Follow us
Publications Commentary Research People Events News Resources and Videos About IFS
Home Publications Using penalized likelihood to select parameters in a random coefficients multinomial logit model

Using penalized likelihood to select parameters in a random coefficients multinomial logit model

Cemmap Working Paper CWP50/19

The multinomial logit model with random coefficients is widely used in applied research. This paper is concerned with estimating a random coefficients logit model in which the distribution of each coefficient is characterized by finitely many parameters. Some of these parameters may be zero. The paper gives conditions under which with probability approaching 1 as the sample size approaches infinity, penalized maximum likelihood (PML) estimation with the adaptive LASSO (AL) penalty function distinguishes correctly between zero and non-zero parameters in a random coefficients logit model. If one or more parameters are zero, then PML with the AL penalty function often reduces the asymptotic mean-square estimation error of any continuously differentiable function of the model’s parameters, such as a market share or an elasticity. The paper describes a method for computing the PML estimates of a random coefficients logit model. It also presents the results of Monte Carlo experiments that illustrate the numerical performance of the PML estimates. Finally, it presents the results of PML estimation of a random coefficients logit model of choice among brands of butter and margarine in the British groceries market.

More on this topic

Cemmap Working Paper CWP28/20
This paper is concerned with learning decision makers’ preferences using data on observed choices from a finite set of risky alternatives.
Cemmap Working Paper CWP29/20
We investigate state-dependent effects of fiscal multipliers and allow for endogenous sample splitting to determine whether the US economy is in a slack state.
Cemmap Working Paper CWP27/20
This paper provides a method to construct simultaneous confidence bands for quantile functions and quantile effects in nonlinear network and panel models with unobserved two-way effects, strictly exogenous covariates, and possibly discrete outcome variables.
Cemmap Working Paper CWP25/20
This paper demonstrates the use of bounds analysis for empirical models of market structure that allow for multiple equilibria.
Cemmap Working Paper CWP24/20
This paper evaluates the dynamic impact of various policies, such as school, business, and restaurant closures, adopted by the US states on the growth rates of confirmed Covid-19 cases and social distancing behavior measured by Google Mobility Reports, where we take into consideration of ...