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Abstract

This paper applies a novel bootstrap method, the kernel block bootstrap, to
quasi-maximum likelihood estimation of dynamic models with stationary strong
mixing data. The method first kernel weights the components comprising the
quasi-log likelihood function in an appropriate way and then samples the resultant
transformed components using the standard “m out of n” bootstrap. We investigate
the first order asymptotic properties of the kernel block bootstrap method for
quasi-maximum likelihood demonstrating, in particular, its consistency and the
first-order asymptotic validity of the bootstrap approximation to the distribution
of the quasi-maximum likelihood estimator. A set of simulation experiments for
the mean regression model illustrates the efficacy of the kernel block bootstrap for
quasi-maximum likelihood estimation.
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1 INTRODUCTION

This paper applies the kernel block bootstrap (KBB), proposed in Parente and Smith
(2019), PS henceforth, to quasi-maximum likelihood estimation with stationary and
weakly dependent data. The basic idea underpinning KBB arises from earlier papers,
see, e.g., Kitamura and Stutzer (1997) and Smith (1997, 2011), which recognise that
a suitable kernel function-based weighted transformation of the observational sample
with weakly dependent data preserves the large sample efficiency for randomly sampled
data of (generalised) empirical likelihood, (G)EL, methods. In particular, the mean of
and, moreover, the standard random sample variance formula applied to the transformed
sample are respectively consistent for the population mean [Smith (2011, Lemma A.1,
p.1217)] and a heteroskedastic and autocorrelation (HAC) consistent and automatically
positive semidefinite estimator for the variance of the standardized mean of the original
sample [Smith (2005, Section 2, pp.161-165, and 2011, Lemma A.3, p.1219)].

In a similar spirit, KBB applies the standard “m out of n” nonparametric bootstrap,
originally proposed in Bickel and Freedman (1981), to the transformed kernel-weighted
data. PS demonstrate, under appropriate conditions, the large sample validity of the
KBB estimator of the distribution of the sample mean [PS Theorem 3.1] and the higher
order asymptotic bias and variance of the KBB variance estimator [PS Theorem 3.2].
Moreover, [PS Corollaries 3.1 and 3.2], the KBB variance estimator possesses a favourable
higher order bias property, a property noted elsewhere for consistent variance estimators
using tapered data [Brillinger (1981, p.151)], and, for a particular choice of kernel function
weighting and choice of bandwidth, is optimal being asymptotically close to one based
on the optimal quadratic spectral kernel [Andrews (1991, p.821)] or Bartlett-Priestley-
Epanechnikov kernel [Priestley (1962, 1981, pp. 567-571), Epanechnikov (1969) and Sacks
and Ylvisacker (1981)]. Here, though, rather than being applied to the original data as
in PS, the KBB kernel function weighting is applied to the individual observational
components of the quasi-log likelihood criterion function itself. The asymptotic validity
of the KBB bootstrap follows from an adaptation of the general results on resampling
methods for extremum estimators given in Gongalves and White (2004).

Myriad variants for dependent data of the bootstrap method proposed in the land-

mark article Efron (1979) also make use of the standard “m out of n” nonparametric
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bootstrap, but, in contrast to KBB, applied to “blocks” of the original data. See, inter
alia, the moving blocks bootstrap (MBB) [Kiinsch (1989), Liu and Singh (1992)], the
circular block bootstrap [Politis and Romano (1992a)], the stationary bootstrap [Politis
and Romano (1994)], the external bootstrap for m-dependent data [Shi and Shao (1988)],
the frequency domain bootstrap [Hurvich and Zeger (1987), see also Hidalgo (2003)], and
its generalization the transformation-based bootstrap [Lahiri (2003)], and the autoregres-
sive sieve bootstrap [Bithlmann (1997)]; for further details on these methods, see, e.g.,
the monographs Shao and Tu (1995) and Lahiri (2003). Whereas the block length of
these other methods is typically a declining fraction of sample size, the implicit KBB
block length is dictated by the support of the kernel function and, thus, with unbounded
support as in the optimal case, would be the sample size itself.

When the object of inference is the stochastic process mean, the KBB method bears
comparison with the tapered block bootstrap (TBB) of Paparoditis and Politis (2001).
Indeed, in this case, KBB may be regarded as a generalisation and extension of TBB. TBB
is also based on a reweighted sample of the observations but with weight function with
bounded support and, so, whereas each KBB data point is in general a transformation
of all original sample data, those of TBB use a fixed block size and, implicitly thereby,
a fixed number of data points. More generally then, the TBB weight function class is a
special case of that of KBB but is more restrictive; a detailed comparison of KBB and
TBB is provided in PS Section 4.1. TBB is extended in Paparoditis and Politis (2002)
to approximately linear statistics but differs from the KBB method introduced here for
quasi-maximum likelihood estimation.

The paper is organized as follows. After outlining some preliminaries Section 2 in-
troduces KBB and reviews the results in PS. Section 3 demonstrates how KBB can be
applied in the quasi-maximum likelihood framework and, in particular, details the con-
sistency of the KBB estimator and its asymptotic validity for quasi-maximum likelihood.
Section 4 reports a Monte Carlo study on the performance of KBB for the mean regression
model. Finally section 5 concludes. Proofs of the results in the main text are provided

in Appendix B with intermediate results required for their proofs given in Appendix A.

2 KERNEL BLOCK BOOTSTRAP

To introduce the kernel block bootstrap (KBB) method, consider a sample of T' ob-
servations, zi,...,27, on the strictly stationary real valued d.-dimensional vector se-

quence {z,t € Z} with unknown mean pu = E[z;] and autocovariance sequence R(s) =
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E[(zi—p)(ze0s— )], (s = 0,+£1,...). Under suitable conditions, see Ibragimov and Linnik
(1971, Theorem 18.5.3, pp. 346, 347), the limiting distribution of the sample mean z =
ST, 2/T is described by TY2 (2 — p) <, N(0,%4), where Yo, = limy_,o, var[T/2z] =
PRy G

Let kj = [*_k(x)/dz with sample counterpart k; = 31" /. k(s/Sr)?/Sr, (j = 1,2),
where k(-) denotes a suitable kernel function. The KBB approximation to the distribution

of the sample mean Zz randomly samples the kernel-weighted centred observations

t—1

3 k(Siszt_r B, (t=1,...T), (2.1)

r=t—T

1
(];ZST)lm

AT =
where St is a bandwidth parameter.

REMARK 2.1. The definition of z;r (2.1) rescales that in Kitamura and Stutzer (1997)
and Smith (1997, 2011) by (Sz/ks)/? with k, replaced without loss by ks, see PS Corol-
lary K.2, p.31.

Let zp = T! ZtT:1 zyr denote the sample mean of z;p, (t = 1,...,T). Under appro-
priate conditions, Zr — 0 and ZQOI/Q(T/ST)VQZT LR N(0,1,.); see, e.g., Smith (2011,
Lemmas A.1 and A.2, pp.1217-19). Moreover, the KBB variance estimator, defined in

standard random sampling outer product form,

T
S =T (zir = 2r) (2 — Zr)' > s (2.2)
t=1
and is thus an automatically positive semidefinite heteroskedastic and autocorrelation
consistent (HAC) variance estimator; see Smith (2011, Lemma A.3, p.1219).

KBB applies the standard “m out of n” non-parametric bootstrap method to the
index set 7r = {1, ..., T'}; see Bickel and Freedman (1981). That is, the indices t¥ and,
thereby, z:, (s = 1,...,my), are a random sample of size my drawn from, respectively,
Tr and {z7}L,, where mp = [T'/Sr], the integer part of T'/S7.

REMARK 2.2. The KBB sample mean z}, = > """ z=p/mp may be regarded as
that from a random sample of size mr taken from the blocks By = {k{(t — r)/Sr}(z —
2)/(koSp)V2)T (¢ =1,...,T). See PS Remark 2.2, p.3. Note that the blocks {B;}Z_, are

r=1»

overlapping and, if the kernel function &(-) has unbounded support, the block length is 7T'.



Let P* denote the bootstrap probability measure conditional on {z;7}L, (or, equiv-
alently, the observational data {z}7_,) with E* and var* the corresponding conditional
expectation and variance respectively. Under suitable regularity conditions, see PS As-
sumptions 3.1-3.3, pp.3-4, the bootstrap distribution of the scaled and centred KBB

sample mean mlT/2(2;T — Zr) converges uniformly to that of TV/2(z — ), i.e.,

sup [P {my* (25, — 7r) /b < 2} = P{TY2(2 = p) < 2}| = 0, prob-P

see PS Theorem 3.1, p.5.
Given the stricter additional requirement PS Assumption 3.4, p.5, PS Theorem 3.2,
p.6, provides higher order results on moments of the KBB variance estimator Sy (2.2).

Let k(, = lim, o {1 —&*(y)}/|y|’, where the induced self-convolution kernel k*(y) =
I k(x — y)k(x)dz/ks. Define

MSE(T/St, Sxws, Wr) = (T/Sr)E[vec(Swms — Jr) Wrvee(Sxes — Jr)]

T—1
where Wy is a positive semi-definite weight matrix and Jp = Zs:kT(l — |s| /T)R(s).

p
j=1
ith elementary vector, (i = 1, ...,p), (Magnus and Neudecker, 1979, Definition 3.1, p.383).

Let K, denote the p* x p* commutation matrix > _, eie; @ eje;, where e; is the

BIAS. E[S] = Jr + S72(Tke + 0(1)) + Up, where Ty = —k(y Zoi_ |s|* R(s) and
Ur = O((Sp/T)"Y%) + 0(1/S3) + O(S}?/T) + O(Sr/T) + O((Sr/T)*/*~) with
b>1ande € (0,1/2);

VARIANCE. if S3./T — 7 € (0,00), then (T/Sr)var[Siss] = Ag- + 0(1), where Ay =
(Ipp + Kpp) (Bo @ Boo) [0 k¥ (y)*dy;

MEAN SQUARED ERROR. if S3/T — ~ € (0,00), then MSE(T/Sr, Sgs, Wr) =
tr(W (L + Kpp) (B @ o)) oo k*(y)?dy + vee(Ty- ) Woee(Tye) /v + o(1).

REMARK 2.3. The bias and variance results are similar to Parzen (1957, Theorems 5A
and 5B, pp.339-340) and Andrews (1991, Proposition 1, p.825), when the Parzen expo-
nent ¢ equals 2. The KBB bias, cf. the tapered block bootstrap (TBB), is O(1/52),
an improvement on O(1/Sr) for the moving block bootstrap (MBB). The expression
MSE(T/S1, Sxas, Wr) is identical to that for the mean squared error of the Parzen (1957)
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estimator based on the induced self-convolution kernel £*(y).

Optimality results for the estimation of X, are an immediate consequence of PS
Theorem 3.2, p.6, and the theoretical results of Andrews (1991) for the Parzen (1957)
estimator. Consider the kernel function
om
s
here J,(2) = S50 (= 1)* (2/2)* " /{T'(k + 1)I'(k +2)}, a Bessel function of the first
kind (Gradshteyn and Ryzhik, 1980, 8.402, p.951) with I'(-) the gamma function. Smith
(2011, Example 2.3, p.1204) shows that the quadratic spectral (QS) kernel k&g(y) is the
induced self-convolution kernel k*(y) associated with the kernel k(z) (2.4), where the QS

kernel

6 OT 193

k(x) = )1/21J( g )1fx7é()and(8) 5 if = 0; (2.4)

. 3 sin ay
st (y) = (—

(ay)* \ ay
REMARK 2.4. The QS kernel kfg(y) (2.5) is well-known to possess optimality proper-
ties, e.g., for the estimation of spectral densities (Priestley, 1962; 1981, pp. 567-571) and
probability densities (Epanechnikov, 1969, Sacks and Ylvisacker, 1981).

— Cos ay) ,a = 67/5, (2.5)

PS Corollary 3.1, p.7, establishes an optimality result for the KBB variance estimator
Ss(S7) (2.2) computed with the kernel function (2.4) which is denoted as Yyps(S7). For
sensible comparisons, the requisite bandwidth parameter is Spi« = St/ ffooo k*(y)*dy, see
Andrews (1991, (4.1), p.829), if the respective asymptotic variances scaled by T//Sr are
to coincide; see Andrews (1991, p.829). Then, for any bandwidth sequence Sy such that
Sy — oo and S3./T — v € (0,00), limy_.oo MSE(T'/ S, Sxas, Wr)—MSE(T/St, Sos, Wr) >
0 with strict inequality if £*(y) # k&s(y) with positive Lebesgue measure; see PS Corol-
lary 3.1, p.7.

The bandwidth S; = [dvec(Dy) Wovee(Dys) / tr(W (Lyp+Kpp) (Ba®Se0)) [0, k* (y)2dy) /5 T?
is also optimal in the following sense. For any bandwidth sequence St such that S; — oo
and S5./T — ~ € (0,00), lim7_,0o MSE(T*/%, 3255(S1), W) —MSE(T*/3, S35 (S5, W) >
0 with strict inequality unless Sy = S5 + o(1/T/?); see PS Corollary 3.2, p.7.

3 QUASI-MAXIMUM LIKELIHOOD

This section applies the KBB method briefly outlined above to parameter estimation in
the quasi-maximum likelihood (QML) setting. In particular, under the regularity con-

ditions detailed below, KBB may be used to construct hypothesis tests and confidence

[5]



intervals. The proofs of the results basically rely on verifying a number of the conditions
required for several general lemmas established in Gongalves and White (2004) on resam-
pling methods for extremum estimators. Indeed, although the focus of Gongalves and
White (2004) is MBB, the results therein also apply to other block bootstrap schemes
such as KBB.

To describe the set-up, let the d,-vectors z;, (t = 1,...,T), denote a realisation from the
stationary and strong mixing stochastic process {z;}32,. The dp-vector 6 of parameters
is of interest where § € © with the compact parameter space © C R%. Consider the
log-density £;(0) = log f(z;0) and its expectation £(0) = E[L;(0)]. The true value 6, of
0 is defined by

0y = arg max L(6)

with, analogously, the QML estimator 0 of 0,

0 = arg max L(0),

where the sample mean £(0) = Zthl L:(0)/T.
The KBB method for QML makes use of the kernel smoothed log density function
1 t—1 T
Lir(0) = ——— k(=)L r(0),(t =1,...,T),
a0 = G Y, Hg o). )

cf. (2.1). As in Section 2, the indices ¢} and the consequent bootstrap sample L7 (6),
(s =1,...,mr), denote random samples of size my drawn with replacement from the index
set 70 = {1,...,T} and the bootstrap sample space {L;r(0)}]_,, where my = [T'/St] is
the integer part of T'/Sr. The bootstrap QML estimator 6* is then defined by

0" = arg max L. (0)

where the bootstrap sample mean £, (0) = >"0"% Lys7(6) /mr.

REMARK 3.1. Note that, because E[0L:(0y)/060] = 0, it is unnecessary to centre L.(6),
(t=1,..,T), at L(0); cf. (2.1).

The following conditions are imposed to establish the consistency of the bootstrap
estimator 0* for 0. Let f,(0) = f(z:0), (t =1,2,...).

Assumption 3.1 (a) (2, F,P) is a complete probability space; (b) the finite d,-dimensional
stochastic process z;: ) —— R%, (t = 1,2,...), is stationary and strong mizing with miz-

ing numbers of size —v/(v — 1) for some v > 1 and is measurable for allt, (t =1,2,...).
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Assumption 3.2 (a) f: R% x © — RT is F-measurable for each § € ©, © a com-
pact subset of R%; (b) fi(-): © — R* is continuous on © a.s.-P; (c) 0y € © is the
unique mazimizer of E[log f1(0)], E[supgeg [log f:(0)|"] < oo for some a > v; (d) log f+(6)
is global Lipschitz continuous on ©, i.e., for all ,0° € O, |log f;(0) —log f;(6°)] <
L, ||0 = 6°) a.s.-P and supy B[S, L;/T] < oo;

Let I(z > 0) denote the indicator function, i.e., I(A) = 1 if A true and 0 otherwise.

Assumption 3.3 (a) S; — 0o and Sp = o(T2); (b) k(-): R —|—kmax: Fmax]s Fmax <
00, k(0) # 0, ki # 0, and is continuous at 0 and almost everywhere; (c) [*°_k(z)dz < oo
where k(x) = I(z > 0)sup,s, [k(y)| + L(z < 0)sup,, [k(y)|; (d) |[KA)| > 0 for all

A € R, where K(\) = (27?)_1/k(x) exp(—iz\)dz.

THEOREM 3.1. Let Assumptions 3.1-3.3 hold. Then, if T*/ms — 0, (a) —0, — 0,
prob-P; (b) 0* — 6 — 0, prob-P*, prob-P.

To prove consistency of the KBB distribution requires a strengthening of the above

assumptions.

Assumption 3.4 (a) (Q, F,P) is a complete probability space; (b) the finite d,-dimensional
stochastic process z;: Q+—— R%, (t =1,2,...), is stationary and strong mizing with miz-

ing numbers of size —3v/(v—1) for some v > 1 and is measurable for allt, (t =1,2,...).

Assumption 3.5 (a) f: R% x O —— RT is F-measurable for each § € ©, © a compact
subset of R%; (b) fi(-): © — R is continuously differentiable of order 2 on © a.s.-P,
(t=1,2,...); (c) Oy € int(O) is the unique mazimizer of Ellog f.(0)].

Define A(0) = E[0%L(0)/0000'] and B(0) = limy_. var[T20L()/04).

Assumption 3.6 (a) 02L£,(0)/0000' is global Lipschitz continuous on ©; (b) E[sup,ee ||0L(0)/06]%]
< 0o and E[supgeg [|0%L:(0)/0000']|"] < oo for some a > max[4v,1/n]; (c) Ay = A(bp)
is non-singular and By = limg_, var[TY20L(0,)/00] is positive definite.

REMARK 3.2. Assumption 3.6(b) obviates the condition T*/my — 0 of Theorem 3.1
required by the bootstrap pointwise WLLN Lemma A.2 in Appendix A.



Under these regularity conditions,
By P AgTV?(0 — 65) % N(0, I,);

see the Proof of Theorem 3.2. Moreover,

THEOREM 3.2. Suppose Assumptions 3.2-3.6 are satisfied. Then, if Sy — oo and
Sy =O(T2") with 0 < 5 < 2,

sup |P{TY2(0" — 0)/k"? < 2} — P{TY*(0 — 6,) < x}| — 0, prob-P,

zER

where k = ky/k3.

REMARK 3.3. The factor k may be replaced without loss by k = /2;2/1%%, see PS
Corollary K.2, p.31. Cf. Remark 2.1.

Let L7(0) = ZL Lir(0)/T. An alternative less computationally intensive centred

bootstrap may be based on the next result.

COROLLARY 3.1. Under the conditions of Theorem 3.2, if S — oo and Sy =
O(T>") with 0 < 7 < %,

PLx, (0), | ., OL: (0)  OLr(0) A
xf [ Tmp\"/1— T1/2 mr . 1/2 < . Tl/2 . < 5
= PA=5000 ] (—20 g /KT = wk = PATEO = b) < w}) — 0, prob-P,

where k = ko /K3

REMARK 3.4. From the bootstrap UWL Lemma A.1 in Appendix A, suitably
adapted, the matrix 92£7(0) /0006 may substitute for GQE_ZLT(QA) /0000 in Corollary 3.1,
viz. Supgee (ko/St)V?|02L;,, (6)/0000 — 9L (6)/0006'|| — 0, prob-Py, prob-P. A
similar argument together with the UWLs supyeg || (k2/S7)"/20*L1(6)/0000 — k1 A(9)|| —
0, prob-P, and supyce ||82£_(0)/8909’ — A(Q)H — 0, prob-P, yields

62E(é)]_1 1/2(85:@(@) B aL"_T(é)

mp 90 BT ) <z} — P{T1/2(é —by) < x}| — 0, prob-P,

sup |Po{—[ ;
:EERdg 6689

similarly to Paparoditis and Politis (2002, Theorem 2.2, p.135) for the QML implemen-

tation of TBB expressed in terms of the influence function corresponding to the QML

8]



criterion £(0), viz.,

15 (e ) = —(ZEO) 1 OL0)  OLO)

-1
8989’] ( 00 00

noting that d£(0)/80 = 0.

REMARK 3.5. Asnoted in Remark 3.4, 92£(0)/9000' may be replaced by (k/Sy)/202L1(0)/0006 .

Hence,

PLr(0) 1y i (0) _ 9L1(h)

90 g )/KY? < a} = PATY(0 — 60) < x}| — 0, prob-P.

i PA~Z009

REMARK 3.6. It follows from the first order condition A£(0)/80 = 0 for § that the
term 8Ly (0)/06 in Corollary 3.1 and Remarks 3.4 and 3.5 may be omitted. The cor-
responding uncentred bootstrap from Remark 3.4 is the KBB version of Gongalves and
White (2004, Corollary 2.1, p.203) for MBB applied to the one-step QML estimator; also
see Davidson and MacKinnon (1999).

REMARK 3.7. The KBB variance estimator for the large sample variance matrix
A7 ByAg! of the QML estimator 6 (or 6*) is given by the outer product form

1 [azc‘T(é)],1 L 0L (0) 0L (D) [azc‘T@],l
TV 0000 © ~— 90 00 - 0000 @

Cf. (2.2); see PS (2.2), p.2, and Smith (2005, Theorem 2.1, p.165, and 2011, Lemma A.3,
p.1219).

4 SIMULATION RESULTS

In this section we report the results of a set of Monte Carlo experiments comparing
the finite sample performance of different methods for the construction of confidence
intervals for the parameters of the mean regression model when there is autocorrelation
in the data. We investigate KBB, MBB and confidence intervals based on HAC covariance

matrix estimators.

4.1 DESIGN

We consider the same simulation design as that of Andrews (1991, Section 9, pp.840-849)
and Andrews and Monahan (1992, Section 3, pp.956-964), i.e., linear regression with an

[9]



intercept and four regressor variables. The model studied is

yr = Bo + Bix1s + Paay + Baxsy + Baay + oy, (4.1)

where oy is a function of the regressors x;¢, (i = 1,...,4), to be specified below. The
interest concerns 95% confidence interval estimators for the coefficient (3; of the first
non-constant regressor.

The regressors and error term u; are generated as follows. First,
U = PU—1 + oy,
with initial condition u_49 = €9,_49. Let
Tiy = pTig—1 +€ig, (0 =1,...,4),

with initial conditions &; 49 = €; _49, (i = 1,...,4). Asin Andrews (1991), the innovations
gi, (1 =0,...,4), (t = —49,...,T), are independent standard normal random variates.
Define 7y = (%14, ..., Ta4) and Ty = Ty — Zstl Zs/T. The regressors x;¢, (i = 1,...,4), are

then constructed as in
/
Ty = (Jfl,t, ---7374,15)

T
- [Z a_js'f/s/T]_l/Qi‘b (t = 17 7T)
s=1

The observations on the dependent variable y; are obtained from the linear regression
model (4.1) with the true parameter values by invariance set as 5; = 0, (i = 0,...,4),
without loss of generality.

The values of p are 0.0, 0.2, 0.5, 0.7 and 0.9. Homoskedastic, oy = 1, and het-
eroskedastic, o, = |xy4|, regression errors are examined. Sample sizes T = 64, 128 and
256 are considered.

The number of bootstrap replications for each experiment was 1000 with 5000 random

samples generated.

4.2 BoOTSTRAP METHODS

Confidence intervals based on KBB are compared with those obtained for MBB [Fitzen-
berger (1997), Gongalves and White (2004)] and TBB [Paparoditis and Politis (2002)] for

[10]



least squares (LS) estimation of (4.1). For succinctness, only the results on the standard
percentile bootstrap confidence intervals, Efron (1979), are presented.!

To describe the standard percentile KBB method, let Bl denote the LS estimator
of 51 and B{ its bootstrap counterpart. Because the asymptotic distribution of the LS
estimator Bl is normal and hence symmetric about 3, in large samples the distributions
of 61 — (1 and (1 — 31 are the same. From the uniform consistency of the bootstrap,

Theorem 3.2, the distribution of 3y — (; is well approximated by the distribution of

B — Bl. Therefore, the bootstrap percentile confidence interval for ; is given by

1 4 BT,0.0% 1 Bik,o.975
<[1 o W]ﬁl - /2 - /{:1/2]61 + Kz |0

where f3; , is the 100« percentile of the distribution of 3 and, recall, k = ky/k3.2 For
MBB, k = 1.

KBB confidence intervals are constructed with the following choices of kernel function
k(-): truncated, Bartlett and (2.4) kernel functions, which respectively induce the Bartlett
[BT], Smith (2011, Example 2.1, p.1203), Parzen [pz], Smith (2011, Example 2.2, pp.1203-
1204), and the optimal quadratic spectral [Qs] (2.5), Smith (2011, Example 2.3, p.1204),
kernel functions k*(-) as the associated convolutions, and the kernel function [PP] based
on the optimal trapezoidal taper of Paparoditis and Politis (2001), see Paparoditis and
Politis (2001, p.1111). The respective confidence interval estimators are denoted by
KBB,;, where J = BT, PZ, QS and PP. Percentile bootstrap confidence intervals based
on Corollary 3.1 are denoted KBB¢, while those based on Remarks 3.4 and 3.5 are
denoted by KBB? and KBB¢ respectively.>* A similar notation is adopted for bootstrap
confidence intervals based on MBB and TBB where the latter is computed using the
optimal Paparoditis and Politis (2001) trapezoidal taper. The validity of the MBB
confidence intervals follows from results to be found in Fitzenberger (1997) and Gongalves
and White (2004). Although Paparoditis and Politis (2002) only provides a theoretical
justification for TBB?, the validity of the other TBB confidence intervals follows using

IThe standard percentile method is valid here because the asymptotic distribution of the LS estimator
is symmetric; see Politis (1998, p.45). Empirical rejection rates for bootstrap confidence intervals based
on the symmetric percentile and the equal-tailed methods, Hall (1992, p.12), were also computed and
are available upon request.

2Bootstrap intervals based on k were also computed with results similar to those obtained with k;
see Remark 3.3.

3Uncentred bootstrap confidence intervals, c¢f. Remark 3.6, were also computed with results similar
to the respective centred versions from Corollary 3.1 and Remarks 3.4 and 3.5.

4Since 0*—0 = — [0°Ls, . (é)/aeaef]*lac’;w (9)/08 for the LS estimator, bootstrap confidence intervals
based on Theorem 3.2 are numerically identical to those based on the uncentred Corollary 3.1 bootstrap.
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versions of results in this paper adapted for TBB.

Standard t-statistic confidence intervals using heteroskedastic autocorrelation consis-
tent (HAC) estimators for the asymptotic variance matrix By are considered based on
truncated [TR], Bartlett [BT], Parzen [PZ], Tukey-Hanning [TH] and quadratic spectral
[QS] kernel functions £*(+); see Andrews (1991). Alternative ¢-statistic confidence inter-
vals based on the Smith (2005) HAC estimator of By, cf. Remark 3.7, are also examined
which use kernel functions k() that induce Bartlett [Sgy], Parzen [Sp,] and quadratic
spectral [Sqs] kernels k*(-) respectively and the optimal Paparoditis and Politis (2001)

trapezoidal taper [Spp|.?

4.3 BANDWIDTH CHOICE

The accuracy of the bootstrap approximation in practice is particularly sensitive to the
choice of the bandwidth or block size Sr. Gongalves and White (2004) suggests bas-
ing the choice of MBB block size on the optimal automatic bandwidth, see Andrews
(1991, Section 5, pp.830-832), appropriate for HAC variance matrix estimation using the
Bartlett kernel, noting that the MBB bootstrap variance estimator is asymptotically
equivalent to the Bartlett kernel variance estimator. Smith (2011, Lemma A.3, p.1219)
obtained a similar equivalence between the KBB variance estimator and the correspond-
ing HAC estimator based on the induced kernel function k*(-); see also Smith (2005,
Lemma 2.1, p.164). We adopt a similar approach to that of Gongalves and White (2004)
to the choice of the bandwidth for KBB confidence interval estimators. However, rather
than using the method suggested in Andrews (1991) for estimation of the optimal au-
tomatic bandwidth for the induced kernel function £*(-), a non-parametric estimator of
this bandwidth is adopted; see Politis and Romano (1995). Despite lacking a theoretical
justification, the results discussed below indicate that this procedure fares well for the
simulation designs studied here.

The infeasible optimal bandwidth for HAC variance matrix estimation based on the

kernel k*(+) is given by

1/(2+1)
S = ( q(kfy)? / / ng;) ,

where k() = lim,_o[1—k*(2)]/ [2|* and a(q) = 21)60(2

S§=—00 =—00

°The HAC estimator of BO of Andrews (1991) is given by ZZ;E_T k*(s/St) Ry (s) where the sample
autocovariance Rp(s) = T—! me 7.1~ AL (0)/00)(DLs—s(0)/00), (s =1 —T,...,T — 1), while the

t=max[1,1— s(

Smith (2005) HAC estimator of By is T~ 3.1, (0L (0)/80) (L (0)/00)', cf. (2.2).

[12]
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Jtr(W (L + Kpp)(Eoo ® X)), q € [0,00), cf. the optimal KBB bandwidth S of section
2 when ¢ = 2; see Andrews (1991, (5.2), p.830). Note that ¢ = 1 for the Bartlett [BT]
kernel and ¢ = 2 for the Parzen [Pz], quadratic spectral [QS] kernels and the optimal
Paparoditis and Politis (2001) taper [PP|. In the linear regression model (4.1) context,
with diagonal weight matrix W = diag(w, ..., wy),

" Siiwld sl Rils)?
al\g) = ) )
SLowly . Ris)?

where R;(s) is the sth autocovariance of zy(y; — Zi:l TfPr), (1 = 1,...,4). As in
the Monte Carlo study Andrews (1991, section 9, pp.840-849), unit weights w; = 1,
(1 =1,...,4), are chosen.

The optimal bandwidth S¥ requires the estimation of the parameters «(1) and «/(2).
Rather then base estimation of a(g) on a particular ARMA model as suggested in An-
drews (1991, Section 6, pp.832-837), a feasible non-parametric estimator of the Andrews
(1991) optimal bandwidth replaces a(q) by a consistent estimator based on the flat-top

lag-window of Politis and Romano (1995), viz.

Lo ) B2
d(q)zzhi[Z ’ ”,<q=1,2),

S 1[2M A R

7

where A (t) = I(|t] € [0,1/2]) +2(1 — [t]) I (|t| € (1/2,1]), R; (j) is the sample jth au-
tocovariance of {zy(y, — ey Trefr)}, (i = 1,...,4), using LS estimation of B, (k =
1,...,4), and M;, (i = 1,...,4), are computed using the method described in Politis
and White (2004 ftn. ¢, p.59). The feasible optimal bandwidth estimator is then

) 1/(2¢+1)
St = ( (k7p)°a / / k*(x 2d:1:> whereas the bandwidth formula S} =

0.6611 (&(2)T)"" is used for the truncated kernel [TR] HAC estimator, see Andrews
(1991, ftn.5, p. 834).

Bootstrap sample sizes are defined as mp = maX[LT / S}J , 1], where |-] is the floor
function. MBB and TBB block sizes are given by min[[S5], T], where [-] is the ceiling
function and S}, the optimal bandwidth estimator for the Bartlett kernel £*(-) for MBB
and for the kernel £*(-) induced by the optimal Paparoditis and Politis (2001) trapezoidal
taper for TBB.
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4.4 RESULTS

Tables 1 and 2 provide the empirical coverage rates for 95% confidence interval estimates
obtained using the methods described above for the homoskedastic and heteroskedastic
cases respectively.

Tables 1 and 2 around here

Overall, to a lesser or greater degree, all confidence interval estimates display under-
coverage for the true value ; = 0 but especially for high values of p, a feature found
in previous studies of MBB, see, e.g., Gongalves and White (2004), and confidence in-
tervals based on t-statistics with HAC variance matrix estimators, see Andrews (1991).
As should be expected from the theoretical results of Section 3, as T" increases, empirical
coverage rates approach the nominal rate of 95%.

Additionally, Tables 1 and 2 reveal that the empirical coverage rates of the bootstrap
confidence intervals based on Corollary 3.1 are very similar to those based on Theo-
rem 3.2, although the former corresponds to a centred version of the latter, see ftn. 4,
and is intuitively expected to yield improvements, cf. Paparoditis and Politis (2001,
p.1108). Furthermore, the empirical coverage rates of the bootstrap confidence inter-
vals constructed using the results in Remarks 3.4 and 3.5 are systematically lower across
KBB, MBB and TBB than those based on Theorem 3.2 and Corollary 3.1. With a few
exceptions, all bootstrap confidence interval estimates outperform those based on HAC
t-statistics for all values of p and for all sample sizes except for T' = 256 when, for lower
and moderate values, both bootstrap and HAC t-statistic methods produce similarly sat-
isfactory results. The following discussion is therefore conducted based solely on KBB,
MBB and TBB.

A comparison of the various KBB confidence interval estimates for the homoskedastic
design in Table 1 for 7" = 64 with those using MBB reveals that generally, for low values
of p, the coverage rates for KBBy, are closer to the nominal 95% than those of MBB,
although both are based on the truncated kernel, and other KBB methods. Furthermore,
KBB;; is superior to KBBg;, KBB;, and KBBs for high values of p, although not
dramatically so for moderate p. While both bootstraps use the same kernel function,
MBB has similar coverage rates to KBBg; for low to moderate p but higher coverage
rates for the higher values of p. TBB coverage is poorer than MBB at low values of p
and is dominated by KBB;; at all values of p even though both methods use the same
taper/kernel. A similar pattern is repeated for the larger sample size T" = 128 although

the differences across bootstrap methods narrow. For sample size T = 256, all bootstrap
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and HAC t-statistic confidence intervals display similar coverage rates except for p = 0.9
when KBB,; is superior. Overall, the results with homoskedastic innovations in Table 1
indicate that KBB;; is the superior bootstrap method at moderate to high values of p
at all sample sizes with KBBg;, KBBys, KBB;; and TBB reasonably competitive for
the lower p at the larger sample sizes.

In Table 2, for heteroskedastic innovations, the differences in coverage rates between
the various methods narrow and are more varied. For sample size T = 64, all KBB
bootstrap confidence intervals display similar coverage for low p but KBB,s and KBBy;
are superior and perform similarly for moderate to high values of p and for all sample
sizes. MBB is again dominated by KBBg; and, likewise, KBB,; is superior to TBB at

all sample sizes.

4.5 SUMMARY

In general, for homoskedastic innovations, confidence interval estimates based on KBB;,
provide the best coverage rates for all values of p and sample sizes whereas, under het-
eroskedasticity, the performance of KBBg;, KBBy and KBB;; confidence intervals are
similar and dominate for low and moderate values of p and the larger sample sizes.
KBBs is broadly competitive at all values of p except at p = 0.9 for homoskedastic

innovations.

5 CONCLUSION

This paper applies the kernel block bootstrap method to quasi-maximum likelihood es-
timation of dynamic models under stationarity and weak dependence. The proposed
bootstrap method is simple to implement by first kernel-weighting the components com-
prising the quasi-log likelihood function appropriately and then sampling the resultant
transformed components using the standard “m out of n” bootstrap.

We investigate the first order asymptotic properties of the kernel block bootstrap
for quasi-maximum likelihood demonstrating, in particular, its consistency and the first-
order asymptotic validity of the bootstrap approximation to the distribution of the quasi-
maximum likelihood estimator. A number of first order equivalent kernel block bootstrap
schemes are suggested of differing computational complexities. A set of simulation ex-
periments for the mean linear regression model illustrates the efficacy of the kernel block
bootstrap for quasi-maximum likelihood estimation. Indeed, in these experiments, the

kernel block bootstrap outperforms other bootstrap methods for the sample sizes consid-
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ered, especially if the induced KBB kernel function is chosen appropriately as either the
Bartlett kernel or the quadratic spectral kernel or the optimal taper of Paparoditis and

Politis (2001) is used to kernel-weight the quasi-log likelihood function.

APPENDIX

Throughout the Appendices, C' and A denote generic positive constants that may be
different in different uses with C, M, and T the Chebyshev, Markov, and triangle in-
equalities respectively. UWL is a uniform weak law of large numbers such as Newey
and McFadden (1994, Lemma 2.4, p.2129) for stationary and mixing (and, thus, ergodic)
processes.

A similar notation is adopted to that in Gongalves and White (2004). For any boot-
strap statistic T*(-,w), T*(-,w) — 0, prob-P*, prob-P if, for any § > 0 and any & > 0,
limy o P{w: PN |[T*(\,w)| >0} > & =0.

To simplify the analysis, the appendices consider the transformed uncentred observa-

tions
L) = g WZ% )L

with ky substituting for ky = ST Zt 7 k(t/Sr)? in the main text since ko — ko = 0(1),
cf. PS Supplement Corollary K.2, p.S.21.

For simplicity, where required, it is assumed 7'/ St is integer.

APPENDIX A: PRELIMINARY LEMMAS

AssuMPTION A.1. (Bootstrap Pointwise WLLN.) For each §# € © C R%, © a compact
set, S¢ — oo and Sy = o(T~Y/?)

(kg/ST)l/Q[EfnT(Q) — L7(0)] — 0, prob-P*, prob-P.

REMARK A.1. See Lemma A.2 below.

AssumMPTION A.2. (Uniform Convergence.)

iug} ky/ST)Y2 L1 (6) — k1L(0)| — 0 prob-P.
€

REMARK A.2. The hypotheses of the UWLs Smith (2011, Lemma A.1, p.1217) and
Newey and McFadden (1994, Lemma 2.4, p.2129) for stationary and mixing (and, thus,
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ergodic) processes are satisfied under Assumptions 3.1-3.3. Hence, noting sup,ce HZ(G) — L(0)] H
— 0, prob-P, where L£(0) = E[L,()], supgeq ||(k2/Sr)Y2Lr(0) — k1L(0)]|| — 0, prob-P.
Thus, Assumption A.2 follows by T and k;, ko = O(1).

AssumMPTION A.3. (Global Lipschitz Continuity.) For all 6,0° € ©, |£,(0) — L£,(0°)] <
L |0 — 6°]| a.s.P where sup; E[ZtT:l L)T) < .

REMARK A.3. Assumption A.3 is Assumption 3.2(c).

LEMMA A.1. (Bootstrap UWL.) Suppose Assumptions A.1-A.3 hold. Then, for
Sr — oo and Sy = o(TY?),

zueﬂ ka2/Sr) 1/25_;@(9) — k1L(0)| — 0, prob-P}, prob-P.
S

PRrROOF. From Assumption A.2 the result is proven if

sup(ky/St)"/? |L:,.(0) — L7(8)| — 0, prob-PJ, prob-P.
0e®

The following preliminary results are useful in the later analysis. By global Lipschitz

continuity of £;(-) and by T, for T large enough,

t—

—

(ko 1) /2 £1(6)) = £2(6)] < ZSiT

t=1 s
T
_ Z L)

oue—eﬂu%;@ (A1)

el

T

Iy
|
~

IN

since for some 0 < C < o0

o)< C

5 25

s=1-—t

uniformly ¢ for T large enough, see Smith (2011, eq. (A.5), p.1218). Next, for some
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0<C* < o0,

(/2B €3, )= Lo @) = 23 2B LS [ )| ) - 260
1 oy 1 = r
— ?;\Ltw)—ct(e )|5_Tr_t ] k(S—T)'

<

1
0
0= 0% 7> Le
t=1
Hence, by M, for some 0 < C* < oo uniformly ¢ for large enough T,

Lo

Pi{(kz/Sr)"?

, o 1 «
0) — L (0° < — 1|0 -0° = Ly. A2
R R S PO IR
The remaining part of the proof is identical to Gongalves and White (2000, Proof
of Lemma A.2, pp.30-31) and is given here for completeness; cf. Hall and Horowitz
(1996, Proof of Lemma 8, p.913). Given ¢ > 0, let {n(6;,¢), (i =1,...,I)} denote a finite
subcover of © where n(;,e) ={0 € © :||0 -0, <e}, (i=1,...,1). Now

sup(k:g/ST)l/2 E_;T(Q) — E_T(é’)‘ ' sup (k:g/ST)l/2
0cO i=1,...,] 0€n(0;,€)

L., (0) = Lr(0)].

I
=
&
"

The argument w € 2 is omitted for brevity as in Gongalves and White (2000). It then
follows that, for any § > 0 (and any fixed w),

* 1/2 | p= r I * 1/2 | p= r
PLlsuplhl Sr)" |20, (0) = £r(0)] > 0 < Y71 Pl st (kafS0)"2 25, 0) = £2(0)] > 0}
S = 0en(0

i5€)

For any 6 € n(0;,¢), by T,

(ko/Sr)'?

L (0) = Lr(0)| < (ko/Sr)?|L,, (0:) — Lr(6:)] + (ko/Sr)'?
+(ka/ST)? | Lr(0) — Lr(6:)] -

L., (0) = £3,,.(6:)]

Hence, for any 6 > 0 and & > 0,

P{P,{ sup (/fz/ST)l/2

0677(01 ’E)

L300 (0) — £0(0)| > 8} > €} < PLPL(ka/S1)' |E3y (0) — £x(0)] > 5} > 5

FPIPL b/ S1) | B3y (0) — L3, 0] > 5} > )

+P{(ky/Sr)"/? |L7(0) — Lr(6:)] > g}. (A.3)
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By Assumption A.1

- - 5, & ¢
* (0. — 0. e 3 3
for large enough 7. Also, by M (for fixed w) and Assumption A.3, noting L, > 0,

(t=1,..,T), from eq. (A.2),

P{P:{(ka/Sr)"?

Pi{(ka/Sr)'?

= - 0 3C* T
e (0) = L, 0] > S} < =100l 5 Zt_lﬂt

3C*e 1
S 5T thl L.

As a consequence, for any § > 0 and £ > 0, for T sufficiently large,

Cr(0) = L5, (6] > é} _} 73{30*81

= P{= Zt ) 90*

9C’* T

& Bl Zt:l L
< 9C*eA - 3
- & 3
for the choice e < £25/27C*A, where, since, by hypothesis E[>./_, L,/T] = O(1), the sec-
ond and third inequalities follow respectively from M and A a sufficiently large but finite
constant such that supy E[>,_; L;/T] < A. Similarly, from eq. (A.1), for any § > 0 and
¢ > 0, by Assumption A.3, P{(kso/Sr)"/? |Lr(0) — Lr(0;)| > 6/3} < P{Ce ST LT >
0/3} <3CeA/§ < £/3 for T sufficiently large for the choice ¢ < £5/9CA.

Therefore, from eq. (A.3), the conclusion of the Lemma follows if

_&9 (1l &\ .
cT oA M\ oo )

LEMMA A.2. (Bootstrap Pointwise WLLN.) Suppose Assumptions 3.1, 3.2(a) and
3.3 are satisfied. Then, if T%*/ms — 0 and E[supy.g |log f:(6)|"] < oo for some a > v,
for each € © C R%, © a compact set,

P{P{(kz/Sr)"?

—}

IN

(ka/Sr)"?[L5,, () — L1 (0)] — 0, prob-P%, prob-P.

PROOF: The argument 6 is suppressed throughout for brevity. First, cf. Gongalves
and White (2004, Proof of Lemma A.5, p.215),

(ka/Sr)'(L;

mr

— Lr) = (ka/S1)'?(L;

mT

= E*[L5, ) = (ka/S0)' (L — EIL],, ).
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Since E*[L}, ] = L, cf. PS (Section 2.2, pp.2-3), the second term Ly — E*[L7, ] is
zero. Hence, the result follows if, for any 6 > 0 and £ > 0 and large enough T,
PP (ko S0 | Ly — BF (L, )| > 0} > € < €

Without loss of generality, set E*[L}, ] = 0. Write Kyp = (ka/S7)"*Lir, (t=1,...,T).
First, note that

E*[

ICt’S‘T

1 T 1 T
| = 72 Ral=72

< 0 16l =0,0)

1 t—1 S
5o D g MG

uniformly, (s = 1,...,mz), by WLLN and E[sup,cg |log f:(0)|"] < oo, a > 1. Also, for
any 0 > 0,

1 T 1 T . .
A Kl = 2 S Kl Kl < mad) = 23 Kl (Kol > mrd)
1 T
< 52, Kl max (Kl > mrd).

Now, by M,

m?XUCtT\ =0(1) max 1L,| = O, (TY);
cf. Newey and Smith (2004, Proof of Lemma A1, p.239). Hence, since, by hypothesis,
TV Jmp = o(1), max; I(|Kyr| > mrd) = 0,(1) and S, [Kir| /T = O,(1),

E* [ K:t;‘T

I(| Ky

1 T
> mrd)] = thzl |Ker| I(|Ker| = mrd) = 0,(1).

(A.4)

The remaining part of the proof is similar to that for Khinchine’s WLLN given in
Rao (1973, pp.112-114). For each s define the pair of random variables

Vier = ]Ct;T]I(VCt;T < mrd), Wyr = ICt’S‘TH(VCt;‘T > mr6),
y161d111g Kt;T = V;:T + Wt;Ta (S = 1, ceey mT). Now
var*[Visr] < E*[VéT] < deE*HW:TH' (A.5)

Write V= ij Vier/mp. Thus, from eq. (A.5), using C,

var*[Visr|

P{

V,;T—E*[W:TH > e} < —;

SE*[|Vier|]

e2
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Also |l€T — E*[Vier] ‘ = 0,(1), i.e., for any € > 0, T" large enough, |l€T — E*[V}TH < e
since by T, noting E*[Vi.r] = Z Kirl( || < mpd)/T,

_ 1 T 1 T
‘K:T — E* [Vt’;TH = ‘— Zt . ]CtT — — Zt:l ’CtTH(“CtT‘ < mT5)
< = Z Ko | I(|Kor| > mad) = 0,(1)

from eq. (A.4). Hence, for T large enough,

_ _ OE*[| Vi
PV, — Kr| > 2} < % (A.6)
By M,
P*{Wtng 7£ 0} = P*{ ICt:T‘ Z mT5}
I, )
To see this, E*[|ICpor| I(|Kesr| > mz6)] = 0,(1) from eq. (A.4). Thus, for T large enough,
E*HICt;T ]I(‘lCt;T > mpd)] < 62 w.p.a.l. Write Wy, = Zm_Tl Wi /mp. Thus, from eq.
(A7)
PWE 40} < Z’":Tl P {Wyr # 0} < 6. (A.8)
Therefore,
e — K| > Vg = K| + Wi, | = 4¢}
< W | > 2}
IE*
< ]+P*{ #0}<¥+5.

22
where the first inequality follows from T, the third from eq. (A.6) and the final inequal-
] <

ity from eq. (A.8). Since § may be chosen arbitrarily small enough and E*HVt:T
E*[|ICsr|] = O,(1), the result follows by M.H

LEMMA A.3. (Bootstrap CLT.) Let Assumptions 3.2(a)(b), 3.3, 3.4 and 3.6(b)(c)
hold. Then, if S7 — oo and Sy = O(T>7") with 0 <7 <

sp | iz 2L 00) _ 01 (0

_ < _ /272707
ub 00 o )= - PAT

<z}| — 0, prob-P.

9L (0o)
00
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PROOF. The result is proven in Steps 1-5 below; cf. Politis and Romano (1992b,
Proof of Theorem 2, pp. 1994-1995). To ease exposition, let my = T'/Sr be integer and
do = 1.

STEP 1. dL(6y)/df — 0 prob-P. Follows by White (1984, Theorem 3.47, p.46) and
E[0L(6y)/00] = 0.

STEP 2. P{B; *T'2dL(6y)/d0 < z} — ®(x), where ®(-) is the standard normal
distribution function. Follows by White (1984, Theorem 5.19, p.124).

STEP 3. sup, ‘P{Bgl/QTl/QdZ(HO) /df < x} — @(:c)‘ — 0. Follows by Pélya’s Theo-
rem (Serfling, 1980, Theorem 1.5.3, p.18) from Step 2 and the continuity of ®(-).

STEP 4. var*[my/*dLz, (6y)/df] — By prob-P. Note E*[dL:, (00)/d6] = dLr(6y)/d0.
Thus,

oo 172dL5,,.(60) o ALy (6)
var®[m T] = var [T]
1 ZT: (dL‘tT(GO) - dZT(GO))2
T a9 df

1

o+
I

1~ dLur(00) .y dLr(6o)

( do A do )y

I
~|
]~

-
Il

1

the result follows since (dLr(6y)/d0)? = O,(Sr/T) (Smith, 2011, Lemma A.2, p.1219),
Sy = o(T"?) by hypothesis and T-' 37, (dL1(6y)/df)*> — By prob-P (Smith, 2011,
Lemma A.3, p.1219).

STEP 5.
. AL, (60)/d0 — E*[dL}, (6o)/db)]
| * T - T — O > = 0.
Tﬂ*iop{sip T U8 V7 e R A } ’

Applying the Berry-Esséen inequality, Serfling (1980, Theorem 1.9.5, p.33), noting the
bootstrap sample observations {dL::r(6y)/d0}.; are independent and identically dis-
tributed,

my (AL, (80)/d0 — dLr(6,)/d6)

. C dLpr(0).
sup P 1/2 5 <z} —-P(x) < 173 Var [ tdg( 0>} 3/2
: var i/ dC;,, (60) /6] 2 s
xE*| dLe(0) _ dLr(0o) ’

do do I

Now var*[dLyr(6p)/d0] — By > 0 prob-P; see the Proof of Step 4 above. Furthermore,
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E*[|dLer(6o)/d8 — dLr(60)/d8)") = T S, |dLer(60)/d — dLr(6o)/d6|* and

59

t=1

dﬁtT 0o)  dLr(fo) 3
df

1 Z(dﬁtT(eo) ~dLr(bh)

ALy (00)  dLr(6o)
i ‘ o )

df df
= Op(SilfmTl/a)-

The equality follows since

dLer(00)  dLr(6y)
do do

max
t

i dLyr(6o) dLr(0)
t df df

= O0,(S*TY*) + O, ((Sr/T)V?) = 0, (S *TH)

by M and Assumption 3.6(b), cf. Newey and Smith (2004, Proof of Lemma A1, p.239),

and S (dLir(00)/d0 — dLr(0o)/d0)? /T = O,(1), see the Proof of Step 4 above. There-

fore

(T/Sr)'*(dLy,, (6o)/dO — dLr(6o)/dO)
var*[(T/Sr)'/2dLs, (0o)/d6]'/?

< 50,10, (ST

1/2
mrp

g1/2
= 210,17 = 0,1)
mp

PA <ap— ®(x)

sup

by hypothesis, yielding the required conclusion.ll

LEMMA A.4. Suppose that Assumptions 3.2(a)(b), 3.3, 3.4 and 3.6(b)(c) hold. Then,
if Sp — 0o and Sp = O(T2 ") with 0 < < 1

1/2 L7 () OL(6) N
00 00

ProOOF. Cf. Smith (2011, Proof of Lemma A.2, p.1219). Recall

(k2/St) op(T~11).

min[T,T—r]

s O - 5 (5) 73

- t=max|[1,1—7]

0L (6p)

The difference between Zmin[T’T_T] 0L(6p)/00 and Zthl 0L(6y)/00 consists of |r| terms.

t=max[1,1—r]

By C, using White (1984, Lemma 6.19, p.153),

2
Ir|

1| <L aL.(6) 1 OL4(60)
Prla—a | = w2 am |
= |r|O(T™?)
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where the O(T~2) term is independent of r. Therefore, using Smith (2011, Lemma C.1,
p.1231),

(m/ST)l/?aﬁg—é@O) = SiT k(SLT) (8%(50)+IHOP<T2))
1 & s\ OL(6y) .
- s—k<s—> oo T
= (b +o(1))a 8(990) +0,(T™)
_ . OL(6o) 12
= I 5+ L(T71/2). 1

APPENDIX B: PROOFS OF RESULTS

Proor oF THEOREM 3.1. Theorem 3.1 follows from a verification of the hypotheses
of Gongalves and White (2004, Lemma A.2, p.212). To do so, replace n by T, Qr(-,0)
by L£(0) and Q% (-,w,0) by L, (w,0). Conditions (al)-(a3), which ensure 0 — 6y — 0,
prob-P, hold under Assumptions 3.1 and 3.2. To establish 6 — 6 — 0, prob-P*, prob-
P, Conditions (bl) and (b2) follow from Assumption 3.1 whereas Condition (b3) is the
bootstrap UWL Lemma A.1 which requires Assumption 3.3.H

PROOF OF THEOREM 3.2. The structure of the proof is identical to that of Goncalves
and White (2004, Theorem 2.2, pp.213-214) for MBB requiring the verification of the hy-
potheses of Gongalves and White (2004, Lemma A.3, p.212) which together with Pdlya’s
Theorem, Serfling (1980, Theorem 1.5.3, p.18), and the continuity of ®(-) gives the result.

Assumptions 3.2-3.4 ensure Theorem 3.1, i.e., 0 — 6 — 0, prob-P*, prob-P, and
0 — 0y — 0, prob-P. The assumptions of the complete probability space (£, F,P) and
compactness of O are stated in Assumptions 3.4(a) and 3.5(a). Conditions (al) and (a2)
follow from Assumptions 3.5(a)(b). Condition (a3) By *TY20L(6,)/00 - N(0, 1,,) is
satisfied under Assumptions 3.4, 3.5(a)(b) and 3.6(b)(c) using the CLT White (1984,
Theorem 5.19, p.124); cf. Step 4 in the Proof of Lemma A.3 above. The continuity of
A(f) and the UWL Condition (ad) supyee [|02L(6)/0006' — A(6)|| — 0, prob-P, follow
since the hypotheses of the UWL Newey and McFadden (1994, Lemma 2.4, p.2129) for
stationary and mixing (and, thus, ergodic) processes are satisfied under Assumptions 3.4-
3.6. Hence, invoking Assumption 3.6(c), from a mean value expansion of d£(0)/80 = 0
around 6 = 0, with 6y € int(©) from Assumption 3.5(c), TV2(—0,) > N(0, Ag' ByAgh).

[24]



Conditions (bl) and (b2) are satisfied under Assumptions 3.5(a)(b) as above. To
verify Condition (b3),

aL:, (h) oLy, (6o)  OLr(6y)
1/2 mrT — 1/2 mrT _ T 0
T g mr (5 )
1/20L7(6p) 1/2,0L5,.(0) B oL, (0o)
L T T o)
With Lemma A.3 replacing Gongalves and White (2002, Theorem 2.2(ii), p.1375), the
first term converges in distribution to N (0, By), prob-P?*, prob-P. The sum of the second

and third terms converges to 0, prob-P*, prob-P. To see this, first, using the mean value
theorem for the third term, i.e.,
o Pin0) 053,00 1 L, 0)

= TY2(h —
T g o6 ) SL2 - 9000" (6= o),

where 6 lies on the line segment joining 6 and 6. Secondly, (ks/S7)Y 20°L;, . (0)/0000" —

k1A, prob-P}, prob-P, using the bootstrap UWL supgee (k2/Sr)*? ||0*Ls,, (6)/0000 — 0*L1(6)/0600 ||
— 0, prob-P}, prob-P, cf. Lemma A.1, and the UWL supyeg ||(k2/S7)"/20*L1(6)/0000" — k1 A(0)|| —

0, prob-P, cf. Remark A.2. Condition (b3) then follows since TV/2(0—0,)+Ay *TY20L(60y) /00 —

0, prob-P, and my/*0Lr(00)]00 — (kv /Ky *)T20L(6y)/86 — 0, prob-P, cf. Lemma

A.4. Finally, Condition (b4) supyeg ||(k2/ST)V2[02L:, . (0)/0006" — 9*L1(0)/0006']|| —

0, prob-P*, prob-P, is the bootstrap UWL Lemma A.1 appropriately revised using As-

sumption 3.6.

Because 0 € int(©) from Assumption 3.5(c), from a mean value expansion of the first
order condition 8/3;%(&*) /00 = 0 around 6 = 0,
L, (0)
0000

120L%, (0)

Tl/2(é*_é): [ T T’

/S m (B.1)

where 6 lies on the line segment joining 0% and 0. Noting 0* — 6 — 0, prob-P*, prob-P,
and 0 — 0, — 0, prob-P, (ko/Sr) 20 L;, ()/8000' — k; Ay, prob-P*, prob-P. There-
fore, T'/2(*—0) converges in distribution to N (0, (ko /k?) Ay ' ByAg?), prob-P*, prob-P. M

PRrROOF OF COROLLARY 3.1. It follows immediately from Lemma A.3 that

oL, (0 C
i (00) _ 8ET(90)) d, N(0, By), prob-PZ, prob-P.

1/2

mr (—ag 90

Moreover, from the Proof of Theorem 3.2,
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1205, 0) 1y 0L5,(00) DLy (6y)

my 59 T ( 2 50 ) — 0, prob-P}, prob-P.
Therefore,
oL, (0 8
sup P:{mle%() <} — P{Tlﬂ%(;()) <z} — 0, prob-P,
zeR%

follows by Pélya’s Theorem (Serfling, 1980, Theorem 1.5.3, p.18) and the continuity of
the normal c.d.f. ®(-) recalling sup, |P{By “/*T2dL(6,)/df < x} — ®(x)
STEP 3 of the Proof of Lemma A.3.

Recall from eq. (B.1) in the Proof of Theorem 3.2 that, because 0 € int(©), from a

mean value expansion of the first order condition (‘35_,*%T(9A*) /00 = 0 around 6 = 0,

— 0 from

2755 (0 Fx ()
12— ) = (g ® sy ol

First, (ko/St)Y20°L;, (0)/0000" — ki Ay, prob-P%, prob-P, using the bootstrap UWL

Supgee (ka/S7)'? ||0*L:, (0)/0600" — 02Lr(0) /0608 || — 0, prob-P;, prob-P, cf. Lemma

A.1, and the UWL supgeg ||(k2/Sr) 202 Ly (0)/0006" — ki A(6)|| — 0, prob-P, cf. Re-

mark A.2. Secondly, similarly, (ky/S7)'/? HGQZ;‘HT(Q)/%W - 02E;T(é)/8989’

prob-P*, prob-P. Hence,

— 0,

120L%, (D)

NG ()
9 Eme\Y) (1

TV2(6* — 6) — | o /Sy m — 0, prob-P*, prob-P.

(B.2)
Therefore, from Theorem 3.2, after substitution of (B.2),

e (1L (0) e (0)
i 0000 o0

£E€Rd9 w 8889’ T

/S m /K2 <} = P{T*(0 — o) < }| — 0, prob-P,

or
oL, ()

- 02L:, ()
Sup 89

Al 551 T JEMY? < 2} — P{T2(0 — 6,) < x}| — 0, prob-P. W
zeR
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