Variation in own brand penetration: the role of advertising

Rachel Griffith1,2, Michal Krol2 and Kate Smith1

1Institute for Fiscal Studies, 2University of Manchester

August 2013
Introduction

- Interested in retailers’ provision of own brand products: own brand makes up around 60% of total sales in large supermarket chains
- The share of own brand is stable over time, but varies considerably across product category
- Develop a model that relates retailers’ and manufacturers’ incentives to advertise their products with how advertising affects consumer choices
- Explore how we can take the theory to data
Introduction

• Consider how advertising can affect demand:
 1. Predatory effect of advertising: the extent to which advertising a product captures market share from its rivals
 2. Expansionary effect of advertising: the extent to which total advertising increases demand for all products in a category

• Show that a bigger predatory effect of advertising is associated with lower own brand penetration
Theory

- Hotelling framework; two goods, each produced by a different manufacturer
- A monopolistic retailer who is responsible for advertising good 2 as an own brand, with good 1 advertised by its manufacturer as a national brand
- Timing:
 1. The retailer and national brand manufacturer simultaneously exert advertising efforts, e_i, at a cost, e_i^2
 2. The manufacturers set wholesale prices
 3. The retailer sets retail prices, p_1^r and p_2^r
- Assume the market is covered, and some of each good is bought
• Unit mass of consumers, with valuation, V_i of each good i:

$$V_i = V_0 + a_p(e_i - e_{-i}) + a_c(e_1 + e_2)$$

• where V_0 is the baseline attractiveness of the category, and a_p, a_c represent the predatory and expansionary effects:

$$V_1 - V_2 = 2a_p(e_1 - e_2)$$
$$V_1 + V_2 = 2V_0 + 2a_c(e_1 + e_2)$$

• How do the incentives to advertise depend on V_1 and V_2?
Equilibrium

- Solve for the equilibrium profit of the retailer and the manufacturer, and the market share of i:

 Retailer’s profit:
 $$\Pi^R = \frac{(V_1 + V_2)}{2} + \frac{(V_1 - V_2)^2}{72} - \frac{5}{2}$$

 Manufacturer i’s profit:
 $$\Pi^M_i = \frac{(6 + V_i - V_{-i})^2}{36}$$

 Market share of i:
 $$s_i = \frac{1}{2} + \frac{(V_i - V_{-i})}{12}$$
How does advertising affect the equilibrium?

- Advertising of product 1 (undertaken before the two pricing stages) affects the values of V_1 and V_2:
 1. by increasing $V_1 - V_2$: i.e. the relative attractiveness of 1
 2. by increasing $V_1 + V_2$: i.e. the overall attractiveness of the product category
How does advertising affect the equilibrium?

- Equilibrium profits:

\[
\Pi^R = \frac{(V_1 + V_2)}{2} + \frac{(V_1 - V_2)^2}{72} - \frac{5}{2}
\]

\[
\Pi_1^M = \frac{(6 + (V_1 - V_2))^2}{36}
\]

1. by increasing \(V_1 - V_2 \):
 - manufacturer 1 benefits from an increase of \(V_1 - V_2 \)
 - the retailer is interested in \(|V_1 - V_2|\) - having one brand more attractive than the other allows for more efficient price discrimination
 - If this effect is strong, then the NB advertiser will want to advertise a lot, making its brand very attractive
How does advertising affect the equilibrium?

• Equilibrium profits:

\[
\Pi^R = \frac{(V_1 + V_2)}{2} + \frac{(V_1 - V_2)^2}{72} - \frac{5}{2}
\]

\[
\Pi^M_1 = \frac{(6 + (V_1 - V_2))^2}{36}
\]

2. by increasing \(V_1 + V_2 \):

• An increase in this is beneficial to the retailer, but not the manufacturers, who still compete in wholesale prices with equal intensity

• This would suggest retailers have stronger incentives to advertise than manufacturers: OB penetration is likely to be substantial
Predictions from the theory

• Key prediction:
 OB penetration should be smallest when the predatory effect of advertising is large

• How can we look at this in the data?
1. Brand shares:
 - Kantar Worldpanel: records data on grocery purchases in the UK e.g. food in the home, alcohol, toiletries, household products
 - Collected for a rolling panel of around 25,000 households; daily 2002-2012
 - Products identified as branded, standard own brand and budget own brand (aggregate the own brand types)

2. Advertising expenditure:
 - A.C. Nielsen Digest of Advertising
 - all advertising expenditure in the UK
 - includes adverts on TV, radio, in the press, on billboards and online
 - monthly 2002-2012; by brand
Own brand penetration across category

Notes: quantity share across the big four supermarkets (Tesco, Sainsbury's, Asda and Morrisons)
Own brand penetration across category

Notes: quantity share across the big four supermarkets (Tesco, Sainsbury's, Asda and Morrisons)
Own brand penetration across supermarket

![Graph showing market share of own brand for different supermarkets over time.](image)

- **Morrison's**
- **Sainsbury's**
- **Tesco**
- **Asda**
Empirical approach

- Interested in the a_p parameter: the extent to which advertising by a rival affects own market share

- Estimate:

$$s_{it} = \beta_1^s p_{it} + \beta_2^s \bar{p}_{jt} + \gamma_1^s a_{it}^{1/2} + \gamma_2^s \bar{a}_{jt}^{1/2} + \eta_i^s + \tau_t^s + e_{it}^s$$

from share and advertising data for different product categories

- Calculate the following elasticity:

$$\epsilon_{ij}^{ap} = \frac{a_j}{s_i} \frac{\partial s_i}{a_j}$$
Preliminary results

![Graph showing market share of own brand against predatory advertising elasticity for different categories and stores.](image)
Extensions

- The primary variation in own brand penetration is across product lines, but also observe different types of retailers following different strategies.
The primary variation in own brand penetration is across product lines, but also observe different types of retailers following different strategies.

<table>
<thead>
<tr>
<th></th>
<th>Branded</th>
<th>Standard Own-Brand</th>
<th>Budget Own-Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large supermarkets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asda</td>
<td>0.372</td>
<td>0.465</td>
<td>0.163</td>
</tr>
<tr>
<td>Morrisons</td>
<td>0.431</td>
<td>0.475</td>
<td>0.094</td>
</tr>
<tr>
<td>Sainsbury</td>
<td>0.398</td>
<td>0.503</td>
<td>0.100</td>
</tr>
<tr>
<td>Tesco</td>
<td>0.375</td>
<td>0.450</td>
<td>0.175</td>
</tr>
<tr>
<td>Small supermarkets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marks + Spencer</td>
<td>0.008</td>
<td>0.991</td>
<td>0.001</td>
</tr>
<tr>
<td>Aldi</td>
<td>0.111</td>
<td>0.017</td>
<td>0.872</td>
</tr>
<tr>
<td>Lidl</td>
<td>0.141</td>
<td>0.007</td>
<td>0.852</td>
</tr>
</tbody>
</table>
The primary variation in own brand penetration is across product lines, but also observe different types of retailers following different strategies.

<table>
<thead>
<tr>
<th></th>
<th>Branded</th>
<th>Standard Own-Brand</th>
<th>Budget Own-Brand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large supermarkets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asda</td>
<td>0.372</td>
<td>0.465</td>
<td>0.163</td>
</tr>
<tr>
<td>Morrisons</td>
<td>0.431</td>
<td>0.475</td>
<td>0.094</td>
</tr>
<tr>
<td>Sainsbury</td>
<td>0.398</td>
<td>0.503</td>
<td>0.100</td>
</tr>
<tr>
<td>Tesco</td>
<td>0.375</td>
<td>0.450</td>
<td>0.175</td>
</tr>
<tr>
<td>Small supermarkets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marks + Spencer</td>
<td>0.008</td>
<td>0.991</td>
<td>0.001</td>
</tr>
<tr>
<td>Aldi</td>
<td>0.111</td>
<td>0.017</td>
<td>0.872</td>
</tr>
<tr>
<td>Lidl</td>
<td>0.141</td>
<td>0.007</td>
<td>0.852</td>
</tr>
</tbody>
</table>
Extensions

- Some own brand products are designed to look very similar to their national brand equivalents?

- How can we think about this in the context of the model?
Extensions

- Extend the model to incorporate variation in other parameters of interest
- In a more general form of the model, relax the assumption of having only one monopolistic retailer:
 - Advertising allows retailers to ‘capture’ consumers from other stores
 - Allow retailer size to enter the model
 - The baseline attractiveness of a category, V_0, is allowed to vary across stores
- Consider the difference between standard versus budget own brand
Summary

- Develop a model that seeks to explain variation in own brand penetration by the nature of advertising
- Find that a bigger predatory effect of advertising is associated with lower own brand penetration
- Further work:
 - theory
 - link between theory and empirics: what to estimate, do for more categories, econometrics issues