Labour Supply Responses and the Extensive Margin: The US, UK and France

Richard Blundell Antoine Bozio Guy Laroque

UCL and IFS IFS INSEE-CREST, UCL and IFS

January 2011
The distinction between responses at the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974,1979), Cogan(1981),... Blundell and MaCurdy (1999),... Gruber and Wise (2004)....
The distinction between responses at the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974,1979), Cogan(1981),... Blundell and MaCurdy (1999),... Gruber and Wise (2004)..

Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005).
The distinction between responses at the *extensive* and *intensive* margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974, 1979), Cogan (1981),... Blundell and MaCurdy (1999),... Gruber and Wise (2004)...

Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005).

This paper makes three contributions:

1. develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years
2. provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin
3. recover elasticities at the intensive and extensive margin and explore the implications for measurement of aggregate hours elasticity
The distinction between responses at the *extensive* and *intensive* margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974, 1979), Cogan (1981),... Blundell and MaCurdy (1999),... Gruber and Wise (2004).

Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005).

This paper makes three contributions:

1. develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years

Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005).

This paper makes three contributions:

1. develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years

2. provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin
The distinction between responses at the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974,1979), Cogan(1981),... Blundell and MaCurdy (1999),... Gruber and Wise (2004)...

Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005).

This paper makes three contributions:

1. develop consistent micro-data for an aggregation analysis of three key countries - the US, the UK and France - over the past 30 years
2. provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin
3. recover elasticities at the intensive and extensive margin and explore the implications for measurement of aggregate hours elasticity
Fig 1.A Mean annual hours per individual aged 16 to 74
Fig 1.B. Employment rate (per population) aged 16 to 74
Fig 1.C. Mean annual hours per worker aged 16 to 74
Fig 2.A. Male total hours by age 1977
Fig 3.A. Male employment by age 1977
Fig 3.B. Male employment by age 2007
Fig 4.A. Female total hours by age 1977
Fig 4.B. Female total hours by age 2007
Fig 5.A. Female employment by age 1977

Blundell, Bozio and Laroque ()
Extensive Margin

January 2011 12 / 28
Fig 5.B. Female employment by age 2007

[Graph showing female employment by age for different countries]
Decomposing Changes in Hours Worked

- Suppose there are \(j = 1, \ldots, J \) broad types
Suppose there are \(j = 1, ..., J \) broad types.

\(H_t \) is computed in any year \(t \) as an average of hours \(H_{jt} \) with weights equal to the population shares \(q_{jt} \):

\[
H_t = \sum_{j=1}^{J} q_{jt} H_{jt}
\]
Decomposing Changes in Hours Worked

- Suppose there are $j = 1, \ldots, J$ broad types
- H_t is computed in any year t as an average of hours H_{jt} with weights equal to the population shares q_{jt}

$$H_t = \sum_{j=1}^{J} q_{jt} H_{jt}$$

- where each H_{jt} can be expressed as the product of hours per worker h_{jt} and participation in the labour market p_{jt}

$$H_{jt} = p_{jt} h_{jt}.$$
De-Wosing Changes in Hours Worked

We develop a simple decomposition:

- We measure the change due to the behavior of category \(j \), holding the population structure constant as in date \(t - 1 \), as in a Laspeyres index

\[
\Delta_{jt} = q_{j,t-1}[H_{jt} - H_{j,t-1}].
\]
We develop a simple decomposition:

- We measure the change due to the behavior of category j, holding the population structure constant as in date $t-1$, as in a Laspeyres index

$$\Delta_{jt} = q_{j,t-1}[H_{jt} - H_{j,t-1}]$$

- The total change across all J categories of workers is then

$$\Delta_t = \sum_{j=1}^{J} \Delta_{jt}$$
Decomposing Changes in Hours Worked

We develop a simple decomposition:

- We measure the change due to the behavior of category j, holding the population structure constant as in date $t - 1$, as in a Laspeyres index

$$\Delta_{jt} = q_{j,t-1}[H_{jt} - H_{j,t-1}]$$

- The total change across all J categories of workers is then

$$\Delta_t = \sum_{j=1}^{J} \Delta_{jt}$$

- and, by construction, we have

$$H_t - H_{t-1} = S_t + \Delta_t$$
Decomposing Changes in Hours Worked

We develop a simple decomposition:

- We measure the change due to the behavior of category j, holding the population structure constant as in date $t - 1$, as in a Laspeyres index

$$
\Delta_{jt} = q_{j,t-1}[H_{jt} - H_{j,t-1}].
$$

- The total change across all J categories of workers is then

$$
\Delta_t = \sum_{j=1}^{J} \Delta_{jt}
$$

- and, by construction, we have

$$
H_t - H_{t-1} = S_t + \Delta_t
$$

- where S_t measures the change in the composition of the population:

$$
S_t = \sum_{j=1}^{J} H_{jt}[q_{jt} - q_{j,t-1}].
$$
Table 1 Decomposing the change in total hours, 1977-2007

<table>
<thead>
<tr>
<th>Year</th>
<th>Youth (16-29)</th>
<th>Prime aged (30-54)</th>
<th>Old (55-74)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>FR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>1402</td>
<td>871</td>
<td>2010</td>
</tr>
<tr>
<td>2007</td>
<td>858</td>
<td>627</td>
<td>1639</td>
</tr>
<tr>
<td>Δ_j</td>
<td>-82</td>
<td>-38</td>
<td>-82</td>
</tr>
<tr>
<td>UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>1707</td>
<td>938</td>
<td>2117</td>
</tr>
<tr>
<td>2007</td>
<td>1219</td>
<td>876</td>
<td>1786</td>
</tr>
<tr>
<td>Δ_j</td>
<td>-71</td>
<td>-9</td>
<td>-70</td>
</tr>
<tr>
<td>US</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1977</td>
<td>1344</td>
<td>835</td>
<td>2018</td>
</tr>
<tr>
<td>2007</td>
<td>1236</td>
<td>956</td>
<td>1922</td>
</tr>
<tr>
<td>Δ_j</td>
<td>-19</td>
<td>22</td>
<td>-19</td>
</tr>
</tbody>
</table>

- Evolution of total Δ differs: -195 for FR, -118 for UK, +165 for US.
Table 1 Decomposing the change in total hours, 1977-2007

<table>
<thead>
<tr>
<th>Year</th>
<th>Youth (16-29)</th>
<th>Prime aged (30-54)</th>
<th>Old (55-74)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Men</td>
<td>Women</td>
<td>Men</td>
</tr>
<tr>
<td>FR</td>
<td>1977</td>
<td>1402 871</td>
<td>2010 951</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>858 627</td>
<td>1639 1116</td>
</tr>
<tr>
<td></td>
<td>Δj</td>
<td>-82 -38</td>
<td>-82 36</td>
</tr>
<tr>
<td>UK</td>
<td>1977</td>
<td>1707 938</td>
<td>2117 873</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>1219 876</td>
<td>1786 1055</td>
</tr>
<tr>
<td></td>
<td>Δj</td>
<td>-71 -9</td>
<td>-70 39</td>
</tr>
<tr>
<td>US</td>
<td>1977</td>
<td>1344 835</td>
<td>2018 947</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>1236 956</td>
<td>1922 1373</td>
</tr>
<tr>
<td></td>
<td>Δj</td>
<td>-19 22</td>
<td>-19 90</td>
</tr>
</tbody>
</table>

- Evolution of total Δ differs: -195 for FR, -118 for UK, +165 for US.
- Composition S: +10 for FR, +25 for UK, +46 for US, see Figure 6..
Fig 6. Decomposing the change in total hours (1977-2007)
We decompose the change in total hours for the j type Δ_j, into the sum of an intensive component $l_j = p_{lj}\Delta h_j$ and an extensive component $E_j = h_{Ej}\Delta p_j$.
We decompose the change in total hours for the j type Δ_j, into the sum of an intensive component $I_j = p_{lj} \Delta h_j$ and an extensive component $E_j = h_{Ej} \Delta p_j$.

Assuming the fraction p_{lj} is in the interval $[p_{j,t-1}, p_{jt}]$, we get the intensive bounds:

$$I_j \text{ belongs to the interval } [p_{j,t-1}(h_{jt} - h_{j,t-1}), p_{j,t}(h_{jt} - h_{j,t-1})].$$
We decompose the change in total hours for the j type Δ_j, into the sum of an intensive component $I_j = p_{ij} \Delta h_j$ and an extensive component $E_j = h_{Ej} \Delta p_j$.

Assuming the fraction p_{ij} is in the interval $[p_{jt}, p_{jt-1}]$, we get the intensive bounds:

I_j belongs to the interval $[p_{jt-1}(h_{jt} - h_{j,t-1}), p_{jt}(h_{jt} - h_{j,t-1})]$.

From the identity $\Delta_{jt} = I_j + E_j$, the extensive bounds are given by

E_j belongs to the interval $[h_{j,t-1}(p_{jt} - p_{jt-1}), h_{j,t}(p_{jt} - p_{jt-1})]$.
At the limits, the change in total hours for any type j satisfies two polar exact statistical decompositions:

$$\Delta_{jt} = q_{j,t-1} \left\{ \left[h_{jt} - h_{jt-1} \right] p_{jt} + \left[p_{jt} - p_{jt-1} \right] h_{jt-1} \right\}$$ \hspace{1cm} (1)$$

or

$$\Delta_{jt} = q_{j,t-1} \left\{ \left[h_{jt} - h_{jt-1} \right] p_{jt-1} + \left[p_{jt} - p_{jt-1} \right] h_{jt} \right\}$$ \hspace{1cm} (2)$$
At the limits, the change in total hours for any type j satisfies two polar exact statistical decompositions:

$$\Delta_{jt} = q_{j,t-1} \left\{ [h_{jt} - h_{jt-1}]p_{jt} + [p_{jt} - p_{jt-1}]h_{jt-1} \right\}$$ (1)

or

$$\Delta_{jt} = q_{j,t-1} \left\{ [h_{jt} - h_{jt-1}]p_{jt-1} + [p_{jt} - p_{jt-1}]h_{jt} \right\}$$ (2)

- the first term on the right hand side of both expressions is the intensive margin, weighted in (1) with the final participation rate (as in a Paasche index) and in (2) with the initial participation rate (as in a Laspeyres index)
At the limits, the change in total hours for any type j satisfies two polar exact statistical decompositions:

$$\Delta_{jt} = q_{j,t-1} \left\{ [h_{jt} - h_{jt-1}] p_{jt} + [p_{jt} - p_{jt-1}] h_{jt-1} \right\}$$ \hspace{1cm} (1)$$

or

$$\Delta_{jt} = q_{j,t-1} \left\{ [h_{jt} - h_{jt-1}] p_{jt-1} + [p_{jt} - p_{jt-1}] h_{jt} \right\}$$ \hspace{1cm} (2)$$

- the first term on the right hand side of both expressions is the intensive margin, weighted in (1) with the final participation rate (as in a Paasche index) and in (2) with the initial participation rate (as in a Laspeyres index)

- the second term is the extensive margin (Laspeyres in (1), Paasche in (2)).
Table 2. Decomposing the changes at the extensive and intensive margins by age and gender (1977-2007)

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>Men 16-29</th>
<th>Women 16-29</th>
<th>Men 30-54</th>
<th>Women 30-54</th>
<th>Men 55-74</th>
<th>Women 55-74</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Δ</td>
<td>-82</td>
<td>-38</td>
<td>-82</td>
<td>36</td>
<td>-36</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>E-L, E-P</td>
<td>[-35, -29]</td>
<td>[14, 17]</td>
<td>[-25, -22]</td>
<td>[41, 41]</td>
<td>[-23, -20]</td>
<td>[15, 17]</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>-71</td>
<td>-9</td>
<td>-70</td>
<td>39</td>
<td>-42</td>
<td>10</td>
</tr>
<tr>
<td>US</td>
<td>I-P, I-L</td>
<td>[-6, -6]</td>
<td>[1, 1]</td>
<td>[-5, -5]</td>
<td>[14, 19]</td>
<td>[3, 3]</td>
<td>[3, 5]</td>
</tr>
<tr>
<td></td>
<td>E-L, E-P</td>
<td>[-13, -13]</td>
<td>[21, 21]</td>
<td>[-14, -14]</td>
<td>[72, 77]</td>
<td>[3, 3]</td>
<td>[33, 35]</td>
</tr>
<tr>
<td></td>
<td>Δ</td>
<td>-19</td>
<td>22</td>
<td>-19</td>
<td>90</td>
<td>6</td>
<td>38</td>
</tr>
</tbody>
</table>

Table 2. Decomposing the changes at the extensive and intensive margins by age and gender (1977-2007)

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>Men 16-29</th>
<th>Women 16-29</th>
<th>Men 30-54</th>
<th>Women 30-54</th>
<th>Men 55-74</th>
<th>Women 55-74</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ</td>
<td></td>
<td>-82</td>
<td>-38</td>
<td>-82</td>
<td>36</td>
<td>-36</td>
<td>-3</td>
</tr>
<tr>
<td></td>
<td>E-L, E-P</td>
<td>[-35, -29]</td>
<td>[14, 17]</td>
<td>[-25, -22]</td>
<td>[41, 41]</td>
<td>[-23, -20]</td>
<td>[15, 17]</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td>-71</td>
<td>-9</td>
<td>-70</td>
<td>39</td>
<td>-42</td>
<td>10</td>
</tr>
<tr>
<td>US</td>
<td>I-P, I-L</td>
<td>[-6, -6]</td>
<td>[1, 1]</td>
<td>[-5, -5]</td>
<td>[14, 19]</td>
<td>[3, 3]</td>
<td>[3, 5]</td>
</tr>
<tr>
<td></td>
<td>E-L, E-P</td>
<td>[-13, -13]</td>
<td>[21, 21]</td>
<td>[-14, -14]</td>
<td>[72, 77]</td>
<td>[3, 3]</td>
<td>[33, 35]</td>
</tr>
<tr>
<td>Δ</td>
<td></td>
<td>-19</td>
<td>22</td>
<td>-19</td>
<td>90</td>
<td>6</td>
<td>38</td>
</tr>
</tbody>
</table>

Finally, link up these changes at the extensive and intensive margins to movements in the distribution of taxes, relative wages, demographics and other incomes.

- draw implications for the aggregate hours elasticity.
Aggregation and the Distribution of Elasticities

Consider preferences

\[U = \begin{cases}
\lambda R(h) + \frac{(T - h)^{1-1/\alpha}}{1 - 1/\alpha} - \beta & \text{if } h > 0 \\
\lambda s & \text{if } h = 0
\end{cases} \]
Consider preferences

\[
U = \begin{cases}
\lambda R(h) + \frac{(T - h)^{1 - 1/\alpha}}{1 - 1/\alpha} - \beta & \text{if } h > 0 \\
\lambda s & \text{if } h = 0
\end{cases}
\]

where \(R(h) \) is the disposable income of someone who works \(h \) hours, \(s \) is income when unemployed
Aggregation and the Distribution of Elasticities

Consider preferences

\[U = \begin{cases}
\lambda R(h) + \frac{(T - h)^{1 - 1/\alpha}}{1 - 1/\alpha} - \beta & \text{if } h > 0 \\
\lambda s & \text{if } h = 0
\end{cases} \]

- where \(R(h) \) is the disposable income of someone who works \(h \) hours, \(s \) is income when unemployed
- \(\lambda \) is the marginal utility of income, \(\alpha (T-h)/h \) is the Frisch elasticity
Aggregation and the Distribution of Elasticities

- Consider preferences

\[
U = \begin{cases}
\lambda R(h) + \frac{(T - h)^{1-1/\alpha}}{1 - 1/\alpha} - \beta & \text{if } h > 0 \\
\lambda s & \text{if } h = 0
\end{cases}
\]

- where \(R(h) \) is the disposable income of someone who works \(h \) hours, \(s \) is income when unemployed
- \(\lambda \) is the marginal utility of income, \(\alpha \ (T-h)/h \) is the Frisch elasticity
- \(\beta \) (unobserved heterogeneity in) fixed costs of work.
Consider preferences

$$U = \begin{cases}
\lambda R(h) + \frac{(T - h)^{1 - 1/\alpha}}{1 - 1/\alpha} - \beta & \text{if } h > 0 \\
\lambda s & \text{if } h = 0
\end{cases}$$

where $R(h)$ is the disposable income of someone who works h hours, s is income when unemployed, λ is the marginal utility of income, $\alpha (T-h)/h$ is the Frisch elasticity, and β (unobserved heterogeneity in) fixed costs of work.

The 'aggregate' hours elasticity is given by

$$\varepsilon = \frac{1}{H} \int_w \int_\alpha \int_\lambda p() h() [\varepsilon_I(\alpha, \lambda, w) + \varepsilon_E(\alpha, \lambda, w)] g(\alpha, \lambda, w) d\alpha d\lambda dw.$$
Consider preferences

\[
U = \begin{cases}
\lambda R(h) + \frac{(T-h)^{1-1/\alpha}}{1-1/\alpha} - \beta & \text{if } h > 0 \\
\lambda s & \text{if } h = 0
\end{cases}
\]

where \(R(h) \) is the disposable income of someone who works \(h \) hours, \(s \) is income when unemployed

\(\lambda \) is the marginal utility of income, \(\alpha (T-h)/h \) is the Frisch elasticity

\(\beta \) (unobserved heterogeneity in) fixed costs of work.

The 'aggregate' hours elasticity is given by

\[
\varepsilon = \frac{1}{\bar{H}} \int_w \int_\alpha \int_\lambda p(\cdot) h(\cdot) \left[\varepsilon_I(\alpha, \lambda, w) + \varepsilon_E(\alpha, \lambda, w) \right] g(\alpha, \lambda, w) \, d\alpha \, d\lambda \, dw.
\]

\(- h(\alpha, \lambda, w) \) hours, \(p(\alpha, \lambda, w) \) proportion of type \((\alpha, \lambda, w)\) workers
Put together a consistent series on marginal taxes, incomes, hours of work, wages and consumption for a representative sample of households for UK since 1978.
Put together a consistent series on marginal taxes, incomes, hours of work, wages and consumption for a representative sample of households for UK since 1978.

- use the large changes in relative growth of after tax wages and other incomes across different education, age and gender groups over the years 1978, 1987, 1997 and 2007
Estimating the Distribution of Elasticities

- Put together a consistent series on marginal taxes, incomes, hours of work, wages and consumption for a representative sample of households for UK since 1978.
 - use the large changes in relative growth of after tax wages and other incomes across different education, age and gender groups over the years 1978, 1987, 1997 and 2007
 - there have been distinct changes in participation tax rates and effective marginal tax rates over this period, see Mirrlees Review (IFS, 2010).
Estimating the Distribution of Elasticities

- Put together a consistent series on marginal taxes, incomes, hours of work, wages and consumption for a representative sample of households for UK since 1978.
 - use the large changes in relative growth of after tax wages and other incomes across different education, age and gender groups over the years 1978, 1987, 1997 and 2007
 - there have been distinct changes in participation tax rates and effective marginal tax rates over this period, see Mirrlees Review (IFS, 2010).
 - recover Marshallian elasticities for within period utilities - Frisch elasticities can also estimated using the consumption data.
Fig 8.A Empirical distribution of extensive elasticities: UK men and women, age 30-54
Fig 8.B Empirical distribution of Intensive elasticities: UK men and women, age 30-54
Aggregate responses and elasticities at the intensive and extensive margins

- elasticities for women at both margins are larger than those for men - but the key determinant of these differences across gender is the age composition of children in the family.
Aggregate responses and elasticities at the intensive and extensive margins

- elasticities for women at both margins are larger than those for men - but the key determinant of these differences across gender is the age composition of children in the family.
 - for this sub-population, median extensive elasticity for women is .34, for men is .25, distribution has a large spread.
Aggregate responses and elasticities at the intensive and extensive margins

- elasticities for women at both margins are larger than those for men - but the key determinant of these differences across gender is the age composition of children in the family.
 - for this sub-population, median extensive elasticity for women is .34, for men is .25, distribution has a large spread.
 - median intensive elasticity ranges between .09 and .23. Hicksian and Frisch are larger.
elasticiesties for women at both margins are larger than those for men - but the key determinant of these differences across gender is the age composition of children in the family.

- for this sub-population, median extensive elasticity for women is .34, for men is .25, distribution has a large spread.

- median intensive elasticity ranges between .09 and .23. Hicksian and Frisch are larger.

- aggregate hours elasticity lies in the range .3 to .44 (using the empirical distribution of the wages and estimated unobserved heterogeneity).
We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.
We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work. Shown how informative bounds can be developed on each of these margins.
We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.

shown how informative bounds can be developed on each of these margins.

- applied this analysis to the evolution of hours of work in the US, the UK and France over the past 30+ years.
We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work. Shown how informative bounds can be developed on each of these margins.

– Applied this analysis to the evolution of hours of work in the US, the UK and France over the past 30+ years.

– Shown that the extensive and intensive margins both matter in explaining changes in total hours.
We have proposed a systematic way of decomposing the importance of the extensive and the intensive margins of life-cycle labour supply in explaining the overall movements in aggregate hours of work.

- shown how informative bounds can be developed on each of these margins.
- applied this analysis to the evolution of hours of work in the US, the UK and France over the past 30+ years.
- shown that the extensive and intensive margins both matter in explaining changes in total hours.

developed an approach to estimating the total hours elasticity from the distribution of micro elasticities at the extensive and intensive margins.