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Abstract

We propose a robust method of discrete choice analysis when agents’ choice sets
are unobserved. Our core model assumes nothing about agents’ choice sets apart from
their minimum size. Importantly, it leaves unrestricted the dependence, conditional on
observables, between agents’ choice sets and their preferences. We first establish that
the model is partially identified and characterize its sharp identification region. We
also show how the model can be used to assess the welfare cost of limited choice sets.
We then apply our theoretical findings to learn about households’ risk preferences and
choice sets from data on their deductible choices in auto collision insurance. We find
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well as some familiar models of choice set formation, are rejected in our data.
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1 Introduction

The starting point of any discrete choice problem is the finite set of alternatives from which

the agent makes her choice—her choice set. Discrete choice analysis in the tradition of

McFadden (1974) rests on two assumptions about agents’ choice sets. The first is that an

agent’s choice set is a subset of a known universal set of feasible alternatives—the feasible set.

The second assumption is that an agent’s choice set is observed. McFadden showed that when

these assumptions hold, one can apply the principle of revealed preference to learn about

agents’ unobserved preferences from data on their observed choices. Moreover, he showed

that with additional restrictions on the structure and distribution of agents’ preferences, one

can achieve point identification of a parametric model of discrete choice.

In practice, however, agents’ choice sets are often unobserved. Sometimes this is simply a

missing data problem—the agents’ choice sets are observable in principle but are not recorded

in the data. For example, one studying the college enrollment choices of high school students

may not observe the colleges to which a student applied and was admitted (Kohn et al. 1976);

one studying the travel mode choices of urban commuters may not observe if some modes

normally available to a commuter were temporarily unavailable on a given day (Ben-Akiva

and Boccara 1995); or one studying the hospital choices of English patients may not observe

which alternatives were offered to a patient by her referring physician (Gaynor et al. 2016).

At other times the problem is that agents’ choice sets are unobservable mental constructs.

This is the case in models of limited attention or limited consideration, where an agent con-

siders only a subset of the feasible set due to, for example, search costs, brand preferences,

or cognitive limitations. For instance, one studying the personal computer choices of retail

consumers can be sure that a consumer was not aware of all computers for sale but cannot

observe the computers of which a consumer was aware (Goeree 2008); one studying the Medi-

gap plan choices of Medicare insureds cannot observe which of the available plans an insured

in fact considered (Starc 2014); or one studying the energy retailer choices of residential

electricity customers cannot observe whether or to what extent a customer considered the

alternatives to her default, incumbent retailer (Hortaçsu et al. 2017).

When agents’ choice sets are unobserved the econometrician is forced to make additional

assumptions in order to achieve point identification. The most common approach is to as-

sume, often implicitly, that all choice sets coincide with the feasible set or a known subset of

the feasible set. More sophisticated approaches allow for heterogeneity in agents’ choice sets

and obtain point identification by relying on auxiliary information about the composition or

distribution of choice sets, two-way exclusion restrictions (i.e., variables assumed to impact

choice sets but not preferences and vice versa), and other restrictions on the choice set forma-
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tion process (e.g., conditional independence between choice sets and preferences). In some

applications these approaches seem reasonable or at least plausible. In many applications,

however, they likely result in misspecified models, biased estimates, and incorrect inferences.

More fundamentally, the basic revealed preference argument is cast into doubt when

choice sets are unobserved. At one extreme, when an agent’s choice set equals the feasible

set, her choice reveals that she prefers the chosen alternative to all others. At the other

extreme, when an agent’s choice set comprises a single alternative, her choice is driven

entirely by her choice set and reveals nothing about her preferences. In all other cases her

choice is a function of both her preferences and her choice set. Learning about preferences

from choices when choice sets are unobserved is the main challenge we address in this paper.

We propose a new, robust method of discrete choice analysis when there is unobserved

heterogeneity in choice sets. Our core model, which imposes mild restrictions on agents’

preferences, assumes nothing about agents’ choice sets or how they are formed, apart from

assuming that they have a known minimum size greater than one. In our main theoretical

result, we establish that the distribution of preferences is partially identified and characterize

its sharp identification region. The fact that the identification region is sharp implies that

it describes all and only those preference distributions for which there exists a choice set

distribution such that the model implied distribution of choices matches the distribution of

observed choices. It therefore can be used to construct a critical region for rejecting any

hypothesized choice set formation process (in conjunction with the model of preferences).

As a corollary to our main result, we show that if one also assumes that preferences are

independent of choice set size, then the distribution of the latter is also partially identified.

In addition, we show how one can use our approach to assess the welfare cost of limited

choice sets (i.e., choice sets that do not contain all feasible alternatives).

We lay out our core model in Section 2. We begin with the classic random utility model

developed by McFadden (1974) and others, though we allow for a utility function that is

neither linear in parameters nor additively separable in unobservables. Our key point of

departure from the classic model, however, is that we relax the assumption that the agents’

choice sets are observed. Instead, we assume only that the minimum size of the agents’

choice sets is a known constant greater than one. Consequently, our model admits a wide

range of possible choice set formation processes and allows for any dependence structure,

without restriction, between agents’ choice sets and their observables and, conditional on

observables, between agents’ choice sets and their preferences.

In Section 3 we show that our model implies multiple optimal choices for an agent, re-

sulting from the multiple possible realizations of her choice set. It is this multiplicity that, in

the absence of additional restrictions on the choice set formation process, generally precludes
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point identification of the model’s parameters. Because we avoid making such additional,

unverifiable assumptions, our approach yields a robust method of statistical inference.

In the remainder of the section we prove three identification results. First, we show that

under the minimal assumptions of our core model, the distribution of preferences is par-

tially identified, without the need for additional assumptions about choice sets or how they

are formed. Second, we show that with one additional restriction on the choice set forma-

tion process—namely, that choice set size is independent of preferences—the distribution of

choice set size is also partially identified. In both cases, we leverage a result in random set

theory, due to Artstein (1983), to define a finite set of conditional moment inequalities that

characterizes the sharp identification region of the model’s parameters. Lastly, we charac-

terize the sharp upper bound on the welfare cost of limited choice sets as the solution to a

maximization problem whose objective is a smooth function of the core model’s parameters.

In the two ensuing sections we demonstrate the usefulness of our theoretical findings

by applying them to learn about households’ risk preferences and choice sets from data on

their deductible choices in auto collision insurance. We also apply our findings to assess the

welfare cost of limited choice sets in this context. The data hail from a large U.S. insurance

company and contain information on more than 100,000 households who first purchased auto

policies from the company between 1998 and 2007.

In Section 4 we specify an empirical model of deductible choice in auto collision insurance

that allows for unobserved heterogeneity in households’ risk aversion and choice sets and that

fits the random utility model framework that we develop in the two preceding sections. Our

empirical model assumes, inter alia, that households have expected utility preferences and

exhibit constant absolute risk aversion, that their risk aversion conditional on observables

follows a Beta distribution, and that their choice sets contain at least three alternatives.

After specifying the model, we describe our data and present sample statistics.

We then discuss how certain patterns in the data—which relate to the fact that a siz-

able fraction of households choose a suboptimal alternative—are suggestive of unobserved

heterogeneity in choice sets and cannot be explained by standard discrete choice models

(e.g., mixed logit). We also discuss how these patterns are consistent with some models

of heterogeneous choice set formation, but not others. The import of this discussion goes

beyond our specific application and contributes new testable implications for any random

utility model that fits our framework and is applied to a context in which the feasible set

contains suboptimal alternatives under the model. As we demonstrate within the context

of our application, one can leverage these implications to test the model’s assumptions on

the choice set formation process under weak restrictions on the utility function and without

functional form restrictions on the distribution of preferences or unobservables.
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We present our empirical findings in Section 5. To start, we employ the generalized

moment selection procedure of Andrews and Soares (2010) to obtain a 95 percent confidence

set for the parameters of the risk preference model. Parameter values inside the confidence set

describe the distributions of risk preferences for which there exists a distribution of choice

sets (of minimum size three) such that the distribution of choices implied by the model

matches the distribution of choices observed in the data. Accordingly, parameter values

outside the confidence set are rejected, and so are the models that—when estimated—yield

such values. In our application the confidence set proves to be highly informative. For

instance, we find that the distribution of risk preferences estimated by a mixed logit model

with full sized choice sets (i.e., choice sets that contain all feasible alternatives) is rejected,

as is the distribution estimated by our empirical model when coupled with the assumption

that choice sets are drawn uniformly at random from the feasible set conditional on their

size and independently of preferences (cf. Dardanoni et al. 2018). By contrast, we find that

the distribution of risk preferences estimated by our empirical model when coupled with one

variant of the assumption that feasible alternatives independently enter the choice set with

alternative specific probabilities and independently of preferences (cf. Manski 1977; Manzini

and Mariotti 2014) is not rejected. It is important to note that the rejections described in

this paragraph are different from and not necessarily implied by the rejections described in

the previous paragraph. A rejection there is a rejection of a specific choice set formation

process combined with any distribution of preferences in a given class of utility models. A

rejection here is a rejection of a specific distribution of risk preferences combined with any

choice set formation process (subject to the minimum size restriction).

Next, we apply the calibrated projection method of Kaido et al. (2019) to obtain 95

percent confidence intervals for selected smooth functions and projections of the model’s

parameters, including moments of the distribution of risk aversion, the maximum welfare

cost of limited choice sets, and the distribution of choice set size. Our key finding with

respect to risk aversion is that our estimated lower bounds are substantially smaller than

the point estimates obtained under several comparator models (including those we obtain

using a mixed logit model with full sized choice sets and those obtained by Cohen and Einav

(2007) using a Poisson-Gaussian mixture model with full sized choice sets). This suggests

that the data can be explained by expected utility theory with lower and more homogeneous

levels of risk aversion than would be implied by many familiar models in the literature. We

also find that the welfare cost of limited choice sets may be as high as 25 percent of what

the average household spends on auto collision coverage, and that at least 80 percent of

households require limited choice sets to explain their deductible choices.
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Our empirical findings highlight the importance of using a robust method to conduct

inference on discrete choice models when there may be unobserved heterogeneity in choice

sets. The literature on risky choice, motivated in part by reported estimates of risk aversion

that seem implausibly high in light of the Rabin (2000) critique (e.g., Cicchetti and Dubin

1994; Sydnor 2010), has focused on developing and estimating models that depart from

expected utility theory in their specification of how agents evaluate risky alternatives. Our

findings provide new evidence on the importance of developing models that differ in their

specification of which alternatives agents evaluate, and of data collection efforts that seek to

directly measure agents’ heterogeneous choice sets (Caplin 2016).

We conclude the paper in Section 6 with a discussion in which we provide an overview of

the prior literature on discrete choice analysis with unobserved heterogeneity in choice sets

and recap our contributions to the literature.

2 A Random Utility Model with Unobserved

Heterogeneity in Choice Sets

Our starting point is the random utility model developed by McFadden (1974). Let I denote

a population of agents and D denote a finite set of alternatives, which we call the feasible

set. Let U be a family of real valued functions defined over the elements of D. The random

utility model is an econometric representation of utility theory in which the utility function

is a random variable. The model posits that for each agent i P I with choice set Ci � D
there exists a function Ui drawn from U according to some probability distribution such that

d P� Ci ô Uipdq ¥ Uipcq for all c P Ci, c � d, (2.1)

where P� denotes “is chosen from” and we assume the probability of ties is zero.

We assume that each agent i P I is characterized by a real valued vector of observable

attributes xi � psi, pzic, c P Dqq, where si is a subvector of attributes specific to agent i that

are constant across alternatives and zic is a subvector of attributes specific to alternative c

that may vary across agents. Let xic � psi, zicq denote the vector of observable attributes

relevant to alternative c. In addition, we assume that each agent i P I is further characterized

by a real valued vector of unobservable attributes νi, which are idiosyncratic to the agent.

Let X and V denote the supports of xi and νi, respectively.

To operationalize Ui as a random variable we posit that it is a function of the agent’s

observable and unobservable attributes and we impose restrictions on its distribution.
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Assumption 2.1 (Restrictions on Utility):

(I) There exists a function W : X � V ÞÑ R, known up to a finite dimensional parameter

vector δ P ∆ � Rk, where ∆ is a convex compact parameter space, and continuous in

each of its arguments such that Uipcq � W pxic,νi; δq for all c P D, pxic,νiq � a.s.

(II) The probability distribution of νi, denoted by P , is continuous, known up to a finite

dimensional parameter vector γ P Γ � Rl, where Γ is a convex compact parameter

space, and independent of xi.

Assumption 2.1(I) restricts the family U from which the utility function Ui is drawn

to be a known parametric class. It is weaker than the assumption, typically imposed in

discrete choice models, that Ui is additively separable in unobservables. Assumption 2.1(II)

allows for agent specific unobserved heterogeneity in Ui, indexed by the vector νi. It restricts

the distributional family of νi to be a known parametric class. It also requires that νi is

independent of xi, though one can relax this restriction based on the specific structure of

the empirical model (as we illustrate in our application). These restrictions are in line with

the distributional assumptions in standard discrete choice models, such as the conditional

logit model of McFadden (1974) and the mixed logit model of McFadden and Train (2000).1

However, we emphasize that the parametric restrictions on W and P are not essential for

our partial identification results in Section 3; see Remark 3.1.

Remark 2.1: Due to the ordinal nature of the model, the family tW pxic,νi; δq : δ P ∆u
cannot include two functions that are monotone transformations of each another (Matzkin

2007). Also, to ensure the probability of ties is zero, the functions W and P must satisfy

the condition PrpW pxic,νi; δq � W pxic1 ,νi; δqq � 0 for all c, c1 P D, c � c1. We assume that

the model satisfies these basic conditions.

Our key point of departure from McFadden (1974) and the bulk of the discrete choice

literature lies in the assumption regarding what is observed by the econometrician. It is

standard to assume that (i) a random sample of choice sets Ci, choices di, and attributes xi,

tpCi, di,xiq : di P� Ci, i P I � Iu, is observed and (ii) |Ci| ¥ 2 for all i P I, where | � | denotes

set cardinality (see, e.g., Manski 1975, Assumption 1). By contrast, we assume:

1They are stronger, however, than the restrictions in Manski (1975), whose maximum score estimator
requires weaker distributional assumptions.
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Assumption 2.2 (Random Sample and Empirical Content):

(I) A random sample of choices di and attributes xi, tpdi,xiq : i P I � Iu, is observed.

(II) Prp|Ci| ¥ κq � 1 for all i P I, where κ ¥ 2 is a known scalar.

Assumption 2.2(I) is weaker than the standard assumption as it omits the requirement

that the agents’ choice sets, tCi : i P I � Iu, are observed. Given this difference, Assumption

2.2(II) is comparable to the standard assumption. Both require that the agents’ choice sets

contain at least two alternatives, which is necessary for the model to have empirical content.

Both also require that the minimum choice set size, which we denote by κ, is known. Under

the standard approach this is an implication of the assumption that the agents’ choice sets

are observed. In Assumption 2.2(II) we assume that κ is known, either from information

in the data or by assumption, even though the agents’ choice sets are unobserved. In any

event, Assumption 2.2(II) is weaker than the assumption, commonly imposed in empirical

applications of discrete choice models (though increasingly challenged in the theoretical and

empirical literatures), that each agent’s choice set coincides with either the feasible set,

Ci � D, or a known subset D of the feasible set, Ci � D � D.

Remark 2.2: The classic random utility models in the tradition of McFadden (1974),

which have the form Uipcq � Wipcq � εic where εic is an additive disturbance that is agent

and alternative specific, can be subsumed within our framework; see Appendix A.

The random utility model presented in this section admits a wide range of choice set

formation processes that result in unobserved heterogeneity in agents’ choice sets. For in-

stance, the model allows for a process in which an agent’s choice set Ci is drawn uniformly

at random from the feasible set D, conditional on |Ci| � q for q ¥ κ (cf. Dardanoni et al.

2018), or in which each alternative c P D enters an agent’s choice set Ci with probability

ϕpcq independently of other alternatives, conditional on |Ci| ¥ κ (cf. Manski 1977; Manzini

and Mariotti 2014). Importantly, the model allows for any dependence structure, without

restriction, (i) between agents’ choice sets and their observable attributes and (ii) conditional

on observables, between agents’ choice sets and their unobservable attributes.

3 Partial Identification of the Model’s Parameters

In this section we show that one can partially identify the distribution of preferences without

specifying any particular choice set formation process (Section 3.1). We then show that,

under an additional restriction on the dependence between choices sets and unobservable

7



attributes, one can also partially identify the distribution of choice set size (Section 3.2).

Lastly, we show how one can use our approach to conduct welfare analysis. In particular,

we use it to assess the welfare cost of limited choice sets (Section 3.3).

3.1 Preferences

Let d�i pG; xi,νi; δq denote the model implied optimal choice for agent i with attributes

pxi,νiq, choice set Ci � G � D, |G| ¥ κ, and utility parameter δ. That is,

d�i pG; xi,νi; δq � arg max
cPG

W pxic,νi; δq.

The model specified in Section 2 implies multiple optimal choices for the agent, resulting

from the multiple possible realizations G of her choice set Ci.
2 The set of model implied

optimal choices given pxi,νiq and δ is

D�
κpxi,νi; δq �

¤
G�D:|G|¥κ

!
d�i pG; xi,νi; δq

)
�

¤
G�D:|G|�κ

!
d�i pG; xi,νi; δq

)
, (3.1)

where the last equality follows from Sen’s property α: any alternative that is optimal for

a given choice set G1 � D is also optimal for every choice set G � G1 containing that

alternative. The set D�
κpxi,νi; δq is a random closed set with realizations in D.3 It contains

the |D| � κ� 1 best alternatives in D, where “best” is defined with respect to W pxic,νi; δq.
Figure 3.1 is a stylized depiction of the set D�

κ � D�
κpxi,νi; δq for the case where the

feasible set is D � tc1, c2, c3, c4, c5u, κ P t4, 5u, and νi � νi is a scalar. In the figure, ν̄ca,cbpxiq
is the threshold value of νi above which ca has a greater utility than cb and below which cb

has a greater utility than ca. The construction of D�
κ is straightforward. Given pxi, νiq and δ,

rank the alternatives in D from best to worst according to their utilities. If κ � 5 the agent

draws a choice set of size 5 and hence D�
κ comprises the first best alternative. If κ � 4 the

agent may draw a choice set of size 4 or 5 and hence D�
κ comprises the first and second best

alternatives. In the former case the agent chooses the first best alternative. In the latter

case the agent’s choice is determined by her realization of Ci. The agent chooses the first

best if it is contained in Ci; otherwise she chooses the second best. For instance, suppose

νi P pν̄c2,c3pxiq, ν̄c1,c3pxiqs. Then D�
κ � tc2, c3u where c2 is first best. The agent chooses c2

2This is the case even though there exist different choice sets for which the model implied optimal choice
is the same.

3The formal definition of a random closed set is given in Appendix A, Definition A.1. That D�
κpxi,νi; δq

is a random closed set is formally established in Appendix A, Lemma A.1.
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ν

ν̄c4,c5pxq

ν̄c3,c4pxq

ν̄c2,c3pxq

ν̄c1,c2pxq

D�
κ � tc5u

D�
κ � tc4u

D�
κ � tc3u

D�
κ � tc2u

D�
κ � tc1u

κ � 5 κ � 4

ν̄c3,c5pxq

ν̄c2,c4pxq

ν̄c1,c3pxq

G5 � tc1, c2, c3, c4u

G4 � tc1, c2, c3, c5u

G3 � tc1, c2, c4, c5u

G2 � tc1, c3, c4, c5u

G1 � tc2, c3, c4, c5u

Possible realizations of C when |C| � 4:

D � tc1, c2, c3, c4, c5u

D�
κ � tc4, c5u

D�
κ � tc4, c5u

D�
κ � tc3, c4u

D�
κ � tc3, c4u

D�
κ � tc2, c3u

D�
κ � tc2, c3u

D�
κ � tc1, c2u

D�
κ � tc1, c2u

Figure 3.1: Stylized depiction of D�
κ when |D| � 5 and κ P t4, 5u.

Note: The figure depicts the set D�
κ of model implied optimal choices as a function of the agent’s

unobserved attribute ν and choice set C � G � D, |G| ¥ κ, for D � tc1, c2, c3, c4, c5u and κ P t4, 5u.

provided that Ci � G2; she chooses c3 only if Ci � G2. More generally, the agent chooses

the best alternative in the intersection of D�
κ and her realization of Ci.

Let Fp�; xi,νiq denote the conditional probability mass function of Ci given pxi,νiq. Thus,

FpG; xi,νiq � PrpCi � G|xi,νiq,

where FpG; xi,νiq ¥ 0 for all G � D and
°
G�D FpG; xi,νiq � 1. The model in Section 2

imposes no restrictions on Fp�; xi,νiq, except to require that FpG; xi,νiq � 0 for all G � D
such that |G|   κ. In the absence of additional restrictions on Fp�; xi,νiq, the multiplicity of

model implied optimal choices—when it results in overlapping sets D�
κpxi,νi; δq of model im-

plied optimal choices for different values of the agent’s unobservable attributes νi—generally

precludes point identification of the model’s parameters θ � rδ;γs.
To see this, let Prpd�i � c|xi;θq denote the model implied conditional probability that

alternative c is chosen given xi and θ. Observe that for all c P D,

Prpd�i � c|xi;θq �
»

τPV

¸
G�D

1pd�i pG; xi, τ ; δq � cqFpG; xi, τ qdP pτ ;γq. (3.2)
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Imagine that the distribution Fp�; xi,νiq was known. Then the parameter vector θ would be

point identified (given sufficient variation in xi) by the condition that

Prpd�i � c|xi;θq � Prpdi � c|xiq, @c P D, xi � a.s., (3.3)

where di is the agent’s observed choice. When Fp�; xi,νiq is unknown, however, there

may be multiple combinations of θ and Fp�; xi,νiq that satisfy condition (3.3), due to

the multiplicity of model implied optimal choices d�i pG; xi,νi; δq. The logic is illustrated

by Figure 3.1. For an extreme example, suppose we observe that alternative c3 is al-

ways chosen. This is consistent with: (i) νi P pν̄c2,c3pxiq, ν̄c1,c3pxiqs and FpG3; xi,νiq � 1;

(ii) νi P pν̄c2,c4pxiq, ν̄c2,c3pxiqs and FpG3; xi,νiq � 0; (iii) νi P pν̄c3,c4pxiq, ν̄c2,c4pxiqs and

FpG3; xi,νiq � 0; and (iv) νi P pν̄c3,c5pxiq, ν̄c3,c4pxiqs and FpG4; xi,νiq � 1.4

The set of values of the parameter vector θ for which there exists a distribution Fp�; xi,νiq,
satisfying FpG; xi,νiq � 0 for all G � D such that |G|   κ, such that condition (3.3) holds

forms the sharp identification region of θ. We denote this region by ΘI . The distribution

Fp�; xi,νiq, however, is an infinite dimensional nuisance parameter, which creates difficulties

for the computation of ΘI and for statistical inference.

We circumvent these difficulties by working directly with the set of model implied optimal

choices, D�
κpxi,νi; δq. If the model is correctly specified, the agent’s observed choice di is

maximal with respect to her preference among the alternatives in her choice set and it

therefore satisfies

di P D�
κpxi,νi; δq, xi � a.s. (3.4)

for the data generating value of θ. To harness the empirical content of equation (3.4) given

the distribution of observed choices pPrpdi � c|xiq, c P Dq, xi � a.s., we leverage a result in

Artstein (1983), reported in Appendix A, Theorem A.1. This result allows us to translate

equation (3.4) into a finite number of conditional moment inequalities that fully characterize

the sharp identification region ΘI as the set of values of the parameter vector θ for which

the inequalities hold.5

4Standard revealed preference arguments presume FpD;xi,νiq � 1, i.e., Ci � D. As Figure 3.1 illustrates,
however, these arguments break down if Ci is unobserved and Ci � G � D is possible. Indeed, when this is
the case, if no restrictions are imposed on Fp�;xi,νiq, the model is incomplete (Tamer 2003) and conventional
methods of statistical inference do not apply.

5The recent econometrics literature uses the result in Artstein (1983), discussed in detail in Molchanov
and Molinari (2018, Chapter 2), to conduct identification analysis in various partially identified models (e.g.,
Beresteanu and Molinari 2008; Beresteanu et al. 2011; Galichon and Henry 2011; Chesher et al. 2013; Chesher
and Rosen 2017). For a review, see Molinari (2019).
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Theorem 3.1: Let Assumptions 2.1 and 2.2 hold and let Θ � ∆� Γ. Then

ΘI �
"
θ P Θ : Prpd P K|xq ¤ P pD�

κpx,ν; δq XK � H;γq, @K � D,x� a.s.

*
. (3.5)

It is immediate that if equation (3.4) holds then the inequalities in equation (3.5) are satisfied

for each K � D. We refer to Molchanov (2017, Theorem 1.4.8) for a proof of the fact that

if the inequalities in equation (3.5) are satisfied for each K � D then equation (3.4) holds.

Our proof of Theorem 3.1, provided in Appendix A, establishes that the characterization in

equation (3.5) is sharp—all and only those values of θ for which the inequalities in equation

(3.5) hold could have generated the observed data under the maintained assumptions.

For each K � D, the left hand side of the inequality in equation (3.5), Prpdi P K|xiq,
can be estimated from the data tpdi,xiq : i P I � Iu, and the right hand side is a function of

xi known up to θ. In Appendix A, Theorem A.2 we provide an algorithm that substantially

reduces the number of inequalities that need to be checked to obtain ΘI .

Remark 3.1: Theorem 3.1, as well as Corollary 3.1 and Theorem 3.2 below, can be

generalized for a structure pW,P q (or pW,P, πq in the case of Corollary 3.1) that is subject

only to nonparametric restrictions. We focus on the case with parametric restrictions for

computational reasons and because methods of statistical inference for moment inequality

models focus on this case.

3.2 Preferences and Choice Sets

Theorem 3.1 establishes that, under mild restrictions on the utility function (Assumption 2.1)

and knowing only the minimum size of agents’ choice sets (Assumption 2.2), one can learn

features of the distribution of preferences without observing agents’ choice sets or knowing

how they are formed. We now show that, with an additional restriction on the choice set

formation process, one can also learn features of the distribution of choice sets.

Let `i � |Ci| denote the size of agent i’s choice set Ci. When `i � |D| we say that Ci has

“full” size. When `i   |D| we say that Ci is “limited” or “restricted.” More specifically, we

say that Ci is “full�1” when `i � |D| � 1, “full�2” when `i � |D| � 2, and so forth.

In addition to Assumptions 2.1 and 2.2, we now assume that:

Assumption 3.1 (Choice Set Size): Agent i draws the size `i of her choice set such that

Prp`i � q|xi,νiq � Prp`i � q|xiq � πpq; xi;ηq, q � κ, . . . , |D|, (3.6)
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where πpq; xi;ηq ¥ 0 for q ¥ κ,
°|D|
q�κ πpq; xi;ηq � 1, and the function π is known up to a

finite dimensional parameter vector η P H � Rm where H is a convex compact parameter

space. To simply notation, define πqpx;ηq � πpq; x;ηq.
Assumption 3.1 posits that the size `i of agent i’s choice set is drawn from an unspecified

distribution with support contained in t2, . . . , |D|u, which allows for the possibility that the

agent’s choice set has full size, `i � |D|, or is limited, `i   |D|. Under this assumption the

model continues to admit a wide range of choice set formation processes. The only restric-

tions it imposes on the distribution of agents’ choice sets are that the distributional family of

`i is a known parametric class and that `i is independent of νi. Conditional on `i, however,

the model continues to allow for any dependence structure, without restriction, (i) between

agents’ choice sets and their observable attributes and (ii) conditional on observables, be-

tween agents’ choice sets and their unobservable attributes. Moreover, agents with choice

sets of the same size need not have choice sets with the same composition.

Under Assumption 3.1, Theorem 3.1 specializes to the following corollary.6

Corollary 3.1: Let Assumptions 2.1, 2.2, and 3.1 hold and let θ � rη; δ;γs and

Θ � H �∆� Γ. Then

ΘI �
#
θ P Θ : Prpd P K|xq ¤

|D|̧

q�κ

πqpx;ηqP pD�
q px,ν; δq XK � H;γq, @K � D,x� a.s.

+
.

(3.7)

The sharp identification region ΘI in Corollary 3.1 has two noteworthy features. First, the

projection of ΘI on rδ;γs is equal to the sharp identification region in Theorem 3.1. In

other words, the information in ΘI about the distribution of preferences is the same with or

without Assumption 3.1. This is because D�
q�1pxi,νi; δq � D�

q pxi,νi; δq for all q ¥ κ, and

thus the projection of ΘI on rδ;γs is obtained with πκpxi;ηq � 1 and πqpxi;ηq � 0 for q ¡ κ.

Second, ΘI provides information about the distribution of choice set size, as well. It yields

a lower bound on πκpxi;ηq (the upper bound is one provided κ   |D|), an upper bound on

π|D|pxi;ηq (the lower bound is zero provided κ   |D| because D�
q�1pxi,νi; δq � D�

q pxi,νi; δq),
and lower and upper bounds on πqpxi;ηq for q � κ� 1, . . . , |D| � 1.

Figure 3.2 contains stylized depictions of selected inequalities in equation (3.7) for the

case where D � tc1, c2, c3, c4, c5u, κ � 4, and νi � νi is a scalar with support on V � r0, ν̄s.
In this case Prp`i P t4, 5uq � 1, and with a slight abuse of notation we let π � Prp`i � 5|xiq.
Thus, with probability π the agent draws a choice set of size `i � 5, in which case D�

κ

6The proof of Corollary 3.1 follows immediately from the proof of Theorem 3.1 and therefore is omitted.
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Figure 3.2: Stylized depictions of selected inequalities in ΘI when |D| � 5 and κ � 4.

Note: The figure depicts the inequalities in equation (3.7) for the following subsets K � D when
D � tc1, c2, c3, c4, c5u and κ � 4: (a) K � tc1u; (b) K � tc2u; (c) K � tc1, c2u; and (d) K � tc5u.
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comprises the first best alternative. With probability 1 � π the agent draws a choice set

of size `i � 4, in which case D�
κ comprises the first and second best alternatives. In the

former case the agent chooses the first best alternative. In the latter case the agent’s choice

is determined by her realization of Ci. She chooses the first best if it is contained in Ci;

otherwise she chooses the second best. As before, ν̄ca,cbpxiq is the threshold value of νi above

which ca has a greater utility than cb and below which cb has a greater utility than ca.

Panel (a) depicts the inequality for K � tc1u. If `i � 5 then Ci � D and c1 is the optimal

choice if νi ¡ ν̄c1,c2pxiq. If `i � 4 then c1 is optimal if either νi ¡ ν̄c1,c2pxiq and the realization

G of Ci includes c1 or νi P pν̄c1,c3pxiq, ν̄c1,c2pxiqs and G excludes c2. It follows that

Prpdi � c1|xiq ¤ πP pνi ¡ ν̄c1,c2pxiq;γq � p1� πqP pνi ¡ ν̄c1,c3pxiq;γq.

A similar reasoning applies to the other singleton sets K � tc2u, . . . , tc5u, with K � tc2u
depicted in Panel (b).

The inequalities in equation (3.7) also include non-singleton sets K � D. To see why

such inequalities are needed, Panel (c) depicts the case K � tc1, c2u. While

Prpdi P tc1, c2u|xiq � Prpdi � c1|xiq � Prpdi � c2|xiq

by the additivity of probabilities, the right hand side of the inequality is subadditive. As one

can see comparing Panels (a) and (b) to Panel (c), the shaded area in Panel (c) is smaller

than the sum of the shaded areas in Panels (a) and (b). Hence, values of θ that satisfy the

inequality for K � tc1u and K � tc2u may fail to do so for K � tc1, c2u.
Not all pairs of singleton sets, however, yield non-redundant inequalities. Consider Panel

(d), which depicts the inequality for K � tc5u. Comparing the shaded area in Panel (d)

with that in Panel (a) reveals that c1 and c5 cannot occur as multiple optimal choices for

the same value of νi. In this case, therefore,

PrpD�
κ X tc1, c5u � Hq � PrpD�

κ X tc1u � Hq � PrpD�
κ X tc5u � Hq,

rendering the inequality for K � tc1, c5u redundant if the inequalities for K � tc1u and

K � tc5u are satisfied. This reasoning can substantially reduce the number of inequalities

that are needed to recover ΘI (as mentioned previously in connection with Theorem 3.1)

and is formalized in Appendix A, Theorem A.2.

Though not depicted in Figure 3.2, let us highlight what identifies an upper bound on π.

Consider K � tc1, c2, c3, c4u. Given this K, we have Prpdi P K|xiq � 1 � Prpdi � c5|xiq. At

14



the same time we have PrpD�
κ XK � Hq � 1� PrpD�

κ � tc5uq. It follows that

Prpdi P K|xiq ¤ PrpD�
κ XK � Hq

ô Prpdi � c5|xiq ¥ PrpD�
κ � tc5uq � πP pνi ¤ ν̄c4,c5pxiq;γq.

Given any γ, this inequality yields an upper bound on π. In general, one obtains the upper

bound on π from a projection of ΘI on the η component of θ.

In Sections 4 and 5 we apply Theorem 3.1 and Corollary 3.1 to learn about the distri-

butions of risk preferences and choice set size, respectively, in a model of risky choice with

unobserved heterogeneity in preferences and choice sets. We specify our empirical model

and discuss our data in Section 4. We present our empirical findings in Section 5. In our

application we use the generalized moment selection procedure introduced by Andrews and

Soares (2010) to obtain asymptotically uniformly valid confidence sets for θ. We then apply

the calibrated projection method proposed by Kaido et al. (2019) to obtain asymptotically

uniformly valid confidence intervals for smooth functions and components of θ.7

3.3 Welfare Cost of Limited Choice Sets

In the application we also use our approach to assess the welfare cost of limited choice sets.

Specifically, we compute the certainty equivalent of the maximum possible gain in model

implied expected utility from expanding every household’s choice set from minimum size

(`i � κ) to full size (`i � |D|). This provides a measure of the maximum potential welfare

cost of limited choice sets. Measuring this cost can be important for market design and public

policy. There can be a tradeoff between the cost of ensuring that households draw full sized

choice sets and the potential that households make suboptimal choices when their choice

sets are limited. The nature of the drivers of limited choice sets—e.g., limited attention or

exogenous restrictions—determines whether a market redesign or intervention is worthwhile.

The lower bound on the welfare cost of limited choice sets is zero by definition. It is

achieved when, even though κ   |D|, every household nevertheless draws a choice set that

contains the first best alternative among all feasible alternatives. The upper bound on the

welfare cost is the interesting quantity to learn. It is obtained when every household draws

a choice set that comprises the κ worst alternatives, in which case the model implies that

every household chooses the κth worst alternative. The formal result follows.

7For details on our empirical methods, see Section 5.1 and Appendix B.
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Theorem 3.2: Let Assumptions 2.1 and 2.2 hold and let θ � rδ;γs and Θ � ∆ � Γ.

For a given x and realization τ of ν, define the ranked (from worst to best) alternatives as

d1pτ q � arg min
cPD

W pxc, τ ; δq
d2pτ q � arg min

cPtDzd1pτ qu
W pxc, τ ; δq

d3pτ q � arg min
cPtDztd1pτ q,d2pτ quu

W pxc, τ ; δq
...

d|D|pτ q � arg max
cPD

W pxc, τ ; δq,

where the dependence of the ranked alternatives on the choice set, x, and δ is suppressed to

simplify notation. Then the sharp upper bound on the welfare cost of limited choice sets is

max
θPΘ

EpW pxd|D|pνq,ν; δq;γq � EpW pxdκpνq,ν; δq;γq (3.8)

s.t. Prpd P K|xq ¤ P pD�
κpx,ν; δq XK � H;γq, @K � D, x� a.s.

The proof of Theorem 3.2 follows immediately from Theorem 3.1. Indeed, Theorem 3.1

yields that ΘI is characterized by the constraints in problem (3.8). For a given θ P ΘI , the

gain in model implied expected utility from expanding choice set size from minimum to full

is given by the objective function in problem (3.8). Maximizing over ΘI yields the result.

Under our assumptions, the objective function in problem (3.8) is smooth in the param-

eter vector θ. Therefore, we can apply the calibrated projection method proposed by Kaido

et al. (2019) to obtain an asymptotically uniformly valid confidence interval for the solution

to problem (3.8). For details, see Appendix B.

4 Risk Preferences and Choice Sets in Auto Collision

Insurance

In this section and the next, we apply our theoretical findings to learn about the distribu-

tions of risk preferences and choice set size from data on households’ deductible choices in

auto collision insurance. We also assess the welfare cost of limited choice sets in this con-

text. In Section 4.1 we specify a random expected utility model that allows for unobserved

heterogeneity in risk aversion and choice sets and maintains Assumptions 2.1, 2.2, and 3.1.

In Section 4.2 we describe our data. In Section 4.3 we discuss patterns in the data that
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are suggestive of unobserved heterogeneity in choice sets and that cannot be explained by

standard discrete choice models. We present our empirical findings in Section 5.

Our application illustrates how one can utilize our approach to learn about agents’ het-

erogeneous preferences from choice data and to conduct welfare analysis when there is or

may be unobserved heterogeneity in agents’ choice sets. In this spirit, we assume that agents

have standard expected utility preferences and make other simplifying assumptions, includ-

ing constant absolute risk aversion. Our welfare analysis measures the welfare cost of limited

choice sets in the worst case scenario where every agent’s choice set comprises the κ worst

alternatives. We emphasize, however, that one can apply our approach to a wide range of

preference models and welfare questions.

4.1 Empirical Model

We model households’ deductible choices in auto collision insurance. Each household i faces

(i) a menu of prices pi � ppic, c P Dq, where pic is the household specific premium associated

with deductible c and D is the feasible set of deductible options, and (ii) a probability µi of

experiencing a claim during the policy period. In addition, each household has an array of

demographic characteristics ti.

Following the related literature on property insurance (for a survey, see Barseghyan et al.

2018), we make two simplifying assumptions about claims and their probabilities.

Assumption 4.1 (Claims and Claim Probabilities):

(I) Households disregard the possibility of experiencing more than one claim during the

policy period.

(II) Any claim exceeds the highest available deductible; payment of the deductible is the only

cost associated with a claim; and deductible choices do not influence claim probabilities.

Assumption 4.1(I) is motivated by the fact that claim rates are small, so the likelihood of

two or more claims in the same policy period is very small.8 Assumption 4.1(II) abstracts

from small claims, transaction costs, and moral hazard. Both assumptions are standard in

the literature (e.g., Cohen and Einav 2007; Sydnor 2010; Barseghyan et al. 2011, 2013, 2016).

Under Assumption 4.1, household i’s choice of deductible involves a choice among binary

lotteries, indexed by c P D, of the following form:

Lipcq � p�pic, 1� µi;�pic � c, µiq .
8It also forestalls the critique that very small risks are driving our inferences about risk preferences.
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The household chooses among these lotteries based on the criterion in equation (2.1).

We assume that household i’s preferences conform to expected utility theory:

Uipcq � p1� µiquipwi � picq � µiuipwi � pic � cq,

where wi is the household’s wealth and ui is its Bernoulli utility function. In this model,

aversion to risk is determined by the shape of the utility function ui. We impose the following

shape restriction on ui.

Assumption 4.2 (CARA): The function ui exhibits constant absolute risk aversion, i.e.,

uipyq � 1�expp�νiyq
νi

for νi � 0 and uipyq � y for νi � 0.

Assuming CARA has two key virtues. First, ui is fully characterized by the coefficient of

absolute risk aversion, νi � �u2i pyq{u1ipyq. Second, νi is a constant function of wealth and

hence one can estimate ui without observing wealth. We note, however, that our approach

can accommodate other shape restrictions (e.g., constant relative risk aversion) as well as

non-expected utility models (e.g., the probability distortion model in Barseghyan et al. 2013).

In terms of the general model developed in Sections 2 and 3, household i’s observable

attributes are xi � pµi, ti,piq, with xic � pµi, ti, picq, and its sole unobservable attribute

is its coefficient of absolute risk aversion νi.
9 Per Assumptions 2.1 and 4.2, we posit that

νi � P pγptiqq, where P is specified below in Assumption 4.3(I), and that for all c P D,

W pxic, νiq � p1� µiqp1� exppνipicqq � µip1� exppνippic � cqqq
νi

(4.1)

and Uipcq � W pxic, νiq, pxic,νiq � a.s.

Observe that, by equation (4.1), we assume that µi and pic affect utility directly and

we allow ti to affect utility indirectly through νi. To capture this indirect effect, we could

specify γptiq � fpti; δq where the functional form of f is known up to δ P ∆. Instead,

we account for observed heterogeneity in preferences nonparametrically by conducting the

analysis separately on subsamples based on ti.

Per Assumption 2.2(I), we suppose that the deductible choices and observable attributes,

tpdi,xiq : i P Iu, for a random sample of households I � I, |I| � n, are observed, but that

the households’ choice sets, tCi : Ci � D, i P Iu, are unobserved. Per Assumptions 2.2(II)

and 3.1, we assume that Prp`i ¥ κq � 1 for every household i P I, where `i � |Ci| and κ ¥ 2,

and that `i conditional on pxi, νiq follows a discrete distribution (πqptiq, q � κ, . . . , |D|q as in

equation (3.6). We could specify πqptiq � fpti;ηq where the functional form of f is known up

9In terms of the general notation used in Sections 2 and 3, si � pµi, tiq, zic � pic, and νi � νi.
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to η P H. Instead, we account for observed heterogeneity in choice set size nonparametrically

by conducting the analysis separately on subsamples based on ti. To simplify notation, we

suppress below the dependence of πq on ti. Let π � pπq, q � κ, . . . , |D|q.
We close the model with two final assumptions.

Assumption 4.3 (Heterogeneity Restrictions):

(I) Conditional on ti, νi follows a Beta distribution on r0, 0.02s with parameter vector

γptiq � pγ1ptiq, γ2ptiqq and is independent of pµi, picq. To simplify notation, we suppress

below the dependence of γ on ti.

(II) The minimum choice set size is κ � 3.

Assumption 4.3(I) specifies that P is the Beta distribution with support r0, 0.02s. The main

attraction of the Beta distribution is its flexibility. Its bounded support is a plus given our

setting. A lower bound of zero rules out risk loving preferences and seems appropriate for

insurance markets that exist primarily because of risk aversion. Imposing an upper bound

enables us to rule out absurd levels of risk aversion, and the choice of 0.02 is conservative

both as a theoretical matter and in light of prior empirical estimates in similar settings (see,

e.g., Cohen and Einav 2007; Sydnor 2010; Barseghyan et al. 2011, 2013, 2016).

Assumption 4.3(II) posits that Prp`i P t3, 4, 5uq � 1 for every household i P I. In other

words, it assumes that the size of every household’s choice set is either full, full-1, or full-2.

In our setting the feasible set contains five alternatives. For reasons we explain in Section

4.2, we can rule out κ � 5 and κ � 4 and we set κ � 3 to balance a tradeoff between the

model’s empirical content and its explanatory power.

Given pxi, νiq and choice set Ci � G � D, household i’s optimal deductible choice is

d�i pG; xi, νiq � arg max
cPG

W pxic, νiq.

Given κ, the set of optimal deductible choices for all possible realizations G � D, |G| ¥ κ, is

D�
κpxi, νiq �

¤
G�D:|G|¥κ

!
d�i pG; xi, νiq

)
�

¤
G�D:|G|�κ

!
d�i pG; xi, νiq

)
. (4.2)

The sharp identification region ΘI of the parameter vector θ � rπ;γs is given by equation

(3.7) where P is specified in Assumption 4.3(I) and D�
κ is given by equation (4.2).
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4.2 Data Description

We obtained the data from a large U.S. property and casualty insurance company. The

company offers several lines of insurance, including auto. In the market where it operates,

the company ranks among the top 10 writers of auto insurance. The data contain annual

information on more than 100,000 households who first purchased auto policies from the

company during the ten year period from 1998 to 2007.

For purposes of this paper, we focus on households’ deductible choices in auto collision

coverage. This coverage pays for damage to the insured vehicle, in excess of the deductible,

caused by a collision with another vehicle or object, without regard to fault. The feasible

set of auto collision deductibles is D � t$100, $200, $250, $500, $1000u, and thus |D| � 5.

To construct our analysis sample, we initially include every household who first pur-

chased auto collision coverage from the company between 1998 and 2007, retaining, at the

time of first purchase, its deductible choice di, its pricing menu pi, its claim probability

µi, and an array ti of three demographic characteristics: gender, age, and insurance score

of the principal driver.10 This yields an initial sample of 112,011 observations. We then

exclude households whose deductible choices cannot be rationalized by the model specified

in Section 4.1 for any pair pνi, `iq such that νi P r0, 0.02s and `i P t3, 4, 5u. Importantly, our

rationalizability check does not rely on the assumption that P is the Beta distribution. This

excludes 0.1 percent of the initial sample, yielding a final sample of 111,894 observations.

Several comments are in order. First, we retain households’ deductible choices at the time

of first purchase to increase confidence that we are working with active choices. One might

worry that households renew their auto policies without actively reassessing their deductible

choices. Second, we require νi P r0, 0.02s for the reasons stated in Section 4.1.

Third, we require `i P t3, 4, 5u—i.e., we assume κ � 3—to balance a tradeoff between

the model’s empirical content (as measured by the size of ΘI) and its explanatory power (as

measured by the fraction of rationalizable households).11 As noted previously in connection

with Assumption 2.2(II), we must assume κ ¡ 1 for the model to have any empirical con-

tent. If κ � 1 the model simply posits that a household’s choice set comprises its chosen

alternative and ΘI is wholly uninformative as it comprises the entire parameter space Θ. At

the same time we must assume κ   5 because κ � 5 (even without the Beta assumption)

is rejected by the data. This is because the feasible set contains a suboptimal alternative—

for virtually every household at all νi P r0, 0.02s—that nevertheless is chosen by a sizable

percentage of households; see Section 4.3. As κ decreases between 4 and 2 the model gains

10Insurance score is a credit based risk score.
11Again, our rationalizability check relies on the assumption that νi P r0, 0.02s but not on the assumption

that νi follows a Beta distribution.
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explanatory power but loses empirical content. At κ � 3 the model achieves near maximum

explanatory power—it can rationalize 99.9 percent of the initial sample—without losing too

much empirical content: ΘI is partially identified but still informative, as we demonstrate in

Section 5. Moving down to κ � 2 would further decrease the model’s empirical content with

virtually no compensating gain in explanatory power. Moving up to κ � 4 would increase

the model’s empirical content with only a small loss in explanatory power—the model could

still rationalize 99.7 percent of the initial sample. It turns out, however, that κ � 4 with the

Beta assumption is rejected by the data; see Table 5.3. For these reasons, we set κ � 3.

Fourth, the company uses the same procedure to generate each household’s pricing menu.

The company first determines the household’s base price, p̄i, according to a proprietary rating

function. It then generates the household’s pricing menu, pi � ppic, c P Dq, according to a

proprietary multiplication rule, pic � gpcqp̄i�ζ, where g is a decreasing positive function and

ζ is a small positive scalar. The multipliers pgpcq, c P Dq, known as the deductible factors,

and the scalar ζ, known as the expense fee, are the same for every household. We observe

each household’s base price as well as the deductible factors and the expense fee.

Fifth, we construct the households’ claim probabilities using the company’s claims data.

We begin by estimating how claim rates depend on observables. In an effort to obtain the

most precise estimates, we use the full set of auto collision data, which comprises 1,349,853

household-year records. For each household-year record, the data list the number of claims

filed by the household in that year. We assume that household i’s claims in year t follow a

Poisson distribution with mean λit. We also assume that deductible choices do not influence

claim rates (Assumption 4.1(II)). We treat the claim rates as latent random variables and

assume that lnλit � X1
itβ� εi, where Xit is a large vector of observables and exppεiq follows

a Gamma distribution with unit mean and variance φ. We perform Poisson panel regressions

with random effects to obtain maximum likelihood estimates of β and φ.12 Next, we use the

regression results to assign claim probabilities to the households in the analysis sample. For

each household, we calculate a fitted claim rate pλi conditional on the household’s observables

at the time of first purchase and its subsequent claims experience.13 In principle, a household

may experience one or more claims during the policy period. In the model, we assume that

households disregard the possibility of experiencing more than one claim (Assumption 4.1(I)).

Given this assumption, we transform pλi into a claim probability µi � 1 � expp�pλiq, which

follows from the Poisson probability mass function.

12The estimates are reported in Table S.1 of the Supplemental Material.
13More specifically, pλi � exppX1

i
pβqEpexppεiq|Yiq, where Yi records household i’s claims experience after

purchasing the policy and Epexppεiq|Yiq is calculated using the maximum likelihood estimate of φ.
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Table 4.1: Summary Statistics

Std. 5th 95th
Mean dev. pctl. Median pctl.

Deductible choice (dollars) 439 178 200 500 500
Pricing menus:
p500 217 137 80 182 477
p250 � p500 66 42 23 55 146
p500 � p1000 49 32 17 41 109
Claim probability (annual) 0.088 0.030 0.047 0.084 0.142
Demographic characteristics:
Female 0.469 0.499 0 0 1
Age (years) 48.1 16.6 24.5 45.9 76.8
Insurance score 731 114 554 725 934

Notes: Analysis sample (111,894 observations). Pricing statistics are annual amounts
in nominal dollars. Demographic statistics are for the principal driver.

Tables 4.1 and 4.2 present descriptive statistics for the analysis sample. Table 4.1 summa-

rizes the households’ deductible choices, pricing menus, claim probabilities, and demographic

characteristics. Table 4.2 reports the sample distribution of deductible choices for the full

sample and for selected subsamples based on gender, age, and insurance score. In Table

4.2 and throughout the paper, young/old and low/high insurance scores are defined as bot-

tom/top third based on the age and insurance score, respectively, of the principal driver.

Table 4.2 also reports the sample distribution of deductible choices by quartiles of base

price and claim probability. The patterns are largely as expected. Within a claim probability

quartile the demand for low deductibles ($100, $200, and $250) decreases, and the demand

for high deductibles ($500 and $1000) increases, as the base price quartile increases. Within

a base price quartile the demand for low deductibles increases, and the demand for high

deductibles decreases, as the claim probability quartile increases. The only exception is the

top base price quartile, within which the demand for low deductibles decreases, and the de-

mand for high deductibles increases, as the claim probability quartile increases. A reasonable

explanation for this anomalous pattern is that, within the top base price quartile, the rate

at which base price increases with claim probability is sufficiently high that the price effect

(which decreases demand for low deductibles and increases demand for high deductibles)

dominates the risk effect (which increases demand for low deductibles and decreases demand

for high deductibles).
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Table 4.2: Deductible Choices

Percent choosing deductible
Observations $100 $200 $250 $500 $1000

Full sample 111,894 1.1 15.2 13.7 65.4 4.6
Male 59,476 1.0 14.9 12.9 65.9 5.4
Female 52,418 1.1 15.5 14.7 64.8 3.8
Young 36,932 0.1 6.9 10.7 77.1 5.2
Old 38,049 2.5 26.2 16.7 51.0 3.6
Low insurance score 37,090 0.4 10.1 12.7 72.2 4.6
High insurance score 38,368 1.8 20.9 14.6 58.1 4.6
p̄Q1, µQ1 13,352 2.8 29.2 18.7 46.9 2.4
p̄Q1, µQ2 7,669 3.1 29.7 19.8 45.8 1.7
p̄Q1, µQ3 4,721 3.0 30.4 21.7 43.8 1.0
p̄Q1, µQ4 2,130 2.9 32.2 23.7 41.0 0.2
p̄Q2, µQ1 7,668 0.8 17.2 15.1 62.6 4.2
p̄Q2, µQ2 8,065 0.9 17.7 16.6 62.3 2.4
p̄Q2, µQ3 6,952 0.9 18.3 18.2 60.8 1.9
p̄Q2, µQ4 5,167 1.0 19.1 19.9 58.8 1.2
p̄Q3, µQ1 4,785 0.3 9.8 11.4 73.5 5.1
p̄Q3, µQ2 7,153 0.5 9.1 12.4 73.9 4.0
p̄Q3, µQ3 7,939 0.4 10.2 12.7 73.2 3.5
p̄Q3, µQ4 8,214 0.3 10.0 13.9 73.7 2.2
p̄Q4, µQ1 2,168 0.2 4.6 5.9 80.5 8.9
p̄Q4, µQ2 5,087 0.1 3.6 6.2 80.5 9.6
p̄Q4, µQ3 8,361 0.0 3.3 5.0 81.9 9.8
p̄Q4, µQ4 12,463 0.1 3.2 4.9 80.1 11.7

Notes: Analysis sample. Young/old and low/high insurance scores are defined as bot-
tom/top third based on the age and insurance score, respectively, of the principal driver.
Q superscripts refer to quartiles of base price and claim probability.

4.3 Evidence of Heterogeneity in Choice Sets

A key feature of our data is that the $200 deductible is a suboptimal alternative for virtually

every household in our sample at all ν P r0, 0.02s.14 In particular, $200 is dominated by $100

or $250, depending on the household’s claim probability.

To see why $200 is a suboptimal alternative, consider a risk neutral household (ν � 0)

with claim probability µ. The household prefers $200 to $100 if and only if

µ   p100 � p200

200� 100
� UB,

14Evaluating W pxic, νiq in equation (4.1) for all 111,894 households over a fine grid of νi, we find that the
$200 deductible is optimal in 0.001 percent of cases, all of which entail νi ¡ 0.012. Suboptimal alternatives,
sometimes called dominated alternatives, are not uncommon in discrete choice settings, including insurance
settings (see, e.g., Handel 2013; Bhargava et al. 2017).
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and prefers $200 to $250 if and only if

µ ¡ p200 � p250

250� 200
� LB.

In our data p100 � p200 � p200 � p250 for all households. For the risk neutral household,

therefore, UB   LB, which implies that at most one of the foregoing inequalities holds and

thus $200 is dominated by $100 or $250, depending on the value of µ. A similar logic applies

for risk averse households with reasonable levels of risk aversion, and indeed for virtually

every household in our sample $200 is suboptimal at all ν P r0, 0.02s. This logic applies

whether risk aversion is driven by diminishing marginal utility as in expected utility theory

or by probability weighting as in rank-dependent expected utility theory.

Yet 15.2 percent of households in our sample choose the $200 deductible. At the same

time, only 1.1 percent choose $100 and 13.7 percent choose $250. Hence, the demand for $100

and $250, separately and together, are less than the demand for $200. This pattern is even

more pronounced within certain subsamples, including households with old principal drivers,

households with high insurance scores, households with base prices in the first quartile, and

households with claim probabilities in the first quartile and base prices in the first or second

quartiles; see Table 4.2.

Heterogeneity in choice sets can readily explain these choice patterns. In our model, all

that is required to rationalize a household’s choice of $200 is the absence of $100 or $250, as

the case may be, from the household’s choice set. Moreover, all that is required to explain

Prpd � 100|xq � Prpd � 250|xq ¡ Prpd � 200|xq is a choice set distribution in which the

frequencies of $100 and $250 are sufficiently less than the frequency of $200.

By contrast, we now establish that many standard discrete choice models, such as the

mixed logit model (e.g., McFadden and Train 2000; Train 2009) and the trembling hand

model (e.g., Harless and Camerer 1994; Wilcox 2008), cannot explain the choice probabilities

in our data. Consider the following mixed logit (MixL) and trembling hand (TH) models.

Note that none of the results in the remainder of this section rely on the assumptions of

the empirical model set forth in Section 4.1, including the assumption that households have

expected utility preferences with Beta distributed, constant absolute risk aversion.

Definition 4.1 (MixL): Uipcq � W pxic,νi; δq�εic, where εic is a random i.i.d. disturbance

that follows a Type 1 Extreme Value distribution and is independent of pxic,νiq, and κ � |D|.
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Definition 4.2 (TH): Uipcq � W pxic,νi; δq, κ � 1, Ci K νi, PrpCi � Dq � 1 �$, and

PrpCi � tcuq � $
|D| for all c P D.15

Neither MixL nor TH can explain Prpd � 100|xq � Prpd � 250|xq   Prpd � 200|xq.
Claim 4.1: Take the model in Section 2. Suppose that for a given c P D there exist a, b P

D, a � b � c, such that, ν � a.s., W pxa,ν; δq ¡ W pxc,ν; δq or W pxb, ν; δq ¡ W pxc, ν; δq.
Then for any distribution of ν with support V:

(I) Under MixL, Prpd � a|xq � Prpd � b|xq ¡ Prpd � c|xq, x� a.s.

(II) Under TH, mintPrpd � a|xq,Prpd � b|xqu ¥ Prpd � c|xq, x� a.s.

The intuition behind Claim 4.1(II) is straightforward. Under TH, alternative c is chosen

only as a result of a tremble (Ci � tcu) whereas alternative a or b may be chosen as a result

of a tremble or because it is optimal (Ci � D). Because all trembles are equiprobable, the

choice probabilities of a and b can never be less than the choice probability of c.

Claim 4.1(I) follows from the fact that MixL satisfies the following conditional rank

order property (which is a generalization of the rank order property established by Manski

(1975) for random utility models that are linear in the nonrandom parameters and feature

an additive i.i.d. disturbance in the utility function).

Property 4.1 (Conditional Rank Order Property): For all c, c1 P D, Prpdi � c1|xi,νiq ¥
Prpdi � c|xi,νiq if and only if W pxic1 ,νi; δq ¥ W pxic,νi; δq, νi � a.s.

To see that MixL satisfies Property 4.1, note that under MixL,

Prpdi � c1|xi,νiq � exppW pxic1 ,νi; δqq°
cPD exppW pxic,νi; δqq . (4.3)

Property 4.1 follows from equation (4.3) for any distribution of νi with support V , and Claim

4.1(I) follows from Property 4.1 by integrating with respect to the distribution of νi. Indeed,

any discrete choice model that satisfies Property 4.1—including, inter alia, the MixL model,

the conditional logit model (McFadden 1974), the semiparametric random utility model

of Manski (1975), and the multinomial probit model (e.g., Hausman and Wise 1978)—is

incapable of explaining the choice probabilities in our data.

Claim 4.1(II) highlights the fact that not all forms of choice set heterogeneity can explain

the choice patterns in our data. To further illustrate this point, consider variants of the two

models of choice set formation referenced at the end of Section 2. The first, which we call the

15We could condition the choice set distribution on ti and the result in Claim 4.1(II) would go through
mutatis mutandis.
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Uniform Random (UR) model, posits that a household’s choice set Ci is drawn uniformly at

random from the feasible set D, conditional on `i � q for q ¥ κ (cf. Dardanoni et al. 2018).

The second, which we call the Alternative Specific Random (ASR) model, posits that each

alternative c P D enters a household’s choice set Ci with probability ϕpcq independently of

other alternatives, conditional on `i ¥ κ (cf. Manski 1977; Manzini and Mariotti 2014).

Definition 4.3 (UR): PrpCi � G|`i � qq � �|D|
q

��1
for all G � D, |G| � q, q ¥ κ; and

Ci K νi.

Definition 4.4 (ASR): PrpCi � G|`i ¥ κq � PrpCi � Gq{p1 �°G�D:|G| κ PrpCi � Gqq
for all G � D, where PrpCi � Gq �±cPG ϕpcq

±
cPDzGp1� ϕpcqq and ϕpcq � Prpc P Ciq; and

Ci K νi.
16

Our model coupled with ASR can explain Prpd � 100|xq � Prpd � 250|xq   Prpd � 200|xq,
but our model coupled with UR cannot.

Claim 4.2: Take the model in Section 2. Suppose that for a given c P D there exist a, b P
D, a � b � c, such that, ν � a.s., W pxa,ν; δq ¡ W pxc,ν; δq or W pxb,ν; δq ¡ W pxc,ν; δq.
Then for any distribution of ν with support V:

(I) Under UR, Prpd � a|xq � Prpd � b|xq ¡ Prpd � c|xq, x� a.s.

(II) Under ASR, Prpd � a|xq � Prpd � b|xq   Prpd � c|xq is possible.

Claim 4.2(I) follows from the fact that our model coupled with UR satisfies Property 4.1.

It is easy to see why. Suppose alternative c1 is preferred to alternative c. Alternative c1 may

be chosen from choice sets that contain both c1 and c and from choice sets that contain c1

but not c. However, alternative c may be chosen only from choice sets that contain c but

not c1. Because all choice sets, conditional on the draw of `i, are equiprobable, c1 is chosen

more frequently than c.

We can establish Claim 4.2(II) with a trivial example. Suppose ϕpaq � ϕpbq � 0 and

ϕpcq � 1. Then Prpd � a|xiq � Prpd � b|xiq � 0 and Prpd � c|xiq ¡ 0 provided that

there exists a positive measure of values of νi P V such that W pxic,νi; δq ¡ W pxic1 ,νi; δq
for all c1 P Dzta, bu, c1 � c. More generally, Prpd � a|xq � Prpd � b|xq   Prpd � c|xq is

possible as long as ϕpaq and ϕpbq are sufficiently low, ϕpcq is sufficiently high, and c is the

best alternative in Dzta, bu for some positive measure of values of νi P V .

Remark 4.1: There is another noteworthy distinction between our model and models

of the form Uipcq � Wipcq � εic where Wipcq is nonrandom and represents expected utility

16We could condition the choice set distribution on ti and the result in Claim 4.2(II) would go through
mutatis mutandis.
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preferences with CARA and εic is a random i.i.d. disturbance that follows a continuous and

strictly increasing distribution. Models in this class violate a basic monotonicity property:

given Ci, as risk aversion increases the choice probabilities of the riskier alternatives decrease

at first but eventually increase (Apesteguia and Ballester 2018). This happens because

differences in expected utilities converge to zero as risk aversion increases, allowing differences

in disturbances to determine choices. The problem is that models in this class are cardinal

in W . Our model avoids this pitfall because it is ordinal in W .

5 Empirical Findings

Our empirical application is motivated in part by the suboptimal choices and related choice

patterns discussed above, which are suggestive of unobserved heterogeneity in choice sets.

At the same time, it is also motivated by a persistent finding in prior empirical studies of

risk preferences which assume full sized choice sets. These studies, many of which estimate

expected utility models and some of which estimate non-expected utility models, tend to find

that average risk aversion is quite high—arguably implausibly high—and that heterogeneity

in risk aversion is rather large as well. Two recent examples that utilize data on deductible

choices in property insurance are Cohen and Einav (2007) and Barseghyan et al. (2013).17

Our empirical application is motivated in large part by the hypothesis that the assumption

of full sized choice sets may be driving this finding and that allowing for heterogeneity in

choice sets may yield more credible estimates of risk preferences.

We begin with a brief explanation of our empirical methods (Section 5.1). We then apply

Theorem 3.1 to learn about the distribution of risk preferences (Section 5.2). After that,

we apply Corollary 3.1 to learn about the distribution of choice set size (Section 5.3) and

Theorem 3.2 to assess the welfare cost of limited choice sets (Section 5.4).

5.1 Summary of Empirical Methods

The inequalities in equations (3.5) and (3.7) and in the constraints in problem (3.8) need to

hold pµi, ti,piq � a.s. As indicated in Section 4.1, we account for observed heterogeneity by

conducting our analysis separately for subsamples based on ti. In keeping with the common

practice in the empirical literature on partial identification (e.g., Ciliberto and Tamer 2009),

we aggregate the inequalities within each equation by discretizing the support of pµi,piq in

17For a review of these and other studies in the literature on estimating risk preferences using field data,
see Barseghyan et al. (2018).

27



bins Bj, j � 1, . . . , J . We estimate the left hand side of the aggregated inequalities by

xPrpdi P K|pµi,piq P Bjq �
°n
i�1 1pdi P K, pµi,piq P Bjq°n

i�1 1ppµi,piq P Bjq .

The right hand side is a model defined function of θ. For reasons we explain below, we use 64

bins: 8 quantiles each for µi and p̄i.
18 Where possible, we leverage Appendix A, Theorem A.2

and other strategies to eliminate redundant inequalities and reduce the number of inequalities

that need to be checked.

We use the generalized moment selection procedure introduced by Andrews and Soares

(2010) [hereafter, AS] to obtain confidence sets that asymptotically uniformly cover θ P ΘI

with probability 95 percent. Under Theorems 3.1 and 3.2, θ � pγ1, γ2q. Under Corollary 3.1,

θ � pγ1, γ2, π3, π4, π5q. We apply the bootstrap-based calibrated projection method proposed

by Kaido et al. (2019) [hereafter, KMS] to obtain asymptotically uniformly valid 95 percent

confidence intervals for smooth functions of γ1 and γ2 (e.g., Epνiq � p0.02 � γ1q{pγ1 � γ2q)
and for π3, π4, and π5. The only exception is that we report 95 percent confidence intervals

for percentiles of νi based on projections of the AS confidence set. In all cases we use 1,000

bootstrap replications. We review the AS and KMS methods in Appendix B.

Although it is common practice in the empirical literature on partial identification to

discretize the support of the covariates, there is no established best practice for how to do

so. We proceed as follows. We construct the AS 95 percent confidence set for θ � pγ1, γ2q,
using the entire sample, when the support of pµi,piq is discretized in 16, 25, 64, and 100 bins;

see Figure 5.1. As we refine the discretized suppport, the resulting inequalities are different

aggregations of the inequalities in equations (3.5), (3.7), and (3.8) which hold pµi,piq � a.s.

Nevertheless it is natural to expect that more information is harnessed with each refinement,

and that is what we observe as we move from 16 to 64 bins or from 25 to 100 bins (i.e., as

we double the number of quantiles for µi and p̄i starting from quartiles or quintiles). With

limited data, however, there is statistical uncertainty which increases with each refinement

and tends to enlarge the confidence set. We find that the confidence sets resulting from 64

and 100 bins are essentially the same. Because the former entails fewer inequalities, we use

the 64 bins based on 8 quantiles each for µi and p̄i throughout our empirical analysis.

We also mention that there are values of θ P ΘI for which the sample analogs of the

moment inequalities in equations (3.5) and (3.7) and the constraints in problem (3.8) are

satisfied. This implies that we fail to reject the hypothesis that our empirical model is

18Given how the company generates pi, a household’s base price p̄i is a sufficient statistic for pi.
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Figure 5.1: Confidence set for θ.

Note: The figure depicts the AS 95 percent confidence set for θ � pγ1, γ2q when the support of
pµi,piq is discretized in 16, 25, 64, and 100 bins.

correctly specified (though, of course, this does not guarantee that it is correctly specified).

For methods to test for misspecification in moment inequality models, see Bugni et al. (2015).

5.2 Risk Preferences

Columns (1) and (2) of Table 5.1 present KMS 95 percent confidence intervals for Epνiq and

Varpνiq, respectively, for the full sample and for selected subsamples based on gender, age,

and insurance score. Recall that νi is the coefficient of absolute risk aversion. Focusing on

the lower bounds, we find that for the full sample the mean of absolute risk aversion is as

low as 0.00091, with a variance as low as 0.0000012. When we split the sample by gender, we

find only small differences: the lower bounds are 6 to 10 percent higher for households with

female principal drivers than for households with male principal drivers. When we split the

sample by age and insurance score, by contrast, we find large differences: the lower bounds

are 2.8 to 4.6 times higher for households with old principal drivers than for households with

young principal drivers, and 2.4 to 5.9 times higher for households with high insurance scores

than for households with low insurance scores.
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Table 5.1: Risk Preferences and Welfare

(1) (2) (3)
Epνq Varpνq Welfare cost

LB UB LB UB UB
Full sample 9.1 � 10�4 3.4 � 10�3 1.2 � 10�6 2.5 � 10�5 $54.49
Male 8.9 � 10�4 3.1 � 10�3 1.0 � 10�6 2.4 � 10�5 $54.24
Female 9.4 � 10�4 3.7 � 10�3 1.1 � 10�6 2.6 � 10�5 $54.61
Young 4.0 � 10�4 3.0 � 10�3 2.2 � 10�7 2.2 � 10�5 $76.20
Old 1.1 � 10�3 4.5 � 10�3 1.0 � 10�6 3.4 � 10�5 $36.25
Low insurance score 4.0 � 10�4 3.3 � 10�3 1.6 � 10�7 2.2 � 10�5 $59.68
High insurance score 9.7 � 10�4 4.9 � 10�3 9.5 � 10�7 3.3 � 10�5 $47.12

Notes: KMS 95 percent confidence intervals. LB and UB denote lower bound and upper bound,
respectively. The lower bound on the welfare cost is zero by definition.

Table 5.2: Interpretation of Epνq and Varpνq
Risk 25th 75th

Epνq premium pctl. pctl.
This paper:
Lower bound of CI 9.1 � 10�4 $052 3.6 � 10�9 1.0 � 10�3

Upper bound of CI 3.4 � 10�3 $300 9.7 � 10�4 5.1 � 10�3

MixL 1.7 � 10�3 $122 1.4 � 10�3 2.0 � 10�3

TH 1.7 � 10�3 $113 9.7 � 10�4 2.2 � 10�3

UR 1.7 � 10�3 $116 1.4 � 10�3 2.0 � 10�3

ASR 2.6 � 10�3 $212 7.0 � 10�4 3.8 � 10�3

Cohen and Einav (2007):
Benchmark model 6.7 � 10�3 $558 2.3 � 10�6 2.9 � 10�4

CARA model 3.1 � 10�3 $267 NR NR
Barseghyan et al. (2013):
Model 4 1.5 � 10�3 $097 7.2 � 10�4 2.0 � 10�3

CARA model 1.1 � 10�3 $068 NR NR

Notes: Confidence intervals for Epνq and risk premium are KMS 95 percent confidence
intervals. Confidence intervals for 25th and 75th percentiles of ν are based on projec-
tions from the AS 95 percent confidence set for θ. Risk premium is calculated for an
agent with CARA expected utility preferences and a lottery that yields a loss of $1000
with probability 10 percent. CI = confidence interval. NR = not reported.

30



To help interpret and provide context for the KMS 95 percent confidence intervals for

Epνiq and Varpνiq, Table 5.2 reports: (i) point estimates of Epνiq obtained under eight com-

parator models; (ii) the risk premium, for an agent with CARA expected utility preferences,

of a lottery that yields a loss of $1000 with probability 10 percent (and no gain or loss with

probability 90 percent), computed at the lower and upper bounds of the KMS 95 percent

confidence interval for Epνiq and at each of the comparison point estimates of Epνiq; and (iii)

95 percent confidence intervals for the 25th and 75th percentiles of νi based on projections

of the AS 95 percent confidence set for θ, as well as point estimates of the 25th and 75th

percentiles of νi obtained under six of the eight comparator models.19

The eight comparator models are the MixL, TH, UR, and ASR models described in

Section 4.3, two models in Cohen and Einav (2007) (their benchmark and CARA models),

and two models in Barseghyan et al. (2013) (their Model 4 and CARA model). Cohen and

Einav (2007) estimate the distribution of absolute risk aversion in a parametric expected

utility model with observed and unobserved heterogeneity in risk preferences using data on

deductible choices in Israeli auto insurance. The Bernoulli utility function is a second-order

Taylor expansion in their benchmark model and a CARA utility function in their CARA

model. Barseghyan et al. (2013) estimate the distribution of absolute risk aversion and prob-

ability distortions in a parametric rank-dependent expected utility model with heterogeneity

in risk preferences using data on deductible choices in U.S. auto and home insurance. Their

data and our data are sourced from the same company. The Bernoulli utility function is a

second-order Taylor expansion in their Model 4 and a CARA utility function in their CARA

model. They allow for observed heterogeneity in their CARA model and for observed and

unobserved heterogeneity in their Model 4. The estimates reported in Table 5.2 for the mod-

els in Cohen and Einav (2007) and Barseghyan et al. (2013) are the estimates they report

based on their data. We estimate the MixL, TH, UR, and ASR models using our data.

The main takeaway from Table 5.2 is that the lower bounds of the confidence intervals for

Epνiq and the 25th percentile of νi are substantially smaller than the corresponding estimates

obtained under all of the comparator models that model risk preferences by expected utility

theory (i.e., all but the two models in Barseghyan et al. (2013)). The lower bound of the

confidence interval for the 75th percentile of νi is also less than the corresponding estimates

obtained under all but one of these comparator models. However, because the distribution

of νi is right skewed, the 25th percentile is the more relevant point of comparison. Even

the upper bound of the confidence interval for the 25th percentile of νi is less than the

corresponding estimates obtained under all but two of these comparator models, though not

19Neither Cohen and Einav (2007) nor Barseghyan et al. (2013) report these percentiles for their CARA
models.
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surprisingly the upper bound for Epνiq is greater than the corresponding estimates obtained

under all but one of these comparator models. Altogether, the confidence intervals suggest

that, if one properly allows for heterogeneity in choice sets, the data can be explained

by expected utility theory with lower and more homogeneous levels of risk aversion than

many familiar models—including some that allow for choice set heterogeneity but perhaps

misspecify the choice set formation process—would imply.

A second takeaway from Table 5.2 comes from the comparison of the confidence intervals

for Epνiq and the 25th and 75th percentiles of νi to the corresponding point estimates re-

ported by Barseghyan et al. (2013), who model risk preferences by rank-dependent expected

utility theory. The lower bounds of the confidence intervals are all considerably less than

the corresponding point estimates reported by Barseghyan et al. (2013), suggesting that

heterogeneity in choice sets may be a viable substitute or complement to heterogeneity in

probability distortions in terms of explaining risky choices. Indeed, one can view both types

of heterogeneity as forms of heterogeneity in inattention—inattention to alternatives and

inattention to probabilities (Gabaix 2018).

Figure 5.2 depicts a 95 percent confidence set for an outer region of admissible probability

density functions of νi based on the AS confidence set for θ. It also superimposes the

predicted density functions of νi based on maximum likelihood estimates of θ obtained

under the MixL, TH, UR, and ASR models. To construct the outer region (shaded in grey),

we find at each point on a grid of 101 values of νi the minimum and maximum values of

all probability density functions implied by values of θ in the AS 95 percent confidence set.

This gives us 101 points on the lower and upper envelopes of admissible probability density

functions. In other words, we obtain pointwise sharp lower and upper bounds on the set of

admissible probability density functions.20

Figure 5.2 shows that the MixL, TH, and UR models predict density functions that

do not lie entirely inside the confidence set for the outer region of admissible probability

density functions of νi based on the AS confidence set for θ. Indeed, the maximum likelihood

estimates of θ under these models are rejected by the AS test of the hypothesis that θ0 P ΘI .
21

The ASR model, by contrast, is not rejected and, in fact, its predicted density function for

νi lies entirely inside the confidence set for the outer region of admissible probability density

20Although the bounds are pointwise sharp, the region is labeled an outer region because not all probability
density functions in it are consistent with the distribution of observed choices. Figure 5.2 presents the outer
region of admissible probability density functions of νi for the full sample. Figure S.1 in the Supplemental
Material presents the outer region for selected subsamples based on gender, age, and insurance score.

21Given our large sample size, confidence sets on maximum likelihood estimates of MixL, TH, and UR are
very tight, and all values in them would be rejected if tested as θ0 P ΘI .
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Figure 5.2: Confidence set for outer region of admissible probability density functions of ν.

Note: The figure depicts a 95 percent confidence set for an outer region of admissible probability
density functions of νi based on the AS 95 percent confidence set for θ. It also superimposes the
implied probability density functions of νi based on maximum likelihood estimates of θ obtained
under the MixL, TH, UR, and ASR models.

functions (though we note that this does not imply that the estimated choice set distribution

obtained under the ASR model is not rejected).

5.3 Choice Set Size

Table 5.3 reports the KMS 95 percent confidence intervals for π5, π4, and π3 for the full

sample and the usual subsamples. The interesting quantities are the upper bounds on π5

and π4.22 The former is the maximum fraction of households whose deductible choices can

be rationalized with full choice sets, while the latter is the maximum fraction of households

whose deductible choices can be rationalized with full-1 choice sets. By implication, one

minus the former is the minimum fraction of households who require full-1 or full-2 choice

sets to rationalize their deductible choices, while one minus the latter (which equals the lower

bound on π3) is the minimum fraction of households who require full-2 choice sets.

22By construction, due to the assumption that κ � 3 (Assumption 4.3(II)), the lower bounds on π5 and
π4 are zero, the lower bound on π3 is one minus the upper bound on π4, and the upper bound on π3 is one.
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Table 5.3: Distribution of Choice Set Size

π5 π4 π3

(full) (full-1) (full-2)
LB UB LB UB LB UB

Full sample 0.00 0.20 0.00 0.93 0.07 1.00
Male 0.00 0.20 0.00 0.93 0.07 1.00
Female 0.00 0.30 0.00 0.97 0.03 1.00
Young 0.00 0.14 0.00 0.99 0.01 1.00
Old 0.00 0.32 0.00 0.96 0.04 1.00
Low insurance score 0.00 0.28 0.00 1.00 0.00 1.00
High insurance score 0.00 0.31 0.00 0.99 0.01 1.00

Notes: KMS 95 percent confidence intervals. LB and UB denote lower
bound and upper bound, respectively. By construction, because κ � 3,
the lower bounds on π5 and π4 are zero, the lower bound for π3 is one
minus the upper bound on π4, and the upper bound on π3 is one.

The main result is that a large majority of households require limited choice sets (full-1

or full-2) to explain their deductible choices. For the full sample, we find that at least 80

percent of households require limited choice sets, including at least 7 percent who require

full-2 choice sets. In addition, we find that: (i) more households with male principal drivers

than with female principal drivers require limited choice sets (80 percent versus 70 percent),

including full-2 choice sets (7 percent versus 3 percent); (ii) more households with young

principal drivers than with old principal drivers require limited choice sets (86 percent versus

68 percent), though more of the latter require full-2 choice sets (1 percent versus 4 percent);

and (iii) more households with low insurance scores than with high insurance scores require

limited choice sets (72 percent versus 69 percent), though a bit more of the latter require

full-2 choice sets (0 percent versus 1 percent).23

5.4 Welfare

Lastly, Column (3) of Table 5.1 reports the upper bound of the KMS 95 percent confidence

interval for the solution to problem (3.8). As explained in Section 3.3, this provides a measure

of the welfare cost of limited choice sets in our context. In the full sample, we find that the

upper bound on this welfare cost is $54. To put this in context, recall that the mean price

23When we split the full sample to form subsamples based on gender, age or insurance score, the full
sample and the subsamples all have different confidence sets for θ and, moreover, the subsamples all contain
fewer observations than the full sample. Consequently, it is possible that the upper bound on π5 for the full
sample is not a weighted average of the upper bounds on π5 for the subsamples. The same is true for the
upper bound on π4 (and, therefore, for the lower bound on π3).
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of coverage with a $500 deductible (the modal choice) is $217 (see Table 4.1). Thus, we find

that the welfare cost of limited choice sets may be as high as 25 percent of what the average

household spends on coverage. Moreover, while we do not find any meaningful difference

based on gender, we find that this welfare cost may be somewhat higher/lower for households

with low/high insurance scores ($60/$47) and considerably higher/lower for households with

young/old principal drivers ($76/$36).

6 Discussion

Discrete choice analysis in the tradition of McFadden (1974) contemplates heterogeneity in

agents’ choice sets. It however assumes that choice sets are observed by the econometrician.24

In practice choice sets are often unobserved. Manski (1977), among others, highlights this

issue.25 In an influential paper he suggests the following characterization of the outcome

probability of the discrete choice process—i.e., the probability that an agent with observable

attributes xi and choice set G chooses alternative c— when agents’ choice set are unobserved:

Prpdi � c|xiq �
¸
G�D

Prpc P� G|xiqPrpCi � G|xi, c P Gq, (6.1)

where P� denotes “is chosen from” and PrpCi � G|xi, c P Gq is the probability that G is

drawn from the feasible set D given that c is in the realized choice set (Manski 1977, p. 239).

The two-stage characterization in equation (6.1) forms the basis of numerous models

of discrete choice with unobserved heterogeneity in choice sets, including ours (as one can

readily see from equation (3.2) and where PrpCi � G|xi, c P Gq can depend on preferences).26

It also makes plain the nature of the identification problem when choice sets are unobserved

(which we elaborate in Section 3.1). In order to point identify the model of preferences,

which is represented by P� in equation (6.1), the econometrician has to make assumptions—

either explicitly or implicitly, sometimes arbitrary and often unverifiable—about the choice

24See McFadden (1974, p. 107): “Observed data are assumed to be generated by the trial of drawing an
individual randomly from the population and recording his attributes, the set of alternatives available to
him, and his actual choice. A sample is obtained by a sequence of independent trials....”

25See Manski (1977, p. 239): “Current methods for estimating the parameters of random utility functions
require ex post observation of a sequence of choice problems for each of which the decision maker, choice set
and chosen alternative are known. Often, however, the survey instrument used in estimation supplies the
identities of the decision makers and his chosen alternative but not those of his feasible inferior alternatives.”
See also, e.g., Ben-Akiva (1973, pp. 83-84): “The question that remains is, therefore, how to determine the
set of alternatives...that the consumer is choosing from....[I]t is likely that the actual choice is made out of
only a subset of the [feasible] set. The problem is to determine this subset.”

26For an exception, see, e.g., Horowitz and Louviere (1995).
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set formation process, including with respect to the dependence or lack thereof between

preferences and choices sets (conditional on observables).27

In what follows we provide an overview of the assumptions made in the econometrics

and applied literatures on discrete choice analysis to grapple with the identification problem

created by unobserved heterogeneity in choice sets.28 More specifically, we describe four

prominent approaches and provide examples of recent papers that take each approach. We

do not provide a comprehensive review of the literature. The discrete choice literature is

vast, spanning a diverse array of fields and subfields such as econometrics, experimental eco-

nomics, microeconomics, behavioral economics, decision theory, macroeconomics, financial

economics, education, labor economics, industrial organization, marketing, and transporta-

tion economics. However, our overview of the landscape enables us to situate our approach

within the literature and provides context for our contributions, which we recap at the end.

� � �
The most common approach in the discrete choice literature to the identification problem

created by unobserved choice sets is to assume that agents’ choice sets all comprise the

feasible set or a known subset of the feasible set.29 This is the approach taken by, for

example, Berry et al. (1995) in estimating demand curves from aggregate data on U.S. auto

sales; Cohen and Einav (2007) in estimating risk preferences from individual-level data on

deductible choices in Israeli auto insurance; and Chiappori et al. (2019) in estimating risk

preferences from aggregate betting data on U.S. horse races. We also take this approach in

prior work on estimating risk preferences from individual-level data on deductible choices in

U.S. auto and home insurance (Barseghyan et al. 2011, 2013, 2016). More often than not,

this approach is taken implicitly without discussion or justification.

Papers that allow for heterogeneity in choice sets take three basic approaches to identifi-

cation. The first is to rely on auxiliary information about the composition or distribution of

agents’ choice sets. For instance, Draganska and Klapper (2011), who study ground coffee

27Cf. Ben-Akiva (1973, pp. 84-85): “Any determination of [the choice set] involves an a priori arbi-
trary criterion....Actually, every existing model explicitly or implicitly makes some a priori assumption that
determines the relevant subset of alternatives.”

28Many important papers in the theory literature—including papers on revealed preference analysis under
limited attention, limited consideration, rational inattention, and other forms of bounded rationality that
manifest in unobserved heterogeneity in choice sets—also grapple with the identification problem (e.g.,
Masatlioglu et al. 2012; Manzini and Mariotti 2014; Caplin and Dean 2015; Lleras et al. 2017; Cattaneo
et al. 2019). However, these papers generally assume rich datasets—e.g., observed choices from every possible
subset of the feasible set—that often are not available in applied work, especially outside of the laboratory.
A notable exception is Dardanoni et al. (2018), which assumes that only a single cross-section of aggregate
choice shares is observed.

29Cf. Swait (2001, p. 643): “The most common strategy of choice set specification makes all choice sets
equal to the master set....”; Honka et al. (2017, p. 615): “[M]ost demand side models maintain the full
information assumption that consumers are aware of and consider all available alternatives.”
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sales, use survey data on brand awareness;30 De los Santos et al. (2012), who study on-

line book purchases, use survey data on web browsing;31 Conlon and Mortimer (2013), who

study vending machine sales, utilize periodic inventory snapshots; and Honka and Chinta-

gunta (2017), who study auto insurance purchases, use survey data on price quotes.32

The second approach is to rely on two-way exclusion restrictions—i.e., assume that certain

variables impact choice sets but not preferences and vice versa. For example, Goeree (2008)

assumes that media advertising affects the set of computers of which a consumer is aware

(and hence her choice set) but not her preferences over computers, while computer attributes

affect her preferences but not her choice set;33 Gaynor et al. (2016) assume that waiting

times and mortality rates directly impact a patient’s preferences over hospitals but not her

referring physician’s preferences (which determine her choice set), while distance to hospital

and hospital fixed effects directly impact her referring physician’s preferences (and hence her

choice set) but not her preferences; and Hortaçsu et al. (2017) assume that a retail electricity

customer’s decision to consider alternatives to her retailer is a function of her last period

retailer (e.g., a bad customer service experience) but not her next period retailer, while her

choice of retailer is a function of her next period retailer but not her last period retailer.34

The last approach is to rely primarily on restrictions to the choice set formation process.

Five recent papers that exemplify this approach are Abaluck and Adams (2018), Barseghyan

et al. (2019), Crawford et al. (2019), Lu (2018), and Cattaneo et al. (2019).35

Abaluck and Adams (2018) consider two models of choice set formation: a variant of the

ASR model described above and a “default specific” model in which each agent’s choice set

comprises either a single, default alternative or the entire feasible set. They show that the

restrictions imposed on choice probabilities by these models are sufficient for point identifica-

tion of preferences and choice set probabilities due to induced asymmetries in cross-attribute

responses (‘Slutsky asymmetries’), assuming that choice sets and preferences are indepen-

dent conditional on observables and that every alternative has a continuous attribute with

large support that is additively separable in utility and shifts choice set probabilities.

30In a similar vein, Honka et al. (2017), who study bank account openings, use survey data on brand
awareness and search activity.

31Similarly, Kim et al. (2010), who study online camcorder sales, use market data on web searches.
32For earlier papers, see, e.g., Roberts and Lattin (1991) and Ben-Akiva and Boccara (1995).
33Similarly, van Nierop et al. (2010) assume that in-store marketing impacts which brands of laundry

detergent and yogurt a shopper considers (and hence her choice set) but not her preferences over brands,
while brand attributes impact her preferences but not her choice set.

34Heiss et al. (2016) similarly assume that a Medicare Part D insured’s decision to consider alternatives
to her existing prescription drug plan is triggered by past changes in her plan’s attributes (e.g., a price
increase), while her plan choice is determined by current attributes of available plans.

35Dardanoni et al. (2018) also take this approach. However, they rule out unobserved preference hetero-
geneity and focus on point identification of the choice set formation model.
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Barseghyan et al. (2019) study random preference models (as opposed to classic ran-

dom utility models with additive i.i.d. disturbances) which satisfy the Spence-Mirrlees single

crossing property. They show that such models are point identified when coupled with vari-

ants of the ASR and UR models described above, assuming that choice sets and preferences

are independent conditional on observables and that there exists an agent specific attribute

with large support that shifts preferences over alternatives but does not affect choice sets.

Crawford et al. (2019) show that with panel data (or group-homogeneous cross-section

data) and preferences in the logit family, point identification of preferences is possible, with-

out any exclusion restrictions, under the assumption that choice sets and preferences are

independent conditional on observables and with restrictions on how choice sets evolve over

time. These restrictions enable the construction of proper subsets of agents’ true choice sets

(‘sufficient sets’) that can be utilized to estimate the preference model.

Lu (2018) provides conditions for both partial and point identification of a random coef-

ficient logit model. He assumes that each agent’s unobserved choice set is bounded by two

observed sets, her largest possible choice set (e.g., the feasible set) and her smallest possible

choice set (containing a default alternative and at least one other alternative). He shows

that availability of these data, together with the assumption that agents’ choices obey Sen’s

property α (i.e., the monotonicity condition that c P� G1 implies c P� G for any G � G1

such that c P G), yields moment inequalities on the choice probabilities, which he uses to

obtain outer regions on the model’s preference parameters. He also shows that additional

large support conditions, monotonicity restrictions on model implied choice probabilities,

and further assumptions on the joint distribution of agents’ unobserved choice sets and their

observed upper and lower bounds can be used to obtain point identification.

Cattaneo et al. (2019) propose a random attention model in which agents’ preferences

are homogeneous (and thus independent of choice sets) and the probability of a particular

choice set does not decrease when the number of possible choice sets decreases. Within this

framework, they provide revealed preference theory and testable implications for observable

choice probabilities, as well as partial identification results for preference orderings.

The approach that we propose and apply in this paper falls into this last category.

However, it relies on fewer and weaker restrictions on the choice set formation process than

any other paper in that category. Our core model imposes—and hence our main identification

result requires—only one mild assumption on the choice set formation process, namely that

agents’ choice sets have a known minimum size greater than one. Importantly, our core model

does not assume that choice sets are independent of preferences conditional on observables

(Abaluck and Adams 2018; Barseghyan et al. 2019; Crawford et al. 2019; Cattaneo et al.

2019). Nor do we impose other restrictions on how agents’ choice sets are formed (Abaluck
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and Adams 2018; Barseghyan et al. 2019) or evolve over time (Crawford et al. 2019), rely on

exclusion restrictions or large support assumptions (Abaluck and Adams 2018; Barseghyan

et al. 2019), require that the econometrician knows the composition of the smallest possible

choice set for each agent (Abaluck and Adams 2018; Lu 2018), or assume that choice sets

satisfy a monotonicity or other regularity condition (Lu 2018; Cattaneo et al. 2019).

Due to the parsimony of our approach we obtain partial and not point identification

of the underlying model of preferences. Nevertheless, as we demonstrate in our empirical

application, much can be learned about the distribution of preferences under our approach.

Moreover, what is learned has more credibility because we avoid making a host of arbitrary

or unverifiable assumptions about the choice set formation process in order to achieve point

identification. Our primary contribution, therefore, is that we offer a new, robust, infor-

mative, and implementable method of discrete choice analysis when agents’ choice sets are

unobserved. We show how one can use this method to partially identify and conduct in-

ference on the distribution of preferences as well as the distribution of choice set size (with

an additional independence assumption) and to conduct welfare analysis (without any ad-

ditional assumptions). We also show how it can be used to construct tests for rejecting

hypothesized models of choice set formation (given the underlying model of preferences).

In addition to our contributions to the discrete choice literature, our empirical application

contributes new insights to the literature on risky choice. In particular, one of our key

empirical findings is that our data can be explained by expected utility theory with lower

and more homogeneous levels of risk aversion than would be implied by many familiar models

in the literature. As noted above, the risky choice literature, motivated in part by advances

in behavioral economics including the Rabin (2000) critique, has increasingly focused on

models that depart from expected utility theory in their specification of how agents evaluate

risky alternatives. While these models are important and yield many valuable insights, our

findings highlight the importance and promise of models that differ in their specification

of which alternatives agents evaluate. They also highlight the need for and value of data

collection efforts that seek to directly measure agents’ heterogeneous choice sets.
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Appendices

A Theory

A.1 Additive Error Random Utility Models

The classic random utility models in the tradition of McFadden (1974), which have the form

Uipcq � Wipcq� εic where εic is an additive disturbance that is agent and alternative specific,

can be subsumed within our framework as follows. Let |νi| ¥ |D| � 1, let ν̃i denote the first

|D| components of νi, and let tec : c P Du be a collection of |D| � 1 standard basis vectors

whose cth component equals one. Then εic � eJc ν̃i. For reasons we explain in Section 4.3,

we dispense with εic in our empirical model and focus on unobserved heterogeneity in choice

sets, which we conceptualize as agent specific. However, one may conceptualize unobserved

heterogeneity in choice sets as agent and alternative specific. In a classic random utility

model, one may let εic P t�8, 0u for each alternative c P D and allow εic to be correlated

with εic1 for any two alternatives c, c1 P D. One would then posit that: if κ � |D| then εic � 0

for each alternative c P D; if κ � |D| � 1 then εic � �8 for at most one alternative in D
(the identity of which is left unspecified); if κ � |D| � 2 then εic � �8 for at most two

alternatives in D (the identities of which are left unspecified); and so on. This model yields

that alternative c is not chosen if εic � �8, which is analogous to alternative c not being

chosen when it is not contained in the agent’s choice set.

A.2 Random Closed Sets

The theory of random closed sets generally applies to the space of closed subsets of a locally

compact Hausdorff second countable topological space F. For simplicity we consider here the

case F � Rk and refer to Molchanov (2017) for the general case. Denote by F (respectively,

K) the collection of closed (compact) subsets of Rk. Denote by pΩ,F, P q the nonatomic

probability space on which all random variables and random sets are defined.

Definition A.1 (random closed set): A map Y : Ω Ñ F is a random closed set if for

every compact set K in Rk, Y �1pKq � tω P Ω : Y pωq XK � Hu P F.

Definition A.2 (selection): For any random set Y, a (measurable) selection of Y is a

random vector y (taking values in Rk) such that ypωq P Y pωq, P � a.s.
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Theorem A.1 (Artstein’s Theorem): A random vector y and a random set Y can be

realized on the same probability space as random elements y1 and Y 1, distributed as y and Y

respectively, so that P py1 P Y 1q � 1, if and only if

P py P Kq ¤ P pY XK � Hq @K P K. (A.1)

Because in this paper the random closed set of interest D�
κpxi,νi; δq is a subset of D, it

suffices to consider F � D; see Molchanov (2017, Example 1.1.9).

Lemma A.1: The set D�
κpxi,νi; δq in equation (3.1) is a random closed set.

Proof. Let D�
κ � D�

κpxi,νi; δq. An application of Molchanov (2017, Example 1.1.9) yields

that D�
κ satisfies the measurability requirement in Definition A.1 if the vector r1pc P D�

κq, c P
Ds is a random vector with values in t0, 1u|D|. Next, note that for any c P D, the event

tc P D�
κu is equivalent to the event

�
G�Dtc P D�

κ, Ci � Gu. Once the value of Ci is fixed,

D�
κ is a singleton-valued random variable and the result follows.

A.3 Proof of Theorem 3.1

Let d�i pG; xi,νi; δq denote the model implied optimal choice for agent i with choice set G.

Recall that by Assumption 2.2(II), PrpCi � G|xi,νiq � 0 for all G � D such that |G|   κ.

Then by definition the sharp identification region ΘI is given by the set of values of θ for

which there exists a distribution Fp�; xi,νiq for Ci such that FpG; xi,νiq ¥ 0 for all G � D,

FpG; xi,νiq � 0 if |G|   κ,
°
G�D FpG; xi,νiq � 1, and for all c P D

Prpdi � c|xiq �
»

τPV

¸
G�D

1pd�i pG; xi, τ ; δq � cqFpG; xi, τ qdP pτ ;γq, xi � a.s. (A.2)

This is because for such values of θ one can complete the model with a distribution Fp�; xi,νiq
so that the model implied conditional distribution of optimal choices matches the distribution

of choices observed in the data. We are then left to show that this set is equal to the one

in equation (3.5). Molchanov and Molinari (2018, Theorem 2.33) show that the observed

vector pdi,xiq is a selection of the random closed set pD�
κpxi,νi; δq,xiq if and only if the

condition in equation (3.5) holds. Take θ such that there exists a distribution FpG; xi,νiq
under which equation (A.2) holds. By definition d�i pG; xi,νi; δq is a selection of D�

κpxi,νi; δq,
and by Molchanov and Molinari (2018, Theorem 2.33) equation (3.5) holds. Conversely, take

a value of θ for which the inequalities in equation (3.5) are satisfied. Then, by Theorem A.1,

there exists a selection d̃ipGq of D�
κpxi,νi; δq such that Prpdi � c|xiq � Prpd̃ipGq � c|xiq for
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some G such that |G| ¥ κ. Let FpG; xi,νiq equal 1 for one such set G such that d̃ipGq � c,

and equal 0 for all other G � D. Then equation (A.2) holds.

A.4 Sufficient Collection of Test Sets K

Theorem 3.1 and Corollary 3.1 provide a characterization of ΘI as the collection of θ P Θ that

satisfy a finite number of conditional moment inequalities, indexed by the test sets K � D.

In this subsection we provide results to reduce the collection of test sets K for which to

check the inequalities from all non-empty proper subsets of D, to a smaller collection. The

reduced collection that suffices for Theorem 3.1 also suffices for Theorem 3.2.

Theorem A.2: Let the assumptions of Theorem 3.1 hold. Then the following steps yield

a sufficient collection of sets K, denoted K, on which to check the inequalities in equation

(3.5) to verify if θ P ΘI . Initialize K � tK : K � Du. Then:

1. For any set K P K such that |K| ¥ κ, set K � KzK;

2.(1) For any set K P K if it holds that @ν P V an element of K, possibly different across

values of ν, is among the |D| � κ� 1 best alternatives in D, then set K � KzK;36

2.(q) Repeat the following step for q � 2, . . . , κ � 1. Take any set K P K such that K �
Kq�1 Y tcju for some Kq�1 with |Kq�1| � q � 1 and tcju P K, Kq�1 P K after Steps 2.1

and 2.(q-1). If Eν P V such that both cj and at least one element of Kq�1 are among

the |D| � κ� 1 best alternatives in D, then set K � KzK.

If the set D�
κ does not depend on δ, as in our application in Sections 4–5, the collection K

is invariant across θ P Θ.

Proof. Recall that the set D�
κpx,ν; δq comprises the |D|�κ�1 best alternatives in D. Step 1

then follows because any set K : |K| ¥ κ includes at least the p|D|�κ�1q-th best alternative

for all realizations of ν in V , so that PrpD�
κpx,ν; δq X K � Hq � 1 and the inequality in

equation (3.5) holds mechanically. Step 2.(1) follows because under the stated condition,

again PrpD�
κpx,ν; δq XK � Hq � 1. Step 2.(q) follows because under the stated condition,

the events tD�
κpx,ν; δqXtcju � Hu and tD�

κpx,ν; δqXKq�1 � Hu are disjoint. This implies

that the right hand side of the inequality in equation (3.5) is additive, and therefore that

inequality evaluated at K is implied by the ones evaluated at tcju and at Kq�1.

36In practice, one can implement this step first on sets K : |K| � 1, and for K that satisfies the condition
remove from K all sets K 1 � K. Then repeat the procedure for the remaining sets K : |K| � 2, and so on.
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Depending on the structure of the realizations of the random set D�
κpx,ν; δq, Theorem

A.2 can be further simplified. The following corollary provides an example.

Corollary A.1: Let Assumptions 2.1 and 2.2 hold. Suppose all possible realizations of

D�
κpx,ν; δq are given by adjacent elements of D, as tcj, cj�1, . . . , cj�|D|�κq, for j � 1, . . . , κ.

Then the collection of test sets K in Theorem A.2 can be initialized to sets of size |K| � m,

m � 1, . . . , |D| � 1, comprised of adjacent alternatives (with respect to |D|).

Proof. For any non-empty set K � D, PrpD�
κpx,ν; δq XK � H;γq � 1 � PrpD�

κpx,ν; δq �
KC ;γq, and therefore

Prpd P K|xq ¤ PrpD�
κpx,ν; δq XK � H;γq

ô Prpd P KC |xq ¥ PrpD�
κpx,ν; δq � KC ;γq. (A.3)

If K � tcj, cmu, then KC � tc1, . . . , cj�1, cj�1, . . . , cm�1, cm�1, . . . , c|D|u, and

PrpD�
κpx,ν; δq � KC ;γq � PrpD�

κpx,ν; δq � tc1, . . . , cj�1u;γq
� PrpD�

κpx,ν; δq � tcj�1, . . . , cm�1u;γq � PrpD�
κpx,ν; δq � tcm�1, . . . , c|D|u;γq

due to the structure of the realizations of D�
κpx,ν; δq. Hence, due to the additivity of

probabilities, the inequality in equation (A.3) for K � tcj, cmu is satisfied whenever it

holds for K1 � tc1, . . . , cj�1u, K2 � tcj�1, . . . , cm�1u, and K3 � tcm�1, . . . , c|D|u, so that

the inequality for K � tcj, cmu is redundant. The same reasoning extends to any set K

comprised of q alternatives, q � 3, . . . , |D| � 1, that are not all adjacent.

When Assumption 3.1 is maintained, the logic of Theorem A.2 can be used to obtain a

collection of sufficient test sets K on which to verify the inequalities in (3.7), by applying

its Steps 2.1-2.(κ � 1) to the random sets D�
q px,ν; δq, q � κ, . . . , |D|. Further simplifica-

tions are possible when interest centers on specific projections of ΘI , using the fact that

D�
q�1pxi,νi; δq � D�

q pxi,νi; δq for all q ¥ κ. As discussed following Corollary 3.1, when As-

sumption 3.1 is maintained the projection of ΘI on rδ;γs is obtained by setting πκpx;ηq � 1

and πqpx;ηq � 0, q � κ � 1, . . . , |D|. Hence, Steps 2.1-2.(κ � 1) in Theorem A.2 applied

only to D�
κpx,ν; δq deliver the sufficient collection of sets K on which to verify (3.7) to ob-

tain the sharp identification region for rδ;γs. On the other hand, the projection of ΘI on

πqpx;ηq, q � κ � 1, . . . , |D| is obtained by setting πlpx;ηq � 0 for all l R tq, κu, and that

on πκpx;ηq by setting πlpx;ηq � 0 for all l � κ � 2, . . . , |D|. Hence, Steps 2.1-2.(κ � 1) in

Theorem A.2 applied, respectively, to only D�
κpx,ν; δq and D�

q px,ν; δq deliver the sufficient

collection of sets K on which to verify (3.7) to obtain the sharp identification region for πq,
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q � κ � 1, . . . , |D|, and applied only to D�
κpx,ν; δq and D�

κ�1px,ν; δq deliver the sufficient

collection of sets K on which to verify (3.7) to obtain the sharp identification region for πκ.

The two corollaries that follow illustrate the specific adaptations of Theorem A.2 that

we use in our application in Sections 4–5. Proofs are omitted because the corollaries follow

immediately from Theorem A.2.

Corollary A.2: Let D � tc1, c2, c3, c4, c5u and κ � 3. Suppose that all assumptions

in Corollary 3.1 hold and that ν is a scalar with support r0, ν̄s, ν̄   8. Then the following

steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in

equation (3.7) to obtain sharp bounds on π5. Initialize K � tK : K � Du. Then:

1. For any set K � tcj, cku � D, if Eν P r0, ν̄s such that both cj and ck are among the

best 3 alternatives in D, then set K � Kztcj, cku;

2. Set K � Kztcj, ck, clu for all j, k, l P t1, 2, 3, 4, 5u.

Corollary A.3: Let D � tc1, c2, c3, c4, c5u and κ � 3. Suppose that all assumptions

in Corollary 3.1 hold and that ν is a scalar with support r0, ν̄s, ν̄   8. Then the following

steps yield a sufficient collection of sets K, denoted K, on which to check the inequalities in

equation (3.7) to obtain sharp bounds on π4. Initialize K � tK : K � Du. Then:

1. For any set K � tcj, cku � D, if Eν P r0, ν̄s such that both cj and ck are among the

best 3 alternatives in D, then set K � Kzttcj, cku, tDztcj, ckuuu;

2. For any set K � tcj, ck, clu � D such that tcj, cku P K after Step 1, if Eν P r0, ν̄s such

that both cl and at least one element of tcj, cku are among the best 3 alternatives in D,

then set K � Kztcj, ck, clu;

3. For any set K P K, if @ν P r0, ν̄s one element of K, possibly different across values of

ν, is among the best 2 alternatives in D, then set K � KzK.

In our application in Sections 4–5, the number of inequalities obtained through application

of Theorem A.2 and Corollaries A.2–A.3 is 390 for the sharp identification region of γ; 1,105

for the sharp identification region of π5; and 975 for the sharp identification region of π4.
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B Statistical Inference

The sample moments that we use to obtain the confidence intervals for (projections of) θ in

Section 5 are of the form:

m̄n,K,jpθq � xPrpdi P K|pµi,piq P Bjq �
»
Bj

P pD�
κpµ,pq XK � H;γqdµdp, (B.1)

where

xPrpdi P K|pµi,piq P Bjq �
°n
i�1 1pdi P K, pµi,piq P Bjq°n

i�1 1ppµi,piq P Bjq ,

and the integral in equation (B.1) is computed using numerical approximation.

We obtain confidence regions based on the procedure proposed by Andrews and Soares

(2010), as for example in Figure 5.1, and confidence intervals based on the procedure pro-

posed by Kaido et al. (2019), as for example in Table 5.1. Here we briefly recap these

procedures. We refer to the original papers for a thorough discussion of the methods, and

to Canay and Shaikh (2017) for a comprehensive presentation of the literature on inference

in moment inequality models.

We base our confidence sets on the maximum moment violation statistic (function S3 in

Andrews and Soares (2010, p. 127)):

Tnpθq � n max
j�1,...,64;KPK

max

"
m̄n,K,jpθq
σ̂n,K,j

, 0

*2

with σ̂n,K,j the sample analog estimator of the asymptotic standard deviation of xPrpdi P
K|pµi,piq P Bjq. Our application of the method proposed by Andrews and Soares (2010)

computes bootstrap-based critical values to obtain a confidence set

CS � tθ P Θ : Tnpθq ¤ ĉn,1�αpθqu

with the property that it covers each θ P ΘI with asymptotic probability 1 � α uniformly

over a large class of probability distributions P described in Andrews and Soares (2010).

Formally,

lim inf
nÑ8

inf
PPP

inf
θPΘI

Ppθ P CSq ¥ 1� α. (B.2)

We use this method to compute a confidence set on γ � rγ1, γ2s P Γ � R2 (recalling that

π3 � 1 and π4 � π5 � 0 when projecting ΘI on γ).
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In practice, we evaluate Tnpθq and the bootstrap-based critical value ĉn,1�αpθq on a grid

of values over Γ � r0.01, 10s � r0.01, 75.01s to obtain a precise description of CS. Our grid

includes 1,501,000 points, with a step size of 0.01 on γ1 and 0.05 on γ2. The approximation of

ĉn,1�αpθq is based on the bootstrap procedure detailed in Andrews and Soares (2010, Section

4.2) and uses 1,000 bootstrap replications.37 The procedure takes as inputs a GMS function

ϕ and a GMS sequence τn, which together are used to determine which moment inequalities

are sufficiently close to binding to contribute to the limiting distribution of Tnpθq. We use

the hard-threshold GMS function proposed by Andrews and Soares (2010):38

ϕK,jpθq �
$&%0 if τ�1

n

?
nm̄n,K,jpθq{σ̂n,K,j ¥ �1,

�8 otherwise,

and we set τn � ?
log n as recommended by Andrews and Soares (2010, Equation (4.4)).

We obtain confidence intervals on π3, π4, π5, Epνq, V arpνq, and on the welfare cost of

limited choice sets using the method proposed by Kaido et al. (2019). The first three pa-

rameters are linear projections of θ � rπ,γs. The other three are smooth functions of γ

with gradients that satisfy the assumptions in Kaido et al. (2019, Theorem 3.1). To keep a

compact notation, in what follows we denote any function of θ for which we compute a con-

fidence interval as fpθq. The lower and upper points of the confidence interval (henceforth,

CIfn) are obtained solving, respectively,

min
θPΘ

{max
θPΘ

fpθq s.t.
?
nm̄n,K,jpθq{σ̂n,K,j ¤ ĉfnpθq, j � 1, ..., 64, K P K,

where ĉfnpθq is computed using the bootstrap-based calibrated projection procedure detailed

in Kaido et al. (2019, Section 2.2). The critical level ĉfnpθq is calibrated so that the function

of θ, rather than θ itself as in equation (B.2), is uniformly asymptotically covered with

probability 1 � α over a large class of probability distributions P described in Kaido et al.

(2019). Formally,

lim inf
nÑ8

inf
PPP

inf
θPΘI

Ppfpθq P CIq ¥ 1� α.

The procedure takes as inputs a GMS function ϕ and a GMS sequence τn, following Andrews

and Soares (2010), for which we make the same choices as described above. The procedure

37Compared to the description in Andrews and Soares (2010, Section 4.2), note that our moment inequal-
ities are of the ¤ form, whereas Andrews and Soares’s are of the ¥ form.

38This is the function that they label ϕp1q on p. 131. They label the GMS sequence κn, but we use τn to
avoid confusion with our notation κ for the (known and fixed) minimum choice set size in Assumption 2.2.
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also requires a regularization parameter ρ ¥ 0, which (similarly to ϕ and τn) enters the cali-

bration of ĉfn,1�α and introduces a conservative distortion that is required to obtain uniform

coverage of projections. The smaller is the value of ρ, the larger is the conservative distor-

tion, but the higher is the confidence that the critical value is uniformly valid in situations

where the local geometry of ΘI makes inference especially challenging. For a discussion,

see Kaido et al. (2019, Section 2.2). We choose the value of ρ as follows. We begin with

the recommendation in Kaido et al. (2019, Section 2.4). To further guard against possible

irregularities in the local geometry of ΘI , we reduce the resulting value of ρ by 20 percent.
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Table S.1: Auto Collision Claim Rate Regression

Variable Coefficient Standard error
Constant �6.6768 0.0761
Driver 2 indicator 0.2389 0.0486
Driver 3+ indicator 0.5585 0.0630
Vehicle 2 indicator 0.4362 0.0478
Vehicle 3+ indicator 0.5972 0.0592
Young driver 0.1028 0.0253
Driver 1 age �0.0182 0.0014
Driver 1 age Squared 0.0002 0.0000
Driver 1 female 0.0441 0.0085
Driver 1 married 0.0694 0.0099
Driver 1 divorced 0.0663 0.0130
Driver 1 separated 0.0970 0.0229
Driver 1 single . .
Driver 1 widowed 0.0498 0.0149
Vehicle 1 age �0.0433 0.0015
Vehicle 1 age squared 0.0008 0.0001
Vehicle 1 business . .
Vehicle 1 farm �0.2366 0.0873
Vehicle 1 pleasure �0.1171 0.0284
Vehicle 1 work �0.1039 0.0283
Vehicle 1 passive restraint �0.0826 0.0263
Vehicle 1 anti-theft 0.0180 0.0074
Vehicle 1 anti-break �0.0080 0.0078
Driver 2 age 0.0037 0.0021
Driver 2 age squared 0.0000 0.0000
Driver 2 female 0.0678 0.0134
Driver 2 married �0.2062 0.0201
Driver 2 divorced �0.1382 0.0851
Driver 2 separated �0.2019 0.1777
Driver 2 single . .
Driver 2 widowed �0.2601 0.1291
Vehicle 2 age �0.0308 0.0016
Vehicle 2 age squared 0.0005 0.0001
Vehicle 2 business . .
Vehicle 2 farm �0.2683 0.1131
Vehicle 2 pleasure �0.1591 0.0361
Vehicle 2 work �0.1619 0.0362
Vehicle 2 passive restraint 0.0237 0.0248
Vehicle 2 anti-theft 0.0342 0.0098
Vehicle 2 anti-break 0.0107 0.0102
Insurance score �0.0018 0.0000
Previous accident 0.0827 0.0147
Previous convictions 0.1336 0.0862
Previous reinstated 0.0354 0.0515
Previous revocation �0.1037 0.1451
Previous suspension 0.0434 0.0521
Previous violation 0.0953 0.0086
Year dummies Yes
Territory codes Yes
Variance (φ) 0.1733 0.0057
Loglikelihood -426,901

Notes: Poisson panel regression with random effects (1,349,853 obser-
vations). Insurance score is a credit based risk score. Territory codes
indicate rating territories, which are based on actuarial risk factors such
as traffic and weather patterns, population demographics, wildlife den-
sity, and the cost of goods and services.
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(b) Female
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(c) Young
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(d) Old
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(e) Low insurance score

0 0.5 1 1.5 2
�10�2

0

5

10

15

20

25

ν

fp
ν
q

(f) High insurance score

Figure S.1: Outer region of admissible probability density functions of ν.

Note: The figure depicts the outer region of admissible probability density functions of νi based
on the AS confidence set for θ for selected subsamples based on gender, age, and insurance score.
Insurance score is a credit based risk score. Young/old and low/high insurance scores are defined
as bottom/top third based on the age and insurance score, respectively, of the principal driver.
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