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Abstract

From its inception, demand estimation has faced the problem of “many prices.” While

some aggregation across goods is always necessary, the problem of many prices remains

even after aggregation. Although objects of interest may mostly depend on a few prices,

many prices should be included to control for omitted variables bias.

This paper uses Lasso to mitigate the curse of dimensionality in estimating the aver-

age expenditure share from cross-section data. We estimate bounds on consumer surplus

(BCS) using a novel double/debiased Lasso method. These bounds allow for general, mul-

tidimensional, nonseparable heterogeneity and solve the "zeros problem" of demand by

including zeros in the estimation.

We also use panel data to allow for prices paid to be correlated with preferences.

We average ridge regression individual slope estimators and bias correct for the ridge

regularization.

We find that panel estimates of price elasticities are much smaller than cross section

elasticities in the scanner data we consider. Thus, it is very important to allow correlation of

prices and preferences to correctly estimate elasticities. We find less sensitivity of consumer

surplus bounds to this correlation.
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1 Introduction

Estimation of demand models has a long history in econometrics. Beginning in the 1950s during

the “Stone age” of econometrics at Cambridge University and elsewhere, applied researchers

began estimating systems of demand equations as computer power increased.1 From its incep-

tion, demand estimation faced the problem of “many prices.” A demand system of  goods for

person  takes the form  = (   ), where  is an vector of quantities demanded,  is

an -vector of prices,  is a measure of income or expenditure,  is a conditioning variable for

the individual and potentially for variables that are time specific, and  is a vector of unknown

dimension (potentially an infinite vector) of an unobserved heterogeneity term and stochas-

tic terms. Since  has high dimension, the presence of many goods and many prices creates

problems for demand estimation.2

While some aggregation across goods is always necessary, the problem of many prices remains

even after aggregation. Omission of relevant prices creates an omitted-variables problem, which

leads to biased estimates. A number of approaches have been used on the many-prices problem.

The Hicks-Leontief composite commodity theorem states that if prices move together for a group

of commodities, i.e. relative prices are constant, they can be treated as a single good.3 This type

of aggregation is often used, at least implicitly. Another common approach is to assume some

form of separability of preferences. If demand for some goods is independent of the demand and

prices of other goods, no omitted variables problems will exist. A more sophisticated approach

using this idea is to assume two-stage budgeting. At the top stage the consumer determines how

much to spend on, say, food using price indices for food and other groups of expenditure. At the

second stage the consumer determines the price index for food and demand for individual food

products using only food prices and food expenditure. The required conditions for exact two-

stage budgeting can be weakened and further results by Gorman (1959, 1981) used.4 Separability

can also be tested using specification tests. However, all the approaches to separability place

strong assumptions on the demand system, such as approximate homotheticity, where budget

shares do not depend on expenditure, or quasi-homotheticity, where budget shares are linear

functions of expenditure so that Engel curves are linear. A last approach not using separability

assumptions uses statistical aggregation for the many prices to a price index which, however, is

independent of consumer preferences.5

1Named after Richard Stone, director of the Department of Applied Economics and co-inventor of the Stone-

Geary demand system.
2For example, a typical supermarket has approximately 50,000 individual products.
3See e.g. Deaton and Muellbauer (1980) for a discussion of separability approaches.
4Blundell and Robin (2000) introduce latent separability in demand systems but, again, the required condi-

tions are quite strong in terms of the cross price effects among goods.
5A recent approach is by Holderlein and Lewbel (2012), who use principal components to reduce the dimension

of prices.
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An observation arising from economic theory is that often, but not always, the policy question

of interest depends on only one, or a very few, price effects. For example, estimation of consumer

surplus and deadweight loss typically depend only on the own price effect since, all other prices

are held constant.6 Another example is merger analysis, where the price effect of the merger

depends mostly on the cross-price effect of the merging goods, so if single-product firms are

merging, only the cross price effect between the two goods which, by Slutsky, are equal in both

directions, matters.7 Another common feature is that cross-price effects for goods that are not

closely related tend to be small, e.g. of an order of magnitude smaller than own-price effects.

These observations suggest that machine learning (ML) methods could be used to mitigate

the curse of dimensionality this type of situation, e.g. Lasso. Exact sparsity (zero cross-price

effects) is not required for estimating the objects of interest, only approximate sparsity. Thus,

to estimate consumer surplus (CS) and the bounds on consumer surplus (BCS) along with

the associated deadweight loss (DWL), we employ modern machine-learning methods to first

estimate average demand for products in the presence of many substitute and complementary

products. Here the average demand function is “high-dimensional” in that it may depend on

a high-dimensional price vector of prices and other features such as expenditure and consumer

characteristics. ML methods can perform well for estimating such high-dimensional demand by

employing regularization to reduce variance and trading off regularization bias with overfitting

in practice. The regularization used by Lasso mitigates the curse of dimensionality by setting

many coefficients equal to zero.

Both regularization bias and overfitting in estimating demand cause a heavy bias in estima-

tors of BCS that are obtained by naïvely plugging ML estimators of demand into the definition

of BCS. This bias results in the naïve estimator failing to be root-  consistent, where  is the

sample size. The impact of regularization bias and overfitting on estimation of the parameter

of interest can be removed by using double/debiased machine learning (DML), which relies on

two critical ingredients:

1. using debiased/locally robust/orthogonal moments/scores that have reduced sensitivity

with respect to unknown functions (the average expenditure share in our case) to estimate

CS/BCS and

2. making use of cross-fitting, which provides an efficient form of data-splitting.

By constructing the debiased moment equation, our DML estimators of BCS are root ()-

consistent and are approximately unbiased and normally distributed, which allows us to con-

struct valid confidence statements. We focus our estimates of high-dimensional average share

based on Lasso, although the overall strategy can also be used in conjunction with other ML

6See e.g. Hausman (1981) and Hausman and Newey (1995).
7See e.g. Hausman, Leonard and Zona (1994) and Hausman, Morisi, and Rainey (2010) and more generally

the 2010 DOJ and FTC Horizontal Merger Guidelines.
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methods. This approach to estimate BCS when demand depends on many prices is a main

contribution of our paper.

This paper allows for general consumer heterogeneity through the multidimensional  in

the demand function (   ). Hausman and Newey (2016) find that in a single cross

section of individuals that the demand functions are not identified. If the demand functions

are linear, parameter estimates may find the mean preference of the “representative consumer.”

However, typically, demand systems are non-linear because of the presence of the budget con-

straint and non-homotheticity as demonstrated in the often-used AIDs demand system of Deaton

and Muellbauer (1980).8 Thus, Hausman and Newey (2016) developed the BCS approach based

on the average demand ̄(  ) =
R
(   )() where  () denotes the distribu-

tion of heterogeneity. Empirically, the bounds are found to be close to each other. This paper

also allows for  to be correlated with income  which can occur because  is set equal to

total expenditure. We control for this source of endogeneity by using a control variable  such

that preferences are independent of prices, total expenditure, and covariates conditional on ,

similarly to Hausman and Newey (2016).

Another methodological contribution is to treat the “zero problem” of demand estimation as

a demand choice, not as a result of a stochastic disturbance. For example, consumer data which

considers alcohol or tobacco consumption will have many individuals with zero consumption.

In typical demand estimation, where identical parameters are assumed across individuals, zero

consumption must occur because of a stochastic disturbance, since similar individuals both

consume and do not consume the same good, e.g. alcohol. However, with a vector of disturbances

 of unknown dimension, we allow zero purchases to be the outcome of a demand choice rather

than the outcome of a stochastic disturbance. Thus, some consumers have preferences such

that they will not consume alcohol or tobacco. Allowing for preference variation and including

the zeros in the demand estimation is the correct econometric approach for estimating average

demand. Similarly, including the zero-consumption outcomes in the estimate of CS and BCS is

the correct approach for policy analysis. This approach to zero consumption outcomes greatly

simplifies the analysis and estimation of demand systems.

An additional contribution is to use panel data to control for prices and total expenditure

that may be correlated with preferences. Such correlation could result from consumers with

higher elasticities searching more intensively for lower prices. We estimate separate own price

and income effects for each individual and then average them to obtain average price effects. We

regularize using ridge regression for each individual and debias to correct for ridge regularization

on average. The resulting average slope estimators are unbiased if individual coefficients are

independent of regressors and otherwise are a weighted average of individual coefficients with

more strongly identified individual coefficients weighted more heavily. We give inference theory,

8Other demand systems such as the translog are also non-linear in the absence of homotheticity.
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including primitive conditions for large enough, fixed number of time periods.

We compare these methods in estimating average share regressions using scanner data for

soda and other commodities. We use these estimates to bound average welfare effects of an

increase in the price of soda, as would occur if soda were taxed more heavily. For the cross-

section estimators we use share regression specifications that allow for nonlinearity in log prices

and log income. For the panel results we consider a share regression that is linear in log prices and

income. This functional form is more parsimonious than our cross-section models, motivated by

the few numbers of observations for each individual. We find panel elasticities are substantially

smaller than the cross section estimates, strongly suggesting that prices are correlated with

preferences. We also find less striking differences between cross-section and panel estimates of

average surplus bounds.

Choice models with general heterogeneity have previously been considered. In their analysis

of nonlinear taxes, Burtless and Hausman (1978) allowed heterogenous income effects. Lewbel

(2001) considered the implications of such models for conditional mean regressions. McFadden

(2005) allowed for general heterogeneity in a revealed preference framework. The approach here

specializes the revealed preference work in imposing single valued, smooth demands to facilitate

estimation, as in Hausman and Newey (2016). Blomquist and Newey (2002) derived the form of

average demand with nonparametric, nonseparable, scalar heterogeneity and nonlinear taxes and

Blomquist, Kumar, Liang, and Newey (2014) showed the same form for general heterogeneity.

Hoderlein and Stoye (2014) showed how to impose the weak axiom of revealed preference. Dette,

Hoderlein, and Neumeyer (2016) proposed tests of downward sloping compensated demands.

Bhattacharya (2015) derived average surplus for discrete demand and general heterogeneity.

Kitamura and Stoye (2018) gave tests of the revealed preference hypothesis.

The double machine learning estimator is novel in the use of a minimum distance Lasso

method to debias the estimator when using a control variable. The estimator and theory build

on that of Chernozhukov, Newey, and Robins (2018) and Chernozhukov, Newey, and Singh

(2018) for minimum distance Lasso bias correction without a control function. This work in

turn builds on Belloni et al. (2012) and Belloni, Chernozhukov and Hansen (2013) on debiased

machine learning.

For panel data Chamberlain (1982, 1992), Pesaran and Smith (1995), Wooldridge (2005),

Arellano and Bonhomme (2012), Chernozhukov, Fernandez-Val, Hahn, and Newey (2013), and

Graham and Powell (2012) have considered averaging individual slope estimates. The bias

corrected average ridge estimator given here appears to be novel as does the associated inference

theory.

Harding and Lovenheim (2017) analyze the role of prices in determining food purchases and

nutrition and estimate the impact of taxes on nutrition and individual welfare. Allcott, H., B.

B. Lockwood, and D. Taubinsky (2019) and Dubois, P., R. Griffith, and M. O’Connell (2019)
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have also considered the welfare effects of taxing soda. Our results are complementary to theirs

in the use of grocery store scanner data, allowance for nonparametric, general heterogeneity in

the cross-section, including zeros in regressions, and in the comparison of cross-section and panel

results.

2 Demand and Weighted Average Surplus

We consider a demand model where the form of heterogeneity is unrestricted. To describe the

model let  denote the quantity of a vector of goods,  the quantity of a numeraire good,  the

price vector for  relative to , and  the individual income level relative to the numeraire price.

The unobserved heterogeneity will be represented by a vector  of unobserved disturbances of

unknown dimension. We think of each value of  as corresponding to a consumer but do allow

 to be continuously distributed.

For each consumer  the demand function (  ) will be obtained by maximizing a utility

function (  ) that is monotonic increasing in  and  subject to the budget constraint,

with

(  ) = arg max
≥0≥0

(  ) s.t. 0 +  ≤  (2.1)

Here we assume that demand is single valued and not a correspondence. This assumption

is essentially equivalent to strict quasi-concavity of the utility function. We impose no form

on the way  enters the utility function  and hence the form of heterogeneity is completely

unrestricted.

For analyzing the effect of price changes on welfare we focus on equivalent variation. Let

(  ) = min≥0≥0{0 +  s.t. (  ) ≥ } be the expenditure function and  ( ) =

 − (0 1 ) be the equivalent variation for individual  for a price change from 0 to 1

with income  and 1 the utility at price 1. The corresponding deadweight loss is ( ) =

 ( )− (1 − 0)0(1  )

In the remainder of this paper we focus on the case where the first price 1 changes from ̌1

to a higher value ̄1 and the other prices 2 in  = (1 
0
2)
0 are fixed. In that case the equivalent

variation  (2  ) will also depend on the other prices 2 Also, in many applications it may

be useful to allow for covariates. Covariates  represent observed sources of heterogeneity in

preferences that are allowed to be correlated with prices and income and are independent of

preference heterogeneity  In that case the equivalent variation  (2   ) will also depend

on . For notation we will find it convenient to put the prices, income, and covariates into one

vector  = (0  0)0 and partition as  = (1 02)
0 Also we denote the equivalent variation and

demand for the first good as  (2 ) and 1( )

Our object of interest is the average equivalent variation (AEV) weighted by a function (2)
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that depends on observed variables 2 other than 1 given by

0 = [(2) (2 )]

Following Hausman and Newey (2016) we can use bounds on income effects to construct an

identified set for 0 using expected demand. The bound on income effects takes the following

form.

Assumption 1: There are  ≤ ̄ such that for all 1 ∈ [̌1 ̄1] (2 ) and ∆ ∈ [0  (2 )]

(2) ·  ·∆ ≤ (2)[1(   )− 1(  −∆ )] ≤ (2) · ̄ ·∆

This condition places upper and lower Lipschitz bounds on income effects, as we will further

discuss below.

The bound on income effects leads to a BCS of the form

(2 ) =

Z ̄1

̌1

1( 2 ) exp(−[− ̌1]) (2.2)

where  is a scalar variable of integration for the first price and  is equal to  or ̄ from

Assumption 1. If  =  (or  = ̄) then (2 ) is an upper (lower) bound on the equivalent

variation for a price change from ̌1 to ̄1 at 2, for an individual indexed by . This bound can

be integrated over  to obtain a BCS for average equivalent variation based on average demand.

Taking the expectation over the marginal distribution  of  and interchanging the order of

integration we obtain

(2) =

Z
{
Z ̄1

̌1

1( 2 ) exp(−[− ̌1])}() (2.3)

=

Z ̄1

̌1

̄1( 2) exp(−[− ̌1]) ̄1() =

Z
1( )()

If  =  (or  = ̄) then (2) is an upper (or lower) bound on the equivalent variation for a

price change from ̌1 to ̄1 averaged over the unobserved individual heterogeneity .

The bound (2) will be identified from data where individual heterogeneity  is distributed

independently of  Under such independence ̄1() will be the conditional expectation of 1

given  in the data, i.e. the nonparametric regression of 1 on . Thus the BCS (2) can be

obtained by integrating the nonparametric regression ̄1() of 1 on  as in equation (2.3). A

corresponding BCS for 0 can be constructed from the weighted expectation of (2) over 

as

 = [(2)(2)]

If  =  (or  = ̄) then  is an upper (lower) bound on the AEV 0.
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One example of a weight function is an average BCS where income varies over a range. In

that example we could take

(2) = 1((1) ≤  ≤ (2))(2 − 1)

where () is the quantile function for  As 1 and 2 vary  will give a BCS for different

income groups. In the application we will consider the case where (1 2) = (0 25) for one

bound and (1 2) = (75 1) for another bound. In this case the two bounds will give BCS over

the lower and upper quartiles of income.

Applications of demand models often involve estimating expenditure share equations rather

than demand equations, for the reasons discussed in Deaton and Muellbauer (1980). We will

follow that practice in this paper. For this reason we restate the BCS in terms of expenditure

share. Let ( ) = −111( ) denote the share of income spent on the first good. The

average share is given by

̄() =

Z
( )() =

1̄1()




The BCS in terms of expected share is

0 = [(2)

Z ̄1

̌1

(



)̄( 2) exp(−[− ̌1])] (2.4)

Throughout the remainder of the paper we will carry out the analysis in terms of share equations

to maintain a close link with applied demand analysis. Thus we will take 0 to be one object of

interest, a BCS stated in term of the regression of share on prices, income, and other covariates.

We could also consider a corresponding bound on deadweight loss (BDL) given by

0 = 0 − ̄−11 (̄1 − ̌1)[(2)(̄1 2)] (2.5)

In this paper we will focus on the BCS 0

An important feature of these bounds is that they allow for individuals to choose zeros for

some goods. Intuitively, if 1( ) = 0 over the range of change for 1 then the price change does

not effect the welfare of the individual (e.g. see equation (2.2)). The BCS 0 simply includes

these zeros in the average. Similarly if quantity demanded is not zero over the price range then

the positive part will also be included in the average. In addition, the form of the income effect

bound in Assumption 1 implicitly allows for zeros. A demand function will generally not be

differentiable in income at a point where demand begins to become positive. The bound in

Assumption 1 allows for nondifferentiable demand functions.

The unstructured nature of heterogeneity also provides intuition for the absence of a zeros

problem. Any disturbance can affect any quantity demanded. Also, the presence of specific

disturbances that determine when specific goods are zero is allowed for. The dimension of  and

the way in which  affects demand is completely unrestricted. The average share ̄(1 2) takes
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all this into account as it integrates over possible values of  In this way the BCS overcomes

the "zeros problem."

The BCS depends on bounds on the income effect. Simple bounds are available when all

goods are normal goods, that is when all income effects are nonnegative.

Lemma 1: If preferences satisfy local nonsatiation and all goods are normal then Assumption

1 is satisfied with  = 0 and ̄ = 1̌1

This result is intuitive: If all of the income addition ∆ is spent on the first good and

1 ≥ ̌1 then the individual can purchase no more than 1̌1 and no other income will be

available because all of the goods are normal goods. This bound is quite coarse because we

would expect purchases from additional income to be spread across all goods, at least to some

degree. Hausman and Newey (2016) consider finer bounds obtained as some large multiple of

the maximum of quantile derivatives over several quantiles.

This bound does depend crucially on all goods being normal. Normal goods seems a reason-

able assumption for scanner data if goods are aggregated into groups of goods. For individual

goods which differ primarily in quality, e.g. standard and premium orange juice, it seems un-

likely that the normal goods assumption would hold. Consumers might choose less of the lower

quality good as income increases.

For a normal good the upper BCS will be approximate average surplus obtained from equa-

tion (2.4) with  = 0 We can also obtain a simple lower bound from choosing  = 1̌1 in

equation (2.4). For  ∈ [̌1 ̄1],

exp(−− ̌1

̌1
) ≥ exp(− ̄1 − ̌1

̌1
) ≥ 2− [̄1̌1]

It follows from the this equation and the form of 0 in equation (2.4) that the lower BCS will be

2− [̄1̌1] times the upper bound. For example, for a 10 percent price increase this lower bound
would be 90 percent of the upper bound. We emphasize that this is an even coarser bound than

that for  = 1̌1 In the application we will consider both this coarse bound and finer bounds

based on quantile derivatives.

3 Learning the BCS from Cross-Section Data

For learning (estimating) the weighted average BCS it is helpful to modify the formula to

allow simulation to be used in estimating the integral in the BCS. For this purpose let 

denote a random variable that is independent of the data and uniformly distributed on (̌1 ̄1)

̃ = ( 2), and (̃) = (2)(̄1 − ̌1)() exp(−[− ̌1]) The BCS is then

0 = [(̃)̄(̃)] ̄() =
1
R
1( )()


 (3.1)
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When  is independent of prices , income  and covariates  the average share ̄() will equal

the conditional expectation [|] of observed share  given  = (  ).

In scanner data independence of  and  will be problematic because the variable  will

be total expenditure on the goods considered. Total expenditure depends on  so  will be

endogenous and ̄() 6= [|] A control variable can be used to correct for this endogeneity.
A control variable is an observed or estimable variable  such that  and  are independent

conditional on  Averaging over  controls for endogeneity in nonseparable models with general

heterogeneity, see Chamberlain (1984), Blundell and Powell (2003), Wooldridge (2002), and

Imbens and Newey (2009). Demand with general heterogeneity is such a model, as shown in

Hausman and Newey (2016) and Kitamura and Stoye (2018). For demand analysis a control

variable can be constructed when there is a first stage equation for expenditure as a function

of earnings, other exogenous variables, and a scalar disturbance, with earnings acting as an

instrument for total expenditure. Any strictly monotonic function of the scalar disturbance will

be a control variable when it and the demand heterogeneity are jointly independent of earnings.

Blundell, Duncan, and Pendakur (1998) used such a specification to control for endogeneity of

total expenditure.

Independence of  and  conditional on the control variable  and an identification condition

will imply that

̄() =

Z
0( )0() 0( ) = [| ] (3.2)

Here the average share ̄() is the average structural function of Blundell and Powell (2003)

and Wooldridge (2002). The average structural function will be identified if ( ) = ()0

for a known vector of functions () and [()()0|] is nonsingular with probability one, as
shown by Masten and Torgovitsky (2015). This nonsingularity condition allows for a discrete

instrument as long as the instrument has as many points of support as the dimension of ()

Allowing for a discrete instrument will be important in our application. With average share

̄() in equation (3.2) the BCS will be given by equation (3.1). We will develop an estimator of

this object.

In scanner data  can be high dimensional because prices of many goods may affect the share

of a particular good. Cross price elasticities tend to be quite small suggesting machine learning

methods that make use of approximate sparseness might be useful. Here we consider Lasso

estimation of the share regression in order to do this. A natural approach would be to "plug

in" a Lasso share regression into sample analogs of equations (3.2) and (3.1). That approach

does not work in general. It may be so biased that it is not root-n consistent, as discussed

in Chernozhukov et al. (2018a,b). An alternative method that will give a root-n consistent

estimator is debiased/double machine learning (DML).

DML modifies the plug-in estimator by adding the influence adjustment for the presence

of an unknown conditional expectation and unknown distribution of the control function, as
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in Chernozhukov et al. (2018b), Newey (1994), and Newey and McFadden (1994). Adding

the adjustment gives second order error from estimating the conditional expectation and dis-

tribution of the control function. The adjustment term does depend on additional, unknown

high-dimensional objects and so these have to be estimated. Here we do so using an auto-

matic method that depends only the integral in equation (2.4) and not on knowing the form

of the adjustment. That automatic method is a minimum distance Lasso that builds on Cher-

nozhukov, Newey, and Singh (2018) and Chernozhukov, Newey, and Robins (2018) and is novel

in accounting for the distribution of the control function.

To describe the DML estimator let  denote a data observation that includes the share

 prices  income  covariates  and control variable  for observation  = 1   We

will use a Lasso estimator of the share regression. To describe that estimator let ( ) =

(1( )  ( ))
0 be a dictionary of functions that will be used to approximate the share

regression. A Lasso estimator of 0( ) is given by

̂( ) = ( )0̂ ̂ = argmin

{1


X
=1

[ − ( )
0]2 +



2

X
=1

||}

where we assume that the elements of ( ) have already been scaled so that
P

 ( )
2 = 1.

The coefficient vector ̂ will often have some zero elements corresponding to a sparse approxi-

mation to the conditional mean. The term  is a regularization degree that controls how much

sparsity (number of zero coefficients) there are in ̂. In the application we will use cross-validation

to choose 

We next describe the plug-in estimator. It is convenient to combine equations (3.1) and (3.2)

to obtain

0 = [

Z
(̃)0(̃ )0()]

The plug in estimator can be constructed by substituting ̂ and ̂ in this equation and replacing

the expectation with the sample average. To help reduce bias and to obtain root-n consistency

and asymptotic normality under weak regularity conditions we will use cross-fitting where ̂

and ̂ come from different observations than those being averaged over. To do this cross-fitting

we divide the data into  about equal sized groups. Let  denote the index of observations in

group  Let ̂ be the Lasso estimator computed from all observations not in  The cross-fit

plug in estimator is

̃ =
1



X
=1

X
∈

(̃)

⎡⎣ 1

− 

X
 ∈

̂(̃ )

⎤⎦ 
where  is the number of observations in 

As previously noted such a plug-in estimator can have large bias. We debias by adding the

influence adjustment that corrects for the presence of an unknown conditional expectation and
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marginal distribution. The adjustment is the influence function of
R R

(̃)(̃   )0(̃)()

where (   ) denotes the conditional expectation of  given ( ) and  the marginal dis-

tribution of  when  is the true distribution. As in Newey (1994, p. 1357) the influence

adjustment will be the sum of two terms, one being the adjustment for  and the other for .

The influence adjustment for  depends on a Riesz representer 0( ) such that

[

Z
(̃)(̃ )()] = [0( )( )] 0( ) = ()

20(2)0()

0( )


for all ( ) with finite second moment, where 20() and 0() are the marginal pdf’s of

2 and  and 0( ) the joint pdf. The adjustment for  is

1(  ) = ( )[− ( )]

where  and  represent a possible conditional mean and Riesz representer, as shown by Newey

(1994). Also, the adjustment for  is

2(  ̃ ) =

Z
(̃)(̃ )̃(̃)−

Z Z
(̃)(̃ )̃(̃)()]

where ̃ and  are possible CDF’s of ̃ and  respectively, as shown in Newey and McFadden

(1994). Plugging in estimators ̂ and ̂ and taking ̂ and ̂̃ to be the empirical distributions

over observations not in  gives the estimated adjustment term

̂() = ̂1() + ̂2() ̂1() = ̂( )[− ̂( )]

̂2() =
1

− 

X
 ∈

(̃)̂(̃ )−
µ

1

− 

¶2 X
0 ∈

(̃)̂(̃ 0)

The DML estimator with cross-fitting for the influence adjustment is then

̂ = ̃ +
1



X
=1

X
∈

̂()

This estimator depends on the estimator ̂ of the Riesz representer 0 It is not necessary

to use the form of 0 to estimate it. We can construct a Lasso minimum distance estimator that

automatically estimates 0 using only (̃) without knowing the form of 0 Let ̂ denote a

 × 1 vector with  component

̂ =

µ
1

− 

¶2X
∈

X
 ∈

(̃)(̃ ) ( = 1  ) ̂ =
1

− 

X
∈

( )( )
0

The estimator ̂ is

̂( ) = ( )0̂ ̂ = argmin

{−2̂ 0

+ 0̂+ 

X
=1

||}
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The coefficients ̂ minimize a 1 penalized minimum distance objective function. The ̂ here

has a novel form in accounting for endogeneity through averaging over the control function. The

objective function is like that considered in Chernozhukov, Newey, and Singh (2018) with the

novel form of ̂

We can estimate the asymptotic variance of ̂ using the fact that to first order ̂ is a sample

average. For  ∈  let

̂ =
1

− 

X
 ∈
[(̃)̂(̃ ) + (̃)̂(̃ )]−

µ
1

− 

¶2 X
0 ∈

(̃)̂(̃ 0)− ̂

+ ̂( )[ − ̂( )]

This ̂ is an estimator of the influence function of ̂ The asymptotic variance of ̂ will be

estimated by the sample second moment of ̂ as

̂ =
1



X
=1

X
∈

̂2

We now give regularity conditions for asymptotic normality of ̂ and consistency of ̂  The

first condition specifies that the dictionary is multiplicatively separable in the regressors and

control variable and bounded.

Assumption 2: There is   0 and for every  there is  () and  () such that

( ) =  ()

 ()

¯̄
 ()

¯̄
≤ 

¯̄
 ()

¯̄
≤ 

The multiplicative form of the dictionary terms  is useful in analyzing the double averages

on which ̂ depends. We also require that the joint pdf of 2 and  dominates the product of

marginal densities.

Assumption 3: There is   0 such that |0()| ≤   ≤  for some   0, and the

( ) are absolutely continuous with respect to a product measure with joint pdf 0( ) and

marginal pdf’s 20(2) and 0() satisfying

1(̌1 ≤ 1 ≤ ̄1)20(2)0() ≤ 0( )

We note that this condition requires that the pdf of   is bounded away from zero over the

price range ̌1 ≤ 1 ≤ ̄1 at all 2 and  with 20(2)  0 and 0()  0. This condition also

includes the full support condition for the control function by virtue of the joint distribution

dominating the product of marginals. In Appendix A we also give more technical conditions

that involve sparse eigenvalue and rate of approximation conditions in Assumptions A1 and A2.
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Theorem 2: If Assumptions 1, 2, 3, A1, and A2 are satisfied,
p
ln() = ()

p
ln() =

(), and for ̄ from Assumption A2, ̄
2
 −→ 0,  −→ 0, and

√
(̄)

12
12
 −→ 0 then

there is   0 with √
(̂ − 0)

−→ (0  ) ̂
−→ 

4 Estimation for Panel Data

Panel data has the potential to control for time invariant endogenous unobserved individual

heterogeneity. Such endogeneity could arise from correlation of expenditure on a group of com-

modities with preferences that determine share purchases. Also, preferences could be correlated

with prices due to search behavior of consumers. In this Section we give a panel estimator

for a linear model with individual specific coefficients that may be correlated with prices and

income. Individual coefficients are estimated in a ridge regression to allow for the possibility

that these coefficients are not well identified for some individuals. We average the individual

ridge estimates and bias correct the averages for ridge regularization. We rely on the number

of time periods and the within individual variation being large enough that the inverse of the

individual regressor second moment matrices have finite expectation.

One important feature of our data is that not every time period is observed for every in-

dividual. We will assume for convenience that the first  ≤  observations are available for

individual . The vector of observations on shares and prices, income, and other covariates will

then be

 = (1  )
0  = (

0
1  

0

)0

We continue to assume that the data are independently distributed across  We also assume

that time series observations are missing at random so that our results are not affected by having

different number of observations for different individuals. Assumption 4 given below implicitly

includes this condition. Our conditions are like Wooldridge (2018). Also, Hausman and Leibtag

(2007) tested the missing at random assumption and found it was not rejected.

For panel data we assume that the budget share  of individual  in time period  is

 = ( ) ( = 1  ;  = 1  )

where  denotes period specific preferences. Here each individual is allowed to have different

preferences in each time period. Such idiosyncratic preference variation should help fit data

better because it is often found that individuals make different choices when faced with the

same choice sets. If preferences of individuals change over time in unrestricted ways then panel

data provides no more information than cross-section data. Panel data does provide information

when time variation is restricted. We will consider individual preferences where the distribution

of  given  = (
0
1  

0

)0 is the same in each time period. This assumption can be thought of
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as time homogeneity of preferences, with the preference being drawn from the same distribution

in each time period conditional on  Time homogeneity of preferences corresponds to time

homogeneity of disturbances, an econometric condition that has proven useful in recent work on

nonlinear panel data models, such as Chernozhukov et al. (2013), Graham and Powell (2012),

Hoderlein and White (2011), Chernozhukov et al. (2015), and Chernozhukov, Fernandez-Val,

and Newey (2017). Here time homogeneity will allow us to identify the average share, as needed

for BCS, under conditions that we will describe.

We will impose the condition that the share is a linear combination of known functions of 

Specifically, we assume that there is a known vector of functions () that includes a constant

and  are coefficients, with individual shares given by

 = ( ) = ()
0

As discussed in Hausman and Newey (2016) this specification can be interpreted as a series

approximation to a general nonseparable share equation where the () is a vector of approx-

imating functions. In this paper we ignore the approximation error and treat ()
0 as a

correct specification of individual shares.

The next condition imposes our basic panel data identifying assumption.

Assumption 4:  = ()
0, [|] does not depend on  and ̄ = [] is finite and

does not depend on .

Here we require that the conditional mean [|] does not vary with . In requiring that

[] does not vary with  we also impose that unbalanced panel data, where  varies with ,

does not affect [] This assumption is weaker than those of Graham and Powell (2012) in

only imposing time homogeneity on conditional means rather than conditional distributions.

The average share continues to be the object of interest for learning the BCS. In the panel

model here the average share will be

̄() = ()0̄ =
Z

()0() =
Z

( )()

Here the integration over  is done for a single time period, with the time homogeneity hy-

pothesis of Assumption 4 making the average surplus not depend on the time period. The

corresponding BCS will be an average over different time periods and individuals of the bound

on the equivalent variation. The average over individuals will not depend on the time period by

virtue of Assumption 4.

The time stationarity condition helps to identify average coefficients when  and  are

correlated, similarly to Chamberlain (1982, 1992). To explain let ̄ = [|] and  =

()
0[ − ̄] Adding and subtracting ()

0̄ gives

 = ()
0̄ +  ( = 1  ;  = 1  )
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By the time stationarity condition of Assumption 4 the disturbance  will have conditional

mean zero,

[|] = 0
leading to unbiasedness of ordinary least squares. Let  = [(1)  ()]

0 and  = 0

By Assumption 4 [|] = 0, so the usual least square properties will imply that when 

is nonsingular the least squares estimator ̃ = −1 0 will be a conditionally unbiased

estimator of ̄,

[̃|] = ̄

Thus using just the within individual variation in () a conditionally unbiased estimator of

̄ can be constructed by least squares regression for individual . If  is nonsingular for every

 then the sample average
P

=1 ̃ of individual least squares estimators is a conditionally

unbiased estimator of
P

=1 ̄.

The problem with the average of individual least squares estimators
P

=1 ̃ is that 

could be close to singular or even singular for some individuals, so that average least squares may

not be well behaved. Singularity of  can occur when there is not enough variation in ()

over time for some individuals and will result in ̄ not being identified for those individuals.

Also, even when  is nonsingular for every individual the average of individual least squares

estimators may not be unconditionally unbiased nor consistent because moments of −1 may

not exist, as pointed out by Graham and Powell (2012).

We deal with this problem by averaging ridge regularized individual estimates and correcting

for the average bias of the regularization. We also partial out each individual specific constant

before the ridge regularization. We suppose that () = (1 2()
0)0 and partition  = (1 

0
2)
0

conformably, so that 2 is the vector of coefficients of the nonconstant elements of () Let

2 = [2(1)  2()]
0 be the matrix of observations on nonconstant regressors with rows

corresponding to time periods and columns to variables. Let  = (1  1)
0 be a  × 1 vector

of ones and ̃2 be the matrix of deviations from time means given by

̃2 = 2 −  ̄
0
2 ̄2 = 02

Let  = ̃02̃2. A ridge regression estimator of the individual coefficients 2 of nonconstant

variables is

̂2 = Λ̃
0
2 Λ = ( + )

−1

where  is a positive scalar and  is a  dimensional identity matrix. The estimator of the

average coefficients ̄2 that we consider is

̂2 = ̂

Ã
1



X
=1

̂2

!
 ̂ =

Ã
1



X
=1

Λ

!−1
 (4.1)
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The matrix ̂ in the estimator ̂2 corrects for average regularization bias from the individual

ridge regressions. We can see this by noting that when −1 exists for each  the estimator ̂2

is a matrix weighted average of the individual least squares slope estimators ̃2 = −1 ̃02

Since ̂2 = Λ̃2 we have

̂2 =

Ã
X
=1



!−1 X
=1

̃2  = Λ

The matrix is closer to the identity the larger is  in the positive semidefinite sense. Larger

 corresponds to slope coefficients being more strongly identified and  closer to the identity

corresponds to less shrinkage. Thus, ̂2 can be interpreted as a matrix weighted average where

more strongly identified individuals receive weight with less shrinkage. We can also estimate the

average of the constant coefficients while correcting for regularization bias as

̂1 =
1



X
=1

̂1 ̂1 = ̄ − ̄02(̂2 + Λ̂2) (4.2)

To show how ̂ corrects for regularization bias we can give an explicit expression for the

expectation of ̂ = (̂1 ̂
0
2)
0 conditional on the regressors for all individuals.

Theorem 3: If Assumption 4 is satisfied then for ̄ = [|]

[̂2|1  ] =
Ã

X
=1



!−1 X
=1

̄2

[̂1|1  ] = 1



X
=1

{̄1 + ̄02Λ(̄2 −[̂2|1  ])}

Also, if [|] does not depend on  then ̂ is an unbiased estimator of ̄ = []

Thus we see that the conditional expectation of the slope estimator is a matrix weighted

average of the expectations of the individual slopes, with weights = Λ. Also we see that ̂

is corrected for regularization in that it is an unbiased estimator for the expectation of individual

coefficients when they are conditional mean independent of the regressors.

It is straightforward to estimate the asymptotic variance of ̂ while accounting for estimated

bias corrections. An estimator is

̂ =
1



X
=1

̂̂
0
 ̂ = (̂1 ̂

0
2)

0 ̂2 = ̂[̂2 − Λ̂2] (4.3)

̂1 = ̄ − ̄02̂2 −
1



X
=1

¡
̄ − ̄02 ̂2

¢
− (̄02Λ − 1



X
=1

̄02Λ)
0̂2 − (

1



X
=1

̄02Λ)̂2

17



In panel data we can construct a BCS estimator from an estimator for average share similar

to the cross-section case. In panel data the estimator of the average share will be

̂() = ()0̂.

To describe a corresponding BCS estimator let ̃ = ( 
0
2)

0 where  is uniformly distributed

on (̌1 ̄1) independently of the data. Also let  =
P

=1 (̃)(̃) A BCS estimator is

̂ = 
0
̂  =

1



X
=1

 (4.4)

An estimator of the asymptotic variance of
√
(̂ − 0) will be

̂ =
1



X
̂2  ̂ = ( − )0̂ + 

0
̂ (4.5)

Graham and Powell (2012) have given a regularized estimator that is an average of individual

least squares estimators over individuals where the determinant of 0 is larger than some cutoff.

This is a hard thresholding regularization where individual data with 0 close to singular are

not used in the estimator. The ridge regularization involves shrinkage where all individuals are

used with individual coefficients weighted by the strength of identification for the individual.

Varying  for the ridge regularization is useful because that changes how much the strength of

identification affects the weights. This feature of ridge will be useful for the demand application

where variation in  helps quantify how fixed effect demand elasticities differ from average

individual elasticities.

The ridge and Graham and Powell (2012) estimators are special cases of a general class of

bias corrected regularized estimators. Let Λ denote some regularization of 
−1
  For the ridge

and Graham and Powell (2012) estimators we would have

Λ = ( + )−1 (ridge); Λ = 1(det() ≥ )−1 (Graham and Powell, 2012).

A general regularized estimator is

̂2 = ̂

Ã
1



X
=1

̂2

!
 ̂ = [

1



X
=1

Λ]
−1 ̂2 = Λ̃

0
2

where for convenience we have not changed the notation for ̂ and ̂. It follows exactly as in

Theorem 3 that

[̂2|1  ] =
Ã

X
=1



!−1 X
=1

̄2

so that ̂2 will be unbiased when ̄2 does not depend on . This general class of estimators will

be considered in more detail in future work.
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For consistency and asymptotic normality we will impose that slightly more than the first

moment of the trace (−1 ) of  exists.

Assumption 5: There is    0 such that for all , k̄k ≤  k2k ≤ 


h
tr
¡
−1

¢1+i ≤ 

Also, [
0
|] ≥ −1 with probability one for every .

The existence of the 1 +  moment of (−1 ) will be implied by more primitive conditions.

One example is where 2 ∼ (Σ) conditional on unobserved  = (Σ) In this case 

has a Wishart distribution conditional on  and hence Assumption 5 will be satisfied when 

is sufficiently large relative to the dimension dim(2) of 2.

Theorem 4: If  ≥ dim(2) + 5 for all , there are unobserved random vectors  and

matrices Σ such that 2 ∼ (Σ) conditional on  = (Σ) and Σ is bounded and has

smallest eigenvalue bounded away from zero uniformly in , then there are    0 such that


h
tr
¡
−1

¢1+i ≤ 

This result gives primitive conditions for Assumption 5 when  is large enough relative to the

number of regressors. The conditional Gaussian assumption allows for a wide range of possible

distributions of the observed 2 that could be nonsymmetric and vary across time periods in

general ways. Boundedness of the smallest eigenvalue of Σ away from zero does mean that

there is variation in the regressors after conditioning on individual effects.

The next result shows asymptotic normality of the average ridge coefficients and BCS and

that using the estimated variances results in correct inference in large samples. Let ̄ = []

from Assumption 4 and ̂ = (̂1 ̂
0
2)
0 be as defined in equations (4.1) and (4.2).

Theorem 5: If Assumptions 4 and 5 are satisfied and
√
 −→ 0 then there is   0 with

 (̂) ≥  for all  large enough and for any ×  matrix  with () = ,

[ (̂)0]−12
√
(̂ − ̄)

−→ (0 ) [̂
0]−12

√
(̂ − ̄)

−→ (0 )

Also if 0 = lim−→∞[
P

=1

P
=1[()

0]()]0̄ exists then

̂ −12
√
(̂ − 0)

−→ (0 1)

This result differs from previous work in applying to the debiased average ridge estimator,

in having  big enough relative to  so that the estimator is root-n consistent (unlike most of

Graham and Powell, 2012), and in the parameter of interest being the average of coefficients over

the whole population rather than over a subset where det(0) is large enough (unlike Arellano

and Bonhomme, 2012). In our empirical work we will use this result to make inference about

average elasticities for income and prices and for BCS.
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5 Application to Scanner Data

The data we used is a subset of the Nielsen Homescan Panel like that of Burda, Harding, and

Hausman (2008, 2012). The data include 1483 households from the Houston-area zip codes for

the years 2004-2006. The number of monthly observations for each household ranges from 12

to 36, with some households being added and taken away throughout the 3 years we covered

and 609 households being included the entire time. At several points in the empirical analysis

we checked for differences in results between using all households and the 609 that were always

present and found no statistically significant differences. This lack of sensitivity to the length of

panels used in estimation suggests an absence of attrition and selection bias in this data, similar

to Wooldridge (2018).

Expenditures are total over all purchases of the household bought in each month. The

original data had timestamps for purchases. If a household purchased something more than

once in a month, the "monthly price" is the average price that the household purchased (i.e.

total amount spent on good/total quantity purchased).

Including zero expenditures makes it necessary to impute prices for those times periods

where an individual purchased none of a particular good. We tried two ways of imputing the

missing prices. We tried replacing the missing price with the price paid last time the good was

purchased, or the price next paid if there was no past purchase, or the average price paid for

that good that month at stores frequented by the consumer if there was no purchases. We also

tried just imputing the price to be the average price paid that month at stores frequented by

the consumer. These two imputation methods produced similar results for soda demand, so we

used the first method of imputing price, involving past or future purchase prices.

We included prices for 15 groups of goods; soda, milk, soup, water, butter, cookies, eggs,

orange juice, ice cream, bread, chips, salad, yogurt, coffee, and cereal. As in Burda, Harding,

and Hausman (2008, 2012) we chose these groups because they made up a relatively large

proportion of total expenditure. The data also includes demographics such as race, marital

status, household composition, as well as male and female employment status. We use family

size as a covariate, after finding that other family composition covariates are not important.

We also use income as an instrument for total expenditure in linear share regressions and to

construct a control variable for total expenditure in the Lasso estimates. The income variable is

the integer denoting which of 20 categories the household income fell in, excluding one category..

Such a category counter will be a valid instrument whenever income is independent of the

disturbance in the share equation disturbance. Also, as shown by Masten and Torgovitzky

(2015), categorical instruments are allowed for in the specification of a control variable.

We first give standard share regression results. Table 1 gives the soda and milk expenditure

and own price elasticities from regressing the share of (soda and milk) expenditure on the

natural log of prices and of total expenditure. The results in the table are for OLS and IV

20



where total expenditure is instrumented by the income variable. We find that instrumenting for

total expenditure has very little effect on price elasticities and the total expenditure elasticity

for milk, but does have some effect on the expenditure elasticity for soda. The IV coefficient 932

is quite different than the OLS 683 with the (0 1) Hausman test statistic for the difference

of OLS and IV expenditure elasticities for soda being −141. Although this is not significant
at conventional levels the economic reasons for endogeneity of total expenditure are important

enough that we will correct for endogeneity for our BCS estimates by using a control variable..

All the standard errors for the cross-section estimates correct for clustering that could arise from

correlation of individual observations over time.

Table 1: Cross Section Elasticities For Each Good

OLS IV

Exp S.E. Own P. S.E. Exp S.E. Own P. S.E.

soda .683 .015 -.855 .020 .932 .177 -.867 .052

milk .539 .024 -1.416 .020 .570 .154 -1.412 .064

Table 2 gives the soda share cross price elasticities and their standard errors as well as the

soda results from Table 1. We do find that cross-price elasticities are much smaller than own

price elasticities, which motivates our use of Lasso in the cross section estimation of BCS.

Table 2: Cross-price Elast for Soda

OLS IV

Elast. S.E. Elast. S.E.

exp .683 .015 .932 .177

soda -.855 .020 -.867 .052

soup .028 .022 .040 .056

water .034 .012 .032 .039

butter -.177 .013 -.177 .040

cookies -.028 .014 -.046 .035

eggs -.074 .022 -.080 .049

oj .040 .027 .015 .089

ice cream .177 .023 .174 .076

bread -.127 .019 -.153 .055

chips -.006 .023 -.016 .055

milk -.076 .026 -.039 .079

salad -.084 .014 -.092 .041

yogurt .032 .025 .025 .075

coffee -.074 .011 -.068 .032

cereal .087 .021 .041 .059
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We estimated the BCS for a 10% price increase in soda with starting price being the sample

mean of soda price observed in the data. We did Lasso regression of soda expenditure share

on ln(prices), ln(total expenditure), powers of logs of own price, total expenditure, and the

control function up to order 4, quadratic terms in own other prices, an interaction of the log

of total expenditure and household size, and an interaction of the control function with log

total expenditure. We estimated the BCS by total expenditure groups, obtaining estimates for

those in the lowest and highest quartile of total expenditure as well as overall averages. In the

estimation we use the cross-validated choice of penalty for the share regression and vary the

penalty for the estimation of the Riesz representer. The results for all households and for the

lower quartile did not change much with the penalty. For the upper quartile the BCS changed

by slightly less than 10 percent as we varied the penalty. For the BCS the income effect lower

bound was taken to be zero and upper bound to be 20 times the maximum of the income effect

over .1, .25, .5, .75, .9 quantile effect regressions, similar to Hausman and Newey (2016). In

the results we only report one bound because the lower and upper estimated bounds were equal

to four significant digits. Wider bounds based on assuming that all goods are normal would

have upper bounds equal to the reported one and lower bounds being 90 percent of the reported

bounds, corresponding to the 10 percent price change we are considering.

The BCS estimates in terms of annual dollars and their standard errors are given in Table 3.

Table 3: Cross Section Estimates of Surplus Bounds

All households Lower Quartile Upper Quartile

BCS 12.97 5.43 17.28

S.E. .34 .14 .44

Despite the high dimensional potentially nonparametric specification the BCS are very pre-

cisely estimated from this data, consistent with the averaging over many individuals and time

periods. As with the elasticity estimates from Tables 1 and 2 we accounted for clustering by

individuals in the standard errors. The average monthly total food expenditure for all indi-

viduals is 621, for upper quartile 1265, for lower is 190. The ratio of the BCS to the average

total food expenditure is 17281265 = 01366 for the upper quantile and 543190 = 002858

for the lower quartile. Thus we find that the average surplus, i.e. average welfare cost, of a

10 percent soda price increase relative to average expenditure, is estimated to be much higher

for individuals in the lowest quartile of the total food expenditure distribution. Using the more

conservative bounds based on all goods being normal does not change this conclusion. The lower

bound for the average surplus relative to expenditure in the lowest expenditure quartile would

be 9 ∗ (02858) = 02572 which is still much larger than the upper bound 01366 for the upper

quartile. We also estimated the BCS using many more regressors including interactions among

all different prices and the results were found to be very close to those reported here.
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Turning to the panel data results, Table 4 gives standard fixed effects estimates (allowing

an individual specific constant) of soda and milk own price and total expenditure elasticities,

without instrumenting for total expenditure. We found no evidence for time trends in this data,

so we report results for fixed effects without any treands and for the time homogenous model

we have considered. The standard errors here allow for general dependence over time for each

individual. We find that the fixed effect own price elasticities are much smaller than the cross-

section. For example, the panel milk price elasticity is about half the size of the cross-section,

with the panel estimate being more reasonable in size. Standard errors are not very much larger

than the cross-section elasticities.

Table 4: Fixed Effects Elasticities

Exp S.E. Own P. S.E.

soda .638 .018 -.689 .022

milk .430 .042 -.699 .033

Table 5 gives the elasticities corresponding to bias corrected averages of individual ridge

coefficient estimates for  = 05 and  = 005. We find that these elasticities are much smaller

than the fixed effects estimates. The −364 own price elasticity from the average coefficient for

soda is slightly more than 13 the size of the corresponding cross-section elasticity and somewhat

more than half the size of the fixed effects estimate. Evidently allowing for individual price and

expenditure coefficients that can be correlated with prices and expenditure has strong effects on

elasticity estimates.

Table 5: Average Ridge Elasticities

 .05 .0005

Exp S.E. Own P. S.E. Exp S.E. Own P. S.E.

soda .615 .012 -.558 .017 .595 .021 -.364 .056

milk .445 .014 -.652 .013 .437 .020 -.508 .052

Table 6 gives panel estimates of the BCS for all individuals, the highest quartile of the total

expenditure, and the lowest quartile.

Table 6: Panel Estimates of Surplus Bounds,  = 05

All households Lower Quartile Upper Quartile

BCS 8.70 3.90 15.43

S.E. .49 .21 1.25

The income grouped panel estimates are quite similar to the corresponding cross-section,

although BCS for all households is quite a bit smaller for the panel estimates. The ratio of

the BCS to the average total food expenditure is 15431265 = 01220 for the highest quartile
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and 390190 = 002053 for the lowest quartile. Here the discrepancy of average surplus/total

expenditure between income groups is not as large as in the cross-section. This discrepancy does

still persist when we consider the wider bounds based on all goods being normal, as it does for

the cross-section estimates.

A particularly striking empirical finding is the small size of the elasticity average relative to

the elasticities obtained in the cross section data. The way that panel estimates change with the

regularization parameter  helps describe these differences. The decrease in the price elasticity

as  decreases is consistent with lower elasticities being associated with individuals with less

price variation. As we have discussed, the bias corrected ridge estimator gives more weight to

individuals where there is more variation in the regressors. As  decreases there is less variation

in the weights, approaching an equal weighted average as  goes to zero. Observations with less

variation in prices receive more weight for smaller lamdas. Thus, the elasticity reduction as 

goes from .05 to .0005 is consistent with individuals with lower elasticities also having less price

variation.

The difference between the fixed effects and bias corrected ridge estimates are also consistent

with this pattern. For simplicity we explain when there is a single nonconstant regressor and

the number of time periods is the same for each individual. Wooldridge (2005) used a similar

calculation to get conditions for consistency of the fixed effects estimator when slopes are varying.

Our purpose is to find conditions for the fixed effects slope estimator to be downward biased,

so that fixed effects elasticities are more negative than, i.e. larger in absolute value, than the

elasticity for the average slope.

A model with varying slopes and a single regressor is

 =  +  +  [|] = 0 ( = 1   ;  = 1  )

Taking deviations from individual means gives

̃ = ̃ + ̃

where ̃ =  − ̄, ̃ =  − ̄ ̃ =  − ̄, and ̄, ̄ and ̄ are time means. Adding

and subtracting ̄̃ for ̄ = [] gives

̃ = ̄̃ + ̃ + ̃( − ̄)

The usual regression analysis implies that when the data is i.i.d. across individuals

 lim(̂) = ̄ +
[(
P

 ̃
2
 )( − ̄)]

[(
P

 ̃
2
 )]



Thus, the fixed effects estimator of the price elasticity being larger in magnitude that the average

elasticity across individuals (i.e.  lim(̂)  ̄) is associated with

[(
X


̃2
 )( − ̄)]  0
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that is the sample time variance of log of prices is larger when the elasticity is larger in magnitude.

This bias characterization for the fixed effects estimator seems consistent with search behavior

of consumers, where those with higher elasticities have high dispersion of prices over time due

to more search.

A potential alternative explanation for the decrease in elasticities when going from least

squares to fixed effects is measurement error as in Griliches and Hausman (1986). There is some

possibility of measurement error in prices because of missing price data for zeros and because

some averaging over prices at different stores is done in data collection. To see if accounting

for measurement error changed the estimates we tried estimating individual coefficients while

instrumenting the own price by the four month lag of the own price, a type of instrument

considered by Griliches and Hausman (1986). We report averages of individual, ridge regularized

two-stage least squares estimates, where we bias correct the average. The estimates are given

in Table 6. There is a slight increase in the estimated average price elasticity of soda although

the increase is small and not enough to explain the large differences between cross-section and

panel elasticities.

Table 6: Ridge Elasticities with Four Month Own Lag Price as IV

 .05 .0005

Exp S.E. Own P. S.E. Exp S.E. Own P. S.E.

soda .615 .013 -.653 .011 .585 .029 -.392 .055

milk .446 .014 -.705 .008 .422 .021 -.448 .048

These results suggest that the large differences between cross section and panel elasticity

estimates cannot be explained by measurement error.

We also conducted some small Monte Carlo experiments to determine whether the smaller

elasticities could result from finite sample bias. We did find small finite sample bias in the

bias corrected average ridge estimates with endogenous  but not large enough to explain the

small average elasticities. We conclude that there is strong evidence in the data that prices are

correlated with preferences, and that the large differences in cross-section and panel elasticities

are not explained by either measurement error or bias in the average ridge estimator.

6 Conclusion

In this paper we have found large differences between cross-section and panel price elasticity

estimates, where the panel estimates allow coefficients to vary over individuals. These findings

provide strong evidence that individual preferences are correlated with prices in the Nielsen

scanner data. The BCS estimates by expenditure group appear to be less sensitive, with cross-

section and panel estimates being similar.
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The estimators solve the zeros problem by simply including zero expenditure values for the

left had side variable. The allowance for general, nonparametric heterogeneity facilitates this

solution to the zeros problem. We allow for many prices by using debiased machine learning in

the cross-section and bias corrected ridge regularization for panel data. The cross-section allows

endogeneity of total expenditure and potentially of prices via inclusion of control functions. In

these ways we provide useful approaches to estimation of demand models in large data sets with

many prices, where prices may be correlated with preferences.

7 Appendix A: Assumptions A1 and A2.

In this brief Appendix we give Assumptions A1 and A2 which are used in the result for the DML

estimator of Section 3. We give only a brief discussion here. A more extensive discussion can

be found in Chernozhukov, Newey, and Singh (2018). Assumption A1 gives an approximation

rate hypothesis for both the regression 0( ) and the Riesz representer 0( )

Assumption A1: There exists   0 ̄, and ̄ with ̄ nonzero elements such thatP

=1 |̄| ≤ 
P

=1

¯̄
̄
¯̄
≤  and k0 − 0̄k2 ≤ 

p
ln()

°°0 − 0̄
°°2 ≤ ̄ ln()

The next Assumption gives a sparse eigenvalue conditions that is common in the Lasso

literature

Assumption A2:  = [()()
0] is nonsingular and has largest eigenvalue uniformly

bounded in . Also there is   3 such that for ̃ = argmin
©k0 − 0k2 +  ||1

ª
and J = { :

̃ 6= 0}
inf

{: 6=0∈J  | |≤


∈J | |}
0P
∈J 2

 0

8 Appendix B: Proofs of Theorems

Proof of Lemma 1: In this proof let  denote the number of goods and (1 ) denote the

demand for the  good as a function of 1 and  holding all other prices 2 and covariates 

fixed. Then by local nonsatiation,

 =

X
=1

(1 )  −∆ =

X
=1

(1  −∆)

Subtracting the second equation from the first gives

∆ =

X
=1

[(1 )−(1 −∆)] ≥ 1[1(1 )−1(1 −∆)] ≥ ̌1[1(1 )−1(1 −∆)]
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where the first inequality follows by all goods being normal goods and the second by 1 ∈ [̌1 ̄1].
Dividing through by ̌1 gives ̄ = 1̌1 Also  = 0 follows by 1 being a normal good. Q.E.D..

The following two results are useful in the proof of Theorem 2. Let  (̃) = (̃) (̃),

̄ = [ (̃)] ̄

 = [ ()], and  = ̄ ̄


  ( = 1  )

Lemma A1: If Assumption 3 is satisfied then for any two empirical CDF’s ̂ and ̃ for

subsamples with sample sizes greater than  for some ,

max
≤

¯̄̄
̂ −

¯̄̄
= (

p
ln())

Z
 (̃) ̂ (̃ ) (̂ − 0)(̃)(̃ − 0)() = (

−12)

Proof: By Assumptions 2 and 3 (̃)  (̃), and  () are each bounded uniformly in , ̃,

and  so that  (̃) is also. Then by Assumption 2 and standard maximal inequality arguments,

max
≤

¯̄̄̄Z
(̃)(̂ − 0)(̃)

¯̄̄̄
= (

r
ln()


) max

≤

¯̄̄̄Z
()(̂ − 0)()

¯̄̄̄
= (

r
ln()


)

Then we have¯̄̄
̂ −

¯̄̄
≤
¯̄̄̄Z

 (̃)(̂ − 0)(̃)

¯̄̄̄ ¯̄̄̄Z
 ()(̂ − 0)()

¯̄̄̄
+

¯̄̄̄Z
 (̃)(̂ − 0)(̃)

¯̄̄̄ ¯̄
̄
¯̄
+
¯̄
̄
¯̄ ¯̄̄̄Z

 ()(̂ − 0)()

¯̄̄̄


so the first conclusion follows by
¯̄
̄
¯̄
and

¯̄
̄
¯̄
uniformly bounded in . Also by Lemma A3 of

Chernozhukov, Newey, and Singh (2018),
P

=1

¯̄̄
̂

¯̄̄
=
¯̄̄
̂
¯̄̄
1
= (1) Then by Assumptions 2

and 3 it follows that

¯̄̄̄Z
 () ̂ ( ) (̂ − 0)()(̃ − 0)()

¯̄̄̄
=

¯̄̄̄
¯

X
=1

̂[

Z
 () (̂ − 0)()][

Z
()(̃ − 0)()]

¯̄̄̄
¯

≤
¯̄̄
̂
¯̄̄
1
max
≤

¯̄̄̄Z
(̃)(̂ − 0)(̃)

¯̄̄̄
max
≤

¯̄̄̄Z
()(̃ − 0)()

¯̄̄̄
= (

ln()


) = (

−12)

Proof of Theorem 2: We fix  and let ̂ be the empirical distribution over observations

not in  and ̃ be the empirical distribution over observations in  Also define 0(̃ ) =

 (̃) 0(̃ ) ̂(̃ ) =  (̃) ̂ (̃ ) 

1 =

Z
̂(̃ )

³
̂ − 0

´
(̃)

³
̂ − 0

´
() 

2 =

Z
̂(̃ )

³
̃ − 0

´
(̃) ̂ ()−

Z
0(̃ )

³
̃ − 0

´
(̃)0 () 

3 =

Z
̂(̃ )̂ (̃)

³
̃ − 0

´
()−

Z
0(̃ )0 (̃)

³
̃ − 0

´
() 
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Lemma A1 implies that 1 = (
−12) Also, for ̃2 =

R
[̂(̃ )−0(̃ )]

³
̃ − 0

´
(̃)0 ()

we have that

2 = ̃2 +

Z
̂(̃ )

³
̃ − 0

´
(̃) (̂ − 0) () = ̃2 + (

−12)

where the last equality follows by Lemma A1. Furthermore, for the estimation sample ̂ for ̂


h
̃ 22 | ̂

i
≤
Z
{[̂(̃ )− 0(̃ )]0 ()}2 0 (̃) ≤

Z
[̂(̃ )− 0(̃ )]

2
0 ()0 (̃)

≤ 

Z
[̂(̃ )− 0(̃ )]

2
0 ()0 (̃) ≤ 

Z
[̂ ( )− 0 ( )]

2
0 ( )

−→ 0

where the last inequality follows by Assumption 3. Therefore, by the conditional Markov in-

equality, ̃2 = 
¡
−12

¢
. It then follows by the triangle inequality that 2 = 

¡
−12

¢
. An

analogous argument also gives 3 = 
¡
−12

¢


Let ̂ be the average over  so that

̂ =

X
=1




̂

In this notation,

̂ =

Z
̂(̃ )̃ (̃) ̂ () +

Z
̂(̃ )̂ (̃) ̃ ()−

Z
̂(̃ )̂ (̃) ̂ ()

+

Z
̂ ( ) [ − ̂ ( )] ̃ ()

=

Z
̂(̃ )0 (̃) ̂ () +

Z
̂(̃ )(̃ − 0) (̃) ̂ ()

+

Z
̂(̃ )̂ (̃)0 () +

Z
̂(̃ )̂ (̃) (̃ − 0) ()−

Z
̂(̃ )̂ (̃) ̂ ()

−
Z

̂(̃ )0 (̃)0 () +

Z
̂(̃ )0 (̃)0 () +

Z
̂ ( ) [ − ̂ ( )] ̃ () 

= 1 + 2 + 3 +

Z
0(̃ )

³
̃ − 0

´
(̃)0 () +

Z
0(̃ )0 (̃)

³
̃ − 0

´
()

+

Z
̂(̃ )0 (̃)0 () +

Z
̂ ( ) [ − ̂ ( )] ̃ () 

It follows from the above reasoning and the triangle inequality that 1 + 2 + 3 = (
−12).

Next, for  = ( ) let

 01 =
Z
[̂ ()− 0()] [ − 0 ()] ̃ ()  

0
2 =

Z
[̂ ()− 0()] [0()− ̂ ()] ̃ () 

 03 =
Z

0() [0 ()− ̂()] (̃ − 0) () 
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Then we haveZ
̂ () [ − ̂ ()] ̃ () =

Z
̂ () [ − 0 ()] ̃ () +

Z
̂ () [0()− ̂ ()] ̃ ()

=

Z
0 () [ − 0 ()] ̃ () +  01 +

Z
0 () [0()− ̂ ()] ̃ () +  02

=

Z
0 () [ − 0 ()] ̃ () +

Z
0 () [0()− ̂ ()]0 ()

+  01 +  02 +  03

Note that Assumption 1 Chernozhukov et al. (2018, CNS) is satisfied with ( ) bounded

uniformly in  Assumption 2 of CNS holds by the first part of Lemma A1, and Assumption 3

of CNS holds by Assumption A1. Then by Theorem 2 of CNS,

k̂− 0k2 = ()
−→ 0

where k̂− 0k2 =
R
[̂( ) − 0( )]

20( ). This result implies 
0
1 = 

¡
−12

¢
as in

CNS. Also, by Assumptions A1 and A2 and Theorem 3 of CNS,

k̂ − 0k2 = (̄
2
)

−→ 0

implying  03 = 
¡
−12

¢
as in CNS. It also follows that

√
 k̂− 0k k̂ − 0k = (

√
(̄)

12
12
 )

−→ 0

so that  02 = 
¡
−12

¢
 We also have

0 =

Z
0(̃ )0 (̃)0 () =

Z
0()0()0()Z

̂(̃ )0 (̃)0 () =

Z
0()̂()0()

Therefore we have

̂ =

Z
0(̃ )

³
̃ − 0

´
(̃)0 () +

Z
0(̃ )0 (̃)

³
̃ − 0

´
() +

Z
̂(̃ )0 (̃)0 ()

+

Z
0 () [ − 0 ()] ̃ () +

Z
0 () [0()− ̂ ()]0 () + 

¡
−12

¢
=

Z
0(̃ )

³
̃ − 0

´
(̃)0 () +

Z
0(̃ )0 (̃)

³
̃ − 0

´
() + 0

+

Z
0 () [̂()− 0 ()]0 ()

+

Z
0 () [ − 0 ()] ̃ () +

Z
0 () [0()− ̂ ()]0 () + 

¡
−12

¢
= 0 +

Z
0(̃ )

³
̃ − 0

´
(̃)0 () +

Z
0(̃ )0 (̃)

³
̃ − 0

´
()

+

Z
0 () [ − 0 ()] ̃ () + 

¡
−12

¢

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Then it follows that

̂ = 0 +
1√


X
=1

() + (
−12)

() =

Z
0(̃ )0() +

Z
0(̃ )0(̃)− 20 + 0 () [ − 0 ()] 

The remainder of Theorem 2 follows similarly to CNS. Q.E.D.

Proof of Theorem 3: Note that for ̄ = [|]

[|] = ()
0[|] = ()

0̄

Therefore

[̂2|] = Λ̃
0
2[|] = Λ̄2 =̄2

The first conclusion then follows from independence of the observations which gives

[̂2|1  ] =
Ã

X
=1



!−1 X
=1

[̂2|1  ] =
Ã

X
=1



!−1 X
=1

[̂2|]

=

Ã
X
=1



!−1 X
=1

̄2

Similarly, for ̄2 = [̂2|1  ] it follows from [̄|] = ̄0̄ that

[̂1|1  ] = 1



X
=1

{[̄|]− ̄02([̂2|] + Λ̄2)}

=
1



X
=1

[̄0̄ − ̄02(Λ̄2 + Λ̄2)]

=
1



X
=1

[̄1 + ̄02{( − Λ)̄2 − Λ̄2}]

=
1



X
=1

[̄1 + ̄02Λ(̄2 − ̄2)]

Also, if ̄2 does not depend on  so that ̄2 = ̄2 for all  then

[̂2|1  ] =
Ã

X
=1



!−1 X
=1

̄2 = ̄2

Similarly we will have [̂1|1  ] = ̄1 

Proof of Theorem 4: By boundedness of Σ and its smallest eigenvalue bounded away

from zero uniformly in  it follows that there is  such that for Ψ = Σ−1

(Ψ) ≤ 
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for all  with probability one (wp1). By 2 Gaussian conditional on  = (Σ) is follows that

W =  is Wishart with degrees of freedom  = −1 and variance matrix Σ all conditional

on  Then by moment formulas for the inverse of a Wishart (Press, 1982) it follows that for

 = dim(2) and each  ∈ {1  }

[(−1 )
2
|] =  ((−1 )|) +[(−1 )

2
|]

=
2Ψ

[ − − 1]2[ − − 3] +
Ψ2


[ − − 1]2

=
2Ψ

[ − − 2]2[ − − 4] +
Ψ2


[ − − 2]2

≤ 2
32
+

2

32
≤ 

By iterated expectations it follows that [(−1 )
2
] = [[(−1 )

2
|]] ≤  for all  and  Then

[(−1 )
1+] ≤  for all  for  = 1 

Proof of Theorem 5: By Assumption 5, −1 exists with probability one. Also, by 
0
 ≤

kk2  and  bounded,

k̂2k2 = tr (̂2̂02) = tr
³
Λ̃

0
2

0
̃2Λ

2


´
≤ tr (ΛΛ) kk2  ≤ tr (ΛΛ) 

For a symmetric square root 
12
 of  it follows by Λ ≤ −1 that

tr (ΛΛ) = tr
³

12
 Λ2

12


´
≤ tr

³

12
 Λ12−1 Λ

12
 

12


´
≤ tr−1 tr

³

12
 Λ

12
 Λ

12
 

12


´
≤ tr−1 tr(12

 −1 
12
 )

Therefore

k̂2k2 ≤ 
¡
tr−1

¢


Then for the  of Assumption 5 it follows that

[k̂2k2+2]  

Next, it follows by time stationarity that

[̂2|] = Λ̃
0
2[|] = Λ̃

0
2̄ = Λ̄2

By Λ positive definite it follows that |(Λ)| ≤ ((Λ) + (Λ))2. Then by ̄2 bounded we

have

|Λ̄2|∞ ≤ max


X
=1

|(Λ)| ≤ (Λ)
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Also by Λ −  = Λ, it follows by the Holder and triangle inequalities that¯̄̄̄
¯ 1√X



([̂2|]− ̄2)

¯̄̄̄
¯
∞
=

¯̄̄̄
¯ 1√X



(Λ − )

¯̄̄̄
¯
∞
=

¯̄̄̄
¯√1X



Λ̄2

¯̄̄̄
¯
∞

≤ (1)
1



X


|Λ̄2|∞ ≤ (1)
1



X


[(Λ)]

≤ (1)
1



X


(−1 ) = (1)(1) = (1)

It follows similarly that

̂ =  + (
−12)

It then follows that

√
(̂2 − ̄2) =

√
[ + (

−12)]
1



X


(̂2 − ̄2)

=
1√


X


(̂2 −[̂2]) +
1√


X


([̂2]− ̄2) + (1)

=
1√


X


(̂2 −[̂2]) + (1)

Next, by  and () bounded there is  such that for all ,

̂1 = ̄ − ̄02(̂2 + Λ̂2)

[|̂1|2+2] ≤ (1 +[k̂2k2+2] + )  

Also, by [̄|] = ̄0̄ = ̄1 + ̄02̄2¯̄̄̄
¯ 1√X



([̂1]− ̄1)

¯̄̄̄
¯ ≤ 1√



X


¯̄
[(̄ − ̄1 − ̄02̂2)]

¯̄
=

1√


X


¯̄
[[̄|]− ̄1 − ̄02[̂2|]]

¯̄
=

1√


X


¯̄
[̄02( − Λ)̄2]

¯̄
=
√

1



X


¯̄
[̄02Λ̄2]

¯̄
= (1)

It then follows similarly to the above that

√
(̂1 − ̄1) =

1√


X


(̂1 −[̂1]) + (1)

For 0    1 let A denote the event that (
−1
 ) ≤ (1− )() Note that max() ≤ 

by  bounded. Then we have

(−1 ) ≤
1− 


=⇒ max(

−1
 ) ≤

1− 


=⇒ min() ≥ 

1− 

=⇒  ≥ 

1− 
 =⇒  ≥ Λ−1

=⇒ ΛΛ ≥ Λ ≥ 2−1 ≥ 2min(
−1
 ) = 2

1

max()
 ≥ 
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Therefore there exists  such that

1(ΛΛ ≥ ) ≥ 1(A)

Furthermore, note that by the Markov inequality and Assumption 5,

Pr(A) = 1− Pr(A
) ≥ 1−

[(−1 )]
1− 

≥ 1−  (8.1)

Next consider ̂ = (̂1 ̂
0
2)

0. For convenience we will neglect the ̄02Λ̂2 term in ̂1, which

will be asymptotically negligible due to  −→ 0. Note that

̂ =   = [
0
1 

0
2]
0 1 = −1 [0 − ̄02Λ̃

0
2] 2 = −1 Λ̃

0
2

Then by Assumption 5, for 0
 = [−̄2 ]

 (̂|) =  (|) 0
 ≥ 

0
 = −1

"
1 + ̄02ΛΛ̄2 −̄02ΛΛ

−ΛΛ̄2 ΛΛ

#

= −1

"
1 0

0 0

#
+ −1 ΛΛ

0
 ≥ 

"
1 0

0 0

#
+ 1(A)

0


≥ 1(A)

"
1 + ̄02̄2 −̄02
−̄2 

#
≥ 1(A)

where the last inequality follows by ̄2 uniformly bounded. Also we have

 (̂) = [ (̂|)] +  ([̂|]) ≥ [ (̂|)] ≥ Pr(A)

It then follows from equation (8.1) and  −→ 0 that for large enough ,

1



X
=1

 (̂) ≥ 
1



X
=1

Pr(A) ≥ 

Therefore
P

=1  (̂) is uniformly nonsingular.

The remainder of the proof is entirely standard. Q.E.D.

9 Appendix C: Solving the Zeros Problem of Demand

In this Appendix we briefly explain how the bounds on average surplus we consider solve the zeros

problem of demand. First, allowing a vector of disturbances to enter the demand function in a

nonseparable, nonlinear way allows zeros as the outcome of a very general choice specification.

For example, an underlying demand model where zeros occur as a censored outcome is allowed

because disturbances are not constrained to be additively separable in our specification.
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Second, the economics of demand helps explain how zeros are correctly accounted for. An

individual who chooses zero over the price range being considered does not care about the price

change and so has zero surplus. Average demand includes zero choices and the average and

average surplus averages over the same zero surplus individuals. Including zeros in the average

demand accounts for individuals who have zero surplus because they do not choose to purchase

the good with changing price. This is why including zeros is the correct econometric approach.

To elaborate on the economics suppose only one price  is varying. For simplicity we consider

quantity rather than share. Let (  ) be the demand function for the good with price varying

(holding all other prices constant) for one type  of individual preferences. Let ( ) be the

equivalent variation EV for a price change from  to 1 for type  Hausman and Newey (2016)

showed that if the income effect for every is bounded below and above by  and  respectively

then Z 1



(  ) exp(−[− ]) ≤ ( ) ≤
Z 1



(  ) exp(−[− ])

If (  ) is zero over [ 1] then upper and lower bounds coincide at zero. Itegrating over the

distribution of  givesZ 1



̄( ) exp(−[− ]) ≤ ̄() ≤
Z 1



̄( ) exp(−[− ])

where ̄( ) =
R
(  )() is average demand. Here ̄() includes the zero surplus in-

dividuals as it must do to be an average surplus over all individuals. Also the average over

quantities ̄( ) includes the zeros, as it must do to include in the average surplus those who

do not purchase any of the good. Thus we get correct bounds for average EV by including the

zeros in estimation of average demand.

It also follows from Battacharya (2015) that averaging over zeros leads to the correct cal-

culation in multinomial discrete choice when the price of one good is changing. Let ̄( )

denote choice probability for the good with changing price. Bhattacharya (2015) shows average

equivalent variation is

̄() =

Z 1



̄( )

As usual the choice probability is the average across individuals of the choice of 0 or 1 Thus

the choice probability is an average demand that includes zeros. Average surplus also includes

zeros. Thus we get correct average EV by including zeros. We also note that we do not have

bounds. With discrete choice the income effects are not important so the integral gives exact

EV.
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