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Abstract

This paper applies a novel bootstrap method, the kernel block bootstrap, to
quasi-maximum likelihood estimation of dynamic models with stationary strong
mixing data. The method �rst kernel weights the components comprising the
quasi-log likelihood function in an appropriate way and then samples the resultant
transformed components using the standard \m out of n" bootstrap. We investigate
the �rst order asymptotic properties of the kernel block bootstrap method for
quasi-maximum likelihood demonstrating, in particular, its consistency and the
�rst-order asymptotic validity of the bootstrap approximation to the distribution
of the quasi-maximum likelihood estimator. A set of simulation experiments for
the mean regression model illustrates the e�cacy of the kernel block bootstrap for
quasi-maximum likelihood estimation.
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1 Introduction

This paper applies the kernel block bootstrap (KBB), proposed in Parente and Smith

(2019), PS henceforth, to quasi-maximum likelihood estimation with stationary and

weakly dependent data. The basic idea underpinning KBB arises from earlier papers,

see, e.g., Kitamura and Stutzer (1997) and Smith (1997, 2011), which recognise that

a suitable kernel function-based weighted transformation of the observational sample

with weakly dependent data preserves the large sample e�ciency for randomly sampled

data of (generalised) empirical likelihood, (G)EL, methods. In particular, the mean of

and, moreover, the standard random sample variance formula applied to the transformed

sample are respectively consistent for the population mean [Smith (2011, Lemma A.1,

p.1217)] and a heteroskedastic and autocorrelation (HAC) consistent and automatically

positive semide�nite estimator for the variance of the standardized mean of the original

sample [Smith (2005, Section 2, pp.161-165, and 2011, Lemma A.3, p.1219)].

In a similar spirit, KBB applies the standard \m out of n" nonparametric bootstrap,

originally proposed in Bickel and Freedman (1981), to the transformed kernel-weighted

data. PS demonstrate, under appropriate conditions, the large sample validity of the

KBB estimator of the distribution of the sample mean [PS Theorem 3.1] and the higher

order asymptotic bias and variance of the KBB variance estimator [PS Theorem 3.2].

Moreover, [PS Corollaries 3.1 and 3.2], the KBB variance estimator possesses a favourable

higher order bias property, a property noted elsewhere for consistent variance estimators

using tapered data [Brillinger (1981, p.151)], and, for a particular choice of kernel function

weighting and choice of bandwidth, is optimal being asymptotically close to one based

on the optimal quadratic spectral kernel [Andrews (1991, p.821)] or Bartlett-Priestley-

Epanechnikov kernel [Priestley (1962, 1981, pp. 567-571), Epanechnikov (1969) and Sacks

and Ylvisacker (1981)]. Here, though, rather than being applied to the original data as

in PS, the KBB kernel function weighting is applied to the individual observational

components of the quasi-log likelihood criterion function itself. The asymptotic validity

of the KBB bootstrap follows from an adaptation of the general results on resampling

methods for extremum estimators given in Gon�calves and White (2004).

Myriad variants for dependent data of the bootstrap method proposed in the land-

mark article Efron (1979) also make use of the standard \m out of n" nonparametric
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bootstrap, but, in contrast to KBB, applied to \blocks" of the original data. See, inter

alia, the moving blocks bootstrap (MBB) [K�unsch (1989), Liu and Singh (1992)], the

circular block bootstrap [Politis and Romano (1992a)], the stationary bootstrap [Politis

and Romano (1994)], the external bootstrap form-dependent data [Shi and Shao (1988)],

the frequency domain bootstrap [Hurvich and Zeger (1987), see also Hidalgo (2003)], and

its generalization the transformation-based bootstrap [Lahiri (2003)], and the autoregres-

sive sieve bootstrap [B�uhlmann (1997)]; for further details on these methods, see, e.g.,

the monographs Shao and Tu (1995) and Lahiri (2003). Whereas the block length of

these other methods is typically a declining fraction of sample size, the implicit KBB

block length is dictated by the support of the kernel function and, thus, with unbounded

support as in the optimal case, would be the sample size itself.

When the object of inference is the stochastic process mean, the KBB method bears

comparison with the tapered block bootstrap (TBB) of Paparoditis and Politis (2001).

Indeed, in this case, KBB may be regarded as a generalisation and extension of TBB. TBB

is also based on a reweighted sample of the observations but with weight function with

bounded support and, so, whereas each KBB data point is in general a transformation

of all original sample data, those of TBB use a �xed block size and, implicitly thereby,

a �xed number of data points. More generally then, the TBB weight function class is a

special case of that of KBB but is more restrictive; a detailed comparison of KBB and

TBB is provided in PS Section 4.1. TBB is extended in Paparoditis and Politis (2002)

to approximately linear statistics but di�ers from the KBB method introduced here for

quasi-maximum likelihood estimation.

The paper is organized as follows. After outlining some preliminaries Section 2 in-

troduces KBB and reviews the results in PS. Section 3 demonstrates how KBB can be

applied in the quasi-maximum likelihood framework and, in particular, details the con-

sistency of the KBB estimator and its asymptotic validity for quasi-maximum likelihood.

Section 4 reports a Monte Carlo study on the performance of KBB for the mean regression

model. Finally section 5 concludes. Proofs of the results in the main text are provided

in Appendix B with intermediate results required for their proofs given in Appendix A.

2 Kernel Block Bootstrap

To introduce the kernel block bootstrap (KBB) method, consider a sample of T ob-

servations, z1; :::; zT , on the strictly stationary real valued dz-dimensional vector se-

quence fzt; t 2 Zg with unknown mean � = E[zt] and autocovariance sequence R(s) =
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E[(zt��)(zt+s��)0], (s = 0;�1; :::). Under suitable conditions, see Ibragimov and Linnik
(1971, Theorem 18.5.3, pp. 346, 347), the limiting distribution of the sample mean �z =PT

t=1 zt=T is described by T
1=2 (�z � �) d! N(0;�1), where �1 = limT!1 var[T

1=2�z] =P1
s=�1R(s).

Let kj =
R1
�1 k(x)

jdx with sample counterpart k̂j =
PT�1

s=1�T k(s=ST )
j=ST , (j = 1; 2),

where k(�) denotes a suitable kernel function. The KBB approximation to the distribution
of the sample mean �z randomly samples the kernel-weighted centred observations

ztT =
1

(k̂2ST )1=2

t�1X
r=t�T

k(
r

ST
)(zt�r � �z); (t = 1; :::; T ); (2.1)

where ST is a bandwidth parameter.

Remark 2.1. The de�nition of ztT (2.1) rescales that in Kitamura and Stutzer (1997)

and Smith (1997, 2011) by (ST=k̂2)
1=2 with k2 replaced without loss by k̂2, see PS Corol-

lary K.2, p.31.

Let �zT = T
�1PT

t=1 ztT denote the sample mean of ztT , (t = 1; :::; T ). Under appro-

priate conditions, �zT
p! 0 and �

�1=2
1 (T=ST )

1=2�zT
d! N(0; Idz); see, e.g., Smith (2011,

Lemmas A.1 and A.2, pp.1217-19). Moreover, the KBB variance estimator, de�ned in

standard random sampling outer product form,

�̂kbb = T
�1

TX
t=1

(ztT � �zT )(ztT � �zT )0
p! �1; (2.2)

and is thus an automatically positive semide�nite heteroskedastic and autocorrelation

consistent (HAC) variance estimator; see Smith (2011, Lemma A.3, p.1219).

KBB applies the standard \m out of n" non-parametric bootstrap method to the

index set TT = f1; :::; Tg; see Bickel and Freedman (1981). That is, the indices t�s and,
thereby, zt�s , (s = 1; :::;mT ), are a random sample of size mT drawn from, respectively,

TT and fztTgTt=1, where mT = [T=ST ], the integer part of T=ST .

Remark 2.2. The KBB sample mean �z�mT
=
PmT

s=1 zt�sT=mT may be regarded as

that from a random sample of size mT taken from the blocks Bt = fkf(t� r)=STg(zr �
�z)=(k̂2ST )

1=2gTr=1, (t = 1; :::; T ). See PS Remark 2.2, p.3. Note that the blocks fBtgTt=1 are
overlapping and, if the kernel function k(�) has unbounded support, the block length is T .
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Let P�! denote the bootstrap probability measure conditional on fztTgTt=1 (or, equiv-
alently, the observational data fztgTt=1) with E� and var� the corresponding conditional
expectation and variance respectively. Under suitable regularity conditions, see PS As-

sumptions 3.1-3.3, pp.3-4, the bootstrap distribution of the scaled and centred KBB

sample mean m
1=2
T (�z�mT

� �zT ) converges uniformly to that of T 1=2(�z � �), i.e.,

sup
x2R

���P�!fm1=2
T (�z�mT

� �zT )=k1 � xg � PfT 1=2(�z � �) � xg
���! 0, prob-P ;

(2.3)

see PS Theorem 3.1, p.5.

Given the stricter additional requirement PS Assumption 3.4, p.5, PS Theorem 3.2,

p.6, provides higher order results on moments of the KBB variance estimator �̂kbb (2.2).

Let k�(q) = limy!0 f1� k�(y)g = jyjq, where the induced self-convolution kernel k�(y) =R1
�1 k(x� y)k(x)dx=k2. De�ne

MSE(T=ST ; �̂kbb;WT ) = (T=ST )E[vec(�̂kbb � JT )0WTvec(�̂kbb � JT )]

where WT is a positive semi-de�nite weight matrix and JT =
XT�1

s=1�T
(1 � jsj =T )R(s).

Let Kpp denote the p
2 � p2 commutation matrix

Pp
i=1

Pp
j=1 eie

0
j 
 eje0i, where ei is the

ith elementary vector, (i = 1; :::; p), (Magnus and Neudecker, 1979, De�nition 3.1, p.383).

Bias. E[�̂kbb] = JT + S
�2
T (�k� + o(1)) + UT , where �k� = �k�(2)

X1

s=�1
jsj2R(s) and

UT = O((ST=T )
b�1=2) + o(1=S2T ) + O(S

b�2
T =T b) + O(ST=T ) + O((ST=T )

3=2�") with

b > 1 and " 2 (0; 1=2);

Variance. if S5T=T ! 
 2 (0;1), then (T=ST )var[�̂kbb] = �k� + o(1), where �k� =

(Ipp +Kpp)(�1 
 �1)
R1
�1 k

�(y)2dy;

Mean squared error. if S5T=T ! 
 2 (0;1), then MSE(T=ST ; �̂kbb;WT ) =

tr(W (Ipp +Kpp)(�1 
 �1))
R1
�1 k

�(y)2dy + vec(�k�)
0Wvec(�k�)=
 + o(1).

Remark 2.3. The bias and variance results are similar to Parzen (1957, Theorems 5A

and 5B, pp.339-340) and Andrews (1991, Proposition 1, p.825), when the Parzen expo-

nent q equals 2. The KBB bias, cf. the tapered block bootstrap (TBB), is O(1=S2T ),

an improvement on O(1=ST ) for the moving block bootstrap (MBB). The expression

MSE(T=ST ; �̂kbb;WT ) is identical to that for the mean squared error of the Parzen (1957)

[4]



estimator based on the induced self-convolution kernel k�(y).

Optimality results for the estimation of �1 are an immediate consequence of PS

Theorem 3.2, p.6, and the theoretical results of Andrews (1991) for the Parzen (1957)

estimator. Consider the kernel function

k(x) = (
5�

8
)1=2

1

x
J1(
6�x

5
) if x 6= 0 and (5�

8
)1=2

3�

5
if x = 0; (2.4)

here Jv(z) =
P1

k=0(�1)k (z=2)
2k+v = f�(k + 1)�(k + 2)g, a Bessel function of the �rst

kind (Gradshteyn and Ryzhik, 1980, 8.402, p.951) with �(�) the gamma function. Smith
(2011, Example 2.3, p.1204) shows that the quadratic spectral (QS) kernel k�QS(y) is the

induced self-convolution kernel k�(y) associated with the kernel k(x) (2.4), where the QS

kernel

k�QS(y) =
3

(ay)2

�
sin ay

ay
� cos ay

�
; a = 6�=5; (2.5)

Remark 2.4. The QS kernel k�QS(y) (2.5) is well-known to possess optimality proper-

ties, e.g., for the estimation of spectral densities (Priestley, 1962; 1981, pp. 567-571) and

probability densities (Epanechnikov, 1969, Sacks and Ylvisacker, 1981).

PS Corollary 3.1, p.7, establishes an optimality result for the KBB variance estimator

�̂kbb(ST ) (2.2) computed with the kernel function (2.4) which is denoted as ~�kbb(ST ). For

sensible comparisons, the requisite bandwidth parameter is STk� = ST=
R1
�1 k

�(y)2dy, see

Andrews (1991, (4.1), p.829), if the respective asymptotic variances scaled by T=ST are

to coincide; see Andrews (1991, p.829). Then, for any bandwidth sequence ST such that

ST !1 and S5T=T ! 
 2 (0;1), limT!1MSE(T=ST ; �̂kbb;WT )�MSE(T=ST ; ~�kbb;WT ) �
0 with strict inequality if k�(y) 6= k�QS(y) with positive Lebesgue measure; see PS Corol-
lary 3.1, p.7.

The bandwidth S�T = [4vec(�k�)
0Wvec(�k�)= tr(W (Ipp+Kpp)(�1
�1))

R1
�1 k

�(y)2dy]1=5T 1=5

is also optimal in the following sense. For any bandwidth sequence ST such that ST !1
and S5T=T ! 
 2 (0;1), limT!1MSE(T

4=5; �̂kbb(ST );WT )�MSE(T 4=5; �̂kbb(S�T );WT ) �
0 with strict inequality unless ST = S

�
T + o(1=T

1=5); see PS Corollary 3.2, p.7.

3 Quasi-Maximum Likelihood

This section applies the KBB method brie
y outlined above to parameter estimation in

the quasi-maximum likelihood (QML) setting. In particular, under the regularity con-

ditions detailed below, KBB may be used to construct hypothesis tests and con�dence
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intervals. The proofs of the results basically rely on verifying a number of the conditions

required for several general lemmas established in Gon�calves and White (2004) on resam-

pling methods for extremum estimators. Indeed, although the focus of Gon�calves and

White (2004) is MBB, the results therein also apply to other block bootstrap schemes

such as KBB.

To describe the set-up, let the dz-vectors zt, (t = 1; :::; T ), denote a realisation from the

stationary and strong mixing stochastic process fztg1t=1. The d�-vector � of parameters
is of interest where � 2 � with the compact parameter space � � Rd� . Consider the

log-density Lt(�) = log f(zt; �) and its expectation L(�) = E[Lt(�)]. The true value �0 of
� is de�ned by

�0 = argmax
�2�

L(�)

with, analogously, the QML estimator �̂ of �0

�̂ = argmax
�2�

�L(�);

where the sample mean �L(�) =
PT

t=1 Lt(�)=T .
The KBB method for QML makes use of the kernel smoothed log density function

LtT (�) =
1

(k̂2ST )1=2

Xt�1

r=t�T
k(
r

ST
)Lt�r(�); (t = 1; :::; T );

cf. (2.1). As in Section 2, the indices t�s and the consequent bootstrap sample Lt�sT (�),
(s = 1; :::;mT ), denote random samples of sizemT drawn with replacement from the index

set TT = f1; :::; Tg and the bootstrap sample space fLtT (�)gTt=1, where mT = [T=ST ] is

the integer part of T=ST . The bootstrap QML estimator �̂
� is then de�ned by

�̂� = argmax
�2�

�L�mT
(�)

where the bootstrap sample mean �L�mT
(�) =

PmT

s=1 Lt�sT (�)=mT .

Remark 3.1. Note that, because E[@Lt(�0)=@�] = 0, it is unnecessary to centre Lt(�),
(t = 1; :::; T ), at �L(�); cf. (2.1).

The following conditions are imposed to establish the consistency of the bootstrap

estimator �̂� for �0. Let ft(�) = f(zt; �), (t = 1; 2; :::).

Assumption 3.1 (a) (
;F ;P) is a complete probability space; (b) the �nite dz-dimensional
stochastic process zt: 
 7�! Rdz , (t = 1; 2; :::), is stationary and strong mixing with mix-

ing numbers of size �v=(v � 1) for some v > 1 and is measurable for all t, (t = 1; 2; :::).
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Assumption 3.2 (a) f : Rdz � � 7�! R+ is F-measurable for each � 2 �, � a com-

pact subset of Rd� ; (b) ft(�): � 7�! R+ is continuous on � a:s:-P; (c) �0 2 � is the

unique maximizer of E[log ft(�)], E[sup�2� jlog ft(�)j
�] <1 for some � > v; (d) log ft(�)

is global Lipschitz continuous on �, i.e., for all �; �0 2 �, jlog ft(�)� log ft(�0)j �
Lt k� � �0k a:s:-P and supT E[

PT
t=1 Lt=T ] <1;

Let I(x � 0) denote the indicator function, i.e., I(A) = 1 if A true and 0 otherwise.

Assumption 3.3 (a) ST !1 and ST = o(T
1
2 ); (b) k(�): R 7�![�kmax; kmax], kmax <

1, k(0) 6= 0, k1 6= 0, and is continuous at 0 and almost everywhere; (c)
R1
�1
�k(x)dx <1

where �k(x) = I(x � 0) supy�x jk(y)j + I(x < 0) supy�x jk(y)j; (d) jK(�)j � 0 for all

� 2 R, where K(�) = (2�)�1
Z
k(x) exp(�ix�)dx.

Theorem 3.1. Let Assumptions 3.1-3.3 hold. Then, if T 1=�=mT ! 0, (a) �̂��0 ! 0,

prob-P ; (b) �̂� � �̂ ! 0, prob-P�, prob-P .

To prove consistency of the KBB distribution requires a strengthening of the above

assumptions.

Assumption 3.4 (a) (
;F ;P) is a complete probability space; (b) the �nite dz-dimensional
stochastic process zt: 
 7�! Rdz , (t = 1; 2; :::), is stationary and strong mixing with mix-

ing numbers of size �3v=(v� 1) for some v > 1 and is measurable for all t, (t = 1; 2; :::).

Assumption 3.5 (a) f : Rdz�� 7�! R+ is F-measurable for each � 2 �, � a compact
subset of Rd� ; (b) ft(�): � 7�! R+ is continuously di�erentiable of order 2 on � a:s:-P ,

(t = 1; 2; :::); (c) �0 2 int(�) is the unique maximizer of E[log ft(�)].

De�ne A(�) = E[@2Lt(�)=@�@�0] and B(�) = limT!1 var[T
1=2@ �L(�)=@�].

Assumption 3.6 (a) @2Lt(�)=@�@�0 is global Lipschitz continuous on �; (b) E[sup�2� k@Lt(�)=@�k
�]

< 1 and E[sup�2� k@2Lt(�)=@�@�0k
�
] < 1 for some � > max[4v; 1=�]; (c) A0 = A(�0)

is non-singular and B0 = limT!1 var[T
1=2@ �L(�0)=@�] is positive de�nite.

Remark 3.2. Assumption 3.6(b) obviates the condition T�=mT ! 0 of Theorem 3.1

required by the bootstrap pointwise WLLN Lemma A.2 in Appendix A.
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Under these regularity conditions,

B
�1=2
0 A0T

1=2(�̂ � �0)
d! N(0; Id�);

see the Proof of Theorem 3.2. Moreover,

Theorem 3.2. Suppose Assumptions 3.2-3.6 are satis�ed. Then, if ST ! 1 and

ST = O(T
1
2
��) with 0 < � < 1

2
,

sup
x2Rd�

���P�!fT 1=2(�̂� � �̂)=k1=2 � xg � PfT 1=2(�̂ � �0) � xg���! 0, prob-P ;

where k = k2=k
2
1.

Remark 3.3. The factor k may be replaced without loss by k̂ = k̂2=k̂
2
1, see PS

Corollary K.2, p.31. Cf. Remark 2.1.

Let �LT (�) =
PT

t=1 LtT (�)=T . An alternative less computationally intensive centred
bootstrap may be based on the next result.

Corollary 3.1. Under the conditions of Theorem 3.2, if ST ! 1 and ST =

O(T
1
2
��) with 0 < � < 1

2
,

sup
x2Rd�

�����P�!f�[@2 �L�mT
(�̂)

@�@�0
]�1T 1=2(

@ �L�mT
(�̂)

@�
� @

�LT (�̂)
@�

)=k1=2 � xg � PfT 1=2(�̂ � �0) � xg
�����! 0; prob-P ;

where k = k2=k
2
1.

Remark 3.4. From the bootstrap UWL Lemma A.1 in Appendix A, suitably

adapted, the matrix @2 �LT (�̂)=@�@�0 may substitute for @2 �L�mT
(�̂)=@�@�0 in Corollary 3.1,

viz. sup�2� (k2=ST )
1=2


@2 �L�mT

(�)=@�@�0 � @2 �LT (�)=@�@�0


 ! 0, prob-P�!, prob-P . A

similar argument together with the UWLs sup�2�


(k2=ST )1=2@2 �LT (�)=@�@�0 � k1A(�)

!

0, prob-P , and sup�2�


@2 �L(�)=@�@�0 � A(�)

! 0, prob-P , yields

sup
x2Rd�

�����P�!f�[@2 �L(�̂)@�@�0
]�1m

1=2
T (

@ �L�mT
(�̂)

@�
� @

�LT (�̂)
@�

) � xg � PfT 1=2(�̂ � �0) � xg
�����! 0; prob-P ;

similarly to Paparoditis and Politis (2002, Theorem 2.2, p.135) for the QML implemen-

tation of TBB expressed in terms of the in
uence function corresponding to the QML
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criterion �L(�), viz.,

IF (z; F̂T ) = �[
@2 �L(�̂)
@�@�0

]�1(
@Lt(�̂)
@�

� @
�L(�̂)
@�

); (t = 1; :::; T );

noting that @ �L(�̂)=@� = 0.

Remark 3.5. As noted in Remark 3.4, @2 �L(�̂)=@�@�0 may be replaced by (k=ST )1=2@2 �LT (�̂)=@�@�0.
Hence,

sup
x2Rd�

�����P�!f�[@2 �LT (�̂)@�@�0
]�1T 1=2(

@ �L�mT
(�̂)

@�
� @

�LT (�̂)
@�

)=k1=2 � xg � PfT 1=2(�̂ � �0) � xg
�����! 0; prob-P :

Remark 3.6. It follows from the �rst order condition @ �L(�̂)=@� = 0 for �̂ that the
term @ �LT (�̂)=@� in Corollary 3.1 and Remarks 3.4 and 3.5 may be omitted. The cor-
responding uncentred bootstrap from Remark 3.4 is the KBB version of Gon�calves and

White (2004, Corollary 2.1, p.203) for MBB applied to the one-step QML estimator; also

see Davidson and MacKinnon (1999).

Remark 3.7. The KBB variance estimator for the large sample variance matrix

A�10 B0A
�1
0 of the QML estimator �̂ (or �̂�) is given by the outer product form

1

T
[
@2 �LT (�̂)
@�@�0

]�1
TX
t=1

@LtT (�̂)
@�

@LtT (�̂)
@�0

[
@2 �LT (�̂)
@�@�0

]�1:

Cf. (2.2); see PS (2.2), p.2, and Smith (2005, Theorem 2.1, p.165, and 2011, Lemma A.3,

p.1219).

4 Simulation Results

In this section we report the results of a set of Monte Carlo experiments comparing

the �nite sample performance of di�erent methods for the construction of con�dence

intervals for the parameters of the mean regression model when there is autocorrelation

in the data. We investigate KBB, MBB and con�dence intervals based on HAC covariance

matrix estimators.

4.1 Design

We consider the same simulation design as that of Andrews (1991, Section 9, pp.840-849)

and Andrews and Monahan (1992, Section 3, pp.956-964), i.e., linear regression with an
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intercept and four regressor variables. The model studied is

yt = �0 + �1x1;t + �2x2;t + �3x3;t + �4x4;t + �tut; (4.1)

where �t is a function of the regressors xi;t, (i = 1; :::; 4), to be speci�ed below. The

interest concerns 95% con�dence interval estimators for the coe�cient �1 of the �rst

non-constant regressor.

The regressors and error term ut are generated as follows. First,

ut = �ut�1 + "0;t;

with initial condition u�49 = "0;�49. Let

~xi;t = �~xi;t�1 + "i;t; (i = 1; :::; 4);

with initial conditions ~xi;�49 = "i;�49, (i = 1; :::; 4). As in Andrews (1991), the innovations

"it, (i = 0; :::; 4), (t = �49; :::; T ), are independent standard normal random variates.

De�ne ~xt = (~x1;t; :::; ~x4;t)
0 and �xt = ~xt�

PT
s=1 ~xs=T . The regressors xi;t, (i = 1; :::; 4), are

then constructed as in

xt = (x1;t; :::; x4;t)
0

= [
TX
s=1

�xs�x
0
s=T ]

�1=2�xt; (t = 1; :::; T ):

The observations on the dependent variable yt are obtained from the linear regression

model (4.1) with the true parameter values by invariance set as �i = 0, (i = 0; :::; 4),

without loss of generality.

The values of � are 0:0, 0:2, 0:5, 0:7 and 0:9. Homoskedastic, �t = 1, and het-

eroskedastic, �t = jx1tj, regression errors are examined. Sample sizes T = 64, 128 and

256 are considered.

The number of bootstrap replications for each experiment was 1000 with 5000 random

samples generated:

4.2 Bootstrap Methods

Con�dence intervals based on KBB are compared with those obtained forMBB [Fitzen-

berger (1997), Gon�calves and White (2004)] and TBB [Paparoditis and Politis (2002)] for
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least squares (LS) estimation of (4.1). For succinctness, only the results on the standard

percentile bootstrap con�dence intervals, Efron (1979), are presented.1

To describe the standard percentile KBB method, let �̂1 denote the LS estimator

of �1 and �̂
�
1 its bootstrap counterpart. Because the asymptotic distribution of the LS

estimator �̂1 is normal and hence symmetric about �1, in large samples the distributions

of �̂1 � �1 and �1 � �̂1 are the same. From the uniform consistency of the bootstrap,

Theorem 3.2, the distribution of �1 � �̂1 is well approximated by the distribution of
�̂�1 � �̂1. Therefore, the bootstrap percentile con�dence interval for �1 is given by 

[1� 1

k1=2
]�̂1 +

�̂�1;0:025
k1=2

; [1� 1

k1=2
]�̂1 +

�̂�1;0:975
k1=2

!
;

where �̂�1;� is the 100� percentile of the distribution of �̂
�
1 and, recall, k = k2=k

2
1.
2 For

MBB, k = 1.

KBB con�dence intervals are constructed with the following choices of kernel function

k(�): truncated, Bartlett and (2.4) kernel functions, which respectively induce the Bartlett
[bt], Smith (2011, Example 2.1, p.1203), Parzen [pz], Smith (2011, Example 2.2, pp.1203-

1204), and the optimal quadratic spectral [qs] (2.5), Smith (2011, Example 2.3, p.1204),

kernel functions k�(�) as the associated convolutions, and the kernel function [pp] based
on the optimal trapezoidal taper of Paparoditis and Politis (2001), see Paparoditis and

Politis (2001, p.1111). The respective con�dence interval estimators are denoted by

KBBj, where j = bt, pz, qs and pp. Percentile bootstrap con�dence intervals based

on Corollary 3.1 are denoted KBBaj , while those based on Remarks 3.4 and 3.5 are

denoted by KBBbj and KBB
c
j respectively.

3;4 A similar notation is adopted for bootstrap

con�dence intervals based on MBB and TBB where the latter is computed using the

optimal Paparoditis and Politis (2001) trapezoidal taper. The validity of the MBB

con�dence intervals follows from results to be found in Fitzenberger (1997) and Gon�calves

and White (2004). Although Paparoditis and Politis (2002) only provides a theoretical

justi�cation for TBBb, the validity of the other TBB con�dence intervals follows using

1The standard percentile method is valid here because the asymptotic distribution of the LS estimator
is symmetric; see Politis (1998, p.45). Empirical rejection rates for bootstrap con�dence intervals based
on the symmetric percentile and the equal-tailed methods, Hall (1992, p.12), were also computed and
are available upon request.

2Bootstrap intervals based on k̂ were also computed with results similar to those obtained with k;
see Remark 3.3.

3Uncentred bootstrap con�dence intervals, cf. Remark 3.6, were also computed with results similar
to the respective centred versions from Corollary 3.1 and Remarks 3.4 and 3.5.

4Since �̂���̂ = �[@2 �L�mT
(�̂)=@�@�0]�1@ �L�mT

(�̂)=@� for the LS estimator, bootstrap con�dence intervals
based on Theorem 3.2 are numerically identical to those based on the uncentred Corollary 3.1 bootstrap.
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versions of results in this paper adapted for TBB.

Standard t-statistic con�dence intervals using heteroskedastic autocorrelation consis-

tent (HAC) estimators for the asymptotic variance matrix B0 are considered based on

truncated [TR], Bartlett [BT], Parzen [PZ], Tukey-Hanning [TH] and quadratic spectral

[QS] kernel functions k�(�); see Andrews (1991). Alternative t-statistic con�dence inter-
vals based on the Smith (2005) HAC estimator of B0, cf. Remark 3.7, are also examined

which use kernel functions k(�) that induce Bartlett [Sbt], Parzen [Spz] and quadratic
spectral [Sqs] kernels k

�(�) respectively and the optimal Paparoditis and Politis (2001)
trapezoidal taper [Spp].

5

4.3 Bandwidth Choice

The accuracy of the bootstrap approximation in practice is particularly sensitive to the

choice of the bandwidth or block size ST . Gon�calves and White (2004) suggests bas-

ing the choice of MBB block size on the optimal automatic bandwidth, see Andrews

(1991, Section 5, pp:830-832), appropriate for HAC variance matrix estimation using the

Bartlett kernel, noting that the MBB bootstrap variance estimator is asymptotically

equivalent to the Bartlett kernel variance estimator. Smith (2011, Lemma A.3, p.1219)

obtained a similar equivalence between the KBB variance estimator and the correspond-

ing HAC estimator based on the induced kernel function k�(�); see also Smith (2005,
Lemma 2.1, p.164). We adopt a similar approach to that of Gon�calves and White (2004)

to the choice of the bandwidth for KBB con�dence interval estimators. However, rather

than using the method suggested in Andrews (1991) for estimation of the optimal au-

tomatic bandwidth for the induced kernel function k�(�), a non-parametric estimator of
this bandwidth is adopted; see Politis and Romano (1995). Despite lacking a theoretical

justi�cation, the results discussed below indicate that this procedure fares well for the

simulation designs studied here.

The infeasible optimal bandwidth for HAC variance matrix estimation based on the

kernel k�(�) is given by

S�T =

�
q(k�(q))

2�(q)T

�Z 1

�1
k�(x)2dx

�1=(2q+1)
;

where k�(q) = limx!0[1�k�(x)]= jxjq and �(q) = 2vec(
X1

s=�1
jsj2R(s))0Wvec(

X1

s=�1
jsj2R(s))

5The HAC estimator of B0 of Andrews (1991) is given by
PT�1

s=1�T k
�(s=ST )R̂T (s) where the sample

autocovariance R̂T (s) = T
�1Pmin[T;T�s]

t=max[1;1�s](@Lt(�̂)=@�)(@Lt�s(�̂)=@�)0, (s = 1 � T; :::; T � 1), while the
Smith (2005) HAC estimator of B0 is T

�1PT
t=1(@LtT (�̂)=@�)(@LtT (�̂)=@�)0, cf. (2.2).
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= tr(W (Ipp+Kpp)(�1
�1)), q 2 [0;1), cf. the optimal KBB bandwidth S�T of section
2 when q = 2; see Andrews (1991, (5.2), p:830). Note that q = 1 for the Bartlett [bt]

kernel and q = 2 for the Parzen [pz], quadratic spectral [qs] kernels and the optimal

Paparoditis and Politis (2001) taper [pp]. In the linear regression model (4.1) context,

with diagonal weight matrix W = diag(w1; :::; w4),

�(q) =

P4
i=1wi[

X1

s=�1
jsjq Ri(s)]2P4

i=1wi[
X1

s=�1
Ri(s)]2

;

where Ri (s) is the sth autocovariance of xit(yt �
P4

k=1 xkt�k), (i = 1; :::; 4). As in

the Monte Carlo study Andrews (1991, section 9, pp.840-849), unit weights wi = 1,

(i = 1; :::; 4), are chosen.

The optimal bandwidth S�T requires the estimation of the parameters �(1) and �(2).

Rather then base estimation of �(q) on a particular ARMA model as suggested in An-

drews (1991, Section 6, pp.832-837), a feasible non-parametric estimator of the Andrews

(1991) optimal bandwidth replaces �(q) by a consistent estimator based on the 
at-top

lag-window of Politis and Romano (1995), viz.

�̂(q) =

X4

i=1
[
PMi

j=�Mi
jjjq �( j

Mi
)R̂i(j)]

2X4

i=1
[
PMi

j=�Mi
�( j

Mi
)R̂i(j)]2

; (q = 1; 2);

where � (t) = I (jtj 2 [0; 1=2]) + 2 (1� jtj) I (jtj 2 (1=2; 1]), R̂i (j) is the sample jth au-
tocovariance of fxit(yt �

P4
k=1 xkt�k)g, (i = 1; :::; 4), using LS estimation of �k, (k =

1; :::; 4), and Mi, (i = 1; :::; 4), are computed using the method described in Politis

and White (2004, ftn. c, p.59). The feasible optimal bandwidth estimator is then

Ŝ�T =

�
q(k�(q))

2�̂(q)T

�Z 1

�1
k�(x)2dx

�1=(2q+1)
whereas the bandwidth formula S�T =

0:6611 (�̂(2)T )1=5 is used for the truncated kernel [TR] HAC estimator, see Andrews

(1991, ftn.5, p. 834).

Bootstrap sample sizes are de�ned as mT = max[
j
T=Ŝ�T

k
; 1], where b�c is the 
oor

function. MBB and TBB block sizes are given by min[dŜ�T e; T ], where d�e is the ceiling
function and S�T the optimal bandwidth estimator for the Bartlett kernel k

�(�) for MBB
and for the kernel k�(�) induced by the optimal Paparoditis and Politis (2001) trapezoidal
taper for TBB.
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4.4 Results

Tables 1 and 2 provide the empirical coverage rates for 95% con�dence interval estimates

obtained using the methods described above for the homoskedastic and heteroskedastic

cases respectively.

Tables 1 and 2 around here

Overall, to a lesser or greater degree, all con�dence interval estimates display under-

coverage for the true value �1 = 0 but especially for high values of �, a feature found

in previous studies of MBB, see, e.g., Gon�calves and White (2004), and con�dence in-

tervals based on t-statistics with HAC variance matrix estimators, see Andrews (1991).

As should be expected from the theoretical results of Section 3, as T increases, empirical

coverage rates approach the nominal rate of 95%.

Additionally, Tables 1 and 2 reveal that the empirical coverage rates of the bootstrap

con�dence intervals based on Corollary 3.1 are very similar to those based on Theo-

rem 3.2, although the former corresponds to a centred version of the latter, see ftn. 4,

and is intuitively expected to yield improvements, cf. Paparoditis and Politis (2001,

p.1108). Furthermore, the empirical coverage rates of the bootstrap con�dence inter-

vals constructed using the results in Remarks 3.4 and 3.5 are systematically lower across

KBB, MBB and TBB than those based on Theorem 3.2 and Corollary 3.1. With a few

exceptions, all bootstrap con�dence interval estimates outperform those based on HAC

t-statistics for all values of � and for all sample sizes except for T = 256 when, for lower

and moderate values, both bootstrap and HAC t-statistic methods produce similarly sat-

isfactory results. The following discussion is therefore conducted based solely on KBB,

MBB and TBB.

A comparison of the variousKBB con�dence interval estimates for the homoskedastic

design in Table 1 for T = 64 with those usingMBB reveals that generally, for low values

of �, the coverage rates for KBBbt are closer to the nominal 95% than those of MBB,

although both are based on the truncated kernel, and otherKBB methods. Furthermore,

KBBpp is superior to KBBbt, KBBpz and KBBqs for high values of �, although not

dramatically so for moderate �. While both bootstraps use the same kernel function,

MBB has similar coverage rates to KBBbt for low to moderate � but higher coverage

rates for the higher values of �. TBB coverage is poorer than MBB at low values of �

and is dominated by KBBpp at all values of � even though both methods use the same

taper/kernel. A similar pattern is repeated for the larger sample size T = 128 although

the di�erences across bootstrap methods narrow. For sample size T = 256, all bootstrap
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and HAC t-statistic con�dence intervals display similar coverage rates except for � = 0:9

when KBBpp is superior. Overall, the results with homoskedastic innovations in Table 1

indicate that KBBpp is the superior bootstrap method at moderate to high values of �

at all sample sizes with KBBbt, KBBqs, KBBpp and TBB reasonably competitive for

the lower � at the larger sample sizes.

In Table 2, for heteroskedastic innovations, the di�erences in coverage rates between

the various methods narrow and are more varied. For sample size T = 64, all KBB

bootstrap con�dence intervals display similar coverage for low � but KBBqs and KBBpp

are superior and perform similarly for moderate to high values of � and for all sample

sizes. MBB is again dominated by KBBbt and, likewise, KBBpp is superior to TBB at

all sample sizes.

4.5 Summary

In general, for homoskedastic innovations, con�dence interval estimates based on KBBpp

provide the best coverage rates for all values of � and sample sizes whereas, under het-

eroskedasticity, the performance of KBBbt, KBBqs and KBBpp con�dence intervals are

similar and dominate for low and moderate values of � and the larger sample sizes.

KBBqs is broadly competitive at all values of � except at � = 0:9 for homoskedastic

innovations.

5 Conclusion

This paper applies the kernel block bootstrap method to quasi-maximum likelihood es-

timation of dynamic models under stationarity and weak dependence. The proposed

bootstrap method is simple to implement by �rst kernel-weighting the components com-

prising the quasi-log likelihood function appropriately and then sampling the resultant

transformed components using the standard \m out of n" bootstrap.

We investigate the �rst order asymptotic properties of the kernel block bootstrap

for quasi-maximum likelihood demonstrating, in particular, its consistency and the �rst-

order asymptotic validity of the bootstrap approximation to the distribution of the quasi-

maximum likelihood estimator. A number of �rst order equivalent kernel block bootstrap

schemes are suggested of di�ering computational complexities. A set of simulation ex-

periments for the mean linear regression model illustrates the e�cacy of the kernel block

bootstrap for quasi-maximum likelihood estimation. Indeed, in these experiments, the

kernel block bootstrap outperforms other bootstrap methods for the sample sizes consid-
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ered, especially if the induced KBB kernel function is chosen appropriately as either the

Bartlett kernel or the quadratic spectral kernel or the optimal taper of Paparoditis and

Politis (2001) is used to kernel-weight the quasi-log likelihood function.

Appendix

Throughout the Appendices, C and � denote generic positive constants that may be

di�erent in di�erent uses with C, M, and T the Chebyshev, Markov, and triangle in-

equalities respectively. UWL is a uniform weak law of large numbers such as Newey

and McFadden (1994, Lemma 2.4, p.2129) for stationary and mixing (and, thus, ergodic)

processes.

A similar notation is adopted to that in Gon�calves and White (2004). For any boot-

strap statistic T �(�; !), T �(�; !) ! 0, prob-P�!, prob-P if, for any � > 0 and any � > 0,

limT!1Pf! : P�!f� : jT �(�; !)j > �g > �g = 0.
To simplify the analysis, the appendices consider the transformed uncentred observa-

tions

LtT (�) =
1

(k2ST )1=2

t�TX
s=t�1

k(
s

ST
)Lt�s(�)

with k2 substituting for k̂2 = S
�1
T

PT�1
t=1�T k(t=ST )

2 in the main text since k̂2� k2 = o(1),
cf. PS Supplement Corollary K.2, p.S.21.

For simplicity, where required, it is assumed T=ST is integer.

Appendix A: Preliminary Lemmas

Assumption A.1. (Bootstrap Pointwise WLLN.) For each � 2 � � Rd� , � a compact

set, ST !1 and ST = o(T
�1=2)

(k2=ST )
1=2[ �L�mT

(�)� �LT (�)]! 0, prob-P�!, prob-P :

Remark A.1. See Lemma A.2 below.

Assumption A.2. (Uniform Convergence.)

sup
�2�

��(k2=ST )1=2 �LT (�)� k1 �L(�)��! 0 prob-P :

Remark A.2. The hypotheses of the UWLs Smith (2011, Lemma A.1, p.1217) and

Newey and McFadden (1994, Lemma 2.4, p.2129) for stationary and mixing (and, thus,
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ergodic) processes are satis�ed under Assumptions 3.1-3.3. Hence, noting sup�2�


 �L(�)� L(�)]



! 0, prob-P , where L(�) = E[Lt(�)], sup�2�


(k2=ST )1=2 �LT (�)� k1L(�)]

! 0, prob-P .

Thus, Assumption A.2 follows by T and k1, k2 = O(1).

Assumption A.3. (Global Lipschitz Continuity.) For all �; �0 2 �, jLt(�)� Lt(�0)j �
Lt k� � �0k a.s.P where supT E[

PT
t=1 Lt=T ] <1.

Remark A.3. Assumption A.3 is Assumption 3.2(c).

Lemma A.1. (Bootstrap UWL.) Suppose Assumptions A.1-A.3 hold. Then, for

ST !1 and ST = o(T
1=2),

sup
�2�

��(k2=ST )1=2 �L�mT
(�)� k1 �L(�)

��! 0, prob-P�!, prob-P :

Proof. From Assumption A.2 the result is proven if

sup
�2�
(k2=ST )

1=2
�� �L�mT

(�)� �LT (�)
��! 0, prob-P�!, prob-P :

The following preliminary results are useful in the later analysis. By global Lipschitz

continuity of Lt(�) and by T, for T large enough,

(k2=ST )
1=2
�� �LT (�))� �LT (�0)

�� � 1

T

TX
t=1

1

ST

t�1X
s=t�T

����k� s

ST

����� ��Lt�s(�)� Lt�s(�0)��
=

1

T

TX
t=1

��Lt(�)� Lt(�0)��
����� 1ST

T�tX
s=1�t

k

�
s

ST

������
� C



� � �0

 1
T

TX
t=1

Lt (A.1)

since for some 0 < C <1 ����� 1ST
T�tX
s=1�t

k

�
s

ST

������ � O(1) < C
uniformly t for T large enough, see Smith (2011, eq. (A.5), p.1218). Next, for some
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0 < C� <1,

(k2=ST )
1=2E�[

�� �L�mT
(�)� �L�mT

(�0)
��] = 1

mT

mTX
s=1

1

ST
E�[

t�s�1X
r=t�s�T

����k� r

ST

����� ��Lt�s�r(�)� Lt�s�r(�0)��]
=

1

T

TX
t=1

��Lt(�)� Lt(�0)�� 1
ST

t�1X
r=t�T

����k� r

ST

�����
� C�



� � �0

 1
T

TX
t=1

Lt:

Hence, by M, for some 0 < C� <1 uniformly t for large enough T ,

P�!f(k2=ST )1=2
�� �L�mT

(�)� �L�mT
(�0)

�� > �g � C�

�



� � �0

 1
T

TX
t=1

Lt: (A.2)

The remaining part of the proof is identical to Gon�calves and White (2000, Proof

of Lemma A.2, pp.30-31) and is given here for completeness; cf. Hall and Horowitz

(1996, Proof of Lemma 8, p.913). Given " > 0, let f�(�i; "); (i = 1; :::; I)g denote a �nite
subcover of � where �(�i; ") = f� 2 � : k� � �ik < "g, (i = 1; :::; I). Now

sup
�2�
(k2=ST )

1=2
�� �L�mT

(�)� �LT (�)
�� = max

i=1;:::;I
sup

�2�(�i;")
(k2=ST )

1=2
�� �L�mT

(�)� �LT (�)
�� :

The argument ! 2 
 is omitted for brevity as in Gon�calves and White (2000). It then
follows that, for any � > 0 (and any �xed !),

P�!fsup
�2�
(k2=ST )

1=2
�� �L�mT

(�)� �LT (�)
�� > �g �XI

i=1
P�!f sup

�2�(�i;")
(k2=ST )

1=2
�� �L�mT

(�)� �LT (�)
�� > �g:

For any � 2 �(�i; "), by T,

(k2=ST )
1=2
�� �L�mT

(�)� �LT (�)
�� � (k2=ST )

1=2
�� �L�mT

(�i)� �LT (�i)
��+ (k2=ST )1=2 �� �L�mT

(�)� �L�mT
(�i)
��

+(k2=ST )
1=2
�� �LT (�)� �LT (�i)

�� :
Hence, for any � > 0 and � > 0,

PfP�!f sup
�2�(�i;")

(k2=ST )
1=2
�� �L�mT

(�)� �LT (�)
�� > �g > �g � PfP�!f(k2=ST )1=2 �� �L�mT

(�i)� �LT (�i)
�� > �

3
g > �

3
g

+PfP�!f(k2=ST )1=2
�� �L�mT

(�)� �L�mT
(�i)
�� > �

3
g > �

3
g

+Pf(k2=ST )1=2
�� �LT (�)� �LT (�i)

�� > �

3
g: (A.3)
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By Assumption A.1

PfP�!f(k2=ST )1=2
�� �L�mT

(�i)� �LT (�i)
�� > �

3
g > �

3
g < �

3

for large enough T . Also, by M (for �xed !) and Assumption A.3, noting Lt � 0,

(t = 1; :::; T ), from eq. (A.2),

P�!f(k2=ST )1=2
�� �L�mT

(�)� �L�mT
(�i)
�� >

�

3
g � 3C�

�
k� � �ik

1

T

XT

t=1
Lt

� 3C�"

�

1

T

XT

t=1
Lt:

As a consequence, for any � > 0 and � > 0, for T su�ciently large,

PfP�!f(k2=ST )1=2
�� �L�mT

(�)� �L�mT
(�i)
�� >

�

3
g > �

3
g � Pf3C

�"

�

1

T

XT

t=1
Lt >

�

3
g

= Pf 1
T

XT

t=1
Lt >

��

9C�"
g

� 9C�"

��
E[
1

T

XT

t=1
Lt]

� 9C�"�

��
<
�

3

for the choice " < �2�=27C��, where, since, by hypothesis E[
PT

t=1 Lt=T ] = O(1), the sec-

ond and third inequalities follow respectively from M and � a su�ciently large but �nite

constant such that supT E[
PT

t=1 Lt=T ] < �. Similarly, from eq. (A.1), for any � > 0 and

� > 0, by Assumption A.3, Pf(k2=ST )1=2
�� �LT (�)� �LT (�i)

�� > �=3g � PfC"PT
t=1 Lt=T >

�=3g � 3C"�=� < �=3 for T su�ciently large for the choice " < ��=9C�.
Therefore, from eq. (A.3), the conclusion of the Lemma follows if

" =
��

9�
max

�
1

C
;
�

3C�

�
:�

Lemma A.2. (Bootstrap Pointwise WLLN.) Suppose Assumptions 3.1, 3.2(a) and

3.3 are satis�ed. Then, if T 1=�=mT ! 0 and E[sup�2� jlog ft(�)j
�] < 1 for some � > v,

for each � 2 � � Rd� , � a compact set,

(k2=ST )
1=2[ �L�mT

(�)� �LT (�)]! 0, prob-P�!, prob-P :

Proof: The argument � is suppressed throughout for brevity. First, cf. Gon�calves

and White (2004, Proof of Lemma A.5, p.215),

(k2=ST )
1=2( �L�mT

� �LT ) = (k2=ST )1=2( �L�mT
� E�[ �L�mT

])� (k2=ST )1=2( �LT � E�[ �L�mT
]):

[19]



Since E�[ �L�mT
] = �LT , cf. PS (Section 2.2, pp.2-3), the second term �LT � E�[ �L�mT

] is

zero. Hence, the result follows if, for any � > 0 and � > 0 and large enough T ,

PfP�!f(k2=ST )1=2
�� �L�mT

� E�[ �L�mT
]
�� > �g > �g < �.

Without loss of generality, set E�[ �L�mT
] = 0. Write KtT = (k2=ST )1=2LtT , (t = 1; :::; T ).

First, note that

E�[
��Kt�sT ��] = 1

T

XT

t=1
jKtT j =

1

T

XT

t=1

���� 1ST Xt�1

s=t�T
k(
s

ST
)Lt�s

����
� O(1)

1

T

XT

t=1
jLtj = Op(1);

uniformly, (s = 1; :::;mT ), by WLLN and E[sup�2� jlog ft(�)j
�] < 1, � > 1. Also, for

any � > 0,

1

T

XT

t=1
jKtT j �

1

T

XT

t=1
jKtT j I(jKtT j < mT �) =

1

T

XT

t=1
jKtT j I(jKtT j � mT �)

� 1

T

XT

t=1
jKtT jmax

t
I(jKtT j � mT �):

Now, by M,

max
t
jKtT j = O(1)max

t
jLtj = Op(T 1=�);

cf. Newey and Smith (2004, Proof of Lemma A1, p.239). Hence, since, by hypothesis,

T 1=�=mT = o(1), maxt I(jKtT j � mT �) = op(1) and
PT

t=1 jKtT j =T = Op(1),

E�[
��Kt�sT �� I(��Kt�sT �� � mT �)] =

1

T

XT

t=1
jKtT j I(jKtT j � mT �) = op(1):

(A.4)

The remaining part of the proof is similar to that for Khinchine's WLLN given in

Rao (1973, pp.112-114). For each s de�ne the pair of random variables

Vt�sT = Kt�sT I(
��Kt�sT �� < mT �);Wt�sT = Kt�sT I(

��Kt�sT �� � mT �);

yielding Kt�sT = Vt�sT +Wt�sT , (s = 1; :::;mT ). Now

var�[Vt�sT ] � E
�[V 2t�sT ] � mT �E

�[
��Vt�sT ��]: (A.5)

Write �V �mT
=
XmT

s=1
Vt�sT=mT . Thus, from eq. (A.5), using C,

P�f
�� �V �mT

� E�[Vt�sT ]
�� � "g �

var�[Vt�sT ]

mT "2

�
�E�[

��Vt�sT ��]
"2

:

[20]



Also
�� �KT � E�[Vt�sT ]�� = op(1), i.e., for any " > 0, T large enough,

�� �KT � E�[Vt�sT ]�� � ",

since by T, noting E�[Vt�sT ] =
XT

t=1
KtT I( jKtT j < mT �)=T ,

�� �KT � E�[Vt�sT ]�� =

���� 1T XT

t=1
KtT �

1

T

XT

t=1
KtT I(jKtT j < mT �)

����
� 1

T

XT

t=1
jKtT j I(jKtT j � mT �) = op(1)

from eq. (A.4). Hence, for T large enough,

P�f
�� �V �mT

� �KT
�� � 2"g � �E�[

��Vt�sT ��]
"2

: (A.6)

By M,

P�fWt�sT 6= 0g = P�f
��Kt�sT �� � mT �g

� 1

mT �
E�[
��Kt�sT �� I(��Kt�sT �� � mT �)] �

�

mT

: (A.7)

To see this, E�[
��Kt�sT �� I(��Kt�sT �� � mT �)] = op(1) from eq. (A.4). Thus, for T large enough,

E�[
��Kt�sT �� I(��Kt�sT �� � mT �)] � �2 w.p.a.1. Write �W �

mT
=
XmT

s=1
Wt�sT=mT . Thus, from eq.

(A.7),

P�f �W �
mT
6= 0g �

XmT

s=1
P�fWt�sT 6= 0g � �: (A.8)

Therefore,

P�f
�� �K�mT

� �KT
�� � 4"g � P�f

�� �V �mT
� �KT

��+ �� �W �
mT

�� � 4"g
� P�f

�� �V �mT
� �KT

�� � 2"g+ P�f�� �W �
mT

�� � 2"g
�

�E�[
�� �Vt�sT ��]
"2

+ P�f
�� �W �

mT

�� 6= 0g � �E�[
��Vt�sT ��]
"2

+ �:

where the �rst inequality follows from T, the third from eq. (A.6) and the �nal inequal-

ity from eq. (A.8). Since � may be chosen arbitrarily small enough and E�[
��Vt�sT ��] �

E�[
��Kt�sT ��] = Op(1), the result follows by M.�
Lemma A.3. (Bootstrap CLT.) Let Assumptions 3.2(a)(b), 3.3, 3.4 and 3.6(b)(c)

hold. Then, if ST !1 and ST = O(T
1
2
��) with 0 < � < 1

2
,

sup
x2R

����P�!fm1=2
T (

@ �L�mT
(�0)

@�
� @

�LT (�0)
@�

) � xg � PfT 1=2@
�L(�0)
@�

� xg
����! 0; prob-P :
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Proof. The result is proven in Steps 1-5 below; cf. Politis and Romano (1992b,

Proof of Theorem 2, pp. 1994-1995). To ease exposition, let mT = T=ST be integer and

d� = 1.

Step 1. d �L(�0)=d� ! 0 prob-P . Follows by White (1984, Theorem 3.47, p.46) and

E[@Lt(�0)=@�] = 0.
Step 2. PfB�1=20 T 1=2d �L(�0)=d� � xg ! �(x), where �(�) is the standard normal

distribution function. Follows by White (1984, Theorem 5.19, p.124).

Step 3. supx

���PfB�1=20 T 1=2d �L(�0)=d� � xg � �(x)
��� ! 0. Follows by P�olya's Theo-

rem (Ser
ing, 1980, Theorem 1.5.3, p.18) from Step 2 and the continuity of �(�).
Step 4. var�[m

1=2
T d �L�mT

(�0)=d�]! B0 prob-P . Note E�[d �L�mT
(�0)=d�] = d �LT (�0)=d�.

Thus,

var�[m
1=2
T

d �L�mT
(�0)

d�
] = var�[

dLt�T (�0)
d�

]

=
1

T

TX
t=1

(
dLtT (�0)
d�

� d
�LT (�0)
d�

)2

=
1

T

TX
t=1

(
dLtT (�0)
d�

)2 � (d
�LT (�0)
d�

)2:

the result follows since (d �LT (�0)=d�)2 = Op(ST=T ) (Smith, 2011, Lemma A.2, p.1219),
ST = o(T 1=2) by hypothesis and T�1

PT
t=1(dLtT (�0)=d�)2 ! B0 prob-P (Smith, 2011,

Lemma A.3, p.1219).

Step 5.

lim
T!1

P
�
sup
x

����P�!fd �L�mT
(�0)=d� � E�[d �L�mT

(�0)=d�]

var�[d �L�mT
(�0)=d�]1=2

� xg � �(x)
���� � "� = 0:

Applying the Berry-Ess�een inequality, Ser
ing (1980, Theorem 1.9.5, p.33), noting the

bootstrap sample observations fdLt�sT (�0)=d�g
mT
s=1 are independent and identically dis-

tributed,

sup
x

�����P�!fm
1=2
T (d �L�mT

(�0)=d� � d �LT (�0)=d�)
var�[m

1=2
T d �L�mT

(�0)=d�]1=2
� xg � �(x)

����� � C

m
1=2
T

var�[
dLt�T (�0)
d�

]�3=2

�E�[
����dLt�T (�0)d�

� d
�LT (�0)
d�

����3]:
Now var�[dLt�T (�0)=d�] ! B0 > 0 prob-P ; see the Proof of Step 4 above. Furthermore,
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E�[
��dLt�T (�0)=d� � d �LT (�0)=d���3] = T�1PT

t=1

��dLtT (�0)=d� � d �LT (�0)=d���3 and
1

T

TX
t=1

����dLtT (�0)d�
� d

�LT (�0)
d�

����3 � max
t

����dLtT (�0)d�
� d

�LT (�0)
d�

���� 1T
TX
t=1

(
dLtT (�0)
d�

� d
�LT (�0)
d�

)2

= Op(S
1=2
T T 1=�):

The equality follows since

max
t

����dLtT (�0)d�
� d

�LT (�0)
d�

���� � max
t

����dLtT (�0)d�

����+ ����d �LT (�0)d�

����
= Op(S

1=2
T T 1=�) +Op((ST=T )

1=2) = Op(S
1=2
T T 1=�)

by M and Assumption 3.6(b), cf. Newey and Smith (2004, Proof of Lemma A1, p.239),

and
PT

t=1(dLtT (�0)=d��d �LT (�0)=d�)2=T = Op(1), see the Proof of Step 4 above. There-
fore

sup
x

�����P�!f(T=ST )1=2(d �L�mT
(�0)=d� � d �LT (�0)=d�)

var�[(T=ST )1=2d �L�mT
(�0)=d�]1=2

� xg � �(x)
����� � 1

m
1=2
T

Op(1)Op(S
1=2
T T 1=�)

=
S
1=2
T

m
1=2
T

Op(T
1=�) = op(1);

by hypothesis, yielding the required conclusion.�

Lemma A.4. Suppose that Assumptions 3.2(a)(b), 3.3, 3.4 and 3.6(b)(c) hold. Then,

if ST !1 and ST = O(T
1
2
��) with 0 < � < 1

2
,

(k2=ST )
1=2@

�LT (�0)
@�

= k1
@ �L(�0)
@�

+ op(T
�1=2):

Proof. Cf. Smith (2011, Proof of Lemma A.2, p.1219). Recall

(k2=ST )
1=2@

�LT (�0)
@�

=
1

ST

T�1X
r=1�T

k

�
r

ST

�
1

T

min[T;T�r]X
t=max[1;1�r]

@Lt(�0)
@�

:

The di�erence between
Pmin[T;T�r]

t=max[1;1�r] @Lt(�0)=@� and
PT

t=1 @Lt(�0)=@� consists of jrj terms.
By C, using White (1984, Lemma 6.19, p.153),

Pf 1
T

������
jrjX
t=1

@Lt(�0)
@�

������ � "g � 1

(T")2
E[

������
jrjX
t=1

@Lt(�0)
@�

������
2

]

= jrjO(T�2)

[23]



where the O(T�2) term is independent of r. Therefore, using Smith (2011, Lemma C.1,

p.1231),

(k2=ST )
1=2@

�LT (�0)
@�

=
1

ST

T�1X
r=1�T

k

�
r

ST

�
(
@ �L(�0)
@�

+ jrjOp(T�2))

=
1

ST

T�1X
s=1�T

k

�
s

ST

�
@ �L(�0)
@�

+Op(T
�1)

= (k1 + o(1))
@ �L(�0)
@�

+Op(T
�1)

= k1
@ �L(�0)
@�

+ op(T
�1=2):�

Appendix B: Proofs of Results

Proof of Theorem 3.1. Theorem 3.1 follows from a veri�cation of the hypotheses

of Gon�calves and White (2004, Lemma A.2, p.212). To do so, replace n by T , QT (�; �)
by �L(�) and Q�T (�; !; �) by �L�mT

(!; �). Conditions (a1)-(a3), which ensure �̂ � �0 ! 0,

prob-P , hold under Assumptions 3.1 and 3.2. To establish �̂� � �̂ ! 0, prob-P�, prob-
P , Conditions (b1) and (b2) follow from Assumption 3.1 whereas Condition (b3) is the

bootstrap UWL Lemma A.1 which requires Assumption 3.3.�

Proof of Theorem 3.2. The structure of the proof is identical to that of Gon�calves

and White (2004, Theorem 2.2, pp.213-214) for MBB requiring the veri�cation of the hy-

potheses of Gon�calves and White (2004, Lemma A.3, p.212) which together with P�olya's

Theorem, Ser
ing (1980, Theorem 1.5.3, p.18), and the continuity of �(�) gives the result.
Assumptions 3.2-3.4 ensure Theorem 3.1, i.e., �̂� � �̂ ! 0, prob-P�, prob-P , and

�̂ � �0 ! 0, prob-P . The assumptions of the complete probability space (
;F ;P) and
compactness of � are stated in Assumptions 3.4(a) and 3.5(a). Conditions (a1) and (a2)

follow from Assumptions 3.5(a)(b). Condition (a3) B
�1=2
0 T 1=2@ �L(�0)=@�

d! N(0; Id�) is

satis�ed under Assumptions 3.4, 3.5(a)(b) and 3.6(b)(c) using the CLT White (1984,

Theorem 5.19, p.124); cf. Step 4 in the Proof of Lemma A.3 above. The continuity of

A(�) and the UWL Condition (a4) sup�2�


@2 �L(�)=@�@�0 � A(�)

 ! 0, prob-P , follow

since the hypotheses of the UWL Newey and McFadden (1994, Lemma 2.4, p.2129) for

stationary and mixing (and, thus, ergodic) processes are satis�ed under Assumptions 3.4-

3.6. Hence, invoking Assumption 3.6(c), from a mean value expansion of @ �L(�̂)=@� = 0
around � = �0 with �0 2 int(�) from Assumption 3.5(c), T 1=2(�̂��0)

d! N(0; A�10 B0A
�1
0 ).
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Conditions (b1) and (b2) are satis�ed under Assumptions 3.5(a)(b) as above. To

verify Condition (b3),

m
1=2
T

@ �L�mT
(�̂)

@�
= m

1=2
T (

@ �L�mT
(�0)

@�
� @

�LT (�0)
@�

)

+m
1=2
T

@ �LT (�0)
@�

+m
1=2
T (

@ �L�mT
(�̂)

@�
�
@ �L�mT

(�0)

@�
):

With Lemma A.3 replacing Gon�calves and White (2002, Theorem 2.2(ii), p.1375), the

�rst term converges in distribution to N(0; B0), prob-P�!, prob-P . The sum of the second
and third terms converges to 0, prob-P�, prob-P . To see this, �rst, using the mean value
theorem for the third term, i.e.,

m
1=2
T (

@ �L�mT
(�̂)

@�
�
@ �L�mT

(�0)

@�
) =

1

S
1=2
T

@2 �L�mT
( _�)

@�@�0
T 1=2(�̂ � �0);

where _� lies on the line segment joining �̂ and �0. Secondly, (k2=ST )
1=2@2 �L�mT

( _�)=@�@�0 !
k1A0, prob-P�!, prob-P , using the bootstrap UWL sup�2� (k2=ST )1=2



@2 �L�mT
(�)=@�@�0 � @2 �LT (�)=@�@�0




! 0, prob-P�!, prob-P , cf. Lemma A.1, and the UWL sup�2�



(k2=ST )1=2@2 �LT (�)=@�@�0 � k1A(�)

!
0, prob-P , cf. Remark A.2. Condition (b3) then follows since T 1=2(�̂��0)+A�10 T 1=2@ �L(�0)=@� !
0, prob-P , and m1=2

T @ �LT (�0)=@� � (k1=k1=22 )T 1=2@ �L(�0)=@� ! 0, prob-P , cf. Lemma
A.4. Finally, Condition (b4) sup�2�



(k2=ST )1=2[@2 �L�mT
(�)=@�@�0 � @2 �LT (�)=@�@�0]



 !
0, prob-P�!, prob-P , is the bootstrap UWL Lemma A.1 appropriately revised using As-
sumption 3.6.

Because �̂ 2 int(�) from Assumption 3.5(c), from a mean value expansion of the �rst
order condition @ �L�mT

(�̂�)=@� = 0 around � = �̂,

T 1=2(�̂� � �̂) = [
@2 �L�mT

( _�)

@�@�0
=S

1=2
T ]�1m

1=2
T

@ �L�mT
(�̂)

@�
; (B.1)

where _� lies on the line segment joining �̂� and �̂. Noting �̂� � �̂ ! 0, prob-P�, prob-P ,
and �̂ � �0 ! 0, prob-P , (k2=ST )1=2@2 �L�mT

( _�)=@�@�0 ! k1A0, prob-P�!, prob-P . There-
fore, T 1=2(�̂���̂) converges in distribution toN(0; (k2=k21)A�10 B0A�10 ), prob-P�!, prob-P .�

Proof of Corollary 3.1. It follows immediately from Lemma A.3 that

m
1=2
T (

@ �L�mT
(�0)

@�
� @

�LT (�0)
@�

)
d! N(0; B0); prob-P�!, prob-P :

Moreover, from the Proof of Theorem 3.2,
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m
1=2
T

@ �L�mT
(�̂)

@�
�m1=2

T (
@ �L�mT

(�0)

@�
� @

�LT (�0)
@�

)! 0; prob-P�!, prob-P :

Therefore,

sup
x2Rd�

�����P�!fm1=2
T

@ �L�mT
(�̂)

@�
� xg � PfT 1=2@

�L(�0)
@�

� xg
�����! 0; prob-P ;

follows by P�olya's Theorem (Ser
ing, 1980, Theorem 1.5.3, p.18) and the continuity of

the normal c.d.f. �(�) recalling supx
���PfB�1=20 T 1=2d �L(�0)=d� � xg � �(x)

��� ! 0 from

Step 3 of the Proof of Lemma A.3.

Recall from eq. (B.1) in the Proof of Theorem 3.2 that, because �̂ 2 int(�), from a

mean value expansion of the �rst order condition @ �L�mT
(�̂�)=@� = 0 around � = �̂,

T 1=2(�̂� � �̂) = [
@2 �L�mT

( _�)

@�@�0
=S

1=2
T ]�1m

1=2
T

@ �L�mT
(�̂)

@�
:

First, (k2=ST )
1=2@2 �L�mT

( _�)=@�@�0 ! k1A0, prob-P�!, prob-P , using the bootstrap UWL
sup�2� (k2=ST )

1=2


@2 �L�mT

(�)=@�@�0 � @2 �LT (�)=@�@�0


! 0, prob-P�!, prob-P , cf. Lemma

A.1, and the UWL sup�2�


(k2=ST )1=2@2 �LT (�)=@�@�0 � k1A(�)

 ! 0, prob-P , cf. Re-

mark A.2. Secondly, similarly, (k2=ST )
1=2



@2 �L�mT

( _�)=@�@�0 � @2 �L�mT
(�̂)=@�@�0




 ! 0,

prob-P�!, prob-P . Hence,

T 1=2(�̂� � �̂)� [
@2 �L�mT

(�̂)

@�@�0
=S

1=2
T ]�1m

1=2
T

@ �L�mT
(�̂)

@�
! 0; prob-P�!; prob-P :

(B.2)

Therefore, from Theorem 3.2, after substitution of (B.2),

sup
x2Rd�

�����P�!f[@2 �L�mT
(�̂)

@�@�0
=S

1=2
T ]�1m

1=2
T

@ �L�mT
(�̂)

@�
=k1=2 � xg � PfT 1=2(�̂ � �0) � xg

�����! 0; prob-P ;

or

sup
x2Rd�

�����P�!f[@2 �L�mT
(�̂)

@�@�0
]�1T 1=2

@ �L�mT
(�̂)

@�
=k1=2 � xg � PfT 1=2(�̂ � �0) � xg

�����! 0; prob-P :�
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