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Abstract. This paper introduces Stata commands [R] npivreg and [R] npivregcv,
which implement nonparametric instrumental variable (NPIV) estimation meth-
ods without and with a cross-validated choice of tuning parameters, respectively.
Both commands are able to impose monotonicity of the estimated function. The
use of such a shape restriction may significantly improve the performance of the
NPIV estimator (Chetverikov and Wilhelm 2017). This is because the ill-posedness
of the NPIV estimation problem leads to unconstrained estimators that suffer
from particularly poor statistical properties such as very high variance. The con-
strained estimator that imposes the monotonicity, on the other hand, significantly
reduces variance by removing oscillations of the estimator that is nonmonotone.
We provide a small Monte Carlo experiment to study the estimators’ finite sample
properties and an application to the estimation of gasoline demand functions.

Keywords: st0001, nonparametric instrumental variable estimation, shape restric-
tions, monotonicity, endogeneity, regression

1 Introduction

Instrumental variable methods are commonly used in economics to achieve identification
and consistent estimation of models with endogeneity. Since economic theory does not
provide any guidance for how to choose parameterizations of functions of interest, e.g.
demand or production functions, it is desirable to avoid imposing such parameterizations
when possible. Instead, the nonparametric instrumental variable (NPIV) model does
not assume the function of interest is known up to a finite-dimensional parameter:

Y = g(X) + ε, E[ε|W ] = 0,

where Y is a scalar dependent variable, X a scalar endogenous explanatory variable,
and W an instrumental variable (IV). In practice, however, a researcher often wants
to include additional exogeneous covariates Z. To avoid the curse of dimensionality
in nonparametric estimation, we do not allow the function g to arbitrarily vary with
the covariates, but rather assume that they enter the model in an additively separable
fashion. We will therefore study the following more general model:

Y = g(X) + γ′Z + ε, E[ε|W,Z] = 0 (1)
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We are interested in the estimation of the function g based on a random sample
{(Yi, Xi,Wi, Zi)}ni=1 without imposing any parametric functional form assumptions on
g. Unfortunately, the nonparametric estimation of g is a very hard statistical problem
that requires the solution of a so-called ill-posed inverse problem. These types of esti-
mation problems are well-known to lead to estimators that are very poorly behaved in
the sense that they can be extremely variable in finite samples and may converge to the
true function g only at a very slow rate. The variance of the NPIV estimator is orders of
magnitude larger than that of standard nonparametric regression estimators (based on
exogeneous regressors) and, therefore, also much larger than the variance of parametric
estimators. More details on the definition and properties of NPIV estimators can be
found in Newey and Powell (2003), Hall and Horowitz (2005), Blundell et al. (2007), and
Darolles et al. (2011), among others, and in the survey papers Horowitz (2011, 2014).

In many economic applications, economic theory implies that the function of interest,
g, should be monotone, e.g. demand, production, or cost functions. Chetverikov and
Wilhelm (2017) show that constraining the NPIV estimator to satisfy this monotonicity
constraint may significantly improve the performance of the estimator in finite samples
and, therefore, makes this constraint version of the NPIV estimator more attractive for
applied work. To show that this improvement can be huge, we reproduce in Figure 1
a graph from that paper. It shows the square-root of the mean integrated square error
(“MISE”) of the unconstrained and the constrained NPIV estimators as functions of
the sample size. The different panels show this function for different choices K of the
number of terms in the series estimator. For K = 4 or K = 5 and a small sample size
around n = 100, for example, the constrained estimator has a MISE that is only 20% of
that of the unconstrained estimator and, in that sense, is therefore about 5 times more
precise. The improvement in MISE from imposing the constraint is visible up to large
sample sizes and then eventually disappears.

In this paper, we describe how to use the new Stata command [R] npivreg which
implements both the constrained and unconstrained NPIV estimators for a user-chosen
number of series terms in the estimator. A second command [R] npivregcv, provides
the same estimators, but uses a cross-validation criterion to choose the number of series
terms in a data-driven fashion.

1.1 The NPIV Estimator Without Exogenous Covariates

We first introduce the NPIV estimator in the absence of additional exogeneous covariates
Z. It is a series estimator that takes the form of the standard two-stage least squares
estimator for linear models, except that the nonparametric version considered here
does not regress Y on X using W as instrument, but instead regresses Y on a set of
transformations of X using a set of transformations of W as instruments.

Let (Yi, Xi,Wi), i = 1, . . . , n, be an i.i.d. sample from the distribution of (Y,X,W ).
To define our estimator, we first introduce some notation. Let {pk(x), k ≥ 1} and
{qk(w), k ≥ 1} be two orthonormal bases in L2[0, 1]. For K = Kn ≥ 1 and J =
Jn ≥ Kn, let p(x) := (p1(x), . . . , pK(x))′ and q(w) := (q1(w), . . . , qJ(w))′ be vectors
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Figure 1: an example demonstrating performance gains from imposing the monotonicity
constraint. In this example, g(x) = x2 + 0.2x, W = Φ(ζ), X = Φ(ρζ +

√
1− ρ2ε),

ε = σ(ηε+
√

1− η2ν), where (ζ, ε, ν) is a triple of independent N(0, 1) random variables,
ρ = 0.3, η = 0.3, σ = 0.5, and Φ(·) is the cdf of the N(0, 1) distribution. The four
panels of the figure show the square root of the MISE of the constrained (con) and
the unconstrained (uncon) series estimators defined in Section 1.1 as a function of the
sample size n depending on the number of series functions used, K. We use the series
estimators based on quadratic regression splines. The figure shows that the constrained
estimator substantially outperforms the unconstrained one as long as K ≥ 3 even in
large samples.

of basis functions. Define P := (p(X1), . . . , p(Xn))′, Q := (q(W1), . . . , q(Wn))′, and
Y := (Y1, . . . , Yn)′.

We define two estimators of g. The first one is the unconstrained estimator ĝu(x) :=

p(x)′β̂u which is a linear combination of basis functions with the coefficients estimated
by the two-stage least squares optimization problem:

β̂u := argminb∈RK (Y −Pb)′Q(Q′Q)−1Q′(Y −Pb). (2)

This estimator is similar to the one defined in Horowitz (2012) and is a special case of
the estimator considered in Blundell et al. (2007). The second one is the constrained

estimator ĝc(x) := p(x)′β̂c which is a linear combination of basis functions with the
coefficients estimated by the two-stage least squares optimization problem subject to
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the constraint that the resulting estimator is nondecreasing:

β̂c := argminb∈RK : p(·)′b is nondecreasing(Y −Pb)′Q(Q′Q)−1Q′(Y −Pb). (3)

Figure 1 shows that the constrained estimator ĝc(x) may substantially outperform the
unconstrained estimator ĝu(x).

1.2 The NPIV Estimator With Exogenous Covariates

We now introduce two procedures for accommodating the presence of L additional,
exogenous covariates Z in the NPIV estimation of g. The first procedure gives one-step
estimators that are identical to those in (2) and (3) except that the bases P and Q are
replaced by the enlarged bases

P̃ := [P,Z], Q̃ := [Q,Q× Z]

where Z := (Z1, · · · , Zn)′ and Q × Z is the tensor product of the columns of matrices
Q and Z, i.e. the matrix Q × Z is such that its i-th row consists of all products
of the form qj(Wi)Zi,l, j = 1, . . . , J and l = 1, . . . , L. The second procedure gives
two-step estimators, which are defined as follows. First, compute the constrained or
unconstrained one-step estimator as described above. Let γ̂ denote the estimator of γ
from this first step. Then, remove the covariates from the outcome by defining Ỹ :=
Y − γ̂′Z and estimate g by NPIV estimation of Ỹ on X only, i.e. using (2) or (3). We
find that two-step estimators may outperform one-step estimators if the dimension of
Z is large.

2 The npivreg and npivregcv Commands

The commands [R] npivreg and [R] npivregcv compute the fitted values of the NPIV
estimator of g. The former requires the user to specify the number of series terms used
in each of the two bases p(x) and q(w). The latter constrains the two tuning parameters
to be equal and then uses cross-validation to choose them in a data-driven fashion.

The commands require two Stata packages, ‘bspline’ and ‘polyspline’. These can
be installed by simply typing ‘ssc install bspline’ and ‘ssc install polyspline.’

When the user does not specify any options, [R] npivreg computes the estimator
in (2) or the corresponding one-step estimator if there are additional, exogenous covari-
ates using B-spline bases of degrees 2 and 3, with 2 and 3 knots, for p(x) and q(w),
respectively. These default choices and further parameters can be modified through the
options described below.

[R] npivregcv is built upon [R] npivreg. Its default choice of bases are also B-
splines of degrees 2 and 3 for p(x) and q(w), respectively. It constrains the number of
knots to be the same for both bases and then chooses the number of knots by minimizing
the cross-validation criterion.
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In the absence of monotonicity constraints on g, the commands avoid solving the op-
timization problem in (2) by computing the closed-form two-stage least squares solution
of the problem. When the one of the options decreasing or increasing is specified,
the commands compute the solution to the constrained optimization problem in (3)
to ensure that the resulting estimator is decreasing or increasing, respectively. This
optimization problem is implemented using a constrained optimization routine in Mata
which typically requires significantly more computation time than the closed-form esti-
mator in the absence of the monotonicity restrictions. As discussed above, however, the
gains in precision of the estimator when imposing the constraints may be substantial.

2.1 Syntax

The syntax of the commands [R] npivreg and [R] npivregcv is similar:

npivreg depvar expvar inst exovar
[
if
] [

in
] [

, power exp(#) power inst(#)

num exp(#) num inst(#) pctile(#) polynomial increasing decreasing
]

npivregcv depvar expvar inst exovar
[
if
] [

in
] [

, power exp(#) power inst(#)

maxknot(#) pctile(#) polynomial increasing decreasing
]

The only difference between the two is that [R] npivreg possesses two additional op-
tions for the specification of the number of knots. The four required arguments of the
commands are depvar (the outcome variable Y ), expvar (the endogenous regressor X),
inst (the instrumental variable Z), and exovar (a list of exogenous covariates W ).

2.2 Options

We now describe the options of the two commands. If options are left unspecified, the
commands run on the default settings.

power exp(integer) is a positive integer for the degree of the spline basis for the
endogenous regressor. The default is 2.

power inst(integer) is a positive integer for the degree of the spline basis for the
instrument. This number needs to be equal to or larger than power exp. The
default is 3.

num exp(integer) is a positive integer greater than 1 for the number of knots of the
spline basis for the endogenous regressor. The default is 2. The user need not specify
this if polynomial is used.

num inst(integer) is a positive integer greater than 1 for the number of knots of the
spline basis for the instrument. The default is 3. The user need not specify this if
polynomial is used.
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maxknot(integer) is a positive integer for maximum number of knots to be considered
in the cross-validation procedure. With a sample size N and the option maxknot(k)

the cross-validation procedure evaluates the performance of the NPIV estimator with
numbers of knots from 3 to max(N1/5, k) and executes the NPIV regression with the
optimal number of knots from that range. If the option polynomial is used, then
maxknot specifies the maximum power of the polynomial to be considered. 5 is the
default.

pctile(integer) specifies the domain of the endogenous regressor over which the NPIV
estimator of g is to be computed. This needs to be a positive integer smaller than
50. For a given value k, the NPIV estimator is computed at fine grid points within
the k-th and the (100 − k)-th percentiles of the empirical distribution of X. The
default is 5.

polynomial specifies the type of both bases p(x) and q(w) to be power polynomials.
Choices of numbers of knots are ignored under this option. Shape restrictions cannot
be imposed for this basis and an error message is generated if this option is used
together with decreasing or increasing.

increasing imposes that the NPIV estimator is an increasing function of the endoge-
nous regressor. If this option is specified, the basis p(x) is forced to be quadratic
B-spline and the option power exp(integer) is not used. An error occurs when
this option is used together with one of the options decreasing or polynomial.
The basis q(w) for the instrument is also restricted to be a B-spline, but the
power and number of knots can be freely chosen through power inst(integer)

and num inst(integer).

decreasing imposes that the NPIV estimator is a decreasing function of the endogenous
regressor. The same restrictions as for increasing apply to this option.

2.3 Saved results

The commands npivreg and npivregcv each generate an output variable in the Stata
data space, called npest. npest contains the fitted values of the NPIV estimator of g
over the range indicated by pctile(integer). Both commands are of the e-class. The
following results are stored in e():



Chetverikov, Kim, and Wilhelm 7

Scalars
e(N) number of observations e(powerexp) power of basis for X
e(powerinst) power of basis for W e(numexp) # of knots of basis for X
e(numinst) # of knots of basis for W e(pct) percentile
e(xmin) min of X in domain e(xmax) max of X in domain
e(zmin) min of Z in domain e(zmax) max of Z in domain
e(gmin) min of grid e(gmax) max of grid

on which g evaluated on which g evaluated
e(optknot) optimal number of knots e(maxknot) maximum knots to be evaluated

Macros
e(cmd) name of command
e(depvar) name of Y e(expvar) name of X
e(inst) name of Z e(exovar) list of exogenous regressors
e(basis) type of spline basis e(title) nonparametric IV regression
e(shape) type of shape restriction

Matrices
e(b) coefficient vector of basis

In the presence of additional, exogenous covariates Z of dimension k, the estimates
of γ correspond to the last k elements of the coefficient vector in e(b).

3 Example: Estimating Gasoline Demand Functions

In this section, we illustrate the use of the NPIV estimation commands by applying them
to the estimation of gasoline demand functions on the household level as in Blundell
et al. (2012, 2016); Chetverikov and Wilhelm (2017). We consider the partially linear
specification in (1) where Y is annual log-gasoline consumption (log q), X denotes
log-price of gasoline (log p), and the instrument W is distance to major oil platform
(distance oil1000). We include additional controls Z such as household characteris-
tics, urbanity, population density, and availability of public transit, among others. The
controls are listed in the local macro ‘exolist’. The data set is from the 2001 National
Household Travel Survey and the sample size is 4,812. See Blundell et al. (2012) for
more details on the data set, sample selection and definition of the variables. Price and
income elasticities are constant in a fully linear model, but it is more likely that those
elasticities vary with price and income levels. By using the nonparametric function
g, we allow for non-constant price elasticity. We focus on three subsamples in which
household income levels are within ±0.5 (in log) of $72,500 (high), $57,500 (middle)
and $42,500 (low).

Figures 2 and 3 show the unconstrained and constrained (with a decreasing shape)
NPIV estimates of g. In both estimation procedures, a quadratic B-spline basis with 3
knots is used for p(x) and a cubic B-spline with 10 knots for q(w). The NPIV demand
function is estimated on price levels from 5th to 95th percentiles of the given data.

We now describe how to produce these results using the command npivreg for
the middle income group. First, consider estimation of the one-step unconstrained
NPIV estimator. The following code defines the parameters of the B-spline basis, drops
observations outside the middle income group, defines the list of additional exogenous
covariates, then executes the npivreg command, and finally stores the estimated demand
function in the variable one step:
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. local powerx = 2

. local powerz = 3

. local numx = 3

. local numz = 10

. local p = 5

. local income = 57500

. local inclevel "Middle"

. drop in 4813/5254

. drop if log_y < log(`income´) - 0.5

. drop if log_y > log(`income´) + 0.5

. local exolist log_hhsize log_driver log_hhr_age total_wrkr /*
> */ publictransit_d cl5_smtown_d cl5_suburban_d cl5_secondcity_d cl5_urban_d /*
> */ popdensity_d2 popdensity_d3 popdensity_d4 popdensity_d5 popdensity_d6 /*
> */ state_fips region popdensity_d7 popdensity_d8

. npivreg log_q log_p distance_oil1000 `exolist´, /*
> */ power_exp(`powerx´) power_inst(`powerz´) num_exp(`numx´) num_inst(`numz´) pctile(`p´)
Domain over which the estimator is computed: .05-quantile of X to .95-quantile of X
(189 observations deleted)
Basis for X: B-spline of order 2
Basis for Z: B-spline of order 3
Number of equally spaced knots for X: 10
Number of equally spaced knots for Z: 5
no shape restriction

. generate one_step = npest

For the estimation of the two-step unconstrained NPIV estimator, we need to subtract
the index of covariates, γ̂′W , from the outcome. The following code estimates the index
coefficients γ̂ and stores the difference between the outcome and the index of covariates
in Y tilde.

. local exovar = e(exovar)

. mata
----------------------- mata (type end to exit) -----------------------
: bw = st_matrix("e(b)")´

: W = st_data(., "`exovar´", 0)

: nw = cols(W)

: nb = rows(bw)

: Ey = W*bw[(nb-nw+1)..nb]

: end
-----------------------------------------------------------------------

. getmata Ey, force

. quietly generate Y_tilde = log_q - Ey

The two-step unconstrained NPIV estimator is then computed as the unconstrained
NPIV estimator without additional covariates, using Y tilde as the new outcome:

. npivreg Y_tilde log_p distance_oil1000, /*
> */ power_exp(`powerx´) power_inst(`powerz´) num_exp(`numx´) num_inst(`numz´) pctile(`p´)
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. mata
----------------------- mata (type end to exit) -----------------------
: npest = st_data(., "npest", 0)

: one_step = st_data(., "one_step", 0)

: onestep = one_step :+ bw[nb-nw+1]*log(`income´)

: twostep = npest :+ bw[nb-nw+1]*log(`income´)

: end
-----------------------------------------------------------------------

Finally, we recover the one-step and two-step estimates from mata and plot them to-
gether in the same graph:

. getmata onestep, force

. getmata twostep, force

. quietly line twostep grid || line onestep grid, title("`inclevel´ income group")

The resulting graph is the second one in Figure 2. The other two graphs for the lower
and upper income group are generated in a similar fashion. Similarly, the constrained es-
timators are constructed similarly, making use of the option decreasing of the npivreg
command.
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Figure 2: Unconstrained NPIV estimates of g in the three income groups using the
one-step and two-step estimators to accommodate additional covariates.



10 npivreg and npivregcv

6
.4

6
.6

6
.8

7
7

.2
7

.4

.2 .25 .3 .35
grid

twostep onestep

Low income group

6
.4

6
.6

6
.8

7
7

.2
7

.4

.2 .25 .3 .35
grid

twostep onestep

Middle income group

6
.4

6
.6

6
.8

7
7

.2
7

.4

.2 .25 .3 .35
grid

twostep onestep

High income group

Figure 3: Constrained NPIV estimates of g in the three income groups using the one-step
and two-step estimators to accommodate additional covariates.

4 Monte Carlo Simulation

In this section, we conduct a small simulation experiment to study the finite sample
properties of the NPIV estimators discussed in this paper and to show that imposing
monotonicity constraints can substantially improve the performance of the estimators.

Consider the following data generating process:[
ε
η

]
∼ N

([
0
0

]
,

[
1 0.5
0.5 1

])
,

W ∼ N(0, 1), X = 2W + η,

Y = g(X) + ε where g(X) =
exp(X/2)

1 + exp(X/2)

Y,X and W denote the outcome, the endogenous regressor, and the instrument re-
spectively. η is the endogenous component of X. W is independent of ε and η by
construction. We generate 1, 000 Monte Carlo samples of size 100 and of size 800.

First, we compute the unconstrained NPIV estimator:

. npivreg Y X W, power_exp(2) power_inst(3) num_exp(3) num_inst(3) pctile(1)

Second, we compute the constrained NPIV estimate that imposes that the estimator is
increasing:
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. npivreg Y X W, power_exp(2) power_inst(3) num_exp(3) num_inst(3) pctile(1) increasing

Figures 4 and 5 show the true g function and the NPIV estimate averaged across the
1, 000 samples. Red lines show bands that indicate the variability of the estimator. The
lower and upper band were generated by subtracting and adding 2-times the empirical
standard deviations from the average estimate at each grid point.

For both sample sizes, the two estimators incur only a small bias, but the constrained
NPIV estimator is much less variable than the unconstrained one. The difference in vari-
ability decreases as the sample size increases. Eventually, as the sample size becomes
large enough the constrained and unconstrained estimators will be equal to each other,
although this may happen only for extremely large samples. These findings are consis-
tent with the Monte Carlo simulation results in Chetverikov et al. (2017).
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Figure 4: Monte Carlo simulation results on small samples
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Figure 5: Monte Carlo simulation results on large samples
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