Follow us
Publications Commentary Research People Events News Resources and Videos About IFS
Home Publications Decentralization estimators for instrumental variable quantile regression models

Decentralization estimators for instrumental variable quantile regression models

Cemmap Working Paper CWP42/19

The instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2005) is a popular tool for estimating causal quantile effects with endogenous covariates. However, estimation is complicated by the non-smoothness and non-convexity of the IVQR GMM objective function. This paper shows that the IVQR estimation problem can be decomposed into a set of conventional quantile regression sub-problems which are convex and can be solved efficiently. This reformulation leads to new identification results and to fast, easy to implement, and tuning-free estimators that do not require the availability of high-level "black box" optimization routines.

More on this topic

Cemmap Working Paper CWP9/20
Models of simultaneous discrete choice may be incomplete, delivering multiple values of outcomes at certain values of the latent variables and co-variates, and incoherent, delivering no values.
Cemmap Working Paper CWP8/20
This paper studies identification and inference in transformation models with endogenous censoring.
Cemmap Working Paper CWP6/20
We provide a general framework for investigating partial identification of structural dynamic discrete choice models and their counterfactuals, along with uniformly valid inference procedures.
Cemmap Working Paper CWP7/20
This paper examines the case for randomized controlled trials in economics. I revisit my previous paper “Randomization and Social Policy Evaluation” and update its message.
Cemmap Working Paper CWP5/20
Which housing characteristics are important for understanding homeownership rates?