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1 Introduction

This Supplementary Appendix presents technical details for the paper “Sparse demand sys-

tems: corners and complements.” Appendix A describes the hyperspherical coordinate rep-

resentation used in the paper. Appendix B derives the log likelihood function and presents

algebraic manipulations that are used to compute the value of the log likelihood. Appendix

C presents additional summary statistics for the data. Appendix D presents details of the

hedonic price functions estimated.

A Hyperspherical representation of B

As discussed in Section 5.2 in the paper, it is convenient to reparameterize the matrix

B in hyperspherical coordinates. This representation is derived as follows. Since B is

upper triangular, bkj = 0 if k > j. The number of nonzero elements in column Bj is

k = min {K, j}. Let Cj =
[
c1j, ..., ck−1

]T
. The hyperspherical coordinate representation of

the nonzero elements of Bj is given by (dj, Cj) = H (Bj) where H−1 is defined by

B (1, j) = dj cos (c1j) (A.1)

B (2, j) = dj sin (c1j) cos (c2j)

B (3, j) = dj sin (c1j) sin (c2j) cos (c3j)

...

B
(
k − 1, j

)
= dj sin c1j · · · sin

(
ck−2

)
cos
(
ck−1

)
B
(
k, j
)

= dj sin (c1j) · · · sin
(
ck−2

)
sin
(
ck−1

)
with dj > 0, ckj ∈ [0, π] for k < k − 2 and ck−1 ∈ [0, 2π) .
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B Estimation details

In this section we derive the components of the log likelihood function for 3 cases. Case 1

applies to observations in which a household purchased K goods. Case 2 applies to observa-

tions in which a household bought more than zero and fewer than K goods. Case 3 applies

to observations in which a household bought zero goods.

B.1 Case 1: choice of K goods

The notation is the same as the main paper as defined in Section 3 and in Section 5.2

We drop household subscripts h to ease notation.

Suppose the goods are sorted so that q = (q1, 0) . Let p = (p1, p2) be the corresponding

vector of prices. That is, the first K elements are non-negative and the remaining J − K

elements are 0. Let B = [B1 B2] as in Section 3.2.

Inverting the demand function given in equation (3.6) in Section 3.2 in the paper, inverse

demand is

e =
(
BT

1

)−1 (
p1 +BT

1 B1q1
)

=
(
BT

1

)−1
p1 +B1q1

p2 ≥ BT
2

(
BT

1

)−1
p1.

Since B is a function of η, η ∼ N(0, I) and e ∼ N (µ,Σ), the case 1 log-likelihood is

ln f1 (q, p, θ) =

∫
η

{
lnφ

[(
BT

1

)−1
p1 +B1q1, µ,Σ

]
+ ln (det (B1))

}
φ(η, 0, I)dη

where f1 is the case 1 density of q conditional on p and φ is the normal density function.

Note that parameter values must satisfy the constraints that p2 ≥ BT
2

(
BT

1

)−1
p1.
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B.2 Case 2: Choice of fewer than K goods

We first derive the likelihood function for fixed B.

Suppose a household chooses q = (q1, 0) with q1 > 0 and dim (q1) = d1 < K. In this case,

for each q1, there are multiple vectors e that satisfy the first order conditions

−p1 −BT
1 (B1q1 − e) = 0 (B.1)

−p2 −BT
2 (B1q1 − e) ≤ 0 (B.2)

q1 > 0. (B.3)

In fact, the set of e values satisfying the first order conditions is a linear space of dimension

K − d1. In these expressions, B1 is a K × d1 matrix with d1 < K and B2 is a (K × J − d1)

matrix.

Let

B1 = USV T

be the singular value decomposition of B1 where U is orthogonal (K ×K) , S =

 S1

0


T

where S1 is diagonal (d1 × d1) and V is orthogonal (d1 × d1) . Define ẽ = UT e and partition

ẽ = (ẽ1, ẽ2) where ẽ1 is (d1 × 1) and ẽ2 is (d2 × 1) . Then rewrite (B.1) as

V

[
S1 0

] ẽ1

ẽ2

 = p1 +BT
1 B1q1

or

V S1ẽ1 = p1 +BT
1 B1q1. (B.4)

For each q1 there are multiple vectors ẽ that solve (B.4) . In fact, there is a linear space
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of dimension d2. In other words, for each (q1, ẽ2) ∈ Rd1 ×Rd2 , there is a unique ẽ1 defined by

ẽ1 = G0p1 +G1q1 (B.5)

where

G0 = S−11 V T (B.6)

G1 = S−11 V T
(
BT

1 B1

)
.

Since B1 has rank d1 by assumption, S1 is a (d1 × d1) invertible diagonal matrix and by

construction V −1 = V T .

Since

ẽ = UT e

ẽ ∼ N
(
µ̃, Σ̃

)
where µ̃ = UTµ and Σ̃ = UTΣU. Consider the partially observed random

vector (q1, ẽ2) . q1 is observed but ẽ2 is not. The expressions above imply that the density of

(q1, ẽ2) is

fq1ẽ2 (q1, ẽ2) = fẽ (G0p1 +G1q1, ẽ2) · det (G1)

where (G0, G1) are defined in (B.6) .

We observe q1 if inequality (B.2) is satisfied. Since B1 = USV T and e = Uẽ, this is

equivalent to

−p2 −BT
2 U
(
SV T q1 − ẽ

)
≤ 0. (B.7)

Partitioning B̃2 = UTB2 (K × J − d1) as

B̃2 =

 B̃21

B̃22
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where B̃21 is size (d1 × J − d1) and B̃22 is size (d2 × J − d1) , inequality (B.7) is

−p2 −
[
B̃T

21 B̃T
22

]
 S1V

T q1

0

−
 ẽ1

ẽ2


 ≤ 0

or

−p2 − B̃T
21

(
S1V

T q1 − ẽ1
)

+ B̃T
22ẽ2 ≤ 0

Substituting from equation (B.5) this is equivalent to

B̃T
22ẽ2 ≤ p2 − B̃T

21G0p1 + B̃T
21

(
S1V

T −G1

)
q1. (B.8)

Rewrite (B.8) as

M1ẽ2 ≤M2

where

M1 = B̃T
22

is a (J − d1 × d2) matrix and

M2 = p2 − B̃T
21G0p1 + B̃T

21

(
S1V

T −G1

)
q1

is (J − d1 × 1) .

Then the Case 2 likelihood, conditional on B(η) and p is

f2 [q, p, B(η), θ] =

∫
fq1ẽ2 (q1, ẽ2) 1 (M1ẽ2 ≤M2) dẽ2. (B.9)

Note that f2 [q, p, B(η), θ] = 0 if Pr (M1ẽ2 ≤M2) = 0.

Let d2 = K−d1, let Σ̃22 = C̃T
2 C2 be the variance of ẽ2. That is C̃T

2 is the upper triangular

cholesky decomposition of Σ̃22. Define ẽ2 = C̃T
2 z2+µ̃2 and note that after a change of variables
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the density of ẽ can be written

fẽ (ẽ1, z2) = fẽ1 (ẽ1, ν1 (z2) ,Ω1)
e−0.5z

T
2 z2

(2π)
d2
2

where ẽ1 ∼ N (ν1,Ω1) and z2 ∼ N (0, I) where

v1 = µ̃1 + Σ̃12C̃
−1
2 z2

Ω1 = Σ̃11 − Σ̃12Σ̃
−1
22 Σ̃21.

Therefore, (B.9) can be written

f2 [q, p, B(η), θ] =

∫
fq1z2 (q1, z2) 1

(
M̃1z2 ≤ M̃2

)
dz2 (B.10)

where

fq1z2 (q1, z2) = fe1|z2 (G0 +G1q1, ν1 (z2) ,Ω1)
e−0.5z

T
2 z2

(2π)
d2
2

= f̃q1z2 (q1, z2)
e−0.5z

T
2 z2

(2π)
d2
2

M̃1 = M1C̃
T
2

M̃2 = M2 −M1µ̃2

The matrix M̃1 has the QR decomposition

M̃1 = RQ

where R is (J − d1 × d2) lower triangular and Q is (d2 × d2) orthogonal. Then using the
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change of variable z2 = Q−1x, the integral can be written as

f2 [q, p, B(η), θ] =

∫
RQz2≤D

f̃q1z2 (q1, z2)
e−0.5z

T
2 z2

(2π)
d2
2

dz2 (B.11)

=

∫
Rx≤D

f̃q1z2
(
q1, Q

−1x
) e−0.5xT x

(2π)
d2
2

dx (B.12)

since Q is an orthogonal matrix. (That is Q−1Q = I and det (Q) = 1) The matrix R is lower

triangular. Therefore, row i has at most i nonzero elements.

Start from xd2 . Let J+
d2

be the set of rows of R that have positive elements in column d2

and J−d2 the set with negative elements. Then for all j ∈ J+
d2
,

−∞ ≤ xd2 ≤

Dj −
∑
i<d2

R (j, i)xi

R (j, d2)

and for all j ∈ J−d2 ,
Dj −

∑
i<d2

R (j, i)xi

R (j, d2)
≤ xd2 ≤ ∞.

So, the bounds on xd2 are xd2 ∈
[
xLd2 , x

H
d2

]
where

xLd2 = max

−∞,max
j∈J−

d2


Dj −

∑
i<d2

R (j, i)xi

R (j, d2)




and

xHd2 = min

∞, min
j∈J+

d2


Dj −

∑
i<d2

R (j, i)xi

R (j, d2)


 .
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We repeat the calculation for j = d2 − 1 through 1. Then the integral is

f2 [q, p, B(η), θ] =

xH1∫
xL1

· · ·

xHd2∫
xLd2

f̃q1z2
(
q1, Q

−1x
) e−0.5xT x

(2π)
d2
2

dx. (B.13)

Next for all j ≤ d2 define uj = Φ (xj) . Then making the change of variables, the integral

is equivalent to

f2 [q, p, B(η), θ] =

uH1∫
uL1

· · ·

uHd2∫
uLd2

f̃q1z2
(
q1, Q

−1x (u)
)
du (B.14)

where

uLj = Φ
(
xLj
)

uHj = Φ
(
xHj
)
.

Finally, for all j ≤ d2 making the change of variable uj =
(uHj −uLj )(1+vj)

2
, this is equivalent to

f2 [q, p, B(η), θ] =

1∫
−1

· · ·
1∫

−1

d2∏
j=1

(
uHj − uLj

2

)
f̃q1z2

(
q1, Q

−1x (v)
)
dv. (B.15)

This equals 0 if uHj ≤ uLj for any j.

The conditional density function f2 depends on the parameters θ and on the random

coefficient η. Integrating out the random coefficients, the Case 2 likelihood function is

ln f2 (q, p, θ) =

∫
η

f2 [q, p, B(η), θ]φ(η)dη.
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B.3 Case 3: Choice of 0 goods

Suppose a household chooses q = 0. In this case, the first-order conditions are

−p+BT e ≤ 0. (B.16)

In this inequality, B is a K × J matrix. Rewrite the inequality as

BT e ≤ p. (B.17)

Let e = Cz + µ. Then this is equivalent to

BT (Cz + µ) ≤ p

B̃T z ≤ p−BTµ.

where B̃ = CTB. Let

B̃ = QR

be the QR decomposition of B̃ where R is (K × J) lower triangular. Since Q is orthogonal

QTQ = I and det (Q) = 1.

Then defining z = Qx, the likelihood conditional on B(η) and p can be written

f3 [q, p, B(η), θ] =

∫
RT x≤p−BTµ

e−0.5x
T x

(2π)
K
2

dx. (B.18)

Start from xK . Let J+
K be the set of rows of C that have positive elements in column K and

J−K the set with negative elements. Let D = p−BTµ. Then for all j ∈ J+
K ,

−∞ ≤ xK ≤
Dj −

∑
i<K

R (j, i)xi

R (j,K)
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and for all j ∈ J−K ,
Dj −

∑
i<K

R (j, i)xi

R (j,K)
≤ xK ≤ ∞.

So, the bounds on xK are xK ∈
[
xLK , x

H
K

]
where

xLK = max

−∞,max
j∈J−

d2


Dj −

∑
i<K

R (j, i)xi

R (j,K)




and

xHK = min

∞, min
j∈J+

K


Dj −

∑
i<K

R (j, i)xi

R (j,K)


 .

We repeat the calculation for j = K − 1 through 1. Then the integral is

f3 [q, p, B(η), θ] =

xH1∫
xL1

· · ·
xHK∫
xLK

e−0.5x
T x

(2π)
d2
2

dx. (B.19)

Next for all j ≤ K define uj = Φ (xj) . Then making the change of variables, the integral

is equivalent to

f3 [q, p, B(η), θ] =

uH1∫
uL1

· · ·
uHK∫
uLK

du (B.20)

where

uLj = Φ
(
xLj
)

uHj = Φ
(
xHj
)
.
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Finally, for all j ≤ K making the change of variable uj =
(uHj −uLj )(1+vj)

2
, this is equivalent to

f3 [q, p, B(η), θ] =

1∫
−1

· · ·
1∫

−1

K∏
j=1

(
uHj − uLj

2

)
dv. (B.21)

Integrating out the random coefficients, the Case 3 likelihood is

ln f3 (q, p, θ) =

∫
η

f3 [q, p, B(η), θ]φ(η)dη.

C Data

Tables C.1-C.3 show the most frequently purchased two-item combinations. For complete-

ness, Table C.1 is the same as Table A.3 in the paper.

The tables show the following. While each of the top 5 or 10 two-item combinations has

an appreciable market share, in aggregate the top 5 account for only 54.34% of two-item

combinations and the top 10 account for only 67.20%. To account for 95% of two-item com-

binations one must include 105 distinct combinations, which are all the combinations listed

in Tables C.1-C.3 below. Most of these combinations have small market shares individually,

but together they account for a large share of all two-item baskets. Our model can account

for this wide variation in choices of types of fruit, numbers of types chosen, and the quantities

of each.
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Table C.1: Most frequently purchased 2-item combinations (A)

Freq. Pct. Cum. Pct.
Banana, Apples 101533 25.03 25.03
Banana, Berries+Currants 52141 12.85 37.88
Banana, Easy Peelers 24442 6.03 43.91
Banana, Grapes 23977 5.91 49.82
Apples, Easy Peelers 18363 4.53 54.34
Berries+Currants, Apples 15931 3.93 58.27
Apples, Grapes 12052 2.97 61.24
Berries+Currants, Grapes 8592 2.12 63.36
Avocado, Banana 7915 1.95 65.31
Banana, Pears 7681 1.89 67.20
Apples, Pears 6299 1.55 68.76
Banana, Orange 5746 1.42 70.17
Berries+Currants, Easy Peelers 5506 1.36 71.53
Apples, Orange 5070 1.25 72.78
Easy Peelers, Grapes 4856 1.20 73.98
Banana, Melons 3551 0.88 74.85
Banana, Nectarines 3244 0.80 75.65
Banana, Lemon 3187 0.79 76.44
Banana, Kiwi Fruit 3144 0.78 77.21
Berries+Currants, Cherries 3018 0.74 77.96
Banana, Plums 2916 0.72 78.68
Avocado, Berries+Currants 2514 0.62 79.30
Banana, Cherries 2511 0.62 79.92
Berries+Currants, Melons 2151 0.53 80.45
Berries+Currants, Nectarines 2133 0.53 80.97
Apples, Kiwi Fruit 2043 0.50 81.48
Apples, Lemon 2009 0.50 81.97
Apples, Melons 1898 0.47 82.44
Banana, Grapefruit 1829 0.45 82.89
Apples, Nectarines 1803 0.44 83.33
Apples, Plums 1790 0.44 83.77
Avocado, Apples 1751 0.43 84.21
Grapes, Pears 1745 0.43 84.64
Easy Peelers, Pears 1734 0.43 85.06
Grapes, Orange 1508 0.37 85.44

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.

12



Table C.2: Most frequently purchased 2-item combinations (B)

Freq. Pct. Cum. Pct.
Berries+Currants, Kiwi Fruit 1485 0.37 85.80
Berries+Currants, Orange 1426 0.35 86.15
Banana, Pineapples 1392 0.34 86.50
Berries+Currants, Plums 1391 0.34 86.84
Berries+Currants, Lemon 1285 0.32 87.16
Berries+Currants, Pears 1275 0.31 87.47
Apricot, Banana 1263 0.31 87.78
Grapes, Kiwi Fruit 1262 0.31 88.09
Grapes, Melons 1237 0.30 88.40
Grapes, Plums 1201 0.30 88.69
Banana, Peaches 1126 0.28 88.97
Banana, Mango 1109 0.27 89.24
Easy Peelers, Plums 1087 0.27 89.51
Banana, Dates 1060 0.26 89.77
Easy Peelers, Orange 1060 0.26 90.04
Apples, Grapefruit 986 0.24 90.28
Grapes, Nectarines 980 0.24 90.52
Easy Peelers, Melons 963 0.24 90.76
Easy Peelers, Lemon 949 0.23 90.99
Berries+Currants, Pineapples 899 0.22 91.21
Grapes, Lemon 871 0.21 91.43
Berries+Currants, Peaches 870 0.21 91.64
Easy Peelers, Kiwi Fruit 861 0.21 91.85
Berries+Currants, Mango 842 0.21 92.06
Apples, Pineapples 818 0.20 92.26
Apples, Plums 1790 0.44 83.77
Avocado, Apples 1751 0.43 84.21
Grapes, Pears 1745 0.43 84.64
Easy Peelers, Pears 1734 0.43 85.06
Grapes, Orange 1508 0.37 85.44
Berries+Currants, Kiwi Fruit 1485 0.37 85.80
Berries+Currants, Orange 1426 0.35 86.15
Banana, Pineapples 1392 0.34 86.50
Berries+Currants, Plums 1391 0.34 86.84
Berries+Currants, Lemon 1285 0.32 87.16

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.
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Table C.3: Most frequently purchased 2-item combinations (C)

Freq. Pct. Cum. Pct.
Berries+Currants, Pears 1275 0.31 87.47
Apricot, Banana 1263 0.31 87.78
Grapes, Kiwi Fruit 1262 0.31 88.09
Grapes, Melons 1237 0.30 88.40
Grapes, Plums 1201 0.30 88.69
Banana, Peaches 1126 0.28 88.97
Banana, Mango 1109 0.27 89.24
Easy Peelers, Plums 1087 0.27 89.51
Banana, Dates 1060 0.26 89.77
Easy Peelers, Orange 1060 0.26 90.04
Apples, Grapefruit 986 0.24 90.28
Grapes, Nectarines 980 0.24 90.52
Easy Peelers, Melons 963 0.24 90.76
Easy Peelers, Lemon 949 0.23 90.99
Berries+Currants, Pineapples 899 0.22 91.21
Grapes, Lemon 871 0.21 91.43
Berries+Currants, Peaches 870 0.21 91.64
Easy Peelers, Kiwi Fruit 861 0.21 91.85
Berries+Currants, Mango 842 0.21 92.06
Apples, Pineapples 818 0.20 92.26
Orange, Pears 818 0.20 92.47
Nectarines, Plums 791 0.19 92.66
Cherries, Apples 774 0.19 92.85
Lemon, Orange 741 0.18 93.03
Avocado, Easy Peelers 699 0.17 93.21
Easy Peelers, Nectarines 691 0.17 93.38
Apricot, Berries+Currants 673 0.17 93.54
Apples, Mango 664 0.16 93.71
Pears, Plums 618 0.15 93.86
Apples, Peaches 611 0.15 94.01
Avocado, Grapes 575 0.14 94.15
Grapes, Pineapples 572 0.14 94.29
Cherries, Grapes 556 0.14 94.43
Lemon, Lime 542 0.13 94.56
Grapes, Grapefruit 513 0.13 94.69

Note: The table records the frequency with which var-
ious 2-item combinations were purchased.
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Another way to see the variety of choices and the potential role of complementarities is

to look at the frequency of basket size conditional on fruit choice. Tables C.4-C.5 show, con-

ditional on purchase of a fruit type, how frequently each basket size was purchased. Except

for bananas, cherries, and lemons, all categories are more likely to be purchased in combina-

tions than as stand-alone categories. The relative frequencies of basket size vary across fruit

categories and the larger baskets are usually less frequent. These patterns strongly violate

the usual independence assumptions of typical discrete choice demand models.
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Table C.4: Number of categories purchased conditional on fruit type (A)

Size of fruit basket
1 2 3 4 5 6 Total

Apricot 425 618 656 560 409 681 3349
12.69 18.45 19.59 16.72 12.21 20.33 100.00

Avocado 5099 4592 3903 2879 1938 2399 20810
24.50 22.07 18.76 13.83 9.31 11.53 100.00

Banana 121133 103981 71415 39854 20041 15468 371892
32.57 27.96 19.20 10.72 5.39 4.16 100.00

Berries+Currants 46458 37782 28220 18430 11102 10739 152731
30.42 24.74 18.48 12.07 7.27 7.03 100.00

Cherries 2611 3296 2778 2040 1336 1731 13792
18.93 23.90 20.14 14.79 9.69 12.55 100.00

Dates 1104 867 703 494 285 416 3869
28.53 22.41 18.17 12.77 7.37 10.75 100.00

Apples 59971 76517 59414 34882 18040 14545 263369
22.77 29.05 22.56 13.24 6.85 5.52 100.00

Easy Peelers 30193 35914 30488 18977 10402 9099 135073
22.35 26.59 22.57 14.05 7.70 6.74 100.00

Grapes 36085 39580 33187 22622 13088 11627 156189
23.10 25.34 21.25 14.48 8.38 7.44 100.00

Grapefruit 2387 2985 2930 2567 1857 2522 15248
15.65 19.58 19.22 16.83 12.18 16.54 100.00

Kiwi Fruit 4297 6561 6821 5705 4081 5062 32527
13.21 20.17 20.97 17.54 12.55 15.56 100.00

Lemon 8175 7736 6671 5183 3601 4227 35593
22.97 21.73 18.74 14.56 10.12 11.88 100.00

Lime 975 1372 1302 1082 835 1211 6777
14.39 20.24 19.21 15.97 12.32 17.87 100.00

Lychees 182 210 226 170 126 200 1114
16.34 18.85 20.29 15.26 11.31 17.95 100.00

Note: The table records the frequency of each fruit basket size conditional
on purchasing the listed fruit category. Column 1 lists the fruit categories.
The middle columns record the frequencies. The final column records the
total number of observations of each type.
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Table C.5: Number of categories purchased conditional on fruit type (B)

Size of fruit basket
1 2 3 4 5 6 Total

Mango 2074 2865 3059 2533 1830 2735 15096
13.74 18.98 20.26 16.78 12.12 18.12 100.00

Melons 7669 9212 8553 6539 4494 5378 41845
18.33 22.01 20.44 15.63 10.74 12.85 100.00

Nectarines 6141 8720 8061 6114 4187 4731 37954
16.18 22.98 21.24 16.11 11.03 12.47 100.00

Orange 12404 15247 13809 9562 5739 5838 62599
19.82 24.36 22.06 15.28 9.17 9.33 100.00

Passion Fruit 218 317 283 246 200 328 1592
13.69 19.91 17.78 15.45 12.56 20.60 100.00

Paw-Paws 138 219 234 216 154 261 1222
11.29 17.92 19.15 17.68 12.60 21.36 100.00

Peaches 2811 3855 3528 2667 1766 2247 16874
16.66 22.85 20.91 15.81 10.47 13.32 100.00

Pears 11486 20541 22356 16794 10240 9645 91062
12.61 22.56 24.55 18.44 11.25 10.59 100.00

Pineapples 4857 5352 4905 3959 2734 3675 25482
19.06 21.00 19.25 15.54 10.73 14.42 100.00

Plums 8947 11592 10874 8150 5423 5893 50879
17.58 22.78 21.37 16.02 10.66 11.58 100.00

Pomegranates 559 565 454 346 262 288 2474
22.59 22.84 18.35 13.99 10.59 11.64 100.00

Rhubarb 356 393 380 293 209 236 1867
19.07 21.05 20.35 15.69 11.19 12.64 100.00

Sharon Fruit 341 375 371 340 266 366 2059
16.56 18.21 18.02 16.51 12.92 17.78 100.00

Total 377096 401264 325581 213204 124645 121548 1563338
24.12 25.67 20.83 13.64 7.97 7.77 100.00

Note: The table records the frequency of each fruit basket size conditional
on purchasing the listed fruit category. Column 1 lists the fruit categories.
The middle columns record the frequencies. The final column records the
total number of observations of each type.
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D Hedonic price functions

As discussed in Section 6.2 in the paper, for each fruit category we estimate a hedonic price

model

ln pit = βxit + h (t) + εit

where ln pit is the price of item i in period t, xit is a vector of characteristics of item i in

period t and h (t) is a 6th order polynomial function of time. Time is measured as the day

within the year. Characteristics included in the regressions are country of origin, branded,

organic, tiering (economy, premium or standard), fascia (one of ten firms in the UK or other),

packaging, online shop, and small store.

Figure D.1 shows price data and imputed prices for 3 representative examples of the 27

fruit categories: apricots, bananas and cherries. Price is observed for each shopping trip

where a particular fruit is purchased. Each figure shows a scatter plot of observed log prices

and imputed log prices. For apricots and cherries, prices rise in the spring and the autumn.

These are periods when fresh apricots and cherries are more costly and more scarce. In

contrast, the price of bananas is relatively flat. The pictures also make clear that at a single

point in time there is a great deal of variability in price. This variation is primarily due to

variation across fascia and variation due to promotions.
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Figure D.1: Prices of apricots, bananas and cherries
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