⊗2
]

+ E
[

T

π(Z; γ)2
U(Z)∇γπ(Z; γ)

]⊗2

,

M
(2)
p×1(γ) := E

[
T

π(Z; γ)2
U(Z)∇γπ(Z; γ)

]
.
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Combining (28), (29), and the fact that ‖γ̌ − γ0‖
p−→ 0, we can obtain that

[
1

N
∇γ,θGK(γ̃, θ̃)

]ᵀ
· Ŵ

−1

0 ·
[

1

N
∇γ,θGK(γ̃, θ̃)

]
p−→

 M
(1)
p×p(γ0), M

(2)
p×1(γ0)(

M
(2)
p×1(γ0)

)>
, 1

 , (30)

where the limiting matrix is finite and non-degenerate. Therefore, we can justify the claim (21).

The proof of (22) is analogous to that of (21). Finally, by combining (20), (21), (22), and

(19), we can conclude our desired result ‖(γ̌, θ̌)− (γ0, θ0)‖ = Op(N
−1/2).

4 Proof of Theorem 2
The consistency result ‖(γ̄, θ̄) − (γ0, θ0)‖ p−→ 0 holds by using a similar argument for showing

‖(γ̌, θ̌)− (γ0, θ0)‖ p−→ 0 in Theorem 1.

We next show asymptotic normality for the infeasible estimator (γ̄, θ̄). Using the first order

condition of optimization, we can obtain that

GK(γ̄, θ̄)T ·D−1
(K+1)×(K+1) · ∇γ,θGK(γ̄, θ̄) = 0 ,

then an application of Taylor’s theorem yields:

01×(p+1) =
1√
N
Gᵀ
K(γ0, θ0) ·D−1

(K+1)×(K+1) ·
[

1

N
∇γ,θGK(γ0, θ0)

]
+
(√

N(γ̄ − γ0)ᵀ,
√
N(θ̄ − θ0)

)
·
[

1

N
∇γ,θGK(γ∗, θ∗)

]ᵀ
·D−1

(K+1)×(K+1) ·
[

1

N
∇γ,θGK(γ∗, θ∗)

]
+

[
1

N
GK(γ∗, θ∗)

]ᵀ
·D−1

(K+1)×(K+1) ·
[

1

N
∇2
γ,θGK(γ∗, θ∗)

](√
N(γ̄ − γ0)ᵀ,

√
N · (θ̄ − θ0)

)ᵀ
.

(31)

where (γ∗, θ∗) lies on the line joining (γ̄, θ̄) and (γ0, θ0). Note that the expression (31) has the

same structure as (19), except for that the weighting matrix used in (31) is D−1
(K+1)×(K+1) while

the weighting matrix used in (19) is Ŵ
−1

0 . Using a similar argument to show (30) and (22), we

can obtain the following results:[
1

N
∇γ,θGK(γ∗, θ∗)

]ᵀ
·D−1

(K+1)×(K+1) ·
[

1

N
∇γ,θGK(γ∗, θ∗)

]

12



=(B(K+1)×(p+1))
ᵀ ·D−1

(K+1)×(K+1) ·B(K+1)×(p+1) + op(1) (32)

and [
1

N
GK(γ∗, θ∗)

]ᵀ
·D−1

(K+1)×(K+1) ·
[

1

N
∇2
γ,θGK(γ∗, θ∗)

]
= op(1) . (33)

Combining (25), (31), (32), and (33) together, we can deduce that √N(γ̄ − γ0)
√
N(θ̄ − θ0)

 =−
{

(B(K+1)×(p+1))
ᵀ ·D−1

(K+1)×(K+1) ·B(K+1)×(p+1)

}−1

· (B(K+1)×(p+1))
ᵀD−1

(K+1)×(K+1) ·
1√
N
GK(γ0, θ0) + op(1) .

Then

Cov

 √N(γ̄ − γ0)
√
N(θ̄ − θ0)

 =
(

(B(K+1)×(p+1))
ᵀ ·D−1

(K+1)×(K+1) ·B(K+1)×(p+1)

)−1

+ o(1) = V K + o(1) .

Therefore, we can obtain that

√
NV

−1/2
K

 γ̄ − γ0

θ̄ − θ0

 =−
{
Bᵀ

(K+1)×(p+1) ·D
−1
(K+1)×(K+1) ·B(K+1)×(p+1)

}−1/2

(34)

·Bᵀ
(K+1)×(p+1)D

−1
(K+1)×(K+1) ·

1√
N
GK(γ0, θ0) + op(1) .

We next show that the normalized estimator
√
NV

−1/2
K

(
γ̄ − γ0

θ̄ − θ0

)
behaves asymptotically nor-

mal. The key is to verify the Lindeberg type conditions in Eicker (1966). Note that 1√
N
GK(γ0, θ0)

can be written as the following matrix form:

1√
N
GK(γ0, θ0) =

 1√
N

∑N
i=1

[
1− Ti

π(Zi;γ0)

]
uK(X i)

1√
N

∑N
i=1

[
θ0 − Ti

π(Zi;γ0)
U(Zi)

]
 = A(K+1)×N(K+1) · EN(K+1)×1 ,

13



where

A(K+1)×N(K+1) :=



1√
N
11×N , 01×N , 01×N , · · ·01×N , 01×N

01×N , 1√
N
11×N , 01×N , · · ·01×N , 01×N

...
...

...
...

01×N , 01×N 01×N , 1√
N
11×N , 01×N

01×N , 01×N 01×N , · · ·01×N
1√
N
11×N


is a(K + 1)×N(K + 1)matrix ,

EN(K+1)×1 := (v1×N (1), . . . ,v1×N (K),w1×N )
>

,

v1×N (k) :=

([
1− T1

π(Z1; γ0)

]
ukK(X1), . . . ,

[
1− TN

π(ZN ; γ0)

]
ukK(XN )

)
, k ∈ {1, . . . ,K} ,

w1×N :=

(
θ0 −

T1
π(Z1; γ0)

U(Z1), · · · , θ0 −
TN

π(ZN ; γ0)
U(ZN )

)
and 11×N (resp. 01×N) is a N -dimensional row vector whose elements are all of 1’s (resp. 0’s).

From Eicker (1966), the following Lindeberg type conditions are sufficient to ensure
√
NV

−1/2
K (γ̄ − γ0,

θ̄ − θ0

)> d−→ N(0, I(p+1)×(p+1)), namely,

1. max
i∈{1,...,N(K+1)}

a>i
(
A(K+1)×N(K+1)A

>
(K+1)×N(K+1)

)−1
ai → 0, where ai is the ith column of

A(K+1)×N(K+1);

2. both sup
k∈{1,...,K}

E
[(

1− T
π(Z;γ0)

)2

ukK(X)2I
(∣∣∣(1− T

π(Z;γ0)

)
ukK(X)

∣∣∣ ≥ s
)]
→ 0 and

E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2

I

(∣∣∣∣θ0 −
T

π(Z; γ0)
U(Z)

∣∣∣∣ ≥ s

)]
→ 0

as s→∞;

3. both inf
k∈{1,...,K}

E
[(

1− T
π(Z;γ0)

)2

ukK(X)2

]
> 0 and E

[(
θ0 − T

π(Z;γ0)
U(Z)

)2
]
> 0 .

Conditions 1 is natually satisfied by the definition of A(K+1)×N(K+1). Condition 2 holds because

E

[(
1− T

π(Z; γ0)

)2

ukK(X)2I

(∣∣∣∣(1− T

π(Z; γ0)

)
ukK(X)

∣∣∣∣ ≥ s

)]

≤
(

1 +
1

c

)2

· E

[
ukK(X)2I

(
|ukK(X)| ≥ s

(
1 +

1

c

)−1
)]

s→∞−−−→ 0 ,

where c > 0 is lower bound of the propensity socre π(z; γ0) (Assumption 7), and the last conver-

gence holds from the fact sup
k∈{1,..,K}

E[u2
kK(X)] ≤ a (see (9)) and Dominated Convergence Theorem;

14



the second part in Condition 2 also follows from Assumption 7 and Dominated Convergence The-

orem. Condition 3 holds because

E

[(
1− T

π(Z; γ0)

)2

uK(X)⊗2

]
= E

[
1− π(Z)

π(Z)
uK(X)⊗2

]
≥ 1− c̄

c̄
E
[
uK(X)⊗2

]
≥ (1− c̄)a

c̄
· IK×K ,

which implies that inf
k∈{1,...,K}

E
[(

1− T
π(Z;γ0)

)2

ukK(X)2

]
> 0; the second part in Condition 3 is

obvious. Therefore, Conditions 1, 2, and 3 are all satisfied, and we can conclude our desired result

that
√
NV

−1/2
K

(
γ̄ − γ0, θ̄ − θ0

)> d−→ N
(
0, I(p+1)×(p+1)

)
.

5 Proof of Theorem 3

From Theorem 2 we know have that
√
NV

−1/2
K

(
γ̄ − γ0, θ̄ − θ0

)> d−→ N
(
0, I(p+1)×(p+1)

)
,

therefore to prove Theorem 3, it suffices to show V K converges to the efficient variance bound of

(γ0, θ0).

Since V K =
{
Bᵀ

(K+1)×(p+1) ·D
−1
(K+1)×(K+1) ·B(K+1)×(p+1)

}−1

, we first find the explicit expres-

sion of V K . Using the inverse matrix formula (11), we can have:

D−1
(K+1)×(K+1) =

 A−1
K×K + 1

c
A−1
K×KbKb

ᵀ

KA
−1
K×K , −1

c
A−1
K×KbK

−1
c
bTKA

−1
K×K , 1

c

 , (35)

where

AK×K := E
[

1− π(Z; γ0)

π(Z; γ0)
uK(X)⊗2

]
, bK := E

[
1− π(Z; γ0)

π(Z; γ0)
U(Z)uK(X)

]
, (36)

c := E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]
− bTKA−1

K×KbK . (37)

Then we have

Bᵀ
(K+1)×(p+1) ·D

−1
(K+1)×(K+1) ·B(K+1)×(p+1) =

Ãp×p, b̃p

b̃
ᵀ
p

1
c

 ,
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where

Ãp×p := E
[
∇γπ(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · E
[
uK(X)

∇γπ(Z; γ0)T

π(Z; γ0)

]
+ c · b̃pb̃

T

p , (38)

b̃p := −1

c
E
[
∇γπ(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · bK +
1

c
E
[
∇γπ(Z; γ0)

π(Z; γ0)
U(Z)

]
. (39)

Using the matrix inversion formula (11) again, we can obtain that

V K =
(
Bᵀ

(K+1)×(p+1) ·D
−1
(K+1)×(K+1) ·B(K+1)×(p+1)

)−1

=

Ã
−1

p×p + 1
c̃
Ã
−1

p×pb̃pb̃
T

p Ã
−1

p×p, −1
c̃
Ã
−1

p×pb̃p

−1
c̃
b̃
T

p Ã
−1

p×p
1
c̃

 ,

where

c̃ :=
1

c
− b̃Tp Ã

−1

p×pb̃p .

Then we can obtain that

V ar(
√
N(γ̄ − γ0)) = Ã

−1

p×p +
1

c̃
Ã
−1

p×pb̃pb̃
T

p Ã
−1

p×p + o(1), (40)

V ar(
√
N(θ̄ − θ0)) =

1

c̃
+ o(1) . (41)

In order to establish our Theorem 3, it suffices to show that (40) and (41) converge to Vγ0 and

Vθ0 respectively. The proof is constituted of two parts:

Proof of Part (I)

We first show that (40) converges to Vγ0 as N goes to infinity. Note that

V ar(
√
N(γ̄ − γ0)) = Ã

−1

p×p +
1

c̃
Ã
−1

p×pb̃pb̃
T

p Ã
−1

p×p + o(1)

=
[
Ãp×p − c · b̃pb̃

T

p

]−1

+ o(1)

=

{
E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · E
[
uK(X)

∇π(Z; γ0)T

π(Z; γ0)

]}−1

+ o(1) (using (38)) ,

(42)
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where the second equality can be straightforwardly verified as follows:(
Ã
−1

p×p +
1

c̃
Ã
−1

p×pb̃pb̃
T

p Ã
−1

p×p

)
·
(
Ãp×p − c · b̃pb̃

T

p

)
=Ip×p − c · Ã

−1

p×pb̃pb̃
T

p +
1

c̃
Ã
−1

p×pb̃pb̃
T

p −
c

c̃
Ã
−1

p×pb̃pb̃
T

p Ã
−1

p×pb̃pb̃
T

p

=Ip×p −
1

c̃
·
[
c̃c · Ã−1

p×pb̃pb̃
T

p + c · Ã−1

p×pb̃pb̃
T

p · b̃
T

p Ã
−1

p×pb̃p

]
+

1

c̃
Ã
−1

p×pb̃pb̃
T

p

=Ip×p −
1

c̃
·
[
Ã
−1

p×pb̃pb̃
T

p

]
+

1

c̃
Ã
−1

p×pb̃pb̃
T

p

(
since cc̃ = 1− c · b̃Tp Ã

−1

p×pb̃p

)
=Ip×p .

Therefore,

V ar(
√
N(γ̄ − γ0)) =

{
E
[
∇γπ(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · E
[
uK(X)

∇γπ(Z; γ0)T

π(Z; γ0)

]}−1

=E [fK(Z)fK(Z)ᵀ]−1 + o(1) , (43)

where

fK(Z) :=− E
[
∇γπ(Z; γ0)

π(Z; γ0)
uK(X)T

]
· E
[

1− π(Z; γ0)

π(Z; γ0)
uK(X)⊗2

]−1

uK(X) ·
(

1− T

π(Z; γ0)

)
.

Recalling the definitions of S0(Z; γ0) and O(Z) in (1), we can obtain that

fK(Z) =E
[
S0(Z; γ0)O(Z)uK(X)T

]
· E
[
O(Z)uK(X)⊗2

]−1
uK(X)

(
1− T

π(Z; γ0)

)
=

{
E

[
E[S0(Z; γ0)O(Z)|X]√

E[O(Z)|X]

√
E[O(Z)|X]uK(X)T

]
· E
[(√

E[O(Z)|X]uK(X)
)⊗2
]−1

·
√

E[O(Z)|X]uK(X)

}
1√

E[O(Z)|X]

(
1− T

π(Z; γ0)

)
=hK(X)

1√
E[O(Z)|X]

(
1− T

π(Z; γ0)

)
,

where

hK(X) :=E

[
E[S0(Z; γ0)O(Z)|X]√

E[O(Z)|X]

√
E[O(Z)|X]uK(X)T

]
· E
[(√

E[O(Z)|X]uK(X)
)⊗2]−1

·
√

E[O(Z)|X]uK(X) .

Note that hK(X) is the least square projection of E[S0(Z;γ0)O(Z)|X]√
E[O(Z)|X]

on the space linearly spanned
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by {
√

E[O(Z)|X]uK(X)}, by Assumption 3 and Lemma 2 in Appendix 2, we can have

E

[∥∥∥∥hK(X)− E[S0(Z; γ0)O(Z)|X]√
E[O(Z)|X]

∥∥∥∥2
]

= O
(
K−

2s
r

)
= o(1) . (44)

Therefore, we can have that

E
[
fK(Z)fK(Z)>

]
=E

[
hK(X)hK(X)>

1

E[O(Z)|X]

(
1− T

π(Z; γ0)

)2
]

=E
[
hK(X)hK(X)>

]
→E

[
E[S0(Z; γ0)O(Z)|X] · E[S0(Z; γ0)O(Z)|X]>

E[O(Z)|X]

]
=E

[
m(X)m(X)>

(
1− T

π(Z; γ0)

)2
]
,

and then in light of (43) we can obtain that

V ar(
√
N(γ̄ − γ0))→ E

[(
1− T

π(Z; γ0)

)2

·m(X)⊗2

]−1

.

Therefore,
√
N(γ̄ − γ0) attains the efficiency variance bound (6).

Proof of Part (II)

Next, we show that (41) converges to Vθ0 as N goes to infinity. Applying the matrix

inverse formula (10) to (41), we have

V ar(
√
N(θ̄ − θ0)) =

[
1

c
− b̃Tp Ã

−1

p×pb̃p

]−1

+ o(1)

=c− c · b̃Tp ·
(
−Ãp×p + c · b̃pb̃

T

p

)−1

b̃p · c+ o(1) (using the matrix inverse formula (10))

=c+

(
E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · bK − E
[
∇π(Z; γ0)

π(Z; γ0)
U(Z)

])T
+ o(1)

·
{
E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · E
[
uK(X)

∇π(Z; γ0)T

π(Z; γ0)

]}−1

+ o(1)

·
(
E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · bK − E
[
∇π(Z; γ0)

π(Z; γ0)
U(Z)

])
+ o(1) , (45)
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where the last equality follows from the definitions of Ãp×p and b̃p in (38) and (39), namely,

Ãp×p − c · b̃pb̃
T

p = E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · E
[
uK(X)

∇π(Z; γ0)T

π(Z; γ0)

]
,

b̃p · c = −E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · bK + E
[
∇π(Z; γ0)

π(Z; γ0)
U(Z)

]
.

In the following we show that

c = E

[(
θ0 −

T

π(Z)
U(Z)

)2
]
− E

[{(
1− T

π(Z; γ0)

)
R(X)

}2
]

+ o(1) ; (46)

E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · bK − E
[
∇π(Z; γ0)

π(Z; γ0)
U(Z)

]
= E

[
∇π(Z; γ0)

π(Z; γ0)
(R(X)− U(Z))

]
+ o(1) ;

(47){
E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · E
[
uK(X)

∇π(Z; γ0)T

π(Z; γ0)

]}−1

= Vγ0 + o(1) . (48)

where c is defined in (37).

For the term (46): Note that

c =E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]

− E
[
O(Z)U(Z)uK(X)T

]
· E
[
O(Z)uK(X)⊗2

]−1 · E [O(Z)U(Z)uK(X)] (by definition (37))

=E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]

− E

[{
E
[
O(Z)U(Z)uK(X)T

]
· E
[
O(Z)uK(X)⊗2

]−1 · uK(X)

(
1− T

π(Z; γ0)

)}2
]

=E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]

− E
[{

E
[
E [O(Z)U(Z)|X] · uK(X)T

]
· E
[
E[O(Z)|X] · uK(X)⊗2

]−1 · uK(X)

(
1− T

π(Z; γ0)

)}2]
=E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]

− E
[{

E

[
E [O(Z)U(Z)|X]√

E[O(Z)|X]
·
√

E[O(Z)|X]uK(X)T

]
· E
[
E[O(Z)|X] · uK(X)⊗2

]−1
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×
√

E[O(Z)|X]uK(X) · 1√
E[O(Z)|X]

(
1− T

π(Z; γ0)

)}2]
.

Considering the last term in above expression, we note that

E

[
E [O(Z)U(Z)|X]√

E[O(Z)|X]
·
√

E[O(Z)|X]uK(X)T

]
· E
[
E[O(Z)|X] · uK(X)⊗2

]−1 ·
√
E[O(Z)|X]uK(X)

is the L2-projection of E[O(Z)U(Z)|X]√
E[O(Z)|X]

on the space linearly spanned by {
√
E[O(Z)|X]uK(X)}, by

Assumption 3 and Lemma 2 in Appendix 2, we can have

E

[∣∣∣∣∣E
[
E [O(Z)U(Z)|X]√

E[O(Z)|X]
·
√

E[O(Z)|X]uK(X)T

]
· E
[
E[O(Z)|X] · uK(X)⊗2

]−1√E[O(Z)|X]uK(X)

− E [O(Z)U(Z)|X]√
E[O(Z)|X]

∣∣∣∣∣
2]

= O(K−
2s
r ) = o(1) . (49)

Then we can have that

c→E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]
− E

{E [O(Z)U(Z)|X]√
E[O(Z)|X]

· 1√
E[O(Z)|X]

(
1− T

π(Z; γ0)

)}2


=E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]
− E

[{(
1− T

π(Z; γ0)

)
R(X)

}2
]
,

which is (46).

For the term (47). Next, we consider the term

E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · bK − E
[
∇π(Z; γ0)

π(Z; γ0)
U(Z)

]
.

Using (49), we can have

E
[
∇γπ(Z; γ0)

π(Z; γ0)
uK(X)>

]
·A−1

K×K · bK

=E
[
O(Z)U(Z)uK(X)>

]
· E
[
O(Z)uK(X)⊗2

]−1 · E
[
uK(X)

∇γπ(Z; γ0)

π(Z; γ0)

]
=E

[
R(X)

∇γπ(Z; γ0)

π(Z; γ0)

]
+ o(1) (using (49)) .
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Therefore, we can obtain that

E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · bK − E
[
∇π(Z; γ0)

π(Z; γ0)
U(Z)

]
→ E

[
∇π(Z; γ0)

π(Z; γ0)
(R(X)− U(Z))

]
,

which justifies our claim (47).

For the term (48). From Theorem 1 in Morikawa and Kim (2016), the efficient influence function

of γ0 is

ψeff (T,Z; γ0) = E
[
S1(T,Z; γ0)⊗2

]−1 · S1(T,Z; γ0) = −E
[
∂

∂γ
S1(T,Z; γ0)

]−1

· S1(T,Z; γ0) ,

thus the efficient variance bound of γ0 is

V γ0 =V ar(ψeff (T,Z; γ0))

=E
[

1− π(Z; γ0)

π(Z; γ0)
m(X)⊗2

]−1

(50)

=E
[
m(X)

π(Z; γ0)
∇γπ(Z; γ0)

ᵀ
]−1

E
[

1− π(Z; γ0)

π(Z; γ0)
m(X)⊗2

]{
E
[
m(X)

π(Z; γ0)
∇γπ(Z; γ0)

ᵀ
]−1
}ᵀ

. (51)

Using (42), the fact that V ar(
√
N(γ̃ − γ0))→ V γ0 , and (51), we can obtain that

L.H.S. of (48) =

{
E
[
∇π(Z; γ0)

π(Z; γ0)
uK(X)T

]
·A−1

K×K · E
[
uK(X)

∇π(Z; γ0)T

π(Z; γ0)

]}−1

=V ar(
√
N(γ̃ − γ0))

→V γ0 = E
[
m(X)

π(Z; γ0)
∇γπ(Z; γ0)ᵀ

]−1

E
[
S1(T,Z; γ0)⊗2

](
E
[
m(X)

π(Z; γ0)
∇γπ(Z; γ0)ᵀ

]−1
)ᵀ

,

which justifies our claim (48).

Combining (45), (46), (47), (48) and the definition of κ in (5), we can obtain that

V ar(
√
N(θ̄ − θ0))

→E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]
− E

[{(
1− T

π(Z; γ0)

)
R(X)

}2
]

+ κᵀE[S1(T,Z; γ0)⊗2]κ .

(52)
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To complete the proof, we remain to show

(52) = V ar(S2(T,Z; γ0, θ0)− κTS1(T,Z; γ0)) ,

which can be easily verified in the rest of the proof. Note that

V ar
(
S2(T,Z; γ0, θ0)− κTS1(T,Z; γ0)

)
=E

[
S2(T,Z; γ0, θ0)2

]
− 2κTE [S1(T,Z; γ0)S2(T,Z; γ0, θ0)] + κTE

[
S1(T,Z; γ0)⊗2

]
κ .

Note that

E
[
S2(T,Z; γ0, θ0)2

]
=E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]
− 2 · E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)(
1− T

π(Z; γ0)

)
R(X)

]

+ E

[(
1− T

π(Z; γ0)

)2

R(X)2

]

=E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]

+ 2 · E
[

T

π(Z; γ0)
U(Z)

(
1− T

π(Z; γ0)

)
R(X)

]
+ E

[
1− π(Z; γ0)

π(Z; γ0)
R(X)2

]
=E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]
− 2 · E

[
U(Z)

(
1− π(Z; γ0)

π(Z; γ0)

)
R(X)

]
+ E

[
1− π(Z; γ0)

π(Z; γ0)
R(X)2

]

=E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]
− 2 · E

[(
1− π(Z; γ0)

π(Z; γ0)

)
R(X)2

]
+ E

[
1− π(Z; γ0)

π(Z; γ0)
R(X)2

]

=E

[(
θ0 −

T

π(Z; γ0)
U(Z)

)2
]
− E

[(
1− π(Z; γ0)

π(Z; γ0)

)
R(X)2

]

and

E [S1(T,Z; γ0)S2(T,Z; γ0, θ0)]

=− E
[(

1− T

π(Z; γ0)

)
m(X) · T

π(Z; γ0)
U(Z)

]
− E

[(
1− T

π(Z; γ0)

)2

m(X)R(X)

]

=E
[

1− π(Z; γ0)

π(Z; γ0)
m(X) · U(Z)

]
− E

[
1− π(Z; γ0)

π(Z; γ0)
m(X) ·R(X)

]
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=E
[

1− π(Z; γ0)

π(Z; γ0)
m(X) · U(Z)

]
− E

[
E
[

1− π(Z; γ0)

π(Z; γ0)

∣∣∣∣X]m(X) ·R(X)

]
=E

[
1− π(Z; γ0)

π(Z; γ0)
m(X) · U(Z)

]
− E [m(X) · E[O(Z)U(Z)|X]]

=E
[

1− π(Z; γ0)

π(Z; γ0)
m(X) · U(Z)

]
− E

[
1− π(Z; γ0)

π(Z; γ0)
m(X) · U(Z)

]
=0 .

Thus, we can conclude (52) = V ar(S2(T,Z; γ0, θ0)− κTS1(T,Z; γ0)). The proof is completed.

6 Proof of Theorem 4
From the equation (31), in order to prove ‖

√
N(γ̂ − γ̄, θ̂ − θ̄)‖ p−→ 0, it is sufficient to show

D̂(K+1)×(K+1)
p−→D(K+1)×(K+1) . (53)

Note that

D̂(K+1)×(K+1) :=

 N−1
∑N

i=1
1−π(Zi;γ̌)
π(Zi;γ̌)

uK(X i)
⊗2, N−1

∑N
i=1

1−π(Zi;γ̌)
π(Zi;γ̌)

uK(X i)U(Zi)

N−1
∑N

i=1
1−π(Zi;γ̌)
π(Zi;γ̌)

uK(X i)
ᵀ
U(Zi), N−1

∑N
i=1

(
θ̌ − T

π(Zi;γ̌)
U(Zi)

)2


and

D(K+1)×(K+1) :=


E
[

1−π(Z;γ0)
π(Z;γ0)

uK(X)⊗2
]

, E
[

1−π(Z;γ0)
π(Z;γ0)

uK(X)U(Z)
]

E
[

1−π(Z;γ0)
π(Z;γ0)

uK(X)
ᵀ
U(Z)

]
, E

[(
θ0 − T

π(Z;γ0)
U(Z)

)2
]


For simplicity, we show that the upper left block of D̂(K+1)×(K+1) converges in probability to that

of D(K+1)×(K+1), namely∥∥∥∥∥ 1

N

N∑
i=1

1− π(Zi; γ̌)

π(Zi; γ̌)
uK(X i)

⊗2 − E
[

1− π(Z; γ0)

π(Z; γ0)
uK(X)⊗2

]∥∥∥∥∥ p−→ 0 , (54)

and similar argument can be applied to the other three blocks are also of convergence.
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Using Taylor’s expansion, we can obtain that

1

N

N∑
i=1

1− π(Zi; γ̌)

π(Zi; γ̌)
uK(X i)

⊗2 − E
[

1− π(Z; γ0)

π(Z; γ0)
uK(X)⊗2

]

=
1

N

N∑
i=1

1− π(Zi; γ0)

π(Zi; γ0)
uK(X i)

⊗2 − E
[

1− π(Z; γ0)

π(Z; γ0)
uK(X)⊗2

]
(55)

− (γ̌ − γ0)> · 1

N

N∑
i=1

∇γπ(Zi; γ
∗)

π(Zi; γ∗)2
uK(X i)

⊗2 , (56)

where γ∗ lies on the line joining γ0 and γ̌. By computing the second moments of (55), and using

Chebyshev’s inequality and Assumption 8, we can claim that the term (55) is of op(1).

Consider the term (56). From Assumption 7, we know that the funciton∇γπ(Z; γ) is uniformly

bounded and the propensity score π(Z; γ) are uniformly bounded away from zero, thus we can

find a finte constant C > 0 such that

|(56)| ≤ ‖γ̌ − γ0‖ · C ·

∥∥∥∥∥ 1

N

N∑
i=1

uK(X i)
⊗2

∥∥∥∥∥ .

Using Chebyshev’s inequality, Inequality (12), and Assumption 8, we can deduce that∥∥∥∥∥ 1

N

N∑
i=1

uK(X i)
⊗2 − E

[
uK(X)⊗2

]∥∥∥∥∥ = Op

(√
K3

N

)
= op(1) .

We also note that ‖E [uK(X)⊗2] ‖ ≤ λmax (E [uK(X)⊗2]) · ‖IK×K‖ = O(
√
K). Therefore, in light

of Theorem 1 and Assumption 8 we can deduce that

|(56)| ≤ Op(N
−1/2) · C ·O(

√
K) = op(1) .

Since the terms (55) and (56) are all of op(1), we can justify (54).

7 Proof of Theorem 5
Note that

V̂ K =
{
B̂
>
(K+1)×(p+1)D̂

−1

(K+1)×(K+1)B̂(K+1)×(p+1)

}−1

,

V K =
{
B>(K+1)×(p+1)D

−1
(K+1)×(K+1)B(K+1)×(p+1)

}−1

,
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and V K
p−→ V eff . From (53), we know that D̂(K+1)×(K+1)

p−→ D(K+1)×(K+1). Therefore, to prove

the consistency result V̂ K
p−→ V eff , it suffices to show B̂(K+1)×(p+1)

p−→ B(K+1)×(p+1).

We show that the upper left block of B̂(K+1)×(p+1) converges in probability to that ofB(K+1)×(p+1),

namely,

1

N

N∑
i=1

uK(X i)
∇γπ(Zi; γ̂)>

π(Zi; γ̂)2

P−→ E
[
uK(X)

∇γπ(Z; γ0)>

π(Z; γ0)

]
, (57)

and similar arguments can be applied to show that the other three blocks are also of convergence.

Using Taylor’s expansion, we can have

1

N

N∑
i=1

uK(X i)
∇γπ(Zi; γ̂)>

π(Zi; γ̂)

=
1

N

N∑
i=1

uK(X i)
∇γπ(Zi; γ0)>

π(Zi; γ0)
(58)

− 1

N

N∑
i=1

uK(X i)
∇γπ(Zi; γ

∗∗)>

π(Zi; γ∗∗)2
∇γπ(Zi; γ

∗∗)>(γ̂ − γ0) (59)

+
1

N

N∑
i=1

uK(X i)
1

π(Zi; γ∗∗)
· ∇2

γπ(Zi; γ
∗∗)(γ̂ − γ0)· , (60)

where γ∗∗ lies on the line joining γ̂ and γ0. Consider the term (58), we have

E

∥∥∥∥∥ 1

N

N∑
i=1

uK(X i)
∇γπ(Zi; γ0)>

π(Zi; γ0)
− E

[
uK(X)

∇γπ(Z; γ0)>

π(Z; γ0)

]∥∥∥∥∥
2


≤ 1

N2

N∑
i=1

E

[∥∥∥∥uK(X i)
∇γπ(Zi; γ0)>

π(Zi; γ0)

∥∥∥∥2
]

≤ 1

N
E
[
‖∇γπ(Z; γ0)‖2

π(Z; γ0)2
· ‖uK(X)‖2

]
≤ O(1) · 1

N
E
[
‖uK(X)‖2

]
= O(K/N) = o(1) ,

where the second equality holds because ‖∇γπ(Z;γ0)‖2
π(Z;γ0)

is uniformly bounded, while the last equality

holds because of Assumption 8. Then in light of Markov’s inequality, we can have∥∥∥∥∥ 1

N

N∑
i=1

uK(X i)
∇γπ(Zi; γ0)>

π(Zi; γ0)
− E

[
uK(X)

∇γπ(Z; γ0)>

π(Z; γ0)

]∥∥∥∥∥ = op(1) .
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For the terms (59) and (60), by using a similar argument of showing (56) = op(1), we can obtain

that both (59) and (60) are of op(1). Therefore, we can justify the validity of (57). Finally, we

can claim our consistency result V̂ K
p−→ V eff .
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